WO2012029744A1 - 反射防止膜、レンズ、光学系、対物レンズ、及び光学機器 - Google Patents

反射防止膜、レンズ、光学系、対物レンズ、及び光学機器 Download PDF

Info

Publication number
WO2012029744A1
WO2012029744A1 PCT/JP2011/069526 JP2011069526W WO2012029744A1 WO 2012029744 A1 WO2012029744 A1 WO 2012029744A1 JP 2011069526 W JP2011069526 W JP 2011069526W WO 2012029744 A1 WO2012029744 A1 WO 2012029744A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
refractive index
optical
wavelength
Prior art date
Application number
PCT/JP2011/069526
Other languages
English (en)
French (fr)
Inventor
井藤佳人
豊原延好
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201180026803.9A priority Critical patent/CN102918428B/zh
Priority to KR1020137004783A priority patent/KR101824284B1/ko
Publication of WO2012029744A1 publication Critical patent/WO2012029744A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the present invention relates to an antireflective film, a lens using the antireflective film, an optical system, an objective lens, and an optical device using the optical system.
  • Patent Document 1 As a conventional antireflective film for ultraviolet light, an antireflective film described in Patent Document 1 has been proposed.
  • This antireflective film is formed by alternately forming an intermediate refractive index layer including an Al 2 O 3 film and a low refractive index layer including MgF 2 on a transparent substrate surface to form 4 to 7 layers, and a wavelength of 248 nm ( This film is antireflective at two wavelengths: KrF excimer laser wavelength) and other wavelengths (for example: He—Ne laser wavelength 633 nm).
  • Patent Document 2 proposes an anti-reflection film having a broad-band reflectivity of 0.6% or less at a wavelength of 350 nm to a wavelength of 800 nm.
  • the conventionally proposed two-wavelength anti-reflection film is designed to prevent the excimer laser light of 248 nm and the light of 600 nm to 700 nm at 1.5% or less.
  • the reflectance becomes 3% or more at wavelengths 400 nm to 600 nm, This causes a problem that observation in the visible range becomes difficult.
  • the conventional reflection preventing film is formed by using a high refractive index material having a refractive index such as TiO 2 is more than 1.8.
  • a high refractive index material such as TiO 2 has a high film absorptivity in the ultraviolet region of a wavelength of 400 nm or less. Therefore, in the case of using a third harmonic (oscillation wavelength 355 nm) of a laser in the ultraviolet region, for example, YAG laser, the absorption of light damages the antireflective film, and the film configuration changes, and predetermined spectral characteristics such as antireflective characteristics There is a problem that you can not get
  • the present invention by appropriately setting the refractive index and the film configuration of the material of the antireflective film, the light in two regions, mainly an ultraviolet region of a wavelength of less than 400 nm and a visible region of a wavelength of 400 nm to 700 nm. It is an object of the present invention to provide an antireflective film which is optically stable, capable of reducing light absorption, and effectively realizing predetermined reflection prevention. Another object of the present invention is to provide a two-wavelength antireflective film suitable for various optical lenses that perform, for example, laser processing as such an antireflective film.
  • the antireflective film according to the present invention is formed on a transparent substrate in order from the air side to the substrate side, the first layer, the second layer, the third layer, the fourth Layer, the fifth layer, the sixth layer, and the thin film having six or more layers formed, the odd-numbered thin film from the air side is a low refractive index film, and the even-numbered thin film is a low refractive index film or low Assuming that the refractive index of the middle refractive index film and the low refractive index film at the central wavelength ⁇ 0 is N M and N L , respectively, which is an intermediate refractive index film having a refractive index larger than the refractive index film, the following equation (1), (2) and (3) at the same time.
  • ⁇ 0 500 nm (1) 1.45 ⁇ N M ⁇ 1.8 (2) N L ⁇ 1.45 (3) Anti-reflection is performed at wavelength ⁇ 1 in the ultraviolet region and wavelength ⁇ 2 in the visible region, It is characterized in that the following expressions (4), (5), (6), (7), (8) and (9) are satisfied at the same time.
  • ⁇ 1 355 nm (4) 400 nm ⁇ ⁇ 2 ⁇ 700 nm (5) R1 ⁇ 1.0% (6) R2 ⁇ 1.5% (7) K1 ⁇ 1.0% (8) K2 ⁇ 1.0% (9) here, R1 is the reflectance at wavelength ⁇ 1, R2 is the reflectance at wavelength ⁇ 2, K1 is the film absorptivity at wavelength ⁇ 1, K2 is the film absorptivity at wavelength ⁇ 2, Film absorptivity: 100-(100-(reflectance of substrate + transmittance of substrate))-(reflectance of substrate provided with antireflective film + transmittance of substrate provided with antireflective film), It is.
  • the refractive index of the substrate is preferably less than 1.85.
  • the refractive index of the substrate is preferably 1.85 or more.
  • the antireflective film according to the present invention preferably satisfies the following expressions (10), (11), (12), (13), (14), (15) and (16) simultaneously.
  • 0.229 ⁇ ⁇ 0 ⁇ d1 ⁇ 0.234 ⁇ ⁇ 0 (10) 0.260 ⁇ ⁇ 0 ⁇ d2 ⁇ 0.268 ⁇ ⁇ 0 (11) 0.045 ⁇ ⁇ 0 ⁇ d3 ⁇ 0.077 ⁇ ⁇ 0 (12) 0.074 ⁇ ⁇ 0 ⁇ d4 ⁇ 0.118 ⁇ ⁇ 0 (13) 0.211 ⁇ ⁇ 0 ⁇ d5 ⁇ 0.277 ⁇ ⁇ 0 (14) 0.035 ⁇ ⁇ 0 ⁇ d6 ⁇ 0.150 ⁇ ⁇ 0 (15) 0.039 ⁇ ⁇ 0 ⁇ d7 ⁇ 0.207 ⁇ ⁇ 0 (16) here, d1 is the optical thickness of the first layer, d2 is the optical thickness of the second layer, d3 is the optical thickness of the third layer, d
  • the antireflective film according to the present invention preferably satisfies the following expressions (17), (18), (19), (20), (21) and (22) simultaneously.
  • the antireflective film according to the present invention is such that the material of the middle refractive index layer is Al 2 O 3 , SiO 2 , LaF 3 , NdF 3 , YF 3 , CeF 3 , or a mixture containing these compounds, and has a low refractive index
  • the material of the layer is preferably MgF 2 , BaF 2 , LiF, AlF 3 , NaF, CaF 2 or a mixture containing these compounds.
  • a lens according to the present invention is characterized in that any one of the above-mentioned antireflection films is provided.
  • An optical system according to the present invention includes the above-described lens.
  • An objective lens according to the present invention includes the above-described optical system.
  • An optical apparatus includes the above-described optical system, and is characterized by using the optical system to observe and collect a laser.
  • the antireflective film according to the present invention is optically stable, has less light absorption, and is predetermined for light in two regions mainly in the ultraviolet region of wavelength less than 400 nm and in the visible region of wavelength of 400 nm to 700 nm.
  • FIG. 6 is a graph showing the spectral reflectance characteristics of the antireflective films of Examples 1 to 9 shown in Table 1.
  • FIG. It is a graph which shows the spectral-reflectance characteristic of Example 5 selected from the Example 1 and 9 of the upper and lower limits of a base material refractive index among the Examples of Table 1, and the example between these. It is the graph which plotted the value which added the reflectance and the transmittance
  • 7 is a graph in which film absorptance is plotted against wavelength for Example 1.
  • 6 is a graph showing spectral reflectance characteristics of Examples 10 to 12 shown in Table 2.
  • 15 is a graph showing spectral reflectance characteristics of Examples 13 and 14 shown in Table 3.
  • 5 is a graph showing spectral reflectance characteristics of a comparative example shown in Table 4. It is a figure which shows the structure of the repair apparatus which concerns on 4th Embodiment. It is a figure which shows the structure of the microscope which concerns on 5th Embodiment.
  • the antireflective film according to the present invention comprises a transparent substrate, and the first layer, the second layer, the third layer, the fourth layer, the fifth layer, the sixth layer, and the sixth layer in order from the air side to the substrate side.
  • An odd-numbered thin film from the air side is a low refractive index film
  • an even-numbered thin film is an intermediate refractive index film having a larger refractive index than a low refractive index film or a low refractive index film.
  • ⁇ 1 355 nm (4) 400 nm ⁇ ⁇ 2 ⁇ 700 nm (5) R1 ⁇ 1.0% (6) R2 ⁇ 1.5% (7) K1 ⁇ 1.0% (8) K2 ⁇ 1.0% (9) here, R1 is the reflectance at wavelength ⁇ 1, R2 is the reflectance at wavelength ⁇ 2, K1 is the film absorptivity at wavelength ⁇ 1, K2 is the film absorptivity at wavelength ⁇ 2, Film absorptivity: 100-(100-(reflectance of substrate + transmittance of substrate))-(reflectance of substrate provided with antireflective film + transmittance of substrate provided with antireflective film), It is.
  • the above equations (6) and (7) apply to the reflectance of the substrate and the reflectance of the substrate provided with the anti-reflection film.
  • the antireflective film according to the present invention preferably satisfies the following expressions (10), (11), (12), (13), (14), (15) and (16) simultaneously.
  • 0.229 ⁇ ⁇ 0 ⁇ d1 ⁇ 0.234 ⁇ ⁇ 0 (10) 0.260 ⁇ ⁇ 0 ⁇ d2 ⁇ 0.268 ⁇ ⁇ 0 (11) 0.045 ⁇ ⁇ 0 ⁇ d3 ⁇ 0.077 ⁇ ⁇ 0 (12) 0.074 ⁇ ⁇ 0 ⁇ d4 ⁇ 0.118 ⁇ ⁇ 0 (13) 0.211 ⁇ ⁇ 0 ⁇ d5 ⁇ 0.277 ⁇ ⁇ 0 (14) 0.035 ⁇ ⁇ 0 ⁇ d6 ⁇ 0.150 ⁇ ⁇ 0 (15) 0.039 ⁇ ⁇ 0 ⁇ d7 ⁇ 0.207 ⁇ ⁇ 0 (16) here, d1 is the optical thickness of the first layer, d2 is the optical thickness of the second layer, d3 is the optical thickness of the third layer, d
  • the antireflective film according to the present invention preferably satisfies the following expressions (17), (18), (19), (20), (21) and (22) simultaneously.
  • Table 1 is a table
  • Table 2 is a table
  • Table 3 is a table
  • Table 4 is a table
  • materials and optical film thicknesses of the respective layers are shown in the order of lamination on the substrate. The optical film thickness is a value obtained by multiplying the numerical value described in each table by the design wavelength ⁇ 0 of each embodiment.
