WO2012039464A1 - 微生物燃料電池システム、発電方法、及び有機物の処理方法 - Google Patents

微生物燃料電池システム、発電方法、及び有機物の処理方法 Download PDF

Info

Publication number
WO2012039464A1
WO2012039464A1 PCT/JP2011/071660 JP2011071660W WO2012039464A1 WO 2012039464 A1 WO2012039464 A1 WO 2012039464A1 JP 2011071660 W JP2011071660 W JP 2011071660W WO 2012039464 A1 WO2012039464 A1 WO 2012039464A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
anaerobic
aerobic
layer
electrode
Prior art date
Application number
PCT/JP2011/071660
Other languages
English (en)
French (fr)
Inventor
慶久 日比
太田 祐介
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2012039464A1 publication Critical patent/WO2012039464A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a microbial fuel cell system capable of purifying wastewater simultaneously with power generation, a power generation method, and a method for treating organic matter, and particularly relates to a microbial fuel cell system using anaerobic / aerobic microorganisms, a power generation method, and a method for treating organic matter. .
  • Patent Document 1 A processing method has been reported (Patent Document 1).
  • Patent Document 2 a report relating to a microbial battery using a microbial carrier suitable for purification of domestic wastewater and / or river sludge as an electrode, and a sludge purification device that efficiently purifies sludge using the battery.
  • MB methylene blue
  • NR neutral red
  • sludge sludge Purification
  • the batch type sedimentation separation method is adopted, continuous operation is impossible, and waste water cannot be purified.
  • organic substances are not decomposed by both anaerobic treatment and aerobic treatment, electrons and protons cannot be obtained efficiently.
  • the organic matter-containing wastewater continuously flows in or when the organic matter-containing wastewater flows in a large amount, the anaerobic tank and the aerobic tank are mixed, and the organic matter-containing wastewater cannot be purified.
  • the electromotive force is reduced and no power can be obtained.
  • the specific surface area is small, so the adhesion (accumulation) of microorganisms is poor, and the number of microorganisms present on the electrode surface is small. As a result, the number of electrons generated in the process of microorganisms decomposing and absorbing organic matter is reduced, and therefore cannot be used for power generation. Furthermore, since microorganisms decompose organic substances other than on the electrode surface, electrons are not delivered to the electrode, resulting in an electron loss.
  • Gases such as methane and hydrogen sulfide
  • anaerobic microorganisms including obligate anaerobic bacteria
  • electrons are generated from the decomposition of organic matter.
  • An object of the present invention is to provide a microbial fuel cell system that does not require the addition of a mediator, is not accompanied by generation of odor, and can cope with supply of low concentration or high concentration organic matter. Furthermore, an object of the present invention is to provide a power generation method and an organic matter treatment method (a method for purifying water and treating sludge generation by wastewater treatment) using such a microbial fuel cell system.
  • the gist of the present invention is as follows.
  • a method for treating organic matter comprising: supplying a liquid
  • [4] Supplying a liquid containing an organic substance and an inorganic flocculant into a tank containing a liquid containing an anaerobic microorganism group, separating the tank into an anaerobic layer and an aerobic layer, and existing in the anaerobic layer A method of generating electricity through an external circuit that electrically connects the negative electrode provided in the tank and the positive electrode provided in the tank so as to exist in the aerobic layer; and [5] Liquid containing organic matter in a tank of a tank in which a positive electrode and a negative electrode are provided in a tank containing a liquid containing anaerobic microorganisms, and an external circuit for electrically connecting the electrodes.
  • a method for treating an organic substance having a step of separating the inside of the tank into an anaerobic layer and an aerobic layer, wherein a negative electrode is provided in the tank so that the negative electrode exists in the anaerobic layer, and a positive electrode is provided It is related with the processing method of the organic substance which is provided in this tank so that it may exist in this aerobic layer.
  • the disadvantages of each other are compensated by using anaerobic microorganism group and aerobic microorganism group in combination. That is, even when wastewater containing high-concentration organic matter is supplied, the anaerobic microorganism group can decompose the organic matter and reduce the molecular weight.
  • the wastewater containing such high-concentration organic substances is decomposed only in the anaerobic tank, ammonia and sulfur compounds are accumulated in the anaerobic tank, and the growth environment is deteriorated by such self-generated organisms. The decomposition process of the organic matter in the tank is suppressed.
  • the microbial fuel cell electrode with the anaerobic tank side as the negative electrode (anode side)
  • bacteria accumulate on the electrode surface and at the same time the anaerobic tank is in a turbulent state, facilitating the contact between the bacteria-accumulated electrode and organic matter Is done.
  • microorganisms using sulfur compounds as energy sources and microorganisms utilizing ammonia nitrogen are preferably present in the anaerobic tank. In such a case, the electrode and the waste liquid are efficiently in contact with each other.
  • the amount of sludge due to sedimentation of residual organic matter can be reduced.
  • the organic matter is decomposed on the anaerobic tank side, and a low molecular weight organic acid is separated from the separator or measuring tank. It passes through and moves to the aerobic tank side and is decomposed on the aerobic tank side.
  • substances that could not react on the surface of the negative electrode side are treated on the aerobic tank side, and at the same time, high-concentration organic substances that were impossible with conventional aerobic treatment on the aerobic tank side are disposed of.
  • the generation of electricity reduces the amount of excess sludge generated so far by 40-50%.
  • the high-concentration organic substance means BOD (biochemical oxygen demand rate: unit: ppm) of 2000 ppm or more.
  • FIG. 1 is a diagram showing a schematic configuration of an example of a microbial fuel cell system according to an embodiment of the present invention.
  • the microbial fuel cell system 11 of the first aspect of the present invention includes an anaerobic tank 1 in which anaerobic microorganisms are accommodated and provided with an electrode, and an aerobic effect in which an aerobic microorganisms are accommodated and provided with an electrode. It is composed of a tank 2, a separator 3 for separating the anaerobic tank 1 and the aerobic tank 2, and an external circuit 4 for electrically connecting the electrodes, and the electrode provided in the anaerobic tank 1 is negative.
  • the electrode 5 and the electrode provided in the aerobic tank 2 are the positive electrodes 6.
  • the dissolved oxygen concentration in the aerobic tank is preferably higher.
  • a liquid containing organic matter it is preferable to supply a liquid containing organic matter to the anaerobic tank.
  • organic wastewater is supplied to the anaerobic tank 1 containing anaerobic microorganisms, organic substances (proteins, lipids, carbohydrates, etc.) are present due to the presence of anaerobic bacteria (facultative anaerobic bacteria and obligate anaerobic bacteria). Can be reduced in molecular weight (change to organic acid, monosaccharide, etc.).
  • the reaction proceeds due to the presence of obligate anaerobic bacteria, and some of them are decomposed to methane.
  • halophilic facultative anaerobic bacteria are preferable, and acid- and alkali-resistant halophilic facultative anaerobic bacteria are more preferable.
  • the anaerobic tank side is the negative electrode and the aerobic tank side is the positive electrode.
  • the electrode used in this case is preferably porous carbon carrying a metal or metal compound such as Pt or Cu, porous carbon modified with carbon nanotubes (CNT), carbon felt, or the like.
  • the positive electrode and the negative electrode may be the same or different.
  • the electrode used for the positive electrode is an electrode provided with a catalyst for reducing oxygen.
  • a metal that reacts with fermented methane may also be provided on the negative electrode side.
  • methane, mercaptan, hydrogen sulfide, etc. produced by anaerobic bacteria are decomposed using a noble metal element (Pt, Rh, or Au) or a metal element (Cu) as a catalyst, generation of odor can be suppressed.
  • Pt, Rh, or Au a noble metal element
  • Cu metal element
  • Methane is decomposed using Pt or the like supported on the negative electrode as a catalyst, and exhibits the same reaction as a normal fuel cell.
  • Hydrogen sulfide which is an odorous substance other than methane, reacts because Cu is carried by the negative electrode, releases hydrogen and electrons, and the electrons are transferred to the negative electrode in the same manner as described above. This reaction makes it possible to acquire electrons with high efficiency at the same time as the reduction of the mercaptan odor substance (odor suppression).
  • the specific surface area is desirably 16,000cm 2 / g or more electrodes, the specific surface area is more desirable 360,000cm 2 / g or more electrodes. It is desirable that at least pores having a pore diameter of 100 nm or more, more preferably 1 ⁇ m or more are opened on the surface of the electrode. More preferably, it is desirable that pores are distributed throughout the interior. This is because, when these carbons carry microorganisms, the above-mentioned noble metal elements or metal elements of the catalyst as catalysts, they are difficult to peel off.
  • the conductivity is improved because the network of cytochrome C is dense between the accumulated microorganisms.
  • the pore diameter is desirably 5 ⁇ m or less.
  • Separation between the anaerobic tank and the aerobic tank is, for example, from the side where the proton and organic acid can pass and the anaerobic microorganism group and the aerobic microorganism group cannot pass (separator), or from the anaerobic tank side It is performed by the overflow of Kaminagamizu.
  • the separator include a water treatment MF (Microfiltlation Membrance) membrane, filter paper, porous unglazed plate, and the like. These separators preferably have pores of 1 ⁇ m or less. This is because the size of the microorganism group is 1 ⁇ m or more, so that the microorganism group does not pass and protons and organic acids can pass.
  • the pore diameter of the separator is more preferably 0.1 to 0.5 ⁇ m. From the viewpoint of allowing the organic acid to pass through effectively, the pore diameter of the separator is preferably 0.1 ⁇ m or more, and since there are microorganisms exceeding 0.5 ⁇ m, the pore diameter is preferably 0.5 ⁇ m or less.
  • the organic acid decomposed into low molecules in the wastewater flowing into the aerobic tank through this separator is purified by aerobic bacteria and decomposed into water and carbon dioxide.
  • aerobic bacteria in the case of only an anaerobic tank, growth suppression is caused by the high concentration of ammonia components produced by the anaerobic bacteria themselves in the process of anaerobic bacteria decomposing organic matter.
  • the anaerobic treatment anaerobic bacteria decompose organic substances
  • ammonia components, sulfide ions, and the like move from the anaerobic layer to the aerobic tank through the separator and are decomposed in the aerobic tank.
  • the aerobic tank side is the positive electrode side
  • the electrons passed to the negative electrode are supplied to the positive electrode through an external circuit that electrically connects these electrodes, and the electrons from the positive electrode to the aerobic tank Is released.
  • an aeration means 7 for increasing the dissolved oxygen concentration is further provided.
  • the dissolved oxygen concentration is preferably 2 to 5 mg / L, more preferably 3 to 5 mg / L, and the effect of further improving the ability to decompose and remove organic matter is exhibited.
  • Wastewater can be purified with high efficiency.
  • Specific examples of the aeration means are not particularly limited, and examples include aeration means known in the wastewater treatment field such as an aerator.
  • a stirring means 8 may be provided in at least one of the anaerobic tank 1 and the aerobic tank 2. By providing the stirring means 8, the power generation efficiency and the organic matter processing efficiency can be improved. Examples of such a stirrer include one that rotates a blade, an ejector, and an injector.
  • another waste liquid treatment means is provided in the previous stage of the anaerobic tank, between the anaerobic tank and the aerobic tank, or in the subsequent stage of the aerobic tank. Also good.
  • electricity can be taken out via an external circuit that electrically connects the negative electrode 5 and the positive electrode 6 using the microbial fuel cell system of the present invention. That is, the microbial fuel cell system of the present invention is driven as a microbial fuel cell.
  • hydrogen ions and electrons are generated by the anaerobic microorganism group at the negative electrode 5 provided in the anaerobic tank 1.
  • the generated hydrogen ions permeate the separator 3 and move from the anaerobic tank 1 side to the aerobic tank 2 side, the electrons move from the negative electrode 5 to the positive electrode 6 via the external circuit 4, and the hydrogen ions and electrons are
  • the positive electrode 6 is combined with oxygen to form water. At that time, energy is recovered by taking out electricity flowing in the external circuit 4.
  • the organic matter treatment method of the first aspect of the present invention comprises an anaerobic microorganism group containing an anaerobic microorganism group and a negative electrode, and an aerobic tank containing an aerobic microorganism group and a positive electrode.
  • the organic matter treatment method can utilize the microbial fuel cell system of the present invention.
  • Examples of the step of supplying the liquid containing organic matter to the anaerobic tank include a step of supplying the liquid containing organic matter contained in the tank to the anaerobic tank by a pump or the like.
  • the step of discharging the treated liquid from the aerobic tank includes a step of discharging the liquid from the aerobic tank.
  • the aerobic tank is preferably further provided with aeration means. By providing such aeration means, the dissolved oxygen concentration can be increased.
  • the decomposition of organic acids and the like is uptake of microbial nutrients.
  • energy is consumed in order to advance the reaction at the same time as taking in energy.
  • electrons emitted from the positive electrode side are supplemented as energy, so that the microorganisms are always activated and the number of microorganisms increases.
  • the processing efficiency of organic matter is improved. Therefore, according to the microbial fuel cell system of the present invention, the treatment efficiency of organic matter is improved, so that undecomposed substances that have been excessive sludge until now are also decomposed and the generation of excessive sludge is reduced.
  • the power generation method and the organic matter processing method of the second aspect of the present invention will be described. This is based on the microbial fuel cell system, the power generation method, and the organic matter treatment method of the first aspect of the present invention without using a separator. And it is an aspect which does not need to divide a tank into an anaerobic tank and an aerobic tank.
  • the second power generation method and organic matter treatment method of the present invention it is possible to continuously purify 240 to 450 m 3 / day even if the liquid has a high BOD of 2000 ppm to 5000 ppm.
  • a liquid having a high BOD requires a large amount of oxygen by microorganisms for decomposing, so that the liquid in the entire tank tends to become anaerobic and the inside of the tank is difficult to become aerobic.
  • the liquid in the tank tends to become anaerobic.
  • inorganic flocculant used in such a method include oxides of calcium, magnesium, silicon, and the like that are conventionally used, such as diatomaceous earth, obsidian, and lime.
  • the sediment in the lower part of the tank is anaerobic and anaerobic because it has little contact with liquid and approaches anoxic conditions.
  • the upper part of the layer has less precipitate than the lower part, it comes into much contact with the liquid, oxygen is easily supplied, becomes aerobic, and becomes an aerobic layer.
