WO2012029983A1 - コークス製造用石炭の調製方法 - Google Patents

コークス製造用石炭の調製方法 Download PDF

Info

Publication number
WO2012029983A1
WO2012029983A1 PCT/JP2011/070311 JP2011070311W WO2012029983A1 WO 2012029983 A1 WO2012029983 A1 WO 2012029983A1 JP 2011070311 W JP2011070311 W JP 2011070311W WO 2012029983 A1 WO2012029983 A1 WO 2012029983A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
coke
log
distance
preparing
Prior art date
Application number
PCT/JP2011/070311
Other languages
English (en)
French (fr)
Inventor
勇介 土肥
下山 泉
深田 喜代志
山本 哲也
広行 角
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP11821993.0A priority Critical patent/EP2613137B1/en
Priority to EP16189455.5A priority patent/EP3124575B1/en
Priority to PL16189455T priority patent/PL3124575T3/pl
Priority to US13/820,255 priority patent/US9102892B2/en
Priority to RU2013114315/05A priority patent/RU2559471C2/ru
Priority to PL11821993T priority patent/PL2613137T3/pl
Priority to CN201180050452.5A priority patent/CN103168224B/zh
Priority to AU2011296879A priority patent/AU2011296879B2/en
Publication of WO2012029983A1 publication Critical patent/WO2012029983A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/26After-treatment of the shaped fuels, e.g. briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization

Definitions

  • This invention evaluates coal for coke production using a test method for accurately evaluating softening and melting characteristics during coal carbonization, and based on the results, prepares coal for coke production that can improve coke strength. Regarding the method.
  • Coke used in the blast furnace method which is most commonly used as a steelmaking method, plays a number of roles such as iron ore reducing material, heat source, spacers, and the like.
  • Coke is produced by dry-distilling blended coal in which various types of coal for coke production, which are pulverized and adjusted in particle size, are blended in a coke oven.
  • Coal-producing coal softens and melts in the temperature range of about 300 ° C to 550 ° C during dry distillation, and at the same time, foams and expands as volatiles are generated, so that the particles adhere to each other, creating a massive semi-coke and Become.
  • Semi-coke is burned by shrinkage in the process of raising the temperature to around 1000 ° C., and becomes robust coke. Therefore, the adhesion characteristics during softening and melting of coal greatly affect properties such as coke strength and particle size after dry distillation.
  • the softening and melting characteristics of coal are extremely important because they greatly influence the coke properties and coke cake structure after dry distillation, and the measurement methods have been actively studied for a long time.
  • coke strength which is an important quality of coke, is greatly affected by the properties of coal as the raw material, particularly the degree of coalification and softening and melting characteristics.
  • the softening and melting property is a property of softening and melting when coal is heated, and is usually measured and evaluated by the fluidity, viscosity, adhesiveness, expandability, etc. of the softened melt.
  • a general method for measuring the fluidity at the time of softening and melting includes a coal fluidity test method based on the Gisela plastometer method specified in JIS M8801.
  • Gisela plastometer method coal pulverized to 425 ⁇ m or less is put in a predetermined crucible, heated at a specified temperature increase rate, and the rotation speed of a stirring bar to which a specified torque is applied is read with a scale plate, and ddpm (dial division) per minute).
  • Patent Document 1 describes a method of measuring torque while rotating a rotor at a constant rotational speed.
  • Dynamic viscoelasticity measurement is the measurement of viscoelastic behavior seen when a force is applied periodically to a viscoelastic body.
  • the method described in Patent Document 2 is characterized in that the viscosity of the softened molten coal is evaluated by the complex viscosity in the parameters obtained by the measurement, and the viscosity of the softened molten coal at an arbitrary shear rate can be measured. .
  • a dilatometer method As a general method for measuring the expansibility during softening and melting of coal, there is a dilatometer method defined in JIS M8801.
  • coal pulverized to 250 ⁇ m or less is molded by a specified method, placed in a predetermined crucible, heated at a specified rate of temperature rise, and a detection rod placed on the top of the coal is used to measure changes in coal displacement over time. It is a method to measure.
  • blended coal that is a mixture of several brands of coal at a specified ratio.
  • the softening and melting characteristics cannot be evaluated correctly, the required coke strength is satisfied.
  • low-strength coke that does not satisfy the specified strength is used in a vertical furnace such as a blast furnace, the amount of powder generated in the vertical furnace is increased, resulting in an increase in pressure loss and the operation of the vertical furnace. May cause troubles such as so-called blow-through, in which the gas flow is locally concentrated.
  • the coke strength is controlled to a certain value or higher by setting the target coke strength higher in advance in consideration of the variation in coke strength resulting from inaccuracy of the evaluation of softening and melting characteristics. Has been done.
  • this method it is necessary to use a relatively expensive coal having excellent softening and melting characteristics, which is generally known, and to set the average quality of the blended coal to be higher, so that the cost is reduced. Incurs an increase.
  • the coal at the time of softening and melting is softened and melted while being constrained by adjacent layers. Since the thermal conductivity of coal is small, the coal is not uniformly heated in the coke oven, and the state differs from the coke layer, the softened molten layer, and the coal layer from the furnace wall side that is the heating surface. Since the coke oven itself expands somewhat during dry distillation but hardly deforms, the softened and melted coal is constrained by the adjacent coke layer and coal layer.
  • the crack generated in the coke layer is considered to have a width of about several hundred microns to several millimeters, and is larger than the voids and pores between coal particles having a size of about several tens to several hundreds of microns. Therefore, it is considered that coarse defects generated in such a coke layer are not only caused by pyrolysis gas and liquid substances, which are by-products generated from coal, but also permeate softened and melted coal itself. Further, it is expected that the shear rate acting on the softened and melted coal at the time of infiltration varies from brand to brand.
  • the inventors need to use the coal softening and melting characteristics measured under conditions simulating the environment in which the coal is placed in the coke oven as an index. I thought. In particular, it was important to measure under conditions where softened and melted coal was constrained, and under conditions simulating the movement and penetration of the melt into the surrounding defect structure.
  • the conventional measuring method has the following problems.
  • the Giselaer plastometer method is problematic in that it does not take into account any restraint or infiltration conditions for measurement in a state where coal is filled in a container. Moreover, this method is not suitable for the measurement of coal showing high fluidity. The reason is that, when measuring coal showing high fluidity, a phenomenon that the inner wall of the container becomes hollow (Weissenberg effect) occurs, the stirrer may idle, and the fluidity may not be evaluated correctly ( For example, refer nonpatent literature 1.).
  • the method of measuring torque by the constant rotation method is deficient in that it does not consider the constraint condition and the penetration condition.
  • the measurement under a constant shear rate it is impossible to correctly compare and evaluate the softening and melting characteristics of coal as described above.
  • the dynamic viscoelasticity measuring device is a device that can measure viscosity under an arbitrary shear rate with viscosity as a softening and melting characteristic. Therefore, if the shear rate at the time of measurement is set to a value that acts on the coal in the coke oven, the viscosity of the softened molten coal in the coke oven can be measured. However, it is usually difficult to measure or estimate the shear rate in each coke oven in advance.
  • the method of measuring the adhesion to coal using activated carbon or glass beads as the softening and melting characteristics of coal tries to reproduce the infiltration conditions for the presence of coal layer, but does not simulate the coke layer and coarse defects There is a problem in terms. Moreover, the point which is not a measurement under restraint is also insufficient.
  • Patent Document 4 discloses a method for measuring the expansibility of coal in consideration of the movement of gas and liquid substances generated from coal by arranging a material having a through path on the coal bed.
  • the conditions for evaluating the infiltration phenomenon in the coke oven are not clear.
  • the relationship between the infiltration phenomenon of the coal melt and the softening and melting behavior is not clear, and there is no suggestion about the relationship between the infiltration phenomenon of the coal melt and the quality of the coke to be produced. It does not describe the production of coke.
  • an object of the present invention is to solve such problems of the prior art and measure the softening and melting characteristics of coal in a state that sufficiently simulates the environment around the softened and melted coal in a coke oven.
  • To provide a more accurate softening and melting property evaluation method to clarify the quality of a coal brand suitable for producing high-strength coke by using the method, and to prepare a brand of coal having such quality Is to provide.
  • a coke characterized by adjusting the permeation distance of the brand coal to a predetermined value or less when preparing individual brand coal used alone or in combination with other coal as a raw material for producing coke.
  • a method for preparing coal for production [2] Coke production characterized in that, when a plurality of coals are mixed to produce a coal for producing coke, the permeation distance of the coal is adjusted to a predetermined value or less with respect to at least one coal. Coal preparation method. [3] The method for preparing coal for coke production according to [1] or [2], wherein the highest Guelseller fluidity of the coal brand is adjusted to 100 ddpm or more.
  • [5] Measure the common logarithm log MF of at least one permeation distance of coal within the range of 1.75 ⁇ log MF ⁇ 2.50 and the Gieseler maximum fluidity MF, using the measured value.
  • a ′ is a regression line passing through the origin by measuring at least one permeation distance and log MF of coal in the range of logarithm log MF ⁇ 2.5 of logarithm of the highest flow rate MF of Gieseer. Is a constant in the range of 0.7 to 1.0 times the coefficient of log MF when b is a constant that is not less than the average value of the standard deviation when measuring one or more types of the same sample selected from the brands used to create the regression line, and not more than 5 times the average value, MFc is the Gieseler maximum fluidity (ddpm) of the coal to be prepared.
  • ddpm Gieseler maximum fluidity
  • the above a ′ measures the common logarithm log MF of at least one permeation distance of coal in the range of 1.75 ⁇ log MF ⁇ 2.50 and Gieseler maximum fluidity MF, and uses the measured value.
  • the method for preparing coke-producing coal as described in [6], wherein the constant is in the range of 0.7 to 1.0 times the log MF coefficient when a regression line passing through the origin is created.
  • coal prepared to a particle size of 2 mm or less is packed into a container at a packing density of 0.8 g / cm 3 to a thickness of 10 mm to form a sample, and a diameter of 2 mm is placed on the sample.
  • the defect structure existing around the softening and melting layer of coal in the coke oven is simulated, and the softening in the coke oven is performed.
  • High-strength coke for metallurgical use by using the measured value that can evaluate the softening and melting characteristics of coal with the appropriate reproduction of restraint conditions around the melt, that is, the softened melt penetration distance into the defect structure.
  • Raw material coal suitable for production can be prepared.
  • Coke is generally produced by dry distillation of coal blended with multiple brands with various grades.
  • the quality of each brand is shipped after being adjusted in the coal production area so as to satisfy the standard quality defined in the purchase contract or the like.
  • the quality is restricted by the quality of the coal produced, the quality is not the same even in the same coal mine depending on the production location and the processing method after production.
  • the present inventors are able to measure by a new measuring method, and the “penetration distance”, which is a new evaluation index of softening and melting characteristics, is an evaluation index superior to the conventional index in controlling coke strength. I found out. And as a result of examining the preparation method of the raw material coal brand with softening and melting characteristics judged to be desirable by the new evaluation method, it is possible to combine coals with different properties or perform pretreatment suitable for coal. It has been found that coal having desirable properties can be prepared, and the present invention has been completed.
  • the “penetration distance” can be measured as follows.
  • FIG. 1 shows an example of a measuring device for softening and melting characteristics (penetration distance) used in the present invention.
  • FIG. 1 shows an apparatus for heating a coal sample by applying a constant load to the coal sample and a material having through holes on the upper and lower surfaces.
  • the lower part of the container 3 is filled with coal to form a sample 1, and a material 2 having through holes on the upper and lower surfaces is arranged on the sample 1.
  • the sample 1 is heated to the softening and melting start temperature or higher, the sample is infiltrated into the material 2 having through holes on the upper and lower surfaces, and the infiltration distance is measured. Heating is performed in an inert gas atmosphere.
  • the inert gas refers to a gas that does not react with coal in the measurement temperature range
  • representative gases include argon gas, helium gas, nitrogen gas, and the like.
  • the penetration distance may be measured by heating the material having coal and the through-holes while maintaining a constant volume.
  • An example of a measuring device for softening and melting characteristics (penetration distance) used in that case is shown in FIG.
  • an expansion coefficient detecting rod 13 is arranged on the upper surface of a material 2 having through holes on the upper and lower surfaces, a weight 14 for applying a load is placed on the upper end of the expansion coefficient detecting rod 13, and a displacement meter 15 is placed thereon. And measure the expansion rate.
  • a displacement meter 15 that can measure the expansion range ( ⁇ 100% to 300%) of the expansion coefficient of the sample may be used. Since it is necessary to maintain the inside of the heating system in an inert gas atmosphere, a non-contact type displacement meter is suitable, and it is desirable to use an optical displacement meter.
  • the inert gas atmosphere is preferably a nitrogen atmosphere.
  • the expansion coefficient detecting rod 13 may be buried in the particle packed layer, and therefore the material 2 having the through holes on the upper and lower surfaces and the expansion coefficient detecting rod 13. It is desirable to take measures to sandwich the board between the two.
  • the load to be applied is preferably uniformly applied to the upper surface of the material having through holes on the upper and lower surfaces arranged on the upper surface of the sample, and 5 to 80 kPa with respect to the area of the upper surface of the material having the through holes on the upper and lower surfaces, It is desirable to apply a pressure of preferably 15 to 55 kPa, most preferably 25 to 50 kPa.
  • This pressure is preferably set based on the expansion pressure of the softened and molten layer in the coke oven, but as a result of examining the reproducibility of the measurement results and the ability to detect the difference in brands in various coals, It has been found that a slightly higher value of about 25 to 50 kPa is most preferable as a measurement condition.
  • a heating means that can be heated at a predetermined rate of temperature while measuring the temperature of the sample.
  • a heating means that can be heated at a predetermined rate of temperature while measuring the temperature of the sample.
  • an electric furnace an external heating type that combines a conductive container and high frequency induction, or an internal heating type such as a microwave.
  • the internal heating method it is necessary to devise a method for making the temperature in the sample uniform, and for example, it is preferable to take measures to increase the heat insulation of the container.
  • the heating rate needs to match the heating rate of the coal in the coke oven for the purpose of simulating the softening and melting behavior of the coal and caking material in the coke oven.
  • the heating rate of coal in the softening and melting temperature range in the coke oven varies depending on the position in the furnace and operating conditions, it should be approximately 2 to 10 ° C / min, and the average heating rate should be 2 to 4 ° C / min. The most desirable is about 3 ° C./min.
  • the permeation distance and expansion are small at 3 ° C./min, which may make detection difficult.
  • a predetermined heating rate in the range of 0 ° C (room temperature) to 550 ° C, preferably in the range of 300 to 550 ° C, which is the softening and melting temperature of coal. You can heat with.
  • the material having the through holes on the upper and lower surfaces can measure or calculate the transmission coefficient in advance.
  • Examples of the form of the material include an integrated material having a through hole and a particle packed layer.
  • Examples of the integrated material having a through hole include a material having a circular through hole 16 as shown in FIG. 2, a material having a rectangular through hole, and a material having an indeterminate shape.
  • the particle packed layer is roughly divided into a spherical particle packed layer and a non-spherical particle packed layer.
  • the spherical particle packed layer is composed of beads packed particles 17 as shown in FIG. 3, and the non-spherical particle packed layer is not suitable. Examples thereof include regular particles and those made of filled cylinders 18 as shown in FIG.
  • the transmission coefficient in the material is as uniform as possible and that the calculation of the transmission coefficient is easy in order to simplify the measurement. Therefore, the use of a spherical particle packed bed is particularly desirable for the material having through holes on the upper and lower surfaces used in the present invention.
  • the material having the through holes on the upper and lower surfaces is not particularly specified as long as the shape hardly changes to the coal softening and melting temperature range, specifically up to 600 ° C., and does not react with coal. Further, the height may be high enough to allow the coal melt to permeate, and may be about 20 to 100 mm when heating a coal layer having a thickness of 5 to 20 mm.
