JP2009222364A - 誘導加熱溶解炉 - Google Patents

誘導加熱溶解炉 Download PDF

Info

Publication number
JP2009222364A
JP2009222364A JP2008070471A JP2008070471A JP2009222364A JP 2009222364 A JP2009222364 A JP 2009222364A JP 2008070471 A JP2008070471 A JP 2008070471A JP 2008070471 A JP2008070471 A JP 2008070471A JP 2009222364 A JP2009222364 A JP 2009222364A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
hot water
induction heating
tapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008070471A
Other languages
English (en)
Inventor
Masanori Tsuda
正徳 津田
Yasuhiro Nakai
泰弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2008070471A priority Critical patent/JP2009222364A/ja
Publication of JP2009222364A publication Critical patent/JP2009222364A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

【課題】溶湯の旋回に起因した出湯後の飛散現象を、簡単な構造を通じて的確に解消できる誘導加熱溶解炉を提供する。
【解決手段】溶解対象物が投入される炉本体1と、この炉本体の底部にあって炉本体1内の溶湯の出湯を制御する底部出湯機構11とを具備し、底部出湯機構は、炉本体の底部に設けた開口部4を出湯口7yに導く出湯ノズル部を備え、炉本体は出湯ノズル部ともども円周方向に分割形成されたセグメント5,8を継ぎ合わせた集合体であって、継目を介して炉本体内に誘導磁場が導入されるように構成されたものに対して、出湯ノズル部を構成するセグメントの誘導磁場が及ばない部位に、出湯ノズル部の流路内を流れる溶湯の旋回流と直交する方向の磁束成分を有する静磁場を出湯ノズル部の流路内に形成するための磁場生成手段9を設ける。
【選択図】図2

