WO2012042878A1 - 水分計 - Google Patents
水分計 Download PDFInfo
- Publication number
- WO2012042878A1 WO2012042878A1 PCT/JP2011/005482 JP2011005482W WO2012042878A1 WO 2012042878 A1 WO2012042878 A1 WO 2012042878A1 JP 2011005482 W JP2011005482 W JP 2011005482W WO 2012042878 A1 WO2012042878 A1 WO 2012042878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- moisture
- subject
- armpit
- unit
- measuring
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0531—Measuring skin impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0537—Measuring body composition by impedance, e.g. tissue hydration or fat content
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4869—Determining body composition
- A61B5/4875—Hydration status, fluid retention of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6824—Arm or wrist
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/029—Humidity sensors
Definitions
- the present invention relates to a moisture meter that measures the moisture of a living body while being held under the armpit of a subject.
- Dehydration in the living body is a condition in which water in the living body decreases, and it often develops daily, especially when exercising when a lot of water is discharged from the body due to sweating or rising body temperature, or when the temperature is high It is. In particular, it is said that elderly people are more likely to cause dehydration than ordinary healthy people because the water retention ability of the living body itself is often lowered.
- body temperature regulation is impaired when water in the body loses more than 2% of body weight.
- the body temperature regulation disorder causes an increase in body temperature. It falls into a vicious circle that causes a decrease in the number of people, and eventually it leads to a disease state called heat stroke.
- Heat stroke has pathological conditions such as heat convulsions, heat fatigue, and heat stroke, and sometimes systemic organ damage sometimes occurs. By accurately grasping dehydration symptoms, the risk of heat stroke can be avoided in advance. It is desirable to be able to do this.
- a device for grasping a dehydration symptom a device that measures the human body impedance using a device that holds the handle with both hands and calculates the amount of water therefrom is known (see Patent Documents 1 to 3).
- an oral moisture meter or the like for measuring moisture in the oral cavity such as the tongue mucosa, buccal mucosa or palate is known (see Patent Documents 4 to 6).
- skin moisture content measurement methods include in vitro weight method and Karl Fischer method, in vivo ATR spectroscopy, and more simple in vivo measurement method. High frequency impedance methods and electrical conductivity methods are generally used.
- JP 11-318845 A Japanese Patent No. 3977783 Japanese Patent No. 3699640 WO2004 / 028359 International Publication Japanese Patent Laid-Open No. 2001-170088 JP 2005-287547 A
- a moisture meter that measures the human body impedance with a device that holds the handle with both hands and calculates the amount of water from the human body impedance measures the impedance from the skin of the hand, so the humidity of the skin, the muscle mass of the arm, etc. It is easily affected, and for elderly people and people with physical disabilities, the device is large or has to be measured standing up, making it unusable.
- the bioelectrical impedance value falls, and when the body temperature falls, the bioelectrical impedance value rises.
- the bioelectrical impedance value that is, the amount of water also changes. ing.
- the body moisture content is calculated from the bioelectric impedance value measured without taking into consideration that the bioelectric impedance value varies due to the body temperature variation in this way, an accurate body moisture content is obtained. Therefore, dehydration cannot be accurately detected. For example, when the body water content decreased and the body temperature increased, the bioelectrical impedance value increased due to the decrease in the body water content, but the bioelectrical impedance value decreased due to the increase in body temperature. Even if it is determined from the body water content calculated from the bioelectrical impedance value, the dehydration state may not be detected.
- an oral moisture meter that measures moisture in the oral cavity such as the tongue mucosa, buccal mucosa, or palate is newly added to each part directly inserted into the oral cavity to prevent mutual infection between subjects. It is necessary to wear a replaceable cover, and there is a possibility of forgetting to replace and wear the cover, which is inconvenient for elderly people and persons with physical disabilities.
- the dehydration state determination apparatus described in Japanese Patent No. 13977983 includes a body temperature sensor that measures body temperature with a thumb, corrects a measured value of bioelectrical impedance based on the body temperature, and corrects the corrected bioelectrical impedance value. Since the dehydration state is determined based on the bioelectrical impedance value in consideration of the body temperature, such as determining the dehydration state based on the dehydration state, the dehydration state is more accurately determined, and the subject is dehydrated Can be accurately inspected. However, in this document, the body temperature is measured with the thumb, but it is impossible to measure the body temperature with the thumb, which is not a practical method. In the medical field, dehydration is judged by several methods.
- findings indicating dehydration based on blood collection data are determined based on hematocrit high, sodium high, urea nitrogen 25 mg / dl or higher, urea nitrogen / creatinine ratio 25 or higher, uric acid 7 mg / dl or higher, and the like.
- this method requires blood collection and cannot be used at home.
- Other judgment methods include dryness of the tongue, oral cavity, dryness of the armpit, reduced motivation such as “somewhat unwell”, and dull consciousness such as “slow and unresponsive”
- all of them require intuition and experience unique to healthcare professionals, and it is not something anyone can do. Therefore, the present invention provides a moisture meter that can easily measure the moisture content of a subject, detect dehydration early, and is effective as a support means for the subject to perform appropriate moisture regulation. With the goal.
- the moisture meter of the present invention is a moisture meter for measuring moisture of a subject, and is an electrode for supplying a measurement current that is held under the subject's armpit and brought into contact with the skin surface of the armpit And an electric potential measuring electrode section, and an electric moisture measuring section for measuring the moisture content of the subject.
- the electrical moisture measuring unit in the present invention can be used by selecting either the impedance type or the capacitance type. It is generally known that there are two types of sweat glands: apocrine glands and eccrine glands.
- eccrine glands are distributed throughout the body, but apocrine glands are present only in limited areas such as the armpit, ear canal, lower abdomen, and vulva.
- the moisture content is measured for the above reason. This is because the measurement under the armpit most reflects the water state of the whole body of the subject.
- the bioelectrical impedance value falls, and when the body temperature falls, the bioelectrical impedance value rises.
- the bioelectrical impedance value that is, the amount of water also changes.
- the body moisture content is calculated from the bioelectric impedance value measured without taking into consideration that the bioelectric impedance value varies due to the body temperature variation in this way, an accurate body moisture content is obtained. Therefore, dehydration cannot be accurately detected. For example, when the body water content decreased and the body temperature increased, the bioelectrical impedance value increased due to the decrease in the body water content, but the bioelectrical impedance value decreased due to the increase in body temperature. Even if it is determined from the body water content calculated from the bioelectrical impedance value, the dehydration state may not be detected.
- a body temperature measurement unit that is held under the armpit of the subject and measures the body temperature of the subject. According to the above configuration, by measuring the water content of the subject under the subject's armpit and simultaneously measuring the body temperature of the subject, the correlation between the water content and the body temperature is used, and the subject is measured.
- a main body part a holding part of the measurement part that is disposed at one end of the main body part, holds the impedance-type moisture measurement part and the body temperature measurement part, and is held under the armpit, and It has a display part holding part which hold
- the subject has a shape that can be easily held or gripped by the hand, and the holding unit of the measurement unit is held between the armpits, and the holding unit of the display unit projects forward from the armpits.
- the measurer can visually confirm the amount of water and the body temperature displayed on the display unit.
- the plurality of body temperature measuring units are held by a holding unit of the measuring unit.
- the measured body temperature can be averaged and obtained by using a several body temperature measurement part, a more exact water content and body temperature can be obtained.
- the moisture content measured by using a plurality of moisture measuring units can be obtained by averaging.
- the time taken for the body temperature measurement is longer than the time taken for the water measurement, resulting in a time difference.
- a method of measuring and averaging a plurality of times by the same moisture measuring unit may be used. For example, the moisture measurement is performed 10 times while the body temperature is measured once.
- each of the electrode parts of the impedance-type moisture measuring unit has an electrode terminal for directly contacting the skin surface of the armpit and an elastic deformation for pressing the electrode terminal against the skin surface of the armpit And a member.
- an electrode terminal when measuring a moisture content and body temperature, an electrode terminal can be reliably made to contact with the skin surface of a armpit.
- each of the electrode parts of the impedance-type moisture measuring unit is in close contact with the skin surface of the armpit, and the electrode terminal is brought into close contact with the skin surface of the armpit, thereby attaching the electrode terminal to the armpit surface.
- a capacitance-type moisture measuring unit for measuring the moisture content of the liquid detects a capacitance using a plurality of electrodes and changes a dielectric constant that changes in accordance with a moisture content. It is characterized in that the amount of water is measured by the amount. According to the said structure, a moisture content can be measured by a capacitance type under the subject's armpit.
- the present invention can easily measure the moisture content of a subject, and can provide a moisture meter that is effective as a support means for the subject to perform proper moisture regulation.
- the block diagram which shows the function structure of the moisture meter shown in FIG. The figure which shows the structural example of the electrode part of the moisture measurement part of an impedance type.
- the flowchart which shows the moisture content detection operation example of the moisture meter of this invention.
- Explanatory drawing which shows the structure of the moisture measurement part of FIG.
- FIG. 1 is a diagram showing a state in which a subject is using a preferred embodiment of the moisture meter of the present invention.
- FIG. 2 is a diagram showing an example of the external structure of the moisture meter shown in FIG. A portion 1A of the moisture meter 1 shown in FIG.
- a portion 1B of the moisture meter 1 indicates an upper surface portion of the moisture meter 1
- a portion 1C of the moisture meter 1 is indicated by a portion 1A.
- a side portion of the moisture meter 1 viewed from the left side of the paper is shown, and a portion 1D of the moisture meter 1 is a side portion of the moisture meter 1 shown in the portion 1A as viewed from the right side of the paper.
- the moisture meter 1 shown in FIGS. 1 and 2 is also referred to as an electronic moisture meter or an armpit type electronic moisture meter, and the moisture meter 1 is a small and portable moisture meter.
- the moisture meter 1 generally includes a main body 10, a measurement unit holding unit 11, and a display unit holding unit 12, and the total weight of the moisture meter 1 is, for example, It is made as lightweight as about 20g.
- the main body part 10, the holding part 11 of the measurement part, and the holding part 12 of the display part are made of, for example, plastic, and one end of the main body part 10 is formed continuously with the holding part 11 of the measurement part. The other end of the unit 10 is formed continuously with the holding unit 12 of the display unit.
