WO2012039260A1 - リニアアクチュエータ - Google Patents

リニアアクチュエータ Download PDF

Info

Publication number
WO2012039260A1
WO2012039260A1 PCT/JP2011/069944 JP2011069944W WO2012039260A1 WO 2012039260 A1 WO2012039260 A1 WO 2012039260A1 JP 2011069944 W JP2011069944 W JP 2011069944W WO 2012039260 A1 WO2012039260 A1 WO 2012039260A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear actuator
rod
outer tube
tube
inner tube
Prior art date
Application number
PCT/JP2011/069944
Other languages
English (en)
French (fr)
Inventor
隆司 柿内
佐藤 浩介
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to EP11826706.1A priority Critical patent/EP2621067B1/en
Priority to US13/822,594 priority patent/US9197113B2/en
Publication of WO2012039260A1 publication Critical patent/WO2012039260A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present invention relates to a linear actuator.
  • JP 2007-274820A proposes a linear actuator comprising a bottomed cylindrical tube, a cylindrical yoke that holds permanent magnets arranged in the axial direction on the outer periphery, and a plurality of coils provided on the inner periphery of the tube is doing. This linear actuator drives the yoke in the axial direction with respect to the tube.
  • the linear actuator of JP2007-274820A includes a rod provided at the bottom of the tube and capable of moving back and forth in the yoke, a bearing provided at the tip of the rod and in sliding contact with the inner periphery of the yoke, and a rod provided on the inner periphery of the yoke. And a bearing slidably in contact with the outer periphery. In this way, the linear actuator is smoothly expanded and contracted by guiding the movement of the yoke with the two bearings.
  • the bottom end of the yoke is provided with a bottomed cylindrical protective cover that covers the open end of the tube.
  • a dust seal that slides on the outer periphery of the tube is provided on the inner periphery of the opening end of the protective cover. The dust seal prevents foreign matters such as dust, dust, and water droplets from entering the linear actuator.
  • the inside is sealed by the dust seal.
  • the permanent magnet may be thermally demagnetized to reduce the thrust of the linear actuator.
  • An object of the present invention is to prevent a reduction in thrust due to heat trapped inside the linear actuator.
  • a linear actuator of the present invention includes an outer tube and an inner tube slidably inserted into the outer tube, and the outer tube and the inner tube are axially connected. A thrust that causes relative displacement is generated.
  • the linear actuator includes a rod that stands on the axial center of the inner tube and forms an annular space with the inner tube, and a rod guide that slides on the inner periphery of the outer tube and guides the rod in the axial direction. And an inner space formed by the plurality of permanent magnets held by the rod in an axial direction, the plurality of coils held by the outer tube and facing the permanent magnet, and the outer tube and the inner tube And a cooling liquid filled therein.
  • FIG. 1 is a longitudinal sectional view of a linear actuator according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing the most extended state and the most contracted state of the linear actuator according to the first embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view of a linear actuator according to the second embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view of a linear actuator according to the third embodiment of the present invention.
  • the linear actuator 1 has a cylindrical outer tube 2, an inner tube 3 which is formed in a bottomed cylindrical shape and whose opening end portion is inserted into the outer tube 2 so as to be movable back and forth, and a base end of the bottom portion 3 a of the inner tube 3.
  • a rod 4 that is connected and has a tip protruding from the inner tube 3 and a rod guide 5 that slides on the inner periphery of the outer tube 2 and guides the rod 4 in the axial direction are provided.
  • the linear actuator 1 includes a field 6 having a plurality of permanent magnets 6 a held inside a rod 4, and a plurality of coils 7 that are held by the outer tube 2 and arranged to face the outer periphery of the field 6.
  • a cylindrical coil holder 15 that holds the coil 7 on the inner periphery and is fixed to the outer tube 2 on the outer periphery.
  • the linear actuator 1 generates a thrust force that relatively displaces the outer tube 2 and the inner tube 3 in the axial direction by the magnetic force between the field 6 and the coil 7 generated by exciting the coil 7.
  • the opening side into which the inner tube 3 is inserted is referred to as the distal end, and the opposite side is referred to as the proximal end.
  • the opening part side inserted in the outer tube 2 is called a front-end
  • the outer tube 2 has a cylindrical base portion 11 and a cylindrical inner portion 12 connected to the base portion 11.
  • the base portion 11 has a smaller inner diameter at the base end on which the rod guide 5 slides compared to the inner periphery at the tip end where the inner portion 12 is inserted.
  • the base portion 11 includes a guide sliding contact portion 11a into which the rod guide 5 is slidably inserted, and a fitting portion 11b that is connected in the axial direction of the guide sliding contact portion 11a and has a larger diameter than the guide sliding contact portion 11a. And have.
  • a threaded portion 11c is formed on the inner periphery of the tip of the fitting portion 11b. The inner part 12 is screwed to the screwing part 11c.
  • the inner part 12 is screwed to the tip of the fitting part 11b, and the inner tube 3 slides on the inner periphery.
  • the inner portion 12 has a bearing mounting portion 12b and a seal mounting portion 12c formed on the inner periphery of the tip portion into which the inner tube 3 is inserted.
  • the seal mounting portion 12c is formed on the tip side of the bearing mounting portion 12b.
  • the bearing mounting portion 12 b is provided with a bearing 13 as an annular first bearing that is in sliding contact with the outer periphery of the inner tube 3.
  • An annular dynamic seal 14 that is in sliding contact with the outer periphery of the inner tube 3 is provided in the seal mounting portion 12c.
  • a screwing portion 12a that is screwed into the screwing portion 11c on the inner periphery of the base portion 11 is formed.
  • the inner portion 12 is integrated with the base portion 11 when the screwing portion 12a is screwed into the screwing portion 11c.
  • a plurality of coils 7 are arranged side by side in the axial direction and are held on the inner periphery of the coil holder 15.
  • the coil 7 is held by the outer tube 2 via the coil holder 15.
  • the coil 7 is provided so as to surround the outer periphery of the rod 4, and faces the permanent magnet 6 a provided on the rod 4.
  • a total of six coils 7 are provided, two for each of the U phase, the V phase, and the W phase.
  • the coil 7 is arranged in the order of the U phase, the V phase, and the W phase.
  • the coil 7 is switched in energization phase based on the electrical angle with respect to the field 6, and the current magnitude is adjusted by PWM control. Thereby, the magnitude
  • the number of the coils 7 is set to a number suitable for the thrust generated by the linear actuator 1 and the energization method.
  • the coil holder 15 includes a cylindrical coil holding portion 15a that holds the coil 7 on the inner periphery, a flange portion 15b that is provided in the axial direction from the base end of the coil holding portion 15a, and an axial passage through the flange portion 15b. And a communication hole 15c.
  • the coil holding part 15 a is inserted into an annular space 21 formed between the rod 4 and the inner tube 3.
  • the flange portion 15b is provided with a magnetic sensor 16 as a position sensor for detecting the stroke position of the rod 4.
  • the magnetic sensor 16 detects the relative position of the field 6 with respect to the coil 7 by detecting the magnetism of the permanent magnet 6a.
  • the magnetic sensor 16 and the coil 7 are assembled into a coil holder 15 to form a cartridge. Therefore, the magnetic sensor 16 and the coil 7 can be easily incorporated into the outer tube 2.
  • the flange portion 15 b is sandwiched between the base portion 11 and the inner portion 12 and is fixed to the outer tube 2. Specifically, first, the flange portion 15 b is fitted into the fitting portion 11 b of the base portion 11. In this state, the screwing part 12a of the inner part 12 is screwed into the screwing part 11c of the base part 11. As a result, the flange portion 15 b is sandwiched between the step portion 11 d of the base portion 11 and the end portion 12 d of the inner portion 12.
  • the inner tube 3 is provided such that the end where the opening is formed is inserted into the outer tube 2 so that the inner tube 3 can advance and retreat. Specifically, the inner tube 3 is inserted into an annular space formed between the inner portion 12 of the outer tube 2 into which the inner tube 3 is inserted and the coil holder 15.
  • a bearing mounting portion 3 c is formed on the outer periphery of the tip of the inner tube 3.
  • the bearing mounting portion 3 c is provided with a bearing 17 as a second bearing that is in sliding contact with the inner periphery of the outer tube 2.
  • the inner tube 3 is slidably inserted into the outer tube 2 via a bearing 13 and a bearing 17. Thereby, the outer tube 2 and the inner tube 3 receive a bending moment due to the lateral force acting on the linear actuator 1.
  • a communication hole 3 b that communicates the gap 20 formed between the inner tube 3 and the outer tube 2 and the inside of the inner tube 3 is formed on the side of the inner tube 3 near the bearing 17.
  • the base end of the rod 4 is connected to the bottom 3 a of the base end of the inner tube 3.
  • the tip of the rod 4 protrudes from the opening at the tip of the inner tube 3 and faces the guide sliding contact portion 11 a in the base portion 11 of the outer tube 2.
  • the rod 4 stands at the axial center of the inner tube 3 and forms an annular space 21 between the rod 4 and the inner tube 3.
  • the rod 4 includes a cylindrical tube portion 4a that houses the permanent magnet 6a therein, a plug 4b that closes one open end of the tube portion 4a, and a plug 4c that closes the other open end of the tube portion 4a.
  • the plug 4 b is connected to the bottom 3 a of the inner tube 3, and the plug 4 c is connected to the rod guide 5.
  • a plurality of rod-like permanent magnets 6a arranged in the axial direction are accommodated in the cylindrical portion 4a.
  • the permanent magnet 6a is held by the rod 4 by being accommodated in the cylindrical portion 4a.
  • the permanent magnet 6a is magnetized so that the N pole and the S pole are positioned in the axial direction.
  • Adjacent permanent magnets 6a are accommodated in the rod 4 side by side in the axial direction with the same poles facing each other.
  • the rod 4 is inserted through the inner circumference of the coil holder 15.
  • the permanent magnet 6 a faces the coil 7 held on the inner periphery of the coil holder 15.
  • the coil holder 15 is inserted into an annular space 21 formed between the inner tube 3 and the rod 4 so that the permanent magnet 6a and the coil 7 face each other.
  • the permanent magnet 6 a attached to the rod 4 generates a magnetic field that acts on the coil 7.
  • the permanent magnet 6 a constitutes the field 6 in the linear actuator 1.
  • the cylindrical part 4a When the cylindrical part 4a is formed of a ferromagnetic material, the magnetic flux concentrates in the cylindrical part 4a, which may affect the magnetic flux on the outer periphery of the permanent magnet 6a. Therefore, the cylinder part 4a is formed with a nonmagnetic material. Further, six permanent magnets 6a are provided on the rod 4, but a plurality of permanent magnets 6a may be provided because the linear actuator 1 can be driven.
  • the rod 4 has a structure in which the inside is formed hollow and the permanent magnet 6a is accommodated therein.
  • the rod 4 may be formed in a cylindrical shape, and the annular permanent magnet 6 a may be attached to the outer periphery of the rod 4.
  • the permanent magnet 6a may be magnetized so as to be polarized on the inner periphery and the outer periphery in addition to forming the N pole and the S pole in the axial direction. That is, the permanent magnet 6a only needs to be configured such that the N pole and the S pole are alternately positioned along the axial direction of the rod 4.
  • disk-shaped yokes 18 are interposed between adjacent permanent magnets 6a.
  • the yoke 18 can efficiently generate a magnetic field on the outer periphery of the rod 4.
  • the rod guide 5 fixed to the plug 4c provided at the other end of the rod 4 is formed in a disc shape.
  • the rod guide 5 is fixed to the tip of the rod 4.
  • a dynamic seal 19 that is in sliding contact with the inner periphery of the guide sliding contact portion 11 a in the base portion 11 of the outer tube 2 is attached.
  • the rod guide 5 is slidably inserted into the guide sliding contact portion 11 a of the outer tube 2 through the dynamic seal 19.
  • the rod 4 is guided by a rod guide 5 so as not to swing with respect to the outer tube 2.
  • the plug 4 b provided at the base end of the rod 4 is connected to the bottom 3 a of the inner tube 3.
  • the inner tube 3 is positioned in the radial direction on the outer tube 2 via a bearing 13 and a bearing 17 so that the shaft does not run out. Therefore, the rod 4 is positioned in the radial direction with respect to the outer tube 2 and the inner tube 3 so as not to swing with respect to both.
  • the coil 7 is held by the outer tube 2 and is positioned in the radial direction. Therefore, the coil 7 and the field 6 do not swing each other. Therefore, the linear actuator 1 can perform an expansion / contraction operation smoothly.
  • the outer tube 2 and the inner tube 3 are sealed with a dynamic seal 14.
  • the outer tube 2 and the rod guide 5 are sealed with a dynamic seal 19. Therefore, the interior of the linear actuator 1 is sealed with the dynamic seal 14 and the dynamic seal 19.
  • the internal space of the linear actuator 1 formed by the outer tube 2 and the inner tube 3 is filled with a liquid coolant having a higher thermal conductivity than that of gas.
  • the linear actuator 1 in the contraction process in which the inner tube 3 enters the outer tube 2, the linear actuator 1 has the tip of the bearing mounting portion 3 c of the inner tube 3 at the flange portion 15 b of the coil holder 15. Stroke until it touches.
  • the flange portion 15 b also functions as a stopper that restricts the stroke of the linear actuator 1.
  • the linear actuator 1 in the extension process in which the inner tube 3 is withdrawn from the outer tube 2, the linear actuator 1 has a bearing mounting portion 3c of the inner tube 3 and a bearing mounting portion 12b of the outer tube 2. Stroke until and abut.
  • the gap 20 between the outer tube 2 and the inner tube 3 communicates with the inside of the inner tube 3 through the communication hole 3b.
  • the gap 20 is formed by an annular space 21 between the inner tube 3 and the rod 4, a space 22 formed between the outer tube 2 and the coil holder 15, and the outer tube 2 and the rod guide 5. It communicates with the space 23.
  • the air gap 20, the annular space 21, the space 22, and the space 23 formed in the linear actuator 1 communicate with each other.
  • the internal volumes of the air gap 20, the annular space 21, the space 22, and the space 23 change according to the stroke of the linear actuator 1.
  • the cross-sectional area of the outer periphery of the inner tube 3 indicates the area of a circle surrounded by the shape of the outer periphery of the inner tube 3 in a cross section perpendicular to the central axis of the inner tube 3.
  • the cross-sectional area of the inner periphery of the outer tube 2 indicates the area of a circle surrounded by the shape of the inner periphery of the outer tube 2 in a cross section perpendicular to the central axis of the outer tube 2.
  • the slidable range of the rod guide 5 is formed over the entire length of the guide sliding contact portion 11a so that the entire length of the outer tube 2 is not wasted.
  • a range in which the rod guide 5 does not slide in contact with the stroke of 1 may be provided.
  • the volume of the gap 20 decreases.
  • the volume of the air gap 20 decreases by a decrease 31 shown in FIG.
  • the decrease 31 is equal to the increase 33 of the increase in the volume of the space 22 in FIG.
  • the volume of the space 23 decreases.
  • the volume of the space 23 decreases by a decrease 32 shown in FIG.
  • the decrease 32 is equal to the total volume of the increase 34 of the volume of the annular space 21 in FIG. 2B and the increase 35 of the increase of the volume of the space 22.
  • the cross-sectional area of the outer periphery of the inner tube 3 and the cross-sectional area of the inner periphery of the outer tube 2 are formed to be the same, so that the rod 4 strokes in the linear actuator 1 and the volume of the gap 20 and the space 23 is increased.
  • the volume of the annular space 21 and the space 22 is increased by the same amount as the decrease.
  • the rod 4 strokes and the volume of the annular space 21 and the space 22 decreases, the volume of the gap 20 and the space 23 increases by the same amount as the decrease. Therefore, even if the rod 4 strokes in the linear actuator 1, the internal volume does not change.
  • the internal volume does not change as the linear actuator 1 expands and contracts, it is not necessary to provide a reservoir for replenishing the coolant from the outside of the linear actuator 1 or discharging the coolant to the outside. .
  • the heat generated by energizing the coil 7 can be quickly transmitted to the outer tube 2 and the inner tube 3 through the coolant. Therefore, the heat generated by the coil 7 can be radiated to the outside through the coolant. Therefore, thermal demagnetization of the permanent magnet 6a can be prevented, and a reduction in thrust of the linear actuator 1 can be prevented.
  • the outer periphery of the inner tube 3 that is in sliding contact with the outer tube 2 and the inner periphery of the outer tube 2 that is in sliding contact with the rod guide 5 are formed in a circular shape having the same diameter so as to have the same cross-sectional area.
  • the cross-sectional areas need only be the same and are not limited to a circle.
  • the annular space 21 and the space 23 communicate with each other via an annular gap between the rod 4 and the coil holder 15.
  • the annular gap is as small as possible.
  • resistance is generated when the coolant moves between the annular space 21 and the space 23, and a damping force against the stroke of the rod 4 may be generated.
  • the flange portion 15b of the coil holder 15 is provided with a communication hole 15c having a cross-sectional area that does not hinder the flow of the coolant, and the annular space 21 and the space 23 are communicated. . Therefore, generation
  • the gap between the rod 4 and the coil holder 15 can be reduced, so that the generation of damping force can be suppressed and the maximum thrust of the linear actuator 1 can be improved.
  • a damping force against the external force can be generated by giving resistance to the flow of the cooling liquid or blocking the flow of the cooling liquid.
  • the linear actuator 1 has a structure in which the outer tube 2 and the inner tube 3 receive a bending moment due to a lateral force acting on the linear actuator 1. Therefore, an excessive bending moment does not act on the rod 4, and an excessive stress is prevented from acting on the permanent magnet 6a held by the rod 4.
  • the coil 7 is held by a cylindrical coil holder 15 that is fixed to the outer tube 2 via a flange portion 15b. Therefore, an excessive bending moment does not act on the coil 7, and the coil 7 is prevented from being peeled off from the coil holder 15 or the coil 7 is disconnected.
  • the heat generated by energizing the coil 7 can be quickly transmitted to the outer tube 2 and the inner tube 3 through the coolant. Therefore, the heat generated by the coil 7 can be radiated to the outside through the coolant. Therefore, thermal demagnetization of the permanent magnet 6a can be prevented, and a reduction in thrust of the linear actuator 1 can be prevented.
  • the linear actuator 201 is different from the above-described embodiment in that the linear actuator 201 includes a free piston 220 as a volume compensation mechanism that guarantees a volume change accompanying a temperature change of the coolant.
  • the free piston 220 is provided in the annular space 21 between the inner periphery of the inner tube 3 and the outer periphery of the rod 4 so as to be slidable in the axial direction.
  • the free piston 220 forms an air chamber 26 in which air, which is a compressive fluid, is confined with the bottom 3 a of the inner tube 3.
  • the free piston 220 moves to the tip side of the inner tube 3.
  • the internal volume of the linear actuator 201 is reduced by the volume reduction of the coolant.
  • the free piston 220 moves to the proximal end side of the inner tube 3.
  • the internal volume of the linear actuator 201 is increased by the volume increase of the coolant.
  • the volume change of the coolant filled in the linear actuator 201 can be compensated by the volume change of the air chamber 26.
  • the linear actuator 301 is different from the above-described embodiment in that it includes a spring receiving portion 322 and a spring 323 as a volume compensation mechanism.
  • the rod guide 321 includes a spring receiving portion 322 provided at the tip of the rod 4 on a plug 4c provided at the tip of the rod 4, and a spring receiving portion so that the rod guide 321 can slide on the outer periphery of the rod 4 in the axial direction. It is attached via a spring 323 that supports the 322.
  • the rod guide 321 guides the movement of the rod 4 in the axial direction and prevents the shaft 4 from swinging relative to the outer tube 2.
  • the rod guide 321 is formed in an annular shape. On the outer periphery of the rod guide 321, a dynamic seal 324 that is in sliding contact with the inner periphery of the guide sliding contact portion 11 a of the outer tube 2 is attached. A dynamic seal 325 that is in sliding contact with the outer periphery of the rod 4 is attached to the inner periphery of the rod guide 321.
  • the rod guide 321 is in sliding contact with the rod 4 via a dynamic seal 325 and is in sliding contact with the outer tube 2 via a dynamic seal 324. Thereby, the inside of the linear actuator 1 is sealed.
  • the spring receiving portion 322 attached to the tip of the rod 4 slides toward the tip of the outer tube 2 and presses the rod guide 321 via the spring 323.
  • the rod guide 321 slides following the rod 4, and the internal volume of the linear actuator 301 does not change as in the case of the linear actuator 1 in which the rod guide 5 is fixed to the rod 4.
  • the linear actuator 301 When the linear actuator 301 extends, the internal pressure decreases and the rod guide 321 is pressed by the external air pressure. Thereby, the rod guide 321 can move to the distal end side of the outer tube 2. Therefore, in the linear actuator 301, the spring 323 may be omitted.
  • the linear actuator 301 can be efficiently extended by providing the spring 323.
  • the rod guide 321 moves to the distal end side of the outer tube 2.
  • the internal volume of the linear actuator 301 is reduced by the volume reduction of the coolant.
  • the rod guide 321 moves toward the proximal end side of the outer tube 2 by compressing the spring 323.
  • the internal volume of the linear actuator 301 is increased by the volume increase of the coolant.
  • the change in the volume of the coolant filled in the linear actuator 301 can be compensated by the movement of the rod guide 321 in the axial direction.
  • the rod guide 321 moves in the axial direction with respect to the outer tube 2 to compensate for the volume change of the coolant. Therefore, as compared with the case where a free piston, a reservoir, or the like is provided to compensate for the volume change of the coolant, the number of components can be minimized. Therefore, the manufacturing cost can be reduced and the weight can be reduced.
  • the volume compensation mechanism is provided like the linear actuators 201 and 301, the cross-sectional area of the outer periphery of the inner tube 3 and the cross-sectional area of the inner periphery of the outer tube 2 do not have to be formed identically.
  • a reservoir communicating with the inside of the linear actuator 1 may be provided outside the linear actuator 1.
  • a uniflow structure in a general hydraulic cylinder may be applied, and the coolant may be circulated between the interior of the linear actuator 1 and the reservoir as the linear actuator 1 expands and contracts.
  • the coil 7 may be cooled by circulating a coolant using a pump.
  • heat dissipation fins may be provided on the outer periphery of the outer tube 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

 リニアアクチュエータは、アウターチューブと、前記アウターチューブ内に摺動自在に挿入されるインナーチューブと、を備える。リニアアクチュエータは、前記インナーチューブの軸心部に起立して前記インナーチューブとの間に環状空間を形成するロッドと、前記アウターチューブの内周に摺接して前記ロッドを軸方向に案内するロッドガイドと、前記ロッドに軸方向に並べて保持される複数の永久磁石と、前記アウターチューブに保持されて前記永久磁石に対向する複数のコイルと、前記アウターチューブと前記インナーチューブとによって形成される内部空間に充填される冷却液と、を備える。

Description

リニアアクチュエータ
 本発明は、リニアアクチュエータに関する。
 JP2007-274820Aは、有底筒状のチューブと、軸方向に並べて設けられる永久磁石を外周に保持する筒状のヨークと、チューブの内周に設けられた複数のコイルとを備えるリニアアクチュエータを提案している。このリニアアクチュエータは、チューブに対してヨークを軸方向に駆動するものである。
 JP2007-274820Aのリニアアクチュエータは、チューブの底部に設けられてヨーク内に進退可能なロッドと、ロッドの先端に設けられてヨークの内周に摺接する軸受と、ヨークの内周に設けられてロッドの外周に摺接する軸受とを備える。このように、ヨークの移動を二つの軸受で案内することによって、リニアアクチュエータの円滑な伸縮を実現している。
 ヨークの基端には、チューブの開口端を覆う有底円筒状の保護カバーが設けられる。保護カバーにおける開口端の内周には、チューブの外周に摺接するダストシールが設けられる。このダストシールは、塵,埃,水滴などの異物がリニアアクチュエータの内部へ進入することを防止する。このように、JP2007-274820Aのリニアアクチュエータでは、ダストシールによって内部が密閉されている。
 JP2007-274820Aのリニアアクチュエータでは、内部が密閉されているため、コイルが通電によって発熱したときに、熱が外部へ逃げにくい。リニアアクチュエータ内に熱がこもると、永久磁石が熱減磁して、リニアアクチュエータの推力が低下するおそれがある。
 本発明の目的は、リニアアクチュエータの内部にこもった熱による推力の低下を防止することである。
 以上の目的を達成するために、本発明のリニアアクチュエータは、アウターチューブと、前記アウターチューブ内に摺動自在に挿入されるインナーチューブと、を備え、前記アウターチューブと前記インナーチューブとを軸方向に相対変位させる推力を発生する。リニアアクチュエータは、前記インナーチューブの軸心部に起立して前記インナーチューブとの間に環状空間を形成するロッドと、前記アウターチューブの内周に摺接して前記ロッドを軸方向に案内するロッドガイドと、前記ロッドに軸方向に並べて保持される複数の永久磁石と、前記アウターチューブに保持されて前記永久磁石に対向する複数のコイルと、前記アウターチューブと前記インナーチューブとによって形成される内部空間に充填される冷却液と、を備える。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本発明の第一の実施の形態によるリニアアクチュエータの縦断面図である。 図2は、本発明の第一の実施の形態によるリニアアクチュエータの最伸長状態と最収縮状態とを示す縦断面図である。 図3は、本発明の第二の実施の形態によるリニアアクチュエータの縦断面図である。 図4は、本発明の第三の実施の形態によるリニアアクチュエータの縦断面図である。
 以下、図面を参照して、本発明の第一の実施の形態によるリニアアクチュエータ1について説明する。
 まず、図1及び図2を参照して、リニアアクチュエータ1の構成について説明する。
 リニアアクチュエータ1は、円筒状のアウターチューブ2と、有底円筒状に形成されて開口端部がアウターチューブ2に進退自在に挿入されるインナーチューブ3と、インナーチューブ3の底部3aに基端が連結されるとともに先端がインナーチューブ3から突出するロッド4と、アウターチューブ2の内周に摺接してロッド4を軸方向に案内するロッドガイド5とを備える。リニアアクチュエータ1は、ロッド4の内部に保持される複数の永久磁石6aを有する界磁6と、アウターチューブ2に保持されて界磁6の外周に対向するように配置される複数のコイル7と、内周にコイル7を保持して外周がアウターチューブ2に固定される円筒状のコイルホルダ15とを備える。リニアアクチュエータ1は、コイル7を励磁することで生じる界磁6とコイル7との間の磁力によって、アウターチューブ2とインナーチューブ3とを軸方向に相対変位させる推力を発生するものである。
 なお、以下の説明では、アウターチューブ2とその関連部材については、インナーチューブ3が挿入される開口部側を先端、反対側を基端と称する。同様に、インナーチューブ3とその関連部材については、アウターチューブ2に挿入される開口部側を先端、反対側を基端と称する。
 以下、リニアアクチュエータ1の各構成部品について詳細に説明する。
 アウターチューブ2は、円筒状のベース部11と、ベース部11に連結される円筒状のインナー部12とを有する。
 ベース部11は、インナー部12が挿入される先端の内周と比較して、ロッドガイド5が摺動する基端の内周の方が小径に形成される。ベース部11は、ロッドガイド5が摺動自在に挿入されるガイド摺接部11aと、ガイド摺接部11aの軸方向に連設されてガイド摺接部11aよりも大径な嵌合部11bとを有する。嵌合部11bの先端の内周には、螺合部11cが形成される。螺合部11cには、インナー部12が螺着される。
 インナー部12は、嵌合部11bの先端に螺着され、内周をインナーチューブ3が摺動するものである。インナー部12は、インナーチューブ3が挿入される先端部の内周に形成される軸受装着部12bとシール装着部12cとを有する。シール装着部12cは、軸受装着部12bよりも先端側に形成される。軸受装着部12bには、インナーチューブ3の外周に摺接する環状の第一軸受としての軸受13が設けられる。シール装着部12cには、インナーチューブ3の外周に摺接する環状のダイナミックシール14が設けられる。
 インナー部12の基端には、ベース部11の内周の螺合部11cに螺合する螺合部12aが形成される。インナー部12は、螺合部12aが螺合部11cに螺合することによってベース部11と一体化される。
 コイル7は、軸方向に並べて複数配置され、コイルホルダ15の内周に保持される。コイル7は、コイルホルダ15を介してアウターチューブ2に保持される。コイル7は、ロッド4の外周を取り巻くように設けられ、ロッド4に設けられた永久磁石6aに対向する。コイル7は、U相とV相とW相とがそれぞれ二つずつ、合計六個設けられる。コイル7は、U相,V相,W相の順に配置される。
 コイル7は、界磁6に対する電気角に基づいて通電位相の切換がなされるとともに、PWM制御によって電流の大きさが調整される。これにより、リニアアクチュエータ1の推力の大きさと発生方向とが制御される。コイル7の数は、リニアアクチュエータ1が発生する推力や通電方式に適した数に設定される。
 また、アウターチューブ2とインナーチューブ3とを軸方向に相対変位させる外力が作用した場合には、コイル7への通電あるいはコイル7に発生する誘導起電力によって、外力による相対変位を抑制する力が発生する。これにより、リニアアクチュエータ1に付与される外力に起因する機器の振動や運動を減衰することができる。
 コイルホルダ15は、内周にコイル7を保持する円筒状のコイル保持部15aと、コイル保持部15aの基端から軸方向に連設されるフランジ部15bと、フランジ部15bを軸方向に貫通する連通孔15cとを備える。
 コイル保持部15aは、ロッド4とインナーチューブ3との間に形成される環状空間21内に挿入される。
 フランジ部15bには、ロッド4のストローク位置を検出する位置センサとしての磁気センサ16が設けられる。磁気センサ16は、永久磁石6aの磁気を検出することで、コイル7に対する界磁6の相対位置を検出する。
 磁気センサ16とコイル7とは、コイルホルダ15に組み込まれてカートリッジ化されている。そのため、磁気センサ16とコイル7とを、アウターチューブ2に容易に組み込むことができる。
 フランジ部15bは、ベース部11とインナー部12との間に挟持されて、アウターチューブ2に固定される。具体的には、まず、フランジ部15bを、ベース部11の嵌合部11bに嵌合させる。この状態で、ベース部11の螺合部11cにインナー部12の螺合部12aを螺合させる。これにより、フランジ部15bは、ベース部11の段部11dとインナー部12の端部12dとによって挟持される。
 インナーチューブ3は、開口部が形成される先端がアウターチューブ2に挿入され、アウターチューブ2に対して進退自在に設けられる。具体的には、インナーチューブ3は、アウターチューブ2におけるインナーチューブ3が挿入されるインナー部12とコイルホルダ15との間に形成された環状の空間に挿入されている。
 インナーチューブ3の先端の外周には、軸受装着部3cが形成される。軸受装着部3cには、アウターチューブ2の内周に摺接する第二軸受としての軸受17が設けられる。インナーチューブ3は、軸受13と軸受17とを介して摺動自在にアウターチューブ2に挿入される。これにより、リニアアクチュエータ1に作用する横力による曲げモーメントは、アウターチューブ2とインナーチューブ3とが受けることとなる。
 インナーチューブ3における軸受17近傍の側部には、インナーチューブ3とアウターチューブ2との間に形成される空隙20と、インナーチューブ3の内部とを連通する連通孔3bが形成される。連通孔3bが設けられることによって、空隙20が密閉されることが防止される。これにより、リニアアクチュエータ1の伸縮時に、空隙20の圧力変動が生じてリニアアクチュエータ1の円滑な伸縮作動を阻害することが防止される。