Description

本発明は、出湯ノズル部から出湯した溶湯が飛散する現象に善処した誘導加熱溶解炉に関するものである。
この種の誘導加熱溶解炉として、水冷銅ルツボ(コールドクルーシブル)を炉本体とするものが一般に知られている。この溶解炉は、溶解対象物が投入される前記炉本体と、この炉本体の底部にあって炉本体内の溶湯の出湯を制御する底部出湯機構とを具備し、前記底部出湯機構は、炉本体の底部に設けた開口部を出湯口に導く出湯ノズル部を備え、炉本体は出湯ノズル部ともども分割形成されたセグメントを継ぎ合わせた集合体であって、継目を介して炉本体内に誘導磁場が導入されるように構成されている。
出湯ノズル部は漏斗状をなし、その外周には、炉本体内の溶解対象物を溶解するための第1加熱用コイル手段と、出湯ノズル部の流路内を加熱して出湯口の開閉を行うための第2加熱用コイル手段とが設けられている。
溶融対象物は誘導加熱によって炉本体内で溶融するが、炉本体の周囲は冷却水路で冷却されており、炉本体の内面には溶融対象物が凝固することによりスカルが生じてセグメントの継目が閉塞され、溶解中は出湯ノズルの入口も閉塞された状態に保たれる。
そして、溶融後の出湯工程で第2加熱手段により出湯ノズルの出口近傍を加熱することにより、スカルを溶融して出湯ノズル部から出湯口を介して溶湯を出湯させ得るようにしている。
ところで、炉本体内の溶湯は、攪拌やコリオリ力などにより、出湯ノズル部の入口で旋回している。そして、出湯ノズル部の内部流路はテーパ面で徐々に流路を絞られながら溶湯を案内するように構成されている。このため、旋回流が出湯ノズル部内に進入すると、旋回半径が小さくなり、ますます旋回速度が速くなる。そして、この旋回流が出湯口から出湯されると、溶湯が四方八方へ飛散する現象が引き起こされる。
このような不具合に対処する上で参考になる文献として、特許文献1,2に示すものが知られている。
特許文献1のものは、底部出湯機構の開口をスカルの溶解、凝固を通じて開閉する際の不具合を解消するために、出湯ノズル部のストレート部を流れる出湯流に直交方向から直流磁場を印加することにより、出湯流の流速を減速若しくはコントロールする構成を開示している。
また、特許文献2のものは、出湯ノズル部を構成するストレート部の長さを長くして、旋回しながら流下する溶湯をノズル内壁と摩擦を生じさせることによって流速を抑制し溶湯を整流化するようにした構成や、出湯用ノズルに耐火物製スリーブを延設して飛散をガードするようにした構成、更にはこの耐火物スリーブ内に流路を狭める方向の凸部を設けて旋回流を衝突により減速させるようにした構成等を開示している。
特開2001−74376号公報 特開2002−277170号公報
ところが、特許文献1では、出湯機構の周囲近傍が狭い空間であるにも拘わらず、直流磁場発生用磁極およびコイルを設置する必要がある。また、出湯ノズル部のストレート部の軸方向に沿って流れる溶湯には有効な減速作用が働くとしても、本発明の解決課題とする旋回流の抑制にはあまり効果があるとは言い難い。
一方、特許文献2のものは、流路の狭いストレート部を長くするため、溶湯の詰まりの原因を持ち込むことになって好ましくない。また、耐火物製のスリーブを使用する場合は、流下する溶湯と反応して汚染される可能性があり、長さが長ければ長いほど汚染が激しくなる。また、この耐火物製スリーブも水冷銅で製作することでコールドクルーシブルとなり汚染されなくなるが、出湯終了後の溶湯がスリーブ内に付着凝固して再出湯が困難となるか、出湯開始したとしても流路内の付着物は流れの乱れの原因となり、これが新たな溶湯飛散の原因となる。これを避けるためにこのスリーブの部分まで誘導加熱コイルを巻き、加熱により付着物を除去する対応も考えられるが、このようにすると局所部に一層の電力投入を要するという別の問題が生じる。
本発明は、このような課題に着目してなされたものであって、溶湯の旋回に起因した出湯後の飛散現象を、簡単な構造を通じて的確に解消することを目的としている。
本発明は、かかる目的を達成するために、次のような手段を講じたものである。
すなわち、本発明の誘導加熱溶解炉は、溶解対象物が投入される炉本体と、この炉本体の底部にあって炉本体内の溶湯の出湯を制御する底部出湯機構とを具備し、前記底部出湯機構は、炉本体の底部に設けた開口部を出湯口に導く出湯ノズル部を備え、炉本体は出湯ノズル部ともども円周方向に分割形成されたセグメントを継ぎ合わせた集合体であって、継目を介して炉本体内に誘導磁場が導入されるように構成されたものにおいて、前記出湯ノズル部を構成するセグメントの誘導磁場が及ばない部位に、出湯ノズル部の流路内を流れる溶湯の旋回流と直交する方向の磁束成分を有する静磁場を当該出湯ノズル部の流路内に形成するための磁場生成手段を設けたことを特徴とする。
溶湯の旋回流が出湯ノズル部内を磁束を横切るように流れると、溶湯内に誘導電流が流れ、この誘導電流と磁場との相互作用により、ローレンツ力が溶湯に速度方向と逆方向に生じる。つまり、磁束の存在する領域に溶湯が入ろうとすることで、ローレンツ力が働き、旋回流が制動されて旋回速度が減速される。その際、磁場生成手段はセグメントの誘導磁場が及ばない部位に設けられるため、誘導加熱による機能損壊から磁場生成手段を有効に保護することができ、旋回流に対して実効性のある抑止力を持続させることができる。しかも、このような構成によれば、新たに出湯ノズル部の周辺に大掛かりな磁場発生装置を設ける必要もなく、出湯ノズル部を長くすることも不要である。
なお、ここに言う出湯ノズル部とは、広義には、炉本体の底部近傍において出湯に向けて流路断面が絞り始められる部位から最後の出湯口である出湯口までの領域を指称する。
