WO2012036334A1 - 유도코일과 용융로 일체형 유도가열식 저온용융로 - Google Patents

유도코일과 용융로 일체형 유도가열식 저온용융로 Download PDF

Info

Publication number
WO2012036334A1
WO2012036334A1 PCT/KR2010/006552 KR2010006552W WO2012036334A1 WO 2012036334 A1 WO2012036334 A1 WO 2012036334A1 KR 2010006552 W KR2010006552 W KR 2010006552W WO 2012036334 A1 WO2012036334 A1 WO 2012036334A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction coil
melt
melting furnace
induction
water
Prior art date
Application number
PCT/KR2010/006552
Other languages
English (en)
French (fr)
Inventor
김천우
최석모
조현준
박종길
최영부
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to CN201080069146.1A priority Critical patent/CN103180682B/zh
Priority to US13/823,141 priority patent/US9288847B2/en
Priority to JP2013528096A priority patent/JP5564150B2/ja
Priority to EP10857319.7A priority patent/EP2618086B1/en
Publication of WO2012036334A1 publication Critical patent/WO2012036334A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • F27B14/063Skull melting type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/10Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/24Crucible furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/204Induction

Definitions

  • the present invention relates to an induction coil and a melting furnace integrated induction heating low-temperature melting furnace, and more particularly, when heating and melting materials such as radioactive waste, general industrial waste, ceramic materials, metal materials, etc. by induction heating method It relates to a cold Crucible Induction Melter (CCIM) used.
  • CCIM cold Crucible Induction Melter
  • CCIM induction heating low temperature melting furnace
  • the induction current Due to the high frequency current applied to the induction coil, the induction current is generated in the water cooler, and when the induction current is generated in the melt in the induction heating low temperature melting furnace (CCIM) by the electromagnetic field introduced between the water coolers, the Joule's effect The melt is intended to be heated.
  • the induction coil is positioned at a predetermined interval to the outside of the water cooling grating and only plays a role of flowing a high frequency current.
  • CCIM induction heating low temperature melting furnace
  • CCIM induction heating low temperature melting furnace
  • a sliding door is installed at the melt discharge port, and when the door is opened, heat of the melt is transferred and discharged downward after a predetermined time.
  • the temperature is dropped in the process of discharging the melt, in the case of a ceramic or a metal having a high melting point, some of the material is solidified and the fluidity is lowered, so that the melt cannot be discharged smoothly.
  • an object of the present invention is to provide an induction coil and a melting furnace integrated induction heating type low temperature melting furnace that can simplify the structure of an induction heating type low temperature melting furnace (CCIM).
  • an object of the present invention is to provide an induction coil and a melting furnace integrated induction heating low-temperature melting furnace that can facilitate the discharge of the melt even in the case of a ceramic material or a metallic material having a high melting point.
  • induction heating type for heating and melting waste by using an induction current generated in the water cooling grid by a high frequency current applied to the induction coil
  • the water cooler and the induction coil is arranged up and down, characterized in that the induction current generated by the induction coil is directly transmitted to the melt of the waste.
  • the water cooler is composed of a set of a plurality of vertical water cooler formed with a U-shaped cooling passage therein, the vertical water cooler is characterized in that the cooling medium is distributed and circulated in several groups.
  • the lower side of the induction coil is provided with a water-cooled bottom plate eccentrically downwardly inclined toward one side toward the discharge direction of the melt in order to collect the melt toward the lattice melt discharge side, and the induction coil is tilted to coincide with the discharge direction of the melt. Characterized in that it consists of a photographic shape.
  • the induction coil is characterized in that the heat-resistant ceramic coating layer is formed on the inner surface in contact with the melt.
  • the induction coil has a structure in which a plurality of induction coil strands are stacked up and down, and a ceramic material is inserted between the plurality of induction coil strands.
  • a lattice-type melt discharge part is provided below the water-cooled bottom plate so that the melt collected by the water-cooled bottom plate is discharged, and an upper surface of the lattice melt discharge part is formed with a downward inclined surface toward the melt discharge port formed at the center thereof.
  • the induction coil is provided around the melt outlet water cooling lattice extending from the water outlet to the lower side through which the melt passes.
  • the induction coil and the melting furnace integrated induction heating low temperature melting furnace according to the present invention, to exclude the structure in which the water cooler is installed in the region inside the induction coil of the conventional induction heating low temperature melting furnace (CCIM) so that the induction coil itself also serves as a water cooler Therefore, electrical energy, which is mostly consumed in the water grating installed inside the induction coil, is directly transmitted to the melt in the induction heating low temperature melting furnace (CCIM), thereby greatly improving energy efficiency and simplifying the structure of the induction heating low temperature melting furnace (CCIM). Therefore, it is easy to disassemble and assemble the device for maintenance work.
  • CCIM induction heating low temperature melting furnace
  • the induction current generation efficiency in the discharged melt improves the ceramic material or the melting point.
  • the melt of this highly metallic material can also be discharged smoothly.
  • FIG. 1 is an overall configuration of the induction coil and melting furnace integrated induction heating type low temperature melting furnace according to the present invention
  • FIG. 2 is a perspective view and a partially cutaway perspective view of a vertical water grating of an induction coil and a melting furnace integrated induction heating low temperature melting furnace according to the present invention
  • FIG. 3 is a partially cutaway perspective view of the inclined horizontal induction coil of the induction coil and melting furnace integrated induction heating low temperature melting furnace according to the present invention
  • FIG. 4 is a perspective view and a partial cutaway view of an inclined water-cooled bottom plate of an induction coil and a melting furnace integrated induction heating low temperature melting furnace according to the present invention
  • FIG. 5 is a perspective view of a grid-type melt discharge part of the induction coil and the melting furnace integrated induction heating low-temperature melting furnace,
  • FIG. 6 is a perspective view illustrating a state in which an induction coil is installed around a melt outlet water cooler of the lattice-type melt discharge unit illustrated in FIG. 5.
  • joint portion 120 cooling water inlet and outlet distribution pipe
  • coolant inlet distribution pipe 122 coolant outlet distribution pipe
  • cooling water outlet 133 U-shaped cooling flow path
  • cooling water outlet 143 cooling water flow path
  • ceramic material insertion member 150 inclined water-cooled bottom plate
  • cooling water inlet 162 cooling water outlet
  • melt outlet water cooler 170 induction coil