  • the bacteria contained in the activated sludge are facultative anaerobic bacteria. When oxygen is present, it acts as an aerobic bacterium and becomes anaerobic when it becomes anoxic.
  • a positive electrode is provided on the upper and aerobic tank (layer) side, and the lower and anaerobic tank By providing a negative electrode on the (layer) side, electricity can be taken out via an external circuit that electrically connects the electrodes.
  • a separator is necessary, but in the power generation method of the second invention, a separator is not necessary.
  • the inorganic flocculant separates the aerobic layer side and the anaerobic layer side in one tank, and hydrogen ions and low molecular weight organic acids float in the solution. This is because it becomes possible to move from the anaerobic tank (layer) side to the aerobic tank (tank) side.
  • the tank is aerated.
  • formation of an anaerobic layer is expected to be inhibited.
  • an aerobic layer and an anaerobic layer could be formed unexpectedly regardless of the implementation of aeration.
  • MLSS active sludge suspended solids: Mixed liquor Suspended Solid
  • MLSS active sludge suspended solids: Mixed liquor Suspended Solid
  • concentration 15000 to 20000 mg / L, more preferably 20000 to 35000 mg / L.
  • the microbial fuel cell system 11 is a position where the anaerobic microorganism group is accommodated in the tank 9 and the anaerobic layer 13 is formed, for example, the position where the electrode 5 provided in the lower part of the tank and the aerobic layer 14 are formed.
  • the aerobic layer has a higher dissolved oxygen concentration than the anaerobic layer. Therefore, an aerobic microorganism group exists in the aerobic layer.
  • anaerobic tank (layer) 13 it is preferable to supply a liquid containing an organic substance to the anaerobic tank (layer) 13. That is, since the anaerobic layer is formed below the tank, it is preferable to supply the liquid containing organic matter from the lower part of the tank.
  • organic wastewater is supplied to an anaerobic tank (layer) 13 containing anaerobic microorganisms, organic substances (proteins, lipids, sugars) are present due to the presence of anaerobic bacteria (facultative anaerobic bacteria / obligate anaerobic bacteria). Quality etc.) can be reduced in molecular weight (changed to organic acids, monosaccharides, etc.).
  • reaction proceeds due to the presence of obligate anaerobic bacteria, and some of them are decomposed to methane.
  • anaerobic bacteria halophilic facultative anaerobic bacteria are preferable, and acid- and alkali-resistant halophilic facultative anaerobic bacteria are more preferable.
  • the waste liquid containing organic matter forms flocs by the addition of an inorganic flocculant, and as a result, a part of it is subjected to normal aerobic treatment, but most of it settles. Thereby, since the reaction mentioned above arises, it is also possible to supply waste liquid from the upper part.
  • cytochrome C substance synthesized by the microorganism itself works as an electron transfer substance (conductive nanowire) and passes electrons to the negative electrode when the attached microorganism group forms a network.
  • protons generated simultaneously float in the tank and move to the aerobic tank (layer) 14.
  • methane, mercaptan, hydrogen sulfide, etc. produced by anaerobic bacteria are decomposed using a noble metal element (Pt, Rh, or Au) or a metal element (Cu) as a catalyst, generation of odor can be suppressed.
  • Pt, Rh, or Au a noble metal element
  • Cu metal element
  • Methane is decomposed using Pt or the like supported on the negative electrode as a catalyst, and exhibits the same reaction as a normal fuel cell.
  • Hydrogen sulfide which is an odorous substance other than methane, reacts because Cu is carried by the negative electrode, releases hydrogen and electrons, and the electrons are transferred to the negative electrode in the same manner as described above.
  • This reaction makes it possible to acquire electrons with high efficiency at the same time as the reduction of the mercaptan odor substance (odor suppression).
  • bacteria using a sulfur compound as a nutrient source exist, electrons generated in a reaction process that takes in and decomposes a sulfur compound that is a source of an odorous substance can be further used, which is more preferable.
  • Such an electrode has high conductivity, it is desirable to be carbon, and it is desirable to be porous because microorganisms are likely to adhere to it. It is desirable that at least pores having a pore diameter of 1 ⁇ m or more are open on the surface of the electrode. More preferably, it is desirable that pores are distributed throughout the interior. This is because these carbons do not easily peel off when the above-mentioned noble metal element or metal element of the catalyst is supported as a catalyst. Moreover, since a microorganism tends to enter inside, the pore diameter is desirably 5 ⁇ m or less.
  • the separation between the anaerobic tank (layer) 13 side and the aerobic tank (layer) 14 is performed by an inorganic flocculant as described above.
  • the anaerobic tank (layer) 13 side and the aerobic tank (layer) 14 By separating the tank into two parts, the anaerobic tank (layer) 13 side and the aerobic tank (layer) 14, when general and industrial wastewater containing high-concentration wastewater is flowed into the tank, it is separated and anaerobic at the bottom After the organic matter is decomposed to low molecular organic acid or the like on the tank (layer) 13 side, a liquid containing protons or organic acids moves from the anaerobic tank (layer) 13 side to the aerobic tank (layer) 14. In the aerobic tank (layer) 14, protons are reduced to water by making the dissolved oxygen concentration high (2-5 mg / L) by air aeration, etc., and organic acids are decomposed and removed by aerobic bacteria. Waste water is purified.
  • Organic acids and the like decomposed into low molecules flowing into the aerobic tank (layer) 14 are purified by aerobic bacteria and decomposed into water and carbon dioxide. If only the anaerobic tank (layer) 13 is present, in the process of anaerobic bacteria decomposing organic matter, the ammonia component produced by the anaerobic bacteria itself is accumulated at a high concentration, thereby suppressing growth. As a result, the anaerobic treatment (anaerobic bacteria decompose organic substances) itself deteriorates.
  • ammonia components and sulfide ions do not accumulate in the anaerobic tank (layer) 13. It moves from the (layer) 13 to the aerobic tank (layer) 14 and is decomposed in the aerobic tank.
  • ammonia components and sulfide ions are further added to the aerobic tank.
  • the aerobic tank (layer) 14 side is the positive electrode side
  • the electrons transferred to the negative electrode are supplied to the positive electrode through an external circuit that electrically connects these electrodes, and the positive electrode is positively supplied. Electrons are emitted to the air tank (layer) 14.
  • the tank is preferably further provided with aeration means 7 for increasing the dissolved oxygen concentration.
  • the dissolved oxygen concentration is preferably 2 to 5 mg / L, more preferably 3 to 5 mg / L, and the effect of further improving the ability to decompose and remove organic matter is exhibited.
  • Wastewater can be purified with high efficiency.
  • Specific examples of the aeration means are not particularly limited, and examples include aeration means known in the wastewater treatment field such as an aerator. Such aeration means may be provided in the upper part of the tank, in the central part, or in the lower part.
  • At least one of the anaerobic tank (layer) 13 and the aerobic tank (layer) 14 may be provided with stirring means.
  • a stirring means By providing such a stirring means, it is possible to improve power generation efficiency and organic matter processing efficiency.
  • a stirrer a rotating blade, an ejector or an injector is a preferred example.
  • another waste liquid treatment means may be provided in the front stage of the anaerobic tank or the rear stage of the aerobic tank as necessary.
  • electricity can be taken out via an external circuit that electrically connects the negative electrode 5 and the positive electrode 6 using the microbial fuel cell system described above. That is, the microbial fuel cell system of the present invention is driven as a microbial fuel cell.
  • hydrogen ions and electrons are generated by the anaerobic microorganism group at the negative electrode 5 provided in the anaerobic tank (layer) 13.
  • the generated hydrogen ions float in the tank and move from the anaerobic tank (layer) 13 side to the aerobic tank (layer) 14 side, and the electrons move from the negative electrode 5 to the positive electrode 6 via the external circuit 4,
  • Hydrogen ions and electrons combine with oxygen at the positive electrode 6 to become water.
  • energy is recovered by taking out electricity flowing in the external circuit 4.
  • the aerobic tank is preferably further provided with aeration means. By providing such aeration means, the dissolved oxygen concentration can be increased.
  • the organic material treatment method of the second aspect of the present invention is a tank in which a positive electrode and a negative electrode are provided in a tank containing a liquid containing anaerobic microorganisms, and an external circuit that electrically connects the electrodes.
  • the organic matter treatment system can utilize the microbial fuel cell system of the present invention.
  • Examples of the step of supplying the liquid containing organic matter to the tank include a step of supplying the liquid containing organic matter in the tank to the tank by a pump or the like.
  • the step of discharging the treated liquid from the tank includes a step of discharging the liquid from the aerobic tank.
  • the aerobic tank is preferably further provided with aeration means. By providing such aeration means, the dissolved oxygen concentration can be increased.
  • the decomposition of organic acids and the like is uptake of microbial nutrients.
  • energy is consumed in order to advance the reaction at the same time as taking in energy.
  • electrons emitted from the positive electrode side are supplemented as energy, so that the microorganisms are always activated and the number of microorganisms increases.
  • the processing efficiency of organic matter is improved. Therefore, according to the microbial fuel cell system of the present invention, the treatment efficiency of organic matter is improved, so that undecomposed substances that have been excessive sludge until now are also decomposed and the generation of excessive sludge is reduced. Since the reaction does not proceed to methane fermentation due to the incorporation of the organic acid, the generation of sulfide ions, ammonia, etc. generated in the process is reduced.
  • Example 1 The following microbial fuel cell system was produced using a U-shaped acrylic container as shown in FIG.
  • the anaerobic tank 1 and the aerobic tank 2 were cylindrical chambers having a diameter of about 20 cm and a volume of about 3 liters, and their lower portions were connected by an acrylic pipe having a hole diameter of about 5 cm in diameter.
  • a PVDF (polyvinylidene fluoride) film (trade name: MBR film, manufactured by Toray Industries, Inc.) as a separator 3 was provided at substantially the center of the pipe.
  • a stirring means 8 and an electrode porous carbon supported by Pt, manufactured by Toray Industries, Inc., trade name: TGP-H-090
  • a thermometer were installed in the anaerobic tank 1 and the aerobic tank 2 .
  • the aerobic tank 2 was provided with an aerator as an aeration means, and air was supplied from the bottom of the aerobic tank 2.
  • anaerobic sludge is applied from the bottom of the aeration tank that performs general wastewater treatment using the activated sludge method, and aerobic sludge from the top. obtained.
  • the obtained anaerobic sludge was added to the anaerobic tank 1, and 2 liters of the obtained aerobic sludge was added to the aerobic tank 2, respectively.
  • 0.5 liter of hydrolyzate as a liquid containing organic substances was supplied to the anaerobic tank 1. After covering the upper part of the anaerobic tank 1 with a paraffin film so as not to come into contact with oxygen, each electrode and an electric resistance 1 ⁇ ammeter as an external circuit were connected, and aeration and stirring were started.
  • the initial voltage was 0.8V
  • the voltage after 2 days of operation was 0.8V. This shows that power can be generated throughout the operation period without adding a mediator called an electron transfer substance.
  • an inexpensive membrane PVDF membrane
  • PVDF membrane can be used as a separator as compared with a proton permeable membrane or an ion exchange membrane.
  • Rhodobacter which is an autotrophic bacterium
  • Schwannella an iron-reducing bacterium
  • the aerobic tank was 3 mg / L and the anaerobic tank was approximately 0 mg / L, respectively.
  • the dissolved oxygen concentration was maintained at a high level.
  • Example 2 The microbial fuel cell system was operated under the same microbial fuel cell system and conditions as in Example 1 except that the electrodes in both tanks were changed to dense carbon (the one in which Cu was supported on dense carbon). I went for 2 days. As a result, the voltage in the initial state was 0.5 V, and the voltage after 2 days of operation was 0.5 V. As shown in Table 1, in Example 1 using the electrode made of porous carbon, the voltage in the initial state is 0.8V, and the voltage after operation for 2 days is 0.8V. Higher output power can be obtained.
  • FIGS. 2 is an electron micrograph of the surface structure of the negative electrode used in Example 1 before system operation
  • FIG. 3 is an electron micrograph of the surface structure of the negative electrode of Example 1 after system operation for 2 days. It is. Thus, it is presumed that the microorganisms adhere to the carbon, so that the organic matter is efficiently decomposed and the electrons are transferred to the negative electrode.
  • Example 3 The following microbial fuel cell system was produced using a container as shown in FIG.
  • the tank 9 has no separator but is divided into an anaerobic layer 13 and an aerobic layer 14.
  • the anaerobic layer 13 at the lower part of the tank 9 and the aerobic layer 14 at the upper part of the tank 9 have electrodes 5 and 6 (porous carbon supported by Pt, manufactured by Toray Industries, Inc., trade name: TGP- H-090) and a thermometer. Furthermore, the anaerobic layer 13 was provided with an aerator 7 as an aeration means, and air 12 was supplied from the bottom of the anaerobic layer 13. Each electrode and an electric resistance 1 ⁇ ammeter as an external circuit 4 were connected.
  • Aerobic sludge (3000 to 7000 mg / L as MLSS) from the upper part of an aeration tank that uses the activated sludge method at an electronic component manufacturing plant wastewater treatment plant in Ogaki City, Gifu Prefecture, Japan obtained. Then, sludge was put into the tank 9.
  • Mg and containing silica, diatomaceous earth was added a powder of (2.5 g / m 3) and obsidian (19 g / m 3) as the inorganic flocculant in the tank 9, chemical further containing Ca like lime slurry in pH adjustment ( The activated sludge was agglomerated by adding 300 g / L) and settled below the tank 9.
  • the microbial fuel cell system of Example 3 can purify a large amount of waste water at the same time as obtaining high output power.
  • Comparative Example 1 The following microbial fuel cell system 11 was produced using a container as shown in FIG.
  • the tank 9 has no separator but is divided into an anaerobic layer 13 and an aerobic layer 14.
  • the anaerobic layer 13 and the aerobic layer 14 are electrodes 5 and 6 (porous carbon supported by Pt, manufactured by Toray Industries, Inc., trade name: TGP-H-090). And a thermometer was installed. Furthermore, the anaerobic layer 13 was provided with an aerator 7 as an aeration means, and air 12 was supplied from the bottom of the anaerobic layer 13. Each electrode and an electric resistance 1 ⁇ ammeter as an external circuit 4 were connected.
  • aerobic sludge (000 to 7000 mg / L as MLSS) from the upper part of the aeration tank that performs general wastewater treatment using the activated sludge method at the wastewater treatment plant in Ogaki City, Gifu Prefecture, Japan ) was obtained.
  • Example 3 in the comparative example, the powder of diatomaceous earth and obsidian, and the chemical solution of the lime slurry were not added, so the activated sludge did not aggregate in the comparative example.
  • waste water BOD 2000ppm to 3500ppm, COD 2000ppm to 3500ppm
  • the microbial fuel cell system of the comparative example could not perform continuous power generation and organic matter treatment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sustainable Energy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Inert Electrodes (AREA)