出湯ノズル部が、炉本体の底部に設けた開口部の径を出湯口に向かって漸次縮径させるテーパ面を有した漏斗状をなしている場合に、磁場生成手段による磁場を旋回流に効果的に作用させるためには、磁場生成手段はテーパ面に対する法線方向の磁束成分を一部に有する静磁場を当該テーパ面の内側に形成するように、少なくとも当該磁場生成手段を構成する磁性体を前記テーパ面に沿って設けていることが望ましい。
磁場生成手段を構成する磁性体とセグメントとの位置関係には、以下のような具体的な実施の態様が挙げられる。
同一セグメント内に磁場生成手段を構成する磁性体を、テーパ面の円周方向へ離間した磁極間に磁路を結ぶように配置しているもの。
同一セグメント内に磁場生成手段を構成する磁性体を、テーパ面の母線方向へ離間した磁極間に磁路を結ぶように配置しているもの。
同一セグメント内に磁場生成手段を構成する2以上の磁性体を分離させて配置し、各磁性体の磁極面をテーパ面に対向させているもの。
隣接するセグメントにそれぞれ磁場生成手段を構成する磁性体を、テーパ面の円周方向へ離間した磁極間に磁路を結ぶように配置しているもの。
特に好ましくは、出湯ノズル部を構成するセグメント内に冷却水路が設けられ、この冷却水路内に前記磁場生成手段を構成する磁性体を配置しているものが挙げられる。
或いは、磁場生成手段を構成する磁性体を、磁化された永久磁石としておくことが極めて好都合である。
本発明は、以上説明した構成であるから、磁場生成手段によって旋回流を効果的に抑制することができ、これにより出湯口から出湯した後の溶湯流の飛散を防止して、ノズル周辺のメンテナンスの便を格段に向上させることができる。しかも、出湯ノズル部近傍に新たな装置を設置する必要がないので、スペースファクタの低下を回避でき、ノズルの汚染、詰まり等の要因も持ち込まずに所期の目的を達成できる効果が得られる。
以下、本発明の一実施形態を、図面を参照して説明する。
図1(a)は、本実施形態の誘導加熱溶解炉の概略縦断面を示している。以下において、先ず誘導加熱溶解炉の一般的な構成について説明した上で、本実施形態の特徴部分となる底部出湯機構の出湯ノズル部の詳細について説明する。
誘導加熱溶解炉は、チタン等の溶解対象物10を収容する炉本体1を有している。この炉本体1は、純銅や銅合金からなる銅製の他、電気抵抗率の低い金や銀または場合によってはステンレス等を用いることができる。また、溶解対象物10としては、チタンの他、ジルコニウム、ハフニウム、クロム、ニオブ、タンタル、モリブデン、ウラン、希土類金属、トリウム、およびこれらの合金から選ばれる金属からなる反応性金属を挙げることができる。
上記の炉本体1は、円筒形状の側面壁2と、この側面壁2に連続する平板状の底面壁3とからなっている。これらの側面壁2および底面壁3は、平面図(b)に示すように、互いに電気的に絶縁された縦割り状をなす導電性のセグメント5を円周方向に継ぎ合わせることにより形成されている。尚、絶縁は、絶縁部材をセグメント5、5間に介装したり、セグメント5、5間を離隔することにより行われている。
また、これらのセグメント5は、内部に図示しない冷却水路を備えており、この冷却水路に水などの冷却媒体が流動されている。
また、炉本体1の底面壁3には、図1及び図2に示すように、下端に出湯口7yを有する底部出湯機構11が設けられている。底部出湯機構11は、底面壁3に形成された開口部4と、出湯構造体である出湯ノズル部7と、上部誘導加熱コイル13と、下部誘導加熱コイル14とを有している。開口部4は、底面壁3の外周端と中心点との間に配置されており、底面壁3の上面位置から中間位置までの範囲で逆円錐状の壁面を有するように形成された傾斜貫通部4aと、中間位置から下面位置までの範囲で円柱状の壁面を有するように形成された柱状貫通部4bとからなっている。前述した出湯ノズル部7は、その柱状貫通部4bに固設されている。
出湯ノズル部7は、図2に示すように、上縁部から下部にかけて開口面積を減少させるように中空逆円錐状に形成された導入口部7aを有している。導入口部7aの内壁面は、底面壁3からの溶湯の流動を円滑にするように、上縁部が傾斜貫通部4aの下縁部に一致されていると共に、内面が傾斜貫通部4aの傾斜角度に一致する傾斜を有するテーパ面7xをなしている。また、導入口部7aの下端には、ストレート状に延びる中空管状の流出口部7bが、導入口部7aともども全体として漏斗状をなすように一体的に形成されている。最終的な溶湯の出口である前記出湯口7yはこの流出口部7bの下端に設定されている。
一方、導入口部7aの外壁面は、開口部4の柱状貫通部4bに一致した外形状に形成されており、出湯ノズル部7を底面壁3に対して面方向に固定するように、柱状貫通部4bに嵌合されている。そして、導入口部7aの外周側の下面には、フランジ状の外周端部7cが突設されており、外周端部7cは、出湯ノズル部7を底面壁3に厚み方向に固定するように、底面壁3の下面に当接されている。
上記の出湯ノズル部7は、図3(a)にも示すように、縦割り状をなす複数の導電性のセグメント8を円周方向に相互に絶縁して継ぎ合わせることにより形成されている。尚、セグメント8は、上述の炉本体1のセグメント5と同様に、純銅や銅合金からなる銅製の他、電気抵抗率の低い金や銀または場合によってはステンレス等を用いることができる。
上記のセグメント8は、出湯ノズル部7の導入口部7a、流出口部7bおよび外周端部7cの一部を構成するように形成されている。また、各セグメント8の導入口部7aには、スカル部への渦電流の流動領域を増加させるための中間スリット8aが形成されている。中間スリット8aは、導入口部7aの幅方向の中間位置において上縁部から下部までの範囲をセグメント8の縦割り方向に沿って直線状に切除することにより形成されている。図2における中心線の左側は上記中間スリット8aを通るようにセグメント8を破断した断面を示し、右側は中間スリット8a以外の部位でセグメント8を破断した断面を示している。後述する図6、図9等においても同様である。
