WO2012042621A1 - 塩味増強剤 - Google Patents

塩味増強剤 Download PDF

Info

Publication number
WO2012042621A1
WO2012042621A1 PCT/JP2010/067005 JP2010067005W WO2012042621A1 WO 2012042621 A1 WO2012042621 A1 WO 2012042621A1 JP 2010067005 W JP2010067005 W JP 2010067005W WO 2012042621 A1 WO2012042621 A1 WO 2012042621A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
hydrogen atom
compound
Prior art date
Application number
PCT/JP2010/067005
Other languages
English (en)
French (fr)
Inventor
裕右 網野
前川 誉実
譲 江藤
恵 金子
優樹 田原
貴志 宮木
和佳奈 犀川
裕子 開
石渡 裕
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to PCT/JP2010/067005 priority Critical patent/WO2012042621A1/ja
Priority to JP2012536067A priority patent/JPWO2012042621A1/ja
Priority to EP10857834.5A priority patent/EP2622970A4/en
Publication of WO2012042621A1 publication Critical patent/WO2012042621A1/ja
Priority to US13/852,434 priority patent/US20130196050A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/204Aromatic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/205Heterocyclic compounds
    • A23L27/2054Heterocyclic compounds having nitrogen as the only hetero atom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/88Taste or flavour enhancing agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/51Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C235/38Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/58Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/60Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/20Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/45Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
    • C07C309/51Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton at least one of the nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • C07D209/16Tryptamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/20Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals substituted additionally by nitrogen atoms, e.g. tryptophane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/60Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to a novel compound having a salty taste enhancing effect. Furthermore, this invention relates to the salty taste enhancer etc. of the food / beverage products containing this compound.
  • Salt overdose contributes to increased blood pressure and is thought to cause stroke and heart disease. To prevent this, it is recommended to reduce the intake of salt.
  • the salt-reduced food in which the amount of salt added is reduced the taste is blurred and the taste is significantly reduced. Therefore, a method of adding sodium glutamate or a spice is known in order to improve a decrease in taste due to salt reduction (see, for example, Non-Patent Document 1).
  • a method of adding sodium glutamate or a spice is known in order to improve a decrease in taste due to salt reduction (see, for example, Non-Patent Document 1).
  • the breadth of taste is widened, but the enhancing effect of salty taste itself is not sufficient.
  • a method of replacing a part of sodium chloride with a salt substitute such as a potassium salt, an ammonium salt, a basic amino acid, or a salty peptide has been reported.
  • a method of reducing the bitterness of potassium chloride by using carrageenan in combination with potassium chloride for example, see Patent Document 1
  • a method for producing a fermented food containing potassium chloride for example, see Patent Document 2
  • a substance that does not exhibit salty taste but enhances the salty taste when coexisting with salt is also known.
  • ENaC epithelial sodium channel
  • ENaC epithelial sodium channel
  • three subunits ⁇ or ⁇ subunit, ⁇ subunit, and ⁇ subunit
  • ENaC is known as an inflow route of sodium ions in many epithelial tissues (Non-patent Documents 2 and 3).
  • ENaC is one of the proteins specifically studied in relation to salty taste, but nevertheless it has not been clearly shown to be involved in human salty taste acceptance.
  • Non-Patent Document 4 While the involvement of rodents in salty taste acceptance is recognized (Non-Patent Document 4), there is also a negative opinion on the contribution of humans to salty taste acceptance.
  • Non-Patent Document 5 describes that EN3C in which S3969 [N- (2-hydroxyethyl) -4-methyl-2- (4-methyl-1H-indol-3-ylthio) pentanamide] acts on the ⁇ subunit.
  • S3969 N- (2-hydroxyethyl) -4-methyl-2- (4-methyl-1H-indol-3-ylthio) pentanamide
  • Patent Document 6 Patent Document 4 and the like describe that specific serotonin derivatives have a whitening effect and the like, but it is completely known what action these serotonin derivatives have on taste. Not.
  • An object of the present invention is to provide a novel compound having a strong salty taste enhancing effect, a salty taste enhancer containing the compound, and the like.
  • R 1 , R 2 , R 3 , R 4 and R 5 may each independently be substituted with a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, or 1 to 3 halogen atoms.
  • An alkylenedioxy group may be formed, or R 1 may be combined with the following R 8 to form a carbonyl group; * represents a site bonded to X.
  • X represents a covalent bond, —CH 2 —, or —CHR 7 —CH 2 — (wherein R 7 represents a hydrogen atom or an amino group);
  • R 11 represents a hydrogen atom, or R 11 together with R 8 above may form an alkylene group having 1 to 3 carbon atoms
  • R 12 , R 13 , R 13a , R 14 and R 14a each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms
  • * represents a site bonded to Z .
  • R 15 , R 15a , R 15b , R 16 and R 16a each independently represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, Alternatively, R 15 and R 16 may be combined to form an alkylenedioxy group having 1 to 3 carbon atoms; * represents a site bonded to Z.
  • the group represented by these is shown.
  • a salty taste enhancer for foods and drinks comprising a compound represented by the formula: [2] The salty taste enhancer according to the above [1], wherein in the formula (I), R 13a , R 14a , R 15a , R 15b and R 16a are hydrogen atoms; [3] In the formula (I), Q is
  • R 3 ′′ represents a hydrogen atom, a methyl group or a hydroxyl group; * represents a site bonded to X.
  • R 3 ′ ′′ represents a hydrogen atom, a hydroxyl group, a methyl group, or an alkoxy group having 1 to 3 carbon atoms
  • R 9 ′ represents (i) a hydrogen atom, (ii) an alkyl group having 1 to 3 carbon atoms which may be substituted with a hydroxyl group, (iii) a carboxyl group, or (iv) an alkoxy-carbonyl having 1 to 3 carbon atoms.
  • a salty taste enhancer for foods and drinks comprising a compound represented by the formula: [6] The salty taste enhancer according to the above [5], wherein n is 2 in the formula (V); [7] The following formula:
  • R 3 ′ ′′ represents a hydrogen atom, a hydroxyl group, a methyl group, or an alkoxy group having 1 to 3 carbon atoms; * represents a site bonded to X.
  • a group represented by: R 9 ′ represents (i) a hydrogen atom, (ii) an alkyl group having 1 to 3 carbon atoms which may be substituted with a hydroxyl group, (iii) a carboxyl group, or (iv) an alkoxy-carbonyl having 1 to 3 carbon atoms.
  • R 12 ′, R 13 ′ and R 14 ′ each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms.
  • a salty taste enhancer for foods and drinks comprising a compound represented by the formula: [8] In formula (VI), Q ′′ is
  • R 1 ′, R 2 ′, R 3 ′, R 4 ′ and R 5 ′ are each independently substituted with a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, or 1 to 3 halogen atoms.
  • a cycloalkyl group having 3 to 7 carbon atoms which may be substituted with 1 to 3 alkyl groups having 1 to 3 carbon atoms;
  • X represents a covalent bond, —CH 2 —, or —CHR 7 —CH 2 — (wherein R 7 represents a hydrogen atom or an amino group);
  • Y ′ represents —NR 8 ′ —CO—, —NH—CO—O—, or —CO—NH— (wherein R 8 ′ represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, or , R 8 ′ may form an alkylene group having 1 to 3 carbon atoms together with the following R 11 ):
  • R 11 represents a hydrogen atom, or R 11 together with R 8 above may form an alkylene group having 1 to 3 carbon atoms
  • R 12 , R 13 and R 14 are Each independently represents a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms
  • * represents a site bonded to Z.
  • R 15 and R 16 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, or R 15 and R 16 together To form an alkylenedioxy group having 1 to 3 carbon atoms; * indicates a site bonded to Z.
  • the group represented by these is shown.
  • Q ′ is a group represented by the formula (II ′), X is —CH 2 —CH 2 —, Y ′ is —NH—CO—, Z is —CH 2 —CH 2 —;
  • Ar ′ is a group represented by the formula (III ′), A compound in which R 1 ′, R 2 ′, R 4 ′, R 5 ′, R 11 , R 12 and R 14 are hydrogen atoms, and R 3 and R 13 are hydroxyl groups,
  • Q ′ is a group represented by the formula (II ′), X is a covalent bond, Y ′ is —NH—CO—, Z is —CH 2 —CHR 9 —;
  • Ar ′ is a group represented by the formula (III ′), (i) R 2 ′, R 3 ′, R 5 ′, R 11 , R 12 , R 13 and R 14 are hydrogen atoms, R 1 is a hydroxyl group, R 4 is
  • Q ′ is a 2-isopropyl-5-methylcyclohexyl group
  • X is a covalent bond
  • Y ′ is —NH—CO—
  • Z is —CH 2 —CH 2 —
  • Ar ′ is a group represented by the formula (III ′). Or a salt thereof; [16] The following formula:
  • R 1 ′, R 2 ′, R 3 ′, R 4 ′ and R 5 ′ are each independently substituted with a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, or 1 to 3 halogen atoms.
  • R 11 represents a hydrogen atom, or R 11 together with R 8 above may form an alkylene group having 1 to 3 carbon atoms
  • R 12 , R 13 and R 14 are Each independently represents a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms
  • * represents a site bonded to Z.
  • R 15 and R 16 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, or R 15 and R 16 together To form an alkylenedioxy group having 1 to 3 carbon atoms; * indicates a site bonded to Z.
  • the group represented by these is shown.
  • R 9 is a hydrogen atom, a carboxyl group or an alkoxy-carbonyl group having 1 to 3 carbon atoms
  • R 11 and R 12 are hydrogen atoms
  • Q ′ is a group represented by the formula (II ′)
  • X is a covalent bond
  • Y ′ is —NH—CO—
  • Z is —CH 2 —CHR 9 —
  • Ar ′ is a group represented by the formula (III ′), (i) R 2 ′, R 3 ′, R 5 ′, R 11 , R 12 , R 13 and R 14 are hydrogen atoms
  • R 1 ′ is a hydroxyl group
  • R 4 ′ is a
  • R 9 is a hydrogen atom, a carboxyl group or an alkoxy-carbonyl group having 1 to 3 carbon atoms
  • R 15 and R 16 are each independently a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, or R 15 and R 16 are combined together
  • a compound that forms a methylenedioxy group (5)
  • Q ′ is a group represented by the formula (II ′), X is a covalent bond, Y ′ is —NH—CO—, Z is —CH 2 —CHR 9 —;
  • Ar ′ is a group represented by the formula (IV ′), R 2 ′, R 3 ′, R 5 ′, R 15 and R 16 are hydrogen atoms, R 1 ′ is a hydroxyl group, R 4 ′ is a bromine atom, and R 9 is a
  • Q ′ is a 2-isopropyl-5-methylcyclohexyl group
  • X is a covalent bond
  • Y ′ is —NH—CO—
  • Z is —CH 2 —CH 2 —
  • Ar ′ is a group represented by the formula (III ′). Or a salt thereof; [17] The following formula:
  • R 3 ′ ′′ represents a hydrogen atom, a hydroxyl group, a methyl group, or an alkoxy group having 1 to 3 carbon atoms
  • R 9 ′ represents (i) a hydrogen atom, (ii) an alkyl group having 1 to 3 carbon atoms which may be substituted with a hydroxyl group, (iii) a carboxyl group, or (iv) an alkoxy-carbonyl having 1 to 3 carbon atoms.
  • R 15 ′ and R 16 ′ each independently represent a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms; n represents 1 or 2 (provided that when n is 2, R 3 ′ ′′ is not a hydroxyl group).
  • a salt thereof according to the above [15] or [16] which is represented by: [18] The compound of the above-mentioned [17] or a salt thereof, wherein in the formula (V), n is 2. [19] The following formula:
  • R 3 ′ ′′ represents a hydrogen atom, a hydroxyl group, a methyl group, or an alkoxy group having 1 to 3 carbon atoms; * represents a site bonded to X.
  • a group represented by: R 9 ′ represents (i) a hydrogen atom, (ii) an alkyl group having 1 to 3 carbon atoms which may be substituted with a hydroxyl group, (iii) a carboxyl group, or (iv) an alkoxy-carbonyl having 1 to 3 carbon atoms.
  • R 12 ′, R 13 ′ and R 14 ′ each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms.
  • R 12 ′, R 13 ′ and R 14 ′ each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms.
  • a salt thereof according to the above [15] or [16] which is represented by: [20]
  • Q ′′ is
  • the compound of the present invention is expected to exert a strong salty taste enhancing effect and can be used as a salty taste enhancing agent for foods and drinks.
  • FIG. 1 shows an activation current value when an ENaC-expressing oocyte was stimulated with the compound of Example 32.
  • FIG. 2 shows the salty taste enhancement rate of the compound of Example 35 in the sensory evaluation test.
  • FIG. 3 shows an activation current value when an ENaC-expressing oocyte was stimulated with the compound of Example 35.
  • FIG. 4 shows the salty taste enhancement rate when the compound of Example 35 is used in combination with potassium chloride in the sensory evaluation test.
  • Halogen atom includes chlorine atom, bromine atom, fluorine atom and iodine atom.
  • alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • alkyl group having 1 to 6 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 2-methylbutyl group, hexyl group, isohexyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2 -Ethylbutyl group and the like.
  • Examples of the “C 1-3 alkoxy group” include a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group.
  • Examples of the “C3-C7 cycloalkyl group” include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and the like.
  • Examples of the “C 1-3 alkoxy-carbonyl group” include methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group and the like.
  • Examples of the “C 1-4 alkoxy-carbonyl group” include methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group and the like.
  • Examples of the “aralkyloxycarbonyl group” include benzyloxycarbonyl group, phenethyloxycarbonyl group, naphthylmethyloxycarbonyl group (1-naphthylmethyloxycarbonyl group, 2-naphthylmethyloxycarbonyl group), biphenylylmethyloxycarbonyl group and the like. Can be mentioned.
  • Examples of the “C 1-3 alkylene group” include a methylene group, an ethylene group, a propylene group, —CH (CH 3 ) —, —CH (CH 3 ) —CH 2 —, —CH 2 —CH (CH 3 ). -, -C (CH 3 ) 2- , -CH (C 2 H 5 )-and the like.
  • Examples of the “C 1-3 alkylenedioxy group” include methylenedioxy group, ethylenedioxy group, propylenedioxy group, —O—CH (CH 3 ) —O—, —O—CH (CH 3 ).
  • R 1 , R 2 , R 3 , R 4 and R 5 may each independently be substituted with a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, or 1 to 3 halogen atoms.
  • An alkylenedioxy group may be formed, or R 1 together with R 8 may form a carbonyl group.
  • An alkyl group having 1 to 6 carbon atoms which may be substituted with a substituent is shown.
  • Alkyl group having 1 to 3 carbon atoms of “alkyl group having 1 to 3 carbon atoms which may be substituted with 1 to 3 halogen atoms” represented by R 1 , R 2 , R 3 , R 4 or R 5
  • the “group” is preferably a methyl group.
  • the “alkyl group having 1 to 3 carbon atoms which may be substituted with 1 to 3 halogen atoms” represented by R 1 , R 2 , R 3 , R 4 or R 5 is preferably 1 to 3
  • the “alkoxy group having 1 to 3 carbon atoms” represented by R 1 , R 2 , R 3 , R 4 or R 5 is preferably a methoxy group.
  • the “alkylenedioxy group having 1 to 3 carbon atoms” formed by R 1 and R 2 or R 2 and R 3 is preferably a methylenedioxy group.
  • cycloalkyl group having 3 to 7 carbon atoms of the “cycloalkyl group having 3 to 7 carbon atoms which may be substituted with 1 to 3 alkyl groups having 1 to 3 carbon atoms” represented by Q, A cyclohexyl group is preferred.
  • the “cycloalkyl group having 3 to 7 carbon atoms” may be substituted with 1 to 3 substituents selected from an alkyl group having 1 to 3 carbon atoms (preferably a methyl group or an isopropyl group). .
  • the “cycloalkyl group having 3 to 7 carbon atoms which may be substituted with 1 to 3 alkyl groups having 1 to 3 carbon atoms” represented by Q is preferably 1 to 3 carbon atoms having 1 to 3 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms of the “alkyl group having 1 to 6 carbon atoms which may be substituted with 1 to 3 substituents selected from amino group and hydroxyl group” represented by Q
  • An ethyl group, a tert-butyl group, an isopentyl group, and a neopentyl group are preferred.
  • the “alkyl group having 1 to 6 carbon atoms which may be substituted with 1 to 3 substituents selected from an amino group and a hydroxyl group” represented by Q is preferably 1 selected from an amino group and a hydroxyl group.
  • an alkyl group having 1 to 6 carbon atoms (preferably an ethyl group, tert-butyl group, isopentyl group, neopentyl group) which may be substituted with two (preferably one) substituents, more preferably Is a tert-butyl group, a neopentyl group, a 2-hydroxyethyl group, or a 1-amino-3-methylbutyl group.
  • Hal represents a halogen atom; * represents a site bonded to X. It is group represented by these.
  • Q is preferably
  • R 3 ′′ represents a hydrogen atom, a methyl group or a hydroxyl group; * represents a site bonded to X. It is group represented by these.
  • Q is preferably (1) The following formula:
  • R 1 ′, R 2 ′, R 3 ′, R 4 ′ and R 5 ′ are each independently substituted with a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, or 1 to 3 halogen atoms.
  • any of R 1 ′ to R 5 ′ is a sulfo group.
  • Q is preferably
  • R 3 ′ ′′ represents a hydrogen atom, a hydroxyl group, a methyl group, or an alkoxy group having 1 to 3 carbon atoms; * represents a site bonded to X.
  • X represents a covalent bond, —CH 2 —, or —CHR 7 —CH 2 — (wherein R 7 represents a hydrogen atom or an amino group). X is preferably a covalent bond.
  • Y represents —NR 8 —CO—, —NH—CO—O—, or —CO—NH— (wherein R 8 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, or R 8 May be combined with R 1 to form a carbonyl group, or R 8 may be combined with R 11 to form an alkylene group having 1 to 3 carbon atoms.
  • Y is preferably —NR 8 ′ —CO—, —NH—CO—O—, or —CO—NH— (wherein R 8 ′ represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, Alternatively, R 8 together with R 11 below may form an alkylene group having 1 to 3 carbon atoms.), More preferably —NH—CO— or —CO—NH—, More preferred is —NH—CO—. In another embodiment, Y is preferably —CO—NH—.
  • the “alkyl group having 1 to 3 carbon atoms” represented by R 8 is preferably a methyl group.
  • the “alkylene group having 1 to 3 carbon atoms” formed by R 8 and R 11 is preferably a methylene group.
  • R 9 and R 10 are each independently (i) a hydrogen atom, (ii) an alkyl group having 1 to 3 carbon atoms which may be substituted with a hydroxyl group, or (iii) a carboxyl group) (Iv) an alkoxy-carbonyl group having 1 to 3 carbon atoms, (v) an aralkyloxycarbonyl group, (vi) an amino group optionally substituted with an alkoxy-carbonyl group having 1 to 4 carbon atoms, or (vii) A carbamoyl group which may be substituted with an alkyl group having 1 to 3 carbon atoms which may be substituted with 1 to 3 substituents selected from a hydroxyl group,
  • the “alkyl group having 1 to 3 carbon atoms” of the “alkyl group having 1 to 3 carbon atoms which may be substituted with a hydroxyl group” represented by R 9 or R 10 is preferably a methyl group.
  • the “alkoxy-carbonyl group having 1 to 3 carbon atoms” represented by R 9 or R 10 is preferably a methoxycarbonyl group or an ethoxycarbonyl group.
  • the “aralkyloxycarbonyl group” represented by R 9 or R 10 is preferably a benzyloxycarbonyl group.
  • the “tert-butoxycarbonyl group” as the “alkoxy-carbonyl group having 1 to 4 carbon atoms” of the “amino group optionally substituted with an alkoxy-carbonyl group having 1 to 4 carbon atoms” represented by R 9 or R 10 Is preferred.
