WO2012031990A1 - Geschäumte, lichtechte polyurethanformteile - Google Patents

Geschäumte, lichtechte polyurethanformteile Download PDF

Info

Publication number
WO2012031990A1
WO2012031990A1 PCT/EP2011/065218 EP2011065218W WO2012031990A1 WO 2012031990 A1 WO2012031990 A1 WO 2012031990A1 EP 2011065218 W EP2011065218 W EP 2011065218W WO 2012031990 A1 WO2012031990 A1 WO 2012031990A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
cyclo
aliphatic
density
mol
Prior art date
Application number
PCT/EP2011/065218
Other languages
German (de)
English (en)
French (fr)
Inventor
Birgit Meyer Zu Berstenhorst
Reinhard Halpaap
Norbert Eisen
Uwe Pfeuffer
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to EP11755305.7A priority Critical patent/EP2614112B1/de
Priority to KR1020137008714A priority patent/KR20130143564A/ko
Priority to JP2013527559A priority patent/JP2013537922A/ja
Priority to CN201180053572.0A priority patent/CN103314043B/zh
Priority to US13/820,629 priority patent/US20130184367A1/en
Priority to PL11755305T priority patent/PL2614112T3/pl
Priority to ES11755305.7T priority patent/ES2527249T3/es
Publication of WO2012031990A1 publication Critical patent/WO2012031990A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4841Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6688Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/798Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/34Chemical features in the manufacture of articles consisting of a foamed macromolecular core and a macromolecular surface layer having a higher density than the core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0033Foam properties having integral skins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the invention relates to foamed, lightfast polyurethane integral moldings and their use.
  • PUR Polyurethanes based on isocyanates with aromatic-bonded NCO groups are known to discolor under the action of light. This is a problem in outdoor or under light exposed interior parts. For the production of light-resistant moldings therefore a surface with appropriate properties is required.
  • the surfaces in the interior should also take on a certain protective function by having a soft depth of hardness under stress. Despite all the softness in the depth hardness, however, the surfaces must not be damaged quickly. This is achieved by a compacted surface. Thus, an integral foam is needed, which has a lower density in the core than at the edge.
  • the depth hardness of the material is determined by means of the penetration measurement. This is determined with a penetrator (for example, the Cone Penetrometer H-4236 Humboldt) at 1400 g load and a rounded penetration tip with a diameter of 3 mm earliest after 24 hours after demolding at room temperature, the penetration depth. Small values
  • the free foam density may be max. 450 kg / m 3 , preferably max. 350 kg / m 3 .
  • EP-A 0 652 250 and WO 2009 097990 describe processes for the preparation of cellular polyurethanes from isocyanates of the diphenylmethane series and carbamate blowing agents.
  • the depth hardness depends from the surface hardness.
  • soft systems also have a soft, quickly injured skin and systems with a higher surface density tend to be hard in depth hardness.
  • Aliphatic isocyanates are known to be much more unreactive than aromatic, which is why significantly more energy must be added to the reaction. Thus, tool temperatures of 70-90 ° C are often needed to start the reaction at all and to harden. Thus, integral foam formation should be much more difficult compared to aromatic systems. It is therefore not surprising that in most of the patents on integral foams in which both aromatic and aliphatic polyisocyanates are indicated as the isocyanate component, only aromatic systems are used in the examples, see e.g. DE19836662, EP1219674, EP1282658, US2003225177. It remains questionable whether such good results can be achieved with aliphatic isocyanates.