Abstract

 嫌気性微生物群が収容され、かつ電極が設けられてなる嫌気槽、好気性微生物群が収容され、かつ電極が設けられてなる好気槽、該嫌気槽と該好気槽とを分離するセパレータ、並びに前記電極間を電気的に接続する外部回路から構成され、該嫌気槽に設けられた電極を負電極とし、該好気槽に設けられた電極を正電極とする、微生物燃料電池システム。かかる微生物燃料電池システムにより、メディエーターの添加が不要であって、臭気の発生を伴わず、低濃度又は高濃度の有機物が供給されても対応可能な微生物燃料電池システムが提供される。

Description

微生物燃料電池システム、発電方法、及び有機物の処理方法
 本発明は、発電と同時に廃水を浄化することができる微生物燃料電池システム、発電方法、有機物の処理方法に関し、特に嫌気・好気性微生物を利用した微生物燃料電池システム、発電方法及び有機物の処理方法に関する。
 近年、汚水中の有機物を微生物により分解する汚水の処理方法において、有機物を代謝した微生物から電子伝達剤により電子を取り出し、細胞合成を阻止して微生物の増殖を抑制することを特徴とする汚水の処理方法が報告されている(特許文献1)。
 さらに、生活廃水及び/又は河川汚泥の浄化に適した微生物担体を電極とする微生物電池及び該電池を用いて効率的に汚泥を浄化する汚泥浄化装置に関わる報告がされている(特許文献2)。
 従来の微生物燃料電池は、微生物自身が生合成する電子伝達物質でないMB(メチレンブルー)又はNR(ニュウートラルレッド)などをメディエーターとして利用して、微生物体内から電子を取り出し、発電を行っている。このことにより当該微生物の細胞分裂も抑制されるので、汚泥の増加を防ぐことができる。結果的に、微生物の増殖抑制による汚泥減少も達成される。
特開2006-75791号公報 特開2006-114375号公報
 しかしながら、前述した従来技術には次のような問題がある。特許文献1の汚水の処理方法では、メディエーターとして電子伝達物質(MB、NRなど)を外部から添加する事により、微生物が有機物を体内へ取り込み有機物を分解してエネルギー転換する際に発生する電子をメディエーターが奪い、その電子を微生物の体外へ持ち出すことによって、発電する。その結果、微生物の細胞分裂を抑制して、汚泥を減少させることができる。しかし、廃水処理においては添加された電子伝達物質が分解されない為、添加された電子伝達物質が余剰物質となるので、電子伝達物質を除外するための装置または処理方法が別途必要となる。
 また特許文献2の汚泥浄化装置においては、嫌気槽と、好気槽にそれぞれ木炭や竹炭を用いた電極を利用して、微生物を付着させると同時に電気を取り出すものであるが、汚泥(ヘドロ)の浄化が主である。そのため、バッチ式沈降分離方法をとっており、連続運転が不可能であり、廃水の浄化を行うことができない。さらに、有機物の分解を嫌気処理と好気処理の両方で行っていないため、効率よく電子とプロトンが得られない。さらに、有機物含有廃水が連続して流入してくる場合や、有機物含有廃水が大量に流入してくる場合には嫌気槽と好気槽が混合してしまい、有機物含有廃水の浄化ができなくなる。また、起電力が低下し、電力も得られない。
 また電極としては炭化した木質類や竹のみを利用することから、比表面積が小さいため、微生物の付着(集積)が悪く、電極表面に存在する微生物の数が少ない。そのため、微生物が有機物を分解・吸収する過程において発生する電子が少なくなるため、発電に活用できない。さらに、電極表面以外において微生物が有機物を分解するため、電子が電極に受け渡されないため、電子ロスが生じる。偏性嫌気性細菌を包含する嫌気性微生物が有機物を分解し最終的に生成するガス類(メタンや硫化水素など)は処理(活用)されていないのと同時に電子が有機物の分解からガス発生過程に利用されてしまうため(電子ロス)、高効率で電気が得られないのと同時に臭気の問題がある。
 本発明の目的は、メディエーターの添加が不要であって、臭気の発生を伴わず、低濃度又は高濃度の有機物が供給されても対応可能な微生物燃料電池システムを提供することにある。さらに本発明の目的は、かかる微生物燃料電池システムを利用した発電方法及び有機物処理方法(廃水処理による水の浄化と汚泥の発生抑制方法)を提供することである。
 即ち、本発明の要旨は、
〔1〕 嫌気性微生物群が収容され、かつ電極が設けられてなる嫌気槽、好気性微生物群が収容され、かつ電極が設けられてなる好気槽、該嫌気槽と該好気槽とを分離するセパレータ、並びに前記電極間を電気的に接続する外部回路から構成され、
 該嫌気槽に設けられた電極を負電極とし、該好気槽に設けられた電極を正電極とする、微生物燃料電池システム;
〔2〕 前記〔1〕に記載の微生物燃料電池システムを用いて、前記外部回路を経由して電気を取り出す発電方法;
〔3〕 嫌気性微生物群が収容され、かつ負電極が設けられてなる嫌気槽、好気性微生物群が収容され、かつ正電極が設けられてなる好気槽、該嫌気槽と該好気槽とを分離するセパレータ、並びに負電極と正電極との間を電気的に接続する外部回路から構成され、
 該嫌気槽に有機物を含む液体を供給する工程、及び
 該好気槽から処理された液体を排出する工程を有する、有機物の処理方法;
〔4〕 嫌気性微生物群を含む液体を入れた槽内に、有機物を含む液体及び無機凝集剤を供給して、該槽内を嫌気層と好気層とに分離させ、該嫌気層に存在するように該槽内に設けられた負電極と、該好気層に存在するように該槽内に設けられた正電極とを電気的に接続する外部回路経由で電気を取り出す発電方法;並びに
〔5〕 嫌気性微生物群を含む液体を入れた槽内に正電極及び負電極と、前記電極間を電気的に接続する外部回路とが設けられてなる槽の槽内に、有機物を含む液体及び無機凝集剤を供給する供給工程、
 次いで、該槽内を嫌気層と好気層とに分離させる工程、を有する有機物の処理方法であって、負電極が該嫌気層に存在するように該槽内に設けられ、かつ正電極が該好気層に存在するように該槽内に設けられたものである、有機物の処理方法;に関するものである。
本発明の実施形態に係る微生物燃料電池システムの一例の概略構成を示す図である。 システム稼動前の実施例1で用いた負電極の表面構造の電子顕微鏡写真である。 2日間のシステム稼動後の実施例1で用いた負電極の表面構造の電子顕微鏡写真である。 本発明の実施形態に係る微生物燃料電池システムの別の一例の概略構成を示す図である。
 本発明においては、嫌気性微生物群と好気性微生物群を併用することにより、お互いの短所を補い合っている。即ち、高濃度有機物が含まれる廃水が供給された場合であっても、嫌気性微生物群は、有機物を分解し、低分子化することができる。このような高濃度有機物が含まれる廃水を嫌気槽のみで分解を行う場合、アンモニアや硫黄化合物が嫌気槽に蓄積されてしまい、かかる自己成生物により生育環境が悪化することになり、結果として嫌気槽での有機物の分解処理が抑制されてしまう。
 しかし、嫌気槽側を負極(アノード側)として微生物燃料電池用電極を用いることにより、電極表面に菌が集積すると同時に嫌気槽内が乱流状態となり、菌が集積した電極と有機物の接触が促進される。その結果、「有機物の分解=電子の放出」という関係が成り立つ。本発明においては、硫黄化合物をエネルギー源とする微生物やアンモニア態窒素を利用する微生物が嫌気槽に存在することが好ましく、このような場合、効率的に電極と廃液が接触することにより、従来の嫌気処理において別途付帯設備を設けて処分を行っていた物質の分解除去も成り立つのと同時に、残存有機物の沈降による汚泥量も減少できる。
 さらに、セパレータを介したり、又は処理槽を2槽化させることによって好気槽を設けることにより、嫌気槽側にて、有機物が分解され、低分子化された有機酸などがセパレータ又は計量枡を通過して好気槽側に移動し好気槽側で分解される。この結果、負極側電極表面上にて反応しきれなかった物質が好気槽側にて処理されるのと同時に、好気槽側の好気処理で従来不可能であった高濃度有機物が処分できると同時に電気の発生により今まで発生していた余剰汚泥量が40~50%軽減される。しかも、すでに設置されている有機物の処理装置において、嫌気槽と好気槽とが設けられている装置、または上下層で2槽化している装置であれば、装置の大規模な改造を伴うことなく、セパレータ、電極、外部回路、さらに必要に応じて曝気手段や槽内に乱流を起こす装置を後付で設けることによって、廃水の有機物処理の効率化だけでなく、発電を行うことも可能である。
 なお、本発明において、高濃度有機物とは、BOD(生物化学的酸素要求率biochemical oxygen deemed:単位はppm)2000ppm以上のことをいう。
 更に、セパレータを利用しない発電方法も提案する。
 以下、図1を参照しつつ第1の本発明の微生物燃料電池システムを説明する。図1は、本発明の実施形態に係る微生物燃料電池システムの一例の概略構成を示す図である。
 第1の本発明の微生物燃料電池システム11は、嫌気性微生物群が収容され、かつ電極が設けられてなる嫌気槽1と、好気性微生物群が収容され、かつ電極が設けられてなる好気槽2と、該嫌気槽1と該好気槽2とを分離するセパレータ3と、前記電極間を電気的に接続する外部回路4とから構成され、該嫌気槽1に設けられた電極を負電極5とし、該好気槽2に設けられた電極を正電極6とするものである。
 また、好気槽の溶存酸素濃度はより高いことが好ましい。
 第1の本発明の微生物燃料電池システムにおいては、有機物を含む液体を嫌気槽に供給することが好ましい。嫌気性微生物群が収容された嫌気槽1に有機物廃水を供給すると、嫌気性菌(通性嫌気性菌・偏性嫌気性菌)が存在することによって、有機物(蛋白、脂質、糖質等)を低分子化(有機酸、単糖類等へ変化)させることができる。さらに偏性嫌気性菌の存在により反応が進み、一部はメタンまで分解される。嫌気性細菌としては、好塩性通性嫌気性細菌が好ましく、耐酸・耐アルカリ性の好塩性通性嫌気性細菌がより好ましい。