- the main body 10 is formed in a shape that the subject M or the measurement person can easily hold or hold by the hand.
- the main body 10 has a first curved portion 10B that is loosely curved outward and a large curvature inward.
- the second curved portion 10C is curved more greatly than the first curved portion 10B.
- the main body part 10 is formed in such a characteristic shape because the subject M or the measurement person holds or holds the main body part 10 by hand, and holds the holding part 11 of the measurement part of the moisture meter 1. This is because it can be securely held by being sandwiched between the lower Rs.
- using the moisture meter 1 to select the armpit R as a living body part where the water content of the subject M can be appropriately measured and measuring the water content of the living body of the subject M is as follows. Because of the reason. That is, measuring the amount of water with the armpit R is because the water state of the whole body of the subject M is reflected.
- the holding unit 11 of the measuring unit of the moisture meter 1 can be easily sandwiched and securely held.
- the overall length L is about 110 mm for a large size (for adults), the overall length L is about 110 mm for a medium size, and a small size (for infants).
- the total length L is set to about 90 mm, and the moisture meter 1 has a substantially flat plate shape except for a part of the holding part 11 of the measurement part and a part of the holding part 12 of the display part.
- the thickness T2 of the central portion 10A of the main body 10 is about 7 mm
- the maximum thickness T1 of the measurement unit holding unit 11 is about 9 mm
- the maximum thickness T3 near the holding unit 12 of the display unit is about 14 mm. It has become.
- these dimensions of the moisture meter 1 are not limited to the above-described dimension examples, and can be arbitrarily selected.
- the holding unit 11 of the measuring unit of the moisture meter 1 has a circular outer peripheral part 11D, one convex part 11C, and the other convex part 11C. If the holding part 11 of the measurement part is sandwiched between the two convex parts 11C and held from above with the upper arm K, the person M's armpit R is able to control the moisture content and body temperature of the subject M's living body. It is possible to measure stably.
- One convex part 11C is formed on the front side of the holding part 11 of the measuring part, and the other convex part 11C is formed on the back side of the holding part 11 of the measuring part.
- the moisture meter 1 is more tight because the main body 10 is in close contact with the side surface of the upper body B of the subject. It can be reliably held on the upper body B side of the subject.
- the holding unit 12 of the display unit can be held almost horizontally toward the front D of the subject M.
- the distance between the holding unit 11 of the measuring unit and the holding unit 12 of the display unit, that is, the length of the main body unit 10 is displayed when the subject M sandwiches the holding unit 11 of the measuring unit between the armpits R.
- the display unit 20 in the holding unit 12 is set so as to come to a position outside the armpit R (a position not sandwiched between the body part of the subject M and the upper arm K).
- a circular display part 20 is held on the front side of the display part holding part 12, for example.
- the display unit 20 for example, a liquid crystal display device, an organic EL device, or the like can be adopted.
- a speaker 29 as a sound generating unit is disposed on the back side of the holding unit 12 of the display unit.
- the display unit 20 and the speaker 29 are positioned in the armpit R. Therefore, the subject M can surely visually confirm the amount of water and body temperature displayed on the display unit 20 and can hear voice guidance and the like generated from the speaker 29.
- the display unit 20 includes a moisture content (%) display screen (hereinafter referred to as a moisture content display screen) 21 and a body temperature (° C.) display screen (hereinafter referred to as a body temperature display screen). 22).
- the moisture content display screen 21 has a moisture suggestion mark 23 and can be displayed as 40%, for example, by a relatively large size digital display 24.
- the body temperature display screen 22 can display the body temperature of the subject by the body temperature digital display 25 displayed smaller than the water content digital display 24.
- the configuration of the display unit 20 is not limited to the example illustrated in FIG. 2, and the size of the digital display 24 of the moisture content and the digital display 25 of the body temperature may be the same.
- the holding unit 11 of the measuring unit of the moisture meter 1 holds a so-called bioelectric impedance type (hereinafter referred to as impedance type) moisture measuring unit 30 and a body temperature measuring unit 31. It is preferable to dispose anti-slip means on the surface of the holding part 11 of the measuring part by providing irregularities by, for example, dipping. Thereby, when the subject M sandwiches the holding unit 11 of the measuring unit in the armpit R, the subject M has a shape that can reliably and stably clamp the holding unit 11 of the measuring unit of the moisture meter 1, and has a heat capacity. It is possible to reduce the thermal equilibrium state early.
- a first measurement current supply electrode 30 ⁇ / b> A and a first potential measurement electrode 100 ⁇ / b> A are preferably arranged on one convex portion 11 ⁇ / b> C of the measurement unit holder 11.
- a second measurement current supply electrode part 30B and a second potential measurement electrode part 100B are arranged on the other convex part 11C of the holding part 11 of the measurement part. For example, as shown in FIG.
- the first measuring current supply electrode unit 30 ⁇ / b> A and the first potential measuring electrode unit 100A is in close contact with the skin surface V on the side surface side of the upper body B
- the second measurement current supply electrode portion 30B and the second potential measurement electrode portion 100B are the skin surface on the inner surface side of the upper arm K. It comes in close contact with V.
- the electrode part 100B for use measures the moisture content of the subject M by being able to make direct contact with the skin surface V of the armpit R without fail.
- Examples of structures of the first measurement current supply electrode section 30A, the second measurement current supply electrode section 30B, the first potential measurement electrode section 100A, and the second potential measurement electrode section 100B are as follows. This will be described later with reference to FIGS. 4 and 5.
- 2 is a portion for measuring the body temperature of the living body of the subject M in the armpit R of the subject shown in FIG. 1, and preferably the outer peripheral portion of the holding portion 11 of the measuring portion. It is arranged so as to be exposed along 11D.
- the body temperature measurement unit 31 is a part that measures the body temperature of the living body in the armpit R of the subject, and preferably is exposed along the outer peripheral part 11 ⁇ / b> D of the holding unit 11 of the measurement unit. Has been placed. Thereby, the body temperature measurement part 31 can be made to make a direct contact with the skin surface of the armpit R reliably.
- the body temperature measuring unit 31 is adapted to detect the body temperature by contacting the armpit R of the subject M shown in FIG. 1, and the body temperature measuring unit 31 has, for example, a thermistor or a thermocouple. Can be adopted. For example, a temperature signal detected by a thermistor is converted into a digital signal and output.
- the thermistor is liquid-tightly protected by, for example, a stainless metal cap.
- FIG. 3 is a block diagram showing a functional configuration of the moisture meter 1 shown in FIG.
- the main body unit 10 includes a control unit 40, a power supply unit 41, a timer 42, a display unit driving unit 43, an arithmetic processing unit 44, a ROM (read only memory) 45, and an EEPROM (electrical unit).
- a program ROM (PROM) 46 and a RAM (Random Access Memory) 47 that can erase and rewrite the program contents are incorporated.
- the impedance type moisture measuring unit 30 and the body temperature measuring unit 31 are arranged in the holding unit 11 of the measuring unit, and the display unit 20 and the speaker 29 are arranged in the holding unit 12 of the display unit.
- the power supply unit 41 in FIG. 3 is a rechargeable secondary battery or a primary battery, and supplies power to the control unit 40, the impedance type moisture measurement unit 30, and the temperature measurement unit 31.
- the control unit 40 is electrically connected to the power switch 10S, the impedance-type moisture measurement unit 30, the temperature measurement unit 31, the timer 42, the display unit drive unit 43, and the arithmetic processing unit 44.
- the unit 40 controls the overall operation of the moisture meter 1.
- the display unit 20 in FIG. 3 is electrically connected to the drive unit 43 of the display unit, and the display unit drive unit 43 is illustrated in FIG.
- a water suggestion mark 23 such as a cup, a digital display 24 of water content, and a digital display 25 of body temperature are displayed.
- the arithmetic processing unit 44 in FIG. 3 is electrically connected to the speaker 29 and the ROM 45, EEPROM 46, and RAM 47.
- the ROM 45 is calculated from the moisture amount data obtained from the impedance value measured by the impedance type moisture measuring unit 30 and the body temperature data measured by the temperature measuring unit 31 based on the timing measured by the timer 42.
- a program for predicting and calculating the water content and body temperature of the subject is stored based on the time variation of the water content data and the body temperature data.
- the EEPROM 46 stores predetermined audio data.
- the RAM 47 can store the calculated water content data and body temperature data in time series.
- the arithmetic processing unit 44 performs a predictive calculation on the water content and body temperature of the subject according to a program stored in the ROM 45, and outputs voice data to the speaker 29.
- the cell tissue of the human body is composed of a large number of cells, and each cell exists in an environment filled with extracellular fluid.
- the low-frequency alternating current flows mainly through the extracellular fluid region, and when the current is a high-frequency alternating current, it flows through the extracellular fluid region and inside the cell.
- the electrical impedance value of the extracellular fluid region consists only of a resistance component
- the electrical impedance value of the cell consists of a capacitance component exhibited by the cell membrane and a resistance component exhibited by the intracellular fluid. It will be connected in series.
- the electrical characteristics of the living body (body) of the subject M vary significantly depending on the type of tissue or organ. Such electrical characteristics of the entire body including each tissue and organ can be expressed by bioelectric impedance.
- This bioelectrical impedance value is measured by passing a minute current between a plurality of electrodes mounted on the body surface of the subject, and the bioelectrical impedance value thus obtained is
- the body fat percentage, body fat weight, lean body weight, body water content, etc. of the examiner can be estimated (Non-patent document 1: “Estimation of water distribution of limbs by impedance method and its application”, Medical Electronics Bioengineering, vol. 23, No. 6, 1985).
- a method for estimating the amount of water in a living body by calculating the extracellular fluid resistance and the intracellular fluid resistance is known.
- the bioelectrical impedance value indicates a low value when the amount of water in the living body is large, and the bioelectrical impedance value indicates a high value when the amount of water in the living body is small.
- Methods for estimating by calculating the resistance are known.
- the impedance-type moisture measuring unit 30 illustrated in FIG. 3 is a device that measures a bioelectrical impedance value by applying an alternating current to the living body of the subject M.