  • FIG. 1 is an overall configuration diagram of an induction coil and a melting furnace integrated induction heating low temperature melting furnace according to the present invention.
  • the waste inlet 101 is injected into the melting target material, such as radioactive waste, general industrial waste, ceramic materials, metal materials and exhaust generated during the melting process
  • An upper chamber 110 having an exhaust outlet 102 through which a sieve is discharged, and a lower chamber connected to a lower portion of the upper chamber 110 via a joint 105 and containing waste injected and melted and discharged. It is composed.
  • the lower chamber is composed of a structure in which the vertical water cooling grid 130, the inclined horizontal induction coil 140, and the inclined water cooling bottom plate 150 are sequentially coupled from the top to the bottom, and the inclined water cooling bottom plate 150 The lower side of the) is connected to the grid-shaped melt discharge portion 160 through which the melt is discharged.
  • a cooling water inlet and outlet distribution pipe 120 including a cooling water inlet distribution pipe 121 and a cooling water outlet distribution pipe 122 is installed at an upper circumference of the vertical water cooling grid 130, and the inclined horizontal induction coil 140 is disposed.
  • One side of the high frequency power supply connection unit 145 is connected, the induction coil 170 is installed around the grid-shaped melt discharge unit 160.
  • Figure 2 is a (a) appearance perspective view and (b) partial cutaway perspective view of the vertical water cooler of the induction coil and melting furnace integrated induction heating low temperature melting furnace according to the present invention.
  • the vertical water cooler 130 is a set of units in which a U-shaped cooling passage 133 in which a cooling medium such as a cooling water flows is formed therein and is connected to each other along the circumferential direction.
  • a coolant inlet 131 and a coolant outlet 132 connected to the U-shaped cooling passage 133 are formed on an upper outer surface of the vertical water cooler 130.
  • the coolant inlet 131 and the coolant outlet 132 are respectively connected to the coolant inlet distribution pipe 121 and the coolant outlet distribution pipe 122 shown in FIG. 1.
  • the cooling water inlet and outlet distribution pipe 120 is configured to supply and return the cooling medium by interconnecting the vertical water cooler 130 in several group units, and thus the cooling medium of the vertical water cooler 130 is By being configured to be distributed in groups, it is possible to achieve uniform cooling between the vertical water cooler 130 and to improve the cooling efficiency.
  • the top surface of the vertical water cooling grating 130 is made of a horizontal surface to be in close contact with the bottom circumference of the joint portion 105, the bottom of the vertical water cooling grate 130 is inclined horizontal induction coil coupled to the lower side It consists of an inclined surface to be in close contact with the inclined upper surface of 140.
  • the vertical water cooler 130 heats the melt by transferring the induced current induced by the high frequency current of the inclined horizontal induction coil 140 to the melt contained therein.
  • FIG. 3 is a partially cutaway perspective view of the inclined horizontal induction coil of the induction coil and melting furnace integrated induction heating low temperature melting furnace according to the present invention.
  • the sloped horizontal inductor 140 shown in FIG. 3 is integrally located at the lower side of the vertical water cooler 130 and has a structure in which the melt is in contact with the inner side thereof.
  • the melt is directly in contact with the inner surface of the inclined horizontal induction coil 140.
  • the inclined horizontal induction coil 140 has a technical feature in that it is made of an integral type that directly heats the melt and simultaneously performs the role of a water cooler.
  • the inclined horizontal induction coil 140 is configured to be inclined to match the direction in which the melt is discharged downward inclined while forming a lower portion of the lower chamber is characterized in that the induction current is more effectively transmitted to the discharged melt.
  • the inclined horizontal induction coil 140 has a structure in which a plurality of tubular induction coil strands are stacked up and down obliquely. to be.
  • the inner surface 144 of the inclined horizontal induction coil 140 in contact with the melt is first coated with a metal alloy so as to be protected from corrosion or physical damage due to contact with the melt.
  • a coating layer of a ceramic material such as alumina (Al 2 O 3 ) is formed.
  • a ceramic material insertion member 146 is interposed between the induction coil strands so as to minimize thermal deformation of the induction coil strands.
  • a high frequency power supply connection unit 145 connected to a high frequency generator (HFG) as a power supply is electrically connected to the inclined horizontal induction coil 140.
  • the high frequency power supply connection unit 145 is provided with a coolant inlet 141 and a coolant outlet 142 connected to the coolant flow path tube 143 formed inside each of the induction coil strands.
  • Figure 4 is a (a) appearance perspective view and (b) partial cutaway perspective view of the inclined water-cooled bottom plate of the induction coil and melting furnace integrated induction heating low temperature melting furnace according to the present invention.
  • the inclined water-cooled bottom plate 150 positioned below the inclined horizontal induction coil 140 is formed of a set in which a unit formed in an arc shape is mutually coupled in a circumferential direction.
  • the inclined direction is inclined toward the downward inclined direction of the inclined horizontal induction coil 140 so that the melt can be smoothly discharged.
  • Cooling water inlet 151 and cooling water outlet 152 are provided on the outer surface of the inclined water cooling bottom plate 150 to the U-shaped cooling flow path plate 153 formed in the inclined water cooling bottom plate 150. It is connected.
  • the inclined water-cooled bottom plate 150 is configured as a set of units, and a cooling flow path plate 153 is provided therein for each unit of each inclined water-cooled bottom plate 150 so that the cooling medium is circulated. It is possible to effectively prevent overheating of the inclined water-cooled bottom plate 150 due to the heat of water.
  • FIG. 5 is a perspective view illustrating a grid-type melt discharge part of an induction coil and a melting furnace integrated induction heating type low-temperature melting furnace
  • FIG. 6 is a perspective view illustrating a shape of an induction coil installed around a melt outlet water cooler of the grid-type melt discharge part shown in FIG. 5.
  • the melt discharge unit 160 positioned below the inclined water cooling bottom plate 150 includes a downward inclined surface 163 facing the melt discharge port 164 formed at the center thereof.
  • One side of the melt discharge unit 160 is formed with a coolant inlet 161 and a coolant outlet 162 through which a cooling medium for preventing overheating is supplied and recovered.
  • An induction coil 170 is provided around the melt outlet water cooling lattice 165 extending downward from the melt outlet 164 and through which the melt passes.
  • induction coil 170 around the melt outlet water cooling lattice 165, even in the case of ceramic materials such as glass and metallic materials having a high melting point, direct melting is possible by supplying high-frequency electrical energy during the discharge process. Prevents solidification and enables smooth drainage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)
  • General Induction Heating (AREA)