 このような2段階の反応過程、即ち廃水中の有機物を低分子の有機酸等へ低分子化させる過程と、さらにメタン等まで分解する過程において、水素と電子が発生する。そしてこの反応は嫌気槽側で起こるので、嫌気槽側を負極とし、好気槽側を正極とする。この際に使用する電極としては、PtやCuなどの金属または金属化合物を担持させた多孔質カーボン、カーボンナノチューブ(CNT)などを修飾させた多孔質カーボン、カーボンフェルト等が好ましい。正極・負極の電極は同一であっても異なっていてもよいが、好ましくは正極に使用する電極には酸素を還元する触媒が付与された電極がよい。負極側においても発酵したメタンと反応する金属が付与されていても良い。
 多孔質、即ち比表面積が大きい電極を用いると、負極側電極の表面上に多くの微生物が付着する。付着した微生物群がネットワークを形成する事によって、微生物自身により合成されるシトクロームC物質が導電性ナノワイヤーとなり、電子伝達物質として働き、電子を負極に渡すと考えられる。一方、同時に発生するプロトンは、低分子化された有機物を含む溶液(廃液)を介して好気槽に移動する。
 このような働きにより、メディエーターと呼ばれる電子伝達物質を外部から添加する必要がなくなるのと同時に、微生物自身を介して電子が伝達されることから、廃水処理(水の浄化)を高度化(例えばメディエーターを除去するプロセスを伴うこと)できる。
 さらに嫌気性菌により生産されるメタン、メルカプタン、硫化水素などは、貴金属元素(Pt、Rh、又はAu)や金属元素(Cu)を触媒として、分解されるため、臭気の発生が抑えられる。さらに、嫌気性菌中に硫黄化合物を栄養源として取り込む微生物が存在する場合、臭気の発生がより効果的に抑えられると同時に有機物を分解する際に発生する電子を高効率で電極に受け渡すことができるため、好ましい。メタンは負極に担持されたPt等が触媒となり分解され、通常の燃料電池と同じ反応も示す。メタン以外の臭気物質である硫化水素などもCuが負極に担時されていることから反応し水素と電子を放出し前述と同様に電子は負極に受け渡される。この反応によりメルカプタン系臭気物質の減少(臭気抑制)と同時に高効率で電子を獲得することができる。
 このような電極は、導電性が高いので、カーボンであることが望ましく、微生物が付着しやすいので多孔質であることが望ましい。具体的には、比表面積が16,000cm2/g以上の電極が望ましく、比表面積が360,000cm2/g以上の電極がより望ましい。電極の表面には、少なくとも、細孔直径が100nm以上の、より好ましくは1μm以上の大きさの細孔が開いていることが望ましい。さらに望ましくは、内部まで全体に細孔が分布していることが望ましい。なぜならば、これらのカーボンに触媒として、微生物や上述した触媒の貴金属元素、金属元素を担持させるときに、剥れにくくなるからである。加えて、集積した微生物間にてチトクロームCよるネットワークが密になることから導電性が向上することも、その理由である。また、微生物が中に入り込みやすいので、細孔直径は5μm以下が望ましい。
 嫌気槽と好気槽との分離は、例えば、プロトン及び有機酸が通過可能であって、嫌気性微生物群と好気性微生物群とが通過不可能なもの(セパレータ)、または、嫌気槽側からの上長水の越流によって行われる。セパレータとしては、水処理用MF(Microfiltlation Membrance)膜、ろ紙又は多孔質の素焼き板等が挙げられる。これらの、セパレータは1μm以下の孔を有していることが好ましい。微生物群の大きさが1μm以上であるので、微生物群が通過せず、プロトンや有機酸が通過することができるからである。セパレータの孔径としては、0.1~0.5μmが更に好ましい。有機酸を効果的に通過させる観点から、セパレータの孔径は0.1μm以上が好ましく、0.5μmを超える微生物も存在することから、該孔径は0.5μm以下が好ましい。
 さらにセパレータ又は躯体槽で嫌気槽と好気槽との2槽にすることにより、高濃度廃水を含む一般廃水・産業廃水を最初に嫌気槽側に流入させ、嫌気槽内で有機物を低分子の有機酸等にまで分解後、嫌気槽側から好気槽側にプロトンや有機酸を含む液体が浸出する。好気槽では空気曝気などにより、溶存酸素濃度が高い状態(2~5mg/L)にしていることによりプロトンが酸素還元され水になり、さらに有機酸も好気性菌により分解除去され廃水は浄化される。そして処理された液体を好気槽から排出することが好ましい。このように、嫌気槽と好気槽との2槽にすることにより、廃水の連続流入処理が可能となり、廃水が大量に供給された場合も、嫌気槽の液体と好気槽の液体とが混合することがない。
 このセパレータを通り好気槽に流入した廃水中の低分子に分解された有機酸等は、好気性菌に浄化され水と二酸化炭素まで分解される。しかし、嫌気槽のみである場合、嫌気性菌が有機物を分解する過程において、嫌気性菌自身が生成するアンモニア成分が高濃度に蓄積されることにより、生育抑制が生じる。その結果、嫌気処理(嫌気性菌が有機物を分解)自体を悪化させてしまう。そこで、嫌気層に、セパレータを介した好気槽を設けることによって、アンモニア成分や硫化物イオン等が嫌気層からセパレータを介して好気槽に移動し、好気槽内で分解される。硫黄化合物やアンモニア態窒素を栄養源とする菌群が存在する場合、嫌気槽内に電極を入れることにより電極表面上にこのような菌群が集積する。その結果、嫌気槽内でいままで律速要因になっていた現象が改善される。それと同時に、上記のように嫌気槽と好気槽とを設けることにより、廃水が嫌気槽で処理された後に、さらに廃水(残留アンモニア成分や硫化物イオン等)が、好気槽で処理されるシステムによって、嫌気処理における律速要因が解消される。さらに好気槽側は正極側であることから、負極に渡された電子が、これらの電極間を電気的に接続する外部回路を介して正極に電子が供給され、正極から好気槽へ電子が放出される。放出された電子を好気性菌が得ることにより、好気性菌が有機酸を取り込みエネルギー転換する際に損失する電子を補う事により、好気性菌の活性が維持され廃水の処理効率が向上する。
 好気槽2においては、溶存酸素濃度を高くするための曝気手段7がさらに設けられていることが好ましい。かかる曝気手段を設けることにより、溶存酸素濃度を好ましくは2~5mg/L、より好ましくは、3~5mg/Lとすることで、有機物を分解除去する能力がさらに向上するという効果が発揮され、高効率で廃水の浄化を行うことができる。曝気手段の具体例としては特に制限されるものではなく、例えばエアレータ等の、廃水処理分野で公知の曝気手段が挙げられる。
 嫌気槽1及び好気槽2の少なくとも一方に攪拌手段8を設けてもよい。かかる攪拌手段8を設けることにより、発電効率や有機物の処理効率を向上させることができる。このような攪拌機としては、羽根を回転させるものや、エジェクターやインジェクターが挙げられる。
 第1の本発明の微生物燃料電池システムにおいては、嫌気槽の前段階、嫌気槽と好気槽との間、又は好気槽の後段階に、必要に応じて別の廃液処理手段を設けてもよい。
 第1の本発明の発電方法においては、本発明の微生物燃料電池システムを用いて、負電極5と正電極6との間を電気的に接続する外部回路経由で電気を取り出すことができる。即ち、本発明の微生物燃料電池システムが微生物燃料電池として駆動する。
 第1の本発明の微生物燃料電池システムを用いて発電する場合、嫌気槽1に設けられた負電極5では、嫌気性微生物群により水素イオン及び電子が生成される。生成された水素イオンはセパレータ3を透過して嫌気槽1側から好気槽2側へ移動し、電子は負電極5から外部回路4を介して正電極6に移動し、水素イオン及び電子は正電極6において酸素と結合して水となる。その際に、外部回路4に流れる電気を取り出すことでエネルギーを回収する。
 第1の本発明の有機物の処理方法は、嫌気性微生物群が収容され、かつ負電極が設けられてなる嫌気槽、好気性微生物群が収容され、かつ正電極が設けられてなる好気槽、該嫌気槽と該好気槽とを分離するセパレータ、並びに負電極と正電極との間を電気的に接続する外部回路から構成され、該嫌気槽に有機物を含む液体を供給する工程、及び該好気槽から処理された液体を排出する工程を有することを特徴とする。上記有機物処理方法は、本発明の微生物燃料電池システムを利用することができる。
 嫌気槽に有機物を含む液体を供給する工程としては、タンクに入った有機物を含む液体をポンプ等により嫌気槽へ供給する工程等が挙げられる。
 また、好気槽から処理された液体を排出する工程としては、該液体を好気槽からオーバーフローさせて排出する工程が挙げられる。該好気槽においては、曝気手段がさらに設けられていることが好ましい。かかる曝気手段を設けることにより、溶存酸素濃度を高くすることができる。
 有機酸等の分解は微生物の栄養物質の取り込みであるといえる。しかしエネルギーを取り込む作業であると同時にその反応を進める為にエネルギーも消費することとなる。その際に正極側から放出される電子がエネルギーとして補われる為、微生物は常時活性化された状態となり、微生物数が増加する。その結果、有機物の処理効率が向上することになる。従って、本発明の微生物燃料電池システムによれば、有機物の処理効率が向上することで、いままで余剰汚泥となっていた未分解物質も分解され余剰汚泥の発生も軽減される。
 さらに従来は有機酸からメタン、二酸化炭素まで反応がすすみ、その反応過程において発生する硫化物やアンモニアにより微生物の活性が抑制され、これらの物質を除去する付帯設備が必要であった。しかし、有機酸の処理効率向上により汚泥の発生抑制のみならず、硫化物ならびにアンモニアの発生も軽減される。
 次に、第2の本発明の発電方法及び有機物の処理方法において説明するが、これは、第1の本発明の微生物燃料電池システム、発電方法、及び有機物の処理方法において、セパレータを用いることなく、しかも槽を嫌気槽と好気槽とに分ける必要が無い態様である。
 第2の本発明の発電方法と有機物の処理方法では、BODが2000ppm~5000ppmと高い液体であっても、240~450m3/日の連続的な浄化が可能になる。
 一般的に、BODが高い液体は、分解するための微生物が酸素を大量に必要とするので、槽全体的の液体が嫌気性になりやすく、槽内が好気性となりにくい。そのような液体が大量に流れ込むことは、槽内の液体が嫌気性になりやすい。
 このような嫌気性となりやすい槽内の液体を好気性とするために、例えば、無機凝集剤を有機物を含む槽内の液体に添加することによりフロック(綿状沈殿:Flocks)が形成される方法を用いることができる。かかる方法で用いられる無機凝集剤としては、従来より用いられている、例えば、珪藻土、黒曜石、石灰などに含まれている、カルシウム、マグネシウム、ケイ素の酸化物等が挙げられる。