 インナーチューブ3の基端の底部3aには、ロッド4の基端が連結される。ロッド4の先端は、インナーチューブ3の先端の開口部から突出しており、アウターチューブ2のベース部11におけるガイド摺接部11aに臨む。
 ロッド4は、インナーチューブ3の軸心部に起立して、インナーチューブ3との間に環状空間21を形成する。ロッド4は、永久磁石6aを内部に収容する円筒状の筒部4aと、筒部4aの一方の開口端を閉塞するプラグ4bと、筒部4aの他方の開口端を閉塞するプラグ4cとを備える。プラグ4bは、インナーチューブ3の底部3aに連結され、プラグ4cは、ロッドガイド5に連結される。
 筒部4a内には、軸方向に並べて配置される複数の棒状の永久磁石6aが収容される。永久磁石6aは、筒部4a内に収容されることで、ロッド4に保持される。本実施の形態では、永久磁石6aは、その軸方向にN極とS極とが位置するように着磁される。隣り合う永久磁石6aは、同極どうしが対向した状態でロッド4内に軸方向に並べて収容される。
 ロッド4は、コイルホルダ15の内周を挿通する。これにより、永久磁石6aが、コイルホルダ15の内周に保持されたコイル7と対向することとなる。コイルホルダ15は、インナーチューブ3とロッド4との間に形成される環状空間21内に挿入されて、永久磁石6aとコイル7とが対向するようになっている。ロッド4に取り付けられた永久磁石6aは、コイル7に作用する磁界を発生させる。永久磁石6aは、リニアアクチュエータ1における界磁6を構成する。
 筒部4aを強磁性体材料で形成した場合には、筒部4a内に磁束が集中し、永久磁石6aの外周における磁束に影響を及ぼすおそれがある。よって、筒部4aは、非磁性体材料で形成される。また、永久磁石6aは、ロッド4に六個設けられているが、リニアアクチュエータ1の駆動ができればよいため、複数個設けられればよい。
 本実施の形態においては、ロッド4は、内部が中空に形成されて、内部に永久磁石6aを収容する構造となっている。これに限らず、ロッド4を円柱状に形成して、ロッド4の外周に環状の永久磁石6aを装着するようにしてもよい。永久磁石6aを環状に形成した場合には、軸方向にN極とS極とが位置するように形成するほか、内周と外周とに分極するように着磁してもよい。即ち、永久磁石6aは、ロッド4の軸方向に沿ってN極とS極とが交互に位置するように構成されていればよい。
 なお、本実施の形態では、隣り合う永久磁石6aの間にそれぞれ円盤状のヨーク18が介装される。このヨーク18によって、ロッド4の外周に効率よく磁界を生じさせることができるようになっている。
 ロッド4の他端に設けられるプラグ4cに固定されるロッドガイド5は、円板状に形成される。ロッドガイド5は、ロッド4の先端に固定される。ロッドガイド5の外周には、アウターチューブ2のベース部11におけるガイド摺接部11aの内周に摺接するダイナミックシール19が装着される。ロッドガイド5は、ダイナミックシール19を介してアウターチューブ2のガイド摺接部11aに摺動自在に挿入される。ロッド4は、ロッドガイド5によってガイドされ、アウターチューブ2に対して軸振れしないようになっている。
 ロッド4の基端に設けられるプラグ4bは、インナーチューブ3の底部3aに連結される。インナーチューブ3は、アウターチューブ2に軸受13と軸受17とを介して径方向に位置決めされて、軸振れしないようになっている。よって、ロッド4は、アウターチューブ2およびインナーチューブ3に対して径方向に位置決めされて、両者に対して軸振れしないようになっている。
 また、コイル7は、アウターチューブ2に保持されて径方向に位置決めされている。よって、コイル7と界磁6とが互いに軸振れしないようになっている。したがって、リニアアクチュエータ1は、円滑に伸縮動作を行うことができる。
 アウターチューブ2とインナーチューブ3との間は、ダイナミックシール14によってシールされている。アウターチューブ2とロッドガイド5との間は、ダイナミックシール19によってシールされている。よって、リニアアクチュエータ1の内部は、ダイナミックシール14とダイナミックシール19とによって密閉状態とされている。アウターチューブ2とインナーチューブ3とによって形成されるリニアアクチュエータ1の内部空間には、気体と比較して熱伝導率が高い液体状の冷却液が充填される。
 図2(A)に示すように、インナーチューブ3がアウターチューブ2内に進入する収縮工程においては、リニアアクチュエータ1は、インナーチューブ3の軸受装着部3cの先端がコイルホルダ15におけるフランジ部15bに当接するまでストロークする。このように、フランジ部15bは、リニアアクチュエータ1のストロークを規制するストッパとしても機能している。
 一方、図2(B)に示すように、インナーチューブ3がアウターチューブ2内から退出する伸長工程においては、リニアアクチュエータ1は、インナーチューブ3の軸受装着部3cとアウターチューブ2の軸受装着部12bとが当接するまでストロークする。
 なお、最伸長時のストロークを、ロッドガイド5とフランジ部15bとを当接させることで規制するようにしてもよい。また、ストロークの規制時に当接する部材どうしの間にクッションなどを設けて、ストローク規制時の当接による衝撃を緩和してもよい。リニアアクチュエータ1の伸縮に伴い、ロッドガイド5は、アウターチューブ2のガイド摺接部11aの内周における摺動可能範囲を摺動する。
 図1に示すように、アウターチューブ2とインナーチューブ3との間の空隙20は、連通孔3bを介してインナーチューブ3内と連通される。また、空隙20は、インナーチューブ3とロッド4との間の環状空間21、アウターチューブ2とコイルホルダ15との間に形成される空間22、及びアウターチューブ2とロッドガイド5とで形成される空間23に連通している。
 つまり、リニアアクチュエータ1内に形成される空隙20,環状空間21,空間22,及び空間23は、互いに連通している。これらの空隙20,環状空間21,空間22,及び空間23における各々の内部容積は、リニアアクチュエータ1のストロークに応じて変化する。
 ここで、インナーチューブ3におけるアウターチューブ2と摺接する外周の断面積と、アウターチューブ2におけるロッドガイド5と摺接する内周の断面積とは同一に形成される。インナーチューブ3の外周の断面積は、インナーチューブ3の中心軸に垂直な断面におけるインナーチューブ3の外周の形状で囲われる円の面積を示している。アウターチューブ2の内周の断面積は、アウターチューブ2の中心軸に垂直な断面におけるアウターチューブ2の内周の形状で囲われる円の面積を示している。
 なお、本実施の形態の場合、アウターチューブ2の全長に無駄な長さが生じないように、ガイド摺接部11aの全長にわたってロッドガイド5の摺動可能範囲を形成しているが、リニアアクチュエータ1がストロークしてもロッドガイド5が摺接しない範囲を設けてもよい。この場合、ロッドガイド5が摺接しない範囲におけるアウターチューブ2の内周は、インナーチューブ3の外周と断面積が同一となるように形成する必要はない。
 リニアアクチュエータ1において、ロッド4が、図2(A)に示す最収縮状態からストロークして図2(B)に示す最伸長状態へと変位すると、空隙20の容積と空間23の容積とがストロークに伴って徐々に減少し、それと同じ分だけ環状空間21と空間22との容積が増大する。
 具体的には、ロッド4が収縮状態から伸長すると、空隙20の容積が減少する。この空隙20の容積は、図2(A)に示す減少分31だけ減少する。この減少分31は、図2(B)において空間22の容積が増大した分のうち増大分33の容積と等しい。
 また、ロッド4が収縮状態から伸長すると、空間23の容積が減少する。この空間23の容積は、図2(A)に示す減少分32だけ減少する。この減少分32は、図2(B)における環状空間21の容積の増大分34と、空間22の容積が増大した分のうち増大分35との合計の容積と等しい。
 このように、インナーチューブ3の外周の断面積と、アウターチューブ2の内周の断面積とを同一に形成したことによって、リニアアクチュエータ1においてロッド4がストロークし、空隙20と空間23との容積が減少すると、その減少分と同じだけ環状空間21と空間22との容積が増大する。一方、ロッド4がストロークし、環状空間21と空間22との容積が減少すると、その減少分と同じだけ空隙20と空間23との容積が増大する。したがって、リニアアクチュエータ1においてロッド4がストロークしても、内部の容積は変化しない。
 したがって、リニアアクチュエータ1が伸縮しても、内部容積が変化しないため、内部圧力が変化しない。そのため、リニアアクチュエータ1では、内部圧力の変化に起因してアウターチューブ2とインナーチューブ3とを相対移動させる力が働かず、電磁力による推力以外の推力が発生しない。
 また、リニアアクチュエータ1の伸縮に伴って内部容積が変化することはないため、リニアアクチュエータ1の外部から冷却液を補充したり、外部へ冷却液を排出させたりするためのリザーバを設ける必要がない。
 リニアアクチュエータ1では、内部に冷却液が充填されるため、コイル7の通電によって発生した熱を、冷却液を介してアウターチューブ2とインナーチューブ3とへ速やかに伝達することができる。よって、コイル7が発生した熱を冷却液を介して外部へ放熱することができる。したがって、永久磁石6aの熱減磁を防止することができ、リニアアクチュエータ1の推力の低下を防止できる。
 更に、リニアアクチュエータ1が伸縮しても、内部容積が変化しないため、内部圧力が変動することはない。したがって、リニアアクチュエータ1の内部への異物の吸い込みを確実に防止することができる。