Abstract

본 발명은 유도코일 자체가 수냉격자 역할도 동시에 수행하도록 함으로써 유도가열식 저온용융로(CCIM) 내의 용융물에 유도전류가 직접 전달되게 하여 에너지 효율을 대폭 개선함과 동시에 유도가열식 저온용융로(CCIM)의 구조를 단순화하고, 세라믹 재료나 용융점이 높은 금속성 재료의 용융물의 경우에도 원활한 배출이 이루어질 수 있도록 하는 유도코일과 용융로 일체형 유도가열식 저온용융로를 제공함에 그 목적이 있다. 이를 구현하기 위한 본 발명은, 유도코일에 인가된 고주파 전류에 의해 수냉격자에서 발생하는 유도전류를 이용하여 폐기물을 가열 및 용융시키는 유도가열식 저온용융로에 있어서, 상기 수냉격자와 유도코일이 상하로 배치되어 상기 유도코일에 의해 발생된 유도전류가 상기 폐기물의 용융물에 직접 전달되는 것을 특징으로 한다.

Description

유도코일과 용융로 일체형 유도가열식 저온용융로
본 발명은 유도코일과 용융로 일체형 유도가열식 저온용융로에 관한 것으로 서, 더욱 상세하게는 방사성폐기물, 일반 산업체 폐기물, 세라믹재료, 금속재료 등의 물질들을 유도가열(induction heating) 방식으로 가열 및 용융시킬 때 사용하는 유도가열식 저온용융로(Cold Crucible Induction Melter : CCIM)에 관한 것이다.
종래 방사성폐기물, 일반 산업체 폐기물, 세라믹재료, 금속재료 등의 가열과 용융을 위해 유도가열 방식을 이용하는 유도가열식 저온용융로(CCIM)는 유도코일 안쪽에 수냉 파이프(water cooled pipe) 또는 수냉격자(water cooled segment)를 사용하여 왔다.
유도코일에 인가된 고주파 전류로 인해 수냉격자에는 유도전류가 발생하게 되고, 수냉격자들 사이로 투입된 전자기장에 의해 유도가열식 저온용융로(CCIM) 내의 용융물에 유도전류가 발생되면 주울 효과(Joule's effect)로 인해 용융물이 가열되도록 되어 있다. 이 경우 유도코일은 수냉격자의 외측으로 일정 간격을 두고 위치하며 고주파 전류를 흘려주는 역할만 해왔다.
이와 같이 유도코일의 내측에 간격을 두고 수냉격자가 위치하는 유도가열식 저온용융로(CCIM)에 관련한 종래기술은 독일 특허 518,499, 미국 특허 3,223,519, 미국 특허 3,461,215, 미국 특허 4,058,668, 미국 특허 6,144,690, 미국 특허 6,613,291에 개시되어 있다.
그러나 이와 같은 종래의 유도가열식 저온용융로(CCIM)에서는 유도코일의 내측에 위치한 수냉격자에서 많은 전기에너지가 소모되는 단점을 가지고 있다.
또한 종래 유도가열식 저온용융로(CCIM)에 설치된 유도코일의 경우 대부분 수평으로 설치되어 있고, 주로 용융물의 용융을 위한 목적에 초점을 맞추어 설계되어 있을 뿐, 용융물의 배출을 용이하게 할 수 있는 기능은 포함하고 있지 않다.
그리고 종래에는 용융물 배출구에 슬라이딩 문을 설치하여 문이 열리면 용융물의 열이 전달되고 일정시간 경과 후 하부로 배출되는 원리를 적용하고 있다. 그러나 이 경우 용융물이 배출되는 과정에서 그 온도가 떨어지게 되므로 용융점(melting point)이 높은 세라믹이나 금속 등의 경우 그 재질의 일부가 응고되어 유동성이 떨어지게 되므로 용융물을 원활하게 배출시킬 수 없는 문제점이 있었다.
또 다른 용융물의 배출 방법으로는 배출관을 인코넬(Inconel) 등의 밀폐형 관을 사용하되 그 관 주변에 유도코일을 감고 인코넬 관을 가열하여 용융물을 배출시키는 방법이 있다. 그러나 이 경우 인코넬 관보다 용융점이 높은 금속(예, 귀금속 족 등) 등을 배출하는 데는 한계가 있는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 유도코일 자체가 수냉격자 역할도 동시에 수행하도록 함으로써 유도가열식 저온용융로(CCIM) 내의 용융물에 유도전류가 직접 전달되게 하여 에너지 효율을 대폭 개선시킴과 동시에 유도가열식 저온용융로(CCIM)의 구조를 단순화할 수 있는 유도코일과 용융로 일체형 유도가열식 저온용융로를 제공함에 그 목적이 있다.
또한 본 발명은 세라믹 재료나 용융점이 높은 금속성 재료의 경우에도 그 용융물의 배출이 원활하게 이루어질 수 있도록 하는 유도코일과 용융로 일체형 유도가열식 저온용융로를 제공함에 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 유도코일과 용융로 일체형 유도가열식 저온용융로는, 유도코일에 인가된 고주파 전류에 의해 수냉격자에서 발생하는 유도전류를 이용하여 폐기물을 가열 및 용융시키는 유도가열식 저온용융로에 있어서, 상기 수냉격자와 유도코일이 상하로 배치되어 상기 유도코일에 의해 발생된 유도전류가 상기 폐기물의 용융물에 직접 전달되는 것을 특징으로 한다.
상기 수냉격자는 그 내부에 U자형의 냉각 유로가 형성된 다수의 수직형 수냉격자의 집합으로 이루어지고, 상기 수직형 수냉격자는 몇 개의 그룹 단위로 냉각 매체가 분배되어 순환하도록 이루어진 것을 특징으로 한다.
상기 유도코일의 하측에는 격자형 용융물 배출부 측으로 용융물을 모으기 위해 용융물의 배출 방향을 향해 일측으로 편심되어 하향 경사진 형상의 수냉 바닥판이 구비되고, 상기 유도코일은 상기 용융물의 배출 방향과 일치되도록 경사진 형상으로 이루어진 것을 특징으로 한다.
상기 유도코일은 상기 용융물과 접촉하는 내측면에 내열성 세라믹 코팅층이 형성된 것을 특징으로 한다.