  • the substrate material names in the tables and drawings are all trademarks of OHARA INC., Except for those where specific substance names are described.
  • FIG. 1 is a graph showing the spectral reflectance characteristics of the antireflective films of Examples 1 to 9 shown in Table 1.
  • FIG. 2 is a graph showing the spectral reflectance characteristics of Examples 1 and 9 of the upper and lower limits of the substrate refractive index and Example 5 selected from the examples between them among the examples of Table 1.
  • FIG. 3 is a graph obtained by plotting the value obtained by adding the reflectance and the transmittance of the substrate and the value obtained by adding the reflectance and the transmittance of the substrate provided with the anti-reflection film in Example 1 with respect to the wavelength. is there.
  • FIG. 4 is a graph in which the film absorptance is plotted against the wavelength for Example 1.
  • FIG. 1 is a graph showing the spectral reflectance characteristics of the antireflective films of Examples 1 to 9 shown in Table 1.
  • FIG. 2 is a graph showing the spectral reflectance characteristics of Examples 1 and 9 of the upper and lower limits of the substrate refractive index and Example 5 selected from the examples between them among
  • FIG. 5 is a graph showing the spectral reflectance characteristics of Examples 10 to 12 shown in Table 2.
  • FIG. 6 is a graph showing the spectral reflectance characteristics of Examples 13 and 14 shown in Table 3.
  • FIG. 7 is a graph showing spectral reflectance characteristics of the comparative example shown in Table 4.
  • FIG. 1, FIG. 2, and FIG. 5 to FIG. 7 show the spectral reflectance characteristics of the two-wavelength anti-reflection film, with the wavelength (unit nm) on the horizontal axis and the reflectance (unit%) on the vertical axis.
  • FIG. The film absorption shown in FIG. 4 is the reflectance of the substrate + the transmittance of the substrate (solid line) shown in FIG. 3, and the reflectance of the substrate provided with the antireflective film + transmission of the substrate provided with the antireflective film.
  • the antireflection films of Examples 1 to 9 shown in Table 1 are made of MgF 2 which is a low refractive index material on a substrate having a refractive index of 1.5 to 1.85, with a design wavelength ⁇ 0 of 500 nm. It has a seven-layer structure in which first, third , fifth, and seventh layers and second, fourth, and sixth layers made of Al 2 O 3 which is an intermediate refractive index material are stacked.
  • This antireflection film has a seven-layer configuration of LMLMLML from the air side (the side far from the substrate), where M is a layer made of an intermediate refractive index material and L is a layer made of a low refractive index material.
  • the refractive index N M of the layer made of Al 2 O 3 which is an intermediate refractive index material is 1.61, which satisfies 1.45 ⁇ N M ⁇ 1.8, and MgF 2 which is a low refractive index material
  • the refractive index N L of the layer is 1.38, and N L ⁇ 1.45 is satisfied.
  • Each layer of the antireflective film of the first embodiment was formed by vacuum evaporation in a vacuum region of 10 ⁇ 2 to 10 ⁇ 4 Pa.
  • the formation method of each layer is not limited to vacuum evaporation,
  • the anti-reflective film which has an equivalent characteristic also by sputtering method, the ion plating method, and the ion assist vapor deposition method can be obtained.
  • Al 2 O 3 was used as the intermediate refractive index material and MgF 2 was used as the low refractive index material
  • Al 2 O 3 and MgF 2 generally have light absorptivity in the visible region and in the ultraviolet region less than 400 nm. Low.
  • the material is not limited to this material, and any material having the same refractive index as each material can provide an antireflective film having the same characteristics.
  • SiO 2 , LaF 3 , NdF 3 , YF 3 , CeF 3 or compounds of these can be used besides Al 2 O 3 .
  • BaF 2 LiF, AlF 3 , NaF, CaF 2 , or a compound of these can be used as a material for the low refractive index layer.
  • the reflectance R1 at the oscillation wavelength of 355 nm ( ⁇ 1) of the third harmonic of the YAG laser in the ultraviolet region is 1% or less, and from 400 nm in the visible region
  • the reflectance R2 in the wavelength range ( ⁇ 2) of 700 nm is 1.5% or less. Therefore, the antireflective film of the first embodiment achieves sufficiently good antireflective performance with respect to the reflectance of about 4% only with the base material.
  • the film absorptivity K1 (FIG. 4) at the oscillation wavelength of 355 nm ( ⁇ 1) of the third harmonic of the YAG laser is 1% or less, and the wavelength range of 400 nm to 700 nm
  • the film absorptivity K2 (FIG. 4) at ( ⁇ 2) is 1.0% or less.
  • the anti-reflection coatings of Examples 10 to 12 shown in Table 2 are made of MgF 2 as a low refractive index material on a substrate having a refractive index of less than 1.5, with a design wavelength ⁇ 0 of 500 nm.
  • the second and fourth layers made of the intermediate refractive index material Al 2 O 3 , and the sixth layer made of SiO 2 which is the intermediate refractive index material have a seven-layer structure.
  • This antireflection film has a seven-layer configuration of LMLMLML from the air side (the side far from the substrate), where M is a layer made of an intermediate refractive index material and L is a layer made of a low refractive index material.
  • the refractive index N M of the layer made of Al 2 O 3 which is an intermediate refractive index material is 1.61
  • the refractive index N M of the layer made of SiO 2 is 1.46
  • all of them are 1.45 ⁇ N M ⁇ 1.8
  • the refractive index N L of the layer made of MgF 2 which is a low refractive index material is 1.38, and N L ⁇ 1.45 is satisfied.
  • Each layer of the antireflective film of the second embodiment is formed by vacuum evaporation in a vacuum region of 10 ⁇ 2 to 10 ⁇ 4 Pa.
  • the formation method of each layer is not limited to vacuum evaporation,
  • the anti-reflective film which has an equivalent characteristic also by sputtering method, the ion plating method, and the ion assist vapor deposition method can be obtained.
  • Al 2 O 3 and SiO 2 are used as intermediate refractive index materials, and MgF 2 is used as low refractive index materials, but the material of each layer is not limited to these, and the refractive index similar to each material is used. An antireflective film having similar characteristics can be obtained as long as the material is possessed.
  • LaF 3 , NdF 3 , YF 3 , CeF 3 or compounds of these may be used besides Al 2 O 3 and SiO 2 .
  • MgF 2 , BaF 2 , LiF, AlF 3 , NaF, CaF 2 , or a compound of these can be used as a material for the low refractive index layer.
  • the reflectance R1 at the oscillation wavelength of 355 nm ( ⁇ 1) of the third harmonic of the YAG laser in the ultraviolet region is 1% or less, and the wavelength of 400 nm to 700 nm in the visible region
  • the reflectance R2 in the range ( ⁇ 2) is 1.5% or less. Therefore, the anti-reflection film of the second embodiment has sufficiently good anti-reflection performance with respect to the reflectance of about 4% only with the base material.
  • the film absorptivity K1 at the oscillation wavelength of 355 nm ( ⁇ 1) of the third harmonic of the YAG laser is 1% or less as in Example 1 described above, and the wavelength range of 400 nm to 700 nm ( The film absorptivity K2 at ⁇ 2) is 1.0% or less.
  • the anti-reflection films of Examples 13 and 14 shown in Table 3 are made of MgF 2, which is a low refractive index material, on a substrate having a refractive index of 1.85 or more, with a design wavelength ⁇ 0 of 500 nm.
  • a 5-layer has a first 2,4,6-layer of Al 2 O 3 is an intermediate refractive index material, the six-layer structure obtained by laminating.
  • This antireflection film has a six-layer configuration of LMLMLM from the air side (the side far from the substrate), where M is a layer made of an intermediate refractive index material and L is a layer made of a low refractive index material.
  • the refractive index N M of the layer made of Al 2 O 3 which is an intermediate refractive index material is 1.61 and satisfies 1.45 ⁇ N M ⁇ 1.8. Furthermore, the refractive index N L of the layer made of MgF 2 which is a low refractive index material is 1.38, and N L ⁇ 1.45 is satisfied.
  • Each layer of the antireflective film of the third embodiment was formed by vacuum evaporation in a vacuum region of 10 ⁇ 2 to 10 ⁇ 4 Pa.
  • the formation method of each layer is not limited to vacuum evaporation,
  • the anti-reflective film which has an equivalent characteristic also by sputtering method, the ion plating method, and the ion assist vapor deposition method can be obtained.
  • the materials of the respective layers are not limited to these, and materials having the same refractive index as each material If it is, it is possible to obtain an antireflective film having the same characteristics.
  • a material for the intermediate refractive index layer LaF 3 , NdF 3 , YF 3 , CeF 3 , or these compounds can be used in addition to Al 2 O 3 .
  • MgF 2 , BaF 2 , LiF, AlF 3 , NaF, CaF 2 , or a compound of these can be used as a material for the low refractive index layer.
  • the reflectance at the oscillation wavelength of 355 nm of the third harmonic of the YAG laser in the ultraviolet region is 1% or less, and the reflectance in the visible wavelength region of 400 nm to 700 nm Is 1.5% or less. Therefore, the antireflection film of the third embodiment has sufficiently good antireflection performance with respect to the reflectance of about 4% only with the substrate.
  • the film absorptivity K1 at the oscillation wavelength of 355 nm ( ⁇ 1) of the third harmonic of the YAG laser is 1% or less as in Example 1 described above, and the wavelength range of 400 nm to 700 nm ( The film absorptivity K2 at ⁇ 2) is 1.0% or less.
  • the optical lens shown in Table 4 on which both sides or one side were coated with the conventional antireflective film was damaged when irradiated with light of 15 mJ / mm 2 100 times with a YAG laser.