- the impedance type moisture measuring unit 30 includes a first measurement current supply electrode unit 30A, a second measurement current supply electrode unit 30B, a first potential measurement electrode unit 100A, and a second potential measurement. Electrode section 100B, AC current output circuit 101, two differential amplifiers 102 and 103, switch 104, A / D converter 105, and reference resistor 106.
- the first measurement current supply electrode section 30A, the second measurement current supply electrode section 30B, the first potential measurement electrode section 100A, and the second potential measurement electrode section 100B are, for example, illustrated in FIG. 2 is exposed to the outside in the holding unit 11 of the measurement unit shown in FIG. Thereby, these four electrode parts 30A, 30B, 100A, 100B can be brought into direct contact with the skin surface of the armpit R of the subject M shown in FIG.
- the AC current output circuit 101 in FIG. 3 is electrically connected to the control unit 40, the first measurement current supply electrode unit 30A, and the second measurement current supply electrode unit 30B.
- a reference resistor 106 is disposed between the first measurement current supply electrode portions 30A.
- the differential amplifier 102 is connected to both ends of the reference resistor 106.
- the other differential amplifier 103 is electrically connected to the first potential measuring electrode portion 100A and the second potential measuring electrode portion 100B.
- the two differential amplifiers 102 and 103 are electrically connected to the control unit 49 via the switch 104 and the A / D converter 105.
- the AC power supply output circuit 101 is connected to the first measurement current supply electrode unit 30 ⁇ / b> A via the reference resistor 106.
- An alternating measurement current is supplied to the second measurement current supply electrode section 30B.
- One differential amplifier 102 detects a potential difference between both ends of the reference resistor 106.
- the other differential amplifier 103 detects the potential difference between the electrode portions 100A and 100B for potential measurement.
- the switch 104 selects one of the potential difference outputs from the differential amplifiers 102 and 103 and sends it to the A / D converter 105.
- the A / D converter 105 analogizes the potential difference outputs of the differential amplifiers 102 and 103. / Digitally converted and supplied to the control unit 40.
- the first measurement current supply electrode portion 30 ⁇ / b> A and the second measurement current supply electrode portion 30 ⁇ / b> B of the impedance-type moisture measurement unit 30 described above An example of the structure of the electrode part 100A for measuring the potential and the electrode part 100B for measuring the second potential will be described.
- Can adopt the same. 4 and 5 show the skin surface V and the moisture W on the skin surface V.
- the structure of the electrode part 100 ⁇ / b> B includes an electrode terminal 70, a semicircular plate-like elastic deformation member 71, and an electrode terminal guide part 72.
- the electrode terminal 70 having conductivity is connected to the wiring 74, one end of the elastic deformation member 71 is fixed to the bottom of the electrode terminal 70, and the other end of the elastic deformation member 71 is the holding portion of the measurement unit in FIG. 11 is fixed to a fixed portion 75 in the interior.
- the electrode terminal guide 72 has a cylindrical portion 73, and the lower portion of the electrode terminal 70 is inserted into the cylindrical portion 73.
- the electrode terminal 70 when the tip of the electrode terminal 70 is pressed against the skin surface V in the direction of the arrow G, the electrode terminal 70 is pressed in the direction of the arrow H against the elastic force of the elastic deformation member 71.
- the tip of the terminal 70 can be reliably brought into contact with the skin surface V without being separated.
- the structure of the electrode part 100 ⁇ / b> B includes an electrode terminal 70, an elastic deformation member 76 of a cylindrical cushion material, and an electrode terminal guide part 72.
- the electrode terminal 70 having conductivity is connected to the wiring 74, and the bottom of the electrode terminal 70 is fitted and fixed to the recess 77 at the upper end of the elastic deformation member 76.
- the other end of the elastic deformation member 76 is shown in FIG. It is being fixed to the fixed part 75 in the holding
- the electrode terminal guide portion 72 has a cylindrical portion 73, and the upper end portion of the elastic deformation member 76 is inserted into the cylindrical portion 73.
- the structure of the electrode part 100 ⁇ / b> B includes an electrode terminal 70, a coil spring-like elastic deformation member 78, and an electrode terminal guide part 72.
- the electrode terminal 70 having conductivity is connected to the wiring 74, one end of the elastic deformation member 78 is fixed to the bottom of the electrode terminal 70, and the other end of the elastic deformation member 78 is the holding portion of the measurement unit in FIG. 11 is fixed to a fixed portion 75 in the interior.
- the electrode terminal guide 72 has a cylindrical portion 73, and the lower portion of the electrode terminal 70 is inserted into the cylindrical portion 73.
- the electrode terminal 70 when the tip of the electrode terminal 70 is pressed against the skin surface V in the direction of the arrow G, the electrode terminal 70 is pressed in the direction of the arrow H against the elastic force of the elastic deformation member 78.
- the tip of the terminal 70 can be reliably brought into contact with the skin surface V without being separated.
- the structure of the electrode part 100 ⁇ / b> B includes an electrode terminal 70, an adhesive member 80, and an electrode terminal fixing part 81.
- the electrode terminal 70 having conductivity is connected to the wiring 74, and the lower portion of the electrode terminal 70 is fitted and fixed to the cylindrical electrode terminal fixing portion 81.
- the adhesive member 80 is an adhesive member for pressing the electrode terminal 70 against the skin surface of the armpit R, and is adhered and fixed on the surface portion 83 of the holding unit 11 of the measurement unit in FIG.
- the adhesive member 80 is stuck to the skin surface V, so that the tip of the electrode terminal 70 is pressed in the direction of arrow H. In this state, the skin surface V can be reliably brought into contact with the skin surface V without being separated.
- the structure of the electrode part 100 ⁇ / b> B includes an electrode terminal 70, a suction cup 85, and an electrode terminal fixing part 81.
- the electrode terminal 70 having conductivity is connected to the wiring 74, and the lower portion of the electrode terminal 70 is fitted and fixed to the cylindrical electrode terminal fixing portion 81.
- the suction cup 85 is a close contact member for pressing the electrode terminal 70 against the skin surface of the armpit R, and is fixed on the surface portion 83 of the holding unit 11 of the measurement unit in FIG.
- the moisture meter 1 of the embodiment of the present invention can The measurement of the amount of water and the measurement of body temperature in the lower R are important.
- the above-described determination example of the symptom of the subject may be displayed on the display unit 20 of FIG.
- FIG. 7 is a flowchart showing an operation example in which the moisture meter 1 detects the moisture content and body temperature of the subject M.
- the moisture meter 1 shown in FIGS. 1 and 2 detects the moisture content and body temperature of the subject M
- step S1 of FIG. 7 when the subject turns on the power switch 10S shown in FIG. 3 and sends an on signal to the control unit 40, the moisture meter 1 becomes ready for measurement.
- step S2 as shown in FIG. 1, the subject M sandwiches the holding unit 11 of the measuring unit of the moisture meter 1 with respect to the armpit R using the two convex portions 11C of FIG.
- the moisture meter 1 is more reliably secured by the main body 10 being in close contact with the side surface portion of the upper body B of the subject.
- the holding unit 12 of the display unit can be positioned substantially horizontally toward the front D of the subject M.
- the distance between the holding unit 11 of the measurement unit and the holding unit 12 of the display unit is such that when the subject M sandwiches the holding unit 11 of the measurement unit with the armpit R, the display unit 20 has the armpit R Therefore, the subject M can easily perform the digital display 24 of the moisture content and the digital display 25 of the body temperature on the display unit 20 of the display unit holding unit 12. Visible.
- the subject M can hear the voice guidance generated by the speaker 29.
- step S3 of FIG. 7 when the holding unit 11 of the measuring unit of the moisture meter 1 is held in the armpit R, the arithmetic processing unit 44 initializes the moisture meter 1 and based on the timing signal from the timer 42. Then, the moisture amount data signal P1 measured by the moisture measuring unit 30 and the body temperature data signal P2 measured by the temperature measuring unit 31 are captured at a predetermined sampling timing. As described above, when the moisture amount data signal P1 is obtained from the moisture measurement unit 30, the first measurement current supply electrode unit that is in contact with the armpit R of the subject M as illustrated in FIG. The alternating current is applied to the subject M from the alternating current output circuit 101 by 30A and the second measurement current supplying electrode portion 30B.
- the first potential measurement electrode portion 100A and the second potential measurement electrode portion 100B that are in contact with the subject's armpit R have two potential differences at the subject armpit R.
- This potential difference is supplied to the other differential amplifier 103, and the other differential amplifier 103 outputs a potential difference signal between two points of the subject M to the switch 104 side.
- One differential amplifier 102 outputs the potential difference signal of the reference resistor 106 to the switch 104 side.
- the control unit 40 switches the switch 104, the potential difference signal from one differential amplifier 102 and the potential difference signal from the other differential amplifier 103 are analog / digital converted by the A / D converter 105, and the control unit The control unit 40 obtains a bioelectrical impedance value based on the digital signal.
- the control unit 40 calculates water content data P1 from the obtained bioelectrical impedance value.
- the moisture amount data P1 is sent from the control unit 40 to the arithmetic processing unit 44.
- step S4 the arithmetic processing unit 44 determines the subject based on the temporal change in the moisture amount data and the body temperature data of the subject obtained from the moisture amount data P1 and the body temperature data P2 measured by the temperature measuring unit 31.
- the amount of moisture and body temperature of M can be predicted and calculated.
- step S5 of FIG. 7 the calculated moisture value and body temperature of the subject M are voice-guided from the speaker 29 of FIG. 3, and the moisture content is displayed on the display unit 20 shown in FIGS.
- a relatively large size digital display 24 can be displayed on the screen 21, and a body temperature digital display 25 can be displayed on the body temperature display screen 22.
- step S6 when the subject M finishes the measurement with the moisture meter 1, the power switch 10S in FIG. 3 is turned off. However, when the measurement is not finished, the process returns to step S3 and again from steps S3 to S6. Will be repeated.
- the moisture meter 1 has a structure that can be measured by the armpit R that can appropriately measure the moisture content of the subject M.