  • the transmission coefficient of the material having through holes on the upper and lower surfaces needs to be set by estimating the transmission coefficient of coarse defects present in the coke layer.
  • the transmission coefficient is 1 ⁇ 10 8 to 2 ⁇ 10 9 m ⁇ 2 as a result of repeated studies by the present inventors, such as consideration of coarse defect constituent factors and estimation of the size, which are particularly desirable for the present invention. Was found to be optimal.
  • This transmission coefficient is derived based on the Darcy rule expressed by the following equation (3).
  • ⁇ P the pressure loss [Pa] in the material having through holes on the upper and lower surfaces
  • L the height [m] of the material having the through holes
  • K the transmission coefficient [m ⁇ 2 ]
  • the fluid.
  • u fluid velocity [m / s].
  • glass beads having a diameter of about 0.2 mm to 3.5 mm are used. It is desirable to choose, most preferably 2 mm.
  • the coal and binder used as the measurement sample are pulverized in advance and filled to a predetermined layer thickness with a predetermined packing density.
  • the pulverized particle size may be the particle size of the coal charged in the coke oven (the ratio of particles having a particle size of 3 mm or less is about 70 to 80% by mass), and pulverized so that the particle size of 3 mm or less is 70% by mass or more.
  • the density for filling the pulverized product can be 0.7 to 0.9 g / cm 3 in accordance with the packing density in the coke oven, but as a result of studying reproducibility and detection power, 0.8 g / cm 3 is preferable. I found out.
  • the layer thickness to be filled can be 5 to 20 mm based on the thickness of the softened and melted layer in the coke oven. As a result of studying reproducibility and detection power, the layer thickness should be 10 mm. I found it preferable. In the measurement of the above penetration distance, typical measurement conditions are described below.
  • Coal or caking material is pulverized so that the particle size of 2 mm or less is 100% by mass, and the pulverized coal or caking material has a packing density of 0.8 g / cm 3 and a layer thickness of 10 mm.
  • Create a sample by filling the container like (2) A glass bead having a diameter of 2 mm is placed on the sample so as to have a thickness equal to or greater than the permeation distance (usually a layer thickness of 80 mm), (3) Heating in an inert gas atmosphere from room temperature to 550 ° C. at a heating rate of 3 ° C./min while applying a load from the top of the glass beads to 50 kPa, (4) The penetration distance of the molten sample that has penetrated into the glass bead layer is measured.
  • the penetration distance of the softened melt of coal and binder can be measured continuously during heating.
  • continuous measurement is difficult due to the influence of tar generated from the sample.
  • the expansion and infiltration phenomenon of coal by heating is irreversible, and once expanded and infiltrated, the shape is maintained even after cooling, so after the coal melt has been infiltrated, the entire container is cooled, You may make it measure how much it penetrate
  • the softened melt that has permeated the interparticle voids fixes the entire particle layer up to the permeated portion. Therefore, if the relationship between the mass and height of the particle packed bed is obtained in advance, the mass of the non-adhered particles is measured after the infiltration, and the mass of the adhering particles is derived by subtracting from the initial mass. And the penetration distance can be calculated therefrom.
  • the range of penetration distance is defined by the following formula. Permeation distance> 1.3 x a x logMFc
  • a is the log MF of log MF when measuring the penetration distance and log MF of at least one kind of coal and binder in the range of log MF ⁇ 2.5, and creating a regression line passing through the origin using the measured value. It is a constant in the range of 0.7 to 1.0 times the coefficient.
  • MFc is the coal gheseler maximum fluidity (ddpm) to determine the range of penetration distance.
  • the range of penetration distance is defined by the following formula. Permeation distance> a ′ ⁇ logMFc + b However, when a ′ is measured, the penetration distance and the maximum fluidity of at least one kind of coal and binder in the range of log MF ⁇ 2.5 are measured, and a regression line passing through the origin is created using the measured values. Is a constant in the range of 0.7 to 1.0 times the coefficient of log MF. b is a constant that is not less than the average value of the standard deviation when measuring one or more types of the same sample selected from the brands used for creating the regression line, and not more than 5 times the average value. MFc is the coal gheseler maximum fluidity (ddpm) to determine the range of penetration distance.
  • a coal sample prepared to have a particle size of 2 mm or less and a particle size of 100 mass% is filled into a container with a packing density of 0.8 g / cm 3 to a thickness of 10 mm, and glass beads with a diameter of 2 mm are used as materials having through holes.
  • the penetration distance exceeds 15 mm.
  • the value of the permeation distance is a set measurement condition, for example, a material having a load, a heating rate, and a through hole.
  • the management values of (a) to (c) are changed. This is based on the finding that the decision method is effective.
  • the constants a and a ′ used in determining the ranges of (A) and (B) measure at least one penetration distance and maximum fluidity of coal in the range of logMF ⁇ 2.5. Then, it is determined to be within a range of 0.7 to 1.0 times the log MF coefficient when a regression line passing through the origin is created using the measured value. This is because, in the range of log MF ⁇ 2.5, there is an almost positive correlation between the maximum coal flow rate and the penetration distance. This is because the brand is biased. As a result of intensive studies, the present inventors have a brand that falls within a range of 1.3 times or more the penetration distance determined according to the log MF value of coal according to the above regression equation, which leads to a decrease in strength.
  • the range of the permeation distance causing the strength reduction is determined based on the log MF value of the coal.
  • both the constants a and a ′ and b define the range is that by reducing these values, it is possible to more reliably detect coal that causes a decrease in strength. Can be adjusted according to operational requirements. However, if this value is too small, too much coal is estimated to have an adverse effect on coke strength, and it may be misunderstood that even if it does not cause strength reduction, it will cause strength reduction. Therefore, a and a ′ are preferably 0.7 to 1.0 times the slope of the regression line, and b is 1 to 1 of the standard deviation when the same sample is measured a plurality of times. 5 times is preferable.
  • Coal having a permeation distance value corresponding to the range shown in (i) to (d) above will leave coarse defects during coking when used as a coking raw coal (coking coal) by ordinary operations.
  • coke strength is reduced. Therefore, it is convenient and effective as a means for maintaining the coke strength to adjust the permeation distance of each individual coal brand as much as possible and to use as much of such coal as possible.
  • the measured penetration distance is out of the scope of the present invention, the addition of a brand with a small penetration distance or, if possible, the blending ratio of a brand with a large penetration distance is reduced. You can control the distance.
  • the permeation distance of coal can be adjusted by lowering it by heating the coal in air or leaving it at room temperature for a long time.
  • Such treatment is a treatment called oxidation or weathering of coal, but it can reduce the permeation distance of raw coal by changing the degree of oxidation by controlling the oxidation conditions such as temperature, time and oxygen content. it can.
  • oxidation of coal has been recognized as an unfavorable phenomenon that causes a decrease in caking properties, but the use of a new physical property called permeation distance makes it possible to determine a suitable degree of oxidation and to reduce the degree of oxidation. It is a great feature of the present invention that it has been found that the quality of coal can be improved by controlling. It has also been found that the permeation distance can be reduced by heat treatment at 250 ° C. or higher even in an oxygen-free atmosphere.
  • the rate of coal weathering depends on oxygen concentration, pressure (atmospheric pressure), temperature, coal particle size, coal moisture, and the like.
  • pressure atmospheric pressure
  • temperature coal particle size
  • coal moisture and the like.
  • the inventors of the present invention have found that the permeation distance and the rate of decrease in the maximum fluidity differ depending on the weathering conditions by conducting an experiment to weather coal by changing the above-mentioned weathering factors. The specific method will be described below.
  • the atmosphere for weathering needs to be an oxidizing atmosphere.
  • the oxidizing atmosphere is an atmosphere containing oxygen or containing a substance capable of dissociating and oxidizing oxygen.
  • a gas atmosphere containing O 2 , CO 2 , and H 2 O is desirable.
  • the oxidizing power can be easily adjusted with the concentration and pressure of the oxidizing gas, and the progress of the oxidation of coal and binder can be quickly stopped by replacing it with an inert gas after the treatment. Therefore, the processing time can be arbitrarily set.
  • the higher the concentration of the oxidizing gas and the higher the pressure the faster the weathering proceeds.
  • an oxidizing liquid atmosphere it is difficult to quickly separate from coal and caking additive after the weathering treatment, which is not preferable for controlling the degree of weathering progress.
  • the cheapest, easy, and available mass atmosphere is air in the atmosphere. Therefore, when industrial mass processing is required, it is desirable to use air in the atmosphere as the oxidizing atmosphere.
  • the treatment temperature at the time of weathering can be any of the range from the normal temperature at which coal weathering occurs to the temperature just before the coal shows softening and melting. Since the progress of weathering becomes faster as the temperature becomes higher, the necessary processing time becomes shorter as the processing temperature becomes higher. As a result of investigating the influence of the treatment temperature on the weathered coal properties, the present inventors have found that the higher the treatment temperature, the faster the decrease rate of the penetration distance with respect to the decrease rate of the maximum fluidity of the weathered coal. It was. That is, it is possible to preferentially lower the permeation distance without lowering the maximum fluidity of weathered coal as much as possible at higher temperatures. Accordingly, it has been found that high temperature and short time are effective as conditions for suitable processing temperature and processing time.
  • the treatment temperature during weathering is 100 ° C. to 300 ° C. and the treatment time is 1 to 120 minutes. Most preferably, the treatment temperature during weathering is 180 ° C. to 220 ° C., and the treatment time is 1 to 30 minutes.
  • the individual brand coking coal in the present invention is defined as a unit of coking coal managed as a single lot at the time of arrival at the coke manufacturing plant.
  • the representative analysis value obtained by sampling from that lot is used to express the properties of the entire lot, or when it is loaded into a coal yard as a single lot, Including the case where it is traded as a single lot or brand name in the purchase contract. Therefore, the preparation of coking coal in the present invention does not include the case where the processing such as mixing is performed after arrival at the coke manufacturing plant, but when the processing is performed at a stage prior to the arrival at the coke manufacturing plant, the mixture is simply used. Defined as one brand of coking coal.
  • the present invention clarifies the range of coal quality suitable as a raw material for producing coke by a new test method for softening and melting characteristics, and makes it possible to prepare such coal.
  • the raw material prepared by the method of the present invention high-quality coke can be produced.
  • Table 1 shows the properties of the used coal or binder.
  • Ro is the Vitrinite average maximum reflectivity of JIS M 8816 coal
  • log MF is the common logarithm of the highest Gieseller fluidity measured by the Gieseller Plastometer method
  • volatile (VM) volatile
  • ash (Ash) JIS M 8812. It is a measured value by the industrial analysis method.
  • the penetration distance was measured using the apparatus shown in FIG. Since the heating method was a high frequency induction heating type, the heating element 8 in FIG. 1 was an induction heating coil, and the material of the container 3 was graphite, which is a dielectric.
  • the diameter of the container was 18 mm, the height was 37 mm, and glass beads with a diameter of 2 mm were used as materials having through holes on the upper and lower surfaces.
  • the sample 1 was filled by loading 2.04 g of a coal sample pulverized to a particle size of 2 mm or less and vacuum-dried at room temperature into the container 3 and dropping a weight of 200 g from the top of the coal sample 5 times at a fall distance of 20 mm. (In this state, the sample layer thickness was 10 mm).
  • glass beads having a diameter of 2 mm were placed on the packed layer of Sample 1 so as to have a thickness of 25 mm.
  • a sillimanite disk having a diameter of 17 mm and a thickness of 5 mm is placed on the glass bead packed layer, a quartz rod is placed thereon as the expansion coefficient detecting rod 13, and a weight of 1.3 kg is placed on the quartz rod. placed. Thereby, the pressure applied on the sillimanite disk becomes 50 kPa. Nitrogen gas was used as the inert gas, and the mixture was heated to 550 ° C. at a heating rate of 3 ° C./min.
  • the penetration distance was the filling height of the fixed bead layer.
  • the relationship between the filling height and the mass of the glass bead packed bed was obtained in advance, and the glass bead filling height could be derived from the mass of the beads to which the softened and melted coal was fixed.
  • the result is equation (4), and the penetration distance was derived from equation (4).
  • L (GM) ⁇ H (4)
  • L is the penetration distance [mm]
  • G is the mass of the filled glass beads [g]
  • M is the mass of the beads not fixed to the softened melt [g]
  • H is the glass beads filled in this experimental apparatus. It represents the height of the packed bed per gram [mm / g].
  • FIG. 5 shows the relationship between the measurement results of the penetration distance and the logarithmic value (logMF) of the maximum fluidity (Maximum Fluidity: MF).
  • logMF logarithmic value of the maximum fluidity
  • the simple average value of the permeation distance of coal used in the blending is 7.4 mm, and the permeation distance of F coal is 19.5 mm, which is more than twice the average (C). . Further, since the permeation distance exceeds 15 mm, F charcoal also corresponds to (d).
  • the constants a and a ′ of the formulas (1) and (2) are regressed based on the penetration distance and the maximum fluidity value of coal in the range of log MF ⁇ 2.5 among the A to R coals.
  • the slope of the straight line was calculated and determined to be 2.82 which coincided with the slope.
  • the constant b in the formula (2) was determined to be 3.0 from 5 times the value of the standard deviation 0.6 under the measurement conditions of the example of the present invention.
  • the coke strength has been considered to be mainly determined by the coal's vitrinite average maximum reflectance (Ro) and logarithmic value (log MF) of the Gieseler maximum fluidity.
  • Ro the coal's vitrinite average maximum reflectance
  • log MF logarithmic value of the Gieseler maximum fluidity.
  • the particle size of the coal was pulverized so that the particle size was less than 3 mm and 100 mass%, and these coals were used to prepare the two-level blended coals (blended coals a and f) shown in Table 2.
  • the water content of the entire blended coal was adjusted to 8 mass%. 16 kg of this blended charcoal was filled in a dry distillation can so that the bulk density was 750 kg / m 3, and 10 kg of weight was placed on the can, and after carbonization in an electric furnace with a furnace wall temperature of 1050 ° C. for 6 hours, And then cooled with nitrogen to obtain coke.
  • the coke strength of the obtained coke was measured based on the rotational strength test method of JIS K 2151 by measuring the mass ratio of coke with a particle size of 15 mm or more after 15 rpm and 150 revolutions, and the mass ratio with the pre-rotation drum strength DI150 / Calculated as 15.
  • the log MF of the coking coal S is 4.4, the log MF of the coking coal T is 4.3, the coking coal S corresponds to the above (i) to (2), and the coking coal T does not correspond.
  • coke strength (DI150 / 15) when using coking coal S is 77. .5, the coke strength when using the raw coal T was 78.7, and the coke strength when using the raw coal T was 1.2 points higher (Table 3).
  • the coke strength improvement effect was larger when the raw coal having a shorter permeation distance was used. From this result, for example, by mixing coal obtained from various coal seams, it is possible to prepare raw coal with the penetration distance controlled to a desired value, and by appropriately adjusting the penetration distance of the raw coal The effect of improving the coke strength can be obtained.
  • Coking coals U and V were blended in place of coal A in blended coal a in Table 2 and subjected to the above dry distillation test, resulting in coke strengths of 78.4 and 78.2, respectively (Table 4). .
  • the strength of the oxidized coal is higher, and the coke strength is reduced by the treatment that reduces the permeation distance to an appropriate level.
  • the Gieseler maximum fluidity (MF) is also reduced when oxidation is performed. However, if excessive oxidation is performed, the permeation distance is lower than a predetermined value, but the MF value is also reduced, and the coke strength is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Coke Industry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