상기 유도코일은 복수의 유도코일 가닥이 상하로 적층된 구조이며, 상기 복수의 유도코일 가닥 사이에는 세라믹재가 삽입되어 있는 것을 특징으로 한다.
상기 수냉 바닥판에 의해 모아진 용융물이 배출되도록 상기 수냉 바닥판의 하측에는 격자형 용융물 배출부가 구비되고, 상기 격자형 용융물 배출부의 상면은 그 중앙부에 형성된 용융물 배출구를 향하는 하향 경사면으로 이루어지고, 상기 융융물 배출구로부터 하측으로 연장 형성되어 용융물이 통과하는 용융물 배출구 수냉격자 둘레에는 유도코일이 구비된 것을 특징으로 한다.
본 발명에 따른 유도코일과 용융로 일체형 유도가열식 저온용융로에 의하면, 종래 유도가열식 저온용융로(CCIM)의 유도코일 내부 영역에 수냉격자가 설치되는 구조를 배제하고 유도코일 자체가 수냉격자 역할도 동시에 수행하도록 함으로써 종래 유도코일 안쪽에 설치된 수냉격자에서 대부분 소비되던 전기에너지가 유도가열식 저온용융로(CCIM) 내의 용융물에 직접 전달되므로 에너지 효율을 대폭 개선할 수 있을 뿐만 아니라 유도가열식 저온용융로(CCIM)의 구조를 단순화하여 유지보수작업을 위한 장치의 분해·조립이 용이한 효과가 있다.
또한 본 발명에 의하면, 유도코일을 용융물의 배출 방향을 향하여 경사진 구조로 배치함과 동시에 용융물 배출구 둘레에 유도코일을 탈부착 가능하게 구비하여 배출되는 용융물에 유도전류 발생 효율을 향상시킴으로써 세라믹 재료나 용융점이 높은 금속성 재료의 용융물도 원활하게 배출시킬 수 있는 효과가 있다.
도 1은 본 발명에 따른 유도코일과 용융로 일체형 유도가열식 저온용융로의 전체 구성도,
도 2는 본 발명에 따른 유도코일과 용융로 일체형 유도가열식 저온용융로의 수직형 수냉격자의 외관 및 일부 절개 사시도,
도 3은 본 발명에 따른 유도코일과 용융로 일체형 유도가열식 저온용융로의 경사형 수평 유도코일의 일부 절개 사시도,
도 4는 본 발명에 따른 유도코일과 용융로 일체형 유도가열식 저온용융로의 경사형 수냉 바닥판의 외관 및 일부 절개 사시도,
도 5는 유도코일과 용융로 일체형 유도가열식 저온용융로의 격자형 용융물 배출부의 사시도,
도 6은 도 5에 도시된 격자형 용융물 배출부의 용융물 배출구 수냉격자 둘레에 유도코일이 설치된 모습을 보여주는 사시도이다.
* 부호의 설명 *
100 : 유도가열식 저온용융로 110 : 상부 챔버
101 : 폐기물 투입구 102 : 배기체 출구
105 : 이음부 120 : 냉각수 입출구 분배관
121 : 냉각수 입구 분배관 122 : 냉각수 출구 분배관
130 : 수직형 수냉격자 131 : 냉각수 입구
132 : 냉각수 출구 133 : U자형 냉각유로
140 : 경사형 수평 유도코일 141 : 냉각수 입구
142 : 냉각수 출구 143 : 냉각수 유로관
144 : 유도코일 내측면 145 : 고주파 전원공급장치 연결부
146 : 세라믹재 삽입부재 150 : 경사형 수냉 바닥판
151 : 냉각수 입구 152 : 냉각수 출구
153 : 냉각 유로판 160 : 격자형 용융물 배출부
161 : 냉각수 입구 162 : 냉각수 출구
163 : 경사면 164 : 용융물 배출구
165 : 용융물 배출구 수냉격자 170 : 유도코일
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
도 1은 본 발명에 따른 유도코일과 용융로 일체형 유도가열식 저온용융로의 전체 구성도이다.
본 발명에 따른 유도코일과 용융로 일체형 유도가열식 저온용융로(100)는, 방사성폐기물, 일반 산업체 폐기물, 세라믹재료, 금속재료 등의 용융 대상물질이 투입되는 폐기물 투입구(101)와 융융 과정에서 발생하는 배기체가 배출되는 배기체 출구(102)가 구비된 상부 챔버(110)와, 상기 상부 챔버(110)의 하측으로 이음부(105)를 매개로 연결되고 투입된 폐기물이 수용되어 용융 및 배출되는 하부 챔버로 구성된다. 상기 하부 챔버는 수직형 수냉격자(130), 경사형 수평 유도코일(140), 경사형 수냉 바닥판(150)이 상부에서 하부로 순차 결합된 구조물로 구성되며, 상기 경사형 수냉 바닥판(150)의 하측에는 용융물이 배출되는 격자형 용융물 배출부(160)가 연결되어 있다.
그리고 상기 수직형 수냉격자(130)의 상부 둘레에는 냉각수 입구 분배관(121)과 냉각수 출구 분배관(122)으로 이루어진 냉각수 입출구 분배관(120)이 설치되고, 상기 경사형 수평 유도코일(140)의 일측에는 고주파 전원공급장치 연결부(145)가 연결되어 있으며, 상기 격자형 용융물 배출부(160)의 둘레에는 유도코일(170)이 설치된다.
도 2는 본 발명에 따른 유도코일과 용융로 일체형 유도가열식 저온용융로의 수직형 수냉격자의 (a) 외관 사시도 및 (b) 일부 절개 사시도이다.
상기 수직형 수냉격자(130)는, 도 2에 도시된 바와 같이 그 내부에 냉각수 등의 냉각매체가 흐르는 U자형의 냉각유로(133)가 형성된 단위체가 원주 방향을 따라 서로 연결된 집합으로 이루어진 것이다.
상기 수직형 수냉격자(130)의 상부 외측면에는 상기 U자형의 냉각유로(133)와 연결되는 냉각수 입구(131)와 냉각수 출구(132)가 형성되어 있다. 상기 냉각수 입구(131)와 냉각수 출구(132)는 각각 도 1에 도시된 냉각수 입구 분배관(121)과 냉각수 출구 분배관(122)에 연결된다.