- the arithmetic processing unit 44 obtains the moisture content data and body temperature of the subject obtained from the moisture content data P1 and the body temperature data P2 measured by the temperature measurement unit 31. Based on the time change of the data, it is possible to predict and calculate the water content and body temperature of the subject.
- the measurement of the armpit R as the part of the living body that can appropriately measure the moisture content of the subject M is to measure the moisture content with the armpit R. This is because the state is reflected. In general, the skin of elderly people is easy to dry, and there are many variations among people. Among them, the armpit R is preferable because it has less influence from the outside as compared with other parts, and thus has little variation in measurement.
- the holding unit 11 of the measuring unit of the moisture meter 1 can be securely sandwiched in the armpit R between the body and the upper arm. Further, even if the subject is an infant, if the armpit is R, the holding unit 11 of the measuring unit can be easily sandwiched and securely held. Furthermore, the moisture measuring unit 30 has a structure that secures the middle of the armpits R, thereby increasing the measurement accuracy.
- the moisture meter 1 of the embodiment of the present invention preferably has a structure that can also measure the body temperature in the armpit R at the same time when appropriately measuring the moisture content of the subject M as described above.
- the medical staff or caregiver puts the holding unit 11 of the measuring unit of the moisture meter 1 on the armpit R of the subject M as compared with the case of measuring moisture from the oral cavity or the like. Since it is only held between them, the moisture content of the subject M can be easily measured.
- the body temperature is a normal value when the water content is low, based on the relationship between the water content of the living body of the subject M displayed on the display unit 20 and the body temperature of the living body of the subject M.
- the subject is mildly dehydrated, and when the water content is normal, the subject is in a healthy state if the body temperature is normal.
- the body temperature is high when the amount of water is low, the subject is severely dehydrated, and if the amount of water is normal, the subject is cold if the body temperature is high, For example, a doctor can make a rough decision.
- An embodiment of the moisture meter of the present invention is a moisture meter for measuring moisture of a subject, and is used to supply a measurement current for being held under the subject's armpit and contacting the skin surface of the armpit. It has an electrode part and an electrode part for potential measurement, and has an impedance type moisture measuring part for measuring the moisture content of the subject. Thereby, the moisture content of the subject can be easily measured, and it is effective as a support means for the subject to perform proper moisture adjustment.
- selecting the armpit as a part of the living body that can appropriately measure the moisture content of the subject, and measuring the moisture content of the subject's body This is because the water state in the whole body of the subject M is reflected by the measurement in (1).
- the body temperature measurement unit that is held under the subject's armpit and measures the body temperature of the subject.
- the main body part, the holding part of the measuring part which is disposed at one end of the main body part, holds the impedance type moisture measuring part and the body temperature measuring part and is held under the armpit, and the other end of the main body part.
- a display unit holding unit that holds a display unit that displays the measured moisture content of the subject and the measured body temperature of the subject.
- the subject M has a shape that can be easily held or gripped by the hand, and the holding part of the measurement unit can be held by the armpit, and the holding part of the display unit can protrude forward from the armpit.
- the measurer can visually confirm the amount of water and the body temperature displayed on the display unit.
- a plurality of body temperature measuring units are held in the holding unit of the measuring unit.
- the measured body temperature can be averaged and obtained by using a plurality of body temperature measuring units, more accurate water content and body temperature can be obtained.
- each electrode part of the impedance-type moisture measuring unit has an electrode terminal for directly contacting the skin surface of the armpit and an elastic deformation member for pressing the electrode terminal against the skin surface of the armpit .
- an electrode terminal can be reliably made to contact with the skin surface of the armpit.
- each electrode part of the impedance-type moisture measuring unit has an electrode terminal for direct contact with the skin surface of the armpit and presses the electrode terminal against the skin surface of the armpit by being in close contact with the skin surface of the armpit.
- a contact member for application for application.
- FIG. 9 is a block diagram showing the configuration of still another embodiment of the moisture meter.
- the parts denoted by the same reference numerals as those in FIG. 3 have the same structure, and in this embodiment, the configuration of the moisture measuring unit 30 uses capacitance as shown in FIG. Is different.
- the description of the common part will be described with reference to FIG. 9 has a configuration shown in FIG. That is, the capacitance of the living body of the subject M, which is the measurement object, is measured, and the moisture content is measured from the amount of change in the dielectric constant that changes according to the moisture content.
- the moisture measuring unit 30 includes a container unit 60 and two electrodes 61 and 62.
- the container 60 has a resin-made peripheral portion 63 and a lid portion 64, and the two electrodes 61 and 62 are exposed to the outside from the lid portion 64 in a state of being electrically insulated from each other while being separated from the lid portion 64. It is arranged like that.
- the capacitance of the living body of the subject M is measured by the two electrodes 61 and 62 coming into contact with the skin of the armpit R and the moisture W on the skin, and the dielectric changes according to the moisture content.
- the amount of water is measured from the amount of change in rate.
- the moisture amount data signal P1 from the two electrodes 61 and 62 is sent to the control unit 40, and the arithmetic processing unit 44 calculates the moisture amount based on the moisture amount data signal P2.
- the moisture measuring unit 30 detects the capacitance using the plurality of electrodes 61 and 62 and measures the moisture content based on the amount of change in the dielectric constant that changes according to the moisture content.
- the amount of water can be measured with a capacitance method under The capacitance can be obtained by the following formula. Assuming that S and d have constant values, the capacitance (C) is proportional to the value of dielectric constant ( ⁇ ), and the larger the amount of moisture, the larger the values of dielectric constant and capacitance.
- Capacitance (C) ⁇ ⁇ S / d (F)
- the arithmetic processing unit 44 determines the time between the moisture amount data and the body temperature data of the subject obtained from the moisture amount data P1 measured by the moisture measuring unit 30 and the body temperature data P2 measured by the temperature measuring unit 31. Based on the change, the subject's water content and body temperature are predicted and calculated. Therefore, in the case of measurement using capacitance, it is only necessary to provide two electrodes that are insulated from each other. As in the impedance type, an electrode part for supplying a measurement current and an electrode part for measuring a potential are provided. There is no need to provide a pair, which is convenient.
- FIG. 11 shows a modification of the electrode structure.
- This electrode system can be used for both the impedance type and the capacitance type.
- the electrode part 110 uses a structure that is exposed on the side surface of the first portion 1 ⁇ / b> C of the moisture meter 1.
- the electrode portion 110 is configured such that, for example, a base portion 103 made of an insulator formed in a rectangular shape and comb-shaped electrodes 102 and 103 made of linear conductors formed on the surface of the base portion 103 are opposed to each other with a minute gap therebetween. It is said that. Terminal portions 102a and 103a are formed at the ends of the comb electrodes 102 and 103, respectively.
- the comb-shaped electrode 102 is used as a first potential measuring electrode section
- the comb-shaped electrode 103 is used as a second potential measuring electrode section. Can be used to perform impedance-type moisture measurement.
- the two comb-shaped electrodes 102 and 103 are arranged to face each other with a minute gap therebetween, and a current is applied to one of the electrodes to oxidize moisture as a specimen substance, and the other electrode Reduce the material oxidized in step 1 to the original material.
- moisture as the analyte can be detected by repeating oxidation and reduction between the two electrodes.
- detection is preferably performed in the dual mode.
- an oxidation potential with respect to moisture is applied to the comb electrode 102, and a reduction potential is applied to the other comb electrode 103 from the power supply unit 41 of FIG.
- a so-called redox cycle in which oxidation and reduction are repeated occurs, and the detection sensitivity can be improved by increasing the current.
- the substrate 101 that is the insulating material in FIG. 11 may be an electrode substrate as long as the surface or the whole is an insulating substrate.
- a silicon substrate with an oxide film, a quartz substrate, an aluminum oxide substrate, a glass substrate, A plastic substrate or the like can be used.
- Suitable conductors for the electrode material include metals such as gold, platinum, silver, chromium, titanium, and stainless steel, semiconductors, conductive carbon, conductive ink, and the like.
- the above-described conductor metal or the like is formed on the insulating substrate 101 as a thin film by vapor deposition, sputtering, CVD (chemical vapor deposition) or the like, and this is formed by, for example, a photolithography method. It can be formed in the shape of a comb electrode. In addition to photolithography, comb-shaped electrodes may be drawn with conductive ink on a substrate 101 which is an insulating material by an ink jet printer or the like.
- the moisture measuring unit 30 can come into contact with the most depressed portion of the armpit R.
- the present invention is not limited to the above-described embodiments, and various modifications and changes can be made to the present invention, and various modifications can be made within the scope described in the claims.
- one moisture measuring unit 30 and one body temperature measuring unit 31 are arranged in the holding unit 11 of the measuring unit.
- the present invention is not limited to this, and a plurality of body temperature measurement units 31 may be arranged in the holding unit 11 of the measurement unit as illustrated in FIG. Thereby, the measurement accuracy of a body temperature can be raised more by averaging the body temperature obtained from each body temperature measurement part 31.