 その結果、一つの槽内で、槽の下部には、沈殿物が多くなり、槽の上部には、沈殿物が形成されていない状態となる。
 槽の下部の沈殿物は、液体との接触が少なく、無酸素状態に近づくために、嫌気性となり、嫌気層となる。逆に、層の上部は下部と比べて沈殿物が少なくなるので、液体との接触が多く、酸素供給がされやすくなり、好気性となり、好気層となる。
 活性汚泥中に含まれる菌は通性嫌気性細菌であり、酸素がある場合は好気性菌としてはたらき、無酸素状態になれば嫌気性菌となる。
 第2の本発明の発電方法では、BODが2000ppm以上であっても、第1の本発明の発電方法と同様に、上部、好気槽(層)側に正電極を設け、下部、嫌気槽(層)側に負電極を設けることにより、電極間を電気的に接続する外部回路を経由して電気を取り出すことができる。
 第1の本発明の微生物燃料電池システム(発電方法)であれば、セパレータが必要であったが、第2の本発明の発電方法においては、セパレータが必要ではない。
 これは、無機凝集剤により、一つの槽内で好気層側と、嫌気層側とに、分けられているからであり、溶液内を水素イオンと、低分子化された有機酸が浮遊して、嫌気槽(層)側から、好気槽(槽)側へ移動することが可能になるからである。
 第2の本発明の発電方法において、槽を曝気することが好ましい。槽を曝気した場合、嫌気層の形成が阻害されることが予想されるが、意外にも曝気の実施に関わらず、好気層と嫌気層が形成させることができた。
 それは、廃水処理における生物処理として、MLSS(活性汚泥浮遊物質:Mixed liquor Suspended Solid)として、好ましくは15000~20000mg/L、より好ましくは20000~35000mg/Lの濃度で管理を行った場合に、底面から散気装置を用いて曝気を行っても下部に汚泥が大量に堆積するからであるからである。そのため、下部は嫌気層となる。そして槽の上段においては逆に、浮遊しているフロックが懸濁している状態になっているが、下部(嫌気層)と比べて、溶存酸素濃度が高く、相対的に、好気槽となるからである。
 次に、第2の本発明の発電方法、有機物の処理方法に使われる、微生物燃料電池システムについて図4を用いて説明する。
 微生物燃料電池システム11は、槽9に嫌気性微生物群が収容され、かつ嫌気層13が形成される位置、例えば槽内の下部に設けられた電極5、及び好気層14が形成される位置、例えば槽内の上部に設けられた電極6と、前記電極間を電気的に接続する外部回路4とから構成され、該嫌気層13に設けられた電極を負電極5とし、該好気層14に設けられた電極を正電極6とするものである。
 また、処理時間の経過に従って、好気層が嫌気層よりも、溶存酸素濃度が高くなる。従って、好気層には好気性微生物群が存在することになる。
 第2の本発明に用いられる微生物燃料電池システムにおいては、有機物を含む液体を嫌気槽(層)13に供給することが好ましい。即ち、嫌気層は槽の下方に形成されるので、有機物を含む液体は槽の下部から供給することが好ましい。嫌気性微生物群が収容された嫌気槽(層)13に有機物廃水を供給すると、嫌気性菌(通性嫌気性菌・偏性嫌気性菌)が存在することによって、有機物(蛋白、脂質、糖質等)を低分子化(有機酸、単糖類等へ変化)させることができる。さらに偏性嫌気性菌の存在により反応が進み、一部はメタンまで分解される。嫌気性細菌としては、好塩性通性嫌気性細菌が好ましく、耐酸・耐アルカリ性の好塩性通性嫌気性細菌がより好ましい。
 有機物を含む廃液は無機凝集材の添加により、フロック形成をなし、その結果、一部は通常の好気性処理がなされるが大半が沈降する。これにより、上述した反応が生じることから、廃液を上部から供給することも可能である。
 このような2段階の反応過程、即ち廃水中の有機物を低分子の有機酸等へ低分子化させる過程と、さらにメタン等まで分解する過程において、水素と電子が発生する。しかし、メタンまで発酵(分解)が進む場合、電子はこの反応に利用されてしまうため、メタン発酵の反応を抑制させることが好ましい。そしてこの反応は嫌気槽(層)13側で起こるので、嫌気槽(層)13側を負極とし、好気槽(層)14を正極とする。この際に使用する電極としては、PtやCuなどの金属または金属化合物を担持させた多孔質カーボン、さらに好ましくはCNT修飾された多孔質カーボン等が好ましい。正極・負極の電極は同一であってもよく、異なっていてもよい。好ましくは負極側電極はCNTに修飾されたカーボン電極を用い、正極には金属触媒(Pt、Ni等)を担持させた多孔質カーボン等が好ましい。
 多孔質の電極を用いると、負極側電極の表面上に多くの微生物が付着する。付着した微生物群がネットワークを形成する事によって、微生物自身により合成されるシトクロームC物質が電子伝達物質(導電性ナノワイヤー)として働き、電子を負極に渡すと考えられる。一方、同時に発生するプロトンは、槽内を浮遊し、好気槽(層)14に移動する。
 このような働きにより、メディエーターと呼ばれる電子伝達物質を外部から添加する必要がなくなるのと同時に、微生物自身を介して電子が伝達されることから、廃水処理(水の浄化)を高度化(例えばメディエーターを除去するプロセスを伴うこと)できる。
 さらに嫌気性菌により生産されるメタン、メルカプタン、硫化水素などは、貴金属元素(Pt、Rh、又はAu)や金属元素(Cu)を触媒として、分解されるため、臭気の発生が抑えられる。嫌気性菌中において硫黄化合物を栄養源とする菌が存在する場合、臭気の発生がより効果的に抑えられる。メタンは負極に担持されたPt等が触媒となり分解され、通常の燃料電池と同じ反応も示す。メタン以外の臭気物質である硫化水素などもCuが負極に担時されていることから反応し水素と電子を放出し前述と同様に電子は負極に受け渡される。この反応によりメルカプタン系臭気物質の減少(臭気抑制)と同時に高効率で電子を獲得することができる。さらに硫黄化合物を栄養源とする菌が存在する場合、臭気物質のもととなる硫黄化合物を取り込み分解する反応プロセスにて発生する電子もさらに利用できるため、より好ましい。
 このような電極は、導電性が高いので、カーボンであることが望ましく、微生物が付着しやすいので多孔質であることが望ましい。電極の表面には、少なくとも、細孔直径が1μm以上の大きさの細孔が開いていることが望ましい。さらに望ましくは、内部まで全体に細孔が分布していることが望ましい。なぜならば、これらのカーボンに触媒として、上述した触媒の貴金属元素、金属元素を担持させるときに、剥れにくくなるからである。また、微生物が中に入り込みやすいので、細孔直径が5μm以下が望ましい。
 嫌気槽(層)13側と好気槽(層)14との分離は、先述したように、無機凝集剤によって行われる。
 嫌気槽(層)13側と好気槽(層)14との2部分に槽を分けたことにより、高濃度廃水を含む一般廃水・産業廃水を槽に流入させると、分離し、下部の嫌気槽(層)13側で有機物を低分子の有機酸等にまで分解後、嫌気槽(層)13側から好気槽(層)14にプロトンや有機酸を含む液体が移動する。好気槽(層)14では空気曝気などにより、溶存酸素濃度が高い状態(2~5mg/L)にしていることによりプロトンが酸素還元され水になり、さらに有機酸も好気性菌により分解除去され廃水は浄化される。そして、処理された液体を該好気槽(層)から排出することが好ましい。このように、嫌気槽と好気槽との2部分に槽を分けたことにより、廃水の連続流入処理が可能となり、廃水が大量に供給された場合も、嫌気槽の液体と好気槽の液体とが分離している。
 好気槽(層)14に流入した低分子に分解された有機酸等は、好気性菌に浄化され水と二酸化炭素まで分解される。もし、嫌気槽(層)13のみである場合、嫌気性菌が有機物を分解する過程において、嫌気性菌自身が生成するアンモニア成分が高濃度に蓄積されることにより、生育抑制が生じる。その結果、嫌気処理(嫌気性菌が有機物を分解)自体を悪化させてしまう。
 そこで、嫌気槽(層)13を無機凝集剤で分離し、好気槽(層)14を設けることによって、アンモニア成分や硫化物イオン等が嫌気槽(層)13に蓄積せず、嫌気槽(層)13から好気槽(層)14に移動し、好気槽内で分解される。このように、嫌気槽(層)13と好気槽(層)14とを設けて、廃水が嫌気槽(層)13で処理された後に、さらにアンモニア成分や硫化物イオン等が、好気槽(層)14で処理されるシステムによって、嫌気処理における律速要因が解消される。さらに好気槽(層)14側は正極側であることから、負極に渡された電子が、これらの電極間を電気的に接続する外部回路を介して正極に電子が供給され、正極から好気槽(層)14へ電子が放出される。放出された電子を好気性菌が得ることにより、好気性菌が有機酸を取り込みエネルギー転換する際に損失する電子を補う事により、好気性菌の活性が維持され廃水の処理効率が向上する。
 槽においては、溶存酸素濃度を高くするための曝気手段7がさらに設けられていることが好ましい。かかる曝気手段を設けることにより、溶存酸素濃度を好ましくは2~5mg/L、より好ましくは、3~5mg/Lとすることで、有機物を分解除去する能力がさらに向上するという効果が発揮され、高効率で廃水の浄化を行うことができる。曝気手段の具体例としては特に制限されるものではなく、例えばエアレータ等の、廃水処理分野で公知の曝気手段が挙げられる。かかる曝気手段は槽の上部に設けてもよく、中央部に設けてもよく、下部に設けてもよい。
 嫌気槽(層)13及び好気槽(層)14の少なくとも一方に、図示しないが、攪拌手段を設けてもよい。かかる攪拌手段を設けることにより、発電効率や有機物の処理効率を向上させることができる。このような攪拌機としては、羽根を回転させるもの、エジェクターやインジェクターが好ましい例である。
 第2の本発明に用いられる、微生物燃料電池システムにおいては、嫌気槽の前段階、又は好気槽の後段階に、必要に応じて別の廃液処理手段を設けてもよい。
 第2の本発明の発電方法は、上述した微生物燃料電池システムを用いて、負電極5と正電極6との間を電気的に接続する外部回路経由で電気を取り出すことができる。即ち、本発明の微生物燃料電池システムが微生物燃料電池として駆動する。