コークス炉内において軟化溶融した石炭及び粘結材の周辺の環境を十分に模擬した状態での石炭及び粘結材の軟化溶融特性を測定することで、簡便な方法を用いながら石炭及び粘結材のより正確な軟化溶融特性評価方法を提供し、その方法を用いて高強度コークスを製造するのに好適な石炭銘柄に望まれる品質を明らかにし、そのような品質を持った銘柄の石炭を調製する方法を提供すること。複数の種類の石炭を混合してコークス製造用配合炭を製造する際に、少なくとも一つの種類の石炭について、該石炭の浸透距離を所定の値以下に調整することを特徴とするコークス製造用石炭の調製方法を用いる。浸透距離の所定の値として、配合炭の加重平均浸透距離の2倍以下の値とすること、石炭を酸素含有気体と接触させることで石炭の浸透距離を低下させることが好ましい。

Description

コークス製造用石炭の調製方法
 この発明は石炭乾留時の軟化溶融特性を精度良く評価する試験方法を用いてコークス製造用石炭を評価し、その結果に基づいて、コークス強度を向上させることのできる、コークス製造用石炭を調製する方法に関する。
 製銑法として最も一般的に行われている高炉法において使用されるコークスは、鉄鉱石の還元材、熱源、スペーサーなどの数々の役割を担っている。高炉を安定的に効率良く操業するためには、高炉内の通気性を維持することが重要であることから、強度の高いコークスの製造が求められている。コークスは、粉砕し、粒度を調整した種々のコークス製造用石炭を配合した配合炭を、コークス炉内にて乾留することで製造される。コークス製造用石炭は、乾留中約300℃~550℃の温度域で軟化溶融し、また同時に揮発分の発生に伴い発泡、膨張することで、各々の粒子が互いに接着しあい、塊状のセミコークスとなる。セミコークスは、その後1000℃付近まで昇温する過程で収縮することで焼きしまり、堅牢なコークスとなる。従って、石炭の軟化溶融時の接着特性が、乾留後のコークス強度や粒径等の性状に大きな影響を及ぼす。
 上述のとおり、石炭の軟化溶融特性は、乾留後のコークス性状やコークスケーキ構造を大きく左右するため、極めて重要であり、古くからその測定方法の検討が盛んになされてきた。特に、コークスの重要な品質であるコークス強度は、その原料である石炭性状、とりわけ石炭化度と軟化溶融特性に大きく影響される。軟化溶融特性とは、石炭を加熱したときに軟化溶融する性質であり、通常、軟化溶融物の流動性、粘度、接着性、膨張性などにより測定、評価される。
 石炭の軟化溶融特性のうち、軟化溶融時の流動性を測定する一般的な方法としては、JIS M 8801に規定されるギーセラープラストメータ法による石炭流動性試験方法が挙げられる。ギーセラープラストメータ法は、425μm以下に粉砕した石炭を所定のるつぼに入れ、規定の昇温速度で加熱し、規定のトルクをかけた撹拌棒の回転速度を目盛板で読み取り、ddpm(dial division per minute)で表示する方法である。
 ギーセラープラストメータ法がトルク一定での撹拌棒の回転速度を測定しているのに対し、定回転方式でトルクを測定する方法も考案されている。例えば、特許文献1では、回転子を一定の回転速度で回転させながらトルクを測定する方法が記載されている。
 また、軟化溶融特性として物理的に意味のある粘性を測定することを目的にした、動的粘弾性測定装置による粘度の測定方法がある(例えば、特許文献2参照。)。動的粘弾性測定とは、粘弾性体に周期的に力を加えたときに見られる粘弾性挙動の測定である。特許文献2に記載の方法では、測定で得られるパラメータ中の複素粘性率により軟化溶融石炭の粘性を評価しており、任意のせん断速度における軟化溶融石炭の粘度を測定可能な点が特徴である。
 さらに、石炭の軟化溶融特性として、活性炭、またはガラスビーズを用い、それらへの石炭軟化溶融物接着性を測定した例が報告されている。少量の石炭試料を活性炭、ガラスビーズで上下方向から挟んだ状態で加熱し、軟化溶融後に冷却を行い、石炭と活性炭、ガラスビーズとの接着性を外観から観察する方法である。
 石炭の軟化溶融時の膨張性を測定する一般的な方法としては、JIS M 8801に規定されているジラトメーター法が挙げられる。ジラトメーター法は、250μm以下に粉砕した石炭を規定の方法で成型し、所定のるつぼに入れ、規定の昇温速度で加熱し、石炭の上部に配置した検出棒で、石炭の変位の経時変化を測定する方法である。
 さらに、コークス炉内での石炭軟化溶融挙動を模擬するため、石炭軟化溶融時に発生するガスの透過挙動を改善した石炭膨張性試験方法も知られている(例えば、特許文献3参照)。これは、石炭層とピストンの間、もしくは石炭層とピストンの間と石炭層の下部に透過性材料を配置し、石炭から発生する揮発分と液状物質の透過経路を増やすことで、測定環境を、よりコークス炉内の膨張挙動に近づけた方法である。同様に、石炭層の上に貫通経路を有する材料を配置し、荷重を負荷しながら石炭をマイクロ波加熱して石炭の膨張性を測定する方法も知られている(特許文献4参照。)。
特開平6−347392号公報 特開2000−304674号公報 特許第2855728号公報 特開2009−204609号公報
諸富ら著:「燃料協会誌」、Vol.53、1974年、p.779−790 宮津ら著:「日本鋼管技報」、vol.67、1975年、p.125−137
 冶金用コークスの製造においては、複数の銘柄の石炭を所定の割合で配合した配合炭を使用するのが一般的であるが、軟化溶融特性を正しく評価できないと、要求されているコークス強度を満足することができないという問題がある。高炉等の竪型炉で所定の強度を満足していない低強度のコークスを使用した場合、竪型炉内での粉の発生量を増加させて圧力損失の増大を招き、竪型炉の操業を不安定化させるとともにガスの流れが局所的に集中する、いわゆる吹き抜けといったトラブルを招く可能性がある。
 従来の軟化溶融特性指標は、強度を正確に予測することが出来ない場合も少なくない。そのため、経験的に、軟化溶融特性の評価の不正確さに由来するコークス強度のバラツキを考慮して、目標とするコークス強度を予め高めに設定することでコークス強度を一定値以上に管理することが行われている。しかし、この方法では、一般的に知られている軟化溶融特性に優れた、比較的高価な石炭を使用して配合炭の平均的な品位を高めに設定することが必要となるため、コストの増大を招く。
 コークス炉内において、軟化溶融時の石炭は隣接する層に拘束された状態で軟化溶融している。石炭の熱伝導率は小さいため、コークス炉内において石炭は一様に加熱されず、加熱面である炉壁側からコークス層、軟化溶融層、石炭層と状態が異なっている。コークス炉自体は乾留時多少膨張するがほとんど変形しないため、軟化溶融した石炭は隣接するコークス層、石炭層に拘束されている。
 また、軟化溶融した石炭の周囲には、石炭層の石炭粒子間空隙、軟化溶融石炭の粒子間空隙、熱分解ガスの揮発により発生した粗大気孔、隣接するコークス層に生じる亀裂など、多数の欠陥構造が存在する。特に、コークス層に生じる亀裂は、その幅が数百ミクロンから数ミリ程度と考えられ、数十~数百ミクロン程度の大きさである石炭粒子間空隙や気孔に比較して大きい。従って、このようなコークス層に生じる粗大欠陥へは、石炭から発生する副生物である熱分解ガスや液状物質だけではなく、軟化溶融した石炭自体の浸透も起こると考えられる。また、その浸透時に軟化溶融した石炭に作用するせん断速度は、銘柄毎に異なることが予想される。
 発明者らは、コークスの強度をより精度よく制御するためには、上記のような石炭がコークス炉内で置かれる環境を模擬した条件で測定される石炭軟化溶融特性を指標として用いる必要があると考えた。なかでも、軟化溶融した石炭が拘束された条件で、かつ周囲の欠陥構造への溶融物の移動、浸透を模擬した条件で測定することが重要であると考えた。しかし、従来の測定方法には以下のような問題があった。
 ギーセラープラストメータ法は、石炭を容器に充填した状態での測定のため、拘束、浸透条件を全く考慮していない点で問題である。また、この方法は、高い流動性を示す石炭の測定には適さない。その理由は、高い流動性を示す石炭を測定する場合、容器内側壁部が空洞となる現象(Weissenberg効果)が起こり、撹拌棒が空転し、流動性を正しく評価できない場合があるためである(例えば、非特許文献1参照。)。
 定回転方式でトルクを測定する方法についても同様に、拘束条件、浸透条件を考慮していない点で不備がある。また、せん断速度一定下での測定のため、上記で述べたように石炭の軟化溶融特性を正しく比較評価することができない。
 動的粘弾性測定装置は、軟化溶融特性として粘性を対象とし、任意のせん断速度下で粘度が測定可能な装置である。よって、測定時のせん断速度を、コークス炉内での石炭に作用する値に設定すれば、コークス炉内での軟化溶融石炭の粘度を測定可能である。しかし、各銘柄のコークス炉内でのせん断速度を予め測定、または推定することは通常は困難である。
 石炭の軟化溶融特性として、活性炭、またはガラスビーズを用い、それらへの接着性を測定する方法は、石炭層の存在について浸透条件を再現しようとしているものの、コークス層と粗大欠陥を模擬していない点で問題がある。また、拘束下での測定でない点でも不十分である。
 特許文献3に記載されている透過性材料を用いた石炭膨張性試験方法においては、石炭から発生するガス、液状物質の移動を考慮しているが、軟化溶融した石炭自体の移動を考慮していない点で問題である。これは特許文献3で用いる透過性材料の透過度が、軟化溶融石炭が移動するほど十分に大きくないためである。本発明者らが実際に特許文献3に記載の試験を行ったところ、軟化溶融石炭の透過性材料への浸透は起こらなかった。したがって、軟化溶融石炭の透過性材料への浸透を起こさせるためには、新たな条件を考慮する必要がある。
 特許文献4にも同様に石炭層の上に貫通経路を有する材料を配置して石炭から発生するガス、液状物質の移動を考慮した石炭の膨張性測定方法が開示されているが、加熱方法に制約があるという問題点の他、コークス炉内における浸透現象を評価するための条件が明確になっていないという問題がある。さらに特許文献4では、石炭溶融物の浸透現象と軟化溶融挙動の関係が明確になっておらず、石炭溶融物の浸透現象と生成するコークスの品質との関係についての示唆も無く、良好な品質のコークスの製造について記載されているものではない。
 このように、従来技術ではコークス炉内において軟化溶融した石炭及び粘結材の周辺の環境を十分に模擬した状態で、石炭及び粘結材の流動性、粘性、接着性、浸透性、浸透時膨張率、浸透時圧力などの軟化溶融特性を測定することができない。
 したがって本発明の目的は、このような従来技術の課題を解決し、コークス炉内において軟化溶融した石炭の周辺の環境を十分に模擬した状態での石炭の軟化溶融特性を測定することで、石炭のより正確な軟化溶融特性評価方法を提供し、その方法を用いて高強度コークスを製造するのに好適な石炭銘柄の品質を明らかにし、そのような品質を持った銘柄の石炭を調製する方法を提供することである。
 このような課題を解決するための本発明の特徴は以下の通りである。
[1]コークス製造原料として単独で、または他の石炭と配合して用いる個別銘柄の石炭を調製する際に、前記銘柄の石炭の浸透距離を所定の値以下に調整することを特徴とするコークス製造用石炭の調製方法。
[2]複数の石炭を混合してコークス製造用石炭を製造する際に、少なくとも一つの石炭について、該石炭の浸透距離を所定の値以下に調整してから混合することを特徴とするコークス製造用石炭の調製方法。
[3]前記石炭銘柄のギーセラー最高流動度を100ddpm以上に調整することを特徴とする[1]または[2]に記載のコークス製造用石炭の調製方法。
[4]前記調製する石炭銘柄の浸透距離の所定の値を下記式(1)にて規定することを特徴とする[1]ないし[3]のいずれかに記載のコークス製造用石炭の調製方法。
 浸透距離=1.3×a×logMFc      (1)
 但し、aは、ギーセラー最高流動度MFの常用対数値logMF<2.5の範囲にある石炭の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数であり、
 MFcは、調製する石炭のギーセラー最高流動度(ddpm)である。
[5]前記aが、1.75<logMF<2.50の範囲にある石炭の少なくとも1種以上の浸透距離及びギーセラー最高流動度MFの常用対数値logMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数であることを特徴とする[4]に記載のコークス製造用石炭の調製方法。
[6]前記調製する石炭銘柄の浸透距離の所定の値を下記式(2)にて規定することを特徴とする[1]ないし[3]のいずれかに記載のコークス製造用石炭の調製方法。
 浸透距離=a’×logMFc+b        (2)
 但し、a’は、ギーセラー最高流動度MFの常用対数値logMF<2.5の範囲にある石炭の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数であり、
 bは、前記回帰直線の作成に用いた銘柄から選ばれる1種類以上の同一試料を複数回測定した際の標準偏差の平均値以上で、前記平均値の5倍以下とする、定数であり、
 MFcは、調製する石炭のギーセラー最高流動度(ddpm)である。
[7]前記a’は、1.75<logMF<2.50の範囲にある石炭の少なくとも1種以上の浸透距離及びギーセラー最高流動度MFの常用対数値logMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数であることを特徴とする[6]に記載のコークス製造用石炭の調製方法。
[8]浸透距離の所定の値として、粒径2mm以下に調製した石炭を0.8g/cmの充填密度で容器内に厚さ10mmに充填して試料とし、該試料の上に直径2mmのガラスビーズを配置し、該ガラスビーズの上部に50kPaの荷重を負荷しつつ、3℃/分の加熱速度で550℃まで前記試料を加熱する際に、前記ガラスビーズへ浸透した溶融試料の浸透距離の測定値で15mmとすることを特徴とする[1]ないし[3]のいずれかに記載のコークス製造用石炭の調製方法。
[9]配合炭を構成する複数種類の石炭の種類を予め決定し、それらの石炭の浸透距離の平均値に対して2倍以上の値を前記浸透距離の所定の値とすることを特徴とする、[1]ないし[3]のいずれかに記載のコークス製造用石炭の調製方法。
[10]個別銘柄の石炭を調製する際に、産出場所の異なる複数種類の石炭を混合して、浸透距離を調整することを特徴とする[1]ないし[9]のいずれかに記載のコークス製造用石炭の調製方法。
[11]石炭を、常温以上の温度で、O、CO、HOの1種以上の成分を含む雰囲気下に置く処理を行なうことで該石炭の浸透距離を低下させて調整することを特徴とする[1]ないし[9]のいずれかに記載のコークス製造用石炭の調製方法。
[12]前記処理が、処理温度100℃~300℃、処理時間1~120分で行われる[11]に記載のコークス製造用石炭の調製方法。
[13]前記処理が、処理温度180℃~200℃、処理時間1~30分で行われる[12]に記載のコークス製造用石炭の調製方法。
 本発明によれば、コークス炉内での石炭の軟化溶融層周辺に存在する欠陥構造、特に軟化溶融層に隣接するコークス層に存在する亀裂の影響を模擬し、また、コークス炉内での軟化溶融物周辺の拘束条件を適切に再現した状態での、石炭の軟化溶融特性の評価が可能な測定値、すなわち、欠陥構造への軟化溶融物浸透距離を用いることで、高強度の冶金用コークス製造に好適な原料石炭を調製することができる。
本発明で使用する試料と上下面に貫通孔を有する材料に一定荷重を負荷しつつ軟化溶融特性を測定する装置の一例を示す概略図である。 本発明で使用する上下面に貫通孔を有する材料のうち、円形貫通孔をもつものの一例を示す概略図である。 本発明で使用する上下面に貫通孔を有する材料のうち、球形粒子充填層の一例を示す概略図である。 本発明で使用する上下面に貫通孔を有する材料のうち、円柱充填層の一例を示す概略図である。 石炭軟化溶融物の浸透距離の測定結果を示すグラフである。 実施例1で使用したA炭及びF炭の浸透距離及び最高流動度と、(イ)に該当する浸透距離及び最高流動度の範囲との位置関係を示すグラフである。 実施例1で使用したA炭及びF炭の浸透距離及び最高流動度と、(ロ)に該当する浸透距離及び最高流動度の範囲との位置関係を示すグラフである。 本発明で使用する石炭試料と上下面に貫通孔を有する材料を一定容積に保ちつつ軟化溶融特性を測定する装置の一例を示す概略図である。