- SYMBOLS 1 Moisture meter, 10 ... Main-body part, 11 ... Holding part of a measurement part, 12 ... Display part, M ... Subject, R ... Underarm, 11 ... Measurement unit holding unit, 12 ... Display unit holding unit, 12 ... Display unit holding unit, 20 ... Display unit, 30 ... Moisture measurement unit, 30A, 30B ... Measurement current supply Electrode part, 31 ... body temperature measurement part, 100A, 100B ... electrode part for potential measurement, 110 ... electrode part
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Dermatology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
脱水症状を把握する装置としては、両手でハンドルを保持するような装置で人体インピーダンスを測定し、そこから水分量を算出するものが知られている(特許文献1~3を参照)。
また、別の脱水症状を把握する装置として、舌粘膜、頬粘膜あるいは口蓋などの口腔内の水分を測定する口腔水分計等が知られている(特許文献4~6を参照)。
さらに、皮膚の水分量の計測方法としては、イン・ビトロでの重量法やカール・フィシャー法に始まり、イン・ビボでのATR分光法、更にはより簡便なイン・ビボでの計測法である高周波インピーダンス法や電気伝導度法が一般的に利用されている。
一般的に、体温が上昇すると生体電気インピーダンス値は下降し、体温が下降すると生体電気インピーダンス値は上昇するといったように、体温が変動すると生体電気インピーダンス値、すなわち水分量も変動することが知られている。しかし、従来の水分計では、このように体温の変動により生体電気インピーダンス値が変動することを何ら考慮せずに測定された生体電気インピーダンス値から体水分量を算出するため、正確な体水分量を求めることができず、従って脱水症状を正確に検出することができない。例えば、体水分量が減少し、体温が上昇している場合には、体水分量の減少により生体電気インピーダンス値は上昇するが、体温の上昇により生体電気インピーダンス値は下降するため、測定された生体電気インピーダンス値より算出した体水分量から判定しても、脱水状態は検出されないということも起こり得る。このため、インピーダンス法により測定を行う場合、非測定者の体温がどの程度かを知る必要があるが、体温測定によるインピーダンス値の補正、または発熱しているため正確な水分量が判定できないなどという警告等は実施されていない。
しかしながら、この文献では、体温は親指により測定しているが、親指での体温測定には無理があり、現実的な手法ではない。
医療現場においては、いくつかの方法で脱水を判断している。例えば、採血データによる脱水を示す所見としては、ヘマトクリット高値、ナトリウム高値、尿素窒素25mg/dL以上、尿素窒素/クレアチニン比が25以上、尿酸値7mg/dl以上などをもとに判断している。しかし、この方法では採血する必要があり、在宅などで用いることは出来ない。
その他の判断方法としては、舌、口腔内の乾燥状態、腋下の乾燥状態、「何となく元気がない」といったような意欲の低下、「ぐったりしていて反応が鈍い」というような意識の鈍化などが挙げられるが、どれも医療従事者ならではの勘と経験が必要であり、誰でもできるようなものではない。
そこで、本発明は、被検者の水分量を簡単に測定することができ、脱水を早期発見し、被検者が適正な水分調節を行うための支援手段として有効な水分計を提供することを目的とする。
上記構成によれば、被検者の水分量を簡単に測定することができ、被検者が適正な水分調節を行うための支援手段として有効である。
本発明における電気式の水分測定部は、インピーダンス式と静電容量式のどちらかを選択して用いることが出来る。
一般的に、汗腺はアポクリン腺とエクリン腺の2種類があることが知られている。ヒトの場合、エクリン腺は全身に分布しているが、アポクリン腺は、腋下、外耳道、下腹部、外陰部などの限定した部分にしか存在していない。
ここで、水分計を用いて、被検者の水分量を適切に測定できる生体の部位として腋下を選んで、被検者の生体の水分量を測定するのは、上記理由より水分量を腋下で測定することが被検者の生体全身の水分状態を最も反映しているためである。
一般的に、体温が上昇すると生体電気インピーダンス値は下降し、体温が下降すると生体電気インピーダンス値は上昇するといったように、体温が変動すると生体電気インピーダンス値、すなわち水分量も変動することが知られている。しかし、従来の水分計では、このように体温の変動により生体電気インピーダンス値が変動することを何ら考慮せずに測定された生体電気インピーダンス値から体水分量を算出するため、正確な体水分量を求めることができず、従って脱水症状を正確に検出することができない。例えば、体水分量が減少し、体温が上昇している場合には、体水分量の減少により生体電気インピーダンス値は上昇するが、体温の上昇により生体電気インピーダンス値は下降するため、測定された生体電気インピーダンス値より算出した体水分量から判定しても、脱水状態は検出されないということも起こり得る。このため、インピーダンス法により測定を行う場合、非測定者の体温がどの程度かを知る必要があるが、体温測定によるインピーダンス値の補正、または発熱しているため正確な水分量が判定できないなどという警告等は実施されていない。
上記構成によれば、被検者の腋下において被検者の水分量を測定すると同時に被検者の体温をも測定することで、水分量と体温の相関関係を利用して、被検者の状態の判断に用いることができる。
好ましくは、本体部と、前記本体部の一端に配置され、前記インピーダンス式の水分測定部と前記体温測定部を保持して前記腋下に挟持される測定部の保持部と、前記本体部の他端に配置され、測定された前記被検者の水分量と測定された前記被検者の体温を表示する表示部を保持する表示部の保持部とを有することを特徴とする。
上記構成によれば、被検者が手で持ちやすいあるいは握りやすい形状であり、測定部の保持部は、腋下に挟持された状態で、表示部の保持部は、腋下から前方に突き出すことができ、測定者はこの表示部に表示された水分量と体温を目視により確認できる。
上記構成によれば、複数の体温測定部を用いることで、測定された体温を平均化して得ることができるので、より正確な水分量と体温を得ることができる。
また同様に、複数の水分測定部を用いることで測定された水分量を平均化して得ることができる。体温測定部と水分測定部を両方持つ場合、体温測定にかかる時間の方が水分測定にかかる時間よりも長くなり、時差が生じてしまう。この時差を利用して、同一水分測定部により、複数回測定して平均化する方法でもよい。例えば、体温を1回測定している間に、水分計測を10回行うなどである。
上記構成によれば、水分量と体温を測定する際に、電極端子を腋下の皮膚面に対して確実に接触させることができる。
上記構成によれば、水分量と体温を測定する際に、電極端子を腋下の皮膚面に対して確実に接触させることができる。
また、本発明の水分計は、被検者の水分を測定する水分計であって、前記被検者の腋下に保持されて、前記被検者の水分量を測定するために前記腋下の水分を測定するための静電容量式の水分測定部を有し、該水分測定部は、複数の電極を用いて静電容量を検知して、含水率に応じて変化する誘電率の変化量により水分量を測定することを特徴とする。
上記構成によれば、被検者の腋下において静電容量式で水分量を測定できる。
尚、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
図1は、本発明の水分計の好ましい実施形態を被検者が使用している状態を示す図である。図2は、図1に示す水分計の外観の構造例を示す図である。
図2に示す水分計1の部分1Aは、水分計1の正面部分を示し、水分計1の部分1Bは、水分計1の上面部分を示し、水分計1の部分1Cは、部分1Aに示した水分計1を紙面左側から見た側面部分を示し、水分計1の部分1Dは、部分1Aに示した水分計1を紙面右側から見た側面部分である。
本体部10と測定部の保持部11と表示部の保持部12は、例えばプラスチックにより作られており、本体部10の一端は、測定部の保持部11に連続して形成されており、本体部10の他端は、表示部の保持部12に連続して形成されている。
本体部10は、被検者M又は測定者が手で持ちやすいあるいは握りやすい形状に形成されており、例えば本体部10は、外側に緩く湾曲した第1湾曲部分10Bと、内側に大きく湾曲した第2湾曲部分10Cを有しており、第2湾曲部分10Cは第1湾曲部分10Bに比べてより大きく湾曲している。
また、本体部10の中央部10Aの厚さT2は約7mm、測定部の保持部11の最大厚さT1は約9mm程度、そして表示部の保持部12付近の最大厚さT3は約14mm程度となっている。
しかし、水分計1のこれらの寸法は、上述した寸法例に限定されるものではなく、任意に選定できる。
このように、水分計1の測定部の保持部11が腋下Rに保持された状態では、本体部10が、被検者の上体Bの側面部に密着することで水分計1はより確実に被検者の上体B側に保持できる。
例えば、図1に示すように、水分計1を使用する際には、表示部の保持部12は、被検者Mの前方Dに向けてほぼ水平に保持させることができる。測定部の保持部11と表示部の保持部12との間の距離、すなわち本体部10の長さは、被検者Mが測定部の保持部11を腋下Rに挟んだ場合に、表示部の保持部12内の表示部20が、腋下Rの外側の位置(被検者Mの胴体部と上腕Kとにより挟まれない位置)にくるように設定されている。
図2に示すインピーダンス式の水分測定部30は、図1に示す被検者の腋下Rにおいて、生体電気インピーダンスを用いて被検者Mの生体の水分量を測定する部分である。
図2に例示するように、好ましくは測定部の保持部11の一方の凸部11Cには、第1の測定電流供給用の電極部30Aと第1の電位測定用の電極部100Aが配置され、測定部の保持部11の他方の凸部11Cには、第2の測定電流供給用の電極部30Bと第2の電位測定用の電極部100Bが配置されている。
例えば、図1に示すように、インピーダンス式の水分測定部30が被検者の腋下Rに挟み込まれると、第1の測定電流供給用の電極部30Aと第1の電位測定用の電極部100Aは、上体Bの側面部側の皮膚面Vに密着され、第2の測定電流供給用の電極部30Bと第2の電位測定用の電極部100Bは、上腕Kの内面側の皮膚面Vに密着されるようになっている。
また、図2の体温測定部31は、図1に示す被検者の腋下Rにおいて、被検者Mの生体の体温を測定する部分であり、好ましくは測定部の保持部11の外周部11Dに沿って露出するように配置されている。
体温測定部31は、図1に示す被検者Mの腋下Rに接触することで体温を検知するようになっており、体温測定部31は例えばサーミスタを有するものや、熱電対を有するものを採用できる。例えば、サーミスタにより検出された温度信号は、デジタル信号に変換して出力されるようになっている。このサーミスタは、例えばステンレスの金属キャップにより液密に保護されている。
図3に示す水分計1のブロックでは、本体部10は、制御部40、電源部41、タイマー42、表示部の駆動部43、演算処理部44、ROM(読み出し専用メモリ)45,EEPROM(電気的にプログラム内容を消去および再書き込みすることができるPROM)46,RAM(ランダムアクセスメモリ)47を内蔵している。インピーダンス式の水分測定部30と、体温測定部31は、測定部の保持部11に配置され、表示部20とスピーカ29は、表示部の保持部12に配置されている。
図3の表示部20は、表示部の駆動部43に電気的に接続されており、表示部の駆動部43は、制御部40からの指令により、表示部20には図2に例示するように、カップのような水分示唆マーク23、水分量のデジタル表示24、そして体温のデジタル表示25を表示させるようになっている。
既に述べたように、一般的に、体温が上昇すると生体電気インピーダンス値は下降し、体温が下降すると生体電気インピーダンス値は上昇するといったように、体温が変動すると生体電気インピーダンス値、すなわち水分量も変動することが知られている。このため、測定した体温データを用いて生体電気インピーダンス値の補正をすることができる。