 第2の本発明の微生物燃料電池システムを用いて発電する場合、嫌気槽(層)13に設けられた負電極5では、嫌気性微生物群により水素イオン及び電子が生成される。生成された水素イオンは槽内を浮遊し嫌気槽(層)13側から好気槽(層)14側へ移動し、電子は負電極5から外部回路4を介して正電極6に移動し、水素イオン及び電子は正電極6において酸素と結合して水となる。その際に、外部回路4に流れる電気を取り出すことでエネルギーを回収する。該好気槽においては、曝気手段がさらに設けられていることが好ましい。かかる曝気手段を設けることにより、溶存酸素濃度を高くすることができる。
 第2の本発明の有機物の処理方法は、嫌気性微生物群を含む液体を入れた槽内に正電極及び負電極と、前記電極間を電気的に接続する外部回路とが設けられてなる槽の槽内に、有機物を含む液体及び無機凝集剤を供給する供給工程、次いで、該槽内を嫌気層と好気層とに分離させる工程、を有する有機物の処理方法であって、負電極が該嫌気層に存在するように該槽内に設けられ、かつ正電極が該好気層に存在するように該槽内に設けられたものであることを特徴とする。上記有機物処理システムは、本発明の微生物燃料電池システムを利用することができる。
 槽に有機物を含む液体を供給する工程としては、タンクに入った有機物を含む液体をポンプ等により槽へ供給する工程等が挙げられる。
 また、槽から処理された液体を排出する工程としては、該液体を好気槽からオーバーフローさせて排出する工程が挙げられる。該好気槽においては、曝気手段がさらに設けられていることが好ましい。かかる曝気手段を設けることにより、溶存酸素濃度を高くすることができる。
 有機酸等の分解は微生物の栄養物質の取り込みであるといえる。しかしエネルギーを取り込む作業であると同時にその反応を進める為にエネルギーも消費することとなる。その際に正極側から放出される電子がエネルギーとして補われる為、微生物は常時活性化された状態となり、微生物数が増加する。その結果、有機物の処理効率が向上することになる。従って、本発明の微生物燃料電池システムによれば、有機物の処理効率が向上することで、いままで余剰汚泥となっていた未分解物質も分解され余剰汚泥の発生も軽減される。有機酸が取り込まれることによりメタン発酵まで反応が進まないことから、その過程で発生する硫化物イオンやアンモニアなどの発生が軽減される。
 次に、実施例を挙げて前記実施形態をさらに具体的に説明する。
実施例1
 図1に示されるような、U字形状のアクリル製の容器を用いて下記のような微生物燃料電池システムを作製した。嫌気槽1及び好気槽2は、直径が約20cm、容積が約3リットルの円柱状のチャンバーであり、互いの下部が直径が約5cmの孔径のアクリル製のパイプで接続されていた。該パイプのほぼ中央に、セパレータ3としてのPVDF(ポリフッ化ビニリデン)膜(東レ(株)製、商品名:MBR膜)を設けた。嫌気槽1及び好気槽2には、攪拌手段8と電極(多孔質カーボンにPtを担持させたもの、東レ(株)製、商品名:TGP-H-090)及び温度計を設置した。さらに好気槽2には、曝気手段としてのエアレータを設け、好気槽2の底部から空気を供給した。
 次いで、日本国岐阜県大垣市内の電子部品製造工場廃水処理場において、活性汚泥法を利用して一般の廃水処理を行っている曝気槽の底部より、嫌気汚泥を、上部より好気汚泥を入手した。嫌気槽1には入手した嫌気汚泥を、そして好気槽2には入手した好気汚泥をそれぞれ2リットル添加した。さらに、嫌気槽1には有機物を含む液体としての加水分解液を0.5リットル供給した。嫌気槽1の上部を酸素と接触しないようにパラフィンフィルムで覆った後、各電極と外部回路としての電気抵抗1Ω電流計とを接続し、エアレーションと攪拌を開始した。
 本微生物燃料電池システムの稼動を2日間行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、初期状態の電圧が0.8V、2日稼動後の電圧が0.8Vであった。このことから、電子伝達物質と呼ばれるメディーターを添加せずとも、稼動期間を通して発電できることが分かる。しかも、プロトン透過膜やイオン交換膜等と比べて安価な膜(PVDF膜)をセパレータとして使用できることも分かる。
 各槽内の液体のBODの測定結果としては、初期状態のBODが嫌気層で10000ppm、好気層で700ppmであったものが、2日稼動後のBODは、嫌気層で1400ppm、好気層で45ppmであった。このように、BOD値が高い液体であっても、最初に嫌気槽で有機物を処理する本発明の有機物の処理方法により、効果的に有機物の分解を行えたことが分かる。しかも、2槽化することにより、バッチ式だけではなく連続的に、有機物を含有する液体を供給し処理することができることが示された。
 稼動2日後の嫌気槽1の活性汚泥を調べたところ、独立栄養細菌であるロドバクターや鉄還元細菌のシュワネラなどが検出されたことから、システムの稼動により嫌気槽1内に嫌気性微生物群が存在することが示された。一方、同様に好気槽2の活性汚泥を調べたところ、好気性微生物であるバチルス属細菌やパラコッカス属細菌やタウエラ属細菌など多数の菌群が検出されたことから、本発明の微生物燃料電池システムの稼動により好気槽2内に好気性微生物群が存在することが示された。さらに、稼動2日後の好気槽と嫌気槽の溶存酸素濃度を測定したところ、それぞれ好気槽は3mg/L、嫌気槽は略0mg/Lであり、好気槽の方が嫌気槽よりも溶存酸素濃度が高い状態で維持されていた。
実施例2
 両方の槽内の電極を緻密体のカーボン(緻密体カーボンにCuを担持させたもの)に変更した以外は実施例1と同様の微生物燃料電池システム及び条件にて、微生物燃料電池システムの稼動を2日間行った。その結果、初期状態の電圧が0.5V、2日稼動後の電圧が0.5Vであった。表1に示されるように、多孔質カーボン製の電極を用いた実施例1は、初期状態の電圧が0.8V、2日稼動後の電圧が0.8Vであるので、緻密質カーボンの実施例2よりも高出力の電力を得ることができる。
 この結果から、電極が多孔質で、比表面積が大きい方が微生物が付着しやすいこと、即ち微生物が密集する事によるネットワーク形成がなされたことにより高出力の電力となったのだと考えられる。このことは、図2及び図3の電子顕微鏡写真からもわかる。即ち、図2はシステム稼動前の実施例1で用いた負電極の表面構造の電子顕微鏡写真であり、図3は2日間のシステム稼動後の実施例1の負電極の表面構造の電子顕微鏡写真である。このように、カーボン上に微生物が付着することで、効率的に有機物の分解が行われ、負電極に電子が渡されると推定される。
実施例3
 図4に示されるような容器を用いて下記のような微生物燃料電池システムを作製した。槽9は、セパレータがないが、嫌気層13及び好気層14に分けられている。
 槽9の下部の嫌気層13と、槽9の上部の好気層14には、電極5及び電極6(多孔質カーボンにPtを担持させたもの、東レ(株)製、商品名:TGP-H-090)及び温度計を設置した。さらに嫌気層13には、曝気手段としてのエアレータ7を設け、嫌気層13の底部から空気12を供給した。各電極と外部回路4としての電気抵抗1Ω電流計とを接続した。
 日本国岐阜県大垣市内の電子部品製造工場廃水処理場において、活性汚泥法を利用して一般の廃水処理を行っている曝気槽の上部より好気汚泥(MLSSとして3000~7000mg/L)を入手した。そして、槽9内に汚泥を投入した。
 次いで、Mgやシリカを含む、珪藻土(2.5g/m3)や黒曜石(19g/m3)の粉末を無機凝集剤として槽9内に添加し、さらにpH調整において石灰スラリーなどCaを含む薬液(300g/L)を添加することにより活性汚泥を凝集させ、槽9の下方に沈降させた。
 本実施例3の微生物燃料電池システムで、水量300L/日の廃水(BOD2000ppm~3500ppm、COD2000ppm~3500ppm)の稼動を7日間行った。その結果、初期状態の電圧が0.8V、7日稼動後の電圧が0.8Vの電圧を示し、最終的には、BOD、CODが共に20ppmにまで下がり、廃水が浄化された。
 以上のことから、実施例3の微生物燃料電池システムは、高出力の電力を得られると同時に大量の廃水も浄化できることがわかる。
比較例1
 図4に示されるような容器を用いて下記のような微生物燃料電池システム11を作製した。槽9は、セパレータがないが、嫌気層13及び好気層14に分けられている。
 嫌気層13と、好気層14には、実施例3と同様に電極5及び電極6(多孔質カーボンにPtを担持させたもの、東レ(株)製、商品名:TGP-H-090)及び温度計を設置した。さらに嫌気層13には、曝気手段としてのエアレータ7を設け、嫌気層13の底部から空気12を供給した。各電極と外部回路4としての電気抵抗1Ω電流計とを接続した。
 次いで、日本国岐阜県大垣市内の電子部品製造工場廃水処理場において、活性汚泥法を利用して一般の廃水処理を行っている曝気槽の上部より好気汚泥(MLSSとして3000~7000mg/L)を入手した。
 そして、実施例3と異なり、比較例では、珪藻土や黒曜石の粉末及び、石灰スラリーの薬液を添加しなかったので、比較例では、活性汚泥が凝集しなかった。
 本微生物燃料電池システムに、水量300L/日の廃水(BOD2000ppm~3500ppm、COD2000ppm~3500ppm)の稼動を7日間行った。その結果、電圧は0Vで変化がなく、BODもCODも2000ppm~3500ppmで浄化されなかった。
 以上のことから、比較例の微生物燃料電池システムでは、連続的な発電と有機物の処理を行うことができなかった。
 本発明によれば、発電と同時に有機物を含有する廃水を浄化することができる微生物燃料電池システムを提供することができる。
1    嫌気槽
2    好気槽
3    セパレータ
4    外部回路
5    負電極
6    正電極
7    曝気手段
8    攪拌手段
9    槽
11   微生物燃料電池システム
12   空気(気泡)
13   嫌気層
14   好気層
                                                                          