  • Aliphatic polyisocyanates are known to be toxic or harmful only if they contain a certain amount of free monomer (toxic, labeling T, with monomer contents> 2 wt .-%, harmful, labeling Xn, with monomer contents> 0.5 wt. -% and ⁇ 2 wt .-%).
  • free monomer toxic, labeling T, with monomer contents> 2 wt .-%
  • harmful, labeling Xn with monomer contents> 0.5 wt. -% and ⁇ 2 wt .-%).
  • low-monomer systems should be used.
  • these have the disadvantage that they have a significantly lower NCO content than the monomers, e.g. in the form of uretdiones, isocyanurates, allophanates, biurets, iminooxadiazinedione and / or oxadiazinetrione structure or in
  • isocyanate prepolymers Form of urethane and isocyanate-containing reaction products, so-called isocyanate prepolymers.
  • isocyanate prepolymers significantly more isocyanate component must be used in the reaction to polyurethanes.
  • the polyurethane is diluted as a result, ie fewer new polyurethane reactions take place than when using Monomers. Since the heat required to build an integral structure is induced by the heat of reaction, low-monomer systems should be significantly less able to form a compacted skin.
  • the object of the present invention was therefore to achieve lightfast polyurethanes in a broad density range with soft elastic depth hardness, e.g. for the field of application of dashboards, door linings, armrests and consoles, and a process for their manufacture.
  • polyurethanes which are obtainable from low-monomer ( ⁇ 0.5% by weight monomer content), modified aliphatic isocyanates and isocyanate-reactive short and long-chain compounds using certain physical blowing agents.
  • the present invention provides foamed, lightfast integral polyurethane moldings having a free foam density of at most 450 kg / m 3 and a density difference between the core and outer skin of the molded article of at least 90 kg / m 3 obtainable from
  • polystyrene resin having an average molecular weight of from 1,000 to 15,000 g / mol and a functionality of from 2 to 8, preferably from 2 to 6,
  • component A) has a monomer content of (cyclo) aliphatic polyisocyanates less than 0.5 wt .-% and as blowing agent D) physical blowing agent from the group consisting of (cyclo) aliphatic Hydrocarbons having up to 5 carbon atoms, preferably having 4 to 5, more preferably having 5 carbon atoms, partially halogenated hydrocarbons or partially halogenated olefins each having up to 5 carbon atoms or ethers, ketones or acetates each having up to 5 carbon atoms or nitrogen-containing hydrocarbons having up to 5 carbon atoms used, which are used in an amount, so that a free foam with a free foam density of at most 450 kg / m 3 is generated and so that sets a density difference between the outer skin and the core of the molding of at least 90 kg / m 3 .
  • the outer skin is defined for the measurement of the density as the outer layer of the molded part with a thickness of 1.5 mm.
  • modified polyisocyanate compounds A) are (cyclo) aliphatic
  • Polyisocyanates used as starting compounds are Suitable (cyclo) aliphatic polyisocyanates are preferably any by phosgenation or by phosgene-free processes, for example by thermal urethane cleavage, accessible diisocyanates of the molecular weight range 140 to 400 with aliphatically or cycloaliphatically bound isocyanate groups.
  • Suitable (cyclo) aliphatic compounds are suitable for.
  • 1,4-diisocyanatobutane 1,5-diisocyanatopentane, 1,6-diisocyanatohexane (HDI), 2-methyl-l, 5-diisocyanatopentane, l, 5-diisocyanato-2,2-dimethylpentane, 2.2 , 4- or 2,4,4-trimethyl-l, 6-diisocyanatoh exane, 1, 1-O-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1,3- and l, 4-bis ( isocyanatomethyl) cyclohexane, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane (isophorone diisocyanate, IPDI), 4,4'-diisocyanatodicyclohexylmethane (Hi 2 -MDI, if appropriate in a mixture with the 2,4
  • IMCI isocyanato-methylcyclohexane
  • NBDI bis (isocyanatomethyl) norbornane