そして、このセグメント8にも、図2及び図4に示すような冷却水路70が形成されている。図4(a)はセグメント8の内壁部を一部切除して冷却水路70を露出させたものであり、同図(b)はセグメント8を外周側からみた斜視図である。上記の中間スリット8aは、図4(b)にも示すように、外周端部7cを除いて形成されており、この外周端部7cに、給水口71および排水口72が形成されて、これらの給水口71および排水口72が図示しない給排水配管にまとめて接続されている。そして、給水口71および排水口72を、図4(a)、(b)に示すように、導入口部7aおよび流出口部7bの内部に形成した冷却水路70に連通させている。冷却水路70は、図4(a)、(b)に矢印で示すように、中間スリット8aを回避するようにして、中間スリット8aの一方側に位置する導入口部7aに給水口71から導入した水等の冷却媒体を、下方の流出口部7bを経て中間スリット8aの他方側に位置する導入口部7aに導き、そこから排水口72に排出するように構成されている。
図1に示す炉本体1には、周囲を取り囲むように溶解用誘導加熱コイル6が設けられ、この誘導加熱コイル6は溶解用電源61に接続されているとともに、上記の出湯ノズル部7における導入口部7aおよび流出口部7bの各々の外周側には、外壁面に沿って前述した出湯用誘導加熱コイル13、14が配置され、これらの出湯用誘導加熱コイル13、14に、出湯を制御するための交流電力を出力する出湯用電源15が接続されている。
上記の構成において、溶解対象物10を溶解する場合には、側面壁2の外周側に配置された溶解用の誘導加熱コイル6に通電して炉本体1内に誘導磁場を導入する。炉本体1内にはセグメント8の継目を介して誘導磁場が導入され、溶解対象物10を溶解する。溶解が進行して炉本体1内部で溶解された溶湯が、所定の溶融状態に達した時点で、出湯用電源15から高周波電力を適宜、誘導加熱コイル13、14に供給する。この高周波電力により高周波の交番磁場が生じ、この交番磁場は、流出口部7bの内面側のスカルによる薄い凝固層(浸透深さ)に渦電流を流す。これにより、この薄い凝固層での電流密度が高いため、出湯ノズル部7の流出口部7bの内表面に凝固している溶解対象物10が表面から加熱され、凝固層が薄くなることにより出湯が可能な状態となる。
ところで、従来技術でも既述したように、炉本体1内の溶湯は、攪拌やコリオリ力などにより、出湯ノズル部7の入口で図1に矢印Zで示すように旋回している。そして、出湯ノズル部7の内部流路は、漏斗状をなすテーパ面7xで徐々に流路を絞りながら出湯口7yに向かって溶湯を案内する構造をなしている。このため、旋回流が出湯ノズル部7内に進入すると、旋回半径が小さくなり、ますます旋回速度が速くなる。そして、この旋回流が出湯口7yから出湯されると、溶湯が四方八方へ飛散する現象が引き起こされる。
そこで、本実施形態は、図4(a)に示す出湯ノズル部7を構成するセグメント8の冷却水路70内に磁場生成手段9を構成する永久磁石91,92を配置し、この磁石91,92によって、図3(b)に示すように、出湯ノズル部7の流路内を流れる溶湯の旋回流(速度V)と直交する方向の磁束成分を有する静磁場90(磁束密度B)を当該出湯ノズル部7の内側流路内に形成するようにしている。
この実施形態の磁石91,92は、ネオジウム磁石材を磁化させた永久磁石で、厚み方向両面をSとNの磁極面とする薄板状のものに形成してある。そして、この磁石91,92を、前述したセグメント8の導入口部7aのうち、中間スリット8aを隔てた一方の冷却水路70内と他方の冷却水路70内とに、それぞれ磁極面が図2に示すようにテーパ面7yにほぼ平行となるように導入口部7aの内壁面側に密接させて配置している。冷却水路70内への磁石91,92の配置、閉じ込め自体は、一般に知られた手法によって行うことができる。この場合、図4(a)に示すように、一方の磁石91はテーパ面7x側の磁極面がS極となり、他方の磁石92はテーパ面7x側の磁極面がN極となるように設定してあり、S極とN極の間で図3(b)に示すようにループ状に磁路が結ばれるようにしている。また、図3(a)に示すように、隣接するセグメント8,8の最寄の磁石92、91間は異なる極性となるように配置しており、ここにも、同図(b)に示すようにテーパ面の円周方向に沿って静磁場90´が形成されるようにしている。
このような位置に磁石91,92を配置した理由は、誘導磁場を及ばせないためである。炉本体1内に導入される誘導磁場は、向き及び大きさが時間とともに変化する交番磁界であって、磁場に置かれた導電体であるセグメント8にも同様に磁束の変化が生じようとする。しかし、セグメント8には、この磁束の変化を阻止しようとするように誘導起電力が生じ、導電体であるセグメント8中に誘導電流(渦電流)が流れる。磁束の変化は、セグメント8の表面より生じるので、表面ほど渦電流の大きさは大きく、内部に浸透するほど小さくなって最終的に磁束のない場となる。すなわち、磁束が浸透する深さ(浸透深さ)は制限され、周波数が高いほど導体表面に渦電流が集中する。
このように、誘導磁場はセグメント8の表面から内部に浸透することができないため、磁石91,92のおかれた冷却水路70内は誘導加熱がされない。炉本体1や出湯ノズル部7内の溶湯は、セグメント8、8間の継目やスリット8aを通して磁束が内部に侵入できるため、それぞれ誘導加熱されることができる。そして、磁石91,92を誘導加熱から保護する理由は次による。一般に磁石は、多数の磁気モーメント(磁石の最小単位)で構成され、それぞれの磁気モーメントが同一方向を向くと、外部に対して大きな磁束密度を生じさせることができ、それぞれがバラバラの方向を向いていると外部に対して磁束を生じさせることができない。磁性材(磁石材)に対し、外部より強磁場を与えて磁気モーメントを整列させると、磁場を0にしても磁束密度が残る。この残留磁束密度は、熱を加えることにより磁気モーメントが熱振動でバラバラの方向を向き、消磁される。残留磁束密度が減磁する温度は磁石材により固有のものであり、たとえば、本実施形態で対象としているネオジウム磁石では、100℃以上となると減磁が始まり、直流磁場を発生できなくなる。よって、誘導磁場の及ばない位置に磁石91,92を配置して誘導加熱を避けるとともに冷却も可能な冷却水路70内の設置が有効となる。
一方、冷却水路70内に配置した磁石91,92が発生する磁場は、交番磁場ではなく直流磁場であり、導電体に対して磁束の変化が生じないため、誘導起電力が生じず、渦電流も生じない。よって、直流磁場を印加する初期時は過渡的に磁束の変化が生じて磁束の侵入は阻止されるが、定常状態に入れば、空気や絶縁体と同様に磁束がセグメント8の肉厚内部に侵入することができ、これを透過してテーパ面7xの内側に図3(b)に示すような静磁場90を有効に形成することができる。
次に、この静磁場90が溶湯に対してなす作用を考える。一般に、図5(a)に示すように磁束密度Bなる静磁場内に設けたコの字状の導線a、b、c上に直線状の導線dを自由に動ける状態で置き、導線dを図中右方向へ速度Vで動かすと、導線1,2,3,4で囲まれる領域の鎖交磁束が増加し、この増加を阻止する方向に起電力が生じて、この結果、誘導電流(電流密度J)が流れる。この電流密度Jと磁束密度Bとの相互作用により、ローレンツ力が発生し、導線dに力が加わる。この導線dを同図(b)に示す幅δの溶湯箔に置き換えて考える。溶湯箔すなわち溶湯流が逆円錐状の出湯ノズル部2内を磁束を横切るように図中右方向に速度Vで流れると、この溶湯箔内の自由電子eは、V方向の溶湯流及びB方向の磁場と直交する方向すなわち図中溶湯箔内に矢印で示す方向に力を受けて移動する。これは、導線dが磁束を横切る場合に生じる誘導電流Jに相当する。但し、誘導電流(電流密度J)の向きは自由電子eとは逆方向である。この誘導電流と磁場との相互作用により、ローレンツ力が溶湯に速度Vと反対方向に生じる。つまり、磁束の存在する領域に溶湯箔が入ろうとすると、上記のようにローレンツ力が働き、制動されて、溶湯の旋回流の旋回速度Vが減速されることになる。
また、図3(b)に示すように、溶湯は旋回方向の速度成分V以外にテーパ面7xの母線方向の速度成分V´を有し、磁石91,92によって形成される磁場の一部はこの速度成分V´とも直交するので、溶湯流のうち出湯口7yに向かって流下する速度V´にも減速作用が働くことになる。
以上のように、本実施形態の加熱誘導溶解炉は、前記出湯ノズル部7を構成するセグメント8の誘導磁場が及ばない部位に、出湯ノズル部7の流路内を流れる溶湯の旋回流と直交する方向の磁束成分を有する静磁場90を当該出湯ノズル部7の流路内に形成する磁場生成手段9を構成する磁石91,92を設けており、溶湯流が出湯ノズル部2内を磁束を横切るように流れることで、溶湯内に誘導電流が流れ、この誘導電流と磁場との相互作用により、溶湯にローレンツ力が働き、制動されて旋回速度が減速される。このため、旋回速度を増したまま出湯ノズル部7の出湯口7yから出湯して飛散する現象を有効に解消することができ、メンテナンスを大幅に軽減して反復継続的に安定した溶解を行うことが可能となる。そして、磁場生成手段9を構成する磁石91,92はセグメント8内に配置されて高周波による誘導磁場が及ばない部位に設けられるため、誘導加熱による機能損壊から的確に保護することができ、旋回流に対して実効性のある抑止力を持続させることができる。しかも、新たに出湯ノズル部7の周辺の狭い空間に大掛かりな磁場発生装置を設ける必要がなく、出湯ノズル部7を長くする必要もないので、出湯ノズル部7周辺のスペースファクタの低下を防ぎ、出湯ノズル部7の汚染や新たな溶湯の詰まり等の問題を持ち込むことも有効に回避することが可能となる。
具体的には、出湯ノズル部7は、炉本体1の底部に設けた開口部4aの径を出湯口7yに向かって漸次縮径させるテーパ面7xを有した漏斗状をなしており、磁場生成手段9を構成する磁石91,92はテーパ面7xに対する法線方向の磁束成分を一部に有する静磁場90を当該テーパ面7xの内側に形成するように設けてあるので、テーパ面7xにおいて加速しようとする旋回流に効果的に磁力を作用させることができる。
また、従来の技術は、縦方向の出湯速度に対する減速に力点がおかれていて、主としてストレート状の流出口部7bにおいて対処するものであったが、本実施形態では、流出口部7bに至る手前の導入口部7aにおいて旋回流に直交する方向に磁場を形成してこれを事前に時間を掛けて効率良く減速させるものであるため、出湯後の飛散現象の抑制効果を飛躍的に高めることができる。特に、磁場を及ぼしたい溶湯流の極近傍に磁石91,92を設けて起磁力を発生させるので、更に高い効果を期待できることになる。
さらに、同一セグメント8内に磁場生成手段9を構成する磁性体たる磁石91,92を、テーパ面の円周方向へ離間した磁極間に磁路を結ぶように配置しているので、主として磁石91,92に出入りする部分の磁束を溶湯の旋回流と直交させて減速作用を有効に営むことができる。
特に、分離配置した2つの磁石91,92の磁極面をテーパ面7xに沿わせて磁束を出入りさせるように構成しているので、磁極面全体を利用して旋回流と直交する磁束をテーパ面2xの内側に効率よく形成することができる。
また、前述したように、溶湯は旋回方向の速度成分V以外にテーパ面7xの母線方向の速度成分V´を有し、磁石91,92によって形成される磁場のうち磁石91,92に出入りする部位はこの速度成分V´にも直交するので、溶湯流のうち出湯口7yに向かって流下する速度V´にも減速作用を有効に働かせることができる。