그리고 상기 냉각수 입출구 분배관(120)은 수직형 수냉격자(130)를 몇 개의 그룹 단위로 상호 연결하여 냉각매체가 공급 및 환수되도록 구성되어 있으며, 이와 같이 냉각매체가 수직형 수냉격자(130)의 그룹 단위로 분배되도록 구성함으로써 수직형 수냉격자(130) 간에 균일한 냉각이 이루어져 냉각 효율을 향상시킬 수 있게 된다.
상기 수직형 수냉격자(130)의 상면은 상기 이음부(105)의 저면 둘레를 따라 밀착되도록 수평면으로 이루어지고, 상기 수직형 수냉격자(130)의 저면은 그 하측에 결합되는 경사형 수평 유도코일(140)의 경사진 상면에 밀착되도록 경사면으로 이루어져 있다.
상기 수직형 수냉격자(130)는 경사형 수평 유도코일(140)의 고주파 전류로 인해 유발된 유도전류를 그 내부에 수용된 용융물에 전달함으로써 용융물을 가열하게 된다.
도 3은 본 발명에 따른 유도코일과 용융로 일체형 유도가열식 저온용융로의 경사형 수평 유도코일의 일부 절개 사시도이다.
도 3에 도시된 경사형 수평 유도코일(140, sloped horizontal inductor)은 상기 수직형 수냉격자(130)의 하측에 일체형으로 위치하게 되며, 그 내측면에는 용융물이 접촉하는 구조로 되어 있다.
즉, 본 발명에서는 종래 유도코일의 내측에 수냉격자가 위치하고 수냉격자의 내측면에 용융물이 접촉되는 구조와 달리, 경사형 수평 유도코일(140)의 내측면에 용융물이 직접 접촉되는 구조로 이루어짐에 따라 상기 경사형 수평 유도코일(140)은 그 자체가 용융물을 직접 가열시키며 수냉격자 역할을 동시에 수행하는 일체형으로 이루어진 점에 기술적 특징이 있다.
또한 상기 경사형 수평 유도코일(140)은 하부 챔버의 하부를 구성하면서 용융물이 하향 경사지게 배출되는 방향과 일치되도록 경사지게 배치됨으로써 배출되는 용융물에 유도전류가 보다 효과적으로 전달되도록 구성된 점에도 특징이 있다.
상기 경사형 수평 유도코일(140)은 다수의 튜브형 유도코일 가닥이 경사지게 상하 적층된 구조로 되어 있는데, 이는 용융로 내부의 열로 인한 재료의 팽창 등 열적 변형에 유연하게 작용하게 하며 제작 또한 용이하도록 하기 위함이다.
용융물이 접촉하는 상기 경사형 수평 유도코일(140)의 내측면(144)에는 용융물과의 접촉으로 인한 부식이나 물리적 손상으로부터 보호될 수 있도록 일차적으로 합금코팅(metal alloy coating)을 한 후, 그 위에 알루미나(Al2O3) 등의 세라믹재료의 코팅층이 형성된다.
또한 상기 유도코일 가닥 사이에는 세라믹재 삽입부재(146)가 개재되어 상기 유도코일 가닥의 열적 변형을 최소화할 수 있도록 구성되어 있다.
상기 경사형 수평 유도코일(140)의 일측에는 전원공급 장치인 고주파 발생기(High Frequency Generator : HFG)에 연결되는 고주파 전원공급장치 연결부(145)가 상기 경사형 수평 유도코일(140)에 전기적으로 연결되고, 상기 고주파 전원공급장치 연결부(145)에는 각 유도코일 가닥 내부에 형성된 냉각수 유로관(143)에 연결되는 냉각수 입구(141)와 냉각수 출구(142)가 구비된다.
도 4는 본 발명에 따른 유도코일과 용융로 일체형 유도가열식 저온용융로의 경사형 수냉 바닥판의 (a) 외관 사시도 및 (b) 일부 절개 사시도이다.
상기 경사형 수평 유도코일(140)의 하측에 위치하는 경사형 수냉 바닥판(150)는 도 4에 도시된 바와 같이 원호 형상으로 이루어진 단위체가 원주 방향으로 상호 결합된 집합으로 이루어지되, 도 1에 도시된 바와 같이 용융물이 원활하게 배출될 수 있도록 상기 경사형 수평 유도코일(140)의 하향 경사진 방향을 향해 편심되어 그 하측에 구비된 격자형 용융물 배출부(160)에 연결되어 있다.
상기 경사형 수냉 바닥판(150)의 외측면에는 냉각수 입구(151)와 냉각수 출구(152)가 구비되어 상기 경사형 수냉 바닥판(150)의 내부에 형성된 U자형의 냉각 유로판(153)에 연결되어 있다.
이와 같이 경사형 수냉 바닥판(150)을 단위체들의 집합으로 구성하고, 각각의 경사형 수냉 바닥판(150)의 단위체 별로 그 내부에 냉각 유로판(153)이 마련되어 냉각매체가 순환되도록 구성함으로써 융융물의 열에 의한 경사형 수냉 바닥판(150)의 과열을 효과적으로 방지할 수 있게 된다.
도 5는 유도코일과 용융로 일체형 유도가열식 저온용융로의 격자형 용융물 배출부의 사시도, 도 6은 도 5에 도시된 격자형 용융물 배출부의 용융물 배출구 수냉격자 둘레에 유도코일이 설치된 모습을 보여주는 사시도이다.
상기 경사형 수냉 바닥판(150)의 하측에 위치하는 용융물 배출부(160)는 도 5에 도시된 바와 같이 그 상면이 중앙부에 형성된 용융물 배출구(164)를 향하는 하향 경사면(163)으로 이루어져 있고, 상기 용융물 배출부(160)의 일측에는 과열 방지를 위한 냉각매체가 공급 및 회수되는 냉각수 입구(161)와 냉각수 출구(162)가 형성되어 있다.
상기 용융물 배출구(164)로부터 하측으로 연장 형성되어 용융물이 통과하는 용융물 배출구 수냉격자(165) 둘레에는 도 6에 도시된 바와 같이 유도코일(170)이 구비되어 있다.
이와 같이 용융물 배출구 수냉격자(165) 둘레에 유도코일(170)을 설치함으로써 유리 등의 세라믹 재료와 용융점이 높은 금속성 재료들의 경우에도 배출 과정에서 고주파 전기 에너지의 공급에 의한 직접 용융이 가능해지므로 용융물의 응고를 방지하여 원활한 배출이 가능해진다.