  • the optical lens having the anti-reflection film of the third embodiment applied on both sides or one side the light of 70 mJ / mm 2 was irradiated 100 times with the YAG laser, but none of the optical elements was damaged.
  • FIG. 8 is a view showing the configuration of a repair apparatus (hereinafter, laser repair) according to the fourth embodiment.
  • This repair apparatus is an apparatus for irradiating and removing a laser beam to a defect portion generated on a glass substrate, a semiconductor wafer, a printed substrate or the like of a liquid crystal display.
  • the laser repair shown in FIG. 8 includes a processing light source 101, a variable stop 102, a lens 103, an objective lens 106 with an anti-reflection film formed thereon, a half mirror 104, a half mirror 105, an observation light source 109, a lens 110, a moving stand 112, and movement.
  • a drive control unit 121, a CCD 122 (charge coupled device) as an imaging device, a TV monitor 123, an image processing unit 124, and a drive control unit 125 are provided.
  • the processing light source 101 is a processing light source that emits a laser light flux for processing a repair target, and it is preferable that, for example, laser light fluxes of a plurality of wavelengths can be emitted according to the repair target.
  • a control unit (not shown) performs control of laser light emitted from the processing light source 101, for example, light intensity, light emission wavelength, oscillation mode such as pulse oscillation, and on / off control.
  • the laser beam emitted from the processing light source 101 passes through the variable stop 102, the lens 103, the half mirror 104, the half mirror 105, and the objective lens 106, and the surface (repair surface) of the workpiece 111 on the moving table 112 Irradiated.
  • the workpiece 111 is movable in a plane orthogonal to the laser light from the processing light source 101 together with the movable table 112 whose movement is controlled by the movement drive control unit 121.
  • the laser light from the processing light source 101 is accurately detected as a defect based on the observation result of the surface of the workpiece 111 in the image processing unit 124 described later.
  • the image processing unit 124 outputs control information to the movement drive control unit 121 so as to emit light.
  • the light intensity of the laser beam from the processing light source 101, and the like corresponding to the size, depth, and other conditions of the defect portion.
  • Information for setting the irradiation conditions is output from the image processing unit 124 to the drive control unit 125.
  • the variable stop 102 makes the laser light intensity distribution uniform in the cross section orthogonal to the optical axis of the laser light beam emitted from the processing light source 101.
  • the operation of the variable stop 102 is controlled by the drive control unit 125 based on data from the image processing unit 124.
  • the light beam that has passed through the variable stop 102 is transmitted through the lens 103, the half mirror 104, and the half mirror 105, and collected on the workpiece 111 by the objective lens 106.
  • the luminous flux is applied to a defect on the workpiece 111 and is used to remove the defect.
  • illumination light in the visible region is emitted from the observation light source 109.
  • the illumination light is condensed by the lens 110 and then reflected by the half mirror 105, and is irradiated to the workpiece 111 through the objective lens 106.
  • the illumination light is reflected by the surface of the workpiece 111, passes through the objective lens 106 and the half mirror 105, is reflected by the half mirror 104, is collected by the lens 107, passes through the half mirror 108, and enters the CCD 122.
  • the incident light is converted into an electric signal and displayed on the TV monitor 123, and the converted signal is output to the image processing unit 124.
  • an anti-reflection film having high transmittance and durability in the visible to ultraviolet region is used for the objective lens 106. Therefore, it is possible to realize an objective lens having good optical performance in the visible to ultraviolet region, and it is thus possible to share the objective lens for observation and for processing, and laser processing without switching the lens after observation. Can be performed almost simultaneously, and no software correction or mechanical control is required, thereby enabling significant time reduction and accuracy improvement of the apparatus.
  • FIG. 9 is a view showing the configuration of a microscope (ultraviolet microscope) according to the fifth embodiment.
  • a mirror leg 214 of the ultraviolet microscope is installed on the vibration isolation table 260 in order to mechanically prevent the vibration transmitted from the floor 258.
  • a lens barrel 212 is supported on the mirror leg 214 via an arm 216.
  • the lens barrel 212 includes a light source 218 and an optical lens system having an illumination lens system 220, an objective lens system 222, and an imaging lens system 224 disposed along the light path of the light source 218.
  • the illumination lens system 220 includes a collector lens 220a and a condenser lens 220b, and appropriately converges the light of the light source 218.
  • the light of the light source 218 converged by the collector lenses 220a and 220b is reflected by the half mirror 226, is focused by the objective lens system 222, and is incident on the object 228.
  • the light reflected by the object 228 is enlarged by the objective lens system 222, and transmits through the half mirror 226 and the imaging lens system 224.
  • the imaging light path of the imaging lens system 224 is separated into an optical path of ultraviolet light and an optical path of visible light by the dichroic mirror 230a.
  • the ultraviolet light is reflected by the dichroic mirror 230a and further reflected by the reflection mirror 231, and is imaged on the imaging surface (not shown) of the ultraviolet television camera 234a.
  • the television camera 234a converts the input image (ultraviolet image) formed on the imaging surface thereof into an electrical image signal, and provides the display 238a through the ultraviolet image processing device 236a.
  • the display 238a displays a monochrome image corresponding to the ultraviolet region image of the object 228 in real time based on the input signal from the television camera 234a.
  • visible light passes through the dichroic mirror 230a, is reflected by the reflection mirrors 240 and 242 in order, and is imaged on the imaging surface (not shown) of the color television camera 234b.
  • the television camera 234b converts an input image (visible image) formed on the imaging surface into an electrical color image signal, and provides the display 238b with the visible image through the image processing device 236b.
  • the display 238 b displays a color image corresponding to a visible image of the subject 228 in real time based on an input signal from the image processing device 236 b.
  • the television cameras 234a and 234b respectively include magnifying lens systems 244a and 244b for zooming the input image.
  • the magnification lens systems 244a and 244b can set the magnification independently of each other, so that the ultraviolet image and the color image of the object 228 can be simultaneously observed at different magnifications.
  • the image processing devices 236a and 236b are controlled by the controller 246 and have known image processing functions.
  • the image processing devices 236a, 236b can cause the video printers 248a, 248b to output images, respectively.
  • a shutter 250 capable of blocking the light of the light source 218 is disposed.
  • the opening and closing of the light source shutter 250 may be manual, but is preferably controlled by the controller 246.
  • the magnifying lens systems 244a and 244b respectively include shutters 252a and 252b for reducing the amount of light entering the imaging surface of the television cameras 234a and 234b. When the shutters 252a and 252b are closed and imaging is performed by the television cameras 234a and 234b in a non-light entering state, an image as a background image is obtained.
  • An ultraviolet microscope arm 216 supports a mechanical stage 254 for holding the subject 228.
  • the mechanical stage 254 includes a Z stage 254z supported by an arm 216, and a Y stage 254y and an X stage 254x sequentially attached to the Z stage 254z.
  • the X stage 254x, the Y stage 254y and the Z stage 254z may be manually driven by the adjusting screws 256x, 256y and 256z, respectively, and may be controlled by the controller 246.
  • the revolver 262 supports a plurality of objective lens systems 222, and rotation of the revolver 262 is capable of selectively switching the objective lens systems.
  • the turrets 264a and 264b support a plurality of magnifying lens systems 244a and 244b, respectively, and the magnification lens systems can be selectively switched by rotation thereof.
  • the variable power of the ultraviolet microscope can be made variable.
  • an automatic focusing device 278 for the ultraviolet television camera 234a is provided.
  • the microscope of the fifth embodiment by using a light source from visible light to ultraviolet light, a color image by visible light and an image by ultraviolet light can be simultaneously obtained, and image information having high color information and high resolution. It is possible to achieve a microscope system that observes simultaneously. Even in a system that transmits ultraviolet light to visible light, such as a tunable laser, by forming the above-described anti-reflection film on an optical element in a light source device, it has sufficient transmittance at all wavelengths and is sufficient. It becomes possible to give durability.
  • the antireflective film according to the present invention is required to be optically stable, to less absorb light, and to have a predetermined antireflective property to light in two regions of the ultraviolet region and the visible region. Useful for optical systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Microscoopes, Condenser (AREA)
  • Laminated Bodies (AREA)

Abstract

 紫外領域と可視領域の2つの領域における光に対して、光学的に安定して、光の吸収が少なく、かつ所定の反射防止を効果的に実現可能な反射防止膜を提供する。 透明な基板上に、空気側から基板側へ順に第1層、第2層、第3層、第4層、第5層、第6層、と、6層以上の薄膜を形成した構成を備え、空気側から奇数番目の薄膜が低屈折率膜であり、偶数番目の薄膜が低屈折率膜又は低屈折率膜より屈折率の大きな中間屈折率膜であって、中心波長λ0での中間屈折率膜と低屈折率膜の屈折率を各々N、Nとしたとき、これらが所定の式を満足し、さらに、紫外域の波長λ1と、可視域の波長λ2と、が所定の式を満足する。

Description

反射防止膜、レンズ、光学系、対物レンズ、及び光学機器
 本発明は、反射防止膜と、この反射防止膜を用いたレンズ、光学系、及び対物レンズと、この光学系を用いた光学機器と、に関するものである。
 従来の紫外光用の反射防止膜として、特許文献1に記載の反射防止膜が提案されている。この反射防止膜は、Al膜を含む中間屈折率層と、MgFを含む低屈折率層と、を透明基板面上に交互に形成して4層~7層とし、波長248nm(KrFエキシマレーザー波長)と、それ以外の波長(例えば:He-Neレーザー波長633nm)の2つの波長で反射防止を行った膜である。また、特許文献2では、7層積層した膜であって、波長350nmから波長800nmで、0.6%以下の広帯域反射性を備えた防止膜が提案されている。
 レーザーを用いて処理を行う光学装置では、波長400nm~700nmの可視域(必要に応じて紫外域や赤外域)での観察と、処理を行うレーザー波長、例えばYAGレーザーの第3高調波(発振波長355nm)の照射(透過)を同時に行う必要がある。
 また、従来提案されている2波長反射防止膜は、エキシマレーザー波長248nmと波長600nm~700nmを1.5%以下で反射防止するように設計されている。
特許第3232727号公報 特許第4190773号公報
 しかし、上述の反射防止膜の膜構成を変更せずに、YAGレーザーの第3高調波(発振波長355nm)に適用して波長シフトすると、反射率が波長400nm~600nmで3%以上になり、これによって可視域での観察が困難になるという問題があった。
 また、従来の反射防止膜は、TiOのような屈折率が1.8を超える高屈折率材料を用いて構成されている。一般に、TiOのような高屈折率材料は、波長400nm以下の紫外領域での膜吸収率が高い。この為紫外域のレーザー、例えばYAGレーザーの第3高調波(発振波長355nm)を用いる場合、光の吸収により反射防止膜が損傷し、膜構成が変化し、所定の分光特性、例えば反射防止特性が得られなくなってくるという問題点があった。
 そこで、本発明は、反射防止膜の材質の屈折率及び膜構成を適切に設定することにより、主に波長400nm未満の紫外領域と、波長400nm~700nmの可視領域と、の2つの領域における光に対して、光学的に安定して、光の吸収が少なく、かつ所定の反射防止を効果的に実現可能な反射防止膜を提供することを目的とする。また、このような反射防止膜として、例えばレーザー処理を行う各種の光学レンズに好適な2波長反射防止膜を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る反射防止膜は、透明な基板上に、空気側から基板側へ順に第1層、第2層、第3層、第4層、第5層、第6層、と、6層以上の薄膜を形成した構成を備え、空気側から奇数番目の薄膜が低屈折率膜であり、偶数番目の薄膜が低屈折率膜又は低屈折率膜より屈折率の大きな中間屈折率膜であって、中心波長λ0での中間屈折率膜と低屈折率膜の屈折率を各々N、Nとしたとき、次式(1)、(2)、(3)を同時に満足する反射防止膜であって、
  λ0=500nm ・・・(1)
  1.45≦N≦1.8 ・・・(2)
  N<1.45 ・・・(3)
 紫外域の波長λ1と、可視域の波長λ2と、で反射防止を行っており、
 次式(4)、(5)、(6)、(7)、(8)、(9)を同時に満足することを特徴とする。
  λ1=355nm ・・・(4)
  400nm≦λ2≦700nm ・・・(5)
  R1≦1.0% ・・・(6)
  R2≦1.5% ・・・(7)
  K1≦1.0% ・・・(8)
  K2≦1.0% ・・・(9)
 ここで、
 R1は、波長λ1での反射率、
 R2は、波長λ2での反射率、
 K1は、波長λ1での膜吸収率、
 K2は、波長λ2での膜吸収率、
 膜吸収率は、100-(100-(基板の反射率+基板の透過率))-(反射防止膜を施した基板の反射率+反射防止膜を施した基板の透過率)、
である。
 本発明に係る反射防止膜は、基板の屈折率が1.85未満であることが好ましい。
 本発明に係る反射防止膜は、基板の屈折率が1.85以上であることが好ましい。
 本発明に係る反射防止膜は、次式(10)、(11)、(12)、(13)、(14)、(15)、(16)を同時に満足することが好ましい。
  0.229×λ0≦d1≦0.234×λ0 ・・・(10)
  0.260×λ0≦d2≦0.268×λ0 ・・・(11)
  0.045×λ0≦d3≦0.077×λ0 ・・・(12)
  0.074×λ0≦d4≦0.118×λ0 ・・・(13)
  0.211×λ0≦d5≦0.277×λ0 ・・・(14)
  0.035×λ0≦d6≦0.150×λ0 ・・・(15)
  0.039×λ0≦d7≦0.207×λ0 ・・・(16)
 ここで、
 d1は第1層の光学膜厚、
 d2は第2層の光学膜厚、
 d3は第3層の光学膜厚、
 d4は第4層の光学膜厚、
 d5は第5層の光学膜厚、
 d6は第6層の光学膜厚、
 d7は第7層の光学膜厚、
 光学膜厚は屈折率×幾何学的厚さ、
である。
 本発明に係る反射防止膜は、次式(17)、(18)、(19)、(20)、(21)、(22)を同時に満足することが好ましい。
  0.233×λ0≦d1≦0.234×λ0 ・・・(17)
  0.269×λ0≦d2≦0.289×λ0 ・・・(18)
  0.072×λ0≦d3≦0.073×λ0 ・・・(19)
  0.106×λ0≦d4≦0.127×λ0 ・・・(20)
  0.146×λ0≦d5≦0.211×λ0 ・・・(21)
  0.253×λ0≦d6≦0.278×λ0 ・・・(22)
 ここで、
 d1は第1層の光学膜厚、
 d2は第2層の光学膜厚、
 d3は第3層の光学膜厚、
 d4は第4層の光学膜厚、
 d5は第5層の光学膜厚、
 d6は第6層の光学膜厚、
 d7は第7層の光学膜厚、
 光学膜厚は屈折率×幾何学的厚さ、
である。
 本発明に係る反射防止膜は、中間屈折率層の材料がAl、SiO、LaF、NdF、YF、CeF、又は、これらの化合物を含む混合物であり、低屈折率層の材料がMgF、BaF、LiF、AlF、NaF、CaF、又は、これらの化合物を含む混合物であることが好ましい。
 本発明に係るレンズは、上述のいずれかの反射防止膜を施したことを特徴とする。
 本発明に係る光学系は、上述のレンズを有することを特徴とする。
 本発明に係る対物レンズは、上述の光学系を有することを特徴とする。
 本発明に係る光学機器は、上述の光学系を有し、光学系を用いて、観察し、かつ、レーザーを集光することを特徴とする。
 本発明に係る反射防止膜は、主に波長400nm未満の紫外領域と波長400nm~700nmの可視領域の2つの領域における光に対して、光学的に安定して、光の吸収が少なく、かつ所定の反射防止を効果的に実現可能とする、という効果を奏する。
表1に示す、実施例1~9の反射防止膜の分光反射率特性を示すグラフである。 表1の実施例のうち、基材屈折率の上下限の実施例1、9と、これらの間の実施例から選択した実施例5の分光反射率特性を示すグラフである。 実施例1について、基板の反射率と透過率を加算した値、及び、反射防止膜を施した基板の反射率と透過率を加算した値を、波長に対してプロットしたグラフである。 実施例1について、膜吸収率を波長に対してプロットしたグラフである。 表2に示す、実施例10~12の分光反射率特性を示すグラフである。 表3に示す、実施例13、14の分光反射率特性を示すグラフである。 表4に示す比較例の分光反射率特性を示すグラフである。 第4実施形態に係るリペア装置の構成を示す図である。 第5実施形態に係る顕微鏡の構成を示す図である。
 以下に、本発明に係る反射防止膜の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態によりこの発明が限定されるものではない。