  • modified compounds A) prepared from the monomeric (cyclo) aliphatic polyisocyanates are prepared by customary known processes. According to the invention, they have monomer concentrations of less than 0.5% by weight and contain as modification, for example, uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structures, as described, for example, in J. Prakt. Chem.
  • modified polyisocyanates A) it is also possible to use reaction products containing urethane and isocyanate groups, so-called isocyanate prepolymers and carbodiimide-modified polyisocyanates.
  • the polyisocyanates A) preferably have an isocyanate content of 10 to 30% by weight.
  • Preferred, but not exclusive modified polyisocyanates A) are low-viscosity products based on HDI with a monomer content of ⁇ 0.5 wt .-%. Particular preference is given to using polyisocyanates based on HDI, which contain uretdione groups, and / or prepolymers based on HDI. Very particular preference is given to using polyisocyanates based on HDI which contain uretdione groups and / or prepolymers based on HDI, where component A contains less than 5 percent by weight of cycloalipatic polyisocyanates since cycloaliphatic polyisocyanates are significantly more expensive than polyisocyanates based on HDI.
  • Component B) has an average hydroxyl functionality of 2 to 8 and preferably consists of at least one polyhydroxy polyether having an average molecular weight of 1,000 to 15,000 g / mol, preferably 2,000 to 13,000 g / mol and / or at least one polyhydroxy polyester having an average molecular weight of 2,000 to 10,000 g / mol, preferably 2,000 to 8,000 g / mol and / or at least one Oligocarbonatpolyol having an average molecular weight from 1,000 to 5,000 g / mol.
  • Suitable polyhydroxypolyethers are the alkoxylation products known per se from polyurethane chemistry of preferably di- or trifunctional starter molecules or mixtures of such starter molecules.
  • starter molecules examples include water, ethylene glycol, diethylene glycol, propylene glycol, trimethylolpropane, glycerol and sorbitol.
  • Alkylene oxides used for the alkoxylation are, in particular, propylene oxide and ethylene oxide, these alkylene oxides being able to be used in any order and / or as a mixture.
  • component B) it is also possible to use aliphatic oligocarbonate polyols having an average molecular weight of from 1,000 to 5,000 g / mol, preferably from 1,000 to 2,000 g / mol.
  • Suitable aliphatic oligocarbonate polyols are the per se known transesterification products of monomeric dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, etc. with polyols or mixtures of polyols having an OH functionality> 2.0 such as. 1, 4-butanediol, 1,3-butanediol, 1,5-
  • Suitable polyester polyols are the per se known, hydroxyl-containing esterification products of preferably dihydric alcohols, such as ethylene glycol,
  • difunctional carboxylic acids such as succinic, adipic, phthalic, tetrahydrophthalic, hexahydrophthalic or mixtures of such acids.
  • the component C) is preferably difunctional chain extenders having a molecular weight of 62 to 500 g / mol, preferably 62 to 400 g / mol.
  • Preferred chain extenders C) include dihydric alcohols such as ethylene glycol, diethylene glycol, 1,4-butanediol, 1,6-hexanediol, or mixtures of such diols.
  • chain extenders C are diamines having arylalkyl-containing amino groups, for example 1,3-xylyenediamine. Furthermore, it is also possible to use polycarbonate diols, provided that their molecular weight is below 500 g / mol. Any mixtures of the exemplified chain extenders may also be used.
  • the chain extender C) are used in amounts of 2 to 15, preferably 4 to 12 wt .-%, based on the weight of the sum of components B), C), D) and E).
  • the propellants D) essential to the invention are compounds of the classes already mentioned above.
  • Examples of cyclic hydrocarbons are cyclopropane and cyclopentane.
  • Non-cyclic hydrocarbons are i.a. Butane, n-pentane and isopentane.