  • the “alkyl group having 1 to 3 carbon atoms” of the “group” is preferably an ethyl group.
  • R 9 and R 10 are each independently (i) a hydrogen atom, (ii) a hydroxyl group An alkyl group having 1 to 3 carbon atoms (preferably a methyl group) optionally substituted with (iii) a carboxyl group, (iv) an alkoxy-carbonyl group having 1 to 3 carbon atoms (preferably a methoxycarbonyl group, An ethoxycarbonyl group), (v) an aralkyloxycarbonyl group (preferably a benzyloxycarbonyl group), (vi) an alkoxy-carbonyl group having 1 to 4 carbon atom
  • an amino group which may be substituted or (vii) an alkyl group having 1 to 3 carbon atoms which may be substituted with 1 to 3 substituents selected from a hydroxyl group, a carboxyl group and a phenyl group (preferably an ethyl group) A carbamoyl group which may be substituted with ].
  • Z is preferably -CH 2 -CHR 9 '-, or -CH 2 -CH 2 -CHR 9' - (wherein, R 9 'is, (i) a hydrogen atom, with (ii) hydroxyl An optionally substituted alkyl group having 1 to 3 carbon atoms, (iii) a carboxyl group, or (iv) an alkoxy-carbonyl group having 1 to 3 carbon atoms), more preferably —CH 2 —CHR. 9 '- (wherein, R 9' are as defined above.), more preferably -CH 2 -CH 2 -.
  • R 11 represents a hydrogen atom, or R 11 may be combined with R 8 to form an alkylene group having 1 to 3 carbon atoms
  • R 12 , R 13 , R 13a , R 14 And R 14a each independently represents a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms
  • * represents a site bonded to Z.
  • R 15 , R 15a , R 15b , R 16 and R 16a each independently represent a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, Alternatively, R 15 and R 16 may be combined to form an alkylenedioxy group having 1 to 3 carbon atoms; * represents a site bonded to Z.) The group represented by these is shown.
  • the “alkylene group having 1 to 3 carbon atoms” formed by R 11 and R 8 is preferably a methylene group.
  • the “alkyl group having 1 to 3 carbon atoms” represented by R 12 , R 13 , R 13a , R 14 or R 14a is preferably a methyl group.
  • the “alkoxy group having 1 to 3 carbon atoms” represented by R 15 , R 15a , R 15b , R 16 or R 16a is preferably a methoxy group.
  • the “C 1-3 alkylenedioxy group” formed by R 15 and R 16 is preferably a methylenedioxy group.
  • R 13a , R 14a , R 15a , R 15b and R 16a are preferably a hydrogen atom.
  • Ar is preferably (1) Formula (III ′) [wherein R 11 is a hydrogen atom, or R 11 together with R 8 forms an alkylene group having 1 to 3 carbon atoms (preferably a methylene group).
  • R 12 , R 13 and R 14 is independently a hydrogen atom, a halogen atom (preferably a fluorine atom), a hydroxyl group, or an alkyl group having 1 to 3 carbon atoms (preferably a methyl group). It is.
  • R 15 and R 16 are each independently a hydrogen atom, a hydroxyl group, or an alkoxy group having 1 to 3 carbon atoms (preferably R 15 and R 16 may together form an alkylenedioxy group having 1 to 3 carbon atoms (preferably a methylenedioxy group).
  • Ar is preferably Following formula:
  • Q is (1) The above formula (II) [wherein R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a halogen atom (preferably a chlorine atom or a bromine atom), a hydroxyl group A carboxyl group, an alkyl group having 1 to 3 carbon atoms (preferably a methyl group) optionally substituted with 1 to 3 halogen atoms (preferably a fluorine atom), an alkoxy group having 1 to 3 carbon atoms ( Preferably, it is a methoxy group, an ethoxy group), a carbamoyl group or a sulfo group, or R 1 and R 2 or R 2 and R 3 together are an alkylenedioxy group having 1 to 3 carbon atoms (preferably, Methylenedioxy group) or R 1 together with R 8 may form a carbonyl group.
  • a halogen atom preferably a chlorine atom or a bromine atom
  • R 8 together with R 1 may form a carbonyl group, or R 8 together with R 11 may be an alkylene group having 1 to 3 carbon atoms (preferably a methylene group) May be formed);
  • An optionally substituted alkyl group having 1 to 3 carbon atoms (preferably a methyl group), (iii) a carboxyl group, and (iv) an alkoxy-carbonyl group having 1 to 3 carbon atoms (preferably a methoxycarbonyl group, ethoxy A carbonyl group), (v) an aralkyloxycarbonyl group (preferably a benzyloxycarbonyl group), (vi) an alkoxy-carbonyl group having 1 to 4 carbon atoms (preferably a tert-butoxycarbonyl group) Substituted with a good amino group or (vii) an alkyl group having 1 to 3 carbon atoms (preferably an ethyl group) optionally substituted with 1 to 3 substituents selected from a hydroxyl group, a carboxyl group and a phenyl group An optionally substituted carbamoyl group); Ar is (1) Formula (III ′) [wherein R 11 is a hydrogen atom, or R 11 together with
  • Each of R 12 , R 13 and R 14 is independently a hydrogen atom, a halogen atom (preferably a fluorine atom), a hydroxyl group, or an alkyl group having 1 to 3 carbon atoms (preferably a methyl group). It is. Or a group represented by formula (IV ′) wherein R 15 and R 16 are each independently a hydrogen atom, a hydroxyl group, or an alkoxy group having 1 to 3 carbon atoms (preferably R 15 and R 16 may together form an alkylenedioxy group having 1 to 3 carbon atoms (preferably a methylenedioxy group). The compound which is group represented by these is preferable.
  • the compound represented by the formula (I) is preferably a compound in which R 13a , R 14a , R 15a , R 15b and R 16a are hydrogen atoms.
  • the compound represented by formula (I) has Q as
  • Hal represents a halogen atom; * represents a site bonded to X.
  • a compound in which X is a covalent bond is preferable.
  • the compound represented by formula (I) includes Q
  • R 3 ′′ represents a hydrogen atom, a methyl group or a hydroxyl group; * represents a site bonded to X.
  • R 3 ′′ represents a hydrogen atom, a methyl group or a hydroxyl group; * represents a site bonded to X.
  • the compound represented by formula (I) is preferably a compound represented by formula (V), and among them, a compound wherein n is 2 is preferable.
  • the compound represented by formula (I) is preferably a compound represented by formula (VI), among which Q ′′ is
  • the compound represented by formula (I) is preferably a compound in which any one of R 1 to R 5 is a sulfo group and Y is —CO—NH—.
  • compounds exemplified in the following examples are particularly preferable, and 2,6-dihydroxy-N- (2- (5-hydroxy-1H-indol-3-yl) ethyl is particularly preferable. Benzamide is preferred.
  • the compound represented by the above formula (I ′) is a novel compound.
  • Q ' (1) The above formula (II ′) [wherein R 1 ′, R 2 ′, R 3 ′, R 4 ′ and R 5 ′ are each independently a hydrogen atom, a halogen atom (preferably a chlorine atom , A bromine atom), a hydroxyl group, a carboxyl group, an alkyl group having 1 to 3 carbon atoms (preferably a methyl group) optionally substituted with 1 to 3 halogen atoms (preferably a fluorine atom), 1 carbon atom Or an alkoxy group (preferably a methoxy group, an ethoxy group), a carbamoyl group or a sulfo group, or R 1 ′ and R 2 ′ or R 2 ′ and R 3 ′ 3 alkylenedioxy groups (preferably methylenedioxy groups) may be formed.
  • a group represented by (2) 1 to 3 (preferably 1 or 2) alkyl group having 1 to 3 carbon atoms (preferably a methyl group or an isopropyl group).
  • C3-C7 cycloalkyl group (preferably cyclohexyl group) (particularly preferably 2-isopropyl-5-methylcyclohexyl group) Is;
  • X is a covalent bond, —CH 2 —, or —CHR 7 —CH 2 — (wherein R 7 is a hydrogen atom or an amino group);
  • Y ′ represents —NR 8 ′ —CO—, —NH—CO—O—, or —CO—NH— (wherein R 8 ′ represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms (preferably Or R 8 ′ may form an alkylene group having 1 to 3 carbon atoms (preferably a methylene group) together with R 11 );
  • Z is, -CHR 9 -, - CH 2 -
  • An optionally substituted alkyl group having 1 to 3 carbon atoms (preferably a methyl group), (iii) a carboxyl group, and (iv) an alkoxy-carbonyl group having 1 to 3 carbon atoms (preferably a methoxycarbonyl group, ethoxy A carbonyl group), (v) an aralkyloxycarbonyl group (preferably a benzyloxycarbonyl group), (vi) an alkoxy-carbonyl group having 1 to 4 carbon atoms (preferably a tert-butoxycarbonyl group) Substituted with a good amino group or (vii) an alkyl group having 1 to 3 carbon atoms (preferably an ethyl group) optionally substituted with 1 to 3 substituents selected from a hydroxyl group, a carboxyl group and a phenyl group An optionally substituted carbamoyl group); Ar ′ is (1) Formula (III ′) [wherein R 11 is a hydrogen atom, or R 11
  • Each of R 12 , R 13 and R 14 independently represents a hydrogen atom, a halogen atom (preferably a fluorine atom), a hydroxyl group, or an alkyl group having 1 to 3 carbon atoms (preferably a methyl group). ).
  • the compound which is group represented by these is preferable.
  • Examples of the salt of the compound represented by compound (I) or (I ′) include, for example, a salt with an inorganic acid, a salt with an organic acid, a salt with an inorganic base, a salt with an organic base, an acidic or basic amino acid. And the like.
  • Examples of the salt with an inorganic acid include hydrochloride, hydrobromide, sulfate, nitrate, phosphate and the like.
  • Examples of salts with organic acids include formate, acetate, trifluoroacetate, maleate, tartrate, citrate, fumarate, methanesulfonate, benzenesulfonate, p-toluenesulfone Examples include acid salts.
  • Examples of the salt with an inorganic base include sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt and the like.
  • Examples of the salt with an organic base include methylamine, diethylamine, trimethylamine, triethylamine, ethanolamine, diethanolamine, triethanolamine, ethylenediamine, tris (hydroxymethyl) methylamine, dicyclohexylamine, N, N′-dibenzylethylenediamine, And salts with guanidine, pyridine, picoline, choline, cinchonine, meglumine and the like.
  • Examples of the salt with an acidic or basic amino acid include salts with aspartic acid, glutamic acid, arginine, lysine, ornithine. As said salt, an edible salt is preferable.
  • Compound (I) (including compound (I ′)) or a salt thereof (hereinafter sometimes abbreviated as the compound of the present invention) is an isomer such as an optical isomer, stereoisomer, positional isomer, rotational isomer, etc.
  • an isomer such as an optical isomer, stereoisomer, positional isomer, rotational isomer, etc.
  • isomer or mixture is included in the compound of the present invention.
  • the optical isomer resolved from the racemate is also encompassed in the compound of the present invention.
  • the compound of the present invention can be blended in various foods and drinks.
  • foods and drinks are not particularly limited, for example, seasonings such as miso, soy sauce, sauce, soup, dressing, mayonnaise, tomato ketchup, miso soup, soup, consomme soup, egg soup, wakame soup, soups such as potage, Soba, udon, ramen, pasta and other soups, sauces, rice porridge, cooked rice, cooked rice products such as tea pickles, processed livestock products such as ham, sausage, cheese, confectionery snacks such as potato chips, rice crackers, cookies, boiled foods, Examples include fried foods, grilled foods, cooked foods such as curry, and beverages.
  • the amount of the compound of the present invention when blended in food or drink is not particularly limited as long as the effect is exhibited, but since the food and drink is a mixture with many substances, the present invention provides a salty taste enhancing effect.
  • the blending amount of may be different from the blending amount at which a salty taste enhancing effect is obtained by using a simple saline solution or the like. Therefore, the amount of the compound of the present invention when blended with food or drink may be determined by appropriately examining the optimum blending amount for each food or drink, but is preferably 0.000001 to 0.1% by weight, for example.
  • the compound of the present invention may be used in combination with a known salty taste substitute.
  • salty taste substitutes include potassium chloride, organic acids, arginine, arginine salts, ammonium chloride and the like. These may be used alone or in admixture of two or more.
  • this food / beverage products can mix
  • foods and drinks include proteins (milk protein, soy protein, etc.), inorganic salts, acids, amino acids, nucleic acid-based taste ingredients, saccharides, fats, natural seasonings, spices, and seasonings. You may contain the various additives which can be used for manufacture of normal food-drinks, such as a shape agent and a pigment
  • Inorganic salts include potassium chloride, ammonium chloride, magnesium sulfate and the like.
  • Examples of the acid include carboxylic acids such as ascorbic acid, fumaric acid, malic acid, tartaric acid, citric acid, lactic acid, and succinic acid, and salts thereof.
  • Examples of amino acids include glutamate such as sodium glutamate, potassium glutamate, calcium glutamate, ammonium glutamate, and magnesium glutamate, and glutamic acid. These have already been used as flavor enhancers for foods, and all have umami derived from glutamic acid and taste characteristics characteristic of each cation (for example, acidity in ammonium salts).
  • basic amino acids such as lysine, arginine, histidine and their salts can be used as amino acids.
  • nucleic acid-based taste component examples include sodium inosinate and sodium guanylate.
  • saccharide examples include sucrose, glucose, and lactose.
  • the compound of the present invention preferably contains one or more additives selected from organic acids, arginine, arginine salts, ammonium chloride, and potassium chloride, which are known to have a salty taste enhancing effect.
  • the method for producing the compound represented by the formula (I) or a salt thereof is not particularly limited, and can be produced by combining known methods. Specifically, it can be synthesized by the following method, but is not limited thereto.
  • Y is —NR 8 —CO— (wherein R 8 is as defined above) or a salt thereof (hereinafter referred to as Compound (I-1)) Can be produced by the following production method 1 or 2.
  • Compound (I-1) can be produced by subjecting amine component (VII) and carboxylic acid component (VIII) to a condensation reaction using a dehydrating condensing agent.
  • the amine component (VII) may be a salt such as hydrochloride or p-toluenesulfonate
  • the carboxylic acid component (VIII) may be a salt such as dicyclohexylamine salt.
  • a reaction may be performed by adding a base such as triethylamine during the condensation reaction.
  • carboxylic acid component (VIII) is set to 0 with respect to 1 equivalent of amine components (VII). .8 to 1.2 equivalents may be used.
  • the amount of the base used is 0.8 to 2.0 equivalents, preferably 1.0 to 1.5 equivalents, relative to the amine component (VII).
  • the solvent to be used is not particularly limited as long as it does not react with the amine component (VII) or the carboxylic acid component (VIII).
  • dichloromethane (DCM), N, N-dimethylformamide (DMF), chloroform, dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), or a mixed solvent thereof can be used. Of these, dichloromethane and N, N-dimethylformamide are preferred.
  • the amount of the solvent is 10 to 500 times by weight, preferably 15 to 100 times by weight with respect to the amine component (VII).
  • a common condensing agent used in peptide synthesis or the like may be used.
  • DCC N, N′-dicyclohexylcarbodiimide
  • EDCI ⁇ HCl 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide Hydrochloride
  • HBTU 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate
  • a condensation accelerator such as 1-hydroxybenzotriazole (HOBt) is used.
  • the amount of the dehydrating condensing agent to be used is 1.0 to 2.0 equivalents, preferably 1.05 to 1.20 equivalents, relative to the amine component (VII).
  • the amount of the condensation accelerator used is 0.5 to 3.0 equivalents, preferably 1.0 to 1.5 equivalents, relative to the amine component (VII).
  • the reaction time is preferably about 3 to 24 hours, which depends on the reaction temperature, and the range is preferably 5 to 35 ° C.
  • Compound (I-1) is produced by once converting carboxylic acid component (VIII) to acid chloride (IX) and subjecting this to amine component (VII) in the presence of a base. Can do.
  • the acid chloride (IX) can be obtained by reacting the carboxylic acid component (VIII) with oxalyl chloride, thionyl chloride or the like by a conventional method.
  • the amount of oxalyl chloride, thionyl chloride, etc. used is 0.8-10.0 equivalents, preferably 1.0-2.0 equivalents, relative to the carboxylic acid component (VIII).
  • the reaction temperature is usually 10.0 to 50.0 ° C., preferably 0 to 35.0 ° C.
  • the reaction time is usually 1.0 to 20.0 hours, preferably 3.0 to 16.0 hours. is there.
  • the reaction may be performed in the presence of a base such as triethylamine or sodium hydroxide.
  • a base such as triethylamine or sodium hydroxide.
  • the ratio of the amine component (VII) to the acid chloride (XI) is not limited, but in order to react with good yield, the acid chloride (IX) is added in an amount of 0.8 to 1 with respect to the amine component (VII). .2 equivalents may be used.
  • the amount of the base used is 0.8 to 3.0 equivalents, preferably 1.0 to 1.5 equivalents, relative to the amine component (VII).
  • the solvent to be used the solvents mentioned as the solvent used in the production method 1 can be used.
  • the reaction time is preferably about 3 to 24 hours, which depends on the reaction temperature, and the range is preferably 5 to 35 ° C.
  • compound (I-2) The compound represented by the formula (I) wherein Y is —CO—NH— or a salt thereof (hereinafter referred to as compound (I-2)) can be produced by the following production method 3 or 4.
  • Compound (I-2) can be produced by subjecting amine component (XI) and carboxylic acid component (X) to a reaction similar to Production Method 1.
  • Compound (I-2) can be produced by subjecting amine component (XI) and carboxylic acid component (X) to a reaction similar to Production Method 2.
  • compound (I-3) The compound represented by the formula (I) where Y is —NH—CO—O— or a salt thereof (hereinafter referred to as compound (I-3)) can be produced by the following Production Method 5.
  • Compound (I-3) usually comprises an amine component (XII) and chloroformate (XIII) (eg, benzyl chloroformate) or dicarbonate (XIV) (eg, dialkyl dicarbonate) in the presence of a base. It can obtain by making it react on the conditions of these. Examples of the base include triethylamine, diisopropylamine, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate and the like.
  • the ratio of the amine component (XII) to be used and the chloroformate (XIII) or dicarbonate (XIV) is not limited, but in order to react with good yield, the chloroformate is used with respect to 1 equivalent of the amine component (XII).
  • Mate (XIII) or dicarbonate (XIV) may be used in an amount of 0.9 to 2.0 equivalents.
  • the amount of the base used is 1.5 to 3.0 equivalents, preferably 2.0 to 2.5 equivalents, relative to the amine component (XII).
  • the solvent to be used is not particularly limited as long as it does not react rapidly with the amine component (XII), chloroformate (XIII) or dicarbonate (XIV).
  • 1,4-dioxane, dichloromethane, THF, water Etc. can be used.
  • the reaction time is usually 1.0 to 25 hours, preferably 5.0 to 18 hours, and the reaction temperature is usually 0 to 50 ° C., preferably 15 to 35 ° C.
  • a protective group generally used in peptide chemistry or the like may be introduced into these groups.
  • the target compound can be obtained by removing the protecting group as necessary after the reaction.
  • the above-described method for removing the protecting group can be carried out according to a known method such as the method described in Protective Groups in Organic Synthesis, published by John Wiley and Sons (1980).
  • the obtained compound represented by the formula (I) or a salt thereof can be isolated and purified by a conventional method.
  • a conventional method for example, when purifying by crystallization, ethyl acetate, ethanol, methanol, diethyl ether, chloroform, dichloromethane, n-hexane, or a mixed solvent thereof can be used as a solvent.
  • a purification method by chromatography preparative thin layer chromatography (PTLC) or silica gel column chromatography can be used.
  • PTLC thin layer chromatography
  • silica gel column chromatography As the developing solvent at that time, the solvents mentioned above as the crystallization solvent can be used.
  • Example 1 2,6-Dihydroxybenzoic acid (0.7706 g, 5.0 mmol) was dissolved in N, N-dimethylformamide (15 mL) to give 1-hydroxybenzotriazole monohydrate (HOBt ⁇ H 2 O) (1.5314 g). 10.0 mmol) and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDCI.HCl) (1.9170 g, 10.0 mmol) were added, and the mixture was stirred at room temperature for 30 minutes.
  • 1-hydroxybenzotriazole monohydrate H 3-dimethylaminopropyl
  • EDCI.HCl 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • Example 2 The compounds of Examples 2, 5, 10, 11, 14-17, 20, 21, and 24-29 shown in Table 1 below were also synthesized in the same manner as Example 1. In addition, about the compound of Example 20, it synthesize
  • generated by TLC (Silica gel 60 F254, the product made by Merck; developing solvent, hexane: ethyl acetate 2: 1). It was confirmed.
  • Example 3 (S) -Methyl 2- (2,6-dihydroxybenzamide) -3- (1H-indol-3-yl) propanoate (0.5508 g, 1.55 mmol) obtained in Example 1 was dissolved in tetrahydrofuran (8 mL). 1M aqueous lithium hydroxide solution (3.1 mL) was added, and the mixture was reacted at room temperature for 2 hours. After completion of the reaction, 1M hydrochloric acid was added to adjust the pH to about 2, and ethyl acetate was added for extraction. The obtained organic layer was washed with saturated brine, dried over magnesium sulfate, filtered, and the solvent was evaporated. The obtained crude product was purified by silica gel column chromatography to obtain the target compound as a white solid.
  • Example 6 Salicylic acid (0.2762 g, 2.0 mmol), HOBt ⁇ H 2 O (0.3982 g, 2.6 mmol), EDCI ⁇ HCl (0.4984 g, 2.6 mmol) are dissolved in N, N-dimethylformamide (6 mL). Serotonin hydrochloride (0.5530 g, 2.6 mmol) and triethylamine (0.720 mL, 5.2 mmol) were added, and the mixture was stirred at room temperature overnight. After completion of the reaction, the solvent was distilled off, and ethyl acetate was added for dilution.
  • the extract was washed twice with 5% aqueous citric acid solution, once with saturated brine, twice with 10% saturated aqueous sodium hydrogen carbonate, and finally once with saturated brine.
  • the organic layer was dried over magnesium sulfate and filtered, and then the solvent was distilled off.
  • the obtained crude product was purified by silica gel column chromatography to obtain the target compound (0.4609 g, 1.56 mmol).
  • Example 22 Tert-Butyl (S) -1- (2,6-dihydroxyphenylcarbamoyl) -2- (1H-indol-3-yl) ethylcarbamate (0.520 g, 1.27 mmol) obtained in Example 21
  • Hydrochloric acid-dioxane solution (16 mL) was added and allowed to react overnight at room temperature. After completion of the reaction, the solvent was distilled off, the pH was adjusted to about 11 with 1M aqueous sodium hydroxide solution, and the mixture was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and filtered, and then the solvent was distilled off.
  • the obtained crude product was purified by silica gel column chromatography to obtain the target compound (0.0891 g, 0.29 mmol).
  • Example 35 2,6-Dihydroxybenzoic acid (0.312 g, 2 mmol) and serotonin hydrochloride (0.430 g, 2 mmol) were dissolved in DMF (25 ml), brought to 0 ° C., and then triethylamine (0.31 ml, 2.2 mmol). , HOBt ⁇ H 2 O (0.346 g, 2.2 mmol) and EDCI ⁇ HCl (0.439 g, 2.2 mmol) were added and stirred at room temperature overnight. After confirming the progress of the reaction by thin layer chromatography (TLC) the next day, the solvent was concentrated, and ethyl acetate and water were added to obtain an ethyl acetate layer.
  • TLC thin layer chromatography
  • the extract was washed twice with a 5% aqueous citric acid solution, once with a saturated saline solution, twice with a 5% aqueous sodium hydrogen carbonate solution and once with a saturated saline solution, and dehydrated by adding magnesium sulfate. Magnesium sulfate was removed, and ethyl acetate was concentrated under reduced pressure to obtain an amorphous compound. Purification by preparative thin layer chromatography (PTLC) and recrystallization from hexane gave the target compound (0.093 g, 0.30 mmol, 14.9%).
  • PTLC preparative thin layer chromatography
  • the compounds of 98, 104 to 107, 109, 111, 112, 114, 116, 118, 120, 122, 124 and 125 were synthesized in the same manner as in Example 35.
  • Example 39 2,3-dihydroxybenzoic acid (0.663 g, 2 mmol) and tryptophan benzyl ester hydrochloride (0.309 g, 2 mmol) were dissolved in DMF (40 ml), brought to 0 ° C., and then triethylamine (0.31 ml, 2. mmol). 2 mmol), HOBt ⁇ H 2 O (0.341 g, 2.2 mmol) and EDCI ⁇ HCl (0.426 g, 2.2 mmol) were added and stirred at room temperature overnight. After confirming the progress of the reaction by TLC the next day, the solvent was concentrated, and ethyl acetate and water were added to obtain an ethyl acetate layer.
  • the extract was washed twice with a 5% aqueous citric acid solution, once with a saturated saline solution, twice with a 5% aqueous sodium hydrogen carbonate solution and once with a saturated saline solution, and dehydrated by adding magnesium sulfate. Magnesium sulfate was removed, and ethyl acetate was concentrated under reduced pressure, followed by PTLC purification and recrystallization from hexane. This compound was dissolved in ethanol, 5% palladium carbon (300 mg) was added, and the mixture was stirred overnight under hydrogen. The next day, palladium on carbon was removed, concentrated, and recrystallized with water to obtain the desired compound (0.039 g, 0.11 mmol, 5.8%).
  • Example 50 Magnesium (668 mg) and dehydrated THF (10 mL) were stirred under argon. Iodine was added and stirred for an additional 5 minutes. ( ⁇ )-Mentyl chloride (4.2 g, 240 mmol) was added thereto, and the mixture was heated and returned. The reaction was considered complete when the color of the solution changed from brown to colorless. This was transferred to a 200 ml two-necked flask, dry ice (9 g) was added, and the mixture was stirred at room temperature for 2 hours. After quenching with 1N hydrochloric acid (25 mL), the mixture was extracted three times with diethyl ether (25 mL).
  • the organic layer was washed with water and extracted three times with 1N sodium hydroxide (25 mL).
  • the aqueous layer was neutralized with 2N hydrochloric acid (40 mL) and extracted three times with diethyl ether (25 mL).
  • the organic layer was dried over sodium sulfate, and the sodium sulfate was removed by filtration.
  • the solvent was concentrated under reduced pressure, and the solvent was completely removed with a vacuum pump to remove ( ⁇ )-menthylcarboxylic acid (1.68 g, 9.1 mmol).
  • Example 53 The compound obtained in Example 52 (900 mg, 1.95 mmol) was dissolved in ethanol (5 mL), 5% palladium on carbon (100 mg) was added, and the mixture was stirred overnight under hydrogen. The next day, palladium on carbon was removed, concentrated, dissolved in ethyl acetate, and purified by column chromatography. The solvent was concentrated under reduced pressure and completely removed with a vacuum pump to obtain the target compound (702 mg, 1.89 mmol, 97%).
  • Example 58 Tryptamine (200 mg, 1.2 mmol) was dissolved in dehydrated 1,4-dioxane (4 mL) under argon, triethylamine (0.35 mL, 2.5 mmol) was added, and di-tert-butyl dicarbonate (300 mg, 1. 4 mmol) was added and stirred overnight. The next day, the solvent was concentrated under reduced pressure, and ethyl acetate and water were added to obtain an organic layer. The organic layer is dried over sodium sulfate, and the sodium sulfate is removed by filtration. The solvent is concentrated under reduced pressure, and the solvent is completely removed with a vacuum pump to obtain the desired compound (107 mg, 0.41 mmol, 34%). It was.
  • Example 59 Tryptamine (199 mg, 1.2 mmol) was dissolved in dichloromethane (4 mL), diisopropylethylamine (0.44 mL) and benzyl chloroformate (0.2 ml) were added, and the mixture was stirred overnight. The next day, water was added to obtain an organic layer. The organic layer was dried over sodium sulfate, and the sodium sulfate was removed by filtration, followed by silica gel column purification. The solvent was concentrated under reduced pressure, and the solvent was completely removed with a vacuum pump to obtain the desired compound (155 mg, 0.53 mmol). 43%).
  • Example 61 Thionyl chloride (1 mL) was added to tert-butylcarboxylic acid (0.2 ml, 1.6 mmol) under argon and stirred at 80 ° C. for 2 hours. The reaction solution was concentrated and cooled in an ice bath. This was dissolved in dichloromethane (6 mL), L-tryptophan benzyl ester hydrochloride (519 mg, 1.6 mmol) and triethylamine (0.3 mL) were added, and the mixture was stirred overnight.
  • Example 86 2,6-Dihydroxyaniline (0.251 g, 2 mmol) and 3,4-methylenedioxycinnamic acid (0.387 g, 2 mmol) were dissolved in DMF (20 ml) and brought to 0 ° C., and then HOBt ⁇ H 2 O (0.337 g, 2.2 mmol) and EDCI.HCl (0.421 g, 2.2 mmol) were added and stirred overnight at room temperature. After confirming the progress of the reaction by TLC the next day, the solvent was concentrated, and ethyl acetate and water were added to obtain an ethyl acetate layer.
  • the extract was washed twice with a 5% aqueous citric acid solution, once with a saturated saline solution, twice with a 5% aqueous sodium hydrogen carbonate solution and once with a saturated saline solution, and dehydrated by adding magnesium sulfate. Magnesium sulfate was removed, ethyl acetate was concentrated under reduced pressure, and then recrystallized from hexane. This compound was dissolved in methanol, palladium hydroxide (60 mg) was added, and the mixture was stirred at 40 ° C. under hydrogen for 7 hours. Crystals were precipitated by removing palladium hydroxide and concentrating under reduced pressure. The crystals were removed, and the filtrate was purified by PTLC to obtain the target compound (0.111 g, 0.37 mmol, 18.5%) as crystals.
  • Example 89 The compounds of Examples 89 and 91 shown in Table 1 below were also synthesized in the same manner as Example 86.
  • Example 103 2-Aminobenzenesulfonic acid (0.512 g, 3 mmol) and Z-homophenylalanine (0.940 g, 3 mmol) were dissolved in DMF (20 ml), brought to 0 ° C., and then triethylamine (0.46 ml, 3.3 mmol). , HOBt ⁇ H 2 O (0.505 g, 3.3 mmol) and EDCI ⁇ HCl (0.636 g, 3.3 mmol) were added and stirred at room temperature overnight. After confirming the progress of the reaction by TLC the next day, the solvent was concentrated, and ethyl acetate and water were added to obtain an ethyl acetate layer.
  • the extract was washed twice with 5% aqueous citric acid solution and once with saturated saline, and dehydrated by adding magnesium sulfate. Magnesium sulfate was removed, ethyl acetate was concentrated under reduced pressure, purified by PTLC, and recrystallized from hexane. This compound was dissolved in ethanol, 5% palladium on carbon (150 mg) was added, and the mixture was stirred overnight under hydrogen. The next day, palladium on carbon was removed, concentrated, and recrystallized with ether to obtain the target compound (0.172 g, 0.51 mmol, 17.1%).
  • Example 100 The compounds of Examples 100 and 119 shown in Table 1 below were also synthesized in the same manner as Example 103.
  • Example 108 The compound of Example 107 (0.191 g, 0.5 mmol) was dissolved in THF (2 ml), and adjusted to pH 10 by adding 5% lithium hydroxide. After stirring for 30 minutes and confirming the product by TLC, the pH was weakly acidified with 5% aqueous citric acid solution, extracted with ethyl acetate, and dehydrated with magnesium sulfate. Magnesium sulfate was removed, concentrated under reduced pressure, and recrystallized with hexane to obtain the target compound (0.162 g, 0.44 mmol, 88.0%).
  • Example 110 The compounds of Examples 110, 113, 115, 117, 121 and 123 shown in Table 1 below were also synthesized in the same manner as Example 108.
  • ENaC activation current value that is, the inward current in ENaC-expressing oocytes was measured as follows. According to the method described in Motonao Nakamura and Takao Shimizu: Xenopus laevis oocyte experiments, experimental medicine Vol.11, No.3, 224-232 (1993) Microinjection of cRNA into cells was performed, and current values were measured by a two-electrode membrane potential fixation method.
  • ND96 (96 mM NaCl, 2 mM KCl, 1 mM MgCl 2 , 5 mM Hepes, 1.8 mM CaCl 2 , pH 7.6) was used in place of the MBS buffer solution in the above document.
  • Microinjection uses World Precision Instruments injector NANOLITER 2000, two-electrode membrane potential fixation method uses Current Devices OpusXpress 6000A, and data analysis uses Molecular Devices Clampfit 10.2 software. Was used.
  • the oocyte was stimulated with each test compound, and the minimum effective dose (hereinafter abbreviated as MED) of the compound when the current started to increase was measured.
  • MED the minimum effective dose of the stimulating compound in which the current value increased by 10% or more compared to the current value in the unstimulated state before the compound addition was defined as MED.
  • test compound was directly dissolved in ND96, or first dissolved in dimethyl sulfoxide (DMSO) to 100 mM, and then diluted with ND96 to a concentration used for evaluation.
  • concentration of test compound in ND96 was adjusted to various concentrations ranging from 0.1 nM to 300 ⁇ M. Note that the concentration of DMSO contained in the preparation does not affect the current value of ENaC.
  • ND96 is allowed to flow as a perfusate at a rate of 0.5 mL / min, and the perfusate is suspended every 3 minutes, and the test compound solution (0.25 mL) was added at a rate of 0.5 mL / min.
  • the test compound was brought into contact with the ENaC-expressing oocyte, and whether or not ENaC was activated by the compound was examined by measuring the current value.
  • the perfusate was resumed to wash out the compound and prepared for the next compound addition.
  • Compound was added in order from low to high concentration to stimulate ENaC expressing oocytes.
  • Concentrations actually added are, for example, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM; 1 ⁇ M, 3 ⁇ M, 10 ⁇ M, 30 ⁇ M, 100 ⁇ M, 300 ⁇ M; 1.2 ⁇ M, 6 ⁇ M, 30 ⁇ M, 150 ⁇ M and so on.
  • Each was added from low to high concentrations at 3 minute intervals.
  • the second and third compounds were added to the same oocyte in the same manner, and the change in the current value was measured. . The current value was continuously measured from the start to the end of the experiment.
  • the concentration of the compound when the current value increased by 10% or more for the first time after the addition of the compound relative to the unstimulated current value immediately before the addition of the compound was defined as MED.
  • MED concentration of the compound when the current value increased by 10% or more for the first time after the addition of the compound relative to the unstimulated current value immediately before the addition of the compound.
  • Table 2 shows the MED values measured in the same manner for other representative example compounds.
  • the compound of the present invention has an ENaC activation action.
  • Test Example 2 Sensory evaluation of salty taste enhancing activity The intensity of salty taste enhancing activity was examined for the compound of Example 35 by a quantitative sensory evaluation test.
  • the quantitative sensory evaluation test was performed as follows. The strength of the salty taste enhancing activity was measured when the compound of Example 35 was mixed as a sample in distilled water containing sodium chloride (0.5 g / dl) at 0.00005 to 0.0040 g / dl. Distilled water containing 0.55 g / dl, 0.60 g / dl, and 0.65 g / dl sodium chloride was used for comparison.
  • the sodium chloride concentration is 1.0 times (0.50 g / dl), 1.1 times (0.55 g / dl), 1.2 times (0.60 g / dl), 1.3 times.
  • the straight line showing the position of (0.65 g / dl) the method of entering the corresponding scoring as the position was used.
  • “Paste” means the strength of saltiness up to 2 seconds when included in the mouth
  • “medium after taste” means the combination of the content and aftertaste, and the strength of saltiness after 2 seconds when included in the mouth.
  • the results are shown in FIG. FIG. 2 revealed that the compound of Example 35 had salty taste enhancing activity.
  • FIG. 3 shows the results of ENaC activation current for Example 35 measured in the same manner as in Test Example 1.
  • the results in FIG. 3 also show that the ENaC activation current starts to increase from the concentration of the compound of Example 35 from 0.00001 g / dl and increases in a concentration-dependent manner with a maximum current value at 0.0020 g / dl.
  • concentration range of 0.0020 g / dl to 0.0080 g / dl it indicates that the current value is almost constant. This correlates very well with the concentration-dependent salty taste enhancing effect by sensory evaluation of the compound of Example 35 shown in FIG.
  • the salty taste enhancing effect by sensory evaluation and the ENaC activation current begin to appear simultaneously, and in the high concentration region exceeding 0.0010 g / dl. Both reach a plateau and show a nearly constant value.
  • the strong correlation between the salty taste enhancing effect and the ENaC activation current value suggests that at least a part of the salty taste receptor in the tongue is mediated by the ENaC salty taste receptor, and that the compound that activates ENaC has a salty taste enhancing activity. is doing. Therefore, it is strongly suggested that the compounds of the present invention having ENaC activating action as shown in Table 2 have salty taste enhancing activity.
  • Test Example 3 Sensory evaluation of salty taste enhancing activity when the compound of the present invention was used in combination with a known salty taste substitute
  • the salty taste enhancing activity was determined by a quantitative sensory evaluation test. The strength of was examined.
  • the quantitative sensory evaluation test was performed as follows. Salty taste enhancing activity when the compound of Example 35 (0.001 g / dl) and potassium chloride (0.325 g / dl) are added to and mixed with distilled water containing sodium chloride (0.5 g / dl). The strength of was measured.
  • Distilled water containing 0.55 g / dl, 0.60 g / dl, 0.65 g / dl, and 0.70 g / dl sodium chloride was used as a comparison object. Further, for comparative evaluation, a mixture of the compound of Example 35 (0.001 g / dl) in distilled water containing sodium chloride (0.5 g / dl), containing sodium chloride (0.5 g / dl). What mixed potassium chloride (0.325g / dl) with distilled water was made into the comparison object.
  • the sodium chloride concentration is 1.0 times (0.50 g / dl), 1.1 times (0.55 g / dl), 1.2 times (0.60 g / dl), 1.3 times.
  • a method of entering the corresponding scoring as the position was used.
  • the position filled in by the panel was measured, and the averaged value was expressed as the salty taste enhancement rate (times).
  • n 5.
  • a compound having a strong salty taste enhancing activity is provided, which is useful as a salty taste enhancer for foods and drinks.

Abstract

 塩味増強活性を有する化合物、および該化合物を含有する塩味増強剤等の提供。 下記式 (式中、各記号は明細書に記載の通りである。) で表される化合物またはその可食性の塩を含有する飲食品の塩味増強剤。

Description

塩味増強剤
 本発明は、塩味増強効果を有する新規化合物に関する。更に、本発明は、該化合物を含有する飲食品の塩味増強剤等に関する。
 食塩の過剰摂取は血圧上昇の一因であり、脳卒中や心臓疾患の原因と考えられている。これを予防するために、食塩の摂取量を減らすことが推奨されている。しかしながら、食塩の添加量を減らした減塩食品は、味がぼけてしまい呈味性が著しく低下する。そこで、減塩による呈味性の低下を改善するために、グルタミン酸ナトリウムや香辛料を添加する方法が知られている(例えば、非特許文献1参照)。しかし、グルタミン酸ナトリウムや香辛料では、呈味の幅は広がるが塩味そのものの増強効果は十分ではない。
 また、食塩の一部をカリウム塩、アンモニウム塩、塩基性アミノ酸、又は塩味を示すペプチド等の食塩代替物で置き換える方法も報告されている。例えば、塩化カリウムにカラギナンを併用することにより塩化カリウムのもつ苦味を低減する方法(例えば、特許文献1参照)や、塩化カリウム含有発酵食品の製造方法(例えば、特許文献2参照)などである。さらに、それ自身は食塩味を呈しないが食塩と共存させるとその塩味を増強する物質も知られている。例えば、食塩含有飲食品に炭素数3乃至8を有する飽和脂肪族モノカルボン酸を食塩重量に基づいて0.01乃至1重量%の割合で添加する方法等である(例えば、特許文献3参照)。しかし、これらも塩味の強さや味質の点で満足いく方法ではない。
 従って、呈味性に優れた減塩食品、味質に優れた或いは強力な塩味増強剤、更には塩味を増強し得る新規な化合物が依然として求められている。
 一方、塩味の受容機構については種々の研究が行われているが、未だに不明な点も多い。
 ENaC(上皮性ナトリウムチャネル)は、細胞膜に存在する電位非依存性でアミロライド感受性のナトリウムチャネルであり、3種のサブユニット(αまたはδサブユニット、βサブユニット、およびγサブユニット)が結合して機能するイオンチャネルである。ENaCは、多くの上皮組織において、ナトリウムイオンの流入経路として知られている(非特許文献2、3)。
 ENaCは塩味との関係で特に研究されたタンパク質の一つであるが、それにも関わらず、依然としてヒトの塩味受容への関与が明確に示されていない。むしろ、げっ歯類の塩味受容への関与は認められつつも(非特許文献4)、ヒトの塩味受容への寄与には否定的な意見も見受けられる。実際、非特許文献5には、S3969[N-(2-ヒドロキシエチル)-4-メチル-2-(4-メチル-1H-インドール-3-イルチオ)ペンタンアミド]がβサブユニットに作用するENaCの刺激剤(活性化剤)であることが記載されているが、塩味についてはげっ歯類において刺激作用を有する可能性が示唆されているのみであり、実際にヒトにおける喫食時にどのような呈味作用を有するかは可能性を含めまったく記載がない。
 非特許文献6、特許文献4などには、特定のセロトニン誘導体が美白効果等を有することが記載されているが、これらのセロトニン誘導体が味覚に対してどのような作用を有するかは全く知られていない。
特開平4-262758号公報 特開2007-289145号公報 特開平5-184326号公報 特開平8-53332号公報
日本味と匂学会誌14巻3号 447-450頁 2007年 Palmer LG (1987). "Ion selectivity of epithelial Na channels". J Membr Biol 96: 97-106 Lazdunski M, Waldmann R, Champigny G, Bassilana F, Voilley N (1995). "Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel". J. Biol. Chem. 270 (46): 27411-27414 Chandrashekar, J. et al. The cells and peripheral representation of sodium taste in mice. Nature (2010), 464, 297-302 Lu, M., et al. Small Molecule Activator of the Human Epithelial Sodium Channel, Journal of Biological Chemistry (2008), 283(18), 11981-11994 Yamazaki Y., Kawano Y., Yamanaka A., and Maruyama S., Bioorganic & Medicinal Chemistry Letters 19 (2009) 4178-4182
 本発明の課題は、強力な塩味増強効果を有する新規化合物、および該化合物を含有する塩味増強剤等を提供することである。
 発明者らは、鋭意検討した結果、下記構造を有する化合物が強力な塩味増強効果を有することを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1]下記式:
Figure JPOXMLDOC01-appb-C000023
[式中、
Qは、
(1)下記式:
Figure JPOXMLDOC01-appb-C000024
(式中、R、R、R、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、カルボキシル基、1~3個のハロゲン原子で置換されていてもよい炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、カルバモイル基またはスルホ基を示し、あるいはRとRもしくはRとRは、一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく、またはRは下記のRと一緒になってカルボニル基を形成してもよく;*はXに結合する部位を示す。)
で表される基、
(2)1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数3~7のシクロアルキル基、または
(3)アミノ基および水酸基から選択される1~3個の置換基で置換されていてもよい炭素数1~6のアルキル基
を示し;
Xは、共有結合、-CH-、または-CHR-CH-(式中、Rは水素原子またはアミノ基を示す。)を示し;
Yは、-NR-CO-、-NH-CO-O-、または-CO-NH-(式中、Rは、水素原子または炭素数1~3のアルキル基を示し、あるいは、Rは上記のRと一緒になってカルボニル基を形成してもよく、またはRは下記のR11と一緒になって炭素数1~3のアルキレン基を形成してもよい。)を示し;
Zは、-CHR-、-CH-CR10-、-CR10-CH-、-CH-CH-CHR-、-CH=CR-、または-CR=CH-(式中、RおよびR10は、それぞれ独立して、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、(iv) 炭素数1~3のアルコキシ-カルボニル基、(v) アラルキルオキシカルボニル基、(vi) 炭素数1~4のアルコキシ-カルボニル基で置換されていてもよいアミノ基、または(vii) 水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基で置換されていてもよいカルバモイル基を示す。)を示し;
Arは、
(1)下記式:
Figure JPOXMLDOC01-appb-C000025
(式中、R11は水素原子を示すか、あるいはR11は上記のRと一緒になって炭素数1~3のアルキレン基を形成してもよく;R12、R13、R13a、R14およびR14aは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;*はZに結合する部位を示す。)
で表される基、または
(2)下記式:
Figure JPOXMLDOC01-appb-C000026
(式中、R15、R15a、R15b、R16およびR16aは、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、あるいはR15とR16は一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく;*はZに結合する部位を示す。)
で表される基を示す。]
で表される化合物またはその可食性の塩を含有する、飲食品の塩味増強剤;
[2]式(I)において、R13a、R14a、R15a、R15bおよびR16aが水素原子である、上記[1]記載の塩味増強剤;
[3]式(I)において、Qが
Figure JPOXMLDOC01-appb-C000027
(式中、Halはハロゲン原子を示し;*はXに結合する部位を示す。)
で表される基であり、Xが共有結合である、上記[1]または[2]記載の塩味増強剤;
[4]式(I)において、Qが
Figure JPOXMLDOC01-appb-C000028
(式中、R’’は、水素原子、メチル基または水酸基を示し;*はXに結合する部位を示す。)
で表される基であり、Xが共有結合である、上記[1]または[2]記載の塩味増強剤;
[5]下記式:
Figure JPOXMLDOC01-appb-C000029
[式中、
’’’は、水素原子、水酸基、メチル基、または、炭素数1~3のアルコキシ基を示し;
’は、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、または(iv) 炭素数1~3のアルコキシ-カルボニル基を示し;
15’およびR16’は、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;
nは1または2を示す(但し、nが2の場合、R’’’は水酸基ではない)。]
で表される化合物またはその可食性の塩を含有する、飲食品の塩味増強剤;
[6]式(V)において、nが2である、上記[5]記載の塩味増強剤;
[7]下記式:
Figure JPOXMLDOC01-appb-C000030
[式中、
Q’’は、
Figure JPOXMLDOC01-appb-C000031
(式中、R’’’は、水素原子、水酸基、メチル基、または炭素数1~3のアルコキシ基を示し;*はXに結合する部位を示す。)
で表される基を示し;
’は、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、または(iv) 炭素数1~3のアルコキシ-カルボニル基を示し;
12’、R13’およびR14’は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示す。]
で表される化合物またはその可食性の塩を含有する、飲食品の塩味増強剤;
[8]式(VI)において、Q’’が
Figure JPOXMLDOC01-appb-C000032
(式中、*はXに結合する部位を示す。)
で表される基であり、R’が水素原子である、上記[7]記載の塩味増強剤;
[9]式(I)において、R~Rのいずれかがスルホ基であり、Yが-CO-NH-である、上記[1]または[2]記載の塩味増強剤;
[10]2,6-ジヒドロキシ-N-(2-(5-ヒドロキシ-1H-インドール-3-イル)エチル)ベンズアミド、またはその可食性の塩を含有する、飲食品の塩味増強剤;
[11]上記[1]に記載の式(I)で表される化合物またはその可食性の塩と、飲食品とを混合する工程を含む、飲食品の塩味を調節する方法;
[12]上記[1]に記載の式(I)で表される化合物またはその可食性の塩と、飲食品とを混合する工程を含む、飲食品の製造方法;
[13]上記[1]に記載の式(I)で表される化合物またはその可食性の塩を含有する飲食品;
[14]上記[1]に記載の式(I)で表される化合物またはその可食性の塩と、塩化カリウムとを含有する飲食品;
[15]下記式:
[式中、
Q’は、
(1)下記式:
Figure JPOXMLDOC01-appb-C000034
[式中、R’、R’、R’、R’およびR’は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、カルボキシル基、1~3個のハロゲン原子で置換されていてもよい炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、カルバモイル基またはスルホ基を示し、あるいはR’とR’もしくはR’とR’は、一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく(但し、R’~R’のいずれかは水素原子でない);*はXに結合する部位を示す。]
で表される基、または
(2)1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数3~7のシクロアルキル基
を示し;
Xは、共有結合、-CH-、または-CHR-CH-(式中、Rは水素原子またはアミノ基を示す。)を示し;
Y’は、-NR’-CO-、-NH-CO-O-、または-CO-NH-(式中、R’は、水素原子または炭素数1~3のアルキル基を示し、あるいは、R’は下記のR11と一緒になって炭素数1~3のアルキレン基を形成してもよい。)を示し;
Zは、-CHR-、-CH-CR10-、-CR10-CH-、-CH-CH-CHR-、-CH=CR-、または-CR=CH-(式中、RおよびR10は、それぞれ独立して、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、(iv) 炭素数1~3のアルコキシ-カルボニル基、(v) アラルキルオキシカルボニル基、(vi) 炭素数1~4のアルコキシ-カルボニル基で置換されていてもよいアミノ基、または(vii) 水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基で置換されていてもよいカルバモイル基を示す。)を示し;
Ar’は、
(1)下記式:
Figure JPOXMLDOC01-appb-C000035
(式中、R11は水素原子を示すか、あるいはR11は上記のRと一緒になって炭素数1~3のアルキレン基を形成してもよく;R12、R13およびR14は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;*はZに結合する部位を示す。)
で表される基、または
(2)下記式:
Figure JPOXMLDOC01-appb-C000036
(式中、R15およびR16は、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、あるいはR15とR16は一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく;*はZに結合する部位を示す。)
で表される基を示す。]
で表される化合物[但し、
(1)Q’が、式(II’)で表される基であり、
Xが、-CH-CH-であり、
Y’が、-NH-CO-であり、
Zが、-CH-CH-であり、
Ar’が、式(III’)で表される基であり、
’、R’、R’、R’、R11、R12およびR14が水素原子であり、RおよびR13が水酸基である化合物、
(2)Q’が、式(II’)で表される基であり、
Xが、共有結合であり、
Y’が、-NH-CO-であり、
Zが、-CH-CHR-であり、
Ar’が、式(III’)で表される基であり、
(i) R’、R’、R’、R11、R12、R13およびR14が水素原子であり、Rが水酸基であり、Rが臭素原子であり、Rが水素原子またはカルボキシル基である化合物、
(ii) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’およびRがカルボキシル基である化合物、
(iii) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’およびRがカルボキシル基である化合物、
(iv) R’、R’、R’、R11、R12およびR14が水素原子であり、R’、R’およびR13が水酸基である化合物、
(v) R’、R’、R’、R11、R12およびR14が水素原子であり、R’、R’およびR13が水酸基である化合物、
(vi) R’、R’、R’、R11、R12およびR14が水素原子であり、R’、R’およびR13が水酸基である化合物、および
(vii) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’が水酸基であり、Rがカルボキシル基である化合物、
(3)Q’が、式(II’)で表される基であり、
Xが、-CH-または-CH-CH-であり、
Y’が、-NH-CO-または-CO-NH-であり、
Zが、-CH-、-CH-CH-または-CH=CH-であり、
Ar’が、式(IV’)で表される基であり、
’、R’およびR’が水素原子であり、
’、R’、R15およびR16が、それぞれ独立して、水素原子、水酸基、またはメトキシ基である化合物、
(4)Q’が、式(II’)で表される基であり、
Xが、共有結合であり、
Y’が、-NH-CO-であり、
Zが、-CH-CHR-であり、
Ar’が、式(IV’)で表される基であり、
’、R’、R’、R15およびR16が水素原子であり、R’が水酸基であり、R’が臭素原子であり、Rがカルボキシル基またはメトキシカルボニル基である化合物、および
(5)Q’が、2-イソプロピル-5-メチルシクロヘキシル基であり、
Xが、共有結合であり、
Y’が、-NH-CO-であり、
Zが、-CH-CH-であり、
Ar’が、式(III’)で表される基である化合物を除く。]またはその塩;
[16]下記式:
Figure JPOXMLDOC01-appb-C000037
[式中、
Q’は、
(1)下記式:
Figure JPOXMLDOC01-appb-C000038
(式中、R’、R’、R’、R’およびR’は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、カルボキシル基、1~3個のハロゲン原子で置換されていてもよい炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、カルバモイル基またはスルホ基を示し、あるいはR’とR’もしくはR’とR’は、一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく(但し、R’~R’のいずれかは水素原子でない);*はXに結合する部位を示す。)
で表される基、または
(2)1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数3~7のシクロアルキル基
を示し;
Xは、共有結合、-CH-、または-CHR-CH-(式中、Rは水素原子またはアミノ基を示す。)を示し;
Y’は、-NR’-CO-、-NH-CO-O-、または-CO-NH-(式中、R’は、水素原子または炭素数1~3のアルキル基を示し、あるいは、Rは下記のR11と一緒になって炭素数1~3のアルキレン基を形成してもよい。)を示し;
Zは、-CHR-、-CH-CR10-、-CR10-CH-、-CH-CH-CHR-、-CH=CR-、または-CR=CH-(式中、RおよびR10は、それぞれ独立して、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、(iv) 炭素数1~3のアルコキシ-カルボニル基、(v) アラルキルオキシカルボニル基、(vi) 炭素数1~4のアルコキシ-カルボニル基で置換されていてもよいアミノ基、または(vii) 水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基で置換されていてもよいカルバモイル基を示す。)を示し;
Ar’は、
(1)下記式:
Figure JPOXMLDOC01-appb-C000039
(式中、R11は水素原子を示すか、あるいはR11は上記のRと一緒になって炭素数1~3のアルキレン基を形成してもよく;R12、R13およびR14は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;*はZに結合する部位を示す。)
で表される基、または
(2)下記式:
Figure JPOXMLDOC01-appb-C000040
(式中、R15およびR16は、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、あるいはR15とR16は一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく;*はZに結合する部位を示す。)
で表される基を示す。]
で表される化合物[但し、
(1)Q’が、式(II’)で表される基であり、
Xが、共有結合、-CH-または-CH-CH-であり、
Y’が、-NH-CO-であり、
Zが、-CHR-、-CH-CHR-、-CHR-CH-、-CH=CR-、または-CR=CH-であり、
Ar’が、式(III’)で表される基であり、
’、R’、R’、R’およびR’が、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基であり、あるいはR’とR’もしくはR’とR’が、一緒になってメチレンジオキシ基を形成し、
が、水素原子、カルボキシル基または炭素数1~3のアルコキシ-カルボニル基であり、
11およびR12が水素原子であり、
13およびR14が、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基である化合物、
(2)Q’が、式(II’)で表される基であり、
Xが、共有結合であり、
Y’が、-NH-CO-であり、
Zが、-CH-CHR-であり、
Ar’が、式(III’)で表される基であり、
(i) R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’が水酸基であり、R’が臭素原子であり、Rが水素原子またはカルボキシル基である化合物、
(ii) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’およびRがカルボキシル基である化合物、
(iii) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’およびRがカルボキシル基である化合物、および
(iv) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’が水酸基であり、Rがカルボキシル基である化合物
(3)Q’が、式(II’)で表される基であり、
Xが、-CH-または-CH-CH-であり、
Y’が、-CO-NH-であり、
Zが、-CH-、-CH-CH-または-CH=CH-であり、
Ar’が、式(IV’)で表される基であり、
’、R’およびR’が水素原子であり、
’、R’、R15およびR16が、それぞれ独立して、水素原子、水酸基、またはメトキシ基である化合物、
(4)Q’が、式(II’)で表される基であり、
Xが、共有結合、-CH-または-CH-CH-であり、
Y’が、-NH-CO-であり、
Zが、-CHR-、-CH-CHR-、-CHR-CH-、-CH=CR-、または-CR=CH-であり、
Ar’が、式(IV’)で表される基であり、
’、R’、R’、R’およびR’が、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基であり、あるいはRとRもしくはRとRが、一緒になってメチレンジオキシ基を形成し、
が、水素原子、カルボキシル基または炭素数1~3のアルコキシ-カルボニル基であり、
15およびR16が、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基であり、あるいは、R15とR16が一緒になってメチレンジオキシ基を形成する化合物、
(5)Q’が、式(II’)で表される基であり、
Xが、共有結合であり、
Y’が、-NH-CO-であり、
Zが、-CH-CHR-であり、
Ar’が、式(IV’)で表される基であり、
’、R’、R’、R15およびR16が水素原子であり、R’が水酸基であり、R’が臭素原子であり、Rがカルボキシル基またはメトキシカルボニル基である化合物、および
(6)Q’が、2-イソプロピル-5-メチルシクロヘキシル基であり、
Xが、共有結合であり、
Y’が、-NH-CO-であり、
Zが、-CH-CH-であり、
Ar’が、式(III’)で表される基である化合物を除く。]またはその塩;
[17]下記式:
Figure JPOXMLDOC01-appb-C000041
[式中、
’’’は、水素原子、水酸基、メチル基、または、炭素数1~3のアルコキシ基を示し;
’は、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、または(iv) 炭素数1~3のアルコキシ-カルボニル基を示し;
15’およびR16’は、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;
nは1または2を示す(但し、nが2の場合、R’’’は水酸基ではない)。]
で表される、上記[15]または[16]記載の化合物またはその塩;
[18]式(V)において、nが2である、上記[17]記載の化合物またはその塩;
[19]下記式:
Figure JPOXMLDOC01-appb-C000042
[式中、
Q’’は、
Figure JPOXMLDOC01-appb-C000043
(式中、R’’’は、水素原子、水酸基、メチル基、または炭素数1~3のアルコキシ基を示し;*はXに結合する部位を示す。)
で表される基を示し;
’は、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、または(iv) 炭素数1~3のアルコキシ-カルボニル基を示し;
12’、R13’およびR14’は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示す。]
で表される、上記[15]または[16]記載の化合物またはその塩;
[20]式(VI)において、Q’’が
Figure JPOXMLDOC01-appb-C000044
(式中、*はXに結合する部位を示す。)
で表される基であり、R’が水素原子である、上記[19]記載の化合物またはその塩;
[21]式(I’)において、R’~R’のいずれかがスルホ基であり、Y’が-CO-NH-である、上記[15]または[16]記載の化合物またはその塩。
 本発明の化合物は、強力な塩味増強効果を発揮することが期待され、飲食品の塩味増強剤等として利用することができる。
図1は、実施例32の化合物でENaC発現卵母細胞を刺激した際の活性化電流値を示す。 図2は、官能評価試験における実施例35の化合物の塩味増強率を示す。 図3は、実施例35の化合物でENaC発現卵母細胞を刺激した際の活性化電流値を示す。 図4は、官能評価試験における実施例35の化合物の塩化カリウムとの併用における塩味増強率を示す。
 本明細書において使用する用語を以下に定義する。
 「ハロゲン原子」としては、塩素原子、臭素原子、フッ素原子およびヨウ素原子が挙げられる。
 「炭素数1~3のアルキル基」としては、メチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。
 「炭素数1~6のアルキル基」としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、2-メチルブチル基、ヘキシル基、イソヘキシル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基等が挙げられる。
 「炭素数1~3のアルコキシ基」としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基等が挙げられる。
 「炭素数3~7のシクロアルキル基」としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。
 「炭素数1~3のアルコキシ-カルボニル基」としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基等が挙げられる。
 「炭素数1~4のアルコキシ-カルボニル基」としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基等が挙げられる。
 「アラルキルオキシカルボニル基」としては、ベンジルオキシカルボニル基、フェネチルオキシカルボニル基、ナフチルメチルオキシカルボニル基(1-ナフチルメチルオキシカルボニル基、2-ナフチルメチルオキシカルボニル基)、ビフェニリルメチルオキシカルボニル基等が挙げられる。
 「炭素数1~3のアルキレン基」としては、メチレン基、エチレン基、プロピレン基、-CH(CH)-、-CH(CH)-CH-、-CH-CH(CH)-、-C(CH-、-CH(C)-等が挙げられる。
 「炭素数1~3のアルキレンジオキシ基」としては、メチレンジオキシ基、エチレンジオキシ基、プロピレンジオキシ基、-O-CH(CH)-O-、-O-CH(CH)-CH-O-、-O-CH-CH(CH)-O-、-O-C(CH-O-、-O-CH(C)-O-等が挙げられる。
 上記式(I)における各置換基について、以下に説明する。
 Qは、
(1)下記式:
Figure JPOXMLDOC01-appb-C000045
(式中、R、R、R、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、カルボキシル基、1~3個のハロゲン原子で置換されていてもよい炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、カルバモイル基またはスルホ基を示し、あるいはRとRもしくはRとRは、一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく、またはRはRと一緒になってカルボニル基を形成してもよい。)
で表される基、
(2)1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数3~7のシクロアルキル基、または
(3)アミノ基および水酸基から選択される1~3個の置換基で置換されていてもよい炭素数1~6のアルキル基
を示す。
 R、R、R、RまたはRで示される「1~3個のハロゲン原子で置換されていてもよい炭素数1~3のアルキル基」の「炭素数1~3のアルキル基」としては、好ましくはメチル基である。
 R、R、R、RまたはRで示される「1~3個のハロゲン原子で置換されていてもよい炭素数1~3のアルキル基」としては、好ましくは1~3個のフッ素原子で置換されていてもよい炭素数1~3のアルキル基(好ましくは、メチル基)であり、より好ましくはトリフルオロメチル基である。
 R、R、R、RまたはRで示される「炭素数1~3のアルコキシ基」としては、メトキシ基が好ましい。
 RとRもしくはRとRにより形成される「炭素数1~3のアルキレンジオキシ基」としては、メチレンジオキシ基が好ましい。
 Qで示される「1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数3~7のシクロアルキル基」の「炭素数3~7のシクロアルキル基」としては、シクロヘキシル基が好ましい。
 該「炭素数3~7のシクロアルキル基」は、炭素数1~3のアルキル基(好ましくは、メチル基、イソプロピル基)から選択される1~3個の置換基で置換されていてもよい。
 Qで示される「1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数3~7のシクロアルキル基」としては、好ましくは1~3個の炭素数1~3のアルキル基(好ましくは、メチル基、イソプロピル基)で置換されていてもよいシクロヘキシル基であり、より好ましくは1または2個の炭素数1~3のアルキル基(好ましくは、メチル基、イソプロピル基)で置換されていてもよいシクロヘキシル基であり、特に好ましくは2-イソプロピル-5-メチルシクロヘキシル基である。
 Qで示される「アミノ基および水酸基から選択される1~3個の置換基で置換されていてもよい炭素数1~6のアルキル基」の「炭素数1~6のアルキル基」としては、エチル基、tert-ブチル基、イソペンチル基、ネオペンチル基が好ましい。
 Qで示される「アミノ基および水酸基から選択される1~3個の置換基で置換されていてもよい炭素数1~6のアルキル基」としては、好ましくはアミノ基および水酸基から選択される1または2個(好ましくは1個)の置換基で置換されていてもよい炭素数1~6のアルキル基(好ましくは、エチル基、tert-ブチル基、イソペンチル基、ネオペンチル基)であり、より好ましくはtert-ブチル基、ネオペンチル基、2-ヒドロキシエチル基、1-アミノ-3-メチルブチル基である。
 Qは、好ましくは、
Figure JPOXMLDOC01-appb-C000046
(式中、Halはハロゲン原子を示し;*はXに結合する部位を示す。)
で表される基である。
 別の態様において、Qは、好ましくは、
Figure JPOXMLDOC01-appb-C000047
(式中、R’’は、水素原子、メチル基または水酸基を示し;*はXに結合する部位を示す。)
で表される基である。
 また別の態様において、Qは、好ましくは、
(1)下記式:
Figure JPOXMLDOC01-appb-C000048
[式中、R’、R’、R’、R’およびR’は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、カルボキシル基、1~3個のハロゲン原子で置換されていてもよい炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、カルバモイル基またはスルホ基を示し、あるいはR’とR’もしくはR’とR’は、一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく(但し、R’~R’のいずれかは水素原子でない);*はXに結合する部位を示す。]
で表される基、または
(2)1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数3~7のシクロアルキル基であり、
より好ましくは、R’~R’のいずれかがスルホ基である。
 さらに別の態様において、Qは、好ましくは、
Figure JPOXMLDOC01-appb-C000049
(式中、R’’’は、水素原子、水酸基、メチル基、または炭素数1~3のアルコキシ基を示し;*はXに結合する部位を示す。)
であり、
より好ましくは、
Figure JPOXMLDOC01-appb-C000050
(式中、*はXに結合する部位を示す。)
で表される基である。
 Xは、共有結合、-CH-、または-CHR-CH-(式中、Rは水素原子またはアミノ基を示す。)を示す。
 Xは、好ましくは、共有結合である。
 Yは、-NR-CO-、-NH-CO-O-、または-CO-NH-(式中、Rは、水素原子または炭素数1~3のアルキル基を示し、あるいは、RはRと一緒になってカルボニル基を形成してもよく、またはRはR11と一緒になって炭素数1~3のアルキレン基を形成してもよい。)を示す。
 Yは、好ましくは-NR’-CO-、-NH-CO-O-、または-CO-NH-(式中、R’は、水素原子または炭素数1~3のアルキル基を示し、あるいは、Rは下記のR11と一緒になって炭素数1~3のアルキレン基を形成してもよい。)であり、より好ましくは-NH-CO-または-CO-NH-であり、さらに好ましくは-NH-CO-である。
 別の態様において、Yは、好ましくは-CO-NH-である。
 Rで示される「炭素数1~3のアルキル基」としては、メチル基が好ましい。
 RとR11により形成される「炭素数1~3のアルキレン基」としては、メチレン基が好ましい。
 Zは、-CHR-、-CH-CR10-、-CR10-CH-、-CH-CH-CHR-、-CH=CR-、または-CR=CH-(式中、RおよびR10は、それぞれ独立して、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、(iv) 炭素数1~3のアルコキシ-カルボニル基、(v) アラルキルオキシカルボニル基、(vi) 炭素数1~4のアルコキシ-カルボニル基で置換されていてもよいアミノ基、または(vii) 水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基で置換されていてもよいカルバモイル基を示す。)を示す。
 RまたはR10で示される「水酸基で置換されていてもよい炭素数1~3のアルキル基」の「炭素数1~3のアルキル基」としては、メチル基が好ましい。
 RまたはR10で示される「炭素数1~3のアルコキシ-カルボニル基」としては、メトキシカルボニル基、エトキシカルボニル基が好ましい。
 RまたはR10で示される「アラルキルオキシカルボニル基」としは、ベンジルオキシカルボニル基が好ましい。
 RまたはR10で示される「炭素数1~4のアルコキシ-カルボニル基で置換されていてもよいアミノ基」の「炭素数1~4のアルコキシ-カルボニル基」としては、tert-ブトキシカルボニル基が好ましい。
 RまたはR10で示される「水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基で置換されていてもよいカルバモイル基」の「炭素数1~3のアルキル基」としては、エチル基が好ましい。
 Zは、好ましくは-CHR-、-CH-CR10-、-CH-CH-CHR-、-CH=CR-であり、より好ましくは-CHR-、-CH-CR10-、-CH-CH-CHR-、-CH=CH-[式中、RおよびR10は、それぞれ独立して、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基(好ましくは、メチル基)、(iii) カルボキシル基、(iv) 炭素数1~3のアルコキシ-カルボニル基(好ましくは、メトキシカルボニル基、エトキシカルボニル基)、(v) アラルキルオキシカルボニル基(好ましくは、ベンジルオキシカルボニル基)、(vi) 炭素数1~4のアルコキシ-カルボニル基(好ましくは、tert-ブトキシカルボニル基)で置換されていてもよいアミノ基、または(vii) 水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基(好ましくは、エチル基)で置換されていてもよいカルバモイル基である。]である。
 別の態様において、Zは好ましくは-CH-CHR’-、または-CH-CH-CHR’-(式中、R’は、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、または(iv) 炭素数1~3のアルコキシ-カルボニル基を示す。)であり、より好ましくは-CH-CHR’-(式中、R’は、上記と同意義を示す。)であり、さらに好ましくは-CH-CH-である。
 Arは、
(1)下記式:
Figure JPOXMLDOC01-appb-C000051
(式中、R11は水素原子を示すか、あるいはR11はRと一緒になって炭素数1~3のアルキレン基を形成してもよく;R12、R13、R13a、R14およびR14aは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;*はZに結合する部位を示す。)
で表される基、または
(2)下記式:
Figure JPOXMLDOC01-appb-C000052
(式中、R15、R15a、R15b、R16およびR16aは、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、あるいはR15とR16は一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく;*はZに結合する部位を示す。)
で表される基を示す。
 R11とRにより形成される「炭素数1~3のアルキレン基」としては、メチレン基が好ましい。
 R12、R13、R13a、R14またはR14aで示される「炭素数1~3のアルキル基」としては、メチル基が好ましい。
 R15、R15a、R15b、R16またはR16aで示される「炭素数1~3のアルコキシ基」としては、メトキシ基が好ましい。
 R15とR16により形成される「炭素数1~3のアルキレンジオキシ基」としては、メチレンジオキシ基が好ましい。
 R13a、R14a、R15a、R15bおよびR16aは、好ましくは、水素原子である。
 Arとしては、
(1)下記式:
Figure JPOXMLDOC01-appb-C000053
(式中、各記号は上記と同意義を示す。)
で表される基、または
(2)下記式;
Figure JPOXMLDOC01-appb-C000054
(式中、各記号は上記と同意義を示す。)
で表される基が好ましい。
 Arは、好ましくは、
(1)式(III’)[式中、R11は水素原子であるか、あるいはR11はRと一緒になって炭素数1~3のアルキレン基(好ましくは、メチレン基)を形成してもよく;R12、R13およびR14は、それぞれ独立して、水素原子、ハロゲン原子(好ましくは、フッ素原子)、水酸基、または炭素数1~3のアルキル基(好ましくは、メチル基)である。]で表される基、または
(2)式(IV’)[式中、R15およびR16は、それぞれ独立して、水素原子、水酸基、または炭素数1~3のアルコキシ基(好ましくは、メトキシ基)であり、あるいはR15とR16は一緒になって炭素数1~3のアルキレンジオキシ基(好ましくは、メチレンジオキシ基)を形成してもよい。]で表される基である。
 別の態様において、Arは、好ましくは、
下記式:
Figure JPOXMLDOC01-appb-C000055
(式中、各記号は上記と同意義を示す。)
で表される基である。
 式(I)で表される化合物としては、
 Qが、
(1)上記式(II)[式中、R、R、R、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子(好ましくは、塩素原子、臭素原子)、水酸基、カルボキシル基、1~3個のハロゲン原子(好ましくは、フッ素原子)で置換されていてもよい炭素数1~3のアルキル基(好ましくは、メチル基)、炭素数1~3のアルコキシ基(好ましくは、メトキシ基、エトキシ基)、カルバモイル基またはスルホ基であり、あるいはRとRもしくはRとRは、一緒になって炭素数1~3のアルキレンジオキシ基(好ましくは、メチレンジオキシ基)を形成してもよく、またはRはRと一緒になってカルボニル基を形成してもよい。)で表される基、
(2)1~3個(好ましくは、1または2個)の炭素数1~3のアルキル基(好ましくは、メチル基、イソプロピル基)で置換されていてもよい炭素数3~7のシクロアルキル基(好ましくは、シクロヘキシル基)(特に好ましくは、2-イソプロピル-5-メチルシクロヘキシル基)、または
(3)アミノ基および水酸基から選択される1~3個(好ましくは1または2個、より好ましくは1個)の置換基で置換されていてもよい炭素数1~6のアルキル基(好ましくは、エチル基、tert-ブチル基、イソペンチル基、ネオペンチル基)(特に好ましくは、tert-ブチル基、ネオペンチル基、2-ヒドロキシエチル基、1-アミノ-3-メチルブチル基)
であり;
 Xが、共有結合、-CH-、または-CHR-CH-(式中、Rは水素原子またはアミノ基である。)であり;
 Yが、-NR-CO-、-NH-CO-O-、または-CO-NH-(式中、Rは、水素原子または炭素数1~3のアルキル基(好ましくは、メチル基)であり、あるいは、RはRと一緒になってカルボニル基を形成してもよく、またはRはR11と一緒になって炭素数1~3のアルキレン基(好ましくは、メチレン基)を形成してもよい。)であり;
 Zが、-CHR-、-CH-CR10-、-CH-CH-CHR-、または-CH=CR-(好ましくは、-CHR-、-CH-CR10-、-CH-CH-CHR-、または-CH=CH-)(式中、RおよびR10は、それぞれ独立して、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基(好ましくは、メチル基)、(iii) カルボキシル基、(iv) 炭素数1~3のアルコキシ-カルボニル基(好ましくは、メトキシカルボニル基、エトキシカルボニル基)、(v) アラルキルオキシカルボニル基(好ましくは、ベンジルオキシカルボニル基)、(vi) 炭素数1~4のアルコキシ-カルボニル基(好ましくは、tert-ブトキシカルボニル基)で置換されていてもよいアミノ基、または(vii) 水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基(好ましくは、エチル基)で置換されていてもよいカルバモイル基である。)であり;
 Arが、
(1)式(III’)[式中、R11は水素原子であるか、あるいはR11はRと一緒になって炭素数1~3のアルキレン基(好ましくは、メチレン基)を形成してもよく;R12、R13およびR14は、それぞれ独立して、水素原子、ハロゲン原子(好ましくは、フッ素原子)、水酸基、または炭素数1~3のアルキル基(好ましくは、メチル基)である。]で表される基、または
(2)式(IV’)[式中、R15およびR16は、それぞれ独立して、水素原子、水酸基、または炭素数1~3のアルコキシ基(好ましくは、メトキシ基)であり、あるいはR15とR16は一緒になって炭素数1~3のアルキレンジオキシ基(好ましくは、メチレンジオキシ基)を形成してもよい。]で表される基
である化合物が好ましい。
 別の態様において、式(I)で表される化合物としては、R13a、R14a、R15a、R15bおよびR16aが水素原子である化合物が好ましい。
 別の態様において、式(I)で表される化合物としては、Qが
Figure JPOXMLDOC01-appb-C000056
(式中、Halはハロゲン原子を示し;*はXに結合する部位を示す。)
で表される基であり、Xが共有結合である化合物が好ましい。
 また別の態様において、式(I)で表される化合物としては、Qが
Figure JPOXMLDOC01-appb-C000057
(式中、R’’は、水素原子、メチル基または水酸基を示し;*はXに結合する部位を示す。)
で表される基であり、Xが共有結合である化合物が好ましい。
 さらに別の態様において、式(I)で表される化合物としては、式(V)で表される化合物が好ましく、中でも、nが2である化合物が好ましい。
 またさらに別の態様において、式(I)で表される化合物としては、式(VI)で表される化合物が好ましく、中でも、Q’’が
Figure JPOXMLDOC01-appb-C000058
(式中、*はXに結合する部位を示す。)
で表される基であり、R’が水素原子である化合物が好ましい。
 また別の態様において、式(I)で表される化合物としては、R~Rのいずれかがスルホ基であり、Yが-CO-NH-である化合物が好ましい。
 式(I)で表される化合物としては、特に下記の実施例で挙げた化合物が好ましく、中でも2,6-ジヒドロキシ-N-(2-(5-ヒドロキシ-1H-インドール-3-イル)エチル)ベンズアミドが好ましい。
 化合物(I)のうち、上記式(I’)で表される化合物は新規化合物である。
 式(I’)で表される化合物としては、
 Q’が、
(1)上記式(II’)[式中、R’、R’、R’、R’およびR’は、それぞれ独立して、水素原子、ハロゲン原子(好ましくは、塩素原子、臭素原子)、水酸基、カルボキシル基、1~3個のハロゲン原子(好ましくは、フッ素原子)で置換されていてもよい炭素数1~3のアルキル基(好ましくは、メチル基)、炭素数1~3のアルコキシ基(好ましくは、メトキシ基、エトキシ基)、カルバモイル基またはスルホ基であり、あるいはR’とR’もしくはR’とR’は、一緒になって炭素数1~3のアルキレンジオキシ基(好ましくは、メチレンジオキシ基)を形成してもよい。)で表される基、または
(2)1~3個(好ましくは、1または2個)の炭素数1~3のアルキル基(好ましくは、メチル基、イソプロピル基)で置換されていてもよい炭素数3~7のシクロアルキル基(好ましくは、シクロヘキシル基)(特に好ましくは、2-イソプロピル-5-メチルシクロヘキシル基)
であり;
 Xが、共有結合、-CH-、または-CHR-CH-(式中、Rは水素原子またはアミノ基である。)であり;
 Y’が、-NR’-CO-、-NH-CO-O-、または-CO-NH-(式中、R’は、水素原子または炭素数1~3のアルキル基(好ましくは、メチル基)であり、あるいは、R’はR11と一緒になって炭素数1~3のアルキレン基(好ましくは、メチレン基)を形成してもよい。)であり;
 Zが、-CHR-、-CH-CR10-、-CH-CH-CHR-、または-CH=CR-(好ましくは、-CHR-、-CH-CR10-、-CH-CH-CHR-、または-CH=CH-)(式中、RおよびR10は、それぞれ独立して、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基(好ましくは、メチル基)、(iii) カルボキシル基、(iv) 炭素数1~3のアルコキシ-カルボニル基(好ましくは、メトキシカルボニル基、エトキシカルボニル基)、(v) アラルキルオキシカルボニル基(好ましくは、ベンジルオキシカルボニル基)、(vi) 炭素数1~4のアルコキシ-カルボニル基(好ましくは、tert-ブトキシカルボニル基)で置換されていてもよいアミノ基、または(vii) 水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基(好ましくは、エチル基)で置換されていてもよいカルバモイル基である。)であり;
 Ar’が、
(1)式(III’)[式中、R11は水素原子であるか、あるいはR11はR’と一緒になって炭素数1~3のアルキレン基(好ましくは、メチレン基)を形成してもよく;R12、R13およびR14は、それぞれ独立して、水素原子、ハロゲン原子(好ましくは、フッ素原子)、水酸基、または炭素数1~3のアルキル基(好ましくは、メチル基)である。]で表される基、または
(2)式(IV’)[式中、R15およびR16は、それぞれ独立して、水素原子、水酸基、または炭素数1~3のアルコキシ基(好ましくは、メトキシ基)であり、あるいはR15とR16は一緒になって炭素数1~3のアルキレンジオキシ基(好ましくは、メチレンジオキシ基)を形成してもよい。]で表される基
である化合物が好ましい。
 化合物(I)または(I’)で表される化合物の塩としては、例えば、無機酸との塩、有機酸との塩、無機塩基との塩、有機塩基との塩、酸性または塩基性アミノ酸との塩等が挙げられる。
 無機酸との塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩等が挙げられる。
 有機酸との塩としては、例えば、ギ酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、クエン酸塩、フマル酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等が挙げられる。
 無機塩基との塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩等が挙げられる。
 有機塩基との塩としては、例えば、メチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、トリス(ヒドロキシメチル)メチルアミン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミン、グアニジン、ピリジン、ピコリン、コリン、シンコニン、メグルミン等との塩が挙げられる。
 酸性または塩基性アミノ酸との塩としては、例えば、アスパラギン酸、グルタミン酸、アルギニン、リジン、オルニチンとの塩が挙げられる。
 上記の塩としては、可食性の塩が好ましい。
 化合物(I)(化合物(I’)を含む)またはその塩(以下、本発明の化合物と略記する場合がある)が、光学異性体、立体異性体、位置異性体、回転異性体等の異性体を有する場合には、いずれか一方の異性体も混合物も本発明の化合物に包含される。例えば、本発明の化合物に光学異性体が存在する場合には、ラセミ体から分割された光学異性体も本発明の化合物に包含される。これらの異性体は、自体公知の合成手法、分離手法(例、濃縮、溶媒抽出、カラムクロマトグラフィー、再結晶等)、光学分割手法(例、分別再結晶法、キラルカラム法、ジアステレオマー法等)等によりそれぞれを単品として得ることができる。
 本発明の1つの態様として、本発明の化合物を各種飲食品に配合することができる。かかる飲食品は特に限定されないが、例えば、味噌、醤油、たれ、出汁、ドレッシング、マヨネーズ、トマトケチャップ等の調味料、味噌汁、お吸い物、コンソメスープ、卵スープ、ワカメスープ、ポタージュ等のスープ類、そば、うどん、ラーメン、パスタ等のつゆ、ソース類、おかゆ、雑炊、お茶漬け等の米飯調理食品、ハム、ソーセージ、チーズ等の畜産加工品、ポテトチップス、煎餅、クッキー等の菓子スナック類、煮物、揚げ物、焼き物、カレー等の調理食品、更には飲料等が挙げられる。
 本発明の化合物を飲食品に配合する場合の量は、その効果が発揮されさえすれば特に制限はないが、飲食品は多くの物質との混合物であるため、塩味増強効果が得られる本発明の配合量は、単純な食塩水などを用いて塩味増強効果が得られる配合量とは異なる場合もある。したがって、本発明の化合物を飲食品に配合する場合の量は、それぞれの飲食品について最適な配合量を適宜検討することによって決定すればよいが、例えば、0.000001~0.1重量%が好ましい。
 本発明の化合物は、既知の塩味代替物と組合せて用いてもよい。このような塩味代替物としては、塩化カリウム、有機酸、アルギニン、アルギニン塩、塩化アンモニウム等が挙げられる。これらは単独で使用しても、2種以上を混合して使用してもよい。
 本発明の化合物を飲食品に配合する場合、かかる飲食品は、塩味増強作用を妨げない範囲内で、適当な添加物を配合し、製造することができる。例えば、かかる飲食品には、本発明の化合物に加え、タンパク質(乳タンパク質、大豆タンパク質等)、無機塩、酸、アミノ酸類、核酸系呈味成分、糖類、脂肪、天然調味料、香辛料、賦形剤、色素成分等の通常の飲食品の製造に使用可能な各種添加物を含有していてもよい。
 無機塩としては、塩化カリウム、塩化アンモニウム、硫酸マグネシウム等が挙げられる。
 酸としては、アスコルビン酸、フマル酸、リンゴ酸、酒石酸、クエン酸、乳酸、コハク酸等のカルボン酸及びそれらの塩等が挙げられる。
 アミノ酸類としては、グルタミン酸ナトリウム、グルタミン酸カリウム、グルタミン酸カルシウム、グルタミン酸アンモニウム、グルタミン酸マグネシウム等のグルタミン酸塩やグルタミン酸などが挙げられる。これらは食品の風味増強剤としてすでに使用されており、いずれもグルタミン酸に由来する旨味やそれぞれのカチオンに特徴的な呈味特性(例えば、アンモニウム塩における酸味等)を有する。また、アミノ酸類としてリジン、アルギニン、ヒスチジン等の塩基性アミノ酸やそれらの塩も使用することができる。
 核酸系呈味成分としては、イノシン酸ナトリウム、グアニル酸ナトリウム等が挙げられる。
 糖類としては、ショ糖、ブドウ糖、乳糖等が挙げられる。
 本発明の化合物は、中でも、塩味増強効果の知られている、有機酸、アルギニン、アルギニン塩、塩化アンモニウム、塩化カリウムから選択される1又は2種以上の添加物を含有することが好ましい。
 式(I)で表される化合物またはその塩の製造方法は、特に限定されるものではなく、既知の方法を組み合わせることにより製造することができる。具体的には、下記方法により合成することができるが、これらに限定されるものではない。
 Yが-NR-CO-(式中、Rは上記と同意義を示す。)である式(I)で表される化合物またはその塩(以下、化合物(I-1)と称する。)は、以下の製法1または2により製造することができる。
製法1
Figure JPOXMLDOC01-appb-C000059
(式中、各記号は上記と同意義を示す。)
 化合物(I-1)は、アミン成分(VII)とカルボン酸成分(VIII)とを脱水縮合剤を用いる縮合反応に付すことによって製造することができる。
 アミン成分(VII)は塩酸塩、p-トルエンスルホン酸塩などの塩でもよく、カルボン酸成分(VIII)はジシクロヘキシルアミン塩などの塩でもよい。アミン成分(VII)が塩の場合、縮合反応の際にトリエチルアミンなどの塩基を添加して反応を行えばよい。使用するアミン成分(VII)とカルボン酸成分(VIII)との比率に制限はないが、収率良く反応させるためには、アミン成分(VII)1当量に対してカルボン酸成分(VIII)を0.8~1.2当量用いればよい。塩基の使用量はアミン成分(VII)に対して0.8~2.0当量、好ましくは1.0~1.5当量である。
 使用する溶媒としては、アミン成分(VII)やカルボン酸成分(VIII)と反応するものでなければ特に限定はなく、例えばジクロロメタン(DCM)、N,N-ジメチルホルムアミド(DMF)、クロロホルム、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、またはこれらの混合溶媒を用いることができる。中でもジクロロメタン、N,N-ジメチルホルムアミドが好ましい。溶媒量はアミン成分(VII)に対して10~500倍重量、好ましくは15~100倍重量である。
 脱水縮合剤としては、ペプチド合成などで使用される一般的な縮合剤を用いればよく、例えば、N,N’-ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド 塩酸塩(EDCI・HCl)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロホスフェート(HBTU)などが用いられる。その際、1-ヒドロキシベンゾトリアゾール(HOBt)などの縮合促進剤が用いられる。脱水縮合剤の使用量はアミン成分(VII)に対して1.0~2.0当量、好ましくは1.05~1.20当量である。縮合促進剤の使用量はアミン成分(VII)に対して0.5~3.0当量、好ましくは1.0~1.5当量である。
 反応時間は約3~24時間が好ましく、これは反応温度に依存し、その範囲は5~35℃が好ましい。
製法2
Figure JPOXMLDOC01-appb-C000060
(式中、各記号は上記と同意義を示す。)
 化合物(I-1)は、カルボン酸成分(VIII)を一旦酸塩化物(IX)に変換した後に、これとアミン成分(VII)とを塩基の存在下に縮合反応に付すことによって製造することができる。
工程1
 酸塩化物(IX)は、カルボン酸成分(VIII)を常法により、塩化オキサリル、塩化チオニル等と反応させることにより得ることができる。塩化オキサリル、塩化チオニル等の使用量は、カルボン酸成分(VIII)に対して0.8~10.0当量、好ましくは1.0~2.0当量である。反応温度は、通常10.0~50.0℃、好ましくは0~35.0℃であり、反応時間は、通常1.0~20.0時間、好ましくは3.0~16.0時間である。
工程2
 酸塩化物(IX)をアミン成分(VII)と反応させるには、トリエチルアミン、水酸化ナトリウムなどの塩基の存在下に反応させればよい。アミン成分(VII)と酸塩化物(XI)との比率に制限はないが、収率良く反応させるためには、アミン成分(VII)に対して酸塩化物(IX)を0.8~1.2当量用いればよい。塩基の使用量はアミン成分(VII)に対して0.8~3.0当量、好ましくは1.0~1.5当量である。使用する溶媒としては、前記製法1で使用する溶媒として挙げた溶媒を用いることができる。
 反応時間は約3~24時間が好ましく、これは反応温度に依存し、その範囲は5~35℃が好ましい。
 Yが-CO-NH-である式(I)で表される化合物またはその塩(以下、化合物(I-2)と称する。)は、以下の製法3または4により製造することができる。
製法3
Figure JPOXMLDOC01-appb-C000061
(式中、各記号は上記と同意義を示す。)
 化合物(I-2)は、アミン成分(XI)とカルボン酸成分(X)とを製法1と同様の反応に付すことによって製造することができる。
製法4
Figure JPOXMLDOC01-appb-C000062
 化合物(I-2)は、アミン成分(XI)とカルボン酸成分(X)とを製法2と同様の反応に付すことによって製造することができる。
 Yが-NH-CO-O-である式(I)で表される化合物またはその塩(以下、化合物(I-3)と称する。)は、以下の製法5により製造することができる。
製法5
Figure JPOXMLDOC01-appb-C000063
 化合物(I-3)は、アミン成分(XII)とクロロフォルメート(XIII)(例、ベンジルクロロフォルメート等)またはジカーボネート(XIV)(例、ジアルキルジカーボネート)とを塩基の存在下に通常の条件で反応させることによって得られる。塩基としては、トリエチルアミン、ジイソプロピルアミン、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム等が挙げられる。
 使用するアミン成分(XII)とクロロフォルメート(XIII)またはジカーボネート(XIV)との比率に制限はないが、収率良く反応させるためには、アミン成分(XII)1当量に対してクロロフォルメート(XIII)またはジカーボネート(XIV)を0.9~2.0当量用いればよい。塩基の使用量はアミン成分(XII)に対して1.5~3.0当量、好ましくは2.0~2.5当量である。
 使用する溶媒としては、アミン成分(XII)やクロロフォルメート(XIII)またはジカーボネート(XIV)と急速に反応するものでなければ特に限定はなく、例えば1,4-ジオキサン、ジクロロメタン、THF、水等を用いることができる。
 反応時間は、通常1.0~25時間、好ましくは5.0~18時間であり、反応温度は、通常0~50℃、好ましくは15~35℃である。
 前記の各反応において、所望により、公知の脱保護反応、アシル化反応、アルキル化反応、水素添加反応、酸化反応、還元反応、炭素鎖延長反応または置換基交換反応を、単独あるいはその二つ以上を組み合わせて行うことにより、各置換基を変換することができる。
 前記の各反応において、原料化合物が置換基としてアミノ基、カルボキシル基、ヒドロキシ基またはカルボニル基を有する場合、これらの基にペプチド化学等で一般的に用いられるような保護基が導入されていてもよく、反応後に必要に応じて、保護基を除去することにより目的化合物を得ることができる。
 上記した保護基の除去方法は、公知の方法、例えば、プロテクティブ グループス イン オーガニック シンセシス (Protective Groups in Organic Synthesis)、John Wiley and Sons 刊 (1980)に記載の方法等に準じて行うことができる。
 得られる式(I)で表される化合物またはその塩は、常法により単離精製することができる。例えば、結晶化によって精製する場合は、溶媒として、酢酸エチル、エタノール、メタノール、ジエチルエーテル、クロロホルム、ジクロロメタン、n-ヘキサンあるいはこれらの混合溶媒を用いることができる。クロマトグラフによる精製法として、分取薄層クロマトグラフィー(PTLC)またはシリカゲルカラムクロマトグラフィーを用いることができる。その際の展開溶媒としては、先に結晶化の溶媒として挙げた溶媒を用いることができる。
 以下、実施例および試験例を挙げて、本発明の有用性を具体的に説明する。しかしながら、本発明はこれらにより何ら限定されるものではない。なお、以下の製造例において、合成された化合物の構造は核磁気共鳴スペクトル(Bruker AVANCE 400)によって同定した。
実施例1
 2,6-ジヒドロキシ安息香酸(0.7706g、5.0mmol)をN,N-ジメチルホルムアミド(15mL)に溶解し、1-ヒドロキシベンゾトリアゾール一水和物(HOBt・HO)(1.5314g、10.0mmol)および1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド 塩酸塩(EDCI・HCl)(1.9170g、10.0mmol)を加え、室温にて30分間撹拌した。その後、(L)-トリプトファンメチルエステル塩酸塩(1.5283g、6.0mmol)およびトリエチルアミン(1.66mL、12.0mmol)を加え、室温にて終夜撹拌した。反応終了後、溶媒を留去し、酢酸エチルを加え、希釈した。5%クエン酸水溶液で2回洗浄し、飽和食塩水で1回洗浄した後、10%飽和重曹水で2回洗浄し、最後に飽和食塩水で1回洗浄した。有機層を硫酸マグネシウムで乾燥し、ろ過した後、溶媒を留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、目的の化合物(0.6036g、1.70mmol)を白色固体として得た。
 以下の表1に示す実施例2、5、10、11、14~17、20、21および24~29の化合物も実施例1と同様にして合成した。なお、実施例20の化合物については、実施例21と同様に合成し、TLC(シリカゲル60 F254、メルク社製;展開溶媒、ヘキサン:酢酸エチル=2:1)によって同等の化合物が生成していることを確認した。
実施例3
 実施例1で得た(S)-メチル 2-(2,6-ジヒドロキシベンズアミド)-3-(1H-インドール-3-イル)プロパノエート(0.5508g、1.55mmol)をテトラヒドロフラン(8mL)に溶解し、1M水酸化リチウム水溶液(3.1mL)を加え、室温で2時間反応させた。反応終了後、1M塩酸を加えてpHを約2に調整し、酢酸エチルを加え、抽出した。得られた有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、ろ過し、溶媒を留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、目的の化合物を白色固体として得た。
 以下の表1に示す実施例4、9、12、13、18および19の化合物も実施例3と同様にして合成した。
実施例6
 サリチル酸(0.2762g、2.0mmol)、HOBt・HO(0.3982g、2.6mmol)、EDCI・HCl(0.4984g、2.6mmol)をN,N-ジメチルホルムアミド(6mL)に溶解し、セロトニン塩酸塩(0.5530g、2.6mmol)およびトリエチルアミン(0.720mL、5.2mmol)を加え、室温にて終夜撹拌した。反応終了後、溶媒を留去し、酢酸エチルを加え、希釈した。5%クエン酸水溶液で2回洗浄し、飽和食塩水で1回洗浄した後、10%飽和重曹水で2回洗浄し、最後に飽和食塩水で1回洗浄した。有機層を硫酸マグネシウムで乾燥し、ろ過した後、溶媒を留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、目的の化合物(0.4609g、1.56mmol)を得た。
 以下の表1に示す実施例7および8の化合物も実施例6と同様にして合成した。
実施例22
 実施例21で得たtert-ブチル (S)-1-(2,6-ジヒドロキフェニルカルバモイル)-2-(1H-インドール-3-イル)エチルカルバメート(0.520g、1.27mmol)に4M 塩酸-ジオキサン溶液(16mL)を加え、室温にて終夜反応させた。反応終了後、溶媒を留去し、1M水酸化ナトリウム水溶液にてpHを約11に調整し、酢酸エチルで抽出した。有機層を硫酸マグネシウムで乾燥し、ろ過した後、溶媒を留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、目的の化合物(0.0891g、0.29mmol)を得た。
 以下の表1に示す実施例23の化合物も実施例22と同様にして合成し、TLC(シリカゲル60 F254;展開溶媒、ジクロロメタン:メタノール=9:1)により同等の化合物が生成していることを確認した。
実施例35
 2,6-ジヒドロキシ安息香酸(0.312g、2mmol)およびセロトニン塩酸塩(0.430g、2mmol)をDMF(25ml)に溶解し、0℃にした後、トリエチルアミン(0.31ml、2.2mmol)、HOBt・HO(0.346g、2.2mmol)およびEDCI・HCl(0.439g、2.2mmol)を加えて常温で一晩撹拌した。翌日薄層クロマトグラフィー(TLC)で反応進行を確認した後、溶媒を濃縮し、酢酸エチルおよび水を加えて、酢酸エチル層を得た。5%クエン酸水溶液で2回、飽和食塩水で1回、5%炭酸水素ナトリウム水溶液で2回、飽和食塩水で1回の順に洗い、硫酸マグネシウムを加えて脱水した。硫酸マグネシウムを除去し、酢酸エチルを減圧濃縮し、アモルファスの化合物を得た。分取薄層クロマトグラフィー(PTLC)精製を行い、ヘキサンで再結晶して目的の化合物(0.093g、0.30mmol、14.9%)を得た。
 以下の表1に示す実施例32~34、36、37、42、44、46~48、62、64、67、69、84、85、87、88、90、92、93、95、96、98、104~107、109、111、112、114、116、118、120、122、124および125の化合物も実施例35と同様にして合成した。
実施例39
 2,3-ジヒドロキシ安息香酸(0.663g、2mmol)およびトリプトファンベンジルエステル塩酸塩(0.309g、2mmol)をDMF(40ml)に溶解し、0℃にした後、トリエチルアミン(0.31ml、2.2mmol)、HOBt・HO(0.341g、2.2mmol)およびEDCI・HCl(0.426g、2.2mmol)を加えて常温で一晩撹拌した。翌日TLCで反応進行を確認した後、溶媒を濃縮し、酢酸エチルおよび水を加えて、酢酸エチル層を得た。5%クエン酸水溶液で2回、飽和食塩水で1回、5%炭酸水素ナトリウム水溶液で2回、飽和食塩水で1回の順に洗い、硫酸マグネシウムを加えて脱水した。硫酸マグネシウムを除去し、酢酸エチルを減圧濃縮した後、PTLC精製を行い、ヘキサンで再結晶した。この化合物をエタノールに溶解し、5%パラジウム炭素(300mg)を加え、水素下で一晩撹拌した。翌日パラジウム炭素を除き、濃縮し、水で再結晶して目的の化合物(0.039g、0.11mmol、5.8%)を得た。
 以下の表1に示す実施例38、40、41、43、45、63、65、66、68、70~83、94、97、99、101および102の化合物も実施例39と同様にして合成した。
実施例50
 マグネシウム(668mg)、脱水THF(10mL)をアルゴン下で撹拌した。ヨウ素を加え、更に5分間撹拌した。そこに(-)-メンチルクロライド(4.2g、240mmol)を加え、加熱還した。溶液の色が茶色から無色に変化したところで反応終了とみなした。
 これを200mlの2口フラスコに移し、ドライアイス(9g)を加え、2時間室温で撹拌した。1N塩酸(25mL)でクエンチした後、ジエチルエーテル(25mL)で3回抽出した。有機層を水で洗い、1N水酸化ナトリウム(25mL)で3回抽出した。水層を2N塩酸(40mL)で中和し、ジエチルエーテル(25mL)で3回抽出した。有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ過して除去した後、溶媒を減圧濃縮し、真空ポンプで完全に溶媒を除去して(-)-メンチルカルボン酸(1.68g、9.1mmol)を得た。
 アルゴン下で(-)-メンチルカルボン酸(150mg、0.81mmol)に塩化チオニル(1mL)を加え、80℃で2時間撹拌した。反応液を濃縮してアイスバスで冷やした。これをジクロロメタン(4mL)に溶解し、トリプタミン(130mg、0.81mmol)およびトリエチルアミン(0.11ml、0.8mmol)を加え、一晩撹拌した。翌日ジクロロメタン(6mL)を加えて5%クエン酸水溶液で洗浄し、有機層を濃縮した。カラムクロマトグラフィー精製を行い、溶媒を減圧濃縮し、真空ポンプを用いて完全に除去し、目的の化合物(145mg、0.44mmol、55%)を得た。
 以下の表1に示す実施例51、52および60の化合物も実施例50と同様にして合成した。
実施例53
 実施例52で得た化合物(900mg、1.95mmol)をエタノール(5mL)に溶解し、5%パラジウム炭素(100mg)を加え、水素下で一晩撹拌した。翌日パラジウム炭素を除き、濃縮し、酢酸エチルに溶解し、カラムクロマトグラフィー精製を行った。溶媒を減圧濃縮し、真空ポンプで完全に除去して目的の化合物(702mg、1.89mmol、97%)を得た。
実施例58
 アルゴン下でトリプタミン(200mg、1.2mmol)を脱水1,4-ジオキサン(4mL)に溶解し、トリエチルアミン(0.35mL、2.5mmol)を加え、ジ-tert-ブチルジカーボネート(300mg、1.4mmol)を加えて一晩撹拌した。翌日溶媒を減圧濃縮し、酢酸エチルおよび水を加え、有機層を得た。有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ過して除去した後、溶媒を減圧濃縮し、真空ポンプで完全に溶媒を除去して目的の化合物(107mg、0.41mmol、34%)を得た。
実施例59
 トリプタミン(199mg、1.2mmol)をジクロロメタン(4mL)に溶解し、ジイソプロピルエチルアミン(0.44mL)およびベンジルクロロフォルメート(0.2ml)を加えて一晩撹拌した。翌日、水を加えて有機層を得た。有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ過して除去した後、シリカゲルカラム精製を行い、溶媒を減圧濃縮し、真空ポンプで完全に溶媒を除去して目的の化合物(155mg、0.53mmol、43%)を得た。
 以下の表に示す実施例54~57の化合物は、実施例53、58、59および39と同様にして合成した。
実施例61
 アルゴン下でtert-ブチルカルボン酸(0.2ml、1.6mmol)に塩化チオニル(1mL)を加え、80℃で2時間撹拌した。反応液を濃縮してアイスバスで冷やした。これをジクロロメタン(6mL)に溶解し、L-トリプトファンベンジルエステル塩酸塩(519mg、1.6mmol)およびトリエチルアミン(0.3mL)を加え、一晩撹拌した。翌日ジクロロメタン(4mL)を加えて、5%クエン酸水溶液で2回、飽和食塩水で1回、5%炭酸水素ナトリウム水溶液で2回、飽和食塩水で1回の順に洗い、硫酸ナトリウムを加えて脱水した。有機層を濃縮し、カラムクロマトグラフィー精製を行い、溶媒を減圧濃縮し、真空ポンプを用いて完全に除去し目的の化合物(241mg、0.73mmol、47%)を得た。
実施例86
 2,6-ジヒドロキシアニリン(0.251g、2mmol)および3,4-メチレンジオキシけい皮酸(0.387g、2mmol)をDMF(20ml)に溶解し、0℃にした後、HOBt・HO(0.337g、2.2mmol)およびEDCI・HCl(0.421g、2.2mmol)を加えて常温で一晩撹拌した。翌日TLCで反応進行を確認した後、溶媒を濃縮し、酢酸エチルおよび水を加えて、酢酸エチル層を得た。5%クエン酸水溶液で2回、飽和食塩水で1回、5%炭酸水素ナトリウム水溶液で2回、飽和食塩水で1回の順に洗い、硫酸マグネシウムを加えて脱水した。硫酸マグネシウムを除去し、酢酸エチルを減圧濃縮した後、ヘキサンで再結晶した。この化合物をメタノールに溶解し、水酸化パラジウム(60mg)を加え、40℃水素下で7時間撹拌した。水酸化パラジウムを除去し、減圧濃縮することにより結晶が析出した。結晶を除去し、ろ液をPTLC精製して目的化合物(0.111g、0.37mmol、18.5%)を結晶として得た。
 以下の表1に示す実施例89および91の化合物も実施例86と同様にして合成した。
実施例103
 2-アミノベンゼンスルホン酸(0.512g、3mmol)およびZ-ホモフェニルアラニン(0.940g、3mmol)をDMF(20ml)に溶解し、0℃にした後、トリエチルアミン(0.46ml、3.3mmol)、HOBt・HO(0.505g、3.3mmol)およびEDCI・HCl(0.636g、3.3mmol)を加えて常温で一晩撹拌した。翌日TLCで反応進行を確認した後、溶媒を濃縮し、酢酸エチルおよび水を加えて、酢酸エチル層を得た。5%クエン酸水溶液で2回、飽和食塩水で1回の順に洗い、硫酸マグネシウムを加えて脱水した。硫酸マグネシウムを除去し、酢酸エチルを減圧濃縮し、PTLC精製を行い、ヘキサンで再結晶した。この化合物をエタノールに溶解し、5%パラジウム炭素(150mg)を加え、水素下で一晩撹拌した。翌日パラジウム炭素を除き、濃縮し、エーテルで再結晶して目的の化合物(0.172g、0.51mmol、17.1%)を得た。
 以下の表1に示す実施例100および119の化合物も実施例103と同様にして合成した。
実施例108
 実施例107の化合物(0.191g、0.5mmol)をTHF(2ml)に溶解し、5%水酸化リチウムを加えてpH10に調整した。30分間撹拌し、TLCで生成物を確認した後、5%クエン酸水溶液でpHを弱酸性にし、酢酸エチルを加えて抽出し、硫酸マグネシウムで脱水した。硫酸マグネシウムを除去し、減圧濃縮し、ヘキサンで再結晶して目的化合物(0.162g、0.44mmol、88.0%)を得た。
 以下の表1に示す実施例110、113、115、117、121および123の化合物も実施例108と同様にして合成した。
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
試験例1 ENaC活性化能(刺激活性)の測定
 ENaC活性化電流値、すなわちENaC発現卵母細胞における内向き電流の測定を以下のように実施した。
 中村元直、清水孝雄著:アフリカツメガエル卵母細胞の実験、実験医学 Vol.11, No.3、224-232 (1993)に記載の方法に従い、アフリカツメガエルの卵母細胞を採取し、卵母細胞へのcRNAのマイクロインジェクションを行い、二電極膜電位固定法による電流値測定を行った。ただし、本発明では、上記文献中のMBS緩衝液の代わりに、ND96(96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM Hepes, 1.8 mM CaCl2、pH7.6)を用いた。また、マイクロインジェクションはWorld Precision Instruments社製のインジェクターNANOLITER 2000を用い、二電極膜電位固定法による電流値測定は、Molecular Devices社製OpusXpress 6000Aを用い、データ解析は、Molecular Devices社製Clampfit 10.2ソフトウエアを用いた。
 配列表の配列番号1、2および3にそれぞれ示したヒトのENaC δ、βおよびγサブユニットの遺伝子を、ぞれぞれプラスミドベクターにクローニングして、cRNA合成のための鋳型DNAとして用いた。cRNAの合成は、Ambion社製MEGAscriptキットを使い、方法はメーカーのマニュアルに従った。
 アフリカツメガエルの卵母細胞に、ENaC δサブユニットのcRNA(0.4~0.8μg/μL)、βおよびγサブユニットのcRNA(0.4μg/μL)を同体積ずつ混合したものを、卵母細胞一個あたり27.6 nLインジェクションし、16時間から72時間培養した。その後、測定装置OpusXpress 6000Aに卵母細胞をセットし、電極を卵母細胞に挿入して、二電極膜電位固定法にて静止膜電位よりも-30 mV低い値に電圧をクランプし、電流値を測定した。
 ENaC活性化能を測定するために、各試験化合物で卵母細胞を刺激し、電流が増加し始めたときの化合物の最小有効濃度(minimum effective dose;以下、MEDと略す。)を測定した。この際、化合物添加前の無刺激状態の電流値に比べて、10%以上電流値が増加した刺激化合物の最小有効濃度を、MEDとした。MEDが小さいほど、ENaC活性化能が高いことを示している。
 各試験化合物は、直接ND96に溶解するか、あるいは、まず100 mMになるようにジメチルスルホキシド(DMSO)に溶解し、ついでND96で、評価に使用する濃度になるように希釈し調製した。ND96中の試験化合物の濃度は、0.1 nM~300μMの範囲で、さまざまな濃度に調製した。なお、調製液中に含まれる濃度のDMSOは、ENaCの電流値に影響を及ぼさない。
 ENaC発現卵母細胞をセットした測定装置OpusXpress 6000Aには、灌流液としてND96を0.5 mL/分の速度で流し、3分ごとに灌流液を一時停止して、ND96に溶解した試験化合物溶液(0.25 mL)を0.5 mL/分の速度で添加した。こうして、試験化合物がENaC発現卵母細胞に触れるようにし、該化合物によってENaCが活性化されるかどうかを、電流値を測定することによって調べた。試験化合物の添加終了後、灌流液の送液を再開し該化合物を洗い流し、次の化合物添加に備えた。
 化合物は、低濃度から高濃度で、順番に添加して、ENaC発現卵母細胞を刺激した。実際に添加した濃度は、例えば、一つの試験化合物について、1 nM、3 nM、10 nM、30 nM、100 nM、300 nM;1μM、3μM、10μM、30μM、100μM、300μM;1.2μM、6μM、30μM、150μMといった具合にした。低濃度から高濃度まで、それぞれ3分間隔で添加した。また、第一の化合物について、低濃度から高濃度までの濃度で添加した後、第二、第三の化合物についても同様に同一の卵母細胞に続けて添加し、電流値の変化を測定した。電流値は、実験開始から終了まで、連続測定した。
 化合物添加直前の無刺激状態の電流値に対して、化合物添加後に電流値が初めて10%以上増加したときの化合物濃度をMEDとした。MED測定の一例として、実施例32の化合物でENaC発現卵母細胞を刺激した際の電流値グラフを図1に示す。このように、実施例32の化合物の濃度を、低濃度から高濃度まで変化させて電流値の変化を調べた結果、1.2μM以上6μMの濃度範囲で電流値が10%以上の増加を示した。よって、実施例32の化合物のMEDは1.2~6μMと判定された。
 他の代表的な実施例化合物についても、同様に測定したMED値を、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
 このように、本発明の化合物は、ENaC活性化作用を有することが確認された。
試験例2 塩味増強活性の官能評価
 実施例35の化合物について定量的な官能評価試験により塩味増強活性の強度を調べた。
 定量的官能評価試験は以下のように実施した。塩化ナトリウム(0.5g/dl)を含有する蒸留水に、試料として実施例35の化合物を0.00005~0.0040g/dlにて混合した場合の、塩味増強活性の強度を測定した。0.55g/dl、0.60g/dl、0.65g/dlの塩化ナトリウムを含有する蒸留水を比較対象とした。直線尺度法を用い、塩化ナトリウム濃度が1.0倍(0.50g/dl)、1.1倍(0.55g/dl)、1.2倍(0.60g/dl)、1.3倍(0.65g/dl)の位置を示した直線に対し、該当する採点を位置として記入する方法を用いた。官能評点については、パネルが記入した位置を測定し、平均化したものを塩味増強率(倍)として表記した。n=5で実施した。食品の調味開発を累積で1年以上経験し、濃度が異なる0.50g/dl、0.55g/dl、0.60g/dlの塩化ナトリウム溶液の識別ができる者(定期的に確認)をパネラーとした。尚、「先味」とは口に含んで2秒までの塩味の強さを、「中後味」とは、中味と後味を合わせたものであり口に含んで2秒以降の塩味の強さとして評価した。結果を図2に示す。
 図2から、実施例35の化合物は塩味増強活性を有することが明らかとなった。
 また、試験例1と同様にして測定した実施例35についてのENaC活性化電流の結果を図3に示す。図3の結果はまた、ENaC活性化電流は、実施例35の化合物の濃度が0.00001g/dlから増加を示し始め、濃度依存的に増加して、0.0020g/dlで最大電流値を示し、0.0020g/dlから0.0080g/dlの濃度範囲では、ほぼ一定の電流値を示すことを表す。これは、図2に示す実施例35の化合物についての官能評価による濃度依存的な塩味増強効果と非常によく相関している。すなわち、実施例35の化合物が0.0001g/dl以下の低濃度領域で、官能評価による塩味増強効果と、ENaC活性化電流が同時に現れ始め、そして、0.0010g/dlを超える高濃度領域で、両者はプラトーに達し、ほぼ一定値を示す。
 かかる塩味増強効果とENaC活性化電流値の強い相関関係は、舌における塩味受容の少なくとも一部分はENaC塩味受容体を介するものであり、ENaCを活性化する化合物は、塩味増強活性を有することを示唆している。
 従って、表2に示されるようなENaC活性化作用を有する本発明の化合物は、塩味増強活性を有することが強く示唆される。
試験例3 本発明の化合物と既知の塩味代替物の併用時における塩味増強活性の官能評価
 実施例35の化合物を既知の塩味代替物と併用した場合について、定量的な官能評価試験により塩味増強活性の強度を調べた。
 定量的官能評価試験は以下のように実施した。塩化ナトリウム(0.5g/dl)を含有する蒸留水に、試料として実施例35の化合物(0.001g/dl)と塩化カリウム(0.325g/dl)を加え混合した場合の、塩味増強活性の強度を測定した。0.55g/dl、0.60g/dl、0.65g/dl、0.70g/dlの塩化ナトリウムを含有する蒸留水を比較対象とした。さらに比較評価用に、塩化ナトリウム(0.5g/dl)を含有する蒸留水に実施例35の化合物(0.001g/dl)を混合したもの、塩化ナトリウム(0.5g/dl)を含有する蒸留水に塩化カリウム(0.325g/dl)を混合したものを比較対象とした。直線尺度法を用い、塩化ナトリウム濃度が1.0倍(0.50g/dl)、1.1倍(0.55g/dl)、1.2倍(0.60g/dl)、1.3倍(0.65g/dl)、1.4倍(0.70g/dl)の位置を示した直線に対し、該当する採点を位置として記入する方法を用いた。官能評点については、パネルが記入した位置を測定し、平均化したものを塩味増強率(倍)として表記した。n=5で実施した。食品の調味開発を累積で1年以上経験し、濃度が異なる0.50g/dl、0.55g/dl、0.60g/dl、0.65g/dl、0.70g/dlの塩化ナトリウム溶液の識別ができる者(定期的に確認)をパネラーとした。尚、「先味」とは口に含んで2秒までの塩味の強さを、「中後味」とは、中味と後味を合わせたものであり口に含んで2秒以降の塩味の強さとして評価した。結果を図4に示す。
 この結果、本発明の化合物は、既存の塩味代替物と併用した場合においても優れた効果を有することが確認された。
産業上の実施可能性
 本発明によれば、強力な塩味増強活性を有する化合物が提供され、飲食品の塩味増強剤等として有用である。

Claims (21)

  1.  下記式:
    Figure JPOXMLDOC01-appb-C000001

    [式中、
    Qは、
    (1)下記式:
    Figure JPOXMLDOC01-appb-C000002

    (式中、R、R、R、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、カルボキシル基、1~3個のハロゲン原子で置換されていてもよい炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、カルバモイル基またはスルホ基を示し、あるいはRとRもしくはRとRは、一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく、またはRは下記のRと一緒になってカルボニル基を形成してもよく;*はXに結合する部位を示す。)
    で表される基、
    (2)1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数3~7のシクロアルキル基、または
    (3)アミノ基および水酸基から選択される1~3個の置換基で置換されていてもよい炭素数1~6のアルキル基
    を示し;
    Xは、共有結合、-CH-、または-CHR-CH-(式中、Rは水素原子またはアミノ基を示す。)を示し;
    Yは、-NR-CO-、-NH-CO-O-、または-CO-NH-(式中、Rは、水素原子または炭素数1~3のアルキル基を示し、あるいは、Rは上記のRと一緒になってカルボニル基を形成してもよく、またはRは下記のR11と一緒になって炭素数1~3のアルキレン基を形成してもよい。)を示し;
    Zは、-CHR-、-CH-CR10-、-CR10-CH-、-CH-CH-CHR-、-CH=CR-、または-CR=CH-(式中、RおよびR10は、それぞれ独立して、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、(iv) 炭素数1~3のアルコキシ-カルボニル基、(v) アラルキルオキシカルボニル基、(vi) 炭素数1~4のアルコキシ-カルボニル基で置換されていてもよいアミノ基、または(vii) 水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基で置換されていてもよいカルバモイル基を示す。)を示し;
    Arは、
    (1)下記式:
    Figure JPOXMLDOC01-appb-C000003

    (式中、R11は水素原子を示すか、あるいはR11は上記のRと一緒になって炭素数1~3のアルキレン基を形成してもよく;R12、R13、R13a、R14およびR14aは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;*はZに結合する部位を示す。)
    で表される基、または
    (2)下記式:
    Figure JPOXMLDOC01-appb-C000004

    (式中、R15、R15a、R15b、R16およびR16aは、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、あるいはR15とR16は一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく;*はZに結合する部位を示す。)
    で表される基を示す。]
    で表される化合物またはその可食性の塩を含有する、飲食品の塩味増強剤。
  2.  式(I)において、R13a、R14a、R15a、R15bおよびR16aが水素原子である、請求項1記載の塩味増強剤。
  3.  式(I)において、Qが
    Figure JPOXMLDOC01-appb-C000005

    (式中、Halはハロゲン原子を示し;*はXに結合する部位を示す。)
    で表される基であり、Xが共有結合である、請求項1または2記載の塩味増強剤。
  4.  式(I)において、Qが
    Figure JPOXMLDOC01-appb-C000006

    (式中、R’’は、水素原子、メチル基または水酸基を示し;*はXに結合する部位を示す。)
    で表される基であり、Xが共有結合である、請求項1または2記載の塩味増強剤。
  5.  下記式:
    Figure JPOXMLDOC01-appb-C000007

    [式中、
    ’’’は、水素原子、水酸基、メチル基、または、炭素数1~3のアルコキシ基を示し;
    ’は、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、または(iv) 炭素数1~3のアルコキシ-カルボニル基を示し;
    15’およびR16’は、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;
    nは1または2を示す(但し、nが2の場合、R’’’は水酸基ではない)。]
    で表される化合物またはその可食性の塩を含有する、飲食品の塩味増強剤。
  6.  式(V)において、nが2である、請求項5記載の塩味増強剤。
  7.  下記式:
    Figure JPOXMLDOC01-appb-C000008

    [式中、
    Q’’は、
    Figure JPOXMLDOC01-appb-C000009

    (式中、R’’’は、水素原子、水酸基、メチル基、または炭素数1~3のアルコキシ基を示し;*はXに結合する部位を示す。)
    で表される基を示し;
    ’は、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、または(iv) 炭素数1~3のアルコキシ-カルボニル基を示し;
    12’、R13’およびR14’は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示す。]
    で表される化合物またはその可食性の塩を含有する、飲食品の塩味増強剤。
  8.  式(VI)において、Q’’が
    Figure JPOXMLDOC01-appb-C000010

    (式中、*はXに結合する部位を示す。)
    で表される基であり、R’が水素原子である、請求項7記載の塩味増強剤。
  9.  式(I)において、R~Rのいずれかがスルホ基であり、Yが-CO-NH-である、請求項1または2記載の塩味増強剤。
  10.  2,6-ジヒドロキシ-N-(2-(5-ヒドロキシ-1H-インドール-3-イル)エチル)ベンズアミド、またはその可食性の塩を含有する、飲食品の塩味増強剤。
  11.  請求項1に記載の式(I)で表される化合物またはその可食性の塩と、飲食品とを混合する工程を含む、飲食品の塩味を調節する方法。
  12.  請求項1に記載の式(I)で表される化合物またはその可食性の塩と、飲食品とを混合する工程を含む、飲食品の製造方法。
  13.  請求項1に記載の式(I)で表される化合物またはその可食性の塩を含有する飲食品。
  14.  請求項1に記載の式(I)で表される化合物またはその可食性の塩と、塩化カリウムとを含有する飲食品。
  15.  下記式:
    Figure JPOXMLDOC01-appb-C000011

    [式中、
    Q’は、
    (1)下記式:
    Figure JPOXMLDOC01-appb-C000012

    [式中、R’、R’、R’、R’およびR’は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、カルボキシル基、1~3個のハロゲン原子で置換されていてもよい炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、カルバモイル基またはスルホ基を示し、あるいはR’とR’もしくはR’とR’は、一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく(但し、R’~R’のいずれかは水素原子でない);*はXに結合する部位を示す。]
    で表される基、または
    (2)1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数3~7のシクロアルキル基
    を示し;
    Xは、共有結合、-CH-、または-CHR-CH-(式中、Rは水素原子またはアミノ基を示す。)を示し;
    Y’は、-NR’-CO-、-NH-CO-O-、または-CO-NH-(式中、R’は、水素原子または炭素数1~3のアルキル基を示し、あるいは、R’は下記のR11と一緒になって炭素数1~3のアルキレン基を形成してもよい。)を示し;
    Zは、-CHR-、-CH-CR10-、-CR10-CH-、-CH-CH-CHR-、-CH=CR-、または-CR=CH-(式中、RおよびR10は、それぞれ独立して、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、(iv) 炭素数1~3のアルコキシ-カルボニル基、(v) アラルキルオキシカルボニル基、(vi) 炭素数1~4のアルコキシ-カルボニル基で置換されていてもよいアミノ基、または(vii) 水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基で置換されていてもよいカルバモイル基を示す。)を示し;
    Ar’は、
    (1)下記式:
    Figure JPOXMLDOC01-appb-C000013

    (式中、R11は水素原子を示すか、あるいはR11は上記のRと一緒になって炭素数1~3のアルキレン基を形成してもよく;R12、R13およびR14は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;*はZに結合する部位を示す。)
    で表される基、または
    (2)下記式:
    Figure JPOXMLDOC01-appb-C000014

    (式中、R15およびR16は、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、あるいはR15とR16は一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく;*はZに結合する部位を示す。)
    で表される基を示す。]
    で表される化合物[但し、
    (1)Q’が、式(II’)で表される基であり、
    Xが、-CH-CH-であり、
    Y’が、-NH-CO-であり、
    Zが、-CH-CH-であり、
    Ar’が、式(III’)で表される基であり、
    ’、R’、R’、R’、R11、R12およびR14が水素原子であり、RおよびR13が水酸基である化合物、
    (2)Q’が、式(II’)で表される基であり、
    Xが、共有結合であり、
    Y’が、-NH-CO-であり、
    Zが、-CH-CHR-であり、
    Ar’が、式(III’)で表される基であり、
    (i) R’、R’、R’、R11、R12、R13およびR14が水素原子であり、Rが水酸基であり、Rが臭素原子であり、Rが水素原子またはカルボキシル基である化合物、
    (ii) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’およびRがカルボキシル基である化合物、
    (iii) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’およびRがカルボキシル基である化合物、
    (iv) R’、R’、R’、R11、R12およびR14が水素原子であり、R’、R’およびR13が水酸基である化合物、
    (v) R’、R’、R’、R11、R12およびR14が水素原子であり、R’、R’およびR13が水酸基である化合物、
    (vi) R’、R’、R’、R11、R12およびR14が水素原子であり、R’、R’およびR13が水酸基である化合物、および
    (vii) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’が水酸基であり、Rがカルボキシル基である化合物、
    (3)Q’が、式(II’)で表される基であり、
    Xが、-CH-または-CH-CH-であり、
    Y’が、-NH-CO-または-CO-NH-であり、
    Zが、-CH-、-CH-CH-または-CH=CH-であり、
    Ar’が、式(IV’)で表される基であり、
    ’、R’およびR’が水素原子であり、
    ’、R’、R15およびR16が、それぞれ独立して、水素原子、水酸基、またはメトキシ基である化合物、
    (4)Q’が、式(II’)で表される基であり、
    Xが、共有結合であり、
    Y’が、-NH-CO-であり、
    Zが、-CH-CHR-であり、
    Ar’が、式(IV’)で表される基であり、
    ’、R’、R’、R15およびR16が水素原子であり、R’が水酸基であり、R’が臭素原子であり、Rがカルボキシル基またはメトキシカルボニル基である化合物、および
    (5)Q’が、2-イソプロピル-5-メチルシクロヘキシル基であり、
    Xが、共有結合であり、
    Y’が、-NH-CO-であり、
    Zが、-CH-CH-であり、
    Ar’が、式(III’)で表される基である化合物を除く。]またはその塩。
  16.  下記式:
    Figure JPOXMLDOC01-appb-C000015

    [式中、
    Q’は、
    (1)下記式:
    Figure JPOXMLDOC01-appb-C000016

    (式中、R’、R’、R’、R’およびR’は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、カルボキシル基、1~3個のハロゲン原子で置換されていてもよい炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、カルバモイル基またはスルホ基を示し、あるいはR’とR’もしくはR’とR’は、一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく(但し、R’~R’のいずれかは水素原子でない);*はXに結合する部位を示す。)
    で表される基、または
    (2)1~3個の炭素数1~3のアルキル基で置換されていてもよい炭素数3~7のシクロアルキル基
    を示し;
    Xは、共有結合、-CH-、または-CHR-CH-(式中、Rは水素原子またはアミノ基を示す。)を示し;
    Y’は、-NR’-CO-、-NH-CO-O-、または-CO-NH-(式中、R’は、水素原子または炭素数1~3のアルキル基を示し、あるいは、Rは下記のR11と一緒になって炭素数1~3のアルキレン基を形成してもよい。)を示し;
    Zは、-CHR-、-CH-CR10-、-CR10-CH-、-CH-CH-CHR-、-CH=CR-、または-CR=CH-(式中、RおよびR10は、それぞれ独立して、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、(iv) 炭素数1~3のアルコキシ-カルボニル基、(v) アラルキルオキシカルボニル基、(vi) 炭素数1~4のアルコキシ-カルボニル基で置換されていてもよいアミノ基、または(vii) 水酸基、カルボキシル基およびフェニル基から選択される1~3個の置換基で置換されていてもよい炭素数1~3のアルキル基で置換されていてもよいカルバモイル基を示す。)を示し;
    Ar’は、
    (1)下記式:
    Figure JPOXMLDOC01-appb-C000017

    (式中、R11は水素原子を示すか、あるいはR11は上記のRと一緒になって炭素数1~3のアルキレン基を形成してもよく;R12、R13およびR14は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;*はZに結合する部位を示す。)
    で表される基、または
    (2)下記式:
    Figure JPOXMLDOC01-appb-C000018

    (式中、R15およびR16は、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を示し、あるいはR15とR16は一緒になって炭素数1~3のアルキレンジオキシ基を形成してもよく;*はZに結合する部位を示す。)
    で表される基を示す。]
    で表される化合物[但し、
    (1)Q’が、式(II’)で表される基であり、
    Xが、共有結合、-CH-または-CH-CH-であり、
    Y’が、-NH-CO-であり、
    Zが、-CHR-、-CH-CHR-、-CHR-CH-、-CH=CR-、または-CR=CH-であり、
    Ar’が、式(III’)で表される基であり、
    ’、R’、R’、R’およびR’が、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基であり、あるいはR’とR’もしくはR’とR’が、一緒になってメチレンジオキシ基を形成し、
    が、水素原子、カルボキシル基または炭素数1~3のアルコキシ-カルボニル基であり、
    11およびR12が水素原子であり、
    13およびR14が、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基である化合物、
    (2)Q’が、式(II’)で表される基であり、
    Xが、共有結合であり、
    Y’が、-NH-CO-であり、
    Zが、-CH-CHR-であり、
    Ar’が、式(III’)で表される基であり、
    (i) R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’が水酸基であり、R’が臭素原子であり、Rが水素原子またはカルボキシル基である化合物、
    (ii) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’およびRがカルボキシル基である化合物、
    (iii) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’およびRがカルボキシル基である化合物、および
    (iv) R’、R’、R’、R’、R11、R12、R13およびR14が水素原子であり、R’が水酸基であり、Rがカルボキシル基である化合物
    (3)Q’が、式(II’)で表される基であり、
    Xが、-CH-または-CH-CH-であり、
    Y’が、-CO-NH-であり、
    Zが、-CH-、-CH-CH-または-CH=CH-であり、
    Ar’が、式(IV’)で表される基であり、
    ’、R’およびR’が水素原子であり、
    ’、R’、R15およびR16が、それぞれ独立して、水素原子、水酸基、またはメトキシ基である化合物、
    (4)Q’が、式(II’)で表される基であり、
    Xが、共有結合、-CH-または-CH-CH-であり、
    Y’が、-NH-CO-であり、
    Zが、-CHR-、-CH-CHR-、-CHR-CH-、-CH=CR-、または-CR=CH-であり、
    Ar’が、式(IV’)で表される基であり、
    ’、R’、R’、R’およびR’が、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基であり、あるいはRとRもしくはRとRが、一緒になってメチレンジオキシ基を形成し、
    が、水素原子、カルボキシル基または炭素数1~3のアルコキシ-カルボニル基であり、
    15およびR16が、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基であり、あるいは、R15とR16が一緒になってメチレンジオキシ基を形成する化合物、
    (5)Q’が、式(II’)で表される基であり、
    Xが、共有結合であり、
    Y’が、-NH-CO-であり、
    Zが、-CH-CHR-であり、
    Ar’が、式(IV’)で表される基であり、
    ’、R’、R’、R15およびR16が水素原子であり、R’が水酸基であり、R’が臭素原子であり、Rがカルボキシル基またはメトキシカルボニル基である化合物、および
    (6)Q’が、2-イソプロピル-5-メチルシクロヘキシル基であり、
    Xが、共有結合であり、
    Y’が、-NH-CO-であり、
    Zが、-CH-CH-であり、
    Ar’が、式(III’)で表される基である化合物を除く。]またはその塩。
  17.  下記式:
    Figure JPOXMLDOC01-appb-C000019

     
    [式中、
    ’’’は、水素原子、水酸基、メチル基、または、炭素数1~3のアルコキシ基を示し;
    ’は、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、または(iv) 炭素数1~3のアルコキシ-カルボニル基を示し;
    15’およびR16’は、それぞれ独立して、水素原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し;
    nは1または2を示す(但し、nが2の場合、R’’’は水酸基ではない)。]
    で表される、請求項15または16記載の化合物またはその塩。
  18.  式(V)において、nが2である、請求項17記載の化合物またはその塩。
  19.  下記式:
    Figure JPOXMLDOC01-appb-C000020

    [式中、
    Q’’は、
    Figure JPOXMLDOC01-appb-C000021

    (式中、R’’’は、水素原子、水酸基、メチル基、または炭素数1~3のアルコキシ基を示し;*はXに結合する部位を示す。)
    で表される基を示し;
    ’は、(i) 水素原子、(ii) 水酸基で置換されていてもよい炭素数1~3のアルキル基、(iii) カルボキシル基、または(iv) 炭素数1~3のアルコキシ-カルボニル基を示し;
    12’、R13’およびR14’は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示す。]
    で表される、請求項15または16記載の化合物またはその塩。
  20.  式(VI)において、Q’’が
    Figure JPOXMLDOC01-appb-C000022

    (式中、*はXに結合する部位を示す。)
    で表される基であり、R’が水素原子である、請求項19記載の化合物またはその塩。
  21.  式(I’)において、R’~R’のいずれかがスルホ基であり、Y’が-CO-NH-である、請求項15または16記載の化合物またはその塩。
PCT/JP2010/067005 2010-09-29 2010-09-29 塩味増強剤 WO2012042621A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/067005 WO2012042621A1 (ja) 2010-09-29 2010-09-29 塩味増強剤
JP2012536067A JPWO2012042621A1 (ja) 2010-09-29 2010-09-29 塩味増強剤
EP10857834.5A EP2622970A4 (en) 2010-09-29 2010-09-29 SALT TASTE AMPLIFIERS
US13/852,434 US20130196050A1 (en) 2010-09-29 2013-03-28 Salty taste enhancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067005 WO2012042621A1 (ja) 2010-09-29 2010-09-29 塩味増強剤

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/852,434 Continuation US20130196050A1 (en) 2010-09-29 2013-03-28 Salty taste enhancer

Publications (1)

Publication Number Publication Date
WO2012042621A1 true WO2012042621A1 (ja) 2012-04-05

Family

ID=45892125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067005 WO2012042621A1 (ja) 2010-09-29 2010-09-29 塩味増強剤

Country Status (4)

Country Link
US (1) US20130196050A1 (ja)
EP (1) EP2622970A4 (ja)
JP (1) JPWO2012042621A1 (ja)
WO (1) WO2012042621A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544872A (ja) * 2010-12-13 2013-12-19 カソリック ユニヴェルシテイト ルーヴェン,ケー.ユー. ルーヴェン アール アンド ディー 神経変性疾患の治療のための新規化合物
JP2014080406A (ja) * 2012-10-18 2014-05-08 Yukijirushi Shubyo Kk 植物成長調整剤
JP2021505151A (ja) * 2017-12-08 2021-02-18 クロモセル コーポレイション 甘味料としてのトリプトファン誘導体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3229612A2 (en) 2014-12-10 2017-10-18 Mars, Incorporated Flavor compositions and pet food products containing the same
JP7013375B2 (ja) * 2015-09-04 2022-01-31 シンプン・ファーマシューティカル・カンパニー・リミテッド 血小板凝集阻害効果を有する化合物及びその塩、並びにそれを含む血栓性疾患予防又は治療用組成物
US11572337B2 (en) * 2018-03-06 2023-02-07 Rutgers, The State University Of New Jersey Antibacterial agents: arylalkylcarboxamido phloroglucinols
WO2020251928A1 (en) * 2019-06-12 2020-12-17 Corn Products Development, Inc. Compositions with sugar like characteristics
WO2021028106A2 (en) * 2019-08-15 2021-02-18 Firmenich Sa Taste-modifying compounds and uses thereof
JP2023524686A (ja) * 2020-04-29 2023-06-13 エモリー ユニバーシティー Trkb活性化剤としてのn-アセチルセロトニン誘導体及びその使用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262758A (ja) 1991-02-18 1992-09-18 San Ei Chem Ind Ltd 塩化カリウムの脱苦味方法
JPH05184326A (ja) 1992-01-09 1993-07-27 T Hasegawa Co Ltd 食塩含有飲食品の塩辛味増強法
JPH05255279A (ja) * 1991-04-10 1993-10-05 Merck & Co Inc コレシストキニン拮抗薬
JPH0853332A (ja) 1994-08-11 1996-02-27 Kao Corp 美白化粧料
WO2002087306A2 (en) * 2001-05-01 2002-11-07 Senomyx, Inc. High throughput cell-based assay for monitoring sodium channel activity and discovery of salty taste modulating compounds
WO2005014848A2 (en) * 2003-07-10 2005-02-17 Senomyx, Inc. IMPROVED ELECTROPHYSIOLOGICAL ASSAYS USING OOCYTES THAT EXPRESS HUMAN ENaC AND THE USE OF PHENAMIL TO IMPROVE THE EFFECT OF ENaC ENHANCERS IN ASSAYS USING MEMBRANE POTENTIAL REPORTING DYES
JP2007289145A (ja) 2006-03-27 2007-11-08 Yaizu Suisankagaku Industry Co Ltd 塩化カリウム含有発酵食品の製造方法
WO2008051447A2 (en) * 2006-10-19 2008-05-02 Monell Chemical Senses Center Human salty taste receptor and methods of modulating salty taste perception

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000297A (en) * 1971-05-18 1976-12-28 Rotta Research Laboratorium S.P.A. N-p-chlorobenzoyl tryptophane, salts and compositions thereof
DE102004041496A1 (de) * 2004-08-27 2006-03-02 Symrise Gmbh & Co. Kg Hydroxybenzoesäureamide und deren Verwendung zur Maskierung von bitterem Geschmack
WO2007006734A1 (en) * 2005-07-12 2007-01-18 Bayer Cropscience Sa New benzoheterocyclylethylbenzamide derivatives
EP2135516B1 (de) * 2008-06-13 2012-08-15 Symrise AG Neo-Menthylderivate als Geschmacksstoffe
JP5737176B2 (ja) * 2009-03-25 2015-06-17 味の素株式会社 新規アミド誘導体および美白剤

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262758A (ja) 1991-02-18 1992-09-18 San Ei Chem Ind Ltd 塩化カリウムの脱苦味方法
JPH05255279A (ja) * 1991-04-10 1993-10-05 Merck & Co Inc コレシストキニン拮抗薬
JPH05184326A (ja) 1992-01-09 1993-07-27 T Hasegawa Co Ltd 食塩含有飲食品の塩辛味増強法
JPH0853332A (ja) 1994-08-11 1996-02-27 Kao Corp 美白化粧料
WO2002087306A2 (en) * 2001-05-01 2002-11-07 Senomyx, Inc. High throughput cell-based assay for monitoring sodium channel activity and discovery of salty taste modulating compounds
WO2005014848A2 (en) * 2003-07-10 2005-02-17 Senomyx, Inc. IMPROVED ELECTROPHYSIOLOGICAL ASSAYS USING OOCYTES THAT EXPRESS HUMAN ENaC AND THE USE OF PHENAMIL TO IMPROVE THE EFFECT OF ENaC ENHANCERS IN ASSAYS USING MEMBRANE POTENTIAL REPORTING DYES
JP2007289145A (ja) 2006-03-27 2007-11-08 Yaizu Suisankagaku Industry Co Ltd 塩化カリウム含有発酵食品の製造方法
WO2008051447A2 (en) * 2006-10-19 2008-05-02 Monell Chemical Senses Center Human salty taste receptor and methods of modulating salty taste perception

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Protective Groups in Organic Synthesis", 1980, JOHN WILEY AND SONS
CHANDRASHEKAR, J. ET AL.: "The cells and peripheral representation of sodium taste in mice", NATURE, vol. 464, 2010, pages 297 - 302
EXPERIMENTAL MEDICINE, vol. 11, no. 3, 1993, pages 224 - 232
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 283, no. 18, 2008, pages 11981 - 11994, XP055082807 *
LAZDUNSKI M; WALDMANN R; CHAMPIGNY G; BASSILANA F; VOILLEY N: "Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel", J. BIOL. CHEM., vol. 270, no. 46, 1995, pages 27411 - 27414
LU, M. ET AL.: "Small Molecule Activator of the Human Epithelial Sodium Channel", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 283, no. 18, 2008, pages 11981 - 11994
PALMER LG: "Ion selectivity of epithelial Na channels", J. MEMBR. BIOL., vol. 96, 1987, pages 97 - 106
See also references of EP2622970A4
THE JAPANESE JOURNAL OF TASTE AND SMELL RESEARCH, vol. 14, no. 3, 2007, pages 447 - 450
YAMAZAKI Y.; KAWANO Y.; YAMANAKA A.; MARUYAMA S., BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 19, 2009, pages 4178 - 4182

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544872A (ja) * 2010-12-13 2013-12-19 カソリック ユニヴェルシテイト ルーヴェン,ケー.ユー. ルーヴェン アール アンド ディー 神経変性疾患の治療のための新規化合物
US9266832B2 (en) 2010-12-13 2016-02-23 Katholieke Universiteit Levun Compounds for the treatment of neurodegenerative diseases
JP2014080406A (ja) * 2012-10-18 2014-05-08 Yukijirushi Shubyo Kk 植物成長調整剤
JP2021505151A (ja) * 2017-12-08 2021-02-18 クロモセル コーポレイション 甘味料としてのトリプトファン誘導体

Also Published As

Publication number Publication date
US20130196050A1 (en) 2013-08-01
EP2622970A1 (en) 2013-08-07
EP2622970A4 (en) 2014-04-16
JPWO2012042621A1 (ja) 2014-02-03

Similar Documents

Publication Publication Date Title
WO2012042621A1 (ja) 塩味増強剤
KR101700152B1 (ko) CaSR 효능제
JP5688687B2 (ja) ペプチドのコク味付与用途
AU2005300173B2 (en) Flavour modulating substances
US8541379B2 (en) Kokumi-imparting agent
JP5850399B2 (ja) コク味付与剤
WO2013002329A1 (ja) ランチオニン誘導体の製造方法
WO2012121273A1 (ja) 塩味増強剤
US8101223B2 (en) Flavour modulating substances
WO2014208751A1 (ja) 新規うま味付与剤
WO2011010748A1 (ja) インドール誘導体及び同誘導体を含有する塩味増強剤
JPWO2009107579A1 (ja) コク味付与剤
WO2018147458A1 (ja) 新規化合物及び該化合物を含有する呈味改善剤
CN102686602B (zh) 羊毛硫氨酸衍生物
AU2011212938A1 (en) Compounds and methods for enhancing salty taste
TWI407916B (zh) 濃郁味道(kokumi)賦予劑
AU2017293112A1 (en) Sugar-dipeptide conjugates as flavor molecules
JP2012516844A (ja) エナミノカルボニル化合物およびその使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536067

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010857834

Country of ref document: EP