演算処理部44は、ROM45に格納されたプログラムに従った被検者の水分量と体温を予測演算や、スピーカ29への音声データの出力等を行う。
本発明の実施形態の水分計1における生体電気インピーダンス式による水分量の測定では、次のことが言える。人体の細胞組織は、多数の細胞から構成されており、各細胞は、細胞外液で満たされた環境に存在する。このような細胞組織に電流を流した場合には、低周波交流電流は、主として細胞外液領域を流れ、高周波交流電流の場合には、細胞外液領域および細胞内を流れる。
被検体Mの生体(身体)の電気的特性は、組織または臓器の種類によって著しく異なっている。このような各組織や臓器を含む身体の全体の電気的特性は、生体電気インピーダンスによって表すことができる。
生体内の水分量に関しては、細胞外液抵抗と細胞内液抵抗を計算することによって推定する方法が知られている。水分量の測定に関しては、生体内の水分量が多い時には生体電気インピーダンス値は低値を示し、生体内の水分量が少ない時には生体電気インピーダンス値は高値を示し、細胞外液抵抗と細胞内液抵抗を計算することによって推定する方法が知られている。
インピーダンス式の水分測定部30は、第1の測定電流供給用の電極部30Aと第2の測定電流供給用の電極部30Bと、第1の電位測定用の電極部100Aと第2の電位測定用の電極部100Bと、交流電流出力回路101と、2つの差動増幅器102,103と、切替器104と、A/D変換器105と、基準抵抗器106を有する。
第1の測定電流供給用の電極部30Aと第2の測定電流供給用の電極部30Bと、第1の電位測定用の電極部100Aと第2の電位測定用の電極部100Bは、例えば図2に示す測定部の保持部11において外部に露出して設けられている。これにより、これら4つの電極部30A,30B,100A,100Bは、図1に示す被検者Mの腋下Rの皮膚面に直接接触させることができる。
なお、第1の測定電流供給用の電極部30Aと第2の測定電流供給用の電極部30Bと、第1の電位測定用の電極部100Aと第2の電位測定用の電極部100Bの構造は、同じものを採用できる。図4と図5では、皮膚面Vとこの皮膚面Vにある水分Wを示している。
図6に示す被検者Mの生体の水分量と被検者Mの生体の体温との相関関係は、例えば図3のROM45に格納されている。
図6において、水分量が低い場合に、体温が正常値であれば被検者は軽度の脱水症状であり、水分量が正常である場合に、体温が正常であれば被検者は健康状態である。これに対して、水分量が低い場合に、体温が高いと被検者は重度の脱水症状であり、水分量が正常である場合に、体温が高いと被検者は風邪の様な脱水以外の疾患であるといえる。
このように、被検者の生体の水分量と体温から、被検者の健康、軽度と重度の脱水症状、風邪症状を判断可能になるので、本発明の実施形態の水分計1では、腋下Rにおける水分量の測定と体温の測定が重要である。上述した被検者の症状の判断例は、図2の表示部20に表示するようにしても良い。
次に、図7を参照して、図1と図2に示す水分計1が被検者Mの水分量と体温を検出する動作例を説明する。
図7のステップS1では、被検者が図3に示す電源スイッチ10Sをオンして、オン信号を制御部40に送ると、水分計1は測定可能状態になる。ステップS2では、図1に示すように、被検者Mが水分計1の測定部の保持部11を腋下Rに対して、図2の2つの凸部11Cを用いて挟みこむ。
しかも、測定部の保持部11と表示部の保持部12との間の距離は、被検者Mが測定部の保持部11を腋下Rに挟んだ場合に、表示部20が腋下Rの外側の位置(胴体部と上腕とにより挟まれない位置)にくるので、被検者Mは表示部の保持部12の表示部20の水分量のデジタル表示24と体温のデジタル表示25を容易に目視できる。しかも、被検者Mはスピーカ29が発生する音声ガイダンスを聞き取ることができる。
このように、水分測定部30から水分量データ信号P1を得る場合には、図1に例示するように被検者Mの腋下Rに接触している第1の測定電流供給用の電極部30Aと第2の測定電流供給用の電極部30Bが、交流電流出力回路101から被検者Mに対して交流電流が印加される。そして、被検者の腋下Rに接触している第1の電位測定用の電極部100Aと第2の電位測定用の電極部100Bが、被検者の腋下Rでの2点の電位差を検出して、この電位差が他方の差動増幅器103に供給され、他方の差動増幅器103は、被検者Mの2点間の電位差信号を切替器104側に出力する。
ステップS6では、被検者Mが水分計1により測定を終了する場合には、図3の電源スイッチ10Sをオフするが、測定を終了しない場合には、ステップS3に戻って再度ステップS3からS6の処理を繰り返すことになる。
また、被検者Mの水分量を適切に測定できる生体の部位として腋下Rを選んで測定するのは、水分量を腋下Rで測定することは、被検者Mの生体全身の水分状態を反映しているためである。また、一般的に、高齢者の皮膚は乾燥しやすく人によるばらつきが多い。その中でも、腋下Rは他の部位に比べ、外部からの影響が少ないため、測定のばらつきが少なく好適である。高齢者の痩せている人であっても、水分計1の測定部の保持部11は、身体と上腕の間の腋下Rに確実に挟み込んで保持できる。また、被検者が乳幼児であっても、腋下Rであれば測定部の保持部11を容易に挟み込んで確実に保持できるからである。さらには、水分測定部30は腋下Rのなかでも真ん中を確保するような構造を有することで測定精度をより高めている。
図2に例示するように、表示部20に表示された被検者Mの生体の水分量と被検者Mの生体の体温との関係から、水分量が低い場合に、体温が正常値であれば被検者は軽度の脱水症状であり、水分量が正常である場合に、体温が正常であれば被検者は健康状態である。これに対して、水分量が低い場合に、体温が高いと被検者は重度の脱水症状であり、水分量が正常である場合に、体温が高いと被検者は風邪症状であると、例えば医師により大まかな判断することができる。
好ましくは、本体部と、本体部の一端に配置され、インピーダンス式の水分測定部と体温測定部を保持して腋下に挟持される測定部の保持部と、本体部の他端に配置され、測定された被検者の水分量と測定された被検者の体温を表示する表示部を保持する表示部の保持部と、を有する。これにより、被検者Mが手で持ちやすいあるいは握りやすい形状であり、測定部の保持部は、腋下に挟持された状態で、表示部の保持部は、腋下から前方に突き出すことができ、測定者はこの表示部に表示された水分量と体温を目視により確認できる。
図9において、図3と同一の符号を付した箇所は同じ構造であり、この実施形態では、水分測定部30の構成が図10で示すように静電容量を用いたものとなっている点で異なるものである。以下、共通する部分の説明は図3の説明を援用し、相違点を中心に説明する。
図9水分測定部30は、図10に示す構成となっている。
すなわち、測定対象物である被検者Mの生体の静電容量を計測して、含水率に応じて変化する誘電率の変化量より水分量を測定する。水分測定部30は、容器部60と2つの電極61,62を有する。容器部60は、樹脂製の周囲部分63と蓋部分64を有しており、2つの電極61,62は蓋部分64に離して互いに電気絶縁された状態で、蓋部分64から外側に露出するようにして配置されている。これにより、2つの電極61,62が腋下Rの皮膚と皮膚上の水分Wに接触することで、被検者Mの生体の静電容量を計測して、含水率に応じて変化する誘電率の変化量より水分量を測定するようになっている。2つの電極61,62からの水分量データ信号P1は、制御部40に送られ、演算処理部44は、水分量データ信号P2に基づいて水分量を計算する。
このように、水分測定部30は、複数の電極61,62を用いて静電容量を検知して、含水率に応じて変化する誘電率の変化量により水分量を測定するので、被検者の腋下において静電容量式で水分量を測定できる。静電容量は以下の式によって求めることが出来る。Sとdについては一定値を取ると考えると、静電容量(C)は誘電率(ε)の値に比例し、水分量が多いほど誘電率と静電容量の値は大きくなる。
静電容量(C)=ε×S/d(F)
誘電率=ε
S=センサー表面の大きさ
d=電極間の距離
これにより、演算処理部44は、水分測定部30により測定された水分量データP1と、温度測定部31により測定された体温データP2から得られる、被検者の水分量データと体温データの時間変化に基づいて、被検者の水分量と体温を予測演算する。
したがって、静電容量を利用した計測の場合は、電極は互いに絶縁された2つの電極だけ設ければよく、インピーダンス式のように、測定電流供給用の電極部と、電位測定用の電極部を一対ずつ設ける必要がなく簡便である。
インピーダンス式の場合と静電容量式の場合の両方について、この電極方式を用いることができる。
先ずインピーダンス式の場合について説明する。
図11に示すように、電極部110は、水分計1の第1の部分1Cの側面に露出して形成された構造が利用されている。
この電極部110は、例えば矩形に形成した絶縁体でなる基部103と、該基部103の表面に形成された線状の導体でなるくし形電極102、103を微小間隔を隔てて対向させた構成とされている。各くし形電極102,103の端部には端子部102a,103aがそれぞれ形成されている。
くし形電極102を第1の電位測定用の電極部とし、くし形電極103を第2の電位測定用の電極部とすることで、各電極部の上記端子部にそれぞれ電源から所定の駆動電流を供給することにより、インピーダンス式の水分測定を行うことができる。
この場合、図示のように2つのくし形電極102と103を微小間隔を隔てて対向させて配置し、一方の電極に電流を印加して、検体物質としての水分を酸化し、もう一方の電極で酸化した物質を還元して元の物質に戻す。すなわち、2つの電極間で酸化と還元を繰り返させることにより検体物質としての水分を検出することができる。この場合、好ましくは、デュアルモードにより検出を行う。
デュアルモードにするには、具体的には、くし形電極102に水分に対する酸化電位を印加し、もう一方のくし形電極103に還元電位を、図9の電源部41から印加する。これによりデュアルモードでは、酸化と還元を繰り返す、いわゆるレドックスサイクルが起こり、電流を増加させて検出感度を向上させることができる。
電極部の製造方法としては、絶縁基板101の上に上記した導体金属等を、蒸着やスパッタリング、CVD(化学的気相成長法)等にて薄膜として成膜し、これを例えばフォトリソグラフィー法により、くし形電極の形状に形成することができる。また、フォトリソ以外にも、絶縁材料である基板101上に、インクジェットプリンタ等により、導電性インクで、くし形電極を描画するようにしてもよい。
ところで、本発明は上記実施形態に限定されず、本発明は様々な修正と変更が可能であり、特許請求の範囲に記載された範囲で種々の変形が可能である。
図示例では、1つの水分測定部30と1つの体温測定部31が、測定部の保持部11に配置されている。
しかし、これに限らず、図8に例示するように、複数の体温測定部31が、測定部の保持部11に配置されるようにしても良い。これにより、各体温測定部31より得られる体温を平均化することで、体温の測定精度をより高めることができる。
Claims (12)
- 被検者の水分を測定する水分計であって、
前記被検者の腋下に保持されて、前記腋下の皮膚面に接触させるための測定電流供給用の電極部と電位測定用の電極部を備え、前記被検者の水分量を測定するインピーダンス式の水分測定部を有することを特徴とする水分計。 - 前記被検者の前記腋下に保持されて、前記被検者の体温を測定する体温測定部を有することを特徴とする請求項1に記載の水分計。
- 本体部と、前記本体部の一端に配置され、前記インピーダンス式の水分測定部と前記体温測定部を保持して前記腋下に挟持される測定部の保持部と、前記本体部の他端に配置され、測定された前記被検者の水分量と測定された前記被検者の体温を表示する表示部を保持する表示部の保持部とを有することを特徴とする請求項2に記載の水分計。
- 複数の前記体温測定部が、前記測定部の保持部に保持されていることを特徴とする請求項3に記載の水分計。
- 前記インピーダンス式の水分測定部の各前記電極部は、前記腋下の皮膚面に直接接触させるための電極端子と、前記電極端子を前記腋下の皮膚面に押し当てるための弾性変形部材と、を有することを特徴とする請求項1ないし請求項4のいずれかに記載の水分計。
- 前記インピーダンス式の水分測定部の各前記電極部は、前記腋下の皮膚面に直接接触させるための電極端子と、前記腋下の皮膚面に密着することで前記電極端子を前記腋下の皮膚面に押し当てるための密着部材と、を有することを特徴とする請求項1ないし請求項4のいずれかに記載の水分計。