  • Halogen-containing hydrocarbons include hydrogen-containing fluorochlorohydrocarbons or fluorohydrocarbons or perfluoro compounds, for. B. Perfluoroalkanes understood. As chlorofluorocarbons z.
  • chlorodifluoromethane R22
  • 1, 1-dichloro-1-fluoroethane R141b
  • 1-chloro-1, 1-difluoroethane R142b
  • 3-dichloro-l, l, 2,3,3, hexafluoropropane R216a
  • fluorohydrocarbons examples include pentafluoroethane (R125), 1,1,1-trifluoroethane (R143a), 1,1,1,2-tetrafluoroethane (R134a), 1,2-trifluoroethane (R143), 1,1-difluoroethane ( R152a), 1,1,1,3,3-pentafluoropropane (R245fa), octafluoropropane (R218) or 1,1,1,3,3-pentafluorobutane (R365 mfc).
  • Halogen-containing ethers include hydrogen-containing fluorochloro or fluoro ethers, such as.
  • examples of usable ethers are dimethyl ether or diethyl ether.
  • Hydrocarbon is nitromethane.
  • olefins As a partially halogenated olefins z. trans-1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze), 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf), FEA 1100 (1, l, l, 4, 4,4-hexafluoro-2-butene) and FEA 1200 understood.
  • HFO-1234ze trans-1,3,3,3-tetrafluoroprop-1-ene
  • HFO-1234yf 2,3,3,3-tetrafluoroprop-1-ene
  • FEA 1100 (1, l, l, 4, 4,4-hexafluoro-2-butene
  • FEA 1200 understood.
  • the physical blowing agent D) in an amount of 0, 1 to 10 wt -.%, Preferably 1 to 8 wt .-%, particularly preferably 2 to 7 wt .-% by weight the sum of components B), C), D) and E) is used.
  • auxiliary and additive E are compounds of the type known per se. These are the usual and known in the preparation of polyurethane foams compounds such. Catalysts, stabilizers, pigments, fillers or water, which is optionally used in an amount of up to 0.3 wt .-%, based on the weight of component B). Preferably, however, the preparation of the PU is carried out without added water.
  • Catalysts which can be used are the known catalysts customary for polyurethane, which are listed, for example, in WO 2008/034884 or EP 0929586. These include both salts and
  • Organotin compounds such as dimethyltin (IV) didodecylmercaptide, dimethyltin (IV) bis (2-ethylhexylthioglycolate), dimethylenecarb (IV) dimethyleneisooctylestermercaptide, dimethyltin (IV) didecylmercaptide, dimethyltin (IV) butenyldicarboxylate, dimethyltin dilaurate and Dimethyltin (IV) di (neo-decylcarboxylate) are preferably used.
  • non-pentagonal catalysts should be used.
  • UV absorbers are understood to mean both UV absorbers, antioxidants, free-radical scavengers and foam stabilizers.
  • UV absorbers can be both inorganic compounds such as titanium dioxide, zinc oxide or ceria, as well as organic compounds such as
  • Radical scavengers are known to include Hindered Amine Light Stabilizers (HALS), and as antioxidants sterically hindered phenols and / or secondary aromatic amines can be used.
  • Foam stabilizers usually consist of polyether siloxanes or block copolymers of polyoxyalkylenes.
  • pigments and fillers e.g. Calcium carbonate, graphite, carbon black, titanium dioxide, titanium dioxide, iron oxide, wollastonite, glass fibers, carbon fibers and / or organic dyes or fillers understood.
  • component E auxiliaries and additives are listed in "Kunststoffhandbuch 7 -Polyurethanes", Becker / Braun, Carl Hanser Verlag, Kunststoff, 1993, 104ff.
  • the starting components are otherwise used in amounts such that an isocyanate index of 80 to 120, preferably 95 to 105, is obtained.
  • the isocyanate index is the ratio of the number of NCO groups divided by the number of NCO-reactive groups multiplied by 100.
  • the temperature of the reaction components is generally within the temperature range from 20 to 60 ° C.
  • the temperature of the molding tools is generally at 20 to 100 ° C, preferably at 50 to 90 ° C.
  • the amount of the foamable material introduced into the mold is such that the bulk densities of the moldings result from 200 to 700 kg / m 3 .
  • the molded parts are used, for example, as steering wheels or door side panels as well as instrument panel covers or generally as protective cushions in the interior of the car.
  • the aliphatic foams are suitable as paneling for instrument panels, consoles, paneling of doors or shelves in the area of vehicles.
  • HDI containing isocyanurate and uretdione groups was prepared by tributylphosphine-catalyzed oligomerization of HDI on the basis of Example 1a) of EP-A 0 377 177, but no 2,2,4-trimethyl-1,3-pentanediol was used.
  • the reaction was stopped at an NCO content of the crude solution of 42% and unreacted s HDI was removed by thin-film distillation at a temperature of 130 ° C and a pressure of 0.2 mbar.
  • NCO content 22.7% NCO functionality: 2.2 monomeric HDI: 0.3% viscosity (23 ° C): 90 mPas polyisocyanate A2):
  • HDI 1,6-diisocyanatohexane
  • OH number 280
  • Polyisocyanate II mixture of 1 part by weight of polyisocyanate A2) and 1 part by weight of polyisocyanate AI).
  • Polyisocyanate III Polyisocyanate AI).
  • Polyether polyol having an OH number of 28 prepared by alkoxylation of sorbitol with propylene oxide / ethylene oxide (PO / EO) in a weight ratio of 82:18 and predominantly primary OH end groups.
  • Propellant Depending on the polyisocyanate, the propellants are added in such a way that the propellant content is in each case about 3.6% by weight, based on all starting materials.
  • Propellant I HFC 245 fa [1, 1, 1,3,3-pentafluoropropane from Honeywell]
  • Tables 1 to 3 below describe the components and amounts used for the preparation of the polyurethanes.
  • the mold temperature was 70 ° C, the mold size was 100 x 100 x 20 mm.
  • the temperature of the components used was at room temperature (25 ° C) for the isocyanate and for the polyol formulation.
  • the amount that was poured into the mold was such that the indicated bulk density resulted.
  • Experiments 1, 4 and 7 are comparative experiments containing a large amount of monomeric diisocyanates. It can be clearly seen that they can be well foamed with any propellant, since the free foam densities are well below the required 450 kg / m 3 and have a good skin formation (difference raw density skin to core density core) of well over 90 kg / m 3 .
  • these comparative experiments have in common the significant disadvantage that they are prepared with large amounts of low molecular weight monomeric aliphatic diisocyanates, which are classified as harmful, sensitizing or even toxic agents and some have a high vapor pressure. The processing of these monomeric diisocyanates requires a great safety effort for reasons of work hygiene.
  • Example 2 and 3 a non-combustible physical blowing agent was also used, which brings further advantages in terms of the safety aspect on the polyol side.
  • the work hygiene hygienic polyurethane systems used according to the invention provide soft foams, which also have sufficient skin formation.
  • the formation of these soft foams with corresponding outer skin only succeeds with the blowing agents used according to the invention. This is not possible with isohexane as blowing agent, despite the use of the polyisocyanates according to the invention (tests 5 and 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
PCT/EP2011/065218 2010-09-07 2011-09-02 Geschäumte, lichtechte polyurethanformteile WO2012031990A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11755305.7A EP2614112B1 (de) 2010-09-07 2011-09-02 Geschäumte, lichtechte polyurethanformteile
KR1020137008714A KR20130143564A (ko) 2010-09-07 2011-09-02 내광성 발포 폴리우레탄 성형물
JP2013527559A JP2013537922A (ja) 2010-09-07 2011-09-02 耐光性発泡ポリウレタン成形品
CN201180053572.0A CN103314043B (zh) 2010-09-07 2011-09-02 发泡耐光聚氨酯成型件
US13/820,629 US20130184367A1 (en) 2010-09-07 2011-09-02 Foamed lightfast polyurethane mouldings
PL11755305T PL2614112T3 (pl) 2010-09-07 2011-09-02 Spienione, światłotrwałe kształtki poliuretanowe
ES11755305.7T ES2527249T3 (es) 2010-09-07 2011-09-02 Piezas de moldeo de poliuretano espumadas, aligeradas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010040305.9 2010-09-07
DE102010040305 2010-09-07

Publications (1)

Publication Number Publication Date
WO2012031990A1 true WO2012031990A1 (de) 2012-03-15

Family

ID=44645684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065218 WO2012031990A1 (de) 2010-09-07 2011-09-02 Geschäumte, lichtechte polyurethanformteile

Country Status (8)

Country Link
US (1) US20130184367A1 (es)
EP (1) EP2614112B1 (es)
JP (1) JP2013537922A (es)
KR (1) KR20130143564A (es)
CN (1) CN103314043B (es)
ES (1) ES2527249T3 (es)
PL (1) PL2614112T3 (es)
WO (1) WO2012031990A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579484A (zh) * 2013-02-26 2016-05-11 霍尼韦尔国际公司 含有卤代烯烃发泡剂的聚氨酯泡沫预混物和由其制造的泡沫
WO2024079004A1 (en) * 2022-10-13 2024-04-18 Covestro Deutschland Ag Solid surface materials based on reaction mixtures with two kind of blowing agents
EP4375307A1 (en) * 2022-11-23 2024-05-29 Covestro Deutschland AG Solid surface materials based on reaction mixtures with two kind of blowing agents

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038910A1 (ja) * 2015-09-01 2017-03-09 三井化学株式会社 緩衝材、塗装用自動運動装置用緩衝材、緩衝材付自動運動装置および緩衝材付塗装用自動運動装置
EP3768756A1 (en) * 2018-03-23 2021-01-27 Covestro LLC Polyol acid neutralization for low temperature uretdione curing
US11339260B2 (en) 2019-08-01 2022-05-24 Covestro Llc Pultrusion processes for producing fiber reinforced polyurethane compositions and polyurethane-forming reaction mixtures suitable for use in such processes

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1670666A1 (de) 1966-02-02 1971-07-01 Bayer Ag Verfahren zur Herstellung von Oxadiazinonen mit NCO-Gruppen
EP0377177A1 (de) 1989-01-03 1990-07-11 Bayer Ag Verfahren zur Herstellung von Uretdion-und Isocyanuratgruppen aufweisenden Polyisocyanaten, die nach diesem Verfahren erhältlichen Polyisocyanate und ihre Verwendung in Zweikomponenten Polyurethanlacken
DE4203754A1 (de) * 1992-02-08 1993-08-12 Basf Ag Verfahren zur herstellung von fluorchlorkohlenwasserstoff freien formkoerpern mit einem zelligen kern und einer verdichteten randzone, vorzugsweise von lenkraedern fuer verkehrsmittel
EP0379246B1 (en) 1989-01-20 1994-08-17 Recticel A method for preparing and applying a sprayable, light stable polyurethane
EP0652250A1 (de) 1993-11-04 1995-05-10 Bayer Ag Verfahren zur FCKW-freien Herstellung von zelligen Polyurethanformkörpern
EP0798299A1 (de) 1996-03-26 1997-10-01 Bayer Ag Isocyanattrimerisate und Isocyanattrimerisatmischungen, deren Herstellung und Verwendung
EP0929586A1 (en) 1996-10-01 1999-07-21 Recticel Light-stable elastomeric polyurethane mouldings and process for the production thereof
DE19836662A1 (de) 1998-08-13 2000-02-24 Bayer Ag Verfahren zur Herstellung von Polyurethanintegralschaumstoffen (Polyurethanformkörpern)
US6054499A (en) * 1993-02-10 2000-04-25 Rathor Ag Prepolymer composition for insulating foams
EP1219674A1 (en) 2000-12-29 2002-07-03 Huntsman International Llc Process for making polyurethane integral skin foams
EP1282658A2 (en) 2000-03-29 2003-02-12 Dow Global Technologies Inc. Integral skin foams employing pentafluorobutane blowing agents
US20030225177A1 (en) 1999-09-10 2003-12-04 Logsdon Peter Brian Integral skin foams employing 1,1,1,3,3-pentafluoropropane as blowing agent
EP1404740A2 (de) 2001-06-27 2004-04-07 Bayer MaterialScience AG Verfahren zur herstellung von aliphatischen oligocarbonatdiolen
EP1518879A2 (de) 2003-09-19 2005-03-30 Bayer MaterialScience AG Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen
WO2008034884A2 (en) 2006-09-22 2008-03-27 Dow Global Technologies Inc. Integral skin polyurethane foam article
WO2009097990A1 (de) 2008-02-09 2009-08-13 Bayer Materialscience Ag Geschäumte, lichtechte polyurethanformteile
EP2336211A1 (de) * 2009-12-12 2011-06-22 Bayer MaterialScience AG Hydrophile, aliphatische Polyurethan-Schäume

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU81024A1 (fr) * 1979-03-09 1980-09-24 Prb Sa Procede pour la preparation de polyurethanne a peau integrale et polyurethanne obtenu
DE3835193A1 (de) * 1988-10-15 1990-04-19 Basf Ag Verfahren zur herstellung von formkoerpern mit einer verdichteten randzone und einem zelligen kern, vorzugsweise schuhsohlen
CA2155877A1 (en) * 1993-02-10 1994-08-18 Mathias Pauls Prepolymer composition for insulating foams
DE59503342D1 (de) * 1994-02-24 1998-10-01 Henkel Kgaa Schaumkunststoff aus einweg-druckbehältern
DE4434604B4 (de) * 1994-09-28 2005-03-03 Basf Ag Verfahren zur Herstellung von fluorchlorkohlenwasserstofffreien, Urethangruppen enthaltenden Formkörpern mit einem zelligen Kern und einer verdichteten Randzone
DE10259248A1 (de) * 2001-12-18 2003-07-10 Henkel Kgaa Verfahren zur Herstellung von Polyurethan-Prepolymeren
EP1426393A3 (de) * 2002-12-05 2009-11-04 Bayer MaterialScience AG Monomerenarme uretdiongruppenhaltige Polyisocyanate

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1670666A1 (de) 1966-02-02 1971-07-01 Bayer Ag Verfahren zur Herstellung von Oxadiazinonen mit NCO-Gruppen
EP0377177A1 (de) 1989-01-03 1990-07-11 Bayer Ag Verfahren zur Herstellung von Uretdion-und Isocyanuratgruppen aufweisenden Polyisocyanaten, die nach diesem Verfahren erhältlichen Polyisocyanate und ihre Verwendung in Zweikomponenten Polyurethanlacken
EP0379246B1 (en) 1989-01-20 1994-08-17 Recticel A method for preparing and applying a sprayable, light stable polyurethane
DE4203754A1 (de) * 1992-02-08 1993-08-12 Basf Ag Verfahren zur herstellung von fluorchlorkohlenwasserstoff freien formkoerpern mit einem zelligen kern und einer verdichteten randzone, vorzugsweise von lenkraedern fuer verkehrsmittel
US6054499A (en) * 1993-02-10 2000-04-25 Rathor Ag Prepolymer composition for insulating foams
EP0652250A1 (de) 1993-11-04 1995-05-10 Bayer Ag Verfahren zur FCKW-freien Herstellung von zelligen Polyurethanformkörpern
EP0798299A1 (de) 1996-03-26 1997-10-01 Bayer Ag Isocyanattrimerisate und Isocyanattrimerisatmischungen, deren Herstellung und Verwendung
EP0929586A1 (en) 1996-10-01 1999-07-21 Recticel Light-stable elastomeric polyurethane mouldings and process for the production thereof
DE19836662A1 (de) 1998-08-13 2000-02-24 Bayer Ag Verfahren zur Herstellung von Polyurethanintegralschaumstoffen (Polyurethanformkörpern)
US20030225177A1 (en) 1999-09-10 2003-12-04 Logsdon Peter Brian Integral skin foams employing 1,1,1,3,3-pentafluoropropane as blowing agent
EP1282658A2 (en) 2000-03-29 2003-02-12 Dow Global Technologies Inc. Integral skin foams employing pentafluorobutane blowing agents
EP1219674A1 (en) 2000-12-29 2002-07-03 Huntsman International Llc Process for making polyurethane integral skin foams
EP1404740A2 (de) 2001-06-27 2004-04-07 Bayer MaterialScience AG Verfahren zur herstellung von aliphatischen oligocarbonatdiolen
EP1518879A2 (de) 2003-09-19 2005-03-30 Bayer MaterialScience AG Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen
WO2008034884A2 (en) 2006-09-22 2008-03-27 Dow Global Technologies Inc. Integral skin polyurethane foam article
WO2009097990A1 (de) 2008-02-09 2009-08-13 Bayer Materialscience Ag Geschäumte, lichtechte polyurethanformteile
EP2336211A1 (de) * 2009-12-12 2011-06-22 Bayer MaterialScience AG Hydrophile, aliphatische Polyurethan-Schäume

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BECKER, BRAUN: "Kunststoffhandbuch 7 -Polyurethanes", 1993, CARL HANSER VERLAG, article "Hilfs- und Zusatzstoffe", pages: 104FF
J. PRAKT. CHEM., vol. 336, 1994, pages 185 - 200