 コークスは、一般に、様々な品位を持つ複数の銘柄を配合した配合炭を乾留して製造される。それぞれの銘柄の品位は、購買契約などに定められた基準の品位を満足するように産炭地において品位調整されて出荷されるのが通常である。その品位は産出される石炭の品位により制約を受けるが、同一炭鉱であっても産出場所や産出後の処理方法によりその品位は同一ではない。
 本発明者らは、新たな測定方法により測定可能となった、軟化溶融特性の新たな評価指標である「浸透距離」が、コークス強度を制御する上で従来の指標よりも優れた評価指標であることを見出した。そして、新たな評価方法により望ましいと判断される軟化溶融特性を持つ原料石炭銘柄の調製方法について検討を行なった結果、異なる性状の石炭を組み合わせたり、石炭に好適な事前処理を行なったりすることで望ましい性状の石炭が調製可能であることを見出し、本発明の完成に至った。「浸透距離」の測定は、概略以下のようにして行なうことができる。
 図1に本発明で使用する軟化溶融特性(浸透距離)の測定装置の一例を示す。図1は石炭試料と上下面に貫通孔を有する材料に一定荷重を負荷させて石炭試料を加熱する場合の装置である。容器3下部に石炭を充填して試料1とし、試料1の上に、上下面に貫通孔を有する材料2を配置する。試料1を軟化溶融開始温度以上に加熱し、上下面に貫通孔を有する材料2に試料を浸透させ、浸透距離を測定するものである。加熱は不活性ガス雰囲気下で行なう。ここで、不活性ガスとは、測定温度域で石炭と反応しないガスを指し、代表的なガスとしてはアルゴンガス、ヘリウムガス、窒素ガス等である。なお、浸透距離の測定は、石炭と貫通孔を有する材料を一定容積に保ちつつ加熱するようにしてもよい。その場合に使用する軟化溶融特性(浸透距離)の測定装置の一例を図8に示す。
 図1に示す試料1と上下面に貫通孔を有する材料2に一定荷重を負荷して試料1を加熱する場合、試料1が膨張又は収縮を示し、上下面に貫通孔を有する材料2が上下方向に移動する。よって、上下面に貫通孔を有する材料2を介して試料浸透時の膨張率を測定することが可能である。図1に示すように上下面に貫通孔を有する材料2の上面に膨張率検出棒13を配置し、膨張率検出棒13の上端に荷重付加用の錘14を乗せ、その上に変位計15を配置し、膨張率を測定する。変位計15は、試料の膨張率の膨張範囲(−100%~300%)を測定可能なものを用いれば良い。加熱系内を不活性ガス雰囲気に保持する必要があるため、非接触式の変位計が適しており、光学式変位計を用いることが望ましい。不活性ガス雰囲気としては、窒素雰囲気とすることが好ましい。上下面に貫通孔を有する材料2が粒子充填層の場合は、膨張率検出棒13が粒子充填層に埋没する可能性があるため、上下面に貫通孔を有する材料2と膨張率検出棒13の間に板を挟む措置を講ずるのが望ましい。負荷させる荷重は、試料上面に配置した上下面に貫通孔を有する材料の上面に対して、均等にかけることが好ましく、上下面に貫通孔を有する材料の上面の面積に対し、5~80kPa、好ましくは15~55kPa、最も好ましくは25~50kPaの圧力を負荷することが望ましい。この圧力は、コークス炉内における軟化溶融層の膨張圧に基づいて設定することが好ましいが、測定結果の再現性、種々の石炭での銘柄差の検出力を検討した結果、炉内の膨張圧よりはやや高めの25~50kPa程度が測定条件として最も好ましいことを見出した。
 加熱手段は、試料の温度を測定しつつ、所定の昇温速度で加熱できる方式のものを用いることが望ましい。具体的には、電気炉や、導電性の容器と高周波誘導を組み合わせた外熱式、またはマイクロ波のような内部加熱式である。内部加熱式を採用する場合は、試料内温度を均一にする工夫を施す必要があり、例えば、容器の断熱性を高める措置を講ずることが好ましい。
 加熱速度については、コークス炉内での石炭及び粘結材の軟化溶融挙動を模擬するという目的から、コークス炉内での石炭の加熱速度に一致させる必要がある。コークス炉内での軟化溶融温度域における石炭の加熱速度は炉内の位置や操業条件によって異なるが概ね2~10℃/分であり、平均的な加熱速度として2~4℃/分とすることが望ましく、もっとも望ましいのは3℃/分程度である。しかし、非微粘結炭のように流動性の低い石炭の場合、3℃/分では浸透距離や膨張が小さく、検出が困難となる可能性がある。石炭は急速加熱することによりギーセラープラストメータによる流動性が向上することが一般的に知られている。従って、例えば浸透距離が1mm以下の石炭の場合には、検出感度を向上させるために、加熱速度を10~1000℃/分に高めて測定しても良い。
 加熱を行なう温度範囲については、石炭及び粘結材の軟化溶融特性の評価が目的であるため、石炭及び粘結材の軟化溶融温度域まで加熱できればよい。コークス製造用の石炭及び粘結材の軟化溶融温度域を考慮すると、0℃(室温)~550℃の範囲において、好ましくは石炭の軟化溶融温度である300~550℃の範囲で所定の加熱速度で加熱すればよい。
 上下面に貫通孔を有する材料は、透過係数をあらかじめ測定または算出できるものが望ましい。材料の形態の例として、貫通孔を持つ一体型の材料、粒子充填層が挙げられる。貫通孔を持つ一体型の材料としては、例えば、図2に示すような円形の貫通孔16を持つもの、矩形の貫通孔を持つもの、不定形の貫通孔を持つものなどが挙げられる。粒子充填層としては、大きく球形粒子充填層、非球形粒子充填層に分けられ、球形粒子充填層としては図3に示すようなビーズの充填粒子17からなるもの、非球形粒子充填層としては不定形粒子や、図4に示すような充填円柱18からなるものなどが挙げられる。測定の再現性を保つため、材料内の透過係数はなるべく均一で、かつ測定を簡便にするため、透過係数の算出が容易なものが望ましい。したがって、本発明で用いる上下面に貫通孔を有する材料には球形粒子充填層の利用が特に望ましい。上下面に貫通孔を有する材料の材質は、石炭軟化溶融温度域以上、具体的には600℃まで形状がほとんど変化せず、石炭とも反応しないものならば特に指定はない。また、その高さは、石炭の溶融物が浸透するのに十分な高さがあればよく、厚み5~20mmの石炭層を加熱する場合には、20~100mm程度あればよい。
 上下面に貫通孔を有する材料の透過係数は、コークス層に存在する粗大欠陥の透過係数を推定して設定する必要がある。本発明に特に望ましい透過係数について、粗大欠陥構成因子の考察や大きさの推定など、本発明者らが検討を重ねた結果、透過係数が1×10~2×10−2の場合が最適であることを見出した。この透過係数は、下記(3)式で表されるDarcy則に基づき導出されるものである。
 ΔP/L=K・μ・u ・・・ (3)
 ここで、ΔPは上下面に貫通孔を有する材料内での圧力損失[Pa]、Lは貫通孔を有する材料の高さ[m]、Kは透過係数[m−2]、μは流体の粘度[Pa・s]、uは流体の速度[m/s]である。例えば上下面に貫通孔を有する材料として均一な粒径のガラスビーズ層を用いる場合、上述の好適な透過係数を持つようにするためには、直径0.2mmから3.5mm程度のガラスビーズを選択することが望ましく、もっとも望ましいのは2mmである。
 測定試料とする石炭および粘結材はあらかじめ粉砕し、所定の充填密度で所定の層厚に充填する。粉砕粒度としては、コークス炉における装入石炭の粒度(粒径3mm以下の粒子の比率が全体の70~80質量%程度)としてもよく、粒径3mm以下が70質量%以上となるように粉砕することが好ましいが、小さい装置での測定であることを考慮して、全量を粒径2mm以下に粉砕した粉砕物を用いることが特に好ましい。粉砕物を充填する密度はコークス炉内の充填密度に合わせ0.7~0.9g/cmとすることができるが、再現性、検出力を検討した結果、0.8g/cmが好ましいことを知見した。また、充填する層厚は、コークス炉内における軟化溶融層の厚みに基づいて層厚5~20mmとすることができるが、再現性、検出力を検討した結果、層厚は10mmとすることが好ましいことを知見した。
 以上の浸透距離の測定において、代表的な測定条件を以下に記す。
(1)石炭又は粘結材を粒径2mm以下が100質量%となるように粉砕し、該粉砕された石炭又は粘結材を充填密度0.8g/cmで、層厚が10mmとなるように容器に充填して試料を作成し、
(2)該試料の上に直径2mmのガラスビーズを浸透距離以上の厚さ(通常は層厚80mm)となるように配置し、
(3)前記ガラスビーズの上部から50kPaとなるように荷重を負荷しつつ、加熱速度3℃/分で室温から550℃まで不活性ガス雰囲気下で加熱し、
(4)前記ガラスビーズ層へ浸透した溶融試料の浸透距離を測定する。
 石炭及び粘結材の軟化溶融物の浸透距離は、加熱中に常時連続的に測定できることが本来望ましい。しかし、常時測定は、試料から発生するタールの影響などにより、困難である。加熱による石炭の膨張、浸透現象は不可逆的であり、一旦膨張、浸透した後は冷却してもほぼその形状が保たれているので、石炭溶融物が浸透終了した後、容器全体を冷却し、冷却後の浸透距離を測定することで加熱中にどこまで浸透したかを測定するようにしてもよい。例えば、冷却後の容器から上下面に貫通孔を有する材料を取り出し、ノギスや定規で直接測定することが可能である。また、上下面に貫通孔を有する材料として粒子を使用した場合には、粒子間空隙に浸透した軟化溶融物は、浸透した部分までの粒子層全体を固着させている。したがって、前もって粒子充填層の質量と高さの関係を求めておけば、浸透終了後、固着していない粒子の質量を測定し、初期質量から差し引くことで、固着している粒子の質量を導出でき、そこから浸透距離を算出することができる。
 このような浸透距離の優位性は、コークス炉内状況に近い測定方法をとることに基づいて原理的に想定されるだけではなく、コークス強度への浸透距離の影響を調査した結果からも明らかとなった。実際、本発明の評価方法により、同程度のlogMF(ギーセラープラストメータ法による最高流動度の常用対数値)を持つ石炭であっても、銘柄により浸透距離に差があることが明らかとなり、浸透距離の異なる石炭を配合してコークスを製造した場合のコークス強度に対する影響も異なることが確認された。
 従来のギーセラープラストメータによる軟化溶融特性の評価では、高い流動性を示す石炭の方が石炭粒子同士を接着する効果が高いと考えられてきた。一方で、浸透距離とコークス強度との関係を調査することで、極端に浸透距離の大きい石炭を配合するとコークス化時に粗大な欠陥を残し、かつ薄い気孔壁の組織構造を形成するため、コークス強度が配合炭の平均品位から予想される値に比べて低下することが分かった。これは、浸透距離が大きすぎる石炭は、周囲の石炭粒子間に顕著に浸透することで、その石炭粒子が存在していた部分自体が大きな空洞となり、欠陥となってしまうためと推測される。特にギーセラープラストメータによる軟化溶融特性の評価において高い流動性を示す石炭においては、浸透距離の大小によりコークス中に残存する粗大な欠陥の生成量が異なることが分かった。この関係は粘結材に関しても同様に見られた。
 本発明者らが鋭意研究を重ねた結果、コークス製造用原料に配合して使用される際に、コークス強度の低下を招く石炭ないし粘結材の浸透距離の範囲は、以下の(イ)~(ニ)の4通りで規定することが効果的であることを見出した。
 (イ)浸透距離の範囲を、下記式にて規定する。
 浸透距離>1.3×a×logMFc
 但しaは、logMF<2.5の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数である。MFcは、浸透距離の範囲を判断しようとする石炭のギーセラー最高流動度(ddpm)である。
 (ロ)浸透距離の範囲を、下記式にて規定する。
 浸透距離>a’×logMFc+b
 但しa’は、logMF<2.5の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及び最高流動度を測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数である。bは、前記回帰直線の作成に用いた銘柄から選ばれる1種類以上の同一試料を複数回測定した際の標準偏差の平均値以上で、前記平均値の5倍以下とする、定数である。MFcは、浸透距離の範囲を判断しようとする石炭のギーセラー最高流動度(ddpm)である。
 (ハ)コークス製造に用いる配合炭の銘柄が予め決定できる場合には、配合炭に含まれる石炭の浸透距離の単純平均値に対して2倍超え。
 (ニ)粒径2mm以下、100mass%の粒度に調製した石炭試料を0.8g/cmの充填密度で容器内に厚さ10mmに充填し、貫通孔を有する材料として直径2mmのガラスビーズを用い、50kPaの荷重をかけ、3℃/分の加熱速度で550℃まで加熱して測定した場合、浸透距離15mm超え。
 ここで、上記(イ)~(ニ)の4種類の管理値の決め方を示したのは、浸透距離の値は、設定された測定条件、例えば、荷重、昇温速度、貫通孔を有する材料の種類、装置の構成、等によって変化するためで、本発明で述べた例と異なる測定条件の場合があることを考慮して検討した結果、(イ)~(ハ)のような管理値の決め方が有効であることを見出したことに基づくものである。
 また、(イ)、(ロ)の範囲を決める際に使用する式の定数aおよびa’は、logMF<2.5の範囲にある石炭の少なくとも1つ以上の浸透距離及び最高流動度を測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲となるように定める。これは、logMF<2.5の範囲では、石炭の最高流動度と浸透距離の間にはほぼ正の相関が見られるが、強度低下を招く銘柄は、その浸透距離がこの相関から正に大きく偏倚している銘柄であるためである。本発明者らは、鋭意検討を重ねた結果、上記回帰式により石炭のlogMF値に応じて求めた浸透距離の1.3倍以上の範囲に該当する銘柄が、強度低下を招く銘柄であることを知見し、(イ)のように範囲の規定を行うこととした。また、上記回帰式から、測定誤差を超えて正に偏倚する銘柄を検出するべく、上記回帰式に、同一試料を複数回測定した際の標準偏差の1~5倍を加えた値以上の範囲に該当する銘柄が、強度低下を招く銘柄であることを知見し、(ロ)のように範囲の規定を行うこととした。従って、定数bは、同一試料を複数回測定した際の標準偏差の1~5倍の値を用いれば良く、本発明で述べた測定条件の場合、0.6~3.0mm程度である。この時、どちらの式とも、その石炭のlogMF値に基づいて強度低下を招く浸透距離の範囲を定めている。これは、MFが大きいほど一般に浸透距離が高くなるため、その相関からどの程度偏倚するかが重要であるためである。なお、回帰直線の作成には、公知の最小二乗法による直線回帰の方法を用いてもよい。回帰の際に用いる石炭の数は多いほど回帰の誤差が少なくなるので好ましい。特に、MFが小さい銘柄では浸透距離が小さく誤差が大きくなりやすいため、1.75<logMF<2.50の範囲にある石炭の1種以上を用いて回帰直線を求めることが特に好ましい。
 ここで、定数aおよびa’、bともに範囲を規定しているのは、これらの値を減少させることで、強度低下を招く石炭がより確実に検出できるようになるためであり、その値は操業上の要求によって調整することができる。ただし、この値を小さくしすぎると、コークス強度に悪影響を及ぼすと推定される石炭が多くなりすぎることおよび、実際は強度低下を招かない石炭であっても強度低下を起こすと誤認してしまうという問題が生じてしまうため、aおよびa’については回帰直線の傾きの0.7~1.0倍とすることが好ましく、また、bについては同一試料を複数回測定した際の標準偏差の1~5倍とすることが好ましい。
 上記(イ)~(ニ)に示した範囲に該当する浸透距離の値を有する石炭は、コークスの原料石炭(原料炭)として通常の操作により使用すると、コークス化の際に粗大な欠陥を残し、かつ薄い気孔壁の組織構造を形成するため、コークス強度の低下を招く。そのため、なるべく個々の石炭銘柄の浸透距離を上記管理値よりも小さくなるように調製し、そのような石炭をなるべく多く使用することがコークス強度を維持するための手段として簡便かつ有効である。
 上記のような望ましい特性を有する単一銘柄の原料炭を調製する方法としては、浸透距離の異なる石炭を混合することが最も容易である。本発明者らは、異なる品質の石炭を混合した場合の浸透距離について調査した結果、それぞれの石炭の浸透距離測定値を、それぞれの石炭の混合比率で加重平均した値と、配合炭の浸透距離測定値が概略一致することを見出し、原料炭の浸透距離を調整する方法を確立した。ただし、加重平均値と実測値には不可避的に存在する値のバラツキがあるので、最終的には配合炭の浸透距離の実測を行いその値をもってその配合炭の浸透距離とすることが望ましく、もし、実測された浸透距離が、本発明の範囲から外れる場合には、浸透距離の小さい銘柄を追加配合したり、可能であれば浸透距離の大きい銘柄の配合率を低下させたりすることで浸透距離を制御できる。
 また、石炭の浸透距離は、石炭を空気中で加熱処理したり、常温であっても長時間放置したりすることで低下させて、調整することができる。このような処理は石炭の酸化もしくは風化と呼ばれる処理であるが、温度や時間、酸素含有量などの酸化条件を制御することによって酸化の程度を変えることで原料炭の浸透距離を低下させることができる。従来、石炭の酸化は粘結性の低下をもたらす現象として好ましくないものと認識されていたが、浸透距離という新物性を用いると、好適な酸化の程度の判断が可能になり、酸化の程度を制御することによって、石炭の品位を向上させうることが見出された点は本発明の大きな特徴である。また、酸素が存在しない雰囲気であっても、250℃以上の加熱処理によって浸透距離を低下可能であることも見出された。
 石炭の風化の進行速度は、酸素濃度、圧力(気圧)、温度、石炭粒径、石炭水分等に依存することが一般的に知られている。浸透距離及び最高流動度の値を制御するために石炭を風化させるに際しては、上記の風化要因を適宜制御すればよい。
 本発明者らは、上記の風化要因を変えて石炭を風化させる実験を行なうことによって、浸透距離及び最高流動度の低下速度が風化条件によって異なる事を知見した。以下、その具体的な方法について記述する。
 風化を行う際の雰囲気としては、酸化雰囲気である必要がある。ここで酸化雰囲気とは、酸素を含む、ないし酸素を解離し、酸化する能力を有する物質を含む雰囲気である。そのような条件は無数に存在するが、入手・制御の容易さを考慮すると、O、CO、HOを含む気体雰囲気が望ましい。気体雰囲気であれば、酸化力を酸化性ガスの濃度、圧力で容易に調整可能であり、また、処理後に不活性ガスと置換することで、石炭及び粘結材の酸化の進行を速やかに制止できるため、処理時間も任意に設定できる。ここで、酸化性ガスの濃度が高いほど、圧力が高いほど、風化の進行が早い。一方、酸化性の液体雰囲気の場合、風化処理後に石炭及び粘結材と速やかに分離するのが困難であり、風化の進行度を制御する上で好ましくない。
 また、最も安価、容易かつ大量に入手可能な酸化雰囲気は大気中の空気である。従って、工業的に大量処理が求められる場合などには、酸化雰囲気として大気中の空気を用いるのが望ましい。
 風化を行う際の処理温度としては、石炭の風化現象が起こる、常温から、石炭が軟化溶融を示す直前の温度までの範囲のいずれでも実施できる。風化の進行は温度が高くなるほど速くなることから、必要な処理時間は、処理温度が高いほど短くなる。本発明者らは、処理温度が風化炭性状に及ぼす影響を調査した結果、処理温度が高いほど、風化炭の最高流動度の低下速度に対して、浸透距離の低下速度が速くなることを見出した。すなわち、高温で風化するほど、風化炭の最高流動度をなるべく下げずに、浸透距離を優先的に下げることが可能である。従って、好適な処理温度、処理時間の条件として、高温、短時間が有効である事を知見した。
 一方で、石炭を急速に風化させると、酸化発熱に伴う自然発火の恐れがあるため、散水する等の自然発火防止対策を講じる必要が生じる。また、処理温度が高すぎると、風化の速度が速いため、風化処理後の性状を制御することが困難になる。更に、石炭は、300℃を越えたあたりから熱分解により揮発分の放出を始めるため、軟化溶融特性が変化する。また、揮発分が放出する温度域での風化処理は、可燃性のガスが酸化雰囲気の加熱条件下で存在することとなり、爆発の危険性を伴う。
 上述した理由から、風化を行う際の処理温度としては100℃~300℃、処理時間としては1~120分が望ましい。最も好ましくは、風化を行う際の処理温度としては180℃~220℃、処理時間としては1~30分が望ましい。
 なお、本発明における個別銘柄の原料炭とは、コークス製造工場に入荷する時点で単一のロットとして管理される原料炭の単位と定義する。単一のロットとして管理されるとは、そのロットからのサンプリングによる代表分析値をもって、そのロット全体の性状を表現する場合や、単一のロットとして石炭ヤードに積み付ける場合、同一の石炭槽に入れる場合、購買契約において単一のロットないしは銘柄名として取引される場合などを含む。従って、本発明における原料炭の調製とは、コークス製造工場に入荷後混合などの処理を行なう場合は含まないが、コークス製造工場に入荷する以前の段階で処理される場合にはその混合物は単一銘柄の原料炭と定義される。
 本発明は、以上のように、コークス製造用原料として好適な石炭品質の範囲を、新たな軟化溶融特性の試験法によって明らかにし、そのような石炭を調製することを可能にした。本発明の方法により調製した原料を用いれば高品質のコークスが製造可能となる。
[実施例1]
 18種類の石炭および1種類の粘結材について、浸透距離の測定を行った。使用した石炭ないし粘結材の性状を表1に示す。ここで、RoはJIS M 8816の石炭のビトリニット平均最大反射率、logMFはギーセラープラストメータ法で測定したギーセラー最高流動度の常用対数値、揮発分(VM)、灰分(Ash)はJIS M 8812の工業分析法による測定値である。
Figure JPOXMLDOC01-appb-T000001
 図1に示した装置を用い、浸透距離の測定を行った。加熱方式は高周波誘導加熱式としたため、図1の発熱体8は誘導加熱コイルであり、容器3の素材は誘電体である黒鉛を使用した。容器の直径は18mm、高さ37mmとし、上下面に貫通孔を有する材料として直径2mmのガラスビーズを用いた。粒度2mm以下に粉砕し室温で真空乾燥した石炭試料2.04gを容器3に装入し、石炭試料の上から重さ200gの錘を落下距離20mmで5回落下させることにより試料1を充填した(この状態で試料層厚は10mmとなった。)。次に直径2mmのガラスビーズを試料1の充填層の上に25mmの厚さとなるように配置した。ガラスビーズ充填層の上に直径17mm、厚さ5mmのシリマナイト製円盤を配置し、その上に膨張率検出棒13として石英製の棒を置き、さらに石英棒の上部に1.3kgの錘14を置いた。これにより、シリマナイト円盤上にかかる圧力は50kPaとなる。不活性ガスとして窒素ガスを使用し、加熱速度3℃/分で550℃まで加熱した。加熱終了後、窒素雰囲気で冷却を行い、冷却後の容器から、軟化溶融した石炭と固着していないビーズ質量を計測した。なお、上記の測定条件は、種々の条件での測定結果の比較により、発明者らが好ましい浸透距離の測定条件として決定したものであるが、浸透距離測定はこの方法に限られるものではない。
 なお、ガラスビーズ層の厚みは浸透距離以上の層厚となるように配置すればよい。測定時にガラスビーズ層最上部まで溶融物が浸透してしまった場合には、ガラスビーズを増量して再測定を行なう。発明者らは、ガラスビーズの層厚を変更した試験を行ない、浸透距離以上のガラスビーズ層厚があれば、同一試料の浸透距離測定値は同じになることを確認している。浸透距離の大きい粘結材の測定を行なう際には、より大きな容器を用い、ガラスビーズの充填量も増やして測定を行なった。
 浸透距離は固着したビーズ層の充填高さとした。ガラスビーズ充填層の充填高さと質量の関係をあらかじめ求め、軟化溶融した石炭が固着したビーズの質量よりガラスビーズ充填高さを導出できるようにした。その結果が(4)式であり、(4)式より浸透距離を導出した。
 L=(G−M)×H ・・・ (4)
 ここで、Lは浸透距離[mm]、Gは充填したガラスビーズ質量[g]、Mは軟化溶融物と固着していないビーズ質量[g]、Hは本実験装置に充填されたガラスビーズの1gあたりの充填層高さ[mm/g]を表す。
 浸透距離測定結果とギーセラー最高流動度(Maximum Fluidity:MF)の対数値(logMF)の関係を図5に示す。図5より、本実施例で測定した浸透距離は最高流動度と相関は認められるが、同じMFであっても浸透距離の値には差がある。例えば、本装置での浸透距離の測定誤差を検討した結果、同一条件で3回試験を行った結果について標準偏差が0.6であったことを考慮すると、最高流動度がほぼ等しい石炭Aと石炭Cに対して、浸透距離に有意な差が認められた。
 次に、上述の(イ)~(ニ)に該当する石炭とコークス強度との関係を調査するべく、(イ)~(ニ)に該当しない石炭Aを20mass%配合した配合炭、(イ)~(ニ)に該当する石炭Fを20mass%配合した配合炭を作製し乾留後のコークス強度を測定した。配合組成を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ここで、配合に用いた石炭の浸透距離の単純平均値は7.4mmであり、F炭の浸透距離は19.5mmと、平均の2倍以上になっており(ハ)のケースに該当する。また、浸透距離が15mm超えであるので、F炭は(ニ)にも該当する。
 また、式(1)、式(2)の定数aおよびa’を、A~R炭のうち、logMF<2.5の範囲にある石炭の浸透距離及び最高流動度の値をもとに回帰直線の傾きを計算し、その傾きに一致する2.82に決定した。式(2)の定数bは、本発明例の測定条件での標準偏差0.6の値の5倍から、3.0に決定した。これらの式を元に、本実施例で使用した粘結材の浸透距離及び最高流動度と、上記(イ)、(ロ)の範囲との位置関係を調べた結果を図6、図7にそれぞれ示す。図6、図7より、F炭は(イ)、(ロ)の範囲の何れの条件にも該当する。これに対し、A炭は(イ)~(ニ)には該当しない。
 従来のコークス強度を推定するための石炭配合理論において、コークス強度は主に、石炭のビトリニット平均最大反射率(Ro)と、ギーセラー最高流動度の対数値(logMF)により決定されると考えられてきた(例えば、非特許文献2参照。)。したがって、配合炭全体の加重平均Ro、加重平均logMFは等しくなるように、種々の石炭を配合した配合炭を作製した(Ro=0.98、logMF=2.3)。ここで、石炭の粒度は粒径3mm未満100mass%となるように粉砕し、これらの石炭を使用して表2記載の2水準の配合炭(配合炭a、f)を作製した。配合炭全体の水分は8mass%になるように調整した。この配合炭16kgを、嵩密度750kg/mとなるように乾留缶に充填し、その上に10kgの錘を乗せた状態で、炉壁温度1050℃の電気炉内で6時間乾留後、炉から取り出し窒素冷却し、コークスを得た。得られたコークスのコークス強度は、JIS K 2151の回転強度試験法に基づき、15rpm、150回転後の粒径15mm以上のコークスの質量割合を測定し、回転前との質量比をドラム強度DI150/15として算出した。
 配合炭a、fから製造したコークスのドラム強度の測定結果を表2に併せて示す。CSR(CO熱間反応後強度、ISO18894準拠)、マイクロ強度(MSI+65)の測定も行なった。(イ)~(ニ)に該当する石炭Fを配合した配合炭fの方が、(イ)~(ニ)に該当しない石炭Aを配合した配合炭aに比べて強度が低いことを確認した。したがって、本発明で測定した浸透距離の値は、強度に影響を及ぼす因子であり、かつ、従来因子では説明できない因子であることが確認できた。
 以上のように浸透距離を用いた石炭評価の有効性が確認できたので、所望の浸透距離を持つ原料炭を調製する方法を検討した。ある炭鉱における5種類の炭層の浸透距離を上述と同じ方法で測定したところ、10.3、12.3、15.9、21.2、26.8mmであった。これらの等量混合物(原料炭S)の浸透距離を測定したところ、17.9mmとなり、計算上の平均値17.3mmに近い値であった。各炭層から得られた試料の混合比を変更して、加重平均浸透距離として13.8mmとなるように混合し(原料炭T)、浸透距離を測定したところ、13.1mmとなり、やはり計算値に近い値となった。原料炭SのlogMFは4.4、原料炭TのlogMFは4.3であり、原料炭Sは上記(イ)~(二)に該当し、原料炭Tは該当しない。表2の配合炭aにおけるA炭の代替として、原料炭Sまたは原料炭Tを使用し、同様の乾留試験を行った結果、原料炭Sを用いた場合のコークス強度(DI150/15)は77.5、原料炭Tを用いた場合のコークス強度が78.7となり、原料炭Tを用いた場合の方がコークス強度が1.2ポイント高い結果となった(表3)。この例においても、浸透距離が小さい原料炭を用いた場合の方がコークス強度向上効果が大きい結果となった。この結果より、例えば種々の炭層から得られる石炭を混合することによって、浸透距離を所望の値に制御した原料炭を調製することが可能であり、原料炭の浸透距離を適正に調整することで、コークス強度を向上させるという効果を得ることができる。
Figure JPOXMLDOC01-appb-T000003
 さらに、上記原料炭Sを空気雰囲気下150℃で10分間処理したところ、浸透距離が14.0mmに低下した(この原料炭を原料炭Uとする。)。また、上記原料炭Sを常温で大気中に4ヶ月間放置したところ、浸透距離が14.1mmにまで低下した(この原料炭を原料炭Vとする。)。この時原料炭UのlogMF=4.0、原料炭VのlogMF=4.1となり、原料炭U、Vとも上記(イ)~(ニ)の範囲に該当しなくなった。原料炭U、Vについても表2の配合炭aにおけるA炭と代替して配合し、上記の乾留試験を行なったところ、それぞれコークス強度が78.4、78.2となった(表4)。S炭を酸化処理せずに乾留に使用した場合の強度77.5に比較して、酸化処理した石炭の方が強度が高い結果となり、浸透距離を適正な程度に低下させる処理によって、コークス強度を向上させることができた。なお、酸化処理を行なうと一般的にはギーセラー最高流動度(MF)も低下するので、過度に酸化させると浸透距離は所定値よりも下がるものの、MF値も低下してしまい、コークス強度が低下する可能性がある点には注意が必要である。このようなMF低下は、他の高MF炭の配合率を増加するなどの処理により補うことができるが、コストアップになる場合もある。酸化処理による浸透距離の調整にはこのような問題があるため、適度な酸化処理に留めることが望ましい。ただし、異なる炭層の石炭を混合して浸透距離を調整する場合には、MF低下の問題は発生しないため、混合する原料石炭の品位に応じて浸透距離の調整を行なうことができる。
Figure JPOXMLDOC01-appb-T000004
 なお、図5によれば、logMFと浸透距離の相関のバラツキが大きくなるのが、logMF>2以上の領域であることがわかる。上述のRoとMFを用いた配合理論においては、配合炭の加重平均logMFを制御するため、MFと浸透距離の相関が良い場合には、logMFを制御すれば浸透距離もおよそ決まってくる。しかし、logMF>2すなわち、MF>100ddpmの領域では、両者の相関が悪いため、logMFを所定の値に制御しても浸透距離が異なることによってコークス強度が変わる場合がある。したがって、本発明による原料炭の調製方法がより有効に機能するのは、MF>100ddpmの原料炭を用いた場合であることがわかる。
 1  試料
 2  上下面に貫通孔を有する材料
 3  容器
 5  スリーブ
 7  温度計
 8  発熱体
 9  温度検出器
 10 温度調節器
 11 ガス導入口
 12 ガス排出口
 13 膨張率検出棒
 14 錘
 15 変位計
 16 円形貫通孔
 17 充填粒子
 18 充填円柱

Claims (13)

  1.  コークス製造原料として単独で、または他の石炭と配合して用いる個別銘柄の石炭を調製する際に、前記銘柄の石炭の浸透距離を所定の値以下に調整することを特徴とするコークス製造用石炭の調製方法。
  2.  複数の石炭を混合してコークス製造用石炭を製造する際に、少なくとも一つの石炭について、該石炭の浸透距離を所定の値以下に調整してから混合することを特徴とするコークス製造用石炭の調製方法。
  3.  前記石炭銘柄のギーセラー最高流動度を100ddpm以上に調整することを特徴とする請求項1または請求項2に記載のコークス製造用石炭の調製方法。
  4.  前記調製する石炭銘柄の浸透距離の所定の値を下記式(1)にて規定することを特徴とする請求項1ないし請求項3のいずれか1項に記載のコークス製造用石炭の調製方法。
     浸透距離=1.3×a×logMFc      (1)
     但し、aは、ギーセラー最高流動度MFの常用対数値logMF<2.5の範囲にある石炭の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数であり、
     MFcは、調製する石炭のギーセラー最高流動度(ddpm)である。
  5.  前記aが、1.75<logMF<2.50の範囲にある石炭の少なくとも1種以上の浸透距離及びギーセラー最高流動度MFの常用対数値logMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数であることを特徴とする請求項4に記載のコークス製造用石炭の調製方法。
  6.  前記調製する石炭銘柄の浸透距離の所定の値を下記式(2)にて規定することを特徴とする請求項1ないし請求項3のいずれか1項に記載のコークス製造用石炭の調製方法。
     浸透距離=a’×logMFc+b        (2)
     但し、a’は、ギーセラー最高流動度MFの常用対数値logMF<2.5の範囲にある石炭の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数であり、
     bは、前記回帰直線の作成に用いた銘柄から選ばれる1種類以上の同一試料を複数回測定した際の標準偏差の平均値以上で、前記平均値の5倍以下とする、定数であり、
     MFcは、調製する石炭のギーセラー最高流動度(ddpm)である。
  7.  前記a’は、1.75<logMF<2.50の範囲にある石炭の少なくとも1種以上の浸透距離及びギーセラー最高流動度MFの常用対数値logMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数であることを特徴とする請求項6に記載のコークス製造用石炭の調製方法。
  8.  浸透距離の所定の値として、粒径2mm以下に調製した石炭を0.8g/cmの充填密度で容器内に厚さ10mmに充填して試料とし、該試料の上に直径2mmのガラスビーズを配置し、該ガラスビーズの上部に50kPaの荷重を負荷しつつ、3℃/分の加熱速度で550℃まで前記試料を加熱する際に、前記ガラスビーズへ浸透した溶融試料の浸透距離の測定値で15mmとすることを特徴とする請求項1ないし請求項3のいずれか1項に記載のコークス製造用石炭の調製方法。
  9.  配合炭を構成する複数種類の石炭の種類を予め決定し、それらの石炭の浸透距離の平均値に対して2倍以上の値を前記浸透距離の所定の値とすることを特徴とする、請求項1ないし請求項3のいずれか1項に記載のコークス製造用石炭の調製方法。
  10.  個別銘柄の石炭を調製する際に、産出場所の異なる複数種類の石炭を混合して、浸透距離を調整することを特徴とする請求項1ないし請求項9のいずれか1項に記載のコークス製造用石炭の調製方法。
  11.  石炭を、常温以上の温度で、O、CO、HOの1種以上の成分を含む雰囲気下に置く処理を行なうことで該石炭の浸透距離を低下させて調整することを特徴とする請求項1ないし請求項9のいずれか1項に記載のコークス製造用石炭の調製方法。
  12.  前記処理が、処理温度100℃~300℃、処理時間1~120分で行われる請求項11に記載のコークス製造用石炭の調製方法。
  13.  前記処理が、処理温度180℃~200℃、処理時間1~30分で行われる請求項12に記載のコークス製造用石炭の調製方法。
PCT/JP2011/070311 2010-09-01 2011-08-31 コークス製造用石炭の調製方法 WO2012029983A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP11821993.0A EP2613137B1 (en) 2010-09-01 2011-08-31 Method preparing coal for coke production
EP16189455.5A EP3124575B1 (en) 2010-09-01 2011-08-31 Method for preparing coal for coke making
PL16189455T PL3124575T3 (pl) 2010-09-01 2011-08-31 Sposób przygotowania węgla do wytwarzania koksu
US13/820,255 US9102892B2 (en) 2010-09-01 2011-08-31 Method for preparing coal for coke making
RU2013114315/05A RU2559471C2 (ru) 2010-09-01 2011-08-31 Способ подготовки угля для получения кокса
PL11821993T PL2613137T3 (pl) 2010-09-01 2011-08-31 Sposób przygotowania węgla do wytwarzania koksu
CN201180050452.5A CN103168224B (zh) 2010-09-01 2011-08-31 焦炭制造用煤的制备方法
AU2011296879A AU2011296879B2 (en) 2010-09-01 2011-08-31 Method for preparing coal for coke making

