WO2012029476A1 - 電気駆動車両 - Google Patents

電気駆動車両 Download PDF

Info

Publication number
WO2012029476A1
WO2012029476A1 PCT/JP2011/067422 JP2011067422W WO2012029476A1 WO 2012029476 A1 WO2012029476 A1 WO 2012029476A1 JP 2011067422 W JP2011067422 W JP 2011067422W WO 2012029476 A1 WO2012029476 A1 WO 2012029476A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
speed
value
driven
determination value
Prior art date
Application number
PCT/JP2011/067422
Other languages
English (en)
French (fr)
Inventor
啓之 小林
輝 菊池
知彦 安田
佐藤 隆之
中島 吉男
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to AU2011297399A priority Critical patent/AU2011297399B2/en
Priority to US13/816,523 priority patent/US8880261B2/en
Priority to CN201180039468.6A priority patent/CN103068610B/zh
Priority to EP11821494.9A priority patent/EP2612798B1/en
Publication of WO2012029476A1 publication Critical patent/WO2012029476A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/16Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • B60T8/17616Microprocessor-based systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0061Disposition of motor in, or adjacent to, traction wheel the motor axle being parallel to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/04Hill descent control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • B60W2520/263Slip values between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electrically driven vehicle that travels by driving driving wheels by an electric motor.
  • One object of the present invention is to shorten the acceleration time of the electrically driven vehicle at the time of acceleration traveling and to shorten the braking distance of the electrically driven vehicle at the time of deceleration traveling.
  • control is performed so that the driving force of the drive wheel is loosened when slip is detected during acceleration, and control is performed so that the braking force of the drive wheel is loosened when slip is detected during deceleration (such as The control method is hereinafter referred to as slip control).
  • slip control When performing an accelerator operation (acceleration) while traveling at a stop or at low speed, excessive slip control is activated in the low speed region by controlling the drive power of the drive wheels to be relaxed when the slip ratio of the drive wheels exceeds a certain value. And the acceleration time of the vehicle becomes long.
  • the vehicle receives force in the opposite direction to the direction of acceleration due to the influence of gravity, so if the driving torque of the drive wheels is loosened, the vehicle becomes increasingly difficult to accelerate and the acceleration time of the vehicle is extreme It will extend to
  • a brake operation deceleration
  • slip control excessively operates in a low speed region There is a problem that the braking distance becomes long.
  • Another object of the present invention is to suppress the vibration of an electrically driven vehicle.
  • the accelerator operation is performed while traveling at a stop or at low speed
  • slip control is excessively activated in the low speed region Changes frequently occur in which the drive torque increases or decreases. If the driving torque changes in this manner, the vehicle body vibrates and the riding comfort deteriorates. In particular, on an upward slope, as described above, if the drive torque of the drive wheels is loosened, the vehicle is more and more difficult to accelerate, and the vibration state will continue for a long time.
  • acceleration is performed by excessive operation of slip control in a low speed region when performing accelerator operation or brake operation.
  • acceleration time of the electrically driven vehicle becomes long at the time of traveling, and the braking distance of the electrically driven vehicle becomes long at the time of decelerating traveling.
  • vibration of the vehicle becomes large due to the frequent occurrence of changes that increase or decrease the torque of the drive wheel.
  • An object of the present invention is to reduce the acceleration time during acceleration travel and the braking distance during deceleration travel, and to suppress the vibration of the electrically driven vehicle.
  • the present invention provides an electrically driven vehicle, comprising: a driving wheel; a driven wheel; a motor for driving or braking the driving wheel; and motor control means for controlling the motor.
  • wheel speed detecting means for detecting the wheel speed of the driven wheel
  • computing means for calculating the slip rate of the drive wheel from the wheel speeds of the drive wheel and the driven wheel, and the slip rate exceeding the slip rate determination value.
  • a determination unit that determines that the drive wheel is slipping, the determination unit determines the slip ratio determination value when the wheel speed of the driven wheel is smaller than a set speed, and the wheel speed of the driven wheel is the wheel speed of the driven wheel.
  • the value used is the same as the value used when the speed is higher than the set speed, and the absolute value should be changed to a large value.
  • the determination means suppresses the excessive slip control operation in the low speed region by changing the slip ratio determination value or the speed difference determination value according to the wheel speed detection value of the driven wheel. In addition to shortening the acceleration time and the braking distance during decelerating travel, it is possible to suppress the vibration of the electrically driven vehicle.
  • FIG. 6 is a view showing a relationship between a wheel speed detection value of a driven wheel at the time of acceleration / deceleration traveling and a slip ratio determination value used by a determination unit 29.
  • working The figure which shows the example of a waveform of the wheel speed at the time of performing slip control of the driven wheel and driving wheel at the time of deceleration driving
  • working The figure which showed the relationship between the torque at the time of performing an accelerator operation in the state which the vehicle body stopped, and vehicle body speed. The figure which showed the relationship between the torque at the time of decelerating gradually from the state which the vehicle body drive
  • the block diagram of the speed difference calculator 39 which concerns on the 2nd Embodiment of this invention.
  • FIG. 7 is a view showing a relationship between wheel speed detection values of the driven wheels 7 and 8 and slip ratio determination values used by the determination unit 29 during acceleration / deceleration traveling.
  • FIG. 7 is a view showing a relationship between wheel speed detection values of the driven wheels 7 and 8 and speed difference determination values used by the determination unit 29 during acceleration / deceleration traveling.
  • the block diagram of modification 18C of the slip judging device concerning a 1st embodiment of the present invention.
  • FIG. 1 is an overall view of an electric drive vehicle according to a first embodiment of the present invention.
  • the electric drive vehicle shown in this figure includes a drive wheel 3 and a drive wheel 6, a driven wheel 7 and a driven wheel 8, an electric motor 1 for driving the drive wheel 3 via a gear 2, and a drive wheel 6 via a gear 5.
  • the motor 4 for driving the motor 4 the motor controller (motor control means) 33 for controlling the motor 1 and the motor 4 and The slip determination unit 18 is provided.
  • the motor controller 33 includes a torque command calculator 17, a torque controller 16, and a power converter 13.
  • the motors 1 and 4 are controlled by a motor controller 33.
  • the motors 1 and 4 drive the drive wheels 3 and 6 via the gears 2 and 5 to move the vehicle forward or backward.
  • the electrically driven vehicle shown in FIG. 1 also includes speed detectors 9 and 10 and speed detectors 11 and 12.
  • the speed detector 9 is connected to the motor 1 and detects the rotational speed of the motor 1.
  • the speed detector 10 is connected to the motor 4 and detects the rotational speed of the motor 4.
  • the speed detector 11 is connected to the shaft of the driven wheel 7 and detects the rotational speed of the driven wheel 7.
  • the speed detector 12 is connected to the shaft of the driven wheel 8 and detects the rotational speed of the driven wheel 8.
  • the speed detectors 9, 10, 11 and 12 are connected to the slip determiner 18, and their detected speeds are output to the slip determiner 18.
  • the speed detectors 9 and 10 are connected to the torque controller 16 and output the detected speed to the torque controller 16.
  • the torque command calculator 17 includes an accelerator opening degree detector 19 that detects the opening degree of the accelerator pedal according to the driver's accelerator operation, and a brake opening that detects the opening degree of the brake pedal according to the driver's brake operation.
  • a degree detector 20 and a steering angle detector 21 for detecting a steering angle according to the driver's steering operation are connected.
  • the torque command calculator 17 detects the accelerator opening degree detection value output by the accelerator opening degree detector 19, the brake opening degree detection value output by the brake opening degree detector 20, and the steering angle detection value output by the steering angle detector 21.
  • a torque command to motor 1 and motor 4 is calculated as an input value, and the calculated torque command is output to torque controller 16.
  • the current detector 14 is connected between the power converter 13 and the motor 1 and detects a current flowing therebetween.
  • the current detection value of the current detector 14 is output to the torque controller 16.
  • the current detector 15 is connected between the power converter 13 and the motor 4 and detects the current flowing between them.
  • the current detection value of the current detector 15 is output to the torque controller 16.
  • the torque controller 16 is based on the torque command to the motor 1 output from the torque command calculator 17, the current detection value output from the current detector 14 and the rotation speed detection value output from the speed detector 9,
  • a gate pulse signal to the power converter 13 is output by pulse width modulation control (PWM control) so that the torque to be output follows the torque command to the motor 1.
  • PWM control pulse width modulation control
  • the torque controller 16 is a motor based on the torque command to the motor 4 output by the torque command calculator 17, the current detection value output by the current detector 15, and the rotation speed detection value output by the speed detector 10.
  • the gate pulse signal to the power converter 13 is output by PWM control so that the torque output from 4 follows the torque command to the motor 4.
  • the power converter 13 receives the gate pulse signal from the torque controller 16, and switching elements such as IGBTs (Insulated Gate Bipolar Transistors) perform high-speed switching to realize high response torque control for the motors 1, 4 .
  • IGBTs Insulated Gate Bipolar Transistors
  • the slip determiner 18 receives rotational speed detection values output from the speed detector 9, the speed detector 10, the speed detector 11, and the speed detector 12, and the slip occurs in the drive wheel 3 and the drive wheel 6 Determine if there is. For example, when it is determined that the drive wheel 3, the drive wheel 6 or the drive wheel 3 and the drive wheel 6 are slipping, the slip determiner 18 outputs the output of the motor 1, the motor 4 or the motor 1 and the motor 4.
  • the torque reduction instruction is output to the torque instruction calculator 17 so that the torque to be reduced is reduced.
  • FIG. 2 is a block diagram of the slip determination unit 18 according to the first embodiment of the present invention.
  • the same reference numerals are given to the same parts as those in the previous drawings, and the description thereof will be omitted (the same applies to the subsequent drawings).
  • the slip determiner 18 shown in FIG. 2 is a computing means for computing the slip ratio of the driving wheels 3 and 6 from the wheel speeds of the driving wheels 3 and 6 and the driven wheels 7 and 8; gain 22, gain 23, gain 24 and gain 25, a gain 26, a gain 27, an adder 35, an adder 36, a gain 37, a gain 38, and a slip ratio calculator 28. Furthermore, the slip ratio calculated by these calculation means exceeds the slip ratio determination value In this case, a determination unit (determination means) 29 is provided which determines that the drive wheels 3 and 6 are slipping.
  • the gain 22 calculates the rotational speed detection value of the drive wheel 3 by multiplying the rotational speed of the motor 1 output by the speed detector 9 by a gain given by the reciprocal of the gear ratio Gr of the gear 2 Is output to the gain 23.
  • the gain 23 calculates the wheel speed detection value of the drive wheel 3 by multiplying the rotation speed detection value of the drive wheel 3 output by the gain 22 by the radius Rlr of the drive wheel 3 and calculates the detection value to the adder 36.
  • the gain 24 calculates the wheel speed detection value of the driven wheel 7 by multiplying the rotation speed detection value of the driven wheel 7 output by the speed detector 11 by the radius Rlf of the driven wheel 7 and adds the detected value to the adder 24 Output to 35.
  • the gain 25 calculates the rotational speed detection value of the drive wheel 6 by multiplying the rotational speed detection value of the motor 4 output by the speed detector 10 by a gain given by the reciprocal of the gear ratio Gr of the gear 5