Claims (6)

  1. 유도코일에 인가된 고주파 전류에 의해 수냉격자에서 발생하는 유도전류를 이용하여 폐기물을 가열 및 용융시키는 유도가열식 저온용융로에 있어서,
    상기 수냉격자와 유도코일이 상하로 배치되어 상기 유도코일에 의해 발생된 유도전류가 상기 폐기물의 용융물에 직접 전달되는 것을 특징으로 하는 유도코일과 용융로 일체형 유도가열식 저온용융로.
  2. 제1항에 있어서,
    상기 수냉격자는 그 내부에 U자형의 냉각 유로가 형성된 다수의 수직형 수냉격자의 집합으로 이루어지고, 상기 수직형 수냉격자는 몇 개의 그룹 단위로 냉각 매체가 분배되어 순환하도록 이루어진 것을 특징으로 하는 유도코일과 용융로 일체형 유도가열식 저온용융로.
  3. 제1항에 있어서,
    상기 유도코일의 하측에는 격자형 용융물 배출부 측으로 용융물을 모으기 위해 용융물의 배출 방향을 향해 일측으로 편심되어 하향 경사진 형상의 수냉 바닥판이 구비되고, 상기 유도코일은 상기 용융물의 배출 방향과 일치되도록 경사진 형상으로 이루어진 것을 특징으로 하는 유도코일과 용융로 일체형 유도가열식 저온용융로.
  4. 제3항에 있어서,
    상기 유도코일은 상기 용융물과 접촉하는 내측면에 내열성 세라믹 코팅층이 형성된 것을 특징으로 하는 유도코일과 용융로 일체형 유도가열식 저온용융로.
  5. 제3항에 있어서,
    상기 유도코일은 복수의 유도코일 가닥이 상하로 적층된 구조이며,
    상기 복수의 유도코일 가닥 사이에는 세라믹재가 삽입되어 있는 것을 특징으로 하는 유도코일과 용융로 일체형 유도가열식 저온용융로.
  6. 제3항에 있어서,
    상기 수냉 바닥판에 의해 모아진 용융물이 배출되도록 상기 수냉 바닥판의 하측에는 격자형 용융물 배출부가 구비되고,
    상기 격자형 용융물 배출부의 상면은 그 중앙부에 형성된 용융물 배출구를 향하는 하향 경사면으로 이루어지고, 상기 융융물 배출구로부터 하측으로 연장 형성되어 용융물이 통과하는 용융물 배출구 수냉격자 둘레에는 유도코일이 구비된 것을 특징으로 하는 유도코일과 용융로 일체형 유도가열식 저온용융로.
PCT/KR2010/006552 2010-09-15 2010-09-27 유도코일과 용융로 일체형 유도가열식 저온용융로 WO2012036334A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080069146.1A CN103180682B (zh) 2010-09-15 2010-09-27 感应线圈与熔炉一体型感应加热式低温熔炉
US13/823,141 US9288847B2 (en) 2010-09-15 2010-09-27 Cold crucible induction melter integrating induction coil and melting furnace
JP2013528096A JP5564150B2 (ja) 2010-09-15 2010-09-27 誘導コイル及び溶融炉一体型コールドクルーシブル誘導溶融炉
EP10857319.7A EP2618086B1 (en) 2010-09-15 2010-09-27 Cold crucible induction melter integrating induction coil and melting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0090786 2010-09-15
KR1020100090786A KR101218923B1 (ko) 2010-09-15 2010-09-15 유도코일과 용융로 일체형 유도가열식 저온용융로

Publications (1)

Publication Number Publication Date
WO2012036334A1 true WO2012036334A1 (ko) 2012-03-22

Family

ID=45831776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006552 WO2012036334A1 (ko) 2010-09-15 2010-09-27 유도코일과 용융로 일체형 유도가열식 저온용융로

Country Status (6)

Country Link
US (1) US9288847B2 (ko)
EP (1) EP2618086B1 (ko)
JP (1) JP5564150B2 (ko)
KR (1) KR101218923B1 (ko)
CN (1) CN103180682B (ko)
WO (1) WO2012036334A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485529B1 (ko) 2013-08-07 2015-01-22 주식회사 포스코 용탕의 정련 방법 및 그 장치
KR101457368B1 (ko) * 2013-10-04 2014-11-03 한국수력원자력 주식회사 용융물의 유도가열식 배출장치 및 방법
EP2881663B2 (de) * 2013-12-06 2019-11-13 Hitachi Zosen Inova AG Müllaufgabevorrichtung
WO2016029085A2 (en) * 2014-08-21 2016-02-25 Ppg Industries Ohio, Inc. Induction melter for glass melting and systems and methods for controlling induction-based melters
FR3037058B1 (fr) * 2015-06-05 2017-06-23 Areva Nc Outil de lissage en milieu radioactif, comprenant une grille vibrante
AT517241B1 (de) * 2015-06-08 2017-12-15 Engel Austria Gmbh Formgebungsmaschine und Verfahren zum induktiven Erhitzen
CN104962987B (zh) * 2015-07-01 2017-09-26 哈尔滨工业大学 一种水平定向区熔结晶制备法中的单晶生长炉用水平箱式发热体
KR101723443B1 (ko) 2015-08-19 2017-04-18 주식회사 포스코 배출장치 및 배출방법
US10383179B2 (en) * 2016-12-06 2019-08-13 Metal Industries Research & Development Centre Crucible device with temperature control design and temperature control method therefor
CN106910545B (zh) * 2017-03-23 2018-08-24 中国原子能科学研究院 一种用于放射性废液冷坩埚玻璃固化处理的启动方法
CN113178269B (zh) * 2021-03-12 2023-11-24 中国核电工程有限公司 一种超高温熔融物的热释放及连通装置
CN113421680A (zh) * 2021-06-21 2021-09-21 中国原子能科学研究院 放射性废物处理系统
KR102659682B1 (ko) 2021-12-13 2024-04-19 인제대학교 산학협력단 안와골절 시술용 리트랙터
CN117091398B (zh) * 2023-10-17 2024-01-19 太原开元智能装备有限公司 管式感应加热烧结炉

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE518499C (de) 1926-11-02 1931-02-16 Siemens & Halske Akt Ges Verfahren zum Schmelzen schwerschmelzbarer Metalle, insbesondere von Tantal, Wolfram, Thorium oder Legierungen dieser Metalle in einem wassergekuehlten Behaelter
US3223519A (en) 1957-05-20 1965-12-14 Nat Distillers Chem Corp Induction furnace
US3461215A (en) 1966-04-05 1969-08-12 Commissariat Energie Atomique Electric induction furnace
US4058668A (en) 1976-03-01 1977-11-15 The United States Of America As Represented By The Secretary Of The Interior Cold crucible
US4633481A (en) * 1984-10-01 1986-12-30 Ppg Industries, Inc. Induction heating vessel
JPH08166189A (ja) * 1994-12-13 1996-06-25 Sumitomo Metal Ind Ltd 気化性不純物を含む高融点金属原料の溶解方法
US6144690A (en) 1999-03-18 2000-11-07 Kabushiki Kaishi Kobe Seiko Sho Melting method using cold crucible induction melting apparatus
US6613291B1 (en) 1997-09-09 2003-09-02 Moskovskoe Gosudarstvennoe Predpriyatie-Obiedinenny Ekologo-Technologichesky I Nauchno-Issledovatelsky Tsentr Po Obezvrezhiv Aniju Rao I Okhrane Okruzhajuschei Sredy (Mosnpo “Radon”) Installation for vitrification of liquid radioactive wastes, cooled discharge unit and cooled induction melter for the installation
KR20040018856A (ko) * 2002-08-27 2004-03-04 한국수력원자력 주식회사 중·저준위 방사성폐기물 유리화 장치 및 공정
JP2006153408A (ja) * 2004-12-01 2006-06-15 Jietsuto Ro:Kk 誘導加熱溶融炉
JP2009222364A (ja) * 2008-03-18 2009-10-01 Sinfonia Technology Co Ltd 誘導加熱溶解炉

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2036418A5 (ko) * 1969-03-13 1970-12-24 Commissariat Energie Atomique
FR2599482B1 (fr) * 1986-06-03 1988-07-29 Commissariat Energie Atomique Four de fusion a induction haute frequence
FR2665249A1 (fr) * 1990-07-26 1992-01-31 Dauphine Ets Bonmartin Laminoi Four de fusion par induction en creuset froid.
JP3047056B2 (ja) * 1992-06-02 2000-05-29 科学技術庁金属材料技術研究所長 浮上溶解装置とその運転方法
DE4320766C2 (de) * 1993-06-23 2002-06-27 Ald Vacuum Techn Ag Vorrichtung zum Einschmelzen einer festen Schicht aus elektrisch leitfähigem Material
FR2708725B1 (fr) * 1993-07-29 1995-11-10 Imphy Sa Procédé de fusion d'un matériau électroconducteur dans un four de fusion par induction en creuset froid et four de fusion pour la mise en Óoeuvre de ce procédé.
US5889813A (en) * 1995-08-25 1999-03-30 Fuji Electric Co., Ltd Levitation melting furnace
JP2954896B2 (ja) * 1997-01-09 1999-09-27 核燃料サイクル開発機構 コールドクルーシブル誘導溶融炉からの溶融物抜き出し装置
JP4147604B2 (ja) * 1997-04-23 2008-09-10 神鋼電機株式会社 誘導加熱溶解炉およびその底部出湯機構
US6097750A (en) * 1997-12-31 2000-08-01 General Electric Company Electroslag refining hearth
JP2000264775A (ja) * 1999-03-23 2000-09-26 Sumitomo Sitix Amagasaki:Kk 電磁誘導鋳造装置
US6393044B1 (en) * 1999-11-12 2002-05-21 Inductotherm Corp. High efficiency induction melting system
US6219372B1 (en) * 1999-12-29 2001-04-17 General Electric Company Guide tube structure for flux concentration
JP3791694B1 (ja) * 2005-11-24 2006-06-28 富士電機システムズ株式会社 誘導加熱式蒸気発生装置
JP5380775B2 (ja) * 2007-01-25 2014-01-08 大同特殊鋼株式会社 コールドクルーシブル溶解炉の出湯用電磁ノズル装置を用いた出湯方法
JP2009285726A (ja) * 2008-06-02 2009-12-10 Daido Steel Co Ltd コールドクルーシブル溶解炉における出湯方法
CN101603776B (zh) * 2009-05-08 2011-02-09 北京航空航天大学 一种感应熔化冷坩埚
DE102009033501B4 (de) * 2009-07-15 2016-07-21 Schott Ag Verfahren und Vorrichtung zum kontinuierlichen Schmelzen oder Läutern von Schmelzen
US8320427B2 (en) * 2009-12-16 2012-11-27 General Electric Company Cold walled induction guide tube