 なお、インナーチューブ3におけるアウターチューブ2と摺接する外周と、アウターチューブ2におけるロッドガイド5と摺接する内周とは、断面積を同一とするために、同径の円形に形成される。しかしながら、断面積が同一であればよく、円形に限定されるものではない。
 ここで、環状空間21と空間23とは、ロッド4とコイルホルダ15との間の環状の隙間を介して連通される。この環状の隙間は、リニアアクチュエータ1の推力を向上するためには、極力小さい方が有利である。一方、この隙間を小さくした場合には、環状空間21と空間23との間を冷却液が行き来する際に抵抗となり、ロッド4のストロークに抗する減衰力が発生するおそれがある。
 これに対して本実施の形態では、コイルホルダ15のフランジ部15bに、冷却液の流れを阻害しない程度の断面積を有する連通孔15cを設け、環状空間21と空間23とを連通している。よって、ロッド4のストロークに抗する減衰力の発生を抑制できる。
 したがって、連通孔15cを設けることで、ロッド4とコイルホルダ15との間の隙間を小さくできるため、減衰力の発生を抑制するとともに、リニアアクチュエータ1の最大推力を向上させることができる。
 なお、連通孔15cの途中に、流路面積を可変にするバルブや、流路を遮断可能なバルブを設けてもよい。この場合、リニアアクチュエータ1に外力が作用した場合に、冷却液の流れに抵抗を付与したり、冷却液の流れを遮断したりすることで、外力に抗する減衰力を発生することができる。これにより、コイル7に供給される電流を低減することができるため、コイル7の発熱量を低減可能である。
 また、連通孔15cの途中にバルブを設けた場合、冷却液の流れに抵抗を付与することで、減衰力を発生させることができる。よって、リニアアクチュエータ1が失陥してアクチュエータとして機能できなくなった場合にも、ダンパとして機能させることができる。
 本実施の形態によるリニアアクチュエータ1は、リニアアクチュエータ1に作用する横力による曲げモーメントを、アウターチューブ2とインナーチューブ3とで受ける構造である。よって、ロッド4に過大な曲げモーメントが作用することはなく、ロッド4に保持される永久磁石6aに過大な応力が作用することが防止される。
 また、コイル7は、アウターチューブ2にフランジ部15bを介して固定される円筒状のコイルホルダ15に保持される。よって、コイル7に過大な曲げモーメントが作用することはなく、コイルホルダ15からコイル7が剥離したりコイル7が断線したりすることが防止される。
 以上の実施の形態によれば、以下に示す効果を奏する。
 リニアアクチュエータ1では、内部に冷却液が充填されるため、コイル7の通電によって発生した熱を、冷却液を介してアウターチューブ2とインナーチューブ3とへ速やかに伝達することができる。よって、コイル7が発生した熱を冷却液を介して外部へ放熱することができる。したがって、永久磁石6aの熱減磁を防止することができ、リニアアクチュエータ1の推力の低下を防止できる。
 次に、図3を参照して、本発明の第二の実施の形態によるリニアアクチュエータ201について説明する。以下では、上述した第一の実施の形態によるリニアアクチュエータ1と異なる点を中心に説明し、リニアアクチュエータ1と同一の構成には同一の符号を付して説明を省略する。
 リニアアクチュエータ201は、冷却液の温度変化に伴う体積変化を保証する体積補償機構としてのフリーピストン220を備える点で、上述した実施の形態とは相違する。
 フリーピストン220は、インナーチューブ3の内周とロッド4の外周との間の環状空間21に、軸方向に摺動自在に設けられる。フリーピストン220は、インナーチューブ3の底部3aとの間に、圧縮性流体である空気が閉じ込められる気室26を形成する。
 温度変化によって冷却液の体積が減少した場合には、フリーピストン220は、インナーチューブ3の先端側へと移動する。これにより、リニアアクチュエータ201の内部容積が、冷却液の体積減少分だけ減少する。一方、温度変化によって冷却液の体積が増大する場合には、フリーピストン220は、インナーチューブ3の基端側へと移動する。これにより、リニアアクチュエータ201の内部容積が、冷却液の体積増大分だけ増大する。
 したがって、リニアアクチュエータ201内に充填される冷却液の体積変化を、気室26の容積変化によって補償することがができる。
 次に、図4を参照して、本発明の第三の実施の形態によるリニアアクチュエータ301について説明する。
 リニアアクチュエータ301は、体積補償機構としてのバネ受け部322とバネ323とを備える点で、上述した実施の形態とは相違する。
 ロッドガイド321は、ロッド4の先端に設けられるプラグ4cに、ロッド4の先端に設けられるバネ受け部322と、ロッドガイド321がロッド4の外周を軸方向に摺動可能なようにバネ受け部322に対して支持するバネ323とを介して取り付けられる。ロッドガイド321は、ロッド4の軸方向への移動を案内して、ロッド4のアウターチューブ2に対する軸振れを防止する。
 ロッドガイド321は、環状に形成される。ロッドガイド321の外周には、アウターチューブ2のガイド摺接部11aの内周に摺接するダイナミックシール324が取り付けられる。ロッドガイド321の内周には、ロッド4の外周に摺接するダイナミックシール325が取り付けられる。ロッドガイド321は、ロッド4に対してはダイナミックシール325を介して摺接し、アウターチューブ2に対してはダイナミックシール324を介して摺接する。これにより、リニアアクチュエータ1の内部が密封される。
 リニアアクチュエータ301が収縮状態から伸長する場合、ロッド4の先端に取り付けられたバネ受け部322がアウターチューブ2の先端に向けて摺動し、バネ323を介してロッドガイド321を押圧する。ロッドガイド321は、ロッド4に追随して摺動し、ロッドガイド5がロッド4に固定されるリニアアクチュエータ1の場合と同様に、リニアアクチュエータ301の内部の容積は変化しない。
 一方、リニアアクチュエータ301が伸長状態から収縮する場合、ロッドガイド321は、空間22から連通孔15cを介して空間23に流れ込む冷却液によって押圧される。ロッドガイド321は、ロッド4の動きに追随して摺動し、ロッドガイド5がロッド4に固定されるリニアアクチュエータ1の場合と同様に、リニアアクチュエータ301の内部の容積は変化しない。
 なお、リニアアクチュエータ301が伸長する場合には、内部の圧力が減少して外気圧によってロッドガイド321が押圧される。これにより、ロッドガイド321は、アウターチューブ2の先端側へ移動することができる。よって、リニアアクチュエータ301では、バネ323を省略してもよい。
 しかしながら、バネ323を省略した場合には、リニアアクチュエータ301の伸長時に、ロッドガイド321とダイナミックシール324,325との間の摩擦抵抗によってロッドガイド321が摺動しにくくなる。そのため、リニアアクチュエータ301の内部圧力が低下して、リニアアクチュエータ301が伸長しにくくなる。よって、バネ323を設けた方が、効率よくリニアアクチュエータ301を伸長させることができる。
 温度変化によって冷却液の体積が減少する場合には、ロッドガイド321は、アウターチューブ2の先端側へと移動する。これにより、リニアアクチュエータ301の内部容積が、冷却液の体積減少分だけ減少する。一方、温度変化によって冷却液の体積が増大する場合には、ロッドガイド321は、バネ323を押し縮めて、アウターチューブ2の基端側へと移動する。これにより、リニアアクチュエータ301の内部容積が、冷却液の体積増大分だけ増大する。
 したがって、リニアアクチュエータ301内に充填される冷却液の体積変化を、ロッドガイド321の軸方向への移動によって補償することがができる。
 なお、リニアアクチュエータ301では、ロッドガイド321がアウターチューブ2に対して軸方向へ移動することで冷却液の体積変化を補償することができる。そのため、フリーピストンやリザーバなどを設けて冷却液の体積変化を補償する場合と比較すると、部品の増加を最小限にとどめることができる。よって、製造コストを低減することができるとともに、重量を低減可能である。
 上述した実施の形態では、インナーチューブ3の外周の断面積とアウターチューブ2の内周の断面積とを同一とすることで、リニアアクチュエータ1,201,301が収縮しても内部容積に変化がないようになっている。しかしながら、リニアアクチュエータ201,301のように体積補償機構を設けた場合には、リニアアクチュエータ201,301の伸縮に伴って内部容積が変化しても、体積補償機構によって内部容積の変化を補償することができる。よって、リニアアクチュエータ201,301のように体積補償機構を備える場合には、インナーチューブ3の外周の断面積とアウターチューブ2の内周の断面積とを同一に形成しなくてもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上述した体積補償機構に代えて、リニアアクチュエータ1の外部に、リニアアクチュエータ1の内部に連通するリザーバを設けてもよい。この場合、リザーバに冷却装置を設けて内部の冷却液を冷却することも可能である。
 また、一般的な油圧シリンダにおけるユニフロー構造を適用し、リニアアクチュエータ1の伸縮に伴ってリニアアクチュエータ1の内部とリザーバとの間で冷却液を循環させてもよい。ポンプを用いて冷却液を循環させて、コイル7を冷却するようにしてもよい。より放熱を促進すべく、アウターチューブ2の外周に放熱用のフィンを設けてもよい。
 本願は、2010年9月21日に日本国特許庁に出願された特願2010-210452に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
 この発明の実施例が包含する排他的性質又は特徴は、以下のようにクレームされる。

Claims (11)

  1.  アウターチューブと、前記アウターチューブ内に摺動自在に挿入されるインナーチューブと、を備え、前記アウターチューブと前記インナーチューブとを軸方向に相対変位させる推力を発生するリニアアクチュエータであって、
     前記インナーチューブの軸心部に起立して前記インナーチューブとの間に環状空間を形成するロッドと、
     前記アウターチューブの内周に摺接して前記ロッドを軸方向に案内するロッドガイドと、
     前記ロッドに軸方向に並べて保持される複数の永久磁石と、
     前記アウターチューブに保持されて前記永久磁石に対向する複数のコイルと、
     前記アウターチューブと前記インナーチューブとによって形成される内部空間に充填される冷却液と、を備えるリニアアクチュエータ。
  2.  請求項1に記載のリニアアクチュエータであって、
     前記インナーチューブにおける前記アウターチューブと摺接する外周と、前記アウターチューブにおける前記ロッドガイドと摺接する内周とは、同一の断面積に形成されるリニアアクチュエータ。
  3.  請求項1に記載のリニアアクチュエータであって、
     前記インナーチューブにおける前記アウターチューブと摺接する外周は、円形に形成され、
     前記アウターチューブにおける前記ロッドガイドと摺接する内周は、前記インナーチューブの前記外周と同径の円形に形成されるリニアアクチュエータ。
  4.  請求項1に記載のリニアアクチュエータであって、
     前記ロッドガイドは、前記ロッドの先端に固定されるリニアアクチュエータ。
  5.  請求項1に記載のリニアアクチュエータであって、
     前記冷却液の温度変化に伴う体積変化を保証する体積補償機構を更に備えるリニアアクチュエータ。
  6.  請求項5に記載のリニアアクチュエータであって、
     前記体積補償機構は、前記インナーチューブの内周を軸方向に摺動自在に設けられ、前記インナーチューブの底部との間に圧縮性流体が充填される気室を形成するフリーピストンであるリニアアクチュエータ。
  7.  請求項5に記載のリニアアクチュエータであって、
     前記体積補償機構は、
     前記ロッドの先端に設けられるバネ受け部と、
     前記ロッドガイドを前記ロッドの外周を軸方向に摺動可能なように前記バネ受け部に対して支持するバネと、であるリニアアクチュエータ。
  8.  請求項1に記載のリニアアクチュエータであって、
     前記ロッドと前記インナーチューブとの間に形成される前記環状空間内に挿入され、前記コイルを保持する筒状のコイルホルダを更に備え、
     前記コイルホルダは、
     内周に前記コイルを保持するコイル保持部と、
     前記コイル保持部の軸方向に連設され前記アウターチューブに固定されるフランジ部と、を備えるリニアアクチュエータ。
  9.  請求項8に記載のリニアアクチュエータであって、
     前記アウターチューブは、
     前記ロッドガイドが摺動自在に挿入されるガイド摺接部と、前記ガイド摺接部の軸方向に連設されて前記フランジ部が符合する嵌合部と、を有する筒状のベース部と、
     前記嵌合部の端部に螺着され、内周を前記インナーチューブが摺動する筒状のインナー部と、を備え、
     前記コイルホルダは、前記フランジ部が前記ベース部と前記インナー部とによって挟持されることによって前記アウターチューブに固定されるリニアアクチュエータ。
  10.  請求項8に記載のリニアアクチュエータであって、
     前記コイルホルダは、前記フランジ部を軸方向に貫通する連通孔を有するリニアアクチュエータ。
  11.  請求項8に記載のリニアアクチュエータであって、
     前記コイルホルダは、前記フランジ部に設けられて前記ロッドのストローク位置を検出する位置センサを備えるリニアアクチュエータ。
PCT/JP2011/069944 2010-09-21 2011-09-01 リニアアクチュエータ WO2012039260A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11826706.1A EP2621067B1 (en) 2010-09-21 2011-09-01 Linear actuator
US13/822,594 US9197113B2 (en) 2010-09-21 2011-09-01 Linear actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010210452A JP5603724B2 (ja) 2010-09-21 2010-09-21 リニアアクチュエータ
JP2010-210452 2010-09-21