- 被検者の水分を測定する水分計であって、
前記被検者の腋下に保持されて、前記被検者の水分量を測定するために前記腋下の水分を測定するための静電容量式の水分測定部を有し、
該水分測定部は、複数の電極を用いて静電容量を検知して、含水率に応じて変化する誘電率の変化量により水分量を測定することを特徴とする水分計。 - 前記被検者の前記腋下に保持されて、前記被検者の体温を測定する体温測定部を有することを特徴とする請求項7に記載の水分計。
- 本体部と、前記本体部の一端に配置され、前記静電容量式の水分測定部と前記体温測定部を保持して前記腋下に挟持される測定部の保持部と、前記本体部の他端に配置され、測定された前記被検者の水分量と測定された前記被検者の体温を表示する表示部を保持する表示部の保持部とを有することを特徴とする請求項8に記載の水分計。
- 複数の前記体温測定部が、前記測定部の保持部に保持されていることを特徴とする請求項9に記載の水分計。
- 前記静電容量式の水分測定部の各前記電極部は、前記腋下の皮膚面に直接接触させるための電極端子と、前記電極端子を前記腋下の皮膚面に押し当てるための弾性変形部材と、を有することを特徴とする請求項7ないし請求項10のいずれかに記載の水分計。
- 前記静電容量式の水分測定部の各前記電極部は、前記腋下の皮膚面に直接接触させるための電極端子と、前記腋下の皮膚面に密着することで前記電極端子を前記腋下の皮膚面に押し当てるための密着部材と、を有することを特徴とする請求項7ないし請求項10のいずれかに記載の水分計。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013119266/14A RU2601104C2 (ru) | 2010-09-29 | 2011-09-28 | Измеритель влагосодержания |
KR1020137010615A KR101748807B1 (ko) | 2010-09-29 | 2011-09-28 | 수분계 |
EP11828444.7A EP2623026B1 (en) | 2010-09-29 | 2011-09-28 | Moisture meter |
CN201180047586.1A CN103153179B (zh) | 2010-09-29 | 2011-09-28 | 水分计 |
US13/877,090 US9433370B2 (en) | 2010-09-29 | 2011-09-28 | Moisture meter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010219964A JP5646939B2 (ja) | 2010-09-29 | 2010-09-29 | 水分計 |
JP2010-219964 | 2010-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012042878A1 true WO2012042878A1 (ja) | 2012-04-05 |
Family
ID=45892367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/005482 WO2012042878A1 (ja) | 2010-09-29 | 2011-09-28 | 水分計 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9433370B2 (ja) |
EP (1) | EP2623026B1 (ja) |
JP (1) | JP5646939B2 (ja) |
KR (1) | KR101748807B1 (ja) |
CN (1) | CN103153179B (ja) |
RU (1) | RU2601104C2 (ja) |
WO (1) | WO2012042878A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103251406A (zh) * | 2013-05-13 | 2013-08-21 | 广东欧珀移动通信有限公司 | 一种检测皮肤含水量的方法、装置及移动终端 |
WO2014024228A1 (ja) * | 2012-08-10 | 2014-02-13 | テルモ株式会社 | 体内水分計及びその製造方法 |
WO2014027373A1 (ja) * | 2012-08-13 | 2014-02-20 | テルモ株式会社 | 体内水分計、体内水分計の制御方法、および記憶媒体 |
WO2014027377A1 (ja) * | 2012-08-14 | 2014-02-20 | テルモ株式会社 | 体内水分計 |
WO2014027374A1 (ja) * | 2012-08-13 | 2014-02-20 | テルモ株式会社 | 体内水分計、体内水分計の制御方法、および記憶媒体 |
WO2014027379A1 (ja) * | 2012-08-14 | 2014-02-20 | テルモ株式会社 | 体内水分計 |
WO2014027378A1 (ja) * | 2012-08-14 | 2014-02-20 | テルモ株式会社 | 体内水分計 |
WO2014041584A1 (ja) * | 2012-09-13 | 2014-03-20 | テルモ株式会社 | 体内水分計および表示制御方法 |
WO2014041585A1 (ja) * | 2012-09-13 | 2014-03-20 | テルモ株式会社 | 体内水分計および表示制御方法 |
CN104918540A (zh) * | 2013-02-19 | 2015-09-16 | 泰尔茂株式会社 | 体内水分计以及终端 |
CN111556726A (zh) * | 2017-12-27 | 2020-08-18 | 皇家飞利浦有限公司 | 确定皮肤的水分水平或脂质水平 |
WO2020179691A1 (ja) * | 2019-03-01 | 2020-09-10 | 株式会社村田製作所 | 測定器 |
WO2021187595A1 (ja) * | 2020-03-19 | 2021-09-23 | 三井化学株式会社 | 自己粘着シート |
WO2022097758A1 (ja) * | 2020-11-05 | 2022-05-12 | テルモ株式会社 | 生体情報管理システム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10463273B2 (en) * | 2013-02-01 | 2019-11-05 | Halo Wearables, Llc | Hydration monitor |
EP2995251B1 (en) | 2014-02-19 | 2017-05-17 | Kabushikikaisha Raifu | Intraoral moisture meter |
RU2678963C2 (ru) * | 2017-07-06 | 2019-02-04 | Общество с ограниченной ответственностью "ЭКСПО Наука Интерактив" | Устройство для контроля электропроводности биологических объектов |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11318845A (ja) | 1998-05-14 | 1999-11-24 | Ya Man Ltd | 体内水分量推計装置 |
JP2001170088A (ja) | 1999-12-20 | 2001-06-26 | Nonomura Tomosuke | 電磁波診査装置 |
JP2002045346A (ja) * | 2000-08-01 | 2002-02-12 | Tanita Corp | 多周波生体インピーダンス測定による体水分量状態判定装置 |
JP2003525653A (ja) * | 1999-04-15 | 2003-09-02 | ネキサン・リミテツド | 生理学的センサーアレイ |
WO2004028359A1 (ja) | 2002-09-24 | 2004-04-08 | Kabushiki Kaisha Raifu | 口腔内の水分測定方法及びその水分測定器並びにその水分測定器の口腔内挿入部交換カバー |
JP2005287547A (ja) | 2004-03-31 | 2005-10-20 | Horiba Ltd | 接触式センサ及び接触式センサ実装の計測システム |
JP3977983B2 (ja) | 2000-07-31 | 2007-09-19 | 株式会社タニタ | 生体インピーダンス測定による脱水状態判定装置 |
JP2008167933A (ja) * | 2007-01-11 | 2008-07-24 | Terumo Corp | 状態監視装置および情報処理方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW314460B (ja) | 1995-11-30 | 1997-09-01 | Moritex Kk | |
JPH1071130A (ja) * | 1996-08-29 | 1998-03-17 | Hitachi Ltd | 体水分量測定装置 |
US5874736A (en) | 1996-10-25 | 1999-02-23 | Exergen Corporation | Axillary infrared thermometer and method of use |
CN1154434C (zh) * | 1996-12-06 | 2004-06-23 | 乔斯林·W·考伊 | 诊断人或者动物皮肤状况的装置 |
JPH10272112A (ja) * | 1997-04-01 | 1998-10-13 | Sekisui Chem Co Ltd | 人体の電気的特性測定装置 |
ATE343963T1 (de) * | 1999-04-20 | 2006-11-15 | Nova Technology Corp | Verfahren und vorrichtung zur messung des wasseranteils in einem substrat |
RU2220645C2 (ru) * | 2000-10-16 | 2004-01-10 | Байсиев Азамат Хаджи-Муратович | Способ диагностики заболеваний щитовидной железы и устройство для его осуществления |
KR100795471B1 (ko) * | 2003-04-10 | 2008-01-16 | 가부시키가이샤 아이.피.비. | 생체정보감시시스템 |
EP1677674A4 (en) * | 2003-08-20 | 2009-03-25 | Philometron Inc | HYDRATION CONTROL |
EP1734858B1 (en) * | 2004-03-22 | 2014-07-09 | BodyMedia, Inc. | Non-invasive temperature monitoring device |
DE102004027909A1 (de) * | 2004-06-09 | 2005-12-29 | Henkel Kgaa | Verfahren und Vorrichtung zur Messung der Feuchte an der menschlichen Haut |
US8118740B2 (en) * | 2004-12-20 | 2012-02-21 | Ipventure, Inc. | Moisture sensor for skin |
EP1919358A2 (en) | 2005-09-02 | 2008-05-14 | The Procter and Gamble Company | Method and device for indicating moisture content of skin |
CN101252879A (zh) * | 2005-09-02 | 2008-08-27 | 宝洁公司 | 有效的头皮健康状况预测器 |
KR100862287B1 (ko) * | 2006-08-18 | 2008-10-13 | 삼성전자주식회사 | 피부 수화도 측정 장치 및 그 방법 |
KR100823304B1 (ko) * | 2006-08-22 | 2008-04-18 | 삼성전자주식회사 | 피부 수화도 측정 장치 및 그 방법 |