 まず、実施形態の説明に先立って、本発明による作用・効果について説明する。
 本発明に係る反射防止膜は、透明な基板上に、空気側から基板側へ順に第1層、第2層、第3層、第4層、第5層、第6層、と、6層以上の薄膜を形成した構成を備え、空気側から奇数番目の薄膜が低屈折率膜であり、偶数番目の薄膜が低屈折率膜又は低屈折率膜より屈折率の大きな中間屈折率膜であって、中心波長λ0での中間屈折率膜と低屈折率膜の屈折率を各々N、Nとしたとき、次式(1)、(2)、(3)を同時に満足する反射防止膜であって、
  λ0=500nm ・・・(1)
  1.45≦N≦1.8 ・・・(2)
  N<1.45 ・・・(3)
 紫外域の波長λ1と、可視域の波長λ2と、で反射防止を行っており、
 次式(4)、(5)、(6)、(7)、(8)、(9)を同時に満足することを特徴とする。
  λ1=355nm ・・・(4)
  400nm≦λ2≦700nm ・・・(5)
  R1≦1.0% ・・・(6)
  R2≦1.5% ・・・(7)
  K1≦1.0% ・・・(8)
  K2≦1.0% ・・・(9)
 ここで、
 R1は、波長λ1での反射率、
 R2は、波長λ2での反射率、
 K1は、波長λ1での膜吸収率、
 K2は、波長λ2での膜吸収率、
 膜吸収率は、100-(100-(基板の反射率+基板の透過率))-(反射防止膜を施した基板の反射率+反射防止膜を施した基板の透過率)、
である。
 なお、上式(6)、(7)は、基板の反射率、及び、反射防止膜を施した基板の反射率について適用する。
 上式(6)~(9)のいずれか1つ以上について上限値を超えた場合、光学的に不安定となり、光の吸収が多くなり、所定の反射防止を効果的に実現することが難しくなる。
 本発明に係る反射防止膜は、次式(10)、(11)、(12)、(13)、(14)、(15)、(16)を同時に満足することが好ましい。
  0.229×λ0≦d1≦0.234×λ0 ・・・(10)
  0.260×λ0≦d2≦0.268×λ0 ・・・(11)
  0.045×λ0≦d3≦0.077×λ0 ・・・(12)
  0.074×λ0≦d4≦0.118×λ0 ・・・(13)
  0.211×λ0≦d5≦0.277×λ0 ・・・(14)
  0.035×λ0≦d6≦0.150×λ0 ・・・(15)
  0.039×λ0≦d7≦0.207×λ0 ・・・(16)
 ここで、
 d1は第1層の光学膜厚、
 d2は第2層の光学膜厚、
 d3は第3層の光学膜厚、
 d4は第4層の光学膜厚、
 d5は第5層の光学膜厚、
 d6は第6層の光学膜厚、
 d7は第7層の光学膜厚、
 光学膜厚は屈折率×幾何学的厚さ、
である。
 上式(10)~(16)のいずれか1つ以上を満足しなかった場合、光学的に不安定となり、光の吸収が多くなり、所定の反射防止を効果的に実現することが難しくなる。
 本発明に係る反射防止膜は、次式(17)、(18)、(19)、(20)、(21)、(22)を同時に満足することが好ましい。
  0.233×λ0≦d1≦0.234×λ0 ・・・(17)
  0.269×λ0≦d2≦0.289×λ0 ・・・(18)
  0.072×λ0≦d3≦0.073×λ0 ・・・(19)
  0.106×λ0≦d4≦0.127×λ0 ・・・(20)
  0.146×λ0≦d5≦0.211×λ0 ・・・(21)
  0.253×λ0≦d6≦0.278×λ0 ・・・(22)
 ここで、
 d1は第1層の光学膜厚、
 d2は第2層の光学膜厚、
 d3は第3層の光学膜厚、
 d4は第4層の光学膜厚、
 d5は第5層の光学膜厚、
 d6は第6層の光学膜厚、
 d7は第7層の光学膜厚、
 光学膜厚は屈折率×幾何学的厚さ、
である。
 上式(17)~(22)のいずれか1つ以上を満足しなかった場合、光学的に不安定となり、光の吸収が多くなり、所定の反射防止を効果的に実現することが難しくなる。
 表1は、第1実施形態に係る7層構成の反射防止膜の構成を示す表である。表2は、第2実施形態に係る7層構成の反射防止膜の構成を示す表である。表3は、第3実施形態に係る6層構成の反射防止膜の構成を示す表である。表4は、比較例としての、6層構成の反射防止膜の構成を示す表である。表1~4においては、基板に対する積層順に各層の材料及び光学膜厚を示している。光学膜厚は、各表記載の数値に各実施形態の設計波長λ0を乗じた数値である。また、表及び図面中の基板材料名は、具体的な物質名を記載したものを除き、いずれも株式会社オハラの商標である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 図1は、表1に示す、実施例1~9の反射防止膜の分光反射率特性を示すグラフである。図2は、表1の実施例のうち、基材屈折率の上下限の実施例1、9と、これらの間の実施例から選択した実施例5の分光反射率特性を示すグラフである。図3は、実施例1について、基板の反射率と透過率を加算した値、及び、反射防止膜を施した基板の反射率と透過率を加算した値を、波長に対してプロットしたグラフである。図4は、実施例1について、膜吸収率を波長に対してプロットしたグラフである。図5は、表2に示す、実施例10~12の分光反射率特性を示すグラフである。図6は、表3に示す、実施例13、14の分光反射率特性を示すグラフである。図7は、表4に示す比較例の分光反射率特性を示すグラフである。
 ここで、図1、図2、図5~図7は、横軸に波長(単位nm)、縦軸に反射率(単位%)をとった、2波長反射防止膜の分光反射率特性を示す図である。また、図4に示す膜吸収率は、図3に示す、基板の反射率+基板の透過率(実線)と、反射防止膜を施した基板の反射率+反射防止膜を施した基板の透過率(破線)と、を用いて、「100-(100-(基板の反射率+基板の透過率))-(反射防止膜を施した基板の反射率+反射防止膜を施した基板の透過率)」で算出する。なお、図3、図4においては、355nm及び400~700nmだけでなく、参考のために、300~750nmの間の全範囲について、反射率+透過率、及び、膜吸収率を示している。
(第1実施形態)
 表1に示す、実施例1~9の反射防止膜は、屈折率1.5~1.85の基材の上に、設計波長λ0を500nmとして、低屈折率材料であるMgFからなる第1、3、5、7層と、中間屈折率材料であるAlからなる第2、4、6層と、を積層した7層構成になっている。この反射防止膜は、中間屈折率材料からなる層をM、低屈折率材料からなる層をLとすると、空気側(基板から遠い側)からLMLMLMLという7層構成である。また、中間屈折率材料であるAlからなる層の屈折率Nは1.61であって、1.45≦N≦1.8を満たし、低屈折率材料であるMgFからなる層の屈折率Nは1.38であって、N<1.45を満たす。
 第1実施形態の反射防止膜の各層は、10-2~10-4Paの真空域にて真空蒸着により形成した。なお、各層の形成方法は、真空蒸着に限定されるものでなく、スパッタリング法、イオンプレーティング法、イオンアシスト蒸着法によっても同等の特性を有する反射防止膜を得ることができる。
 また、中間屈折率材料としてAlを、低屈折率材料としてMgFをそれぞれ用いたが、一般にAl、MgFは、可視領域及び400nm未満の紫外領域において光の吸収率が低い。これらの材料を使用する事により、光の吸収によるレーザエネルギーの蓄積や透過率の低下を抑制する事ができる。しかしながら、この材料に限定されるものではなく、各材料と同様な屈折率を持つ材料であれば同等の特性を有する反射防止膜を得ることができる。例えば、中間屈折率層用の材料としては、Alのほか、SiO、LaF、NdF、YF、CeF、又は、これらの化合物を用いることができる。また、低屈折率層用の材料としては、MgFのほか、BaF、LiF、AlF、NaF、CaF、又は、これらの化合物を用いることができる。
 図1、図2の分光反射率特性に示すように、紫外域であるYAGレーザーの第3高調波の発振波長355nm(λ1)における反射率R1は1%以下であり、可視域である400nmから700nmの波長範囲(λ2)における反射率R2は1.5%以下である。したがって、第1実施形態の反射防止膜は、基材のみでの反射率約4%に対して十分良好な反射防止性能を実現している。
 ここで、図3、図4に示すように、YAGレーザーの第3高調波の発振波長355nm(λ1)における膜吸収率K1(図4)は1%以下であり、400nm以上700nm以下の波長範囲(λ2)における膜吸収率K2(図4)は1.0%以下である。図示はしていないが、実施例2~9についても同様の結果であった。
 一方、表4に示す、従来の反射防止膜を両面又は片面に施した光学レンズでは、図7に示すように、YAGレーザーで15mJ/mmの光を100回照射したところ損傷した。これに対して、第1実施形態の反射防止膜を両面又は片面に施した光学レンズでは、YAGレーザーで70mJ/mmの光を100回照射したが、いずれの光学素子も損傷がなかった。
(第2実施形態)
 表2に示す、実施例10~12の反射防止膜は、屈折率1.5未満の基材の上に、設計波長λ0を500nmとして、低屈折率材料であるMgFからなる第1、3、5、7層と、中間屈折率材料Alからなる第2、4層と、中間屈折率材料であるSiOからなる第6層と、を積層した7層構成になっている。この反射防止膜は、中間屈折率材料からなる層をM、低屈折率材料からなる層をLとすると、空気側(基板から遠い側)からLMLMLMLという7層構成である。また、中間屈折率材料であるAlからなる層の屈折率Nは1.61であり、SiOからなる層の屈折率Nは1.46であり、いずれも1.45≦N≦1.8を満たす。さらに、低屈折率材料であるMgFからなる層の屈折率Nは1.38であって、N<1.45を満たす。
 第2実施形態の反射防止膜の各層は、10-2~10-4Paの真空域にて真空蒸着により形成している。なお、各層の形成方法は、真空蒸着に限定されるものでなく、スパッタリング法、イオンプレーティング法、イオンアシスト蒸着法によっても同等の特性を有する反射防止膜を得ることができる。
 また、中間屈折率材料としてAl及びSiOを、低屈折率材料としてMgFをそれぞれ用いたが、各層の材料はこれらに限定されるものではなく、各材料と同様な屈折率を持つ材料であれば同等の特性を有する反射防止膜を得ることができる。例えば、中間屈折率層用の材料としては、Al、SiOのほか、LaF、NdF、YF、CeF、又は、これらの化合物を用いることができる。また、低屈折率層用の材料としては、MgFのほか、BaF、LiF、AlF、NaF、CaF、又は、これらの化合物を用いることができる。
 図5の分光反射率特性に示すように、紫外域であるYAGレーザーの第3高調波の発振波長355nm(λ1)における反射率R1が1%以下であり、可視域である400nmから700nmの波長範囲(λ2)における反射率R2が1.5%以下である。したがって、第2実施形態の反射防止膜は、基材のみでの反射率約4%に対して十分良好な反射防止性能を有している。また、図示はしないが、上述の実施例1と同様に、YAGレーザーの第3高調波の発振波長355nm(λ1)における膜吸収率K1は1%以下であり、400nm以上700nm以下の波長範囲(λ2)における膜吸収率K2は1.0%以下である。
 一方、表4に示す、従来の反射防止膜を両面又は片面に施した光学レンズでは、図7に示すように、YAGレーザーで15mJ/mmの光を100回照射したところ損傷した。これに対して、第2実施形態の反射防止膜を両面又は片面に施した光学レンズでは、YAGレーザーで70mJ/mmの光を100回照射したが、いずれの光学素子も損傷がなかった。
(第3実施形態)
 表3に示す、実施例13、14の反射防止膜は、屈折率1.85以上の基材の上に、設計波長λ0を500nmとして、低屈折率材料であるMgFからなる第1、3、5層と、中間屈折率材料であるAlからなる第2、4、6層と、を積層した6層構成になっている。この反射防止膜は、中間屈折率材料からなる層をM、低屈折率材料からなる層をLとすると、空気側(基板から遠い側)からLMLMLMという6層構成である。また、中間屈折率材料であるAlからなる層の屈折率Nは1.61であって、1.45≦N≦1.8を満たす。さらに、低屈折率材料であるMgFからなる層の屈折率Nは1.38であって、N<1.45を満たす。
 第3実施形態の反射防止膜の各層は、10-2~10-4Paの真空域にて真空蒸着により形成した。なお、各層の形成方法は、真空蒸着に限定されるものでなく、スパッタリング法、イオンプレーティング法、イオンアシスト蒸着法によっても同等の特性を有する反射防止膜を得ることができる。
 また、中間屈折率材料としてAlを、低屈折率材料としてMgFを、それぞれ用いたが、各層の材料はこれらに限定されるものではなく、各材料と同様な屈折率を持つ材料であれば同等の特性を有する反射防止膜を得ることができる。例えば、中間屈折率層用の材料としては、Alのほか、LaF、NdF、YF、CeF、又は、これらの化合物を用いることができる。また、低屈折率層用の材料としては、MgFのほか、BaF、LiF、AlF、NaF、CaF、又は、これらの化合物を用いることができる。
 図6の分光反射率特性に示すように、紫外域であるYAGレーザーの第3高調波の発振波長355nmにおける反射率が1%以下であり、可視域である400nmから700nmの波長範囲における反射率が1.5%以下である。したがって、第3実施形態の反射防止膜は、基材のみでの反射率約4%に対して十分良好な反射防止性能を有している。また、図示はしないが、上述の実施例1と同様に、YAGレーザーの第3高調波の発振波長355nm(λ1)における膜吸収率K1は1%以下であり、400nm以上700nm以下の波長範囲(λ2)における膜吸収率K2は1.0%以下である。
 一方、表4に示す、従来の反射防止膜を両面又は片面に施した光学レンズは、図7に示すように、YAGレーザーで15mJ/mmの光を100回照射したところ損傷した。これに対して、第3実施形態の反射防止膜を両面又は片面に施した光学レンズでは、YAGレーザーで70mJ/mmの光を100回照射したが、いずれの光学素子も損傷がなかった。
(第4実施形態)
 以下、反射防止膜を施した光学系を有する光学装置としてのリペア装置について、図8を参照しつつ説明する。
 図8は、第4実施形態に係るリペア装置(以下、レーザーリペア)の構成を示す図である。このリペア装置は、液晶ディスプレイのガラス基板、半導体ウエハ、プリント基板などに生じる欠陥部にレーザー光を照射して除去する装置である。
 図8に示すレーザーリペアは、加工用光源101、可変絞り102、レンズ103、反射防止膜を形成した対物レンズ106、ハーフミラー104、ハーフミラー105、観察光源109、レンズ110、移動台112、移動駆動制御部121、撮像素子としてのCCD122(電荷結合素子)、TVモニター123、画像処理部124、及び駆動制御部125を備える。
 加工用光源101は、リペア対象を加工するレーザー光束を出射する加工用の光源であり、例えば、リペア対象に応じて複数波長のレーザー光束を出射できることが好ましい。加工用光源101から出射するレーザー光の制御、例えば、光強度、発光波長、パルス発振などの発振モード、点灯消灯制御は、不図示の制御部で行う。加工用光源101から出射されたレーザー光は、可変絞り102、レンズ103、ハーフミラー104、ハーフミラー105、対物レンズ106を介して、移動台112上の被加工物111の表面(被リペア面)に照射される。
 被加工物111は、移動駆動制御部121により移動制御される移動台112とともに加工用光源101からのレーザー光と直交する面内で移動可能である。移動駆動制御部121による被加工物111の位置制御は、後述する、画像処理部124における被加工物111の表面の観察結果に基づいて、加工用光源101からのレーザー光が欠陥部に正確に照射されるように、画像処理部124が移動駆動制御部121へ制御情報を出力する。また、画像処理部124における被加工物111の表面の観察結果に基づいて、欠陥部の大きさ、深さその他の状態に対応するように、加工用光源101からのレーザー光の光強度その他の照射条件を設定する情報が画像処理部124から駆動制御部125へ出力される。
 可変絞り102は、加工用光源101から出射されたレーザー光束の光軸に直交する断面におけるレーザー光強度分布を均一化する。可変絞り102の動作は、画像処理部124からのデータに基づいて駆動制御部125が制御する。可変絞り102を通った光束は、レンズ103、ハーフミラー104、ハーフミラー105を透過して対物レンズ106によって被加工物111上に集光される。この光束は、被加工物111上の欠陥部に照射され、この欠陥部の除去に使用される。
 また、観察光源109からは、可視領域の照明光が出射される。この照明光は、レンズ110で集光された後にハーフミラー105で反射され、対物レンズ106を経て被加工物111に照射される。照明光は、被加工物111の表面で反射され、対物レンズ106、ハーフミラー105を透過した後にハーフミラー104で反射され、レンズ107で集光されてハーフミラー108を経てCCD122に入射する。CCD122では、入射光が電気信号に変換され、TVモニター123に表示されるとともに、変換された信号が画像処理部124へ出力される。
 従来のレーザーリペアにおいては、加工の際に大きな出力エネルギーのレーザー光が観察用の対物レンズを通過するため、対物レンズを破損してしまうという問題があり、観察用と加工用対物レンズを別に用意していた。
 しかし、これでは観察用レンズで観察して加工場所を決定し、加工用レンズに切り替えて加工することになり、時間的に2倍の工数がかかってしまう。また、観察用レンズと加工用レンズの位置合わせなども必要となりメカ的にもソフト的にも工程が増えてしまっている。
 これに対して、第4実施形態のレーザーリペアでは、可視~紫外までの領域で高い透過率と耐久性を備えた反射防止膜を対物レンズ106に用いている。このため、可視~紫外までの領域で良好な光学性能を有する対物レンズを実現でき、これにより、観察用と加工用の対物レンズを共通化することが可能となり、観察後にレンズの切り替えなくレーザー加工が略同時に行え、ソフト的補正やメカ的制御も必要なくなり大幅な時間短縮と装置の正確性UPが可能となる。
(第5実施形態)
 反射防止膜を施した光学系を有する対物レンズ(対物レンズ系22)を備えた光学機器としての顕微鏡について、図9を参照して説明する。
 図9は、第5実施形態に係る顕微鏡(紫外線顕微鏡)の構成を示す図である。この顕微鏡では、被検体の可視域から紫外域に至る観察と、被検体の紫外画像と可視カラー画像とを重畳させた表示と、被検体の紫外像のみの観察と、が可能である。
 図9に示した紫外線顕微鏡は、床258から伝わる振動を機械的に防止するため、紫外線顕微鏡の鏡脚214が除振台260上に設置されている。鏡脚214上には、アーム216を介して鏡筒212が支持されている。鏡筒212は、光源218と、その光路に沿って配置された照明レンズ系220、対物レンズ系222、及び結像レンズ系224を有する光学レンズ系と、を備える。照明レンズ系220は、コレクタレンズ220aとコンデンサレンズ220bとを備え、光源218の光を適宜に収束させる。コレクタレンズ220a、220bにより収束された光源218の光は、ハーフミラー226で反射されて、対物レンズ系222により合焦されて被検体228へ入射する。
 被検体228で反射した光は、対物レンズ系222により拡大され、ハーフミラー226及び結像レンズ系224を透過する。結像レンズ系224の結像光路は、ダイクロイックミラー230aにより紫外線の光路と可視光の光路とに分離される。
 ここで、紫外線はダイクロイックミラー230aで反射し、更に反射ミラー231で反射して、紫外線テレビカメラ234aの撮像面(図示せず)に結像される。テレビカメラ234aは、その撮像面に結像された入力像(紫外像)を、電気的な画像信号に変換し、紫外線用の画像処理装置236aを通じて、ディスプレイ238aへ与える。ディスプレイ238aは、テレビカメラ234aからの入力信号に基づいて、被検体228の紫外域像に対応するモノクローム画像をリアルタイムに表示する。
 一方、可視光はダイクロイックミラー230aを透過して、反射ミラー240、242により順に反射して、カラーテレビカメラ234bの撮像面(図示せず)に結像される。テレビカメラ234bは、その撮像面に結像された入力像(可視像)を、電気的なカラー画像信号に変換し、可視画像の画像処理装置236bを通じて、ディスプレイ238bへ与える。ディスプレイ238bは、画像処理装置236bからの入力信号に基づいて、被検体228の可視像に対応するカラー画像をリアルタイムに表示する。
 以上により、ディスプレイ238aにより被検体228の微小領域の高解像力の紫外画像を観察できると同時に、ディスプレイ238bにより被検体228の微小領域の色を観察できる。これは例えば半導体デバイスの欠陥検査に対応可能である。
 テレビカメラ234a、234bは、それぞれ入力像を変倍するための拡大レンズ系244a、244bを備える。拡大レンズ系244a、244bは、互いに独立に倍率設定可能とすることにより、被検体228の紫外画像とカラー画像とを互いに異なる倍率で同時に観察できる。
 画像処理装置236a、236bは、コントローラ246により制御され、公知の画像処理機能をそれぞれ有する。画像処理装置236a、236bは、それぞれビデオプリンタ248a、248bに画像を出力させることができる。
 鏡筒212内には、光源218の光を遮断できるシャッタ250が配置されている。この光源用のシャッタ250の開閉は、手動でもよいが、コントローラ246により制御されることが好ましい。拡大レンズ系244a、244bは、テレビカメラ234a、234bの撮像面への入光量を零とするためのシャッタ252a、252bをそれぞれ備える。シャッタ252a、252bを閉じてテレビカメラ234a、234bにより無入光状態における撮像をすると、バックグラウンド像としての像が得られる。
 紫外線顕微鏡のアーム216には、被検体228を保持すべき機械的ステ-ジ254が支持されている。機械的ステ-ジ254は、アーム216に支持されたZステ-ジ254zと、このZステ-ジ254zに順次に取り付けられたYステ-ジ254y及びXステ-ジ254xを備えている。Xステ-ジ254x、Yステ-ジ254y、Zステ-ジ254zは、それぞれ調節ねじ256x、256y、256zにより手動駆動されてもよく、コントローラ246により駆動制御されてもよい。
 レボルバ262は、複数の対物レンズ系222を支持し、その回転により、対物レンズ系を選択的に切換え可能である。タ-レット264a、264bは、複数の拡大レンズ系244a、244bをそれぞれ支持し、その回転により、拡大レンズ系を選択的に切換え可能である。これら対物レンズ系222及び/または拡大レンズ系244a、244bの切換えにより、紫外線顕微鏡の変倍力が可変とされる。
 対物レンズ系222の焦点深度は波長に比例して浅くなるので、紫外像観察時は焦点合せが困難となる。この困難を解消するために、紫外テレビカメラ234aのための自動合焦装置278が備えられている。
 近年の微細加工技術の発展に伴い、半導体デバイス等の構造は一層に微細化する傾向にある。サブミクロン以下の微細構造に対しては、可視光を用いた光学顕微鏡は解像力が不充分であるために、線幅の測定や欠陥の検出が不可能である。一方、SEM(走査型電子顕微鏡)や紫外線顕微鏡は、解像力は充分であるものの、それにより形成可能な表示画像はモノクローム画像のみであり、検査の重要な項目の一つである色の情報は得られない。更に、SEMは観察時に真空環境を必要とするので、操作が容易でない。
 これに対して、第5実施形態の顕微鏡では、可視光~紫外光までの光源を用いることで、可視光によるカラー画像と紫外光による画像を同時に得ることでき、色情報と解像力の高い画像情報を同時観察する顕微鏡システムを達成できる。
 なお、チューナブルレーザー等の紫外から可視光まで透過するシステムにおいても、光源装置内の光学素子に上述の反射防止膜を形成することにより、全波長において十分な透過率を有し、且つ十分な耐久性を持たせることが可能となる。
 以上の実施形態に示すように、反射防止膜の材質の屈折率及び膜構成を適切に設定することにより、主に波長400nm未満の紫外領域と波長400nm~700nmの可視領域の2つの領域における光に対して光学的に安定して光の吸収が少なく、かつ所定の反射防止を効果的に行った、例えばレーザー処理を行う光学レンズに好適な2波長反射防止膜を得ることができる。
 以上のように、本発明に係る反射防止膜は、紫外領域及び可視領域の二つの領域の光に対して、光学的に安定し、光の吸収が少なく、かつ、所定の反射防止性が求められる光学系に有用である。
 101  加工用光源
 102  可変絞り
 103、107  レンズ
 104、105、108 ハーフミラー
 106  対物レンズ
 109  観察光源
 110  レンズ
 111  被加工物
 112  移動台
 121  移動駆動制御部
 122  CCD
 123  TVモニター
 124  画像処理部
 125  駆動制御部
 218  光源
 220  照明レンズ系
 220a、220b コレクタレンズ
 222  対物レンズ系
 224  結像レンズ系
 226  ハーフミラー
 228  被検体
 230a ダイクロイックミラー
 231、240、242  反射ミラー
 234a、234b テレビカメラ
 236a、236b 画像処理装置
 238a、238b ディスプレイ
 244a、244b 拡大レンズ系
 246  コントローラ
 248a、248b ビデオプリンタ
 250、252a、252b シャッタ
 254  機械的ステージ

Claims (10)

  1.  透明な基板上に、空気側から前記基板側へ順に第1層、第2層、第3層、第4層、第5層、第6層、と、6層以上の薄膜を形成した構成を備え、前記空気側から奇数番目の薄膜が低屈折率膜であり、偶数番目の薄膜が低屈折率膜又は前記低屈折率膜より屈折率の大きな中間屈折率膜であって、中心波長λ0での前記中間屈折率膜と前記低屈折率膜の屈折率を各々N、Nとしたとき、次式(1)、(2)、(3)を同時に満足する反射防止膜であって、
      λ0=500nm ・・・(1)
      1.45≦N≦1.8 ・・・(2)
      N<1.45 ・・・(3)
     紫外域の波長λ1と、可視域の波長λ2と、で反射防止を行っており、
     次式(4)、(5)、(6)、(7)、(8)、(9)を同時に満足することを特徴とする反射防止膜。
      λ1=355nm ・・・(4)
      400nm≦λ2≦700nm ・・・(5)
      R1≦1.0% ・・・(6)
      R2≦1.5% ・・・(7)
      K1≦1.0% ・・・(8)
      K2≦1.0% ・・・(9)
     ここで、
     R1は、波長λ1での反射率、
     R2は、波長λ2での反射率、
     K1は、波長λ1での膜吸収率、
     K2は、波長λ2での膜吸収率、
     前記膜吸収率は、100-(100-(前記基板の反射率+前記基板の透過率))-(前記反射防止膜を施した前記基板の反射率+前記反射防止膜を施した前記基板の透過率)、
    である。
  2.  前記基板の屈折率が1.85未満であることを特徴とする請求項1に記載の反射防止膜。
  3.  前記基板の屈折率が1.85以上であることを特徴とする請求項1に記載の反射防止膜。
  4.  次式(10)、(11)、(12)、(13)、(14)、(15)、(16)を同時に満足することを特徴とする請求項2に記載の反射防止膜。
      0.229×λ0≦d1≦0.234×λ0 ・・・(10)
      0.260×λ0≦d2≦0.268×λ0 ・・・(11)
      0.045×λ0≦d3≦0.077×λ0 ・・・(12)
      0.074×λ0≦d4≦0.118×λ0 ・・・(13)
      0.211×λ0≦d5≦0.277×λ0 ・・・(14)
      0.035×λ0≦d6≦0.150×λ0 ・・・(15)
      0.039×λ0≦d7≦0.207×λ0 ・・・(16)
     ここで、
     d1は前記第1層の光学膜厚、
     d2は前記第2層の光学膜厚、
     d3は前記第3層の光学膜厚、
     d4は前記第4層の光学膜厚、
     d5は前記第5層の光学膜厚、
     d6は前記第6層の光学膜厚、
     d7は前記第7層の光学膜厚、
     前記光学膜厚は屈折率×幾何学的厚さ、
    である。
  5.  次式(17)、(18)、(19)、(20)、(21)、(22)を同時に満足することを特徴とする請求項3に記載の反射防止膜。
      0.233×λ0≦d1≦0.234×λ0 ・・・(17)
      0.269×λ0≦d2≦0.289×λ0 ・・・(18)
      0.072×λ0≦d3≦0.073×λ0 ・・・(19)
      0.106×λ0≦d4≦0.127×λ0 ・・・(20)
      0.146×λ0≦d5≦0.211×λ0 ・・・(21)
      0.253×λ0≦d6≦0.278×λ0 ・・・(22)
     ここで、
     d1は前記第1層の光学膜厚、
     d2は前記第2層の光学膜厚、
     d3は前記第3層の光学膜厚、
     d4は前記第4層の光学膜厚、
     d5は前記第5層の光学膜厚、
     d6は前記第6層の光学膜厚、
     d7は前記第7層の光学膜厚、
     前記光学膜厚は屈折率×幾何学的厚さ、
    である。
  6.  前記中間屈折率層の材料がAl、SiO、LaF、NdF、YF、CeF、又は、これらの化合物を含む混合物であり、
     前記低屈折率層の材料がMgF、BaF、LiF、AlF、NaF、CaF、又は、これらの化合物を含む混合物であることを特徴とする請求項1から請求項5のいずれか1項に記載の反射防止膜。
  7.  請求項1から請求項6のいずれか1項に記載の反射防止膜を施したことを特徴とするレンズ。
  8.  請求項7に記載のレンズを有することを特徴とする光学系。
  9.  請求項8に記載の光学系を有することを特徴とする対物レンズ。
  10.  請求項8に記載の光学系を有し、前記光学系を用いて、観察し、かつ、レーザーを集光することを特徴とする光学機器。
PCT/JP2011/069526 2010-09-02 2011-08-30 反射防止膜、レンズ、光学系、対物レンズ、及び光学機器 WO2012029744A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180026803.9A CN102918428B (zh) 2010-09-02 2011-08-30 反射防止膜、透镜、光学系统、物镜以及光学设备
KR1020137004783A KR101824284B1 (ko) 2010-09-02 2011-08-30 반사 방지막, 렌즈, 광학계, 대물 렌즈 및 광학 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010196543A JP5603714B2 (ja) 2010-09-02 2010-09-02 反射防止膜、レンズ、光学系、対物レンズ、及び光学機器
JP2010-196543 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012029744A1 true WO2012029744A1 (ja) 2012-03-08

Family

ID=45772830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069526 WO2012029744A1 (ja) 2010-09-02 2011-08-30 反射防止膜、レンズ、光学系、対物レンズ、及び光学機器

Country Status (5)

Country Link
JP (1) JP5603714B2 (ja)
KR (1) KR101824284B1 (ja)
CN (1) CN102918428B (ja)
TW (1) TWI537582B (ja)
WO (1) WO2012029744A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3860847A4 (en) * 2018-10-05 2022-06-29 3M Innovative Properties Company Multilayer optical films and articles comprising the same
EP3899087A4 (en) * 2018-12-17 2022-09-14 Applied Materials, Inc. BACK COATING FOR TRANSPARENT SUBSTRATE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461701A (en) * 1987-09-01 1989-03-08 Minolta Camera Kk Antireflecting film
JPH06160602A (ja) * 1992-11-25 1994-06-07 Canon Inc 2波長反射防止膜
JP2003098312A (ja) * 2001-09-26 2003-04-03 Olympus Optical Co Ltd 反射防止膜及び光学素子
JP2005148551A (ja) * 2003-11-18 2005-06-09 Olympus Corp 反射防止膜および対物レンズ
JP2006003540A (ja) * 2004-06-16 2006-01-05 Canon Inc 反射防止膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708429B2 (ja) 2000-11-30 2005-10-19 Hoya株式会社 蒸着組成物の製造方法、蒸着組成物及び反射防止膜を有する光学部品の製造方法
DE10119909B4 (de) * 2001-04-23 2005-04-21 Leica Microsystems Semiconductor Gmbh Inspektionsmikroskop für den sichtbaren und ultravioletten Spektralbereich und Reflexionsminderungsschicht für den sichtbaren und ultravioletten Spektralbereich
JP4190773B2 (ja) * 2002-02-26 2008-12-03 オリンパス株式会社 反射防止膜と光学レンズ及び光学レンズユニット
FR2846753A1 (fr) 2002-11-06 2004-05-07 Pentax Corp Verre antireflechissant de lunettes et procede pour sa production
JP5096966B2 (ja) * 2008-03-03 2012-12-12 ペンタックスリコーイメージング株式会社 反射防止膜及びこれを有する光学部品、交換レンズ及び撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461701A (en) * 1987-09-01 1989-03-08 Minolta Camera Kk Antireflecting film
JPH06160602A (ja) * 1992-11-25 1994-06-07 Canon Inc 2波長反射防止膜
JP2003098312A (ja) * 2001-09-26 2003-04-03 Olympus Optical Co Ltd 反射防止膜及び光学素子
JP2005148551A (ja) * 2003-11-18 2005-06-09 Olympus Corp 反射防止膜および対物レンズ
JP2006003540A (ja) * 2004-06-16 2006-01-05 Canon Inc 反射防止膜

Also Published As

Publication number Publication date
KR20130097164A (ko) 2013-09-02
KR101824284B1 (ko) 2018-01-31
JP5603714B2 (ja) 2014-10-08
CN102918428A (zh) 2013-02-06
CN102918428B (zh) 2015-01-07
TWI537582B (zh) 2016-06-11
TW201211578A (en) 2012-03-16
JP2012053329A (ja) 2012-03-15

Similar Documents

Publication Publication Date Title
US8098279B2 (en) Imaging apparatus and microscope
US7126751B2 (en) Anti-reflection film and microscope having optical element with the same anti-reflection film applied thereto
WO2012169369A1 (ja) 光学ユニットおよび内視鏡
WO2012029744A1 (ja) 反射防止膜、レンズ、光学系、対物レンズ、及び光学機器
JP2007178822A (ja) 光量絞り用ndフィルタ
JP2009168964A (ja) 共焦点顕微鏡
JP5322368B2 (ja) 顕微鏡システム、観察方法および観察プログラム
JP2007272055A (ja) 撮像機器
JP4547526B2 (ja) 顕微鏡のファーカス制御装置および制御方法
JP4012467B2 (ja) 複数の波長領域のための検査顕微鏡、及び複数の波長領域のための検査顕微鏡のための減反射層
WO2012092028A1 (en) Apparatus, system, and method for high-resolution micro-machining of thin films for light pattern projection
JP2004524585A5 (ja)
JP4786154B2 (ja) 反射防止膜を設けた光学素子を備えた顕微鏡
JP6743398B2 (ja) 観察光学機器及びプリズム
JP2006326629A (ja) レーザー加工装置およびそれを用いたレーザー加工方法
JP7294327B2 (ja) 光学ガラス、これを用いた光学素子、光学系、カメラ用交換レンズ、及び光学装置
JP5399580B2 (ja) 顕微鏡システム、観察方法および観察プログラム
WO2020009197A1 (ja) 顕微観察装置、蛍光検出器及び顕微観察方法
JP5530330B2 (ja) 顕微鏡システム
JP4124847B2 (ja) ファインダ系及び該ファインダ系を有する光学機器
EP0183417A2 (en) Optical element with antireflection coating, for use in microscopes
RU2429509C1 (ru) Способ оптической обработки изображения и оптическая система для него
JP5664196B2 (ja) 正立化部材および光学装置
JP2010020298A (ja) 結像装置及び顕微鏡
Peres Light and Lenses

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026803.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137004783

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821760

Country of ref document: EP

Kind code of ref document: A1