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579484A (zh) * 2013-02-26 2016-05-11 霍尼韦尔国际公司 含有卤代烯烃发泡剂的聚氨酯泡沫预混物和由其制造的泡沫
CN105579484B (zh) * 2013-02-26 2019-06-04 霍尼韦尔国际公司 含有卤代烯烃发泡剂的聚氨酯泡沫预混物和由其制造的泡沫
WO2024079004A1 (en) * 2022-10-13 2024-04-18 Covestro Deutschland Ag Solid surface materials based on reaction mixtures with two kind of blowing agents
EP4375307A1 (en) * 2022-11-23 2024-05-29 Covestro Deutschland AG Solid surface materials based on reaction mixtures with two kind of blowing agents

Also Published As

Publication number Publication date
KR20130143564A (ko) 2013-12-31
ES2527249T3 (es) 2015-01-21
US20130184367A1 (en) 2013-07-18
EP2614112B1 (de) 2014-11-05
JP2013537922A (ja) 2013-10-07
EP2614112A1 (de) 2013-07-17
PL2614112T3 (pl) 2015-03-31
CN103314043B (zh) 2015-07-08
CN103314043A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
DE602004002265T2 (de) Silikon-Schaumstabilisatoren für Polyurethan-Hartschäume hergestellt mit Kohlenwasserstoff-Treibmitteln
EP0850260B1 (de) Verfahren zur herstellung von zelligen polyurethan-elastomeren und hierfür geeignete isocyanatprepolymere
DE10248949B4 (de) Polyurethanelastomere, Verfahren zu ihrer Herstellung und ihre Verwendung
EP2295485B1 (de) Lecithin enthaltende Zusammensetzung geeignet zur Herstellung von Polyurethanhartschäumen
EP2614112B1 (de) Geschäumte, lichtechte polyurethanformteile
EP3717538B1 (de) Reaktionssystem für einen 1k-polyurethan-hartschaumstoff
WO2009097990A1 (de) Geschäumte, lichtechte polyurethanformteile
DE102009045027A1 (de) Monomerarme Polyurethanschäume
EP0854889B1 (de) Verfahren zur herstellung von kompakten oder zelligen polyurethan-elastomeren auf basis von 3,3'-dimethyl-diphenyl-4,4'-diisocyanat enthaltenden polyisocyanatmischungen und hierfür geeignete isocyanatprepolymere
EP1689798B1 (de) Monomerarme prepolymerzusammensetzung aus unsymmetrischen polyisocyanaten und sterisch gehinderten polyolen
WO2019197364A1 (de) Verfahren zur herstellung von polyurethan/polyisocyanurat (pur/pir) – hartschaumstoffen
EP2596036B1 (de) Haftfester monomerarmer pu-schaum
EP3487903B1 (de) Hochtemperaturstabile polyisocyanuratschaumstoffe
DE102005031975A1 (de) PUR-Polyesterweichschaumstoffe auf Basis von Polyetheresterpolyolen
EP3472219B1 (de) Verfahren zur herstellung einer isocyanat- und isocyanuratgruppen enthaltenden zusammensetzung und daraus hergestellter pur/pir-hartschaumstoff
EP2739663B1 (de) Monomerarme polyurethanschäume
EP2804883B1 (de) Kompakte, lichtechte polyurethanformteile
DE19508079A1 (de) Verfahren zur Herstellung von hochelastischen Polyurethanschaumstoffen
WO2019211200A1 (de) Verfahren zur herstellung von geschlossenzelligem polyurethanschaum
DE19707577A1 (de) Elastische Biuret-modifizierte Polyurethanschaumstoffe sowie ein Verfahren zu ihrer Herstellung
DE19721220C1 (de) Verfahren zur Herstellung von weichen bis halbharten Polyurethanintegralschaumstoffen
EP3033369B1 (de) Polyurethanschaumstoffe und ihre verwendung
DE4405983B4 (de) Schaumkunststoff aus Einweg-Druckbehältern
DE10040885A1 (de) Harte Polyurethanintegralschaumstoffe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527559

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011755305

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13820629

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137008714

Country of ref document: KR

Kind code of ref document: A