JP5107696B2 (ja) | 2007-12-27 | 2012-12-26 | 花王株式会社 | 皮膚性状測定用多機能プローブ |
DE102008002520A1 (de) * | 2008-06-19 | 2009-12-24 | Robert Bosch Gmbh | Vorrichtung zur Bestimmung und/oder Überwachung des Flüssigkeitsgehalts der Haut |
CN101564302B (zh) * | 2009-05-25 | 2011-06-29 | 重庆科技学院 | 基于多源信息融合的婴儿睡眠躁动监测方法及检测系统 |
-
2010
- 2010-09-29 JP JP2010219964A patent/JP5646939B2/ja active Active
-
2011
- 2011-09-28 EP EP11828444.7A patent/EP2623026B1/en active Active
- 2011-09-28 WO PCT/JP2011/005482 patent/WO2012042878A1/ja active Application Filing
- 2011-09-28 KR KR1020137010615A patent/KR101748807B1/ko active IP Right Grant
- 2011-09-28 CN CN201180047586.1A patent/CN103153179B/zh active Active
- 2011-09-28 US US13/877,090 patent/US9433370B2/en not_active Expired - Fee Related
- 2011-09-28 RU RU2013119266/14A patent/RU2601104C2/ru active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11318845A (ja) | 1998-05-14 | 1999-11-24 | Ya Man Ltd | 体内水分量推計装置 |
JP2003525653A (ja) * | 1999-04-15 | 2003-09-02 | ネキサン・リミテツド | 生理学的センサーアレイ |
JP2001170088A (ja) | 1999-12-20 | 2001-06-26 | Nonomura Tomosuke | 電磁波診査装置 |
JP3977983B2 (ja) | 2000-07-31 | 2007-09-19 | 株式会社タニタ | 生体インピーダンス測定による脱水状態判定装置 |
JP2002045346A (ja) * | 2000-08-01 | 2002-02-12 | Tanita Corp | 多周波生体インピーダンス測定による体水分量状態判定装置 |
JP3699640B2 (ja) | 2000-08-01 | 2005-09-28 | 株式会社タニタ | 多周波生体インピーダンス測定による体水分量状態判定装置 |
WO2004028359A1 (ja) | 2002-09-24 | 2004-04-08 | Kabushiki Kaisha Raifu | 口腔内の水分測定方法及びその水分測定器並びにその水分測定器の口腔内挿入部交換カバー |
JP2005287547A (ja) | 2004-03-31 | 2005-10-20 | Horiba Ltd | 接触式センサ及び接触式センサ実装の計測システム |
JP2008167933A (ja) * | 2007-01-11 | 2008-07-24 | Terumo Corp | 状態監視装置および情報処理方法 |
Non-Patent Citations (2)
Title |
---|
"Impedance-ho ni Yoru Taishi no Suibun Bunpu to Sono Ouyo", MEDICAL ELECTRONICS AND BIOLOGICAL ENGINEERING, vol. 23, no. 6, 1985 |
See also references of EP2623026A4 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014024228A1 (ja) * | 2012-08-10 | 2014-02-13 | テルモ株式会社 | 体内水分計及びその製造方法 |
WO2014027374A1 (ja) * | 2012-08-13 | 2014-02-20 | テルモ株式会社 | 体内水分計、体内水分計の制御方法、および記憶媒体 |
WO2014027373A1 (ja) * | 2012-08-13 | 2014-02-20 | テルモ株式会社 | 体内水分計、体内水分計の制御方法、および記憶媒体 |
JPWO2014027373A1 (ja) * | 2012-08-13 | 2016-07-25 | テルモ株式会社 | 体内水分計、体内水分計の制御方法、および記憶媒体 |
WO2014027378A1 (ja) * | 2012-08-14 | 2014-02-20 | テルモ株式会社 | 体内水分計 |
JPWO2014027377A1 (ja) * | 2012-08-14 | 2016-07-25 | テルモ株式会社 | 体内水分計 |
US9782105B2 (en) | 2012-08-14 | 2017-10-10 | Terumo Kabushiki Kaisha | Device for measuring the amount of water in a subject's body |
WO2014027379A1 (ja) * | 2012-08-14 | 2014-02-20 | テルモ株式会社 | 体内水分計 |
JPWO2014027378A1 (ja) * | 2012-08-14 | 2016-07-25 | テルモ株式会社 | 体内水分計 |
CN104411235A (zh) * | 2012-08-14 | 2015-03-11 | 泰尔茂株式会社 | 体内水分计 |
CN104411236A (zh) * | 2012-08-14 | 2015-03-11 | 泰尔茂株式会社 | 体内水分计 |
JPWO2014027379A1 (ja) * | 2012-08-14 | 2016-07-25 | テルモ株式会社 | 体内水分計 |
WO2014027377A1 (ja) * | 2012-08-14 | 2014-02-20 | テルモ株式会社 | 体内水分計 |
WO2014041585A1 (ja) * | 2012-09-13 | 2014-03-20 | テルモ株式会社 | 体内水分計および表示制御方法 |
WO2014041584A1 (ja) * | 2012-09-13 | 2014-03-20 | テルモ株式会社 | 体内水分計および表示制御方法 |
CN104918540A (zh) * | 2013-02-19 | 2015-09-16 | 泰尔茂株式会社 | 体内水分计以及终端 |
US10251609B2 (en) | 2013-02-19 | 2019-04-09 | Terumo Kabushiki Kaisha | Body water meter and terminal |
CN103251406A (zh) * | 2013-05-13 | 2013-08-21 | 广东欧珀移动通信有限公司 | 一种检测皮肤含水量的方法、装置及移动终端 |
CN111556726A (zh) * | 2017-12-27 | 2020-08-18 | 皇家飞利浦有限公司 | 确定皮肤的水分水平或脂质水平 |
WO2020179691A1 (ja) * | 2019-03-01 | 2020-09-10 | 株式会社村田製作所 | 測定器 |
CN113365549A (zh) * | 2019-03-01 | 2021-09-07 | 株式会社村田制作所 | 测定器 |
JPWO2020179691A1 (ja) * | 2019-03-01 | 2021-12-02 | 株式会社村田製作所 | 口腔内測定器 |
JP7124953B2 (ja) | 2019-03-01 | 2022-08-24 | 株式会社村田製作所 | 口腔内測定器 |
WO2021187595A1 (ja) * | 2020-03-19 | 2021-09-23 | 三井化学株式会社 | 自己粘着シート |
JPWO2021187595A1 (ja) * | 2020-03-19 | 2021-09-23 | ||
JP7434527B2 (ja) | 2020-03-19 | 2024-02-20 | 三井化学株式会社 | 自己粘着シート |
WO2022097758A1 (ja) * | 2020-11-05 | 2022-05-12 | テルモ株式会社 | 生体情報管理システム |
Also Published As
Publication number | Publication date |
---|---|
EP2623026B1 (en) | 2018-08-29 |
KR101748807B1 (ko) | 2017-06-19 |
CN103153179B (zh) | 2015-10-07 |
US9433370B2 (en) | 2016-09-06 |
RU2013119266A (ru) | 2014-11-10 |
JP2012071055A (ja) | 2012-04-12 |
EP2623026A1 (en) | 2013-08-07 |
KR20140024241A (ko) | 2014-02-28 |
US20130274566A1 (en) | 2013-10-17 |
CN103153179A (zh) | 2013-06-12 |
JP5646939B2 (ja) | 2014-12-24 |
EP2623026A4 (en) | 2015-08-12 |
RU2601104C2 (ru) | 2016-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5646939B2 (ja) | 水分計 | |
JP5936600B2 (ja) | 水分計 | |
JP4024774B2 (ja) | 体脂肪測定装置 | |
JP3109753U (ja) | 温度測定可能な体重及び体脂肪測定装置 | |
WO2012042879A1 (ja) | 水分計 | |
WO2012056634A1 (ja) | 水分計 | |
JP2006034598A (ja) | 睡眠時呼吸状態判定装置 | |
JP2004208766A (ja) | 義歯型糖濃度測定装置 | |
JP2008295472A (ja) | 口腔機能測定器、口腔機能測定方法、口腔機能測定器用制御装置 | |
JP5917911B2 (ja) | 体内水分計および表示制御方法 | |
TWI584782B (zh) | 體內水分計 | |
JP5993013B2 (ja) | 体内水分計、体内水分計の制御方法、および記憶媒体 | |
JP4647639B2 (ja) | 体脂肪測定装置 | |
JP7399404B2 (ja) | 肌特性測定器と肌特性測定方法と肌特性評価システム | |
JP3171248B2 (ja) | 身体インピ―ダンス計測用プロ―ブ | |
JPH11285480A (ja) | 健康管理指針アドバイス装置 | |
JPH11253413A (ja) | 生体インピーダンス測定装置 | |
JPH11347009A (ja) | 体内脂肪測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180047586.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11828444 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011828444 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137010615 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013119266 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13877090 Country of ref document: US |