Publications (1)

Publication Number Publication Date
WO2012039260A1 true WO2012039260A1 (ja) 2012-03-29

Family

ID=45873750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069944 WO2012039260A1 (ja) 2010-09-21 2011-09-01 リニアアクチュエータ

Country Status (4)

Country Link
US (1) US9197113B2 (ja)
EP (1) EP2621067B1 (ja)
JP (1) JP5603724B2 (ja)
WO (1) WO2012039260A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029854B2 (ja) * 2012-05-22 2016-11-24 ミネベア株式会社 振動子及び振動発生器
US9404548B2 (en) * 2013-12-13 2016-08-02 Chi Hua Fitness Co., Ltd. Adaptable damper
JP6335754B2 (ja) * 2014-10-28 2018-05-30 アズビル株式会社 アクチュエータ
JP5948391B2 (ja) * 2014-10-29 2016-07-06 Kyb株式会社 リニアアクチュエータ
US10444034B2 (en) * 2016-04-27 2019-10-15 Honeywell International Inc. Linear actuator with position indicator
DE102017103027A1 (de) * 2017-02-15 2018-08-16 Rausch & Pausch Gmbh Linearaktuator
GB2599013B (en) * 2019-07-11 2023-08-09 Hitachi Astemo Ltd Electric linear actuator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299216A (ja) * 1998-04-06 1999-10-29 Kollmorgen Corp スロット無しのリニアモータ及びその製造方法
JP2000078828A (ja) * 1998-08-26 2000-03-14 Honda Motor Co Ltd 電磁式リニアアクチュエータ
JP2001270545A (ja) * 2000-03-22 2001-10-02 Asahi Kasei Corp 液体充填密閉容器
JP2003211088A (ja) * 2002-01-23 2003-07-29 Citizen Electronics Co Ltd 軸方向駆動の振動体
JP2004053003A (ja) * 2002-03-28 2004-02-19 Tokico Ltd 電磁サスペンション装置
JP2007274820A (ja) 2006-03-31 2007-10-18 Hitachi Ltd リニアモータ
WO2008149805A1 (ja) * 2007-05-31 2008-12-11 Thk Co., Ltd. リニアモータの位置検出システム
JP2010104091A (ja) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd リニアアクチュエータ
JP2010210452A (ja) 2009-03-11 2010-09-24 Japan Atomic Energy Agency 原子核分析方法及び原子核分析装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2085507A1 (ja) * 1970-04-28 1971-12-24 Drye Lucien
US5122506A (en) * 1989-08-10 1992-06-16 Howard J. Greenwald Contactless mass moving system
US5430009A (en) * 1989-08-10 1995-07-04 Alfred University Superconducting generator
US5263558A (en) * 1990-10-20 1993-11-23 Atsugi Unisia Corporation Electromagnetic strut assembly
US5883712A (en) * 1997-05-21 1999-03-16 Nicolet Instrument Corporation Interferometer of an infrared spectrometer with dynamic moving mirror alignment
US5997223A (en) * 1998-09-22 1999-12-07 Electro Scientific Industries, Inc. High speed drilling spindle with reciprocating ceramic shaft and edoubl-gripping centrifugal chuck
KR100304587B1 (ko) * 1999-08-19 2001-09-24 구자홍 리니어 압축기
US6323567B1 (en) * 1999-12-24 2001-11-27 Nikon Corporation Circulating system for shaft-type linear motors
US6611074B2 (en) * 2001-04-12 2003-08-26 Ballado Investments Inc. Array of electromagnetic motors for moving a tool-carrying sleeve
JP2002349434A (ja) * 2001-05-23 2002-12-04 Matsushita Electric Ind Co Ltd リニア圧縮機
US6700251B2 (en) 2001-11-06 2004-03-02 Citizen Electronics Co., Ltd. Vibrating device for axially vibrating a movable member
GB0303806D0 (en) * 2003-02-19 2003-03-26 Advanced Motion Technologies I An improved linear actuator
US20070224058A1 (en) * 2006-03-24 2007-09-27 Ingersoll-Rand Company Linear compressor assembly
JP2008086144A (ja) * 2006-09-28 2008-04-10 Murata Mach Ltd リニアモータおよびそれを搭載した工作機械
US20080149303A1 (en) * 2006-12-25 2008-06-26 Chia-Ming Chang Heat sink for a shaft-type linear motor
US7705493B2 (en) * 2008-08-01 2010-04-27 Van Os Ron Magnetic mirror air bearing for Michelson interferometer with lateral motion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299216A (ja) * 1998-04-06 1999-10-29 Kollmorgen Corp スロット無しのリニアモータ及びその製造方法
JP2000078828A (ja) * 1998-08-26 2000-03-14 Honda Motor Co Ltd 電磁式リニアアクチュエータ
JP2001270545A (ja) * 2000-03-22 2001-10-02 Asahi Kasei Corp 液体充填密閉容器
JP2003211088A (ja) * 2002-01-23 2003-07-29 Citizen Electronics Co Ltd 軸方向駆動の振動体
JP2004053003A (ja) * 2002-03-28 2004-02-19 Tokico Ltd 電磁サスペンション装置
JP2007274820A (ja) 2006-03-31 2007-10-18 Hitachi Ltd リニアモータ
WO2008149805A1 (ja) * 2007-05-31 2008-12-11 Thk Co., Ltd. リニアモータの位置検出システム
JP2010104091A (ja) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd リニアアクチュエータ
JP2010210452A (ja) 2009-03-11 2010-09-24 Japan Atomic Energy Agency 原子核分析方法及び原子核分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2621067A4

Also Published As

Publication number Publication date
JP2012070465A (ja) 2012-04-05
US9197113B2 (en) 2015-11-24
EP2621067A4 (en) 2017-03-08
EP2621067A1 (en) 2013-07-31
EP2621067B1 (en) 2018-06-27
US20130181548A1 (en) 2013-07-18
JP5603724B2 (ja) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2012039260A1 (ja) リニアアクチュエータ
WO2012039293A1 (ja) リニアアクチュエータ
JP4870375B2 (ja) 電磁アクチュエータ及びその制御法
WO2015129115A1 (ja) 開閉器の操作機構
JP2005530077A (ja) カムシャフトアジャスタ
JP5329910B2 (ja) リニアアクチュエータ
US9871433B2 (en) Linear actuator and tube assembly method for linear actuator
JP2011193641A (ja) リニアモータおよび往復動ロッドの製造方法
JP6437710B2 (ja) バルブカートリッジ、および、電磁弁
WO2020158754A1 (ja) 電磁緩衝器
JP2009243674A (ja) 可変減衰力ダンパ
WO2014017311A1 (ja) リニアアクチュエータ
JP2007089344A (ja) リニア式電磁装置
JP2018035811A (ja) 緩衝器
US10995877B2 (en) Fluid valve and opening motion promoting device
US20190362875A1 (en) Electromagnetic linear actuator
JP2001280417A (ja) 電磁サスペンション装置
WO2020158755A1 (ja) 電磁緩衝器
JP2015533208A (ja) 多相線形アクチュエータを備える高圧注入用バルブ
JP5760500B2 (ja) 防振装置
CN213176683U (zh) 线性致动器和用于探测在线性致动器中的位置的系统
JP5448061B2 (ja) 磁気粘性流体せん断型制動装置及び制振装置
JPWO2023157503A5 (ja)
JP5346199B2 (ja) リニアアクチュエータ
JP2009115303A (ja) 押圧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13822594

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011826706

Country of ref document: EP