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-195617 2010-09-01
JP2010195617 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012029983A1 true WO2012029983A1 (ja) 2012-03-08

Family

ID=45773051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070311 WO2012029983A1 (ja) 2010-09-01 2011-08-31 コークス製造用石炭の調製方法

Country Status (9)

Country Link
US (1) US9102892B2 (ja)
EP (2) EP2613137B1 (ja)
JP (1) JP5071578B2 (ja)
CN (1) CN103168224B (ja)
AU (1) AU2011296879B2 (ja)
PL (2) PL2613137T3 (ja)
RU (1) RU2559471C2 (ja)
TR (1) TR201815757T4 (ja)
WO (1) WO2012029983A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245889A (zh) * 2012-03-27 2014-12-24 杰富意钢铁株式会社 焦炭制造用煤的配合方法及焦炭的制造方法
EP2832824A1 (en) * 2012-03-27 2015-02-04 JFE Steel Corporation Preparation method for coal mixture for coke production, coal mixture, and coke production method
EP2832823A1 (en) * 2012-03-27 2015-02-04 JFE Steel Corporation Method for blending coal, blended coal, and method for producing coke
CN104449779A (zh) * 2014-11-07 2015-03-25 武汉钢铁(集团)公司 基于基氏流动度曲线的流动区域的配煤炼焦方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071578B2 (ja) * 2010-09-01 2012-11-14 Jfeスチール株式会社 コークス製造用石炭の調製方法
KR101668205B1 (ko) * 2010-09-01 2016-10-20 제이에프이 스틸 가부시키가이샤 석탄 및 점결재의 연화 용융 특성 평가 방법
PL2821774T3 (pl) * 2012-02-29 2019-05-31 Jfe Steel Corp Sposób przygotowania węgla do wytwarzania koksu
US10240092B2 (en) * 2014-03-28 2019-03-26 Jfe Steel Corporation Coal mixture, method for manufacturing coal mixture, and method for manufacturing coke
CN106459768B (zh) * 2014-05-19 2019-08-02 杰富意钢铁株式会社 焦炭的制造方法和焦炭以及配煤的均质性的评价方法
JP7240406B2 (ja) * 2018-02-06 2023-03-15 タタ スチール リミテッド 非コークス原料炭から冶金コークスを製造するための方法
CN110484288B (zh) * 2019-08-23 2020-07-03 山西沁新能源集团股份有限公司 一种炼焦配煤的方法
KR20220065862A (ko) * 2019-10-28 2022-05-20 제이에프이 스틸 가부시키가이샤 석탄의 표면 장력 추정 방법 및 코크스의 제조 방법
US20220290054A1 (en) * 2019-10-28 2022-09-15 Jfe Steel Corporation Method of estimating surface tension of coal inert material, method of estimating surface tension of coal, and method of producing coke
JP7160218B2 (ja) * 2020-01-07 2022-10-25 Jfeスチール株式会社 配合炭の製造方法およびコークスの製造方法
CN112029525A (zh) * 2020-08-28 2020-12-04 广东韶钢松山股份有限公司 一种鉴定炼焦煤风化氧化变质程度的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347392A (ja) 1993-06-10 1994-12-22 Nippon Steel Corp 軟化溶融状態にある石炭の粘度測定治具および測定方法
JP2855728B2 (ja) 1989-12-19 1999-02-10 日本鋼管株式会社 石炭の膨張性試験方法
JP2000304674A (ja) 1999-04-23 2000-11-02 Nippon Steel Corp 軟化溶融石炭粘度の評価方法
JP2007161955A (ja) * 2005-12-16 2007-06-28 Kobe Steel Ltd 改質石炭の製造方法
JP2009204609A (ja) 2008-01-30 2009-09-10 Jfe Steel Corp 石炭の膨張性試験方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU553274A1 (ru) * 1971-01-12 1977-04-05 Днепродзержинский Ордена Трудового Красного Знамени Индустриальный Институт Им.М.И.Арсеничева Способ подготовки к коксованию угольной шихты
JPS54134702A (en) * 1978-04-11 1979-10-19 Nippon Steel Corp Preparation of metallurgical coke
CA1114765A (en) * 1978-04-28 1981-12-22 Keith Belinko Production of metallurgical coke from poor coking coals using residue from processed tar sand bitumen
US4259083A (en) 1979-03-22 1981-03-31 Alberta Research Council Production of metallurgical coke from oxidized caking coal
JPH04132791A (ja) * 1990-09-26 1992-05-07 Kawasaki Steel Corp コークス炉の操業方法
JPH1121561A (ja) * 1997-07-02 1999-01-26 Nkk Corp 高炉用コークスの製造方法
CN1133716C (zh) * 1998-07-29 2004-01-07 川崎制铁株式会社 冶金用焦炭的制造方法
RU2186823C2 (ru) * 2000-10-09 2002-08-10 Салтанов Андрей Владимирович Способ подготовки угольной шихты к коксованию
EP1881051B1 (en) * 2005-05-13 2018-07-25 Nippon Steel & Sumitomo Metal Corporation Process for producing blast furnace coke
KR101668205B1 (ko) * 2010-09-01 2016-10-20 제이에프이 스틸 가부시키가이샤 석탄 및 점결재의 연화 용융 특성 평가 방법
JP5071578B2 (ja) * 2010-09-01 2012-11-14 Jfeスチール株式会社 コークス製造用石炭の調製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855728B2 (ja) 1989-12-19 1999-02-10 日本鋼管株式会社 石炭の膨張性試験方法
JPH06347392A (ja) 1993-06-10 1994-12-22 Nippon Steel Corp 軟化溶融状態にある石炭の粘度測定治具および測定方法
JP2000304674A (ja) 1999-04-23 2000-11-02 Nippon Steel Corp 軟化溶融石炭粘度の評価方法
JP2007161955A (ja) * 2005-12-16 2007-06-28 Kobe Steel Ltd 改質石炭の製造方法
JP2009204609A (ja) 2008-01-30 2009-09-10 Jfe Steel Corp 石炭の膨張性試験方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MIYAZU ET AL., NIPPON KOKAN TECHNICAL REPORT, vol. 67, 1975, pages 125 - 137
MOROTOMI ET AL., JOURNAL OF THE FUEL SOCIETY OF JAPAN, vol. 53, 1974, pages 779 - 790
MOROTOMI H. ET AL.: "Studies on Test for Plastic Properties of Coal by Gieseler Plastometer", JOURNAL OF THE FUEL SOCIETY OF JAPAN, vol. 53, 1974, pages 779 - 790, XP055080799 *
See also references of EP2613137A4
TAKASHI MIYAZU ET AL., NIPPON KOKAN GIHO, vol. 67, 1975, pages 125 - 137, XP008169534 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245889A (zh) * 2012-03-27 2014-12-24 杰富意钢铁株式会社 焦炭制造用煤的配合方法及焦炭的制造方法
EP2832822A1 (en) * 2012-03-27 2015-02-04 JFE Steel Corporation Coal blending method for coke production, production method for coke
EP2832824A1 (en) * 2012-03-27 2015-02-04 JFE Steel Corporation Preparation method for coal mixture for coke production, coal mixture, and coke production method
EP2832823A1 (en) * 2012-03-27 2015-02-04 JFE Steel Corporation Method for blending coal, blended coal, and method for producing coke
EP2832822A4 (en) * 2012-03-27 2015-04-22 Jfe Steel Corp COKE MIXTURE METHOD FOR COKE MANUFACTURING, COKE MANUFACTURING METHOD
EP2832823A4 (en) * 2012-03-27 2015-04-22 Jfe Steel Corp PROCESS FOR MIXING COAL, MIXED COAL AND PROCESS FOR PRODUCING COKE
EP2832824A4 (en) * 2012-03-27 2015-04-22 Jfe Steel Corp PREPARATION METHOD FOR COAL MIXTURE FOR COKE MANUFACTURE, COAL MIXTURE, AND COKE MANUFACTURING PROCESS
EP2980187A1 (en) * 2012-03-27 2016-02-03 JFE Steel Corporation Preparation method for coal mixture for coke production, coal mixture, and coke production method
US9845439B2 (en) 2012-03-27 2017-12-19 Jfe Steel Corporation Method for blending coals for cokemaking and method for producing coke
US9850441B2 (en) 2012-03-27 2017-12-26 Jfe Steel Corporation Method for blending coals, and method for producing coke
US10144891B2 (en) 2012-03-27 2018-12-04 Jfe Steel Corporation Method for preparing coal mixture for cokemaking, coal mixture, and method for producing coke
CN104449779A (zh) * 2014-11-07 2015-03-25 武汉钢铁(集团)公司 基于基氏流动度曲线的流动区域的配煤炼焦方法

Also Published As

Publication number Publication date
PL3124575T3 (pl) 2020-11-16
TR201815757T4 (tr) 2018-11-21
EP3124575A1 (en) 2017-02-01
RU2559471C2 (ru) 2015-08-10
JP2012072391A (ja) 2012-04-12
CN103168224B (zh) 2015-07-15
US20130255142A1 (en) 2013-10-03
EP2613137B1 (en) 2018-10-10
RU2013114315A (ru) 2014-10-10
JP5071578B2 (ja) 2012-11-14
PL2613137T3 (pl) 2019-05-31
EP3124575B1 (en) 2020-04-29
AU2011296879B2 (en) 2015-02-12
EP2613137A4 (en) 2015-06-03
CN103168224A (zh) 2013-06-19
US9102892B2 (en) 2015-08-11
AU2011296879A1 (en) 2013-03-07
EP2613137A1 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5071578B2 (ja) コークス製造用石炭の調製方法
JP5229362B2 (ja) 冶金用コークスの製造方法
WO2012029985A1 (ja) 石炭及び粘結材の軟化溶融特性評価方法およびコークスの製造方法
JP5152378B2 (ja) 冶金用コークスの製造方法
JP6056157B2 (ja) コークス用配合炭組成決定方法及びコークス製造方法
JP5975191B2 (ja) 石炭混合物、及び、石炭混合物の製造方法、並びに、コークスの製造方法
JP2010190761A (ja) 石炭の軟化溶融特性評価方法
JP5201250B2 (ja) 冶金用コークスの製造方法および冶金用コークス製造用粘結材
JP5578293B2 (ja) コークス製造用石炭の調製方法
JP5062378B1 (ja) コークスの製造方法
JP5067495B2 (ja) 冶金用コークスの製造方法
JP6036891B2 (ja) コークスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011296879

Country of ref document: AU

Date of ref document: 20110831

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011821993

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013114315

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13820255

Country of ref document: US