さらに、隣接するセグメント8,8にそれぞれ磁場生成手段9を構成する磁性体92,91を、テーパ面7xの円周方向へ離間した磁極間に磁路を結ぶように配置しているので、セグメント8自体が小さい場合であっても各セグメント8に磁性体を適切に配置しつつ、セグメント8,8間に有効な静磁場を形成することができる。
さらにまた、出湯ノズル部7を構成するセグメント8がもともと冷却水路70を備えており、この冷却水路70内に前記磁場生成手段9を構成する磁性体である磁石91,92を配置する手法であるので、既設の空間に磁石91,92を収容するだけで構成することができ、しかも、この位置であれば誘導磁場も及ばず、水冷効果も同時に得ることができる。勿論、冷却水路を新たに設ける場合であっても、多少の手間が掛かる以外は全く同様の効果が奏される。
そして、磁場生成手段9を構成する磁性体が、磁化された永久磁石91,92であるので、出湯ノズル部7にコンパクトに組み付けることができ、特に冷却水路に内設する上で有効となるとともに、エネルギー供給やメンテナンスを不要にすることができる。
以上、本発明の一実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。
例えば、図6及び図7(a)に示すように、同一セグメント8内に磁場生成手段9を構成する磁石93,94を、テーパ面7xの母線L方向へ離間した磁極間に磁路を結ぶように配置してもよい。具体的には、2つの磁石93,94を斜面に沿って上方と下方に対をなして設け、傾斜の上側の磁石93はテーパ面7xに近い磁極面をN極とし、斜面下側の磁石94はテーパ面8cに近い磁極面をS極とするような磁極配置としてある。
すなわち、上記実施形態の場合は、磁束のうち主としてテーパ面7xに出入する部位のみが制動力に寄与するが、図6及び図7(a)の構成であれば、図7(b)に示すように、上側から下側へ向かう磁路上の全ての磁束(磁束密度B)が旋回流(速度V)と直交することになるので、制動力をより高める効果が期待できる。勿論、この場合にも、テーパ面7xに磁束が出入する部位において、母線L方向に沿って流下する溶湯の速度V´に対して減速効果が働くのは上記実施形態と同様である。この場合にも、同図(c)に示すように、隣接同士のセグメント8,8間で磁極の極性が逆となるように配置してもよいし、同一セグメント8内で中間スリット8aを挟んで周方向に隣接する磁極の極性が逆向きとなるようにすることもできる。
さらに、冷却水路70内に配置される磁石93,94等は、上記実施形態のように斜面側に密着するように取り付けてもよいが、図8に示すように誘導コイル13,14側に密着させて取り付けるようにしても良い。斜面側に配置すると、誘導加熱以外に溶湯の熱が伝達され、強い冷却性能が必要になるため、磁石93,94及びその近傍のセグメント8の壁が冷却不足となることが考えられるが、誘導コイル13,14側に取り付けると、斜面側に冷却水路70が確保されるため、冷却効果を有効に高めることができる。
さらにまた、図9に示すように、磁場生成手段9を3個の磁石95,96,97を組み合わせて構成してもよい。図示例では、ベースとなる平板磁石95の両端近傍に一対の平板磁石96,97を組み合わせており、このように構成すると、2枚の平板状磁石を組み合わせる構成に比して、図10(a)に示すように磁束(磁束密度B)を積極的に出湯ノズル部2のテーパ面7x内へ導くことができ、起磁力を有効に増加させることができる。
この場合、冷却水路70を構成する管路を横切るように設置する磁石96,97は、冷却水路70の通路を確保するために、同図(b)に示すように穴98をあけるか、冷却水路70の断面に比して小断面となるような形状のもの、例えば同図(c)に示すようにベースとなる平板状の磁石95に対して直交する平板状の磁石96,97としておくこと等が有効である。勿論、斜面方向の平板状棒磁石のみの構成もあり得る。
また、上記実施形態では、静磁場を構成する磁場生成手段を永久磁石によって構成したが、磁性体とコイルからなる電磁石から構成し、コイルに直流電流を流しても、静磁場(直流磁場)を形成することができる。この場合、磁性体を上記磁石と同様に配置すればよく、コイルもセグメント内に挿通すれば誘導加熱から有効に保護することができる。しかも、通電量によって静磁場の磁束密度、ひいては旋回流の抑止効果が調整できるので、構造的に複雑にならなければ有用な方法となり得る。
さらに、上記実施形態の出湯ノズル部7は炉本体とは別部材として構成されていたが、本発明の出湯ノズル部は炉本体内の溶湯を出湯口に導く作用をなす機能的な部位であるため、炉本体と一体的に設けられたものであっても構わないし、更に出湯ノズル部が細分化された構造であっても構わない。
さらにまた、冷却水路内に磁石を配置するにあたり、冷却水路に部分的に掘り込みを作って水路を極力塞がないようにしてもよい。
その他の構成も、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
本発明の一実施形態に係る誘導加熱溶解炉の概略的な構造説明図。 同実施形態の出湯ノズル部を示す部分拡大断面図。 同出湯ノズル部の部分斜視図。 同実施形態の磁場生成手段と冷却水路の関係を示す図。 同実施形態の原理を説明する図。 本発明の変形例を示す図2に対応した断面図。 図6に対応した作用説明図。 本発明の他の変形例を示す図6に対応した断面図。 本発明の更に他の変形例を示す図2に対応した断面図。 本発明の上記以外の変形例を示す図2に対応した断面図。
符号の説明
1…炉本体
2…底部出湯機構
4…開口部
5、8…セグメント
7b…出湯口
7x…テーパ面
9…磁場生成手段
11…底部出湯機構
70…冷却水路
91,92,93,94,95,96,97…磁性体(磁石)
L…母線

Claims (8)

  1. 溶解対象物が投入される炉本体と、この炉本体の底部にあって炉本体内の溶湯の出湯を制御する底部出湯機構とを具備し、前記底部出湯機構は、炉本体の底部に設けた開口部を出湯口に導く出湯ノズル部を備え、炉本体は出湯ノズル部ともども円周方向に分割形成されたセグメントを継ぎ合わせた集合体であって、継目を介して炉本体内に誘導磁場が導入されるように構成されたものにおいて、
    前記出湯ノズル部を構成するセグメントの誘導磁場が及ばない部位に、出湯ノズル部の流路内を流れる溶湯の旋回流と直交する方向の磁束成分を有する静磁場を当該出湯ノズル部の流路内に形成するための磁場生成手段を設けたことを特徴とする誘導加熱溶解炉。
  2. 出湯ノズル部は、炉本体の底部に設けた開口部の径を出湯口に向かって漸次縮径させるテーパ面を有した漏斗状をなしており、磁場生成手段はテーパ面に対する法線方向の磁束成分を一部に有する静磁場を当該テーパ面の内側に形成するように、少なくとも当該磁場生成手段を構成する磁性体を前記テーパ面に沿って設けている請求項1記載の誘導加熱溶解炉。
  3. 同一セグメント内に磁場生成手段を構成する磁性体を、テーパ面の円周方向へ離間した磁極間に磁路を結ぶように配置している請求項2記載の誘導加熱溶解炉。
  4. 同一セグメント内に磁場生成手段を構成する磁性体を、テーパ面の母線方向へ離間した磁極間に磁路を結ぶように配置している請求項2又は3何れかに記載の誘導加熱溶解炉。
  5. 同一セグメント内に磁場生成手段を構成する2以上の磁性体を分離させて配置し、各磁性体の磁極面をテーパ面に対向させている請求項2〜4何れかに記載の誘導加熱溶解炉。
  6. 隣接するセグメントにそれぞれ磁場生成手段を構成する磁性体を、テーパ面の円周方向へ離間した磁極間に磁路を結ぶように配置している請求項2〜5何れかに記載の誘導加熱溶解炉。
  7. 出湯ノズル部を構成するセグメント内に冷却水路が設けられ、この冷却水路内に前記磁場生成手段を構成する磁性体を配置している請求項1〜6何れかに記載の誘導加熱溶解炉。
  8. 磁場生成手段を構成する磁性体が、磁化された永久磁石である請求項1〜7何れかに記載の誘導加熱溶解炉。
JP2008070471A 2008-03-18 2008-03-18 誘導加熱溶解炉 Pending JP2009222364A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070471A JP2009222364A (ja) 2008-03-18 2008-03-18 誘導加熱溶解炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070471A JP2009222364A (ja) 2008-03-18 2008-03-18 誘導加熱溶解炉