Claims (10)

  1.  嫌気性微生物群が収容され、かつ電極が設けられてなる嫌気槽、好気性微生物群が収容され、かつ電極が設けられてなる好気槽、該嫌気槽と該好気槽とを分離するセパレータ、並びに前記電極間を電気的に接続する外部回路から構成され、
     該嫌気槽に設けられた電極を負電極とし、該好気槽に設けられた電極を正電極とする、微生物燃料電池システム。
  2.  該嫌気槽に有機物を含む液体が供給され、該好気槽から処理された液体が排出される、請求項1に記載の微生物燃料電池システム。
  3.  前記好気槽は、前記嫌気槽よりも溶存酸素濃度が高いことを特徴とする請求項1又は2に記載の微生物燃料電池システム。
  4.  高い溶存酸素濃度を好気槽内で実現するための曝気手段が該好気槽にさらに設けられてなる、請求項1~3のいずれか1項に記載の微生物燃料電池システム。
  5.  請求項1~4のいずれか1項に記載の微生物燃料電池システムを用いて、前記外部回路を経由して電気を取り出す発電方法。
  6.  嫌気性微生物群が収容され、かつ負電極が設けられてなる嫌気槽、好気性微生物群が収容され、かつ正電極が設けられてなる好気槽、該嫌気槽と該好気槽とを分離するセパレータ、並びに負電極と正電極との間を電気的に接続する外部回路から構成され、
     該嫌気槽に有機物を含む液体を供給する工程、及び
     該好気槽から処理された液体を排出する工程を有する、有機物の処理方法。
  7.  嫌気性微生物群を含む液体を入れた槽内に、有機物を含む液体及び無機凝集剤を供給して、該槽内を嫌気層と好気層とに分離させ、該嫌気層に存在するように該槽内に設けられた負電極と、該好気層に存在するように該槽内に設けられた正電極とを電気的に接続する外部回路経由で電気を取り出す発電方法。
  8.  前記槽内で曝気手段により曝気することを特徴とする請求項7に記載の発電方法。
  9.  嫌気性微生物群を含む液体を入れた槽内に正電極及び負電極と、前記電極間を電気的に接続する外部回路とが設けられてなる槽の槽内に、有機物を含む液体及び無機凝集剤を供給する供給工程、
     次いで、該槽内を嫌気層と好気層とに分離させる工程、を有する有機物の処理方法であって、負電極が該嫌気層に存在するように該槽内に設けられ、かつ正電極が該好気層に存在するように該槽内に設けられたものである、有機物の処理方法。
  10.  前記槽内で該曝気手段により曝気することを特徴とする請求項9に記載の有機物の処理方法。
                                                                              