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE518499C (de) 1926-11-02 1931-02-16 Siemens & Halske Akt Ges Verfahren zum Schmelzen schwerschmelzbarer Metalle, insbesondere von Tantal, Wolfram, Thorium oder Legierungen dieser Metalle in einem wassergekuehlten Behaelter
US3223519A (en) 1957-05-20 1965-12-14 Nat Distillers Chem Corp Induction furnace
US3461215A (en) 1966-04-05 1969-08-12 Commissariat Energie Atomique Electric induction furnace
US4058668A (en) 1976-03-01 1977-11-15 The United States Of America As Represented By The Secretary Of The Interior Cold crucible
US4633481A (en) * 1984-10-01 1986-12-30 Ppg Industries, Inc. Induction heating vessel
JPH08166189A (ja) * 1994-12-13 1996-06-25 Sumitomo Metal Ind Ltd 気化性不純物を含む高融点金属原料の溶解方法
US6613291B1 (en) 1997-09-09 2003-09-02 Moskovskoe Gosudarstvennoe Predpriyatie-Obiedinenny Ekologo-Technologichesky I Nauchno-Issledovatelsky Tsentr Po Obezvrezhiv Aniju Rao I Okhrane Okruzhajuschei Sredy (Mosnpo “Radon”) Installation for vitrification of liquid radioactive wastes, cooled discharge unit and cooled induction melter for the installation
US6144690A (en) 1999-03-18 2000-11-07 Kabushiki Kaishi Kobe Seiko Sho Melting method using cold crucible induction melting apparatus
KR20040018856A (ko) * 2002-08-27 2004-03-04 한국수력원자력 주식회사 중·저준위 방사성폐기물 유리화 장치 및 공정
JP2006153408A (ja) * 2004-12-01 2006-06-15 Jietsuto Ro:Kk 誘導加熱溶融炉
JP2009222364A (ja) * 2008-03-18 2009-10-01 Sinfonia Technology Co Ltd 誘導加熱溶解炉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2618086A4

Also Published As

Publication number Publication date
CN103180682B (zh) 2015-06-17
EP2618086A1 (en) 2013-07-24
EP2618086A4 (en) 2014-03-05
JP5564150B2 (ja) 2014-07-30
JP2013542552A (ja) 2013-11-21
KR101218923B1 (ko) 2013-01-04
EP2618086B1 (en) 2015-04-01
CN103180682A (zh) 2013-06-26
US9288847B2 (en) 2016-03-15
KR20120028761A (ko) 2012-03-23
US20130182740A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
WO2012036334A1 (ko) 유도코일과 용융로 일체형 유도가열식 저온용융로
JPH077102B2 (ja) 廃棄物処理用溶融炉及びその加熱方法
CN109469910A (zh) 一种连续溢流排渣等离子熔融炉及应用
WO2012086902A1 (ko) 공기층을 구비하여 내열성 및 내충격성을 향상시킨 인덕션 렌지
CN102020411A (zh) 感应加热式非金属熔炼方法及其所采用的系统
WO2017026562A1 (ko) 측면 배출게이트가 구비된 플라즈마 용융로
PL181933B1 (pl) Sposób i urzadzenie do wytwarzania strumienia szkla PL
CN109539785B (zh) 一种侧吹式富氧浸没燃烧熔炼炉
WO2022075629A1 (ko) 에너지 절감형 잉곳 성장 장치
CN107955884B (zh) 一种新型富氧侧吹铜冶炼炉炉顶冷却装置
WO2011043513A1 (ko) 원자로 용기의 외벽 냉각장치
CN206572530U (zh) 一种连续进料出渣的节能电熔融装置
BR112019015551A2 (pt) Método para substituição de uma porção danificada de um teto de forno de um forno metalúrgico ou de refinamento, e, conjunto de teto para um forno metalúrgico ou de refinamento.
WO2013048067A2 (ko) 슬래그 배출 도어 제조 방법
WO2010147388A2 (ko) 조립 도가니를 구비한 실리콘 잉곳 제조용 도가니
CN111020078B (zh) 一种具有预热及冷却功能的落渣管固定装置
CN209431422U (zh) 一种连续溢流排渣等离子熔融炉
CN217929833U (zh) 一种半水冷预热烟罩
WO2011052874A1 (ko) 가열 장치
JPS6160261A (ja) 取鍋加熱装置
JP3732676B2 (ja) 溶融炉の出滓口の構造
CN114774603B (zh) 一种高炉出铁沟高温辐射热的回收利用系统
JPH06174382A (ja) 直流アーク炉
CN215062111U (zh) 一种通过烟道循环加热的等离子体熔融炉装置
CN112611231B (zh) 一种铸铜水套

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528096

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13823141

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010857319

Country of ref document: EP