  • the detected value is output to the gain 25.
  • the gain 26 calculates the wheel speed detection value of the drive wheel 6 by multiplying the rotational speed detection value of the drive wheel 6 output by the gain 25 by the radius Rrr of the drive wheel 6, and the detected value is added to the adder 36.
  • the gain 27 calculates the wheel speed detection value of the driven wheel 8 by multiplying the radius Rrf of the driven wheel 8 with the rotation speed detection value of the driven wheel 8 output by the speed detector 12 and calculates the detected value by an adder. Output to 35.
  • the adder 35 outputs the sum of the wheel speed detection values of the driven wheel 7 and the driven wheel 8 to the gain 37.
  • the adder 36 outputs the sum of the wheel speed detection values of the drive wheel 3 and the drive wheel 6 to the gain 38.
  • the gain 37 calculates the average value of the wheel speed detection values of the two by multiplying the sum of the wheel speed detection values of the driven wheel 7 and the driven wheel 8 output from the adder 35 by a gain of 0.5.
  • the average value is output to the slip ratio calculator 28.
  • the gain 38 calculates the average value of the detected wheel speeds of the two by multiplying the sum of the detected values of the wheel speeds of the driven wheels 3 and 6 output by the adder 36 by 0.5.
  • the average value is output to the slip ratio calculator 28.
  • the slip ratio calculator 28 is based on the average value of the wheel speed detection values of the driven wheels 7 and 8 output by the gain 37 and the average value of the wheel speed detection values of the driving wheels 3 and 6 output by the gain 38. The slip ratio of the drive wheel 3 and the drive wheel 6 is calculated.
  • the wheels 7 and 8 are driven wheels, it is assumed that the average of the wheel speed detection values of the driven wheels 7 and 8 represents the actual vehicle speed.
  • FIG. 3 is a block diagram of the slip ratio calculator 28 according to the first embodiment of the present invention.
  • the slip ratio calculator 28 shown in this figure includes a subtractor 30, a maximum value selector 31, and a divider 32.
  • the subtractor 30 receives the wheel speed detection values of the driving wheels 3 and 6 and the wheel speed detection values of the driven wheels 7 and 8, and detects the wheel speeds of the driven wheels 7 and 8 from the wheel speed detection values of the driving wheels 3 and 6.
  • the reduced value of the detected value is output to the divider 32.
  • the maximum value selector 31 receives the wheel speed detection value of the drive wheels 3 and 6 and the wheel speed detection value of the driven wheels 7 and 8 and outputs the larger one of the two to the divider 32.
  • the divider 32 divides the output of the subtractor 30 by the output of the maximum value selector 31 to output a slip ratio.
  • represents the slip ratio of the drive wheel output from the slip ratio calculator 28
  • Vr represents the wheel speed of the drive wheel
  • V represents the wheel speed of the driven wheel.
  • FIG. 4 is a view showing the relationship between the slip ratio and the coefficient of friction between the wheel and the road surface.
  • the region where the coefficient of friction is negative represents that the force generated between the wheel and the road surface is opposite to the traveling direction of the vehicle.
  • the magnitude of the absolute value of the slip ratio is small (a region where the absolute value of the slip ratio is close to zero in FIG. 4)
  • the magnitude of the absolute value of the coefficient of friction between the wheel and the road surface also increases as the value increases. Therefore, the force acting between the wheel and the road also increases, and no slip occurs. That is, in FIG. 4, no slip occurs in a region where the slip ratio ⁇ satisfies ⁇ 1 ⁇ ⁇ 2 (slip non-occurrence region).
  • the absolute value of the coefficient of friction between the wheel and the road surface is maximized in the non-slip region, the absolute value of the coefficient of friction between the wheel and the road surface is the maximum as the absolute value of the slip ratio increases thereafter. Since the value decreases, the force acting between the wheel and the road surface is also reduced to cause slip.
  • the occurrence of the slip is a region where the slip ratio ⁇ satisfies ⁇ > ⁇ 2 or ⁇ ⁇ 1 (slip generation region). Therefore, by calculating the slip ratio and determining whether the calculated slip ratio is included in the slip occurrence area, it is possible to determine whether the slip occurs.
  • the determiner 29 receives the slip ratio output from the slip ratio calculator 28 and determines that the drive wheels 3 and 6 are slipping when the slip ratio exceeds a slip determination value (described later). It is a thing. If the determiner 29 determines that the drive wheels 3 and 6 are slipping (sometimes referred to as "slip determination"), a torque reduction command is issued to the motor controller 33 to perform slip control. Output.
  • FIG. 5 is a view showing the relationship between the wheel speed detection value of the driven wheel at the time of acceleration / deceleration traveling and the slip ratio determination value used by the determination unit 29.
  • the determination unit 29 determines that the wheel speeds of the driven wheels 7 and 8 are set at a set speed Va 2 (for example, about several km / h, depending on the accuracy of the wheel speed detection means) when larger utilizes the predetermined value [lambda] a 2 as the slip ratio determination value, when the wheel speeds of the driven wheels 7, 8 is smaller than the set speed Va 2 is greater than the predetermined value [lambda] a 2 (e.g., [lambda] a The slip ratio judgment value has been changed to 1 ).
  • the slip ratio determination value is constant.
  • the value [lambda] b 2 when the wheel speeds of the driven wheels 7, 8 is smaller than the set speed Vb 2 is smaller than the predetermined value [lambda] b 2 (e.g., [lambda] b 1) to change the slip ratio determination value ing. That is, when the wheel speed becomes smaller than the set speed Vb 2 , the slip determination value at the time of decelerating travel is changed to a value having the same sign (negative) and a large absolute value.
  • ⁇ b 2 corresponds to ⁇ 1 at which the friction coefficient is maximum in FIG. 4.
  • the judging unit 29 in the present embodiment determines the slip ratio judgment value.
  • the value is the same as the values ⁇ a 2 and ⁇ b 2 used when the wheel speeds of the driven wheels 7 and 8 are larger than the set speeds Va 2 and Vb 2 and the absolute value is changed to a large value. be able to. Also, this is changed to a value that is less likely to be determined as slipping than the values ⁇ a 2 and ⁇ b 2 used when the wheel speeds of the driven wheels 7 and 8 are greater than the set speeds Va 2 and Vb 2. In other words.
  • the change in the slip ratio determination value is monotonously increased and decreased as described below (see below). [A3] and [B3] are set. That is, the slip ratio determination value used at the time of acceleration traveling in the present embodiment is the determination value ⁇ a 2 when the wheel speed of the driven wheels 7 and 8 is larger than the set speed Va 2 (first set speed).
  • the determination value ⁇ a When the wheel speed of the driven wheels 7 and 8 is smaller than the set speed Va 1 (second set speed) set to (first determination value) and set to be smaller than the set speed Va 2 , the determination value ⁇ a When the wheel speed of the driven wheels 7 and 8 is set to ⁇ a 1 (second determination value) larger than 2 and the wheel speeds of the driven wheels 7 and 8 are smaller than Va 2 and larger than Va 1 , the wheel speeds of the driven wheels 7 and 8 decrease It is set so that it may monotonically increase from ⁇ a 2 to ⁇ a 1 as it becomes.
  • the slip ratio determination value used during decelerating travel is [B1] determination value ⁇ b 2 (third determination value) when the wheel speeds of the driven wheels 7 and 8 are greater than the set velocity Vb 2 (third set velocity) is set to, [B2] when than the set speed Vb 2 smaller than has been set speed Vb 1 (third set speed) small wheel speeds of the driven wheels 7, 8 is greater than the determination value [lambda] b 2 [lambda] b 1 (Fourth determination value) [B3] When the wheel speeds of the driven wheels 7 and 8 are smaller than Vb 2 and larger than Vb 1 , the wheel speeds of the driven wheels 7 and 8 decrease as ⁇ b 2 decreases It is set to monotonously decrease to ⁇ b 1 .
  • a torque reduction command is output from the slip determination unit 18 (determination unit 29) to the motor controller 33, and the wheel speeds of the driven wheels 7, 8 and the drive wheels 3, 6 when slip control is performed Explain the change.
  • an accelerator operation acceleration traveling
  • the drive wheel is idled, and when the slip control is not performed, the wheel speed of the drive wheel becomes larger than the wheel speed of the driven wheel.
  • slip control the rotation of the wheel is controlled such that the wheel speed of the drive wheel becomes a speed close to the wheel speed of the driven wheel.
  • FIG. 6 is a diagram showing a waveform example of the wheel speed when slip control of the driven wheel and the drive wheel is performed during acceleration traveling.
  • the slip ratio exceeds the slip ratio determination value when the accelerator operation is performed from the state where the vehicle is at rest or traveling, the slip is caused to loosen the drive torque of the drive wheel as described above.
  • the control is performed to show that the wheel speed of the drive wheel approaches the wheel speed of the driven wheel. Since it can be considered that (drive wheel speed) ⁇ (follower wheel speed) always holds during the accelerator operation, the above equation (1) can be converted as the following equation (2). Therefore, it can be seen that the value of the slip ratio ⁇ always becomes positive when the accelerator is operated.
  • FIG. 7 is a diagram showing an example of the waveform of the wheel speed when slip control of the driven wheel and the drive wheel is performed during decelerating travel.
  • slip control is executed to loosen the braking torque of the drive wheels as described above.
  • the behavior of the drive wheel speed approaches the driven wheel speed. Since it can be considered that (driven wheel speed) ((drive wheel speed) always holds during a brake operation, the above-mentioned equation (1) can be converted as the following equation (3). Therefore, it can be seen that the value of the slip ratio ⁇ always becomes negative when the brake is operated.
  • the slip non-occurrence region is a region where the slip ratio ⁇ satisfies ⁇ 1 ⁇ ⁇ 2 as shown in FIG. 4. Therefore, in order to suppress the occurrence of slip, the slip ratio determination value is set to ⁇ 2 during acceleration traveling, and the drive torque of the drive wheel is loosened when the slip ratio ⁇ becomes larger than the determination value ⁇ 2 controlling, during deceleration should may be controlled so as to loosen the brake torque of the drive wheel when the slip ratio to set the slip ratio determination value lambda 1 lambda is less than the determined value lambda 1.
  • ⁇ 1 has a value of about ⁇ 0.1 to about ⁇ 0.2
  • the slip ratio ⁇ becomes larger than 0.1 when the wheel speed Vr of the drive wheel becomes larger than about 1.11 km / h according to the above equation (2) I understand.
  • the slip ratio ⁇ becomes larger than 0.1 when the wheel speed Vr of the drive wheel becomes larger than 55.6 km / h according to equation (2) Recognize.
  • the value of the slip ratio ⁇ is determined from the slip ratio judgment value in the low speed region due to such speed detection error. It can be large. Therefore, in such a case, even if the slip does not occur in the drive wheels 3 and 6 in fact, the determiner 29 erroneously determines that the slip occurs.
  • the slip ratio ⁇ may be smaller than -0.1 when the wheel speed Vr of the driven wheel is smaller than about 45 km / h according to the above equation (3) Recognize.
  • the wheel speed V of the driven wheel is 1 km / h, it is understood from equation (3) that the slip ratio ⁇ becomes smaller than -0.1 when the wheel speed Vr of the drive wheel is smaller than 0.9 km / h .
  • the value of the slip ratio ⁇ decreases even if the wheel speed difference between the wheel speed V of the driven wheel and the wheel speed Vr of the driving wheel is minute. Therefore, the value of slip ratio ⁇ may be smaller than the slip ratio judgment value due to the speed detection error even in the low speed region as in the acceleration traveling, and in such a case, the driving wheels 3, 6 are actually Even if the slip does not occur, the determination unit 29 erroneously determines that the slip occurs.
  • the erroneous determination of the slip does not occur even if the wheel speed V of the driven wheels 7 and 8 and the wheel speed Vr of the driving wheels 3 and 6 include speed detection errors in the low speed range.
  • the slip ratio determination value is adjusted by changing the slip ratio determination value as shown in FIG. 5 according to the wheel speeds of the driven wheels 7 and 8.
  • FIG. 8 is a diagram showing the relationship between torque and vehicle speed when an accelerator operation is performed in a state where the vehicle is at rest.
  • the slip ratio determination value is constant, it can be seen that the torque frequently increases and decreases in the low speed range at the time of start. This is because it is determined that the wheel speed difference between the driven wheel and the driving wheel is small even in the low speed region, and therefore the driving torque is unnecessarily loosened. Unnecessarily loosening the driving torque results in an average low torque state, which deteriorates the acceleration of the vehicle.
  • the torque frequently increases and decreases vibrations occur in the vehicle body and the ride comfort is degraded.
  • the erroneous determination of the slip is prevented, the frequent increase and decrease of the torque is mitigated, and a high driving torque is output on average.
  • the riding comfort is also improved because the frequent increase and decrease in torque is also mitigated.
  • FIG. 9 is a view showing the relationship between torque and vehicle speed when the vehicle is decelerated gradually from a traveling state. Even if the slip ratio judgment value is kept constant for a while before or after the brake operation, the slip ratio does not become a large value unless the wheel speed difference between the driven wheels and the drive wheels is increased to a certain degree. No erroneous determination occurs, and a braking torque waveform similar to the braking torque in this embodiment is output. On the other hand, in the low speed region at the time of deceleration, when the slip ratio determination value is constant, it can be seen that the torque increases and decreases frequently.
  • the slip ratio determination value in the low speed region by changing the slip ratio determination value in the low speed region, the erroneous determination of the slip is prevented, the frequent increase and decrease of the torque is mitigated, and an average high braking torque is output.
  • the braking performance of the vehicle is improved.
  • the riding comfort is also improved because the frequent increase and decrease in torque is also mitigated.
  • the slip ratio determination value is constant during acceleration / deceleration traveling, erroneous detection of slips is likely to occur in the low speed region, so that torque increases and decreases frequently. As a result, torque averages It turns out that there is a tendency to loosen.
  • the slip ratio judgment value in the low speed region is increased in the positive direction during acceleration traveling, and is increased in the negative direction during deceleration traveling, whereby erroneous judgment of slip in the low speed region is realized. To prevent frequent changes in torque.
  • an instruction to instruct the slip determination unit 18 to interrupt the execution of the slip control described above or to change the slip determination value according to the wheel speeds of the driven wheels 7 and 8 A means (for example, a changeover switch) 50 may be provided. By providing the instruction means 50 in this manner, setting changes can be made according to the use environment of the vehicle.
  • the electric drive vehicle uses the speed difference determination value represented by the wheel speed difference between the driven wheels 7 and 8 and the drive wheels 3 and 6 in the slip determination unit 18 instead of the slip ratio determination value.
  • the wheel speed difference calculated by (wheel speed of driving wheel) ⁇ (wheel speed of driven wheel) is defined as “wheel speed difference”
  • the driving wheels 3 and 6 slip based on the wheel speed difference.
  • the determination value for determining whether or not the vehicle is in use is defined as the "speed difference determination value”.
  • the electrically driven vehicle according to the present embodiment includes a speed difference calculator 39 shown in FIG. 10 in place of the slip ratio calculator 28 shown in FIG. 3 in the first embodiment.
  • the other hardware configuration is the same as that of the first embodiment, so the description will be omitted.
  • FIG. 10 is a block diagram of a speed difference calculator 39 according to the second embodiment of the present invention.
  • the speed difference calculator 39 shown in this figure receives inputs of the wheel speed detection values of the drive wheels 3 and 6 and the wheel speed detection values of the driven wheels 7 and 8 from the gains 37 and 38, respectively.
  • a subtractor 30A is provided which calculates a wheel speed difference by subtracting the wheel speed detection values of the driven wheels 7 and 8 from the wheel speed detection values.
  • FIG. 11 is a view showing the relationship between the wheel speeds of the driven wheels 7 and 8 and the wheel speed difference between the driven wheels 7 and 8 and the driving wheels 3 and 6 during acceleration / deceleration traveling.
  • the wheel speed of the driven wheels 7 and 8 is higher than the set speed VA (for example, several km / h, although it depends on the accuracy of the wheel speed detection means).
  • the wheel speed of the driven wheels 7 and 8 is larger than the set speed VA, the wheel speed of the driven wheels 7 and 8 increases as the wheel speeds of the driven wheels 7 and 8 increase. It is changed to increase monotonously from ⁇ VA.
  • the speed difference determination value is constant.
  • the value ⁇ VB is used, and the wheel speed of the driven wheels 7 and 8 is changed to monotonously decrease from the constant value ⁇ VB as the wheel speed increases. ing. Therefore, to summarize the above, when the wheel speeds of the driven wheels 7 and 8 are smaller than the set speeds VA and VB during acceleration / deceleration traveling, the judgment unit 29 in the present embodiment follows the speed difference judgment value.
  • the reason for changing the speed difference determination value according to the wheel speed of the driven wheel as shown in FIG. 11 will be described.
  • acceleration driving will be described.
  • Increasing the speed difference determination value as the wheel speeds of the driven wheels 7 and 8 increase corresponds to making the slip ratio determination value constant in the first embodiment. This is easily understood from the above equation (1).
  • the value of the wheel speed difference may be larger than the speed difference determination value in the low speed region due to the speed detection error. Therefore, in such a case, even if the slip does not occur in the drive wheels 3 and 6 in fact, the determiner 29 erroneously determines that the slip occurs.
  • the speed difference judgment value may be larger than the wheel speed difference due to the speed detection error, and in such a case, the driving wheel is actually Even in the case where no slip has occurred in 3 and 6, it is erroneously determined that the slip has occurred.
  • the erroneous determination of the slip does not occur even if the wheel speed V of the driven wheels 7 and 8 and the wheel speed Vr of the driving wheels 3 and 6 are included in the speed detection error.
  • the speed difference determination value is adjusted by changing the speed difference determination value as shown in FIG. 11 according to the wheel speeds of the driven wheels 7 and 8.
  • the speed difference determination value is also suppressed according to the present embodiment, so the acceleration time during acceleration travel and the braking distance during deceleration travel can be shortened and the vibration of the electrically driven vehicle can be suppressed.
  • the slip determiner 18 makes a slip determination unnecessarily, and the torque output from the motor 1, the motor 4 or the motor 1 and the motor 4 is suppressed from being reduced. As a result, acceleration during acceleration travel is improved, braking distance is shortened during deceleration travel, and vibration of the vehicle body due to frequent increase and decrease of torque can be suppressed.
  • FIG. 12 is an overall view of an electric drive vehicle according to a third embodiment of the present invention.
  • the electrically driven vehicle shown in this figure is provided with a tilt sensor (tilt detection means) 34 that senses the tilt angle of the road surface on which the vehicle is traveling.
  • the inclination angle of the road surface detected by the inclination sensor 34 is output to the determination unit 29 in the slip determination unit 18B, and the output inclination angle is determined by the determination unit 29 when the traveling road surface is accelerating. It is used to determine whether the road surface is an upward slope that requires a change in the road surface, or whether the road surface is a downward slope that requires a change in the slip ratio determination value during deceleration running. .
  • the determiner 29 determines that the upward slope satisfies the above condition, and when the detected value is smaller than the set angle ⁇ b, the downward slope satisfies the above condition. It shall be judged that it exists.
  • FIG. 13 is a view showing the relationship between the wheel speed detection values of the driven wheels 7 and 8 and the slip ratio determination value used by the determination unit 29 at the time of acceleration / deceleration traveling.
  • the determination unit 29 determines the slip ratio determination value when the inclination angle of the road surface is larger than the set angle ⁇ a and the wheel speeds of the driven wheels 7 and 8 are smaller than the set speed Va 2 during acceleration traveling.
  • the value used when the inclination angle is smaller than the set angle ⁇ a and the wheel speeds of the driven wheels 7 and 8 are smaller than the set speed Va 2 ie, the slip ratio judgment value on flat roads and downhills: ⁇ a 1
  • the reason for changing the slip ratio determination value in accordance with the inclination angle of the road surface and the wheel speeds of the driven wheels 7 and 8 is as follows. That is, in the case of acceleration traveling uphill, erroneous detection of slip similar to that of the first embodiment occurs because gravity is affected in a direction that impedes acceleration of the vehicle compared to downhill and flat roads. It is difficult to accelerate. In the present embodiment, in order to prevent this, the slip ratio determination value is increased on the uphill. On the other hand, when the vehicle is decelerating on the downhill, the erroneous detection of the slip similar to that of the first embodiment occurs because the gravity is affected in the direction that hinders the vehicle deceleration compared to the uphill and the flat road. It is because it becomes difficult to decelerate. In the present embodiment, in order to prevent this, the slip ratio determination value is made smaller on the downhill.
  • the speed difference judgment value represented by the wheel speed difference between the driven wheels 7 and 8 and the driving wheels 3 and 6 used in the second embodiment, the inclination angle of the road surface and the driven wheels It may be changed according to the wheel speed of 7 and 8.
  • FIG. 14 is a diagram showing the relationship between the wheel speed detection values of the driven wheels 7 and 8 and the speed difference determination value used by the determination unit 29 during acceleration / deceleration traveling.
  • the determiner 29 accelerates, the inclination angle of the road surface is larger than the set angle ⁇ a and the wheel speed of the driven wheels 7 and 8 is smaller than the set speed VA ′ (VA ′> VA).
  • the speed difference judgment value is a value used when the inclination angle is smaller than the set angle ⁇ a and the wheel speeds of the driven wheels 7 and 8 are smaller than the set speed VA ′ (that is, slip ratio judgment values on flat roads and downhills) : For example, it has been changed to a value ( ⁇ VA ′) larger than ⁇ VA.
  • the slip ratio judgment value is A value larger than the set angle ⁇ b and smaller than the value used when the wheel speeds of the driven wheels 7 and 8 are smaller than the set speed VB ′ (ie, the slip ratio judgment value on flat roads and uphills: eg ⁇ VB) It has been changed to ⁇ VB ').
  • the excessive slip control operation in the low speed region is suppressed, so the acceleration time in accelerating the uphill and the braking distance in decelerating the downhill are shortened.
  • the vibration of the electrically driven vehicle can be suppressed.
  • the slip ratio determination value or the speed difference determination value is selectively changed when the inclination angle is larger or smaller than the set angle ⁇ a (when smaller than the set angle ⁇ b or larger).
  • the slip ratio determination value or the speed difference determination value may be changed in proportion to the magnitude of the inclination angle.
  • the slip ratio calculator 28 and the speed difference calculator 39 the average value of the wheel speeds of the left and right driven wheels 7, 8 and the drive wheels 3, 6 is calculated. It has been described that the slip ratio or the speed difference is obtained by inputting.
  • a slip determiner 18C provided with a slip ratio calculator 40 for the left wheel and a slip ratio calculator 41 for the right wheel is installed in the vehicle, and each calculator 40, 41
  • the slip rates may be calculated by inputting the wheel speeds of the driven wheels 7 and 8 and the driving wheels 3 and 6, and the torques of the driving wheels 3 and 6 may be controlled independently of each other.
  • the slip ratio can be calculated even if one of the speed detectors 9 and 10 for the left wheel or the speed detectors 11 and 12 for the right wheel fails. Although only the slip ratio is calculated in FIG. 15, it is needless to say that the same effect can be obtained by similarly calculating the wheel speed difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 駆動輪(3,6)を駆動又は制動する電動機(1,4)と、電動機を制御する電動機制御器(33)とを備える電気駆動車両において、駆動輪及び従動輪(7,8)の車輪速度を検出する車輪速度検出器(9~12)と、駆動輪及び従動輪の車輪速度から駆動輪のスリップ率を演算する演算手段(22~28,35~38)と、スリップ率がスリップ率判定値を超える場合に駆動輪がスリップしていると判定する判定器(29)とを備える。判定器(29)において、従動輪の車輪速度が設定速度Va,Vbより小さいとき、スリップ率判定値を、従動輪の車輪速度が設定速度Va,Vbより大きいときに利用される値λa,λbと符号が同じで絶対値が大きい値に変更する。これにより、加速走行時における加速時間及び減速走行時における制動距離を短縮するとともに、電気駆動車両の振動を抑制することができる。

Description

電気駆動車両
 本発明は電動機によって駆動輪が駆動されることで走行する電気駆動車両に関する。
 凍結路、圧雪路等の滑りやすい路面を走行中の車両において、運転者がアクセルを踏み込んで車両を加速させようとすると、駆動輪の回転速度が急増し、駆動輪が空転する現象が発生する場合がある。また逆に、運転者がブレーキを踏み込んで車両を減速させようとすると、駆動輪の回転速度が急減し、駆動輪がロックする現象が発生する場合がある(以下ではこれらの現象をまとめてスリップと称する)。このようなスリップが発生すると、車体の挙動は不安定になり、またステアリング操作も効かず、安定走行が困難になる。そこで、このようなスリップの発生を確実に抑制することが重要である。
 従来の車両におけるスリップの発生を検出する方式としては、駆動輪と従動輪のそれぞれの車輪速度を検出してそれらから駆動輪のスリップ率を演算し、そのスリップ率が判定値を越えることで検出する方式や、駆動輪と従動輪のそれぞれの車輪速度を検出してそれらの速度差を演算し、その速度差が判定値を越えることで検出する方式があげられる(特開2002-27610号公報等参照)。
特開2002-27610号公報
 本発明の一つの目的は、加速走行時には電気駆動車両の加速時間を短縮させることと、減速走行時には電気駆動車両の制動距離を短縮させることである。一般に、加速中にスリップを検出した場合には駆動輪の駆動力を緩めるように制御し、減速中にスリップを検出した場合には駆動輪の制動力を緩めるように制御される(このような制御方法を以下ではスリップ制御と呼ぶ)。停止状態もしくは低速で走行中にアクセル操作(加速)を行う場合、駆動輪のスリップ率が一定値を越えた時に駆動輪の駆動力を緩めるように制御すると、低速域において過剰にスリップ制御が作動してしまい車両の加速時間が長くなるという問題がある。これは、低速域では、駆動輪と従動輪の車輪速度に発生する速度差が微小であっても駆動輪のスリップ率の値が大きくなりその結果、過剰にスリップ制御が作動して駆動輪の駆動トルクを緩めてしまうためである。特に上り坂においては、車両は重力の影響で加速する方向とは逆向きに力を受けるので、駆動輪の駆動トルクを緩めてしまうと車両はますます加速し難くなり、車両の加速時間が極端に延びてしまう。また、走行中にブレーキ操作(減速)を行う場合、駆動輪のスリップ率が一定値を越えた時に駆動輪の制動力を緩めるように制御すると、低速域において過剰にスリップ制御が作動してしまい制動距離が長くなるという問題がある。これは、低速域では、駆動輪と従動輪の車輪速度に発生する速度差が微小であっても駆動輪のスリップ率の値が負の方向へ大きくなりその結果、過剰にスリップ制御が作動して駆動輪の制動トルクを緩めてしまうためである。特に下り坂においては、車両は重力の影響で加速する方向に力を受けるので、駆動輪の制動トルクを緩めてしまうと車両はますます減速し難くなり、制動距離が極端に延びてしまう。
 また本発明の他の目的は、電気駆動車両の振動を抑制することである。停止状態もしくは低速で走行中にアクセル操作を行う場合、駆動輪のスリップ率が一定値を越えた時に駆動輪の駆動力を緩めるように制御すると、低速域において過剰にスリップ制御が作動してしまい、駆動トルクが増加したり減少したりする変化が頻繁に発生する。駆動トルクがこのように頻繁に変化すると、車体が振動し乗り心地が悪化する。特に、上り坂においては前述したように駆動輪の駆動トルクを緩めてしまうと車両はますます加速し難いために、振動した状態が長く継続することになる。また走行中にブレーキ操作を行う場合、駆動輪のスリップ率が一定値を越えた時に駆動輪の制動力を緩めるように制御すると、低速域において過剰にスリップ制御が作動してしまい、制動トルクが増加したり減少したりする変化が頻繁に発生する。制動トルクがこのように頻繁に変化すると、車体が振動し乗り心地が悪化する。特に、下り坂においては前述したように駆動輪の制動トルクを緩めてしまうと車両はますます減速し難いために、振動した状態が長く継続することになる。
 以上のように従動輪と駆動輪の車輪速度を検出して駆動輪におけるスリップの発生を判定する方式において、アクセル操作もしくはブレーキ操作を行う場合に低速域においてスリップ制御が過剰に作動することにより加速走行時には電気駆動車両の加速時間が長くなり、減速走行時には電気駆動車両の制動距離が長くなるという問題がある。更に駆動輪のトルクが増加したり減少したりする変化が頻繁に発生することで車両の振動が大きくなるという問題がある。
 本発明の目的は、加速走行時における加速時間及び減速走行時における制動距離を短縮するとともに、電気駆動車両の振動を抑制することである。
 本発明は、上記目的を達成するために、駆動輪と、従動輪と、前記駆動輪を駆動又は制動する電動機と、当該電動機を制御する電動機制御手段とを備える電気駆動車両において、前記駆動輪及び従動輪の車輪速度を検出する車輪速度検出手段と、前記駆動輪及び従動輪の車輪速度から前記駆動輪のスリップ率を演算する演算手段と、当該スリップ率がスリップ率判定値を超える場合に前記駆動輪がスリップしていると判定する判定手段とを備え、前記判定手段は、前記従動輪の車輪速度が設定速度より小さいとき、前記スリップ率判定値を、前記従動輪の車輪速度が前記設定速度より大きいときに利用される値と符号が同じで絶対値が大きい値に変更するものとする。
 本発明によれば、従動輪の車輪速度検出値に応じて判定手段がスリップ率判定値又は速度差判定値を変化させることにより低速域において過剰なスリップ制御動作を抑制することで、加速走行時における加速時間及び減速走行時における制動距離を短縮するとともに、電気駆動車両の振動を抑制することができる。
本発明の第1の実施の形態に係る電気駆動車両の全体図。 本発明の第1の実施の形態に係るスリップ判定器18の構成図。 本発明の第1の実施の形態に係るスリップ率演算器28の構成図。 スリップ率と車輪-路面間の摩擦係数との関係を示す図。 加速・減速走行時における従動輪の車輪速度検出値と判定器29で利用されるスリップ率判定値との関係を示す図。 加速走行時における従動輪と駆動輪のスリップ制御を行った時の車輪速度の波形例を示す図。 減速走行時における従動輪と駆動輪のスリップ制御を行った時の車輪速度の波形例を示す図。 車体が停止している状態でアクセル操作を行うときのトルクと車体速度の関係を示した図。 車体が走行している状態から徐々に減速していく時のトルクと車体速度の関係を示した図。 本発明の第2の実施の形態に係る速度差演算器39の構成図。 加速・減速走行時における従動輪7,8の車輪速度と、従動輪7,8と駆動輪3,6の車輪速度差との関係を示す図。 本発明の第3の実施の形態に係る電気駆動車両の全体図。 加速・減速走行時における従動輪7,8の車輪速度検出値と判定器29で利用されるスリップ率判定値との関係を示す図。 加速・減速走行時における従動輪7,8の車輪速度検出値と判定器29で利用される速度差判定値との関係を示す図。 本発明の第1の実施の形態に係るスリップ判定器の変形例18Cの構成図。
 以下、本発明の実施の形態を図面を用いて説明する。
 図1は本発明の第1の実施の形態に係る電気駆動車両の全体図である。この図に示す電気駆動車両は、駆動輪3及び駆動輪6と、従動輪7及び従動輪8と、ギヤ2を介して駆動輪3を駆動する電動機1と、ギア5を介して駆動輪6を駆動する電動機4と、電動機1及び電動機4を制御する電動機制御器(電動機制御手段)33と、駆動輪3と駆動輪6のスリップ率をそれぞれ演算してスリップが発生するか否かを判定するスリップ判定器18を備えている。
 電動機制御器33は、トルク指令演算器17と、トルク制御器16と、電力変換機13を備えている。電動機1,4は電動機制御器33によって制御されており、電動機1,4がギア2,5を介して駆動輪3,6を駆動することで車両は前進または後進する。
 また、図1に示す電気駆動車両は、速度検出器9及び10と、速度検出器11及び12を備えている。速度検出器9は、電動機1に接続されており、電動機1の回転速度を検出する。速度検出器10は、電動機4に接続されており、電動機4の回転速度を検出する。速度検出器11は、従動輪7の軸に接続されており、従動輪7の回転速度を検出する。速度検出器12は、従動輪8の軸に接続されており、従動輪8の回転速度を検出する。速度検出器9,10,11,12はスリップ判定器18に接続されており、それらの検出速度はスリップ判定器18に出力されている。また、速度検出器9,10は、トルク制御器16に接続されており、検出速度をトルク制御器16に出力している。
 トルク指令演算器17には、運転者のアクセル操作に応じたアクセルペダルの開度を検出するアクセル開度検出器19と、運転者のブレーキ操作に応じたブレーキペダルの開度を検出するブレーキ開度検出器20と、運転者のステアリング操作に応じたステアリングの角度を検出するステアリング角度検出器21が接続されている。トルク指令演算器17は、アクセル開度検出器19が出力するアクセル開度検出値、ブレーキ開度検出器20が出力するブレーキ開度検出値及びステアリング角度検出器21が出力するステアリング角度検出値を入力値として電動機1及び電動機4へのトルク指令を算出し、その算出したトルク指令をトルク制御器16に出力する。
 電流検出器14は、電力変換器13と電動機1の間に接続されており、これらの間に流れる電流を検出するものである。電流検出器14の電流検出値はトルク制御器16に出力されている。また、電流検出器15は、電力変換器13と電動機4の間に接続されており、これらの間に流れる電流を検出するものである。電流検出器15の電流検出値はトルク制御器16に出力されている。
 トルク制御器16は、トルク指令演算器17が出力する電動機1へのトルク指令、電流検出器14の出力する電流検出値及び速度検出器9の出力する回転速度検出値に基づいて、電動機1の出力するトルクが電動機1へのトルク指令に従うように、パルス幅変調制御(PWM制御)により電力変換器13へのゲートパルス信号を出力する。また、トルク制御器16は、トルク指令演算器17が出力する電動機4へのトルク指令、電流検出器15が出力する電流検出値及び速度検出器10が出力する回転速度検出値に基づいて、電動機4の出力するトルクが電動機4へのトルク指令に従うように、PWM制御により電力変換器13へのゲートパルス信号を出力する。
 電力変換器13はトルク制御器16からのゲートパルス信号を受け、IGBT(絶縁ゲートバイポーラトランジスタ)等のスイッチング素子が高速にスイッチングを行うことで、電動機1,4に対する高応答なトルク制御を実現する。
 スリップ判定器18は、速度検出器9、速度検出器10、速度検出器11及び速度検出器12が出力する回転速度検出値を入力して、駆動輪3および駆動輪6にスリップが発生しているかどうかを判定する。例えば、駆動輪3、駆動輪6又は駆動輪3及び駆動輪6にスリップが発生していると判定した場合には、スリップ判定器18は、電動機1、電動機4又は電動機1及び電動機4の出力するトルクが低減するようにトルク指令演算器17にトルク低減指令を出力する。
 次にスリップ判定器18の構成について説明する。図2は本発明の第1の実施の形態に係るスリップ判定器18の構成図である。なお、先の図と同じ部分には同じ符号を付して説明は省略する(後の図も同様とする)。図2に示すスリップ判定器18は、駆動輪3,6及び従動輪7,8の車輪速度から駆動輪3,6のスリップ率を演算する演算手段として、ゲイン22、ゲイン23、ゲイン24、ゲイン25、ゲイン26、ゲイン27、加算器35、加算器36、ゲイン37、ゲイン38及びスリップ率演算器28を備えており、さらに、これらの演算手段が算出したスリップ率がスリップ率判定値を超える場合に駆動輪3,6がスリップしていると判定する判定器(判定手段)29を備えている。
 ゲイン22は、速度検出器9が出力する電動機1の回転速度に対してギア2のギア比Grの逆数で与えられるゲインをかけることで駆動輪3の回転速度検出値を算出し、当該検出値をゲイン23に出力する。ゲイン23は、ゲイン22が出力する駆動輪3の回転速度検出値に対して駆動輪3の半径Rlrをかけることで駆動輪3の車輪速度検出値を算出し、当該検出値を加算器36に出力する。ゲイン24は、速度検出器11が出力する従動輪7の回転速度検出値に対して従動輪7の半径Rlfをかけることで従動輪7の車輪速度検出値を算出し、当該検出値を加算器35に出力する。
 ゲイン25は、速度検出器10が出力する電動機4の回転速度検出値に対してギア5のギア比Grの逆数で与えられるゲインをかけることで駆動輪6の回転速度検出値を算出し、当該検出値をゲイン25に出力する。ゲイン26は、ゲイン25が出力する駆動輪6の回転速度検出値に対して駆動輪6の半径Rrrをかけることで駆動輪6の車輪速度検出値を算出し、当該検出値を加算器36に出力する。ゲイン27は、速度検出器12が出力する従動輪8の回転速度検出値に対して従動輪8の半径Rrfをかけることで従動輪8の車輪速度検出値を算出し、当該検出値を加算器35に出力する。
 加算器35は、従動輪7と従動輪8の車輪速度検出値の和をゲイン37に出力する。加算器36は、駆動輪3と駆動輪6の車輪速度検出値の和をゲイン38に出力する。ゲイン37は、加算器35で出力された従動輪7と従動輪8の車輪速度検出値の合計値に対してゲイン0.5をかけることで両者の車輪速度検出値の平均値を算出し、当該平均値をスリップ率演算器28に出力する。ゲイン38は、加算器36で出力された駆動輪3と駆動輪6の車輪速度検出値の合計値に対してゲイン0.5をかけることで両者の車輪速度検出値の平均値を算出し、当該平均値をスリップ率演算器28に出力する。
 スリップ率演算器28は、ゲイン37が出力する従動輪7と従動輪8の車輪速度検出値の平均値およびゲイン38が出力する駆動輪3と駆動輪6の車輪速度検出値の平均値に基づいて、駆動輪3および駆動輪6のスリップ率を演算する。ここでは、車輪7および車輪8は従動輪であることから、従動輪7と従動輪8の車輪速度検出値の平均値は実際の車両速度を表しているものとする。
 ここで図3を参照してスリップ率演算器28の具体的構成について説明する。図3は本発明の第1の実施の形態に係るスリップ率演算器28の構成図である。この図に示すスリップ率演算器28は、減算器30と、最大値選択器31と、除算器32を備えている。減算器30は、駆動輪3,6の車輪速度検出値と従動輪7,8の車輪速度検出値の入力を受け、駆動輪3,6の車輪速度検出値から従動輪7,8の車輪速度検出値を減じたものを除算器32に出力する。最大値選択器31は、駆動輪3,6の車輪速度検出値と従動輪7,8の車輪速度検出値の入力を受け、両者のうち値の大きい方を除算器32に出力する。除算器32は、減算器30の出力を最大値選択器31の出力で除することでスリップ率を出力する。これらの演算を式で表すと次式(1)が成立する。なお、次式(1)において、λはスリップ率演算器28の出力する駆動輪のスリップ率、Vrは駆動輪の車輪速度、Vは従動輪の車輪速度をそれぞれ表している。
Figure JPOXMLDOC01-appb-I000001
 ここで、スリップ率と車輪-路面間の摩擦係数との関係について説明する。図4はスリップ率と車輪-路面間の摩擦係数との関係を示す図である。この図において、摩擦係数が負の領域は車輪-路面間に発生する力が車両の進行方向と逆向きであることを表す。一般に、スリップ率の絶対値の大きさが小さい領域(図4においてスリップ率の絶対値が零に近い領域)では、その値が増加するにつれて車輪-路面間の摩擦係数の絶対値の大きさも増加するため、車輪-路面間に作用する力も増加し、スリップが発生しない。すなわち、図4においてスリップが発生しないのは、スリップ率λがλ<λ<λを満たす領域である(スリップ非発生領域)。
 一方、スリップ非発生領域において車輪-路面間の摩擦係数の絶対値が最大になると、それ以降はスリップ率の絶対値が増加するにつれて車輪-路面間の摩擦係数の絶対値の大きさが当該最大値から減少するため、車輪-路面間に作用する力も減少してスリップが発生する。図4においてスリップが発生するのはスリップ率λがλ>λあるいはλ<λを満たす領域である(スリップ発生領域)。したがって、スリップ率を計算し、その計算したスリップ率がスリップ発生領域に含まれるか否かを判定することで、スリップが発生するか否かを判定することができる。
 判定器29は、スリップ率演算器28から出力されたスリップ率を入力しており、当該スリップ率がスリップ判定値(後述)を越える場合に駆動輪3,6がスリップしているものと判定するものである。判定器29は、駆動輪3,6がスリップしていると判定した場合(「スリップ判定」と称することがある)には、スリップ制御を行うために電動機制御器33に対してトルク低減指令を出力する。
 図5は加速・減速走行時における従動輪の車輪速度検出値と判定器29で利用されるスリップ率判定値との関係を示す図である。この図に示すように、判定器29は、加速走行時において、従動輪7,8の車輪速度が設定速度Va(車輪速度検出手段の精度にもよるが、例えば、数km/h程度)より大きいときには、スリップ率判定値として一定値λaを利用しており、従動輪7,8の車輪速度が当該設定速度Vaより小さいときには、当該一定値λaよりも大きい値(例えば、λa)にスリップ率判定値を変更している。すなわち、加速走行時のスリップ判定値は、当該車輪速度が設定速度Vaより小さくなったときに、符号が同じ(正)で絶対値が大きい値に変更される。なお、本実施の形態では、λaは図4において摩擦係数が最大になるλに相当するものとする。
 一方、減速走行時において、従動輪7,8の車輪速度が設定速度Vb(車輪速度検出手段の精度にもよるが、例えば、数km/h程度)より大きいときには、スリップ率判定値として一定値λbを利用しており、従動輪7,8の車輪速度が当該設定速度Vbより小さいときには、当該一定値λbよりも小さい値(例えば、λb)にスリップ率判定値を変更している。すなわち、減速走行時のスリップ判定値は、当該車輪速度が設定速度Vbより小さくなったときに、符号が同じ(負)で絶対値が大きい値に変更される。なお、本実施の形態では、λbは図4において摩擦係数が最大となるλに相当するものとする。
 したがって、上記をまとめると、本実施の形態における判定器29は、加速・減速走行時のそれぞれにおいて従動輪7,8の車輪速度が設定速度Va,Vbより小さいとき、スリップ率判定値を、従動輪7,8の車輪速度が当該設定速度Va,Vbより大きいときに利用される値λa,λbと符号が同じで絶対値が大きい値に変更している、と換言することができる。また、これは、従動輪7,8の車輪速度が当該設定速度Va,Vbより大きいときに利用される値λa,λbよりもスリップしていると判定され難い値に変更している、と換言することもできる。
 なお、本実施の形態では、スリップ制御に伴う車両の挙動変化を小さくして運転者の違和感を低減するために、下記のようにスリップ率判定値の変化に単調増加部及び単調減少部(下記[A3]及び[B3])を設定している。すなわち、本実施の形態において加速走行時に利用されるスリップ率判定値は、[A1]従動輪7,8の車輪速度が設定速度Va(第1設定速度)よりも大きいとき、判定値λa(第1判定値)に設定され、[A2]設定速度Vaよりも小さく設定された設定速度Va(第2設定速度)よりも従動輪7,8の車輪速度が小さいとき、判定値λaよりも大きいλa(第2判定値)に設定され、[A3]従動輪7,8の車輪速度がVaよりも小さくVaよりも大きいとき、従動輪7,8の車輪速度が減少するにしたがってλaからλaまで単調増加するように設定されている。また、減速走行時に利用されるスリップ率判定値は、[B1]従動輪7,8の車輪速度が設定速度Vb(第3設定速度)よりも大きいとき判定値λb(第3判定値)に設定され、[B2]設定速度Vbよりも小さく設定された設定速度Vb(第3設定速度)よりも従動輪7,8の車輪速度が小さいとき、判定値λbよりも大きいλb(第4判定値)に設定され、[B3]従動輪7,8の車輪速度がVbよりも小さくVbよりも大きいとき、従動輪7,8の車輪速度が減少するにしたがってλbからλbまで単調減少するように設定されている。
 次に、スリップ判定器18(判定器29)から電動機制御器33に対してトルク低減指令が出力され、スリップ制御が行われたときの従動輪7,8と駆動輪3,6の車輪速度の変化について説明する。ここでは、まず、アクセル操作(加速走行)を行うときについて説明する。一般に滑りやすい路面でアクセル操作を行う時は駆動輪が空転してしまい、スリップ制御をしない時には駆動輪の車輪速度が従動輪の車輪速度よりも大きくなることが知られている。実際はスリップ制御を行うことで、駆動輪の車輪速度が従動輪の車輪速度に近い速度になるように車輪の回転を制御している。
 図6は加速走行時における従動輪と駆動輪のスリップ制御を行った時の車輪速度の波形例を示す図である。この図に示すように、車体が停止もしくは走行している状態からアクセル操作を行うときにスリップ率の値がスリップ率判定値を超えると、前述したように駆動輪の駆動トルクを緩めるためにスリップ制御が実行され、駆動輪の車輪速度が従動輪の車輪速度に近づく挙動を示す。なお、アクセル操作中は常に(駆動輪車輪速度)≧(従動輪車輪速度)が成り立つと考えてよいので前述した式(1)は次式(2)のように変換できる。したがってアクセル操作時には常にスリップ率λの値は正になることがわかる。
Figure JPOXMLDOC01-appb-I000002
 次にブレーキ操作(減速走行)を行うときについて説明する。ブレーキ操作時は駆動輪がロックされてしまい、スリップ制御をしない時には駆動輪の車輪速度はほぼ零になることが知られている。実際はスリップ制御を行うことで、駆動輪の車輪速度が従動輪の車輪速度に近い速度になるように車輪の回転を制御している。
 図7は減速走行時における従動輪と駆動輪のスリップ制御を行った時の車輪速度の波形例を示す図である。この図に示すように、車体が走行中にブレーキ操作を行うときにスリップ率の値がスリップ率判定値を下回ると、前述したように駆動輪の制動トルクを緩めるためにスリップ制御が実行され、駆動輪車輪速度が従動輪車輪速度に近づく挙動を示す。なお、ブレーキ操作中は常に(従動輪車輪速度)≧(駆動輪車輪速度)が成り立つと考えてよいので、前述した式(1)は次式(3)のように変換できる。したがってブレーキ操作時には常にスリップ率λの値は負になることがわかる。
Figure JPOXMLDOC01-appb-I000003
 次に、上記のようにスリップ率判定値を従動輪車輪速度に応じて変化させる理由について説明する。スリップ非発生領域は、図4に示したように、スリップ率λがλ<λ<λを満たす領域である。そこで、スリップの発生を抑制するためには、加速走行時はスリップ率判定値をλに設定してスリップ率λが当該判定値λより大きくなる場合に駆動輪の駆動トルクを緩めるように制御し、減速走行時はスリップ率判定値をλに設定してスリップ率λが当該判定値λより小さくなる場合に駆動輪の制動トルクを緩めるように制御すれば良いはずである。しかし、発明者等は、従動輪の車輪速度が低速域(車輪速度検出手段の精度にもよるが、数km/h程度以下)に到達すると、以下に説明するようなスリップ誤判定の問題が発生することを知見した。なお、一般に、λは-0.1から-0.2程度の値であり、λは0.1から0.2程度の値である。そこで、以下では、λ=-0.1、λ=0.1とし、加速走行時のスリップ率判定値を0.1、減速走行時のスリップ率判定値を-0.1とした場合について説明する。
 まず、車体が停止している状態から徐々に加速していく場合について考える。例えば、従動輪の車輪速度Vが1km/hの時は、上記式(2)より、駆動輪の車輪速度Vrが約1.11km/hより大きくなるとスリップ率λが0.1より大きくなることがわかる。一方、例えば、従動輪の車輪速度Vが50km/hの時は式(2)より、駆動輪の車輪速度Vrが55.6km/hより大きくなるとスリップ率λが0.1より大きくなることがわかる。すなわち、時速数十キロ程度の高速域に比べて時速数キロ程度の低速域では、従動輪の車輪速度Vと駆動輪の車輪速度Vrの車輪速度差が微小であっても、スリップ率λの値が相対的に大きく変化することがわかる。ところで、従動輪の車輪速度Vや駆動輪の車輪速度Vrには必ず速度検出誤差が含まれるため、低速域においてはそのような速度検出誤差のためにスリップ率λの値がスリップ率判定値より大きくなる場合がある。したがって、このような場合には、実際には駆動輪3,6にスリップが発生していない場合でも、スリップが発生していると判定器29で誤判定されてしまうことになる。
 次に、車体が走行している状態から徐々に減速していく場合について考える。例えば、従動輪の車輪速度Vが50km/hの時は、上記式(3)より、従動輪の車輪速度Vrが約45km/hより小さくなるとスリップ率λが-0.1より小さくなることがわかる。一方、従動輪の車輪速度Vが1km/hの時は式(3)より、駆動輪の車輪速度Vrが0.9km/hより小さくなるとスリップ率λが-0.1より小さくなることがわかる。すなわち高速域に比べて低速域では、従動輪の車輪速度Vと駆動輪の車輪速度Vrの車輪速度差が微小であっても、スリップ率λの値が小さくなることがわかる。したがって、加速走行時と同様に低速域においても速度検出誤差のためにスリップ率λの値がスリップ率判定値より小さくなる場合があり、そのような場合には、実際には駆動輪3,6にスリップが発生していない場合でもスリップが発生していると判定器29で誤判定してしまうことになる。
 そこで、本実施の形態においては、低速域において従動輪7,8の車輪速度Vや駆動輪3,6の車輪速度Vrに速度検出誤差が含まれていてもスリップの誤判定を起こさないために、従動輪7,8の車輪速度に応じてスリップ率判定値を図5に示すように変化させることでスリップ率判定値を調整している。
 次に、駆動輪のトルクと車体速度の関係について、本実施の形態のようにスリップ率判定値を変化させた場合とスリップ率判定値を一定にした場合とで比較する。図8は車体が停止している状態でアクセル操作を行うときのトルクと車体速度の関係を示した図である。スリップ率判定値を一定にした場合では、発進時の低速域においてトルクが頻繁に増減していることがわかる。これは低速域においては従動輪と駆動輪の車輪速度差がわずかであってもスリップしていると判定してしまうため、不必要に駆動トルクを緩めてしまうためである。不必要に駆動トルクを緩めることで平均して低トルク状態になり車両の加速性が悪化する。またトルクが頻繁に増減するため、車体に振動が発生し乗り心地が悪化する。
 一方、本実施の形態の場合には、低速域においてスリップ率判定値を変化させることによりスリップの誤判定が防止されてトルクの頻繁な増減が緩和され、平均的に高い駆動トルクを出力するようになり、車両の加速性が向上する。またトルクの頻繁な増減も緩和されるために乗り心地も改善される。車体速度が加速走行に応じて上昇するとスリップ率判定値を一定にしている場合でも従動輪7,8と駆動輪3,6の車輪速度差がある程度大きくならないとスリップ率が大きい値にならないため、スリップの誤判定が起こらず、本発明を用いた場合での駆動トルクと同じような駆動トルク波形を出力する。
 また、図9は車体が走行している状態から徐々に減速していく時のトルクと車体速度の関係を示した図である。ブレーキ操作を行う前、またはブレーキ操作を行った後しばらくはスリップ率判定値を一定にしている場合でも従動輪と駆動輪の車輪速度差がある程度大きくならないとスリップ率が大きい値にならないため、スリップの誤判定が起こらず、本実施の形態での制動トルクと同じような制動トルク波形を出力する。一方、減速時の低速域において、スリップ率判定値を一定にしている場合では、トルクが頻繁に増減していることがわかる。これは低速域においては従動輪と駆動輪の車輪速度差がわずかであってもスリップしていると判定してしまうため、不必要に制動トルクを緩めてしまうためである。不必要に制動トルクを緩めることで平均して低トルク状態になり車両の制動性が悪化する。またトルクが頻繁に増減するため、車体に振動が発生し乗り心地が悪化する。
 一方、本実施の形態の場合には、低速域においてスリップ率判定値を変化させることによりスリップの誤判定が防止されてトルクの頻繁な増減が緩和され、平均的に高い制動トルクを出力するようになり、車両の制動性が向上する。またトルクの頻繁な増減も緩和されるために乗り心地も改善される。
 以上のことから、加速・減速走行時ともにスリップ率判定値を一定にしている時には、低速域においてスリップの誤検出が起こりやすくなるためにトルクの頻繁な増減が起こり、その結果トルクを平均的に緩めてしまう傾向があることがわかる。本実施の形態ではそういった問題に対して、低速域においてスリップ率判定値を加速走行時は正の方向に増加、減速走行時は負の方向に増加させることにより、低速域におけるスリップの誤判定を防止し、トルクの頻繁な増減を緩和している。その結果、加速走行時には高い駆動トルクを、減速走行時には高い制動トルクを平均的に出力することができ、車両の加速性・制動性をそれぞれ高めている。したがって、本実施の形態によれば、低速域における過剰なスリップ制御動作が抑制されるので、加速走行時における加速時間及び減速走行時における制動距離を短縮するとともに、電気駆動車両の振動を抑制することができる。
 なお、図1に示すように、スリップ判定器18に対して、上記で説明したスリップ制御の実施の中断又は従動輪7,8の車輪速度に応じたスリップ判定値の変更の中断を指示する指示手段(例えば、切り替えスイッチ)50を設置しても良い。このように指示手段50を設ければ、車両の使用環境に応じた設定変更が可能となる。
 次に本発明の第2の実施の形態について説明する。本実施の形態に係る電気駆動車両は、スリップ判定器18において、スリップ率判定値の代わりに従動輪7,8と駆動輪3,6の車輪速度差で表される速度差判定値を用いている点が第1の実施の形態と異なる。ここでは、(駆動輪の車輪速度)-(従動輪の車輪速度)によって算出される車輪の速度差を「車輪速度差」と定義し、当該車輪速度差に基づいて駆動輪3,6がスリップしているかどうかを判定するための判定値を「速度差判定値」と定義する。
 本実施の形態に係る電気駆動車両は、第1の実施の形態における図3に示したスリップ率演算器28の代わりに、図10に示す速度差演算器39を備えている。なお、その他のハードウェア構成については第1の実施の形態のものと同じであるので説明は省略する。
 図10は本発明の第2の実施の形態に係る速度差演算器39の構成図である。この図に示す速度差演算器39は、ゲイン37及びゲイン38からの駆動輪3,6の車輪速度検出値と従動輪7,8の車輪速度検出値の入力を受け、駆動輪3,6の車輪速度検出値から従動輪7,8の車輪速度検出値を減じて車輪速度差を演算する減算器30Aを備えている。
 図11は、加速・減速走行時における従動輪7,8の車輪速度と、従動輪7,8と駆動輪3,6の車輪速度差との関係を示す図である。この図に示すように、判定器29は、加速走行時において、従動輪7,8の車輪速度が設定速度VA(車輪速度検出手段の精度にもよるが、例えば、数km/h程度)より小さいときには、速度差判定値として一定値ΔVAを利用しており、従動輪7,8の車輪速度が当該設定速度VAより大きいときには、従動輪7,8の車輪速度が増加するにしたがって当該一定値ΔVAから単調増加するように変更している。一方、減速走行時においては、従動輪7,8の車輪速度が設定速度VB(車輪速度検出手段の精度にもよるが、例えば、数km/h程度)より小さいときには、速度差判定値として一定値ΔVBを利用しており、従動輪7,8の車輪速度が当該設定速度VBより大きいときには、従動輪7,8の車輪速度が増加するにしたがって当該一定値ΔVBから単調減少するように変更している。したがって、上記をまとめると、本実施の形態における判定器29は、加速・減速走行時のそれぞれにおいて従動輪7,8の車輪速度が設定速度VA,VBより小さいとき、速度差判定値を、従動輪7,8の車輪速度が当該設定速度VA,VBより大きいときに利用される値よりもスリップしていると判定され難い値に変更している、と換言することができる。なお、加速走行時には(速度差判定値)≦(車輪速度差)の時にスリップが発生していると判定器29(スリップ判定器18)が判定し、減速走行時には(車輪速度差)≦(速度差判定値)の時にスリップが発生していると判定する。
 ここで、図11のように速度差判定値を従動輪の車輪速度に応じて変化させる理由について説明する。最初に加速走行について説明する。速度差判定値を従動輪7,8の車輪速度が大きくなるにつれて大きくすることは、第1の実施の形態においてスリップ率判定値を一定にすることに相当する。このことは上記式(1)から容易にわかることである。ところで、スリップ率判定値を用いた第1の実施の形態と同様に、低速域においては速度検出誤差のために車輪速度差の値が速度差判定値より大きくなる場合がある。したがって、このような場合には、実際には駆動輪3,6にスリップが発生していない場合でも、スリップが発生していると判定器29で誤判定されてしまうことになる。また、減速走行についても同様のことが言えて、低速域においては速度検出誤差のために速度差判定値が車輪速度差より大きくなる場合があり、そのような場合には実際には、駆動輪3,6にスリップが発生していない場合でもスリップが発生していると誤判定されてしまうことになる。
 そこで、本実施の形態においては、低速域において従動輪7,8の車輪速度Vや駆動輪3,6の車輪速度Vrに速度検出誤差に含まれていてもスリップの誤判定を起こさないために、従動輪7,8の車輪速度に応じて速度差判定値を図11に示すように変化させることで速度差判定値を調整している。このように加速走行時・減速走行時ともに低速域において速度差判定値が従動輪の車輪速度に関係なく一定値になるようにすることで、低速域におけるスリップの誤判定を防止することができる。したがって、本実施の形態によっても、低速域における過剰なスリップ制御動作が抑制されるので、加速走行時における加速時間及び減速走行時における制動距離を短縮するとともに、電気駆動車両の振動を抑制することができる。
 すなわち、第1及び第2の実施の形態のように、従動輪7,8の車輪速度が低速領域にあるときにスリップ率判定値もしくは速度差判定値を変化させると、スリップ制御が過剰にかからないようになり、その結果、スリップ判定器18が不必要にスリップ判定をして電動機1、電動機4又は電動機1及び電動機4が出力するトルクが低減することを抑制する。これにより、加速走行時には加速性が向上し、減速走行時には制動距離が短くなり、更にトルクの頻繁な増減に起因する車体の振動を抑制することができる。
 次に本発明の第3の実施の形態について説明する。図12は、本発明の第3の実施の形態に係る電気駆動車両の全体図である。この図に示す電気駆動車両は、車両が走行している路面の傾斜角度を感知する傾斜センサ(傾斜検出手段)34を備えている。傾斜センサ34が検出した路面の傾斜角度はスリップ判定器18B内の判定器29に出力されており、当該出力された傾斜角度は、判定器29において、走行路面が加速走行時においてスリップ率判定値の変更が必要な程度の上り坂であるか否か、又は、当該路面が減速走行時においてスリップ率判定値の変更が必要な程度の下り坂であるか否かを判定する際に利用される。本実施の形態では、判定器29は、傾斜角度の検出値が設定角度θaより大きいときに上記条件を満たす上り坂であると判定し、設定角度θbより小さいときに上記条件を満たす下り坂であると判定するものとする。
 図13は、加速・減速走行時における従動輪7,8の車輪速度検出値と判定器29で利用されるスリップ率判定値との関係を示す図である。この図に示すように、判定器29は、加速走行時において、路面の傾斜角度が設定角度θaより大きくかつ従動輪7,8の車輪速度が設定速度Vaより小さいとき、スリップ率判定値を、傾斜角度が設定角度θaより小さくかつ従動輪7,8の車輪速度が設定速度Vaより小さいときに利用される値(すなわち、平坦路及び下り坂におけるスリップ率判定値:λa)よりも大きい値(λa)に変更している。一方、減速走行時において、路面の傾斜角度が設定角度θbより小さくかつ従動輪7,8の車輪速度が設定速度Vbより小さいとき、スリップ率判定値を、傾斜角度が設定角度θbより大きくかつ従動輪7,8の車輪速度が設定速度Vbより小さいときに利用される値(すなわち、平坦路及び上り坂におけるスリップ率判定値:λb)よりも小さい値(λb)に変更している。
 このようにスリップ率判定値を路面の傾斜角度及び従動輪7,8の車輪速度に応じて変化させるのは次のような理由による。すなわち、上り坂を加速走行する場合には、下り坂および平坦路に比べて車両の加速を妨げる方向に重力の影響を受ける分、第1の実施の形態と同様のスリップの誤検出が起こると加速しづらくなるからである。本実施の形態では、これを防ぐために上り坂でスリップ率判定値を大きくしている。一方、下り坂を減速走行する場合には、上り坂および平坦路に比べて車両の減速を妨げる方向に重力の影響を受ける分、第1の実施の形態と同様のスリップの誤検出が起こると減速しづらくなるからである。本実施の形態では、これを防ぐために下り坂でスリップ率判定値を小さくしている。
 したがって、本実施の形態のようにスリップ率判定値を変化させると、低速域における過剰なスリップ制御動作が抑制されるので、上り坂を加速走行する際の加速時間と下り坂を減速走行する際の制動距離を短縮することができ、さらに、電気駆動車両の振動を抑制することができる。
 なお、これと同様の理由で、第2の実施の形態で利用した従動輪7,8と駆動輪3,6の車輪速度差で表される速度差判定値を、路面の傾斜角度及び従動輪7,8の車輪速度に応じて変化させても良い。
 図14は、加速・減速走行時における従動輪7,8の車輪速度検出値と判定器29で利用される速度差判定値との関係を示す図である。この図に示すように、判定器29は、加速走行時において、路面の傾斜角度が設定角度θaより大きくかつ従動輪7,8の車輪速度が設定速度VA’(VA’>VA)より小さいとき、速度差判定値を、傾斜角度が設定角度θaより小さくかつ従動輪7,8の車輪速度が設定速度VA’より小さいときに利用される値(すなわち、平坦路及び下り坂におけるスリップ率判定値:例えば、ΔVA)よりも大きい値(ΔVA’)に変更している。一方、減速走行時において、路面の傾斜角度が設定角度θbより小さくかつ従動輪7,8の車輪速度が設定速度VB’(VB’>VB)より小さいとき、スリップ率判定値を、傾斜角度が設定角度θbより大きくかつ従動輪7,8の車輪速度が設定速度VB’より小さいときに利用される値(すなわち、平坦路及び上り坂におけるスリップ率判定値:例えば、ΔVB)よりも小さい値(ΔVB’)に変更している。
 このように速度差判定値を変化させても、低速域における過剰なスリップ制御動作が抑制されるので、上り坂を加速走行する際の加速時間と下り坂を減速走行する際の制動距離を短縮することができ、さらに、電気駆動車両の振動を抑制することができる。
 なお、上記の実施の形態では、傾斜角度が設定角度θaより大きいときと小さいとき(設定角度θbより小さいときと大きいとき)で選択的にスリップ率判定値又は速度差判定値を変更するものとしたが、傾斜角度の大きさに比例させてスリップ率判定値又は速度差判定値の大きさを変更させる構成としても良い。
 なお、上記の各実施の形態では、図2に示すように、スリップ率演算器28や速度差演算器39において、左右の従動輪7,8と駆動輪3,6の車輪速度の平均値を入力してスリップ率又は速度差を求めるものとして説明してきた。しかし、図15に示すよう左側車輪用のスリップ率演算器40と右側車輪用のスリップ率演算器41を備えるスリップ判定器18Cを車両に設置し、各演算器40,41に左右の車輪ごとに従動輪7,8と駆動輪3,6の車輪速度を入力することでそれぞれにスリップ率を演算し、左右独立に駆動輪3,6のトルクを制御しても良い。このような構成を採用すると、左側車輪用の速度検出器9,10又は右側車輪用の速度検出器11,12のうち一方が故障等しても、スリップ率を算出することができる。なお、図15では、スリップ率を演算する場合についてのみ説明したが、同様に車輪速度差を演算しても同様の効果が得られることは言うまでもない。
1,4 電動機
3,6 駆動輪
7,8 従動輪
9,10,11,12 速度検出器
13 電力変換器
14,15 電流検出器
16 トルク制御器
17 トルク指令演算器
18 スリップ判定器
29 判定器
19 アクセル開度検出器
20 ブレーキ開度検出器
21 ステアリング角度検出器
22,23,24,25,26,27,37,38 ゲイン
28,40,41 スリップ率演算器
30 減算器
31 最大値選択器
32 除算器
33 電動機制御器
34 傾斜センサ
35,36 加算器
39 速度差演算器
50 指示手段

Claims (12)

  1.  駆動輪と、従動輪と、前記駆動輪を駆動又は制動する電動機と、当該電動機を制御する電動機制御手段とを備える電気駆動車両において、
     前記駆動輪及び従動輪の車輪速度を検出する車輪速度検出手段と、
     前記駆動輪及び従動輪の車輪速度から前記駆動輪のスリップ率を演算する演算手段と、
     当該スリップ率がスリップ率判定値を超える場合に前記駆動輪がスリップしていると判定する判定手段とを備え、
     前記判定手段は、前記従動輪の車輪速度が設定速度より小さいとき、前記スリップ率判定値を、前記従動輪の車輪速度が前記設定速度より大きいときに利用される値と符号が同じで絶対値が大きい値に変更することを特徴とする電気駆動車両。
  2.  請求項1に記載の電気駆動車両において、
     前記電気駆動車両が走行している路面の傾斜角度を感知する傾斜検出手段をさらに備え、
     前記判定手段は、
     加速走行時において前記傾斜角度が設定角度より大きくかつ前記従動輪の車輪速度が設定速度より小さいとき、前記スリップ率判定値を、前記傾斜角度が前記設定角度より小さくかつ前記従動輪の車輪速度が前記設定速度より小さいときに利用される値よりも大きい値に変更することを特徴とする電気駆動車両。
  3.  請求項1に記載の電気駆動車両において、
     前記電気駆動車両が走行している路面の傾斜角度を感知する傾斜検出手段をさらに備え、
     前記判定手段は、
     減速走行時において前記傾斜角度が設定角度より小さくかつ前記従動輪の車輪速度が設定速度より小さいとき、前記スリップ率判定値を、前記傾斜角度が前記設定角度より大きくかつ前記従動輪の車輪速度が前記設定速度より小さいときに利用される値よりも小さい値に変更することを特徴とする電気駆動車両。
  4.  請求項1に記載の電気駆動車両において、
     前記判定手段で加速走行時に利用される前記スリップ率判定値は、
     前記従動輪の車輪速度が第1設定速度よりも大きいとき、第1判定値に設定され、
     前記第1設定速度よりも小さく設定された第2設定速度よりも前記従動輪の車輪速度が小さいとき、前記第1判定値よりも大きい第2判定値に設定され、
     前記従動輪の車輪速度が前記第1設定速度よりも小さく第2設定速度よりも大きいとき、前記従動輪の車輪速度が減少するにしたがって前記第1判定値から前記第2判定値まで単調増加するように設定されることを特徴とする電気駆動車両。
  5.  請求項1に記載の電気駆動車両において、
     前記判定手段で減速走行時に利用される前記スリップ率判定値は、
     前記従動輪の車輪速度が第3設定速度よりも大きいとき、第3判定値に設定され、
     前記第3設定速度よりも小さく設定された第4設定速度よりも前記従動輪の車輪速度が小さいとき、前記第3判定値よりも小さい第4判定値に設定され、
     前記従動輪の車輪速度が前記第3設定速度よりも小さく第4設定速度よりも大きいとき、前記従動輪の車輪速度が減少するにしたがって前記第3判定値から前記第4判定値まで単調減少するように設定されることを特徴とする電気駆動車両。
  6.  請求項1に記載の電気駆動車両において、
     前記判定手段に対して、スリップ制御の実施の中断又は前記スリップ判定値の変更の中断を指示する指示手段をさらに備えることを特徴とする電気駆動車両。
  7.  駆動輪と、従動輪と、前記駆動輪を駆動又は制動する電動機と、当該電動機を制御する電動機制御手段とを備える電気駆動車両において、
     前記駆動輪及び従動輪の車輪速度を検出する車輪速度検出手段と、
     前記駆動輪及び従動輪の車輪速度の速度差を演算する演算手段と、
     当該速度差が速度差判定値を超える場合に前記駆動輪がスリップしていると判定する判定手段とを備え、
     前記判定手段は、前記従動輪の車輪速度が設定速度より小さいとき、前記速度差判定値を、前記従動輪の車輪速度が前記設定速度より大きいときに利用される値と符号が同じで絶対値が大きい値に変更することを特徴とする電気駆動車両。
  8.  請求項7に記載の電気駆動車両において、
     前記電気駆動車両が走行している路面の傾斜角度を感知する傾斜検出手段をさらに備え、
     前記判定手段は、
     加速走行時において前記傾斜角度が設定角度より大きくかつ前記従動輪の車輪速度が設定速度より小さいとき、前記速度差判定値を、前記傾斜角度が前記設定角度より小さくかつ前記従動輪の車輪速度が前記設定速度より小さいときに利用される値よりも大きい値に変更することを特徴とする電気駆動車両。
  9.  請求項7に記載の電気駆動車両において、
     前記電気駆動車両が走行している路面の傾斜角度を感知する傾斜検出手段をさらに備え、
     前記判定手段は、
     減速走行時において前記傾斜角度が設定角度より小さくかつ前記従動輪の車輪速度が設定速度より小さいとき、前記速度差判定値を、前記傾斜角度が前記設定角度より大きくかつ前記従動輪の車輪速度が前記設定速度より小さいときに利用される値よりも小さい値に変更することを特徴とする電気駆動車両。
  10.  請求項7に記載の電気駆動車両において、
     前記判定手段で加速走行時に利用される前記速度差判定値は、
     前記従動輪の車輪速度が第1設定速度よりも小さいとき、第1判定値に設定され、
     前記従動輪の車輪速度が前記第1設定速度よりも大きいとき、前記従動輪の車輪速度が増加するにしたがって前記第1判定値から単調増加するように設定されることを特徴とする電気駆動車両。
  11.  請求項7に記載の電気駆動車両において、
     前記判定手段で減速走行時に利用される前記速度差判定値は、
     前記従動輪の車輪速度が第2設定速度よりも小さいとき、第2判定値に設定され、
     前記従動輪の車輪速度が前記第2設定速度よりも大きいとき、前記従動輪の車輪速度が増加するにしたがって前記第2判定値から単調減少するように設定されることを特徴とする電気駆動車両。
  12.  請求項7に記載の電気駆動車両において、
     前記判定手段に対して、スリップ制御の実施の中断又は前記速度差判定値の変更の中断を指示する指示手段をさらに備えることを特徴とする電気駆動車両。
PCT/JP2011/067422 2010-09-02 2011-07-29 電気駆動車両 WO2012029476A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2011297399A AU2011297399B2 (en) 2010-09-02 2011-07-29 Electric drive vehicle
US13/816,523 US8880261B2 (en) 2010-09-02 2011-07-29 Electrically driven vehicle
CN201180039468.6A CN103068610B (zh) 2010-09-02 2011-07-29 电力驱动车辆
EP11821494.9A EP2612798B1 (en) 2010-09-02 2011-07-29 Electric drive vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-196953 2010-09-02
JP2010196953A JP5336447B2 (ja) 2010-09-02 2010-09-02 電気駆動車両

Publications (1)

Publication Number Publication Date
WO2012029476A1 true WO2012029476A1 (ja) 2012-03-08

Family

ID=45772585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067422 WO2012029476A1 (ja) 2010-09-02 2011-07-29 電気駆動車両

Country Status (6)

Country Link
US (1) US8880261B2 (ja)
EP (1) EP2612798B1 (ja)
JP (1) JP5336447B2 (ja)
CN (1) CN103068610B (ja)
AU (1) AU2011297399B2 (ja)
WO (1) WO2012029476A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103879305A (zh) * 2014-03-10 2014-06-25 清华大学 用于四轮独立驱动电动车的最大转矩估计驱动防滑算法
US9248745B1 (en) * 2014-09-16 2016-02-02 Robert Bosch Gmbh Wheel stability control based on the moment of an electrical motor

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527125B2 (en) * 2010-11-04 2013-09-03 Caterpillar Inc. System and method for controlling traction
JP5959928B2 (ja) * 2012-05-14 2016-08-02 本田技研工業株式会社 倒立振子型車両
JP6223718B2 (ja) * 2013-06-03 2017-11-01 Ntn株式会社 電気自動車のスリップ制御装置
JP6266280B2 (ja) 2013-09-18 2018-01-24 Ntn株式会社 電気自動車のスリップ制御装置
JP6029572B2 (ja) * 2013-12-17 2016-11-24 本田技研工業株式会社 車両のスリップ判定装置
DE102014203565A1 (de) * 2014-02-27 2015-08-27 Robert Bosch Gmbh Steuereinrichtung und Verfahren zur Antriebsschlupfregelung für ein elektrisches Antriebssystem
US20150298666A1 (en) * 2014-04-22 2015-10-22 Caterpillar Inc. Engine Assisted Brake Control on Wheel Slip
US9963155B2 (en) 2015-05-29 2018-05-08 Clearpath Robotics, Inc. Method, system and apparatus for path control in unmanned vehicles
JP2018098868A (ja) * 2016-12-12 2018-06-21 Ntn株式会社 車両制御装置
US10585440B1 (en) 2017-01-23 2020-03-10 Clearpath Robotics Inc. Systems and methods for using human-operated material-transport vehicles with fleet-management systems
US11097736B2 (en) 2017-02-28 2021-08-24 Clearpath Robotics Inc. Systems and methods for traction detection and control in a self-driving vehicle
US20180297466A1 (en) * 2017-04-17 2018-10-18 Autonomous Tractor Corporation Electric and hydraulic drive system and methods
DE102017216020A1 (de) 2017-09-12 2019-03-14 Audi Ag Verfahren und Vorrichtung zur Bestimmung einer Radschlupfinformation eines elektrisch angetriebenen Rades eines Kraftfahrzeugs
JP6837412B2 (ja) * 2017-11-01 2021-03-03 本田技研工業株式会社 車両用制御装置
CN107834948B (zh) * 2017-11-14 2020-08-28 武汉欧拓莫科技有限公司 一种用于汽车电机控制安全输入的方法
KR102501354B1 (ko) * 2018-05-03 2023-02-21 현대자동차주식회사 차량 및 차량의 제어방법
DE102018212031A1 (de) * 2018-07-19 2020-01-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftfahrzeugs, Steuergerät und Kraftfahrzeug
CN109278767B (zh) * 2018-08-23 2020-05-15 湖南农业大学 可调附着力轨道运输系统及其附着力调节方法
US11390277B2 (en) 2018-11-30 2022-07-19 Clearpath Robotics Inc. Systems and methods for self-driving vehicle collision prevention
CN110315994A (zh) * 2019-06-26 2019-10-11 河南美力达汽车有限公司 一种电动汽车的抗冲击系统
US11649147B2 (en) 2019-09-20 2023-05-16 Clearpath Robotics Inc. Autonomous material transport vehicles, and systems and methods of operating thereof
CN111056497B (zh) * 2019-12-26 2021-05-28 杭叉集团股份有限公司 一种后驱式叉车防滑控制方法及其控制系统
DE102021213399A1 (de) 2021-11-29 2023-06-01 Zf Friedrichshafen Ag Verfahren und Steuereinrichtung zum Steuern eines Abtriebsmoments

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265430A (ja) * 1986-05-09 1987-11-18 Honda Motor Co Ltd 車輌の駆動輪のスリツプ制御方法
JPS6429636A (en) * 1987-04-17 1989-01-31 Honda Motor Co Ltd Rough road detector at time of vehicle running
JPH058713A (ja) * 1991-06-28 1993-01-19 Mazda Motor Corp 車両のスリツプ制御装置
JPH09328064A (ja) * 1996-06-11 1997-12-22 Nec Home Electron Ltd 車両用アンチロックブレーキ制御装置
JP2002027610A (ja) 2000-07-10 2002-01-25 Toyota Industries Corp 産業車両の走行制御装置
JP2004084773A (ja) * 2002-08-26 2004-03-18 Toyota Motor Corp 路面入力検出装置および変速機の制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873638A (en) * 1986-05-09 1989-10-10 Honda Giken Kogyo Kabushiki Kaisha Traction control system for controlling slip of a driving wheel of a vehicle
JPS63116932A (ja) * 1986-11-05 1988-05-21 Nippon Denso Co Ltd 四輪駆動車の駆動力制御装置
JP3526675B2 (ja) * 1995-09-14 2004-05-17 日産ディーゼル工業株式会社 車輪の駆動トルク制御装置
US5775453A (en) * 1995-09-20 1998-07-07 Sauer Inc. Traction control system and method for hydraulically propelled vehicles
JP3707276B2 (ja) * 1998-12-21 2005-10-19 トヨタ自動車株式会社 車輌の運動制御装置
FR2799417B1 (fr) * 1999-10-08 2009-01-23 Toyota Motor Co Ltd Dispositif de controle de vehicule, notamment pour la repartition des forces de traction avant-arriere
WO2001040041A1 (de) * 1999-12-03 2001-06-07 Robert Bosch Gmbh Verfahren zur beeinflussung eines von einem antriebsmotor eines kraftfahrzeugs abgegebenen moments
US6528959B2 (en) * 2000-07-19 2003-03-04 Honda Giken Kogyo Kabushiki Kaisha Driving force control system for front-and-rear wheel drive vehicles
JP3536284B2 (ja) * 2000-11-14 2004-06-07 本田技研工業株式会社 前後輪駆動車両
JP2003327111A (ja) * 2002-03-26 2003-11-19 Robert Bosch Gmbh 駆動滑り制御方法および装置
JP4120504B2 (ja) * 2003-07-30 2008-07-16 トヨタ自動車株式会社 車両および車両の制御方法
JP4155236B2 (ja) * 2004-07-09 2008-09-24 トヨタ自動車株式会社 車両用駆動装置の制御装置
WO2009005073A1 (ja) * 2007-07-02 2009-01-08 Equos Research Co., Ltd. キャンバ角制御装置
US20090319146A1 (en) * 2008-06-20 2009-12-24 Graham Toby E Traction control system for diesel powered vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265430A (ja) * 1986-05-09 1987-11-18 Honda Motor Co Ltd 車輌の駆動輪のスリツプ制御方法
JPS6429636A (en) * 1987-04-17 1989-01-31 Honda Motor Co Ltd Rough road detector at time of vehicle running
JPH058713A (ja) * 1991-06-28 1993-01-19 Mazda Motor Corp 車両のスリツプ制御装置
JPH09328064A (ja) * 1996-06-11 1997-12-22 Nec Home Electron Ltd 車両用アンチロックブレーキ制御装置
JP2002027610A (ja) 2000-07-10 2002-01-25 Toyota Industries Corp 産業車両の走行制御装置
JP2004084773A (ja) * 2002-08-26 2004-03-18 Toyota Motor Corp 路面入力検出装置および変速機の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103879305A (zh) * 2014-03-10 2014-06-25 清华大学 用于四轮独立驱动电动车的最大转矩估计驱动防滑算法
CN103879305B (zh) * 2014-03-10 2015-10-28 清华大学 用于四轮独立驱动电动车的最大转矩估计驱动防滑算法
US9248745B1 (en) * 2014-09-16 2016-02-02 Robert Bosch Gmbh Wheel stability control based on the moment of an electrical motor
US10166871B2 (en) 2014-09-16 2019-01-01 Robert Bosch Gmbh Wheel stability control based on the moment of an electrical motor

Also Published As

Publication number Publication date
US20130144480A1 (en) 2013-06-06
JP5336447B2 (ja) 2013-11-06
CN103068610A (zh) 2013-04-24
US8880261B2 (en) 2014-11-04
CN103068610B (zh) 2016-09-21
JP2012055113A (ja) 2012-03-15
EP2612798A1 (en) 2013-07-10
AU2011297399B2 (en) 2014-04-24
AU2011297399A1 (en) 2013-02-28
EP2612798A4 (en) 2018-04-25
EP2612798B1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
WO2012029476A1 (ja) 電気駆動車両
US7291090B2 (en) Motor torque control system for vehicle
JP5472028B2 (ja) モータトルク制御装置
JPWO2014064728A1 (ja) 電動車両の回生ブレーキ制御システム
JPH0549106A (ja) モータ制御装置
JP6729142B2 (ja) 駆動力制御方法及び駆動力制御装置
JPH08182119A (ja) 電気自動車用走行用モータの制御方法
WO2013024871A1 (ja) 電気駆動車両
JP4845839B2 (ja) 電気駆動車両
JP6578146B2 (ja) スリップ制御装置
US11279333B2 (en) Vehicle control device
KR20190143646A (ko) 차량용 조향 제어방법
JP5185912B2 (ja) 車両挙動制御装置
JP4736742B2 (ja) 電気駆動車両
JP4266164B2 (ja) 3輪車の制御装置
JP2006200526A (ja) 車両の出力特性制御装置
JP2013193596A (ja) 車両制御装置
JP5057406B2 (ja) 走行制御装置および該装置を備えたフォークリフト
JP4670691B2 (ja) 車両用駆動制御装置、自動車及び車両用駆動制御方法
JPH1178818A (ja) 車両のブレーキ制御装置
JP7445459B2 (ja) 電動車両の制御装置
JP6453103B2 (ja) 車両運動制御装置
JP7394096B2 (ja) 車両用制御装置
JP6613172B2 (ja) 車両の制御装置及び車両の制御方法
JP2651937B2 (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039468.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11023/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011821494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13816523

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011297399

Country of ref document: AU

Date of ref document: 20110729

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE