JP5322368B2 - 顕微鏡システム、観察方法および観察プログラム - Google Patents

顕微鏡システム、観察方法および観察プログラム Download PDF

Info

Publication number
JP5322368B2
JP5322368B2 JP2005027783A JP2005027783A JP5322368B2 JP 5322368 B2 JP5322368 B2 JP 5322368B2 JP 2005027783 A JP2005027783 A JP 2005027783A JP 2005027783 A JP2005027783 A JP 2005027783A JP 5322368 B2 JP5322368 B2 JP 5322368B2
Authority
JP
Japan
Prior art keywords
driving
excitation light
microscope system
photographing
transparent member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005027783A
Other languages
English (en)
Other versions
JP2006215259A5 (ja
JP2006215259A (ja
Inventor
哲也 城田
貴 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005027783A priority Critical patent/JP5322368B2/ja
Publication of JP2006215259A publication Critical patent/JP2006215259A/ja
Publication of JP2006215259A5 publication Critical patent/JP2006215259A5/ja
Application granted granted Critical
Publication of JP5322368B2 publication Critical patent/JP5322368B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、顕微鏡を用いて観察体である標本を観察する顕微鏡システム、観察方法および観察プログラムに関し、特に、所定時間間隔毎に観察および観察画像の記録を行う、いわゆるタイムラプス観察に利用される顕微鏡システム、観察方法および観察プログラムに関するものである。
従来、顕微鏡を用いて観察体である標本を観察する方法として、一定時刻ごとに顕微鏡画像の観察及び撮影を行い、時間的な標本の形態変化を観察する方法がある。このような観察方法の場合、一般的にまずは標本近傍に合焦を行い、標本の移動を含めた標本の変化を観察するために、光軸方向に対し座標を一定間隔で変化させながら複数枚の画像の撮影を行っている。このような方法は、特定の標本、例えば生きた細胞の時間的変化を観察する方法として極めて有効とされている。
しかしながら、標本観察時に、標本に対して対物レンズの焦点合わせを行っても、例えば、気温変化や空調設備などの作動による周囲温度の変化により各機械部品の寸法が変化し、対物レンズと標本間の距離が大きく変化するため焦点がずれてしまうという問題が発生している。そこで、これらの焦点ずれを補正するため各種の合焦装置が考えられている。ところが、一般的に標本はスライドガラスに載置あるいはスライドガラスとカバーガラスに封入されており、合焦装置はさまざまなスライドガラスやカバーガラスの厚みに対応するために、大きな駆動距離が必要となってくる。一方、光軸方向に対し距離を変化させながら複数毎の画像の撮影を行う場合は、特に蛍光標本の場合、励起光を標本に照射する時間を短くするために、極めて迅速な駆動動作をすることが望ましい。しかしながら、駆動距離が大きいものは駆動速度を速くする事が困難であり、また、駆動速度を速くしたものは駆動距離を大きくとることが困難であるという問題が発生する。
この問題を解決する技術として、粗動駆動手段と微動駆動手段を有し、粗動駆動手段で合焦を行った後、微動駆動手段で合焦を追い込むという技術が開示されている(例えば、特許文献1参照。)。
また、さらに微動駆動手段にピエゾ素子を採用した技術が開示されている(例えば、特許文献2参照。)。
特開平5−346528号公報 特開2003−172878号公報
しかしながら、従来の技術は、光軸方向の合焦動作に関する技術であり、具体的にスライドガラスに載置あるいはスライドガラスとカバーガラスとに封入された標本に対する合焦動作の改善までには至っておらず、個々のスライドガラスに載置された標本に対しての迅速かつ適切な合焦動作、あるいはスライドガラスとカバーガラスとに封入された標本に対しての迅速かつ適切な合焦動作を行うのが困難であるという問題点があった。
また、X−Y方向の複数点の繰り返し合焦動作や対物レンズ、励起光の変更に伴う合焦位置の変更についても迅速かつ適切に行うのが困難であるという問題点があった。
本発明は、上記従来技術の欠点に鑑みてなされたもので、様々な厚さのスライドガラスに載置あるいはスライドガラスとカバーガラスに封入された標本に対しても、高い合焦速度を維持しつつ、迅速な合焦動作を可能とした顕微鏡システム、観察方法および観察プログラムを提供することを目的とする。
本発明は、上記課題を解決するため、下記のような構成を採用した。
すなわち、本発明の一態様によれば、本発明の顕微鏡システムは、被検物を保持するための透明部材を載置するステージと、前記透明部材に保持された被検物を観察するための対物レンズと、前記被検物を撮影する撮影手段とを備え、
所定の撮影間隔時間毎に繰り返し撮影をし、時間的な標本の形態変化を観察するタイムラプス観察を行う顕微鏡システムにおいて、前記透明部材で反射した測定光に基づいて、前記透明部材に合焦するための評価信号を生成するオートフォーカス手段と、前記所定の撮影間隔時間毎に前記オートフォーカス手段によって前記透明部材に合焦するように前記対物レンズと前記ステージを光軸方向に相対的に駆動させる第1の駆動手段と、前記透明部材の合焦位置に基づいて前記被検物の光軸方向における撮影開始位置を設定する撮影条件設定手段と、前記第1の駆動手段とは異なる方法で前記対物レンズと前記ステージを光軸方向に相対的に駆動させる前記第1の駆動手段よりも駆動速度が高速である圧電素子であるピエゾ素子と、前記ピエゾ素子を駆動するためのピエゾ素子駆動回路とを備える第2の駆動手段と、前記第1の駆動手段及び前記第2の駆動手段の駆動を制御する制御手段とを備え、前記制御手段は、前記第1の駆動手段を制御して前記オートフォーカス手段による前記評価信号に基づいて前記透明部材に対し自動合焦動作を行い、前記第2の駆動手段を制御して前記透明部材の合焦位置に基づいた前記撮影開始位置から前記光軸方向に所定の撮影ピッチ毎に合焦位置を移動させながら前記撮影手段によって前記被検物を複数撮影することを、タイムラプス観察における前記所定の撮影間隔時間毎におこなうこと特徴とする。
また、本発明の顕微鏡システムは、前記第1の駆動手段は、ステッピングモータと、前記ステッピングモータを駆動するためのステッピングモータ駆動回路とを備えことが望ましい。
また、本発明の顕微鏡システムは、上記被検物を照明するための励起光を照射する励起光光源と、上記励起光光源から照射される励起光を遮光するための励起光遮光手段と、上記第2の駆動手段が駆動する際に、上記被検物に励起光が照射されるように上記励起光遮光手段を制御する励起光遮光手段制御手段とをさらに備えることが望ましい。
また、本発明の顕微鏡システムは、上記ステージが、電動でX方向またはY方向に移動可能なX−Yステージであり、上記顕微鏡システムが、上記X−Yステージで予め位置決めされたX−Y座標に対しての駆動量を設定する手段をさらに備え、上記制御手段は、上記第1の駆動手段によって上記透明部材に対する合焦を行った後、上記第2の駆動手段によって上記X−Yステージで位置決めされた座標に対して予め定められた駆動制御を行なうことが望ましい。
また、本発明の顕微鏡システムは、光路中に複数の上記対物レンズを切換え配置することが可能な電動レボルバと、上記光路中に配置された前記対物レンズの種別を判別する対物判別手段と、上記複数の対物レンズ毎に駆動量を設定する手段とをさらに備え、上記制御手段は、選択された上記対物レンズの種別に応じた駆動量に基づいて上記第2駆動制御を行うことが望ましい。
また、本発明の顕微鏡システムは、上記被検物に照射する励起光を切換えるための励起光選択手段と、上記励起光毎に駆動量を設定する手段とさらに備え、上記制御手段は、選択された上記励起光に応じた駆動量に基づいて上記第2の駆動手段駆動制御を行うことが望ましい。
本発明によれば、観察対象物(被検物)の長時間観察解析を行う際、迅速な合焦動作が可能となり、励起光照射時間の短縮がはかれるとともに、良好な合焦動作観察が可能となる。
以下、図面を参照しながら本発明の実施の形態について述べる。
(第1の実施の形態)
図1は、本発明にかかる顕微鏡システムを適用した第1の実施の形態の構成を示す図である。
本第1の実施の形態における技術的特徴は、準焦部モータ22とモータ制御部24が本発明にかかる第1の駆動手段として機能し、ピエゾ素子21とピエゾ制御部25が本発明にかかる第2の駆動手段として機能している点である。
図1において、本発明にかかる顕微鏡システムの1例としての倒立顕微鏡システム1Aでは、被検物である標本2がスライドガラス3に載置され、さらに標本2を載置したスライドガラス3が電動ステージ4に固定されている。電動ステージ4は、光軸に対して直交方向であるX−Y方向に電動制御が可能となっており、その制御はステージ制御部5によって行われる。
蛍光光源6は、標本2に対して蛍光照明を行うための光源である。蛍光光源6から出射された励起光はコレクタレンズ7で集光され、励起フィルタ8、ダイクロックミラー9、および対物レンズ10aを介して、電動ステージ4上に固定された標本2へ照射されることにより標本2を照明する。励起光に照明されたことによって標本2が発する蛍光は、ダイクロックミラー9および吸収フィルタ11を通過し、光路切換え部12によって接眼レンズ13またはCCDカメラユニット14へ導かれる。そして、CCDカメラユニット14によって撮像された標本2の画像は、ビデオキャプチャボード15によりホストPC16に取得される。ホストPC16は、取得した画像を図示しない画像メモリ上に保存する。この画像メモリは通常複数の画像を保存することが可能となっている。また、電動シャッタ17は、蛍光光源6から照射される励起光を遮光するためのシャッタで、コントロール部18によって励起光の遮光を制御できるものとなっている。
対物レンズ10aは、電動レボルバ19に装着されており、電動レボルバ19はコントロール部18からの信号により任意の対物レンズ10aまたは対物レンズ10bを光路内に挿入する機能を有している。また、この電動レボルバ19はピエゾ素子21を介して焦準用モータ22よって駆動させる架台23に固定させており、コントロール部18からの制御されるモータ制御部24によって光軸方向(Z方向)に移動させることで、標本2と対物レンズ10aの距離を相対的に駆動することが可能になっている。
一方、ピエゾ素子21は、電動レボルバ19と架台23との間に配置させており、コントロール部18から制御されるピエゾ駆動部25によって電気的にピエゾ素子21の光軸方向の厚みを変えることで、連動レボルバ19に装着された対物レンズ10aの位置を光軸方向に移動させる構造のもので、同じく標本2と対物レンズ10aとの距離を相対的に駆動することが可能になっている。ピエゾ素子21は、焦準用モータ22よりも駆動範囲は短くなっている反面、高速、高分解能という特徴を持っている素子である。
図2は、電動レボルバ19とピエゾ素子21による駆動位置関係を示すである。
図2に示すように、電動レボルバ19は、準焦用モータ22によって「電レボUpper Limit」から「電レボLower Limit」の間の駆動距離Lの範囲が駆動可能となっており、さらにその範囲内において、ピエゾ素子21による「ピエゾUpper Limit」から「ピエゾLower Limit」の間のL_pの範囲を、高速、高分解能駆動が可能となっている。なお、図2において、「ピエゾCenter」はピエゾ素子21による駆動範囲L_pの中心座標を示している。
図1の説明に戻る。
コントロール部18はホストPC16に接続させており、倒立顕微鏡システム1Aの各種制御を行うものである。また、電動レボルバ19の駆動をユーザーが指示入力するためのジョグエンコーダ38、パルスカウンタ39、およびその他の各種指示を入力するための操作部40が接続されている。
一方、合焦を行うための測定光源は可視外波長領域である赤外光半導体レーザー26が対応しており、コントロール部18に接続させたレーザー制御部27によって制御されている。
半導体レーザー26から出射されたレーザー光は、平行光を保つ為のコリメートレンズ28を通り、光束径の半分を投光側ストッパ29によりカットされる。その後、PBS(偏光ビームスプリッタ:Polarization Beam Splitter)30でP偏光成分のみが反射され、標本2側に導かれる。そして、集光レンズ群31により一旦集光された光束は、色収差補正レンズ群32を通過する。色収差補正レンズ群32を通過した光は、λ/4板33で45°偏光され、ダイクロイックミラー34に入射する。ここで、ダイクロイックミラー34では、赤外域のみ反射される為、反射された光束は、対物レンズ10aによりスライドガラス3の表面にスポット形状の像を形成する。
そして、スライドガラス3により反射された光束は、今度は逆に対物レンズ10a、ダイクロイックミラー34を介し、λ/4板33にてさらに45°偏光され、S偏光成分に切り換わる。さらに、色収差補正レンズ群32および集光レンズ群31を戻り、PBS30へ入射される。すると、光束はS偏光成分になっているのでそのままPBS30を透過し、集光レンズ群35を通過した後に受光センサ36に結像される。
受光センサ36は、光軸を中心に設置された2分割(A領域とB領域)のフォトダイオードとなっている。そして、標本2がピント位置にある場合は、図3に示す様に受光センサ36に結像されたスポットが狭く強度の高い信号となっており、標本2がピント位置からZ方向の上側(後ピン位置)にある場合は、図4に示す様にB領域の範囲に偏った信号強度分布となっており、標本2がピント位置からZ方向の下側(前ピン位置)にある場合は、図5に示す様にA領域の範囲に偏った信号強度分布となっており、それぞれセンサ信号に変換される。
そして、A領域とB領域の範囲に分割、変換された検出信号は、合焦判別部37で、それぞれの範囲における強度の総和を算出される。すなわち、図6に示す様に、横軸を電動レボルバ19のZ方向、縦軸をそれぞれの受光センサ36に入射する光強度とすると、ピント位置を挟んで左右対称なA範囲信号およびB範囲信号の2つのカーブが検出できる。次に、このA範囲信号およびB範囲信号から、図7に示すようなA+Bの算出、および図8に示すような(A−B)/(A+ B)の算出を行う。特に図8のような特性はS字カーブと呼ばれ、その値は評価関数値(以下、Ef値と略す)と呼ばれる。
コントロール部18は合焦判別部37よりのEf値の符号により合焦位置方向を判定し、例えば図8中「1」の位置からAFを開始した場合には、Ef値の符号が負のため、電動レボルバ19を上昇させる制御を行い、図8中「2」の位置からAFを開始した場合には、Ef値の符号が正のため電動レボルバ19を下降させる制御を行い、最終的にEf値が0となるように、モータ制御部24にて対物レンズ10aとスライドガラス3の表面の距離を光軸方向に相対的に駆動させて合焦動作を行なっている。なお、スライドガラス3のように表面と背面2つの反射面をもつ場合のものは、2つの座標位置関係から自動的にスライドガラス3の表面に合焦を合わせる機能も有している。
続いて、本第1の実施の形態の動作について説明する。
本第1の実施の形態では、図9に示すように、標本2はスライドガラス3上の培養液内に存在する培養標本である場合について説明する。
図9において、「Center」で示した座標が標本2の観察開始時のZ方向における観察中心座標である。「Pitch」はZ方向に対して撮影を行う間隔である。撮影枚数を中心からの撮影枚数を3枚と設定した場合は、撮影枚数nは7枚となり、(1)〜(7)で示した各座標で7枚の画像の撮影を行う事を示している。図9中の「Lower Limit」はこのときの撮影開始座標であり、同じく図9中の「Upper Limit」が撮影終了座標となる。標本2はAの位置からBの位置に移動しているものとする。
観察を行うにあたって、ユーザーは撮影条件の設定を行う。まず、ユーザーはスライドガラス3の表面である「Base」座標の位置に合焦を行うように指示する。すると、合焦判別部37のEf値が0となるように、コントロール部18はモータ制御部24を介して準焦部モータ22の駆動を行い、電動レボルバ19をZ方向に移動させる事により、「Base」座標に合焦を行う。
続いて、「Base」座標から、観察を行いたい座標である「Center」まで、合焦位置を移動させる。ユーザーはコントロール部18に接続されたジョグエンコーダ38より入力を行い、同様にモータ制御部24を介して準焦部モータ22の駆動を行うことにより電動レボルバ19をZ方向に移動させ「Center」座標に合焦を行う。「Center」座標に合焦終了後、「Base」座標から「Center」座標までの距離の記憶を行う。すなわち「Center」-「Base」の値がオフセット量Off_1となる。
続いて、「Center」座標からの撮影ピッチpと片側撮影枚数n_sの設定を行う。今回は撮影ピッチpと撮影枚数n_sは「Center」位置を中心に同一で設定しているが、それぞれ別々に設定できるようになっていてもよい。本第1の実施の形態では両方向に対して、撮影ピッチをp1、片側撮影枚数を3枚に設定したものとし、総撮影数nは7枚する。次に、設定された撮影ピッチ及び撮影枚数より、図9に示す撮影の開始座標である「Lower Limit」座標を算出する。
次に、タイムラップス観察における撮影間隔時間tpと撮影繰り返し回数n_tの設定を行う。本第1の実施の形態では撮影間隔時間をtp1、撮影繰り返し回数を5回に設定したものとする。設定はホストPC16を介して行うものとする。撮影間隔時間tpと撮影繰り返し回数n_tとに基づいて、撮影開始時に設定させる撮影開始時刻start_timeから撮影終了時刻end_timeが算出される。
図10は、第1の実施の形態における測定処理の流れを示すフローチャートである。
上述のように設定された倒立顕微鏡システム1Aの動作について、図10のフローチャートを用いて説明する。
撮影開始時、ピエゾ駆動部25に制御されるピエゾ素子21による駆動座標を、中央位置である「ピエゾCenter」座標に移動を行う。そして、測定が開始されると、ステップS101において、撮影終了時刻end_timeに達してタイムラプス測定が終了したかチェックする。撮影が終了した場合(ステップS101:Y)には、処理は終了する。
撮影が終了していない場合(ステップS101:N)には、ステップS102において、ホストPC16で設定したタイムラプス撮影間隔時間tp1に達するまで待機する。撮影間隔時間に達すると(ステップS102:Y)、ステップS103において、スライドガラス3の「Base」座標に対してAF制御を行い、準焦用モータ22の駆動によって図9に示した「Base」座標に駆動を行う。
続いて、「Base」座標に移動した後、ステップS104において、ホストPC16にて予め設定した「Center」座標、すなわちオフセット量だけ電動レボルバ19を駆動する。さらに、ステップS105において、図9中の(1)〜(7)のZ方向画像を取得するために、電動レボルバ19に構成されているピエゾ素子21を駆動することによって、合焦位置を「Lower Limit」座標へ移動させる。
その後、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ピエゾ素子21の駆動を行うことで、ホストPC16にて設定した撮影枚数nである7枚を、同じくホストPC16にて設定した撮影ピッチ分であるp1づつ、合焦位置の移動を行いながら撮影を行う。
そして、所定の撮影枚数が終了したら(ステップS108:Y)、ステップS110において、シャッタ17を閉じることにより励起光を遮光する。この動作を撮影終了時刻end_timeに達して測定が終了するまで繰り返し続ける。以上の動作によって図11に示すタイムラプス画像の取得が行われる。
以上のように構成・制御される本第1の実施の形態の倒立顕微鏡システム1Aは、スライドガラス3にオートフォーカスをかけることにより、周囲温度の変化により対物レンズ10aの焦点位置が変化した場合でも基準位置が固定された状態で観察体撮影位置をオフセットで設定するため、確実に観察体である標本2の動きを測定することができ、かつZ方向の撮影ポイントの移動はピエゾ素子21により迅速な駆動で行うために、励起光を当てる時間を極めて短くすることが可能となる。
なお、本第1の実施の形態では、スライドガラス3の表面に合焦を合わせるものとして説明してあるが、もちろんこれに限定させるものではなく、培養シャーレ等であってもよい。
また、本第1の実施の形態の倒立顕微鏡システム1Aは、電動レボルバ19を上下させる機構としているが、電動ステージ4を上下する機能を有していてもよく、あるいはいわゆる正立型の顕微鏡システムであっても同様の効果を得ることが可能である。
(第2の実施の形態)
次に、本発明にかかる顕微鏡システムを適用した第2の実施の形態について説明する。
図12は、本発明にかかる顕微鏡システムを適用した第2の実施の形態の構成を示す図である。
第1の実施の形態と同一のものは同一の符号を付加して説明を省略する。
本第2の実施の形態における顕微鏡システム1Bの技術的特徴は、本発明にかかるX方向またはY方向に電動で駆動可能なX−Yステージが、電動ステージ4、ステージ制御部5および光軸に対して平行方向であるX−Y方向へ移動するものであり、XY座標記録部43へ座標の記録を行う機能を有するX−Y座標記記録部に対応している点である。そして、このX−Yステージはコントロール部18に接続されている。
本第2の実施の形態では図13に示すように、スライドガラス3上の培養液培内に標本2a、2bのように異なる座標に存在する場合に説明する。
図13において、「Center_a」座標が標本2aの観察開始時のZ方向の観察中心座標、「Center_b」座標が標本2bの観察開始時のZ方向の観察中心座標である。なお、標本2aのX−Y座標は、X−Ya、標本2bのX−Y座標は、X−Ybであるものとする。
図12に説明に戻る。
第1の実施の形態と同様にまずは、ユーザーは撮影条件の設定を行う。電動ステージ4によって標本2aの座標であるX−Ya座標に駆動を行う。ユーザーはスライドガラス3の表面である「Base」座標の位置に合焦を行う。
続いて、「Base」位置から、観察開始時の「Center_a」座標まで、合焦位置を移動させる。「Center」座標に合焦終了後、「Base」座標から「Center_a」座標までの距離の記憶を行う。すなわち「Center_a」-「Base」の値がX−Ya座標におけるオフセット量Off_1aとなる。
続いて、「Center_a」座標からの撮影ピッチpと片側撮影枚数n_sの設定を行う。今回は撮影ピッチpと撮影枚数n_sは「Center」位置を中心に同一で設定しているが、それぞれX−Y座標ごとに別々に設定できるようになっていてもよい。本第2の実施の形態では両方向に対して、撮影ピッチp1、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチ及び撮影枚数より、撮影の開始座標である「Lower Limit_a」座標を算出する。
次に、電動ステージ4によって標本2bの座標であるX−Yb座標に駆動を行う。標本2aの時と同様にユーザーはスライドガラス3の表面である「Base」座標の位置に合焦を行う。続いて、「Base」位置から、観察を行いたい「Center_b」座標まで、合焦位置を移動させる。「Center_b」座標に合焦終了後、「Base」座標から「Center_b」座標までの距離の記憶を行う。すなわち「Center_b」-「Base」の値X−Yb座標におけるオフセット量Off_1bとなる。
続いて、「Center_b」座標からの撮影ピッチpと片側撮影枚数n_sの設定を行う。ここでは標本2aと同様に、撮影ピッチp1、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチp及び撮影枚数n_sに基づいて、撮影の開始座標である「Lower Limit_b」座標を算出する。
次に撮影間隔時間tpと撮影繰り返し回数n_tの設定を行う。本第2の実施の形態では撮影間隔時間をtp1、撮影繰り返し回数を5回として設定したものとする。設定はホストPC16を介して行うものとする。撮影間隔時間tpと撮影繰り返し回数n_tとに基づいて、撮影開始時に設定させる撮影開始時刻start_timeから撮影終了時刻end_timeが算出される。
図14は、第2の実施の形態における測定処理の流れを示すフローチャートである。
撮影開始時、ピエゾ素子21による駆動座標を中央位置である「ピエゾCenter」座標に移動させる。そして、測定が開始されると、ステップS101において、撮影終了時刻end_timeに達して測定が終了したかチェックする。測定が終了した場合(ステップS101:Y)には、終了する。
測定が終了していない場合(ステップS101:N)には、ステップS102において、ホストPC16で設定した測定間隔に達するまで待機する。測定間隔に達すると(ステップS102:Y)、ステップS201において、複数の測定点の設定順に電動ステージ4のX−Y駆動を行う。そして、最初の測定点であるX−Ya座標にステージX−Yの駆動を行い、ステップS103において、そのX−Ya座標のスライドガラス3の「Base」座標に対してAF制御を行い、準焦用モータ22の駆動によって図13に示した「Base」座標に駆動を行う。
続いて、「Base」座標に移動した後、ステップS104において、ホストPC16にて予め設定した「Center_a」座標、すなわちオフセット量だけ電動レボルバ19を駆動する。さらに、ステップS105において、Z方向画像を取得するために、電動レボルバ19に構成されているピエゾ素子21を駆動することによって、合焦位置を「Lower_Limit_a」へ駆動をおこなう。
その後、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ホストPC16にて設定した撮影枚数分だけ、同じくホストPC16にて設定した撮影ピッチ分だけ、ピエゾ素子21の駆動を行うことで、合焦位置の移動を行いながら撮影を行う。
そして、撮影終了後(ステップS108:Y)、シャッタ17を閉じることにより励起光を遮光する。
その後、ステップS202において、全てのX−Y座標についての処理が終了したか確認をし、終了していなければ(ステップS202:N)ステップS201に戻り、次の設定したX−Yb座標に電動ステージ4の駆動を行う。そして、同様にそのX−Yb座標のスライドガラス3の「Base」座標に対してAF制御(ステップS103)を行い、設定した撮影枚数の測定(ステップS107)を行う。
この動作を測定が終了するまで繰り返し続ける。
以上のように構成・制御される本第2の実施の形態の倒立顕微鏡システム1Bは、複数の測定点毎にスライドガラス3にオートフォーカスをかけることにより、周囲温度の変化により対物レンズ10aの焦点位置が変化した場合でも基準位置が固定された状態で観察体撮影位置をオフセットで設定するため、観察体である標本2の動きを測定することが可能になり、また各撮影座標における撮影ポイントのZ方向の移動はピエゾ素子21により迅速な駆動で行うために、励起光を当てる時間を極めて短くすることが可能となる。
なお、本第2の実施の形態では電動X−Yステージの場合につい説明しているが、標本2のX−Y方向の駆動を行うという観点ではこれに限定させるものではなく、たとえば回転ステージであってもよい。
(第3の実施の形態)
次に、本発明にかかる顕微鏡システムを適用した第3の実施の形態について説明する。
図15は、本発明にかかる顕微鏡システムを適用した第3の実施の形態の構成を示す図である。
第1の実施の形態と同一のものは同一の符号を付加して説明を省略する。
本第3の実施の形態における顕微鏡システム1Cの技術的特徴は、本発明にかかる挿入された対物レンズ10a、10bの種別を判別する対物判別手段が、対物検出部20が対応している点である。
第1の実施の形態と同様に、ユーザーは撮影条件の設定を行う。まず、観察を行いたい倍率の対物レンズ10aを光路中に挿入し、図16に示すスライドガラス3の表面である「Base」座標の位置に合焦を行う。
続いて、「Base」位置から、観察を行いたい対物レンズ10aに対する観察中心座標である「Center_ob_a」座標まで、合焦位置を移動させる。コントロール部18に接続されたジョグエンコーダ38より入力を行い、同様にモータ制御部24を介して準焦部モータ22の駆動をおこなうことにより電動レボルバ19をZ方向に移動させ「Center_ob_a」座標に合焦を行う。「Center_ob_a」座標に合焦終了後、「Base」座標から「Center_ob_a」座標までの距離の記憶を行う。すなわち「Center_ob_a」-「Base」の値が選択された対物レンズ10aのオフセット量Off_ob_aとなる。
続いて、「Center_ob_a」座標からの撮影ピッチp_ob_aと片側撮影枚数n_s_ob_aの設定を行う。本第3の実施の形態では両方向に対して、撮影ピッチp1、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチ及び撮影枚数より、撮影の開始座標である「Lower Limit_ob_a」座標を算出する。
次に、電動レボルバ19によって、次に観察を行いたい倍率の対物レンズ10bを光路中に挿入する。続いて、先の対物レンズ10aの「Center_ob_a」座標から、観察を行いたい選択された対物レンズ10bに対する「Center_ob_b」座標まで、合焦位置を移動させる。合焦座標への移動は、電動レボルバ19に構成されているピエゾ素子21を駆動することによって行う。「Center_ob_b」座標に合焦終了後、「Center_ob_a」座標から「Center_ob_b」座標までの距離の記憶を行う。すなわち「Center_ob_b」-「Center_ob_a」の値が選択させた対物レンズ10aのオフセット量Off_ob_bとなる。
続いて、「Center_ob_b」座標からの撮影ピッチp_ob_bと片側撮影枚数n_s_ob_bの設定を行う。本第3の実施の形態では両方向に対して、撮影ピッチp1b、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチ及び撮影枚数より、撮影の開始座標である「Lower Limit_ob_b」座標を算出する。
次に、撮影間隔時刻tpと撮影繰り返しn_t回数の設定を行う。本第3の実施の形態では撮影間隔時間をtp1、撮影繰り返し回数を5回に設定したものとする。設定はホストPC16を介して行うものとする。撮影間隔時間tpと撮影繰り返し回数n_tより、撮影開始時に設定させる撮影開始時刻start_timeから撮影終了時刻end_timeが算出される。
図17は、第3の実施の形態における測定処理の流れを示すフローチャートである。
測定が開始されると、ピエゾ素子21による駆動座標を中央位置である「ピエゾCenter」座標に移動を行い、ステップS101において、撮影終了時刻end_timeに応じたタイムラプス測定が終了したかチェックする。測定が終了した場合(ステップS101:Y)には、終了する。
測定が終了していない場合(ステップS101:N)には、ステップS102において、ホストPC16で設定したタイムラプス測定間隔tp1に達するまで待機する。測定間隔に達すると(ステップS102:Y)、ステップS301において、設定された対物レンズ10aを光路中に挿入する。対物レンズ10aが光路中に挿入されると、ステップS103において、スライドガラス3の「Base」座標に対してAF制御を行い、準焦用モータ22の駆動によって図16に示した「Base」座標に駆動を行う。
続いて、「Base」座標に移動した後、ステップS104において、ホストPC16にて予め設定した「Center_ob_a」座標、すなわちオフセット量だけ電動レボルバ19を駆動する。さらに、ステップS105において、Z方向画像を取得するために、電動レボルバ19に構成されているピエゾ素子21を駆動することによって、合焦位置を「Lower_Limit_ob_a」へ駆動をおこなう。
その後、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ピエゾ素子21の駆動を行うことで、ホストPC16にて設定した撮影枚数nである7枚を、同じくホストPC16にて設定した撮影ピッチ分であるp1づつ、合焦位置の移動を行いながら撮影を行う。
そして、撮影終了後(ステップS108:Y)、シャッタ17を閉じることにより励起光を遮光する。
その後、ステップ302において、設定された対物レンズ10aまたは10bについての処理が終了したかを確認し、終了していなければ(ステップS302:N)、ステップS303において、次に設定された対物レンズ10bを光路中に挿入する。そして、対物レンズ10bを光路中に挿入後、ステップS105に戻り、電動レボルバ19に構成されているピエゾ素子21を駆動することによってホストPC16にて予め設定した「Lower_Limit_ob_b」座標へ移動する。続いて、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ピエゾ素子21の駆動を行うことで、ホストPC16にて設定した撮影枚数nである7枚を、同じくホストPC16にて設定した撮影ピッチ分であるp1bづつ、合焦位置の移動を行いながら撮影を行う。
そして、撮影終了後(ステップS108:Y)、シャッタ17を閉じることにより励起光を遮光する。この動作を撮影終了時刻end_timeに達して測定が終了するまで繰り返し続ける。
以上のように構成・制御される本第3の実施の形態の倒立顕微鏡システム1Cは、タイムラプス測定条件において複数の対物レンズ10aおよび10bによる観察が含まれている場合に焦点ズレが存在した場合でも基準位置が固定された状態で観察体撮影位置をオフセットで設定するため、確実に複数の測定であっても観察体である標本2の動きを測定することが可能となる。
なお、本第3の実施の形態では対物レンズ10aおよび10bの場合について説明してあるが、連続的に倍率を可変できるズームレンズの場合であってもよい。
(第4の実施の形態)
次に、本発明にかかる顕微鏡システムを適用した第4の実施の形態について説明する。
図18は、本発明にかかる顕微鏡システムを適用した第4の実施の形態の構成を示す図である。
第1の実施の形態と同一のものは同一の符号を付加して説明を省略する。
本第4の実施の形態における顕微鏡システム1Dの技術的特徴は、本発明にかかる照射する励起光を切換えるための励起光選択手段が、複数の励起フィルタ8、ダイクロックミラー9、吸収フィルタ11で構成させる蛍光キューブユニット41を選択的に光路中に挿入可能な電動キューブターレット42に対応している点である。そして、電動キューブターレット42はコントロール部18によって制御されている。
図19において、標本2における「Center_q_a」座標が励起光aによる観察中心座標を示しており、「Center_q_b」座標が励起光bによる観察中心座標を示している。
図18の説明に戻る。
第1の実施の形態と同様に、ユーザーは撮影条件の設定を行う。まず、観察を行いたい倍率のキューブユニット41を光路中に挿入し、図19に示すスライドガラス3の表面である「Base」座標の位置に合焦を行う。続いて、「Base」位置から、観察を行いたいキューブユニット41に対する観察中心位置である「Center_q_a」座標まで、合焦位置を移動させる。コントロール部18に接続されたジョグエンコーダ38より入力を行い、同様にモータ制御部24を介して準焦部モータ22の駆動をおこなうことにより電動レボルバ19をZ方向に移動させ「Center_ob_a」座標に合焦を行う。「Center_q_a」座標に合焦終了後、「Base」座標から「Center_q_a」座標までの距離の記憶を行う。すなわち「Center_q_a」-「Base」の値が選択させたキューブユニット41におけるのオフセット量Off_q_aとなる。
続いて、「Center_q_a」座標からの撮影ピッチp_q_aと片側撮影枚数n_ s_q_aの設定を行う。本第4の実施の形態では両方向に対して、撮影ピッチp1、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチ及び撮影枚数より、撮影の開始座標である「Lower Limit_q_a」座標を算出する。
次に、電動キューブターレット42によって、次に観察を行いたい倍率のキューブユニット41bを光路中に挿入する。続いて、先のキューブユニット41の「Center_q_a」座標から、観察を行いたい選択されたキューブユニット41bに対する「Center_q_b」座標まで、合焦位置を移動させる。合焦座標への移動は、電動レボルバ19に構成されているピエゾ素子21を駆動することによって行う。「Center_q_b」座標に合焦終了後、「Center_q_a」座標から「Center_q_b」座標までの距離の記憶を行う。すなわち「Center_q_b」-「Center_q_a」の値が選択させたキューブユニット41bにおけるオフセット量off_q_bとなる。
続いて、「Center_q_b」座標からの撮影ピッチp_q_bと片側撮影枚数n_s_q_bの設定を行う。本第4の実施の形態では両方向に対して、撮影ピッチp1b、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチp_q_bと片側撮影枚数n_s_q_bより、撮影の開始座標である「Lower Limt_q_b」座標を算出する。
次に撮影間隔時間tpと撮影繰り返し回数n_tの設定を行う。本第4の実施の形態では撮影間隔時間をtp1、撮影繰り返し回数を5回に設定したものとする。設定はホストPC16を介して行うものとする。撮影間隔時間tpと撮影繰り返し回数n_tとに基づいて、撮影開始時に設定させる撮影開始時刻start_timeから撮影終了時刻end_timeが算出される。
図20は、第4の実施の形態における測定処理の流れを示すフローチャートである。
測定が開始されると、ピエゾ素子21による駆動座標を中央位置である「ピエゾCenter」座標に移動を行い、ステップS101において、撮影終了時刻end_timeに達してタイムラプス測定が終了したかチェックする。測定が終了した場合(ステップS101:Y)には、終了する。
測定が終了していない場合(ステップS101:N)には、ステップS102において、ホストPC16で設定したタイムラプス測定間隔tp1に達するまで待機する。測定間隔に達すると(ステップS102:Y)、ステップS401において、設定されキューブユニット41を光路中に挿入する。キューブユニット41が光路中に挿入されると、ステップS103において、スライドガラス3の「Base」座標に対してAF制御を行い、準焦用モータ22の駆動によって図19に示した「Base」座標に駆動を行う。
続いて、「Base」座標に移動した後、ステップS104において、ホストPC16にて予め設定した「Center_q_a」座標、すなわちオフセット量だけ電動レボルバ19を駆動する。さらに、ステップS105において、Z方向画像を取得するために、電動レボルバ19に構成されているピエゾ素子21を駆動することによって、合焦位置を「Lower_Limit_q_a」へ駆動をおこなう。
その後、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ピエゾ素子21の駆動を行うことで、ホストPC16にて設定した撮影枚数nである7枚を、同じくホストPC16にて設定した撮影ピッチ分であるp1づつ、合焦位置の移動を行いながら撮影を行う。
そして、撮影終了後(ステップS108:Y)、シャッタ17を閉じることにより励起光を遮光する。
その後、ステップS402において、設定されたキューブユニット41または41bについての処理が終了したかを確認し、終了していなければ(ステップS402:N)、ステップS403において、次に設定されたキューブユニット41bを光路中に挿入する。そして、ステップS105に戻り、電動レボルバ19に構成されているピエゾ素子21を駆動することによってホストPC16にて予め設定した「Lower_Limit_q_b」座標へ移動する。続いて、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ピエゾ素子21の駆動を行うことで、ホストPC16にて設定した撮影枚数nである7枚を、同じくホストPC16にて設定した撮影ピッチ分であるp1bづつ、合焦位置の移動を行いながら撮影を行う。
そして、撮影終了後(ステップS108:Y)、シャッタ17を閉じることにより励起光を遮光する。この動作を撮影終了時刻end_timeに達して測定が終了するまで繰り返し続ける。
以上のように構成・制御される本第4の実施の形態の倒立顕微鏡システム1Dは、タイムラプス測定条件において複数の励起光a、bによる観察が含まれている場合に焦点ズレが存在した場合でも撮影位置をオフセットで設定するため、観察体である標本2の動きを測定することが可能となるともに、各撮影座標における撮影ポイントのZ方向の移動はピエゾ素子21により迅速な駆動で行うために、励起光を当てる時間を極めて短くすることが可能となる。
なお、本第4の実施の形態では、合焦検出手段として本第4の実施の形態で説明した方式に限らず、周知の他の方法に適応することができる。また、本第4の実施の形態では倒立顕微鏡システム1Dを代表として顕微鏡装置について説明を行ったが、このような顕微鏡装置に限らず、顕微鏡装置を組み込んだライン装置といった、各種システムに適応することも可能である。
以上、本発明の各実施の形態を、図面を参照しながら説明してきたが、本発明が適用される顕微鏡システムは、その機能が実行されるのであれば、上述の各実施の形態等に限定されることなく、単体の装置であっても、複数の装置からなるシステムあるいは統合装置であってもよいことは言うまでもない。
すなわち、本発明は、以上に述べた各実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の構成または形状を取ることができる。
本発明にかかる顕微鏡システムを適用した第1の実施の形態の構成を示す図である。 電動レボルバとピエゾ素子による駆動位置関係を示すである。 受光センサとピント位置との関係(合焦位置)を説明するための図である。 受光センサとピント位置との関係(後ピン位置)を説明するための図である。 受光センサとピント位置との関係(前ピン位置)を説明するための図である。 デフォーカスと入射光強度との関係を説明するための図(その1)である。 デフォーカスと入射光強度との関係を説明するための図(その2)である。 デフォーカスと入射光強度との関係を説明するための図(その3)である。 第1の実施の形態における標本とスライドガラスとの関係を説明するための図である。 第1の実施の形態における測定処理の流れを示すフローチャートである。 第1の実施の形態における測定処理によりタイムラプス画像の取得を説明するための図である。 本発明にかかる顕微鏡システムを適用した第2の実施の形態の構成を示す図である。 第2の実施の形態における標本とスライドガラスとの関係を説明するための図である。 第2の実施の形態における測定処理の流れを示すフローチャートである。 本発明にかかる顕微鏡システムを適用した第3の実施の形態の構成を示す図である。 第3の実施の形態における標本とスライドガラスとの関係を説明するための図である。 第3の実施の形態における測定処理の流れを示すフローチャートである。 本発明にかかる顕微鏡システムを適用した第4の実施の形態の構成を示す図である。 第4の実施の形態における標本とスライドガラスとの関係を説明するための図である。 第4の実施の形態における測定処理の流れを示すフローチャートである。
符号の説明
1A 倒立顕微鏡システム
1B 倒立顕微鏡システム
1C 倒立顕微鏡システム
1D 倒立顕微鏡システム
2 標本
2a 標本
2b 標本
3 スライドガラス
4 電動ステージ
5 ステージ制御部
6 蛍光光源
7 コレクタレンズ
8 励起フィルタ
8b 励起フィルタ
9 ダイクロックミラー
9b ダイクロックミラー
10a 対物レンズ
10b 対物レンズ
11 吸収フィルタ
11b 吸収フィルタ
12 光路切換え部
13 接眼レンズ
14 CCDカメラユニット
15 ビデオキャプチャボード
16 ホストPC
17 電動シャッタ
18 コントロール部
19 電動レボルバ
20 対物検出部
21 ピエゾ素子
22 準焦部モータ
23 架台
24 モータ制御部
25 ピエゾ制御部
26 赤外光半導体レーザー
27 レーザー制御部
28 コリメートレンズ
29 投光側ストッパ
30 PBS
31 集光レンズ群
32 色収差補正レンズ群
33 λ/4板
34 ダイクロイックミラー
35 集光レンズ群
36 受光センサ
37 合焦判別部
38 ジョグエンコーダ
39 パルスカウンタ
40 操作部
41 蛍光キューブユニット
41b 蛍光キューブユニット
42 電動キューブターレット
43 XY座標記録部


Claims (10)

  1. 被検物を保持するための透明部材を載置するステージと、
    前記透明部材に保持された被検物を観察するための対物レンズと、
    前記被検物を撮影する撮影手段とを備え、
    所定の撮影間隔時間毎に繰り返し撮影をし、時間的な標本の形態変化を観察するタイムラプス観察を行う顕微鏡システムにおいて、
    前記透明部材で反射した測定光に基づいて、前記透明部材に合焦するための評価信号を生成するオートフォーカス手段と、
    前記所定の撮影間隔時間毎に前記オートフォーカス手段によって前記透明部材に合焦するように前記対物レンズと前記ステージを光軸方向に相対的に駆動させる第1の駆動手段と、
    前記透明部材の合焦位置に基づいて前記被検物の光軸方向における撮影開始位置を設定する撮影条件設定手段と、
    前記第1の駆動手段とは異なる方法で前記対物レンズと前記ステージを光軸方向に相対的に駆動させる前記第1の駆動手段よりも駆動速度が高速である圧電素子であるピエゾ素子と、前記ピエゾ素子を駆動するためのピエゾ素子駆動回路とを備える第2の駆動手段と、
    前記第1の駆動手段及び前記第2の駆動手段の駆動を制御する制御手段とを備え、
    前記制御手段は、前記第1の駆動手段を制御して前記オートフォーカス手段による前記評価信号に基づいて前記透明部材に対し自動合焦動作を行い、前記第2の駆動手段を制御して前記透明部材の合焦位置に基づいた前記撮影開始位置から前記光軸方向に所定の撮影ピッチ毎に合焦位置を移動させながら前記撮影手段によって前記被検物を複数撮影することを、タイムラプス観察における前記所定の撮影間隔時間毎におこなうこと特徴とする顕微鏡システム。
  2. 前記制御手段は、前記第1の駆動手段を制御して前記透明部材の合焦位置から前記被検物中の標本に合焦位置を移動させることを特徴とする請求項1記載の顕微鏡システム。
  3. 前記制御手段は、前記第2の駆動手段を制御して前記標本の合焦位置から前記撮影開始位置に合焦位置を移動させることを特徴とする請求項に記載の顕微鏡システム。
  4. 前記第1の駆動手段は、ステッピングモータと、前記ステッピングモータを駆動するためのステッピングモータ駆動回路とを備えることを特徴とする請求項1乃至の何れか1項に記載の顕微鏡システム。
  5. 前記被検物を照明するための励起光を照射する励起光光源と、
    前記励起光光源から照射される励起光を遮光するための励起光遮光手段と、
    前記第2の駆動手段が駆動する際に、前記被検物に励起光が照射されるように前記励起光遮光手段を制御する励起光遮光手段制御手段と、をさらに備えることを特徴とする請求項1乃至の何れか1項に記載の顕微鏡システム。
  6. 前記ステージは、電動でX方向またはY方向に移動可能なX−Yステージであり、
    前記顕微鏡システムは、前記X−Yステージで予め位置決めされたX−Y座標に対しての駆動量を設定する手段をさらに備え、
    前記制御手段は、前記第1の駆動手段によって前記透明部材に対する合焦を行った後、前記第2の駆動手段によって前記X−Yステージで位置決めされた座標に対して予め定められた駆動制御を行なうことを特徴とする請求項1乃至の何れか1項に記載の顕微鏡システム。
  7. 光路中に複数の前記対物レンズを切換え配置することが可能な電動レボルバと、
    前記光路中に配置された前記対物レンズの種別を判別する対物判別手段と、
    前記複数の対物レンズ毎に駆動量を設定する手段とをさらに備え、
    前記制御手段は、選択された前記対物レンズの種別に応じた駆動量に基づいて前記第2の駆動手段の駆動制御を行うことを特徴とする請求項1乃至の何れか1項に記載の顕微鏡システム。
  8. 前記被検物に照射する励起光を切換えるための励起光選択手段と、
    前記励起光毎に駆動量を設定する手段とさらに備え、
    前記制御手段は、選択された前記励起光に応じた駆動量に基づいて前記第2の駆動手段の駆動制御を行うことを特徴とする請求項1乃至の何れか1項に記載の顕微鏡システム。
  9. 前記透明部材の合焦位置は、前記透明部材と前記被検物との境界面であることを特徴とする請求項1乃至の何れか1項に記載の顕微鏡システム。
  10. 前記撮影条件設定手段は、撮影枚数、撮影ピッチ、撮影繰り返し回数、及び撮影時間のうち少なくとも一つを設定することを特徴とする請求項1に記載の顕微鏡システム。
JP2005027783A 2005-02-03 2005-02-03 顕微鏡システム、観察方法および観察プログラム Expired - Fee Related JP5322368B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027783A JP5322368B2 (ja) 2005-02-03 2005-02-03 顕微鏡システム、観察方法および観察プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027783A JP5322368B2 (ja) 2005-02-03 2005-02-03 顕微鏡システム、観察方法および観察プログラム

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012085791A Division JP2012159854A (ja) 2012-04-04 2012-04-04 倒立顕微鏡システム
JP2013090958A Division JP5399580B2 (ja) 2013-04-24 2013-04-24 顕微鏡システム、観察方法および観察プログラム

Publications (3)

Publication Number Publication Date
JP2006215259A JP2006215259A (ja) 2006-08-17
JP2006215259A5 JP2006215259A5 (ja) 2008-03-21
JP5322368B2 true JP5322368B2 (ja) 2013-10-23

Family

ID=36978550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027783A Expired - Fee Related JP5322368B2 (ja) 2005-02-03 2005-02-03 顕微鏡システム、観察方法および観察プログラム

Country Status (1)

Country Link
JP (1) JP5322368B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962769B2 (ja) * 2006-11-13 2012-06-27 横河電機株式会社 3次元顕微鏡システム
JP5047671B2 (ja) * 2007-04-10 2012-10-10 オリンパス株式会社 顕微鏡装置
JP5053691B2 (ja) * 2007-04-13 2012-10-17 オリンパス株式会社 標本スキャナ装置、該装置による標本位置検出方法
JP2009025349A (ja) * 2007-07-17 2009-02-05 Nikon Corp 顕微鏡装置、顕微鏡制御方法、および、プログラム
JP5959247B2 (ja) * 2012-03-14 2016-08-02 オリンパス株式会社 顕微鏡
JP6864115B2 (ja) 2017-11-15 2021-04-21 富士フイルム株式会社 顕微鏡装置及びプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2589105Y2 (ja) * 1992-09-28 1999-01-20 株式会社ニコン 顕微鏡
JPH07261097A (ja) * 1994-03-17 1995-10-13 Fujitsu Ltd 顕微鏡及び画像取得方法
JP3631304B2 (ja) * 1995-10-24 2005-03-23 オリンパス株式会社 顕微鏡の自動焦点整合装置
DE19910947A1 (de) * 1999-03-12 2000-09-14 Zeiss Carl Fa Vorrichtung zum Verschieben eines optischen Elementes entlang der optischen Achse
JP2001305432A (ja) * 2000-04-19 2001-10-31 Olympus Optical Co Ltd フォーカス安定装置
JP4937457B2 (ja) * 2001-03-01 2012-05-23 オリンパス株式会社 顕微鏡制御装置、顕微鏡制御システム、顕微鏡の制御方法、プログラム、及び記録媒体
JP5015381B2 (ja) * 2001-03-22 2012-08-29 オリンパス株式会社 顕微鏡写真撮影装置

Also Published As

Publication number Publication date
JP2006215259A (ja) 2006-08-17

Similar Documents

Publication Publication Date Title
JP4847690B2 (ja) 顕微鏡システム
EP2317364B1 (en) Microscope apparatus and microscope observation method
JP4923541B2 (ja) 顕微鏡
JP5231610B2 (ja) 顕微鏡システム及び観察方法
JP5322368B2 (ja) 顕微鏡システム、観察方法および観察プログラム
JP2010127726A (ja) 光学顕微鏡、及びスペクトル測定方法
JP2017167535A (ja) ライトフィールド顕微鏡および照明方法
EP2333602B1 (en) Spherical aberration correction for non-descanned applications
JP2004212067A (ja) 欠陥検査装置及び欠陥検査方法
JP5053691B2 (ja) 標本スキャナ装置、該装置による標本位置検出方法
JP5185704B2 (ja) 生体観察装置
JP2012159854A (ja) 倒立顕微鏡システム
WO2016132451A1 (ja) 顕微鏡
JP5399580B2 (ja) 顕微鏡システム、観察方法および観察プログラム
JP2007212305A (ja) 微小高さ測定装置及び変位計ユニット
JP5959247B2 (ja) 顕微鏡
JP2008003331A (ja) 顕微鏡装置
JP2018194634A (ja) ライトフィールド顕微鏡
JP2004535601A (ja) 顕微鏡対物レンズの構成
JP2007147756A (ja) 光学測定装置
JP3125124U (ja) 赤外顕微鏡
JP3845164B2 (ja) 自動焦点調整方法及びその装置
JP7036396B1 (ja) オートフォーカス装置
JP4464654B2 (ja) 顕微鏡装置
JP2003295066A (ja) 顕微鏡装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R151 Written notification of patent or utility model registration

Ref document number: 5322368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371