Publications (1)

Publication Number Publication Date
JP2009222364A true JP2009222364A (ja) 2009-10-01

Family

ID=41239332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070471A Pending JP2009222364A (ja) 2008-03-18 2008-03-18 誘導加熱溶解炉

Country Status (1)

Country Link
JP (1) JP2009222364A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036334A1 (ko) * 2010-09-15 2012-03-22 한국수력원자력 주식회사 유도코일과 용융로 일체형 유도가열식 저온용융로
CN104534874A (zh) * 2014-12-25 2015-04-22 合肥科晶材料技术有限公司 真空中频感应炉
KR101707980B1 (ko) * 2016-09-26 2017-02-27 손인철 교체가능한 곡면 냉각패널 플라즈마 저온 용융로
JP2017194234A (ja) * 2016-04-21 2017-10-26 シンフォニアテクノロジー株式会社 底部出湯ノズル、底部出湯ノズル型溶解炉
JP2018189246A (ja) * 2017-04-28 2018-11-29 シンフォニアテクノロジー株式会社 コールドクルーシブル溶解炉
JP2020091058A (ja) * 2018-12-05 2020-06-11 シンフォニアテクノロジー株式会社 コールドクルーシブル溶解炉、および、そのメンテナンス方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036334A1 (ko) * 2010-09-15 2012-03-22 한국수력원자력 주식회사 유도코일과 용융로 일체형 유도가열식 저온용융로
KR101218923B1 (ko) * 2010-09-15 2013-01-04 한국수력원자력 주식회사 유도코일과 용융로 일체형 유도가열식 저온용융로
CN103180682A (zh) * 2010-09-15 2013-06-26 韩国水力原子力株式会社 感应线圈与熔炉一体型感应加热式低温熔炉
JP2013542552A (ja) * 2010-09-15 2013-11-21 コリア ハイドロ アンド ニュークリア パワー カンパニー リミティッド 誘導コイル及び溶融炉一体型コールドクルーシブル誘導溶融炉
CN103180682B (zh) * 2010-09-15 2015-06-17 韩国水力原子力株式会社 感应线圈与熔炉一体型感应加热式低温熔炉
US9288847B2 (en) 2010-09-15 2016-03-15 Korea Hydro & Nuclear Power Co., Ltd Cold crucible induction melter integrating induction coil and melting furnace
CN104534874A (zh) * 2014-12-25 2015-04-22 合肥科晶材料技术有限公司 真空中频感应炉
JP2017194234A (ja) * 2016-04-21 2017-10-26 シンフォニアテクノロジー株式会社 底部出湯ノズル、底部出湯ノズル型溶解炉
KR101707980B1 (ko) * 2016-09-26 2017-02-27 손인철 교체가능한 곡면 냉각패널 플라즈마 저온 용융로
JP2018189246A (ja) * 2017-04-28 2018-11-29 シンフォニアテクノロジー株式会社 コールドクルーシブル溶解炉
JP2020091058A (ja) * 2018-12-05 2020-06-11 シンフォニアテクノロジー株式会社 コールドクルーシブル溶解炉、および、そのメンテナンス方法
JP7323761B2 (ja) 2018-12-05 2023-08-09 シンフォニアテクノロジー株式会社 コールドクルーシブル溶解炉、および、そのメンテナンス方法

Similar Documents

Publication Publication Date Title
JP2009222364A (ja) 誘導加熱溶解炉
US8696976B2 (en) Method and devices for regulating the flow rate and for slowing down non-ferromagnetic, electrically-conducting liquids and melts
US8343416B2 (en) Methods and devices for regulating the flow rate and for slowing down non-ferromagnetic, electrically conductive liquids and melts
US20090294091A1 (en) Continuous Casting Device
JP2934399B2 (ja) 電磁気的閉じ込めダムを有する鋼帯鋳造装置
JP5918572B2 (ja) チタン鋳塊およびチタン合金鋳塊の連続鋳造装置および連続鋳造方法
WO2013133318A1 (ja) チタン溶解装置
JP4435781B2 (ja) ノズル内移動溶融金属を電磁回転する連続鋳造装置
JPH10103875A (ja) コールドクルーシブル誘導溶解炉
JP5432812B2 (ja) 非鉄金属用溶解炉及び非鉄金属の溶解方法
JP3728872B2 (ja) 金属の連続溶解鋳造装置および方法
CN105312521A (zh) 一侧开口、磁路闭合的电磁旋流装置及其支撑装置
JP6842030B2 (ja) 底部出湯ノズル、底部出湯ノズル型溶解炉
US6843305B2 (en) Method and device for controlling stirring in a strand
JP4519600B2 (ja) 電磁攪拌コイル
US20060131795A1 (en) Methods and facilities for suppressing vortices arising in tundishes or ladles during their respective discharge
JP2001316734A (ja) 案内管の流束集中を制御する方法
JP2010017749A (ja) 溶解炉、連続鋳造装置、および連続鋳造装置における鋳造方法
AU8184798A (en) Electromagnetic meniscus control in continuous casting
JP2968431B2 (ja) 集約ヒレを用いて金属溶湯を磁気的に閉じ込める方法及び装置
Lin et al. Distribution of wire feeding elements in laser-arc hybrid welds
JP2019186132A (ja) 誘導加熱溶解装置
JP2000176609A (ja) 連続鋳造に使用する鋳型
JP2008178884A (ja) 鋼の連続鋳造方法
TW470835B (en) Electromagnetic type control valve for conductive fluids