PCT/JP2011/071660 2010-09-24 2011-09-22 微生物燃料電池システム、発電方法、及び有機物の処理方法 WO2012039464A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-213564 2010-09-24
JP2010213564 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039464A1 true WO2012039464A1 (ja) 2012-03-29

Family

ID=45873947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071660 WO2012039464A1 (ja) 2010-09-24 2011-09-22 微生物燃料電池システム、発電方法、及び有機物の処理方法

Country Status (1)

Country Link
WO (1) WO2012039464A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872368A (zh) * 2014-01-24 2014-06-18 河海大学 交互式三室生物燃料电池装置及其应用于废水脱氮的方法
JP2015009210A (ja) * 2013-06-28 2015-01-19 メタウォーター株式会社 汚泥改質装置および汚泥改質方法、並びに汚泥改質装置の制御装置、および制御方法
CN105084554A (zh) * 2015-08-11 2015-11-25 北京大学深圳研究生院 水中微囊藻毒素的去除方法和装置
JP2016091805A (ja) * 2014-11-05 2016-05-23 国立研究開発法人農業・食品産業技術総合研究機構 微生物燃料電池
CN107107132A (zh) * 2014-12-26 2017-08-29 尤妮佳股份有限公司 使用过的吸收性物品的再生方法
JP2018513017A (ja) * 2015-02-12 2018-05-24 ティーエスエヌティー グローバル カンパニー,リミテッド 土壌微生物を用いた生ごみ発酵装置および畜糞肥料化装置、これに適したバイオフィールド発生装置、これに適した微生物電池、および、これに適した微生物コンデンサ
CN110228845A (zh) * 2019-07-23 2019-09-13 烟台大学 一种交隔推流式生物电化学系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221897A (ja) * 1987-03-09 1988-09-14 Yasuyoshi Hashimoto 菌体の凝結による乙類焼酎蒸溜廃液のメタン醗酵装置
JPH0833899A (ja) * 1994-07-25 1996-02-06 Shimizu Corp 水の浄化方法
JP2000133327A (ja) * 1998-10-29 2000-05-12 Canon Inc 微生物を利用した発電方法および装置
JP2006114375A (ja) * 2004-10-15 2006-04-27 Mie Tlo Co Ltd 汚泥処理用微生物電池およびそれを用いた汚泥浄化装置
JP2006159112A (ja) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology 微生物担持電池兼電解装置及びこれを用いた電解方法
JP2007117996A (ja) * 2005-09-28 2007-05-17 Ebara Corp 有機性固形汚濁物質含有廃棄物の処理方法及び装置
JP2009224090A (ja) * 2008-03-14 2009-10-01 Kajima Corp 応答遅延型燃料電池用の内部抵抗測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221897A (ja) * 1987-03-09 1988-09-14 Yasuyoshi Hashimoto 菌体の凝結による乙類焼酎蒸溜廃液のメタン醗酵装置
JPH0833899A (ja) * 1994-07-25 1996-02-06 Shimizu Corp 水の浄化方法
JP2000133327A (ja) * 1998-10-29 2000-05-12 Canon Inc 微生物を利用した発電方法および装置
JP2006114375A (ja) * 2004-10-15 2006-04-27 Mie Tlo Co Ltd 汚泥処理用微生物電池およびそれを用いた汚泥浄化装置
JP2006159112A (ja) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology 微生物担持電池兼電解装置及びこれを用いた電解方法
JP2007117996A (ja) * 2005-09-28 2007-05-17 Ebara Corp 有機性固形汚濁物質含有廃棄物の処理方法及び装置
JP2009224090A (ja) * 2008-03-14 2009-10-01 Kajima Corp 応答遅延型燃料電池用の内部抵抗測定装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009210A (ja) * 2013-06-28 2015-01-19 メタウォーター株式会社 汚泥改質装置および汚泥改質方法、並びに汚泥改質装置の制御装置、および制御方法
CN103872368A (zh) * 2014-01-24 2014-06-18 河海大学 交互式三室生物燃料电池装置及其应用于废水脱氮的方法
JP2016091805A (ja) * 2014-11-05 2016-05-23 国立研究開発法人農業・食品産業技術総合研究機構 微生物燃料電池
CN107107132A (zh) * 2014-12-26 2017-08-29 尤妮佳股份有限公司 使用过的吸收性物品的再生方法
EP3238840A4 (en) * 2014-12-26 2018-05-30 Unicharm Corporation Method for recycling used absorbent article
CN107107132B (zh) * 2014-12-26 2021-01-26 尤妮佳股份有限公司 使用过的吸收性物品的再生方法
JP2018513017A (ja) * 2015-02-12 2018-05-24 ティーエスエヌティー グローバル カンパニー,リミテッド 土壌微生物を用いた生ごみ発酵装置および畜糞肥料化装置、これに適したバイオフィールド発生装置、これに適した微生物電池、および、これに適した微生物コンデンサ
CN105084554A (zh) * 2015-08-11 2015-11-25 北京大学深圳研究生院 水中微囊藻毒素的去除方法和装置
CN110228845A (zh) * 2019-07-23 2019-09-13 烟台大学 一种交隔推流式生物电化学系统
CN110228845B (zh) * 2019-07-23 2022-02-11 烟台大学 一种交隔推流式生物电化学系统

Similar Documents

Publication Publication Date Title
JP5315587B2 (ja) 有機物含有排水の処理装置及び処理方法
WO2012039464A1 (ja) 微生物燃料電池システム、発電方法、及び有機物の処理方法
JP5223219B2 (ja) 有機性排水の処理装置
US20190389756A1 (en) Apparatus and operating method for deep denitrification and toxicity reduction of wastewater
JP4610977B2 (ja) 汚泥返流水の処理方法及び処理装置
CN108017223A (zh) 一种甾体类制药废水处理方法
WO2017142954A1 (en) Method and apparatus for selenium removal from high tds wastewater
CN107698037B (zh) 三维电化学偶联三维电生物深度处理垃圾渗滤液反渗透浓水的方法
JP5017854B2 (ja) 有機物含有排水の処理装置及び処理方法
US11884569B2 (en) System for biological nitrogen removal and negative carbon discharge from wastewater with low carbon-to-nitrogen ratio
US20170066668A1 (en) Highly effective sewage treatment based on regulation and control of directed electron flow and apparatus thereof
WO2013084973A1 (ja) 窒素含有有機性廃水の処理システム及び処理方法
JP2009186438A (ja) 硝酸塩廃液処理方法及び装置
JP2006068617A (ja) 水媒体の処理方法及び装置
JP2016043281A (ja) 浄化処理方法及び浄化槽
JP6084150B2 (ja) 脱窒処理方法及び脱窒処理装置
CN108911355B (zh) 一种垃圾渗滤液mbr出水处理方法及系统
CN106854030B (zh) 一种化工污水的处理工艺
JP2009061390A (ja) 水中のアンモニア性窒素の直接酸化法及びその装置
JPH1085752A (ja) 廃水処理方法
JP7218648B2 (ja) 微生物発電方法及び装置
KR20140144859A (ko) 원수분할유입과 내생탈질된 내부반송 슬러지의 분할반송을 이용한 하폐수 고도처리시스템
KR101920428B1 (ko) 미생물연료전지를 이용하여 하폐수의 유기물 및 질소를 동시에 제거하는 하폐수처리 방법
CN112979095A (zh) 一种酮连氮法合成水合肼废水的处理方法
TW201221484A (en) Method and apparatus for sludge treatment and use thereof in sewage biotreatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP