WO2013024871A1 - 電気駆動車両 - Google Patents

電気駆動車両 Download PDF

Info

Publication number
WO2013024871A1
WO2013024871A1 PCT/JP2012/070751 JP2012070751W WO2013024871A1 WO 2013024871 A1 WO2013024871 A1 WO 2013024871A1 JP 2012070751 W JP2012070751 W JP 2012070751W WO 2013024871 A1 WO2013024871 A1 WO 2013024871A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
slip
command
electric motor
magnitude
Prior art date
Application number
PCT/JP2012/070751
Other languages
English (en)
French (fr)
Inventor
輝 菊池
知彦 安田
佐藤 隆之
中島 吉男
啓之 小林
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2013024871A1 publication Critical patent/WO2013024871A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electrically driven vehicle that travels when drive wheels are driven by an electric motor.
  • slip suppression control reduces the torque of the electric motor that drives the driving wheels when slipping of the driving wheels occurs. Then, there is a method of suppressing the slip and recovering the torque of the motor that has been reduced when the slip is eliminated.
  • Japanese Patent Laid-Open No. 2-299402 describes a vehicle that performs such a slip suppression method.
  • the torque of the motor may be excessively reduced. This is because even if the torque of the electric motor is reduced, it takes a certain amount of time until the slip of the drive wheels is actually eliminated, and the torque of the electric motor is excessively reduced during that time. As a result, the magnitude of the average torque output by the electric motor becomes small, and there is a possibility that the acceleration performance is lowered when the vehicle is accelerated, or the deceleration performance is lowered when the vehicle is decelerated. Moreover, there is a possibility that pitching vibration of the vehicle may be induced due to a large variation in the torque of the electric motor.
  • Japanese Patent Application Laid-Open No. 2002-27610 describes a vehicle that performs slip suppression control that reduces the torque of an electric motor to 10 to 20% when a slip occurs. As described above, when the limit value is provided, the possibility that the torque of the motor is excessively reduced is reduced.
  • An object of the present invention is to prevent an excessive reduction in the torque of an electric motor that drives a drive wheel when the drive wheel slips, and to eliminate the slip of the drive wheel regardless of the magnitude of the required torque. It is to provide a driving vehicle.
  • the present invention reduces the magnitude of torque of the electric motor, drive wheels driven by the electric motor, and slip when the drive wheels are generated, and after the slip is eliminated.
  • the electric motor control means reduces the magnitude of the torque of the electric motor when a slip occurs in the drive wheel.
  • a limit value is set for the magnitude of the torque at the time, and the magnitude of the limit value is reduced stepwise in accordance with the duration of the slip generated in the drive wheel.
  • the present invention it is possible to prevent the torque of the electric motor from being excessively reduced when the slip generated in the drive wheel is eliminated, and to suppress an unnecessary decrease in the acceleration performance and deceleration performance of the vehicle.
  • the torque of the electric motor can be sufficiently reduced, and slip generated on the drive wheels can be eliminated.
  • FIG. 1 is a schematic configuration diagram of an electrically driven vehicle according to a first embodiment of the present invention.
  • the block diagram of the slip determination device 18 which concerns on the 1st Embodiment of this invention.
  • the block diagram of the torque correction determination device 30 which concerns on the 1st Embodiment of this invention.
  • the block diagram of the slip ratio calculator 31 which concerns on the 1st Embodiment of this invention.
  • the flowchart of the OFF command process which the torque limitation calculator 23 which concerns on the 1st Embodiment of this invention performs.
  • the flowchart of the ON command process which the torque limitation calculator 23 which concerns on the 1st Embodiment of this invention performs.
  • FIG. 1 is a schematic configuration diagram of an electrically driven vehicle according to a first embodiment of the present invention.
  • the electric drive vehicle shown in this figure includes a drive wheel 3 and a drive wheel 6, a driven wheel 7 and a driven wheel 8, an electric motor 1 that drives the drive wheel 3 via a gear 2, and a drive wheel 6 that is provided via a gear 5.
  • the electric motor 4 which drives is provided.
  • Induction motors are used as the motor 1 and the motor 4 in the present embodiment.
  • a synchronous motor can be used as the motors 1 and 4.
  • the electric motor 1 and the electric motor 4 are controlled by an electric motor control device (electric motor control means) 22.
  • the electric motor control device 22 includes a slip determiner 18, a torque limit calculator 23, a torque command calculator 17, a torque controller 16, and a power converter 13.
  • the motors 1 and 4 controlled by the motor control device 22 drive the drive wheels 3 and 6 via the gears 2 and 5 so that the vehicle moves forward or backward.
  • the electrically driven vehicle shown in FIG. 1 includes speed detectors 9 and 10 and speed detectors 11 and 12.
  • the speed detector 9 is connected to the electric motor 1 and detects the rotational speed of the electric motor 1.
  • the speed detector 10 is connected to the electric motor 4 and detects the rotational speed of the electric motor 4.
  • the speed detector 11 is connected to the shaft of the driven wheel 7 and detects the rotational speed of the driven wheel 7.
  • the speed detector 12 is connected to the shaft of the driven wheel 8 and detects the rotational speed of the driven wheel 8.
  • the speed detectors 9, 10, 11, and 12 are connected to the slip determiner 18, and their detected speeds are output to the slip determiner 18.
  • the speed detectors 9 and 10 are connected to the torque controller 16 and output the detected speed to the torque controller 16. The detected speed is thus fed back to the torque controller 16 and used for torque control of the electric motors 1 and 4 in the torque controller 16.
  • the slip determination unit 18 receives the rotational speed detection values output from the speed detector 9, the speed detector 10, the speed detector 11, and the speed detector 12, and slip occurs in the drive wheels 3 and 6. This is a part for executing processing for determining whether or not there is.
  • the slip determiner 18 detects the occurrence of slip (a slip determination method will be described in detail later with reference to the drawings), it outputs a torque correction command.
  • the slip determiner 18 outputs an “ON command” as a torque correction command to the torque limit calculator 23 and the torque command calculator 17, and no slip has occurred. If it is determined, an “OFF command” is output as a torque correction command.
  • the torque limit calculator 23 receives the torque correction command output from the slip determiner 18 and outputs the torque command limit values (torque command limit values LPn, NPn) to the motor 1 and the motor 4 to the torque command calculator 17. To do. Details of the torque limit calculator 23 will be described later with reference to the drawings.
  • the torque command calculator 17 includes an accelerator opening detector 19 that detects an accelerator pedal opening according to the driver's accelerator operation, and a brake opening that detects the brake pedal opening according to the driver's brake operation.
  • a degree detector 20 and a steering angle detector 21 for detecting a steering angle corresponding to the driver's steering operation are connected.
  • the current detector 14 is connected between the power converter 13 and the electric motor 1 and detects a current flowing between them. The detected current value of the current detector 14 is output to the torque controller 16.
  • the current detector 15 is connected between the power converter 13 and the electric motor 4, and detects a current flowing between them. The detected current value of the current detector 15 is output to the torque controller 16.
  • the torque controller 16 is based on the torque command to the motor 1 output from the torque command calculator 17, the current detection value output from the current detector 14, and the rotation speed detection value output from the speed detector 9.
  • a gate pulse signal to the power converter 13 is output by pulse width modulation control (PWM control) so that the torque output from the motor 1 follows the torque command to the motor 1.
  • PWM control pulse width modulation control
  • the torque controller 16 is based on the torque command to the motor 4 output from the torque command calculator 17, the current detection value output from the current detector 15, and the rotational speed detection value output from the speed detector 10.
  • the gate pulse signal to the power converter 13 is output by PWM control so that the torque output from the motor 4 follows the torque command to the motor 4.
  • the power converter 13 receives a gate pulse signal from the torque controller 16, and a switching element such as an IGBT (insulated gate bipolar transistor) performs switching at high speed, thereby realizing torque control with high response to the motors 1 and 4. .
  • a switching element such as an IGBT (insulated gate bipolar transistor) performs switching at high speed, thereby realizing torque control with high response to the motors 1 and 4. .
  • FIG. 2 is a block diagram of the slip determiner 18 according to the first embodiment of the present invention.
  • the slip determination unit 18 shown in FIG. 2 is a left drive wheel wheel speed calculator 24 as a calculation means for calculating the slip ratio ⁇ of the drive wheels 3 and 6 from the wheel speeds of the drive wheels 3 and 6 and the driven wheels 7 and 8.
  • the correction determination device 30 is provided.
  • the left driving wheel wheel speed calculator 24 receives the rotation speed detection value of the electric motor 1 output from the speed detector 9 and outputs the wheel speed detection value of the driving wheel 3.
  • the right driving wheel wheel speed calculator 25 receives the rotation speed detection value of the electric motor 4 output from the speed detector 10 and outputs the wheel speed detection value of the driving wheel 6.
  • the left driven wheel speed calculator 26 receives the rotational speed detection value of the driven wheel 7 output from the speed detector 11 and outputs the wheel speed detection value of the driven wheel 7.
  • the right driven wheel speed calculator 27 receives the rotational speed detection value of the driven wheel 8 output from the speed detector 12 and outputs the wheel speed detection value of the driven wheel 8.
  • the driving wheel wheel speed calculator 28 calculates the wheel speed detection value of the driving wheel 3 output from the left driving wheel wheel speed calculator 24 and the wheel speed detection value of the driving wheel 6 output from the right driving wheel wheel speed calculator 25. As an input, those average values are output as drive wheel wheel speed detection values.
  • the driven wheel speed calculator 29 outputs the wheel speed detection value of the driven wheel 7 output from the left driven wheel speed calculator 26 and the wheel speed detection value of the driven wheel 8 output from the right driven wheel speed calculator 27. As an input, the average value is output as a detected wheel speed detection value.
  • FIG. 3 is a configuration diagram of the torque correction determination unit 30 according to the first embodiment of the present invention.
  • the torque correction determiner 30 includes a slip ratio calculator 31 and a determiner 32.
  • the slip ratio calculator 31 calculates the slip ratio ⁇ using the drive wheel speed detection value output from the drive wheel speed calculator 28 and the driven wheel speed detection value output from the driven wheel speed calculator 29 as inputs. Is the part to execute.
  • FIG. 4 is a configuration diagram of the slip ratio calculator 31 according to the first embodiment of the present invention.
  • the slip ratio calculator 31 includes a subtractor 33, absolute value calculators 34 and 35, a maximum value selector 36, and a divider 37.
  • the subtractor 33 inputs the drive wheel wheel speed detection value and the driven wheel wheel speed detection value and outputs the difference between them.
  • the absolute value calculator 34 receives the driven wheel speed detection value and outputs the absolute value.
  • the absolute value calculator 35 receives the driving wheel speed detection value and outputs the absolute value.
  • the maximum value selector 36 receives the output of the absolute value calculator 34 and the output of the absolute value calculator 35 and outputs the larger one.
  • the divider 37 divides the output of the subtractor 33 by the output of the maximum value selector 36 to output the slip ratio ⁇ of the drive wheels 3 and 6.
  • the ground speed of the drive wheels 3 and 6 is originally required for the calculation of the slip ratio ⁇ of the drive wheels 3 and 6, but here the wheel speeds of the driven wheels 7 and 8 are used as approximate values.
  • the slip ratio ⁇ is calculated using the average speed of the left and right driven wheels 7 and 8 and the average speed of the left and right drive wheels 3 and 6, but the slip ratio ⁇ is calculated using other calculation methods. It may be calculated. As another calculation method, for example, there is a calculation method using the wheel speeds of the drive wheels 3 and 6 and the driven wheels 7 and 8 on one of the left and right sides.
  • FIG. 5 is a graph showing the relationship between the slip ratio and the friction coefficient between the wheel and the road surface.
  • the region where the slip rate ⁇ is positive indicates the slip rate when the vehicle is accelerated
  • the negative region indicates the slip rate when the vehicle is decelerated.
  • the region where the friction coefficient is negative indicates that the force generated between the wheel and the road surface is opposite to the traveling direction of the vehicle.
  • the magnitude of the slip ratio that is, the magnitude of the absolute value of the slip ratio
  • the friction coefficient between the wheel and the road surface increases as the value increases.
  • slip occurs in a region where the slip ratio ⁇ satisfies ⁇ > ⁇ P or ⁇ ⁇ N (slip generation region). Therefore, it is possible to determine whether or not slip occurs by calculating the slip ratio ⁇ and determining whether or not the calculated slip ratio ⁇ is included in the slip generation region ( ⁇ N ⁇ ⁇ ⁇ ⁇ P). it can.
  • ⁇ P may be set to 0.1 to 0.3
  • ⁇ N may be set to ⁇ 0.1 to ⁇ 0.3, for example.
  • the determination unit 32 receives the slip ratio value ⁇ calculated by the slip ratio calculator 31 as an input, determines whether or not to correct the torque output from the motor 1 and the motor 4, and performs torque correction based on the determination result. This is the part that outputs the command (ON command / OFF command). Specifically, the determiner 32 generates a slip when the slip ratio ⁇ output from the slip ratio calculator 31 is higher than a predetermined set value ⁇ P or lower than a predetermined set value ⁇ N. And an ON command is output as a torque correction command. On the other hand, in other cases, it is determined that no slip has occurred, and an OFF command is output.
  • the torque command calculator 17 reduces the torque command to be output, so that the slip of the drive wheels 3 and 6 is suppressed and the slip rate of the drive wheels 3 and 6 is reduced.
  • can satisfy ⁇ N ⁇ ⁇ ⁇ ⁇ P.
  • ⁇ P and ⁇ N are preferably set to slip ratios that maximize the coefficient of friction between the drive wheels 3 and 6 and the road surface. By doing in this way, the drive wheels 3 and 6 can be used effectively to the limit which the drive wheels 3 and 6 do not slip.
  • FIG. 6 is a flowchart of processing (OFF command processing) executed when the torque limit calculator 23 according to the first embodiment of the present invention receives an OFF command.
  • the torque limit calculator 23 when an OFF command is input from the slip determiner 18, the torque limit calculator 23 outputs initial values LP1 and LN1 as torque command limit values until an ON command is input. (S601, 602).
  • the ON command processing shown in FIG. 7 is executed.
  • S704 (described later) in the ON command processing executed by the torque limit calculator 23, a torque command limit value having a larger number of subscripts is output to the torque command calculator 17 every time T [s] elapses. Shall be.
  • FIG. 7 is a flowchart of processing (ON command processing) executed when the torque limit calculator 23 according to the first embodiment of the present invention receives an ON command.
  • ON command processing ON command processing
  • the torque limit calculator 23 starts the timer and starts measuring the elapsed time [s] from the time when the ON command is input. (S701). Then, while monitoring whether an OFF command is input, the time is measured until the time reaches a preset time T [s] (S702, 703).
  • the torque command limit values LPn and LNn are smaller by one step than those output immediately before (that is, subscript numbers).
  • Is output to the torque command calculator 17 (for example, if the initial values LP1 and LN1 were output immediately before, LP2 and LN2 are output) (S704). ).
  • the measurement time is reset (S705), the process returns to S702, and the subsequent processing is repeated.
  • an OFF command is input from the slip determiner 18 while measuring the time when the ON command is input or the elapsed time from S705, the ON command processing is terminated and the OFF command shown in FIG. Execute the process.
  • the magnitudes of the torque command limit values LPn and LNn output from the torque limit calculator 23 are reduced stepwise according to the duration of the slip generated in the drive wheels 3 and 6. Is set to Specifically, the magnitudes of the limit values LPn and LNn are set to decrease step by step as time T [s] elapses in accordance with the increase in slip duration of the drive wheels 3 and 6. Has been.
  • the time measurement is started from the input time of the ON command, and the torque command limit values LPn and LNn are changed every time T [s] with reference to the time from the input time. did.
  • the time T [s] that is a condition for changing the torque command limit values LPn and LNn may be different from each other.
  • the time when the torque command output from the torque command calculator 17 coincides with the torque command limit values LPn and LNn is fed back from the torque command calculator 17 to start time measurement from that time, and the measurement start time
  • the torque command limit values LPn and LNn may be changed every time the time from the time reaches a predetermined time (for example, the times Ta and Tb [s] in FIGS. 10 and 11).
  • FIG. 8 is a flowchart of processing (ON command processing) executed when the torque command computing unit 17 according to the first embodiment of the present invention receives an ON command.
  • the torque command calculator 17 changes the torque command output to the torque controller 16 to the previous value (for example, the drive wheel 3 immediately before).
  • 6 is a torque instruction value when no slip has occurred (step S801).
  • the torque command calculator 17 performs correction to gradually decrease the torque command with the passage of time in accordance with a predetermined standard while checking whether or not an OFF command has been input (S801, 802). 803).
  • the corrected torque command reaches the torque command limit values LPn and LNn input from the torque limit calculator 23 (S803), the torque command is held at the limit values LPn and LNn (S804). ).
  • the torque command calculator 17 when the ON command is input, the torque command calculator 17 according to the present embodiment considers whether or not the torque command limit values LPn and LNn are updated by the torque limit calculator 23 and the limit value. Correction is performed to reduce the torque command until LPn and LNn are reached. Thereby, the operation
  • the torque command calculator 17 in the present embodiment has a predetermined reference except when the torque command matches the torque command limit values LPn and LNn (S804 ⁇ S805 ⁇ S806 ⁇ S804 ⁇ ). (Specifically, the torque command is reduced so that the rate of change of torque over time is constant, and the torque command is linear as shown in FIGS. 10 and 11 (described later). Reduced to the shape.)
  • the torque command is reduced based on a predetermined reference, the time required to reduce the torque command to the torque command limit values LPn and LNn can be calculated. If T [s] is set to a value larger than the time, a time in which the torque command and the torque command limit values LPn and LNn coincide with each other always occurs. Therefore, excessive torque reduction associated with slip control can be achieved. Can be prevented.
  • FIG. 9 is a flowchart of processing (OFF command processing) executed when the torque command calculator 17 according to the first embodiment of the present invention receives an OFF command.
  • the torque command calculator 17 first determines whether or not the torque command matches the torque command value (S901). In S901, when the magnitude (absolute value) of the torque command is less than the magnitude of the torque instruction value, correction for recovering (increasing) the torque command is performed (S902). At that time, the torque command calculator 17 gradually recovers the torque command over time until the torque command value is reached according to a predetermined standard while checking whether an ON command has been input (S903). (S901, 902, 903).
  • the torque command calculator 17 takes into account the magnitude relationship between the torque command value determined by the accelerator pedal depression amount and the like when the OFF command is input, Correction for recovering the torque command is performed until the torque command value is reached.
  • the torque command calculator 17 determines that the vehicle is being accelerated based on the driver's accelerator operation input via the accelerator opening detector 19.
  • FIG. 10 is a timing chart showing an operation during acceleration of the electrically driven vehicle according to the first embodiment of the present invention.
  • the horizontal axis indicates time.
  • the vertical axis in FIG. 10A indicates the wheel speeds of the driven wheels 7 and 8 and the drive wheels 3 and 6.
  • the vertical axis in FIG. 10B indicates the torque correction command (ON command / OFF command) output from the slip determiner 18.
  • the vertical axis in FIG. 10C indicates the torque command output from the torque command calculator 17 and the torque command limit value LPn output from the torque limit calculator 23.
  • the torque command calculator 17 When the slip determiner 18 detects the slip of the drive wheels 3 and 6 from the driven wheel speed and the drive wheel speed and outputs an ON command as a torque correction command, the torque command calculator 17 outputs the torque limit calculator 23.
  • the torque command limit value LPn is used as a lower limit value to reduce the magnitude of the torque command.
  • the torque command calculator 17 performs an operation of recovering the torque command toward the original torque command (that is, the torque command value).
  • the torque limit calculator 23 initially outputs LP1 as the torque command limit value, but if the state where the ON command is output as the torque correction command continues for T [s], the torque command limit value is smaller than LP1. LP2 is output. Thereafter, when the state where the ON command is output as the torque correction command continues for T [s], LP3 having a size smaller than LP2 is output as the torque command limit value. Thereafter, when the state where the ON command is output as the torque correction command continues, the same operation is repeated. For example, when the LPn-1 is output as the torque command limit value, the ON command is output as the torque correction command. When T [s] continues to be output, LPn having a magnitude smaller than LPn ⁇ 1 is output as a torque command limit value.
  • the torque command limit value changes by n-1 steps at the maximum. Further, when the OFF command is output as the torque correction command, the torque command calculator 17 outputs LP1 as the torque command limit value (that is, returns to the initial value). In order to maintain the acceleration state of the vehicle, LP1 to LPn are set to zero or more values.
  • the slip of the drive wheels 3 and 6 cannot be resolved unless the magnitude of the torque output by the motors 1 and 4 is sufficiently reduced.
  • the magnitude of the torque command limit value LPn is gradually reduced, and accordingly, the magnitude of the torque command is also reduced. Accordingly, the magnitude of torque output from the motor 1 and the motor 4 can be reduced to an appropriate value.
  • the torque command calculator 17 determines that the vehicle is decelerating based on the driver's brake operation input via the brake opening detector 20.
  • FIG. 11 is a timing chart showing an operation during deceleration of the electrically driven vehicle according to the first embodiment of the present invention.
  • the horizontal axis represents time.
  • the vertical axis in FIG. 11A indicates the wheel speeds of the driven wheels 7 and 8 and the drive wheels 3 and 6.
  • the vertical axis in FIG. 11B indicates a torque correction command (ON command / OFF command) output from the slip determiner 18.
  • the vertical axis in FIG. 11C indicates the torque command output from the torque command calculator 17 and the torque command limit value LNn output from the torque limit calculator 23.
  • the torque command calculator 17 When the slip determiner 18 detects the slip of the drive wheels 3 and 6 from the driven wheel speed and the drive wheel speed and outputs an ON command as a torque correction command, the torque command calculator 17 outputs the torque limit calculator 23. The magnitude of the torque command is reduced with the torque command limit value LNn as the upper limit value. On the other hand, when the slip determiner 18 outputs an OFF command as a torque correction command, the torque command calculator 17 performs an operation of recovering the torque command toward the original torque command (that is, the torque command value).
  • the torque limit calculator 23 initially outputs LN1 as a torque command limit value. However, if the state where an ON command is output as a torque correction command continues for T [s], the torque command limit value is smaller than LN1. LN2 is output. Thereafter, when the state where the ON command is output as the torque correction command continues for T [s], LN3 having a size smaller than LN2 is output as the torque command limit value. Thereafter, when the state where the ON command is output as the torque correction command continues, the same operation is repeated, for example, when LNn-1 is output as the torque command limit value, the ON command is output as the torque correction command. When T [s] continues to be output, LNn having a magnitude smaller than LNn ⁇ 1 is output as a torque command limit value.
  • the torque command limit value changes by n-1 steps at the maximum. Further, when the OFF command is output as the torque correction command, the torque command calculator 17 outputs LN1 as the torque command limit value. In order to maintain the deceleration state of the vehicle, LN1 to LNn are set to values less than or equal to zero.
  • the slip of the drive wheels 3 and 6 cannot be resolved unless the magnitude of the torque output by the motors 1 and 4 is sufficiently reduced.
  • the magnitude of the torque command limit value LNn is gradually reduced, and accordingly, the magnitude of the torque command is also reduced. Accordingly, the magnitude of torque output from the motor 1 and the motor 4 can be reduced to an appropriate value.
  • the magnitudes of torque command limit values LPn and LNn related to the magnitude of the torque command are set to decrease stepwise as the slip duration increases.
  • the torque of the electric motors 1 and 4 is prevented from being excessively reduced, and an unnecessary decrease in the acceleration performance and deceleration performance of the vehicle can be suppressed.
  • the torque of the electric motors 1 and 4 increases as the slip duration increases. Therefore, the slip of the drive wheels 3 and 6 can be surely eliminated regardless of the magnitude of the required torque.
  • the torque command limit values LPn and LNn have been described as being constant, but the torque command output from the torque command calculator 17 matches the torque command limit values LPn and LNn.
  • the torque command limit value may be changed within a range that does not affect the slip suppression control. As this type of control, the torque command limit value is gradually reduced in the torque limit calculator 23 from the time when the torque command coincides with the torque command limit value. There is something to enlarge. Even if the torque command limit value is set in this way, the torque of the electric motors 1 and 4 is finally reduced stepwise, so that the same effect as described above can be obtained.
  • the control described in the above embodiment is performed until the magnitude of the torque command limit values LPn and LNn is changed to a smaller value (time T [s] in the examples of FIGS. 10 and 11).
  • 4 the torque command from the torque command calculator 17
  • magnitude change rate of time (the slope of the torque command diagram in FIGS. 10 and 11) is appropriately changed according to the increase of the slip duration It can also be understood that is executed. That is, in the example shown in FIG. 10, the time change rate of the magnitude of the torque command during the second occurrence of slip is first set to the first value from the start time of the slip, and then Tc1 [s] has elapsed. Later, it is set to a second value (change rate is zero) that is relatively smaller than the first value.
  • the torques of the electric motors 1 and 4 are compared with the case where the time change rate is constant. Since the time until reduction can be lengthened, the same effect as described above can be obtained.
  • the first value and the second value are alternately moved after Tc3, but “(1) initial value ⁇ (2) relatively smaller than the initial value”.
  • FIG. 12 is a schematic configuration diagram of an electrically driven vehicle according to the second embodiment of the present invention. The difference from the electrically driven vehicle according to the first embodiment is that a load amount sensor 38 and a torque limit calculator 39 are provided.
  • the load amount sensor (load amount detection means) 38 detects the load amount of the electrically driven vehicle and outputs the detected value (load amount detection value) to the torque limit calculator 39.
  • the torque limit calculator 39 determines the torque command limit values LPn and LNn according to the load detection value input from the load sensor 38. This is for executing the process of adjusting the size.
  • FIG. 13 is a diagram showing the relationship between the load capacity and torque command limit values LPn and LNn in the electrically driven vehicle according to the second embodiment of the present invention. As shown in this figure, the torque limit calculator 39 corrects the torque command limit values LPn and LNn so that the magnitude of the torque command limit values LPn and LNn increases in proportion to the increase in the loading capacity of the vehicle. Yes.
  • the slipperiness of the drive wheels 3 and 6 changes according to the load.
  • the frictional force generated on the drive wheels 3 and 6 increases, so that the drive wheels 3 and 6 are less likely to slip. Therefore, it is preferable to relatively increase the torque command for the drive wheels when the load amount is relatively large compared to when the load amount is relatively small. Therefore, in the present embodiment, as shown in FIG. 13, the magnitudes of the torque command limit values LPn and LNn are set larger as the vehicle loading amount increases.
  • FIG. 14 is a schematic configuration diagram of an electrically driven vehicle according to a third embodiment of the present invention. The difference from the electrically driven vehicle according to the first embodiment is that a tilt sensor 40 and a torque limit calculator 41 are provided.
  • the inclination sensor (inclination detection means) 40 is for detecting the inclination of the road surface on which the vehicle is traveling and outputting the detected value (inclination detection value) to the torque limit calculator 41.
  • the torque limit calculator 41 includes the magnitudes of the torque command limit values LPn and LNn according to the tilt detection value input from the tilt sensor 40 in addition to the processing executed by the torque limit calculator 23 in the first embodiment. This is for executing the process of adjusting.
  • FIG. 15 is a diagram showing the relationship between the load capacity and torque command limit values LPn and LNn in the electrically driven vehicle according to the third embodiment of the present invention.
  • the torque limit calculator 41 sets the torque command limit values LPn and LNn so that the magnitude of the torque command limit values LPn and LNn decreases in proportion to the increase in the slope of the road surface on which the vehicle travels. It has been corrected.
  • the slope when the slope is positive, it represents an uphill, and when the slope is negative, it represents a downhill.
  • the ease of slipping of the drive wheels 3 and 6 changes according to the inclination of the road surface.
  • the frictional force generated on the drive wheels 3 and 6 is increased, so that the drive wheels 3 and 6 are less likely to slip. Therefore, when the road surface has a relatively large inclination, it is preferable to relatively reduce the torque command of the drive wheels as compared with the case where the inclination is relatively small. Therefore, in the present embodiment, as shown in FIG. 15, the magnitudes of torque command limit values LPn and LNn are set smaller as the slope of the road surface on which the vehicle is traveling becomes larger.
  • FIG. 16 is a schematic configuration diagram of an electrically driven vehicle according to a fourth embodiment of the present invention. The difference from the electrically driven vehicle according to the first embodiment is that an adjustment device 42 and a torque limit calculator 43 are provided.
  • the adjusting device 42 is an operating device for a person (driver or service person) to adjust the torque command limit values LPn and LNn.
  • the adjusting device 42 for example, there are a device that instructs the torque command limit value in an analog manner according to the amount of rotation of the dial, and a device that instructs a torque command limit value in a digital manner by switching a switch. From the viewpoint of enabling the driver to easily adjust the torque command limit values LPn and LNn manually, the adjusting device 42 is preferably installed in the driver's seat of the vehicle.
  • the torque limit calculator 43 calculates torque command limit values LPn and LNn based on a command (adjustment command) input from the adjustment device 42. This is for executing the process of adjusting the size.
  • the torque limit calculator 43 that receives the input of the adjustment command appropriately output from the adjusting device 42 corrects the magnitudes of the torque command limit values LPn and LNn in accordance with the adjustment command.
  • the optimum torque command limit values LPn and LNn can be used as appropriate in accordance with the road surface on which the vehicle travels, so that unnecessary acceleration reduction and deceleration performance of the vehicle are reduced. Can be suppressed. Moreover, since the aspect of torque reduction at the time of slip occurrence can be matched with the driver's preference, the driver's operation feeling can be improved.
  • the type of the electrically driven vehicle is not particularly mentioned, but the object of application of the present invention is only an electrically driven vehicle in which driving wheels are driven by an electric motor, and is not limited to a general automobile. Absent.
  • the present invention can also be applied to a wheel-type construction machine having a plurality of wheels as a traveling body, such as a wheel loader or a forklift.
  • the motor, the drive wheel driven by the motor, and the torque of the motor when the slip occurs in the drive wheel are reduced, and after the slip is eliminated, the motor
  • the electric motor control means reduces the magnitude of the torque of the electric motor.
  • a limit value is set for the magnitude of the torque, and the magnitude of the limit value is gradually reduced in accordance with an increase in the duration of slip generated in the drive wheels.
  • the limit value related to the magnitude of the torque of the electric motor is set to be gradually reduced as the slip duration increases, so that the torque is prevented from being excessively reduced when the slip of the drive wheel is eliminated, and the vehicle Unnecessary decrease in acceleration performance and deceleration performance can be suppressed.
  • the size of the limit value may be reduced stepwise every time the duration time of the slip reaches a predetermined time.
  • the magnitude of the limit value may be reduced stepwise every time the time when the torque of the drive wheel matches the limit value reaches a predetermined time.
  • size of the torque of the said motor is predetermined except the case where the said torque corresponds with the said limit value. It is also good.
  • the time required to reduce the torque to the limit value can be calculated. If T [s] is set to a value larger than the time, a time when the torque and the limit value coincide with each other will inevitably occur, so that it is possible to prevent excessive reduction of torque accompanying slip control. 5) Further, the limit value may be set to zero or more during acceleration of the vehicle and set to zero or less during deceleration of the vehicle.
  • the size of the limit value may be set larger as the loading amount of the vehicle is larger.
  • the size of the limit value may be set smaller as the slope of the road surface on which the vehicle is traveling is larger.
  • the adjusting device When the adjusting device is installed in this way, an optimum limit value can be used as appropriate in accordance with the road surface condition on which the vehicle travels, so that an unnecessary decrease in the acceleration performance and deceleration performance of the vehicle can be suppressed.
  • the aspect of torque reduction at the time of slip occurrence can be matched with the driver's preference, the driver's operation feeling can be improved.
  • the said adjustment apparatus is good to install in the driver's seat of the said vehicle.
  • the motor, the drive wheel driven by the motor, and the torque of the motor when the slip occurs in the drive wheel are reduced.
  • an electrically driven vehicle including an electric motor control means for recovering the magnitude of the torque of the electric motor
  • the time change rate of the magnitude of the electric motor torque that is reduced by the electric motor control means during the occurrence of the slip is The first value is changed to a first value, and after a predetermined time has elapsed since the start of the slip, the second value is changed to a relatively smaller second value than the first value.
  • the time change rate of the magnitude of the torque is changed in this way, the time until the torque of the motor is reduced can be increased as compared with the case where the time change rate is kept constant, so that the acceleration performance and deceleration performance of the vehicle are reduced. Necessary decline can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 電動機(1,4)と、電動機により駆動される駆動輪(3,6)と、駆動輪にスリップが発生するときに電動機のトルクの大きさを低減させ、当該スリップ解消後に電動機のトルクの大きさを回復させる電動機制御装置(22)とを備えた電気駆動車両において、駆動輪(3,6)にスリップが発生している場合において、電動機制御装置が電動機のトルクの大きさを低減させるときのトルクの大きさにはトルク指令制限値(LPn,LNn)が設定されており、当該制限値の大きさは、駆動輪に発生するスリップの継続時間に応じて段階的に小さくされる。これにより、駆動輪のスリップが発生する場合に、駆動輪を駆動する電動機のトルクが低減され過ぎるのを防止すると共に、必要なトルクの大小に関わらず駆動輪のスリップを解消できる。

Description

電気駆動車両
 本発明は電動機によって駆動輪が駆動されることで走行する電気駆動車両に関する。
 凍結路、圧雪路等の滑りやすい路面を走行中の車両において、運転者がアクセルを踏み込んで車両を加速させようとすると、駆動輪の車輪速度が急増し、駆動輪が空転する現象が発生する場合がある。また、逆に運転者がブレーキを踏み込んで車両を減速させようとすると、駆動輪の車輪速度が急減し、駆動輪がロックする現象が発生する場合がある。以下では、これらの現象をまとめてスリップと称する。このような駆動輪のスリップが発生すると、車両の挙動は不安定になり、またステアリング操作も効かず安定走行が困難になる。そこで、このような駆動輪のスリップを抑制することが重要である。
 電動機によって駆動輪が駆動されることで走行する電気駆動車両においてスリップを抑制する制御(スリップ抑制制御)としては、駆動輪のスリップが発生している場合は駆動輪を駆動する電動機のトルクを低減してスリップを抑制し、スリップが解消したら低減していた当該電動機のトルクを回復する方式がある。例えば、特開平2-299402号公報には、そのようなスリップ抑制方式を行う車両が記載されている。
 しかし、このように電動機のトルクを低減・回復させることでスリップの抑制を図ると、電動機のトルクを低減し過ぎる可能性がある。これは、電動機のトルクを低減しても、実際に駆動輪のスリップが解消されるまでにある程度時間を要するためで、その間に電動機のトルクが低減され過ぎてしまうからである。その結果、電動機の出力する平均的なトルクの大きさが小さくなり、車両の加速時には加速性能が低下し、又は減速時には減速性能が低下するおそれがある。また、電動機のトルクの変動が大きくなることで、車両のピッチング振動を誘発するおそれもある。
 この点を鑑みた技術としては、駆動輪のスリップが発生した場合に低減する電動機のトルクに制限値を設けたものがある。例えば、特開2002-27610号公報には、スリップ発生時に電動機のトルクを10~20%に低減するスリップ抑制制御を行う車両が記載されている。このように、制限値を設けると、電動機のトルクが低減し過ぎるおそれは低減する。
特開平2-299402号公報 特開2002-27610号公報
 しかし、上記特開2002-27610号公報に記載のように、電動機のトルクに制限値を設けると、非常に滑りやすい路面を車両が走行する場合に駆動輪のスリップを抑制することが困難になるおそれがある。これは非常に滑りやすい路面では電動機のトルクを十分小さくしないと駆動輪のスリップを抑制できないが、トルクの制限値によって電動機のトルクが低減されるのが抑制される為である。
 本発明の目的は、駆動輪のスリップが発生する場合に、駆動輪を駆動する電動機のトルクが低減され過ぎるのを防止すると共に、必要なトルクの大小に関わらず駆動輪のスリップを解消できる電気駆動車両を提供することにある。
 本発明は、上記目的を達成するために、電動機と、当該電動機により駆動される駆動輪と、当該駆動輪にスリップが発生するときに前記電動機のトルクの大きさを低減させ、当該スリップ解消後に前記電動機のトルクの大きさを回復させる電動機制御手段とを備えた電気駆動車両において、前記駆動輪にスリップが発生している場合において、前記電動機制御手段が前記電動機のトルクの大きさを低減させるときの当該トルクの大きさには制限値が設定されており、当該制限値の大きさは、前記駆動輪に発生するスリップの継続時間に応じて段階的に小さくされるものとする。
 本発明によれば、駆動輪に発生するスリップを解消するときに電動機のトルクが低減され過ぎることが防止され、車両の加速性能及び減速性能の不必要な低下が抑制される。また、滑りやすい路面を走行する時にも電動機のトルクを十分低減でき、駆動輪に発生するスリップを解消できる。
本発明の第1の実施の形態に係る電気駆動車両の概略構成図。 本発明の第1の実施の形態に係るスリップ判定器18の構成図。 本発明の第1の実施の形態に係るトルク補正判定器30の構成図。 本発明の第1の実施の形態に係るスリップ率演算器31の構成図。 スリップ率と車輪-路面間の摩擦係数との関係を示す図。 本発明の第1の実施の形態に係るトルク制限演算器23が実行するOFF指令処理のフローチャート。 本発明の第1の実施の形態に係るトルク制限演算器23が実行するON指令処理のフローチャート。 本発明の第1の実施の形態に係るトルク指令演算器17が実行するON指令処理のフローチャート。 本発明の第1の実施の形態に係るトルク指令演算器17が実行するOFF指令処理のフローチャート。 本発明の第1の実施の形態に係る電気駆動車両の加速中における動作を示すタイミングチャート。 本発明の第1の実施の形態に係る電気駆動車両の減速中における動作を示すタイミングチャート。 本発明の第2の実施の形態に係る電気駆動車両の概略構成図。 本発明の第2の実施の形態に係る電気駆動車両における積載量とトルク指令制限値LPn,LNnの関係を示す図。 本発明の第3の実施の形態に係る電気駆動車両の概略構成図。 本発明の第3の実施の形態に係る電気駆動車両における積載量とトルク指令制限値LPn,LNnの関係を示す図。 本発明の第4の実施の形態に係る電気駆動車両の概略構成図。
 以下、本発明の実施の形態について図面を用いて説明する。
 図1は本発明の第1の実施の形態に係る電気駆動車両の概略構成図である。この図に示す電気駆動車両は、駆動輪3及び駆動輪6と、従動輪7及び従動輪8と、ギヤ2を介して駆動輪3を駆動する電動機1と、ギア5を介して駆動輪6を駆動する電動機4を備えている。
 本実施の形態における電動機1及び電動機4としては誘導電動機が用いられている。なお、電動機1,4として、同期電動機を用いることもできる。電動機1及び電動機4は、電動機制御装置(電動機制御手段)22によって制御される。
 電動機制御装置22は、スリップ判定器18と、トルク制限演算器23と、トルク指令演算器17と、トルク制御器16と、電力変換器13を備えている。電動機制御装置22によって制御される電動機1,4がギア2,5を介して駆動輪3,6を駆動することで車両は前進または後進する。
 また、図1に示す電気駆動車両は、速度検出器9及び10と、速度検出器11及び12を備えている。速度検出器9は、電動機1に接続されており、電動機1の回転速度を検出する。速度検出器10は、電動機4に接続されており、電動機4の回転速度を検出する。速度検出器11は、従動輪7の軸に接続されており、従動輪7の回転速度を検出する。速度検出器12は、従動輪8の軸に接続されており、従動輪8の回転速度を検出する。速度検出器9,10,11,12はスリップ判定器18に接続されており、それらの検出速度はスリップ判定器18に出力されている。また、速度検出器9,10は、トルク制御器16に接続されており、検出速度をトルク制御器16に出力している。当該検出速度はこのようにトルク制御器16にフィードバックされトルク制御器16における電動機1,4のトルク制御に利用される。
 スリップ判定器18は、速度検出器9、速度検出器10、速度検出器11及び速度検出器12が出力する回転速度検出値を入力して、駆動輪3及び駆動輪6にスリップが発生しているかどうかを判定する処理を実行する部分である。スリップ判定器18は、スリップの発生を検出すると(スリップの判定方法については後に図を用いて詳述する。)、トルク補正指令を出力する。スリップ判定器18は、スリップが発生していると判定した場合には、トルク制限演算器23及びトルク指令演算器17にトルク補正指令として「ON指令」を出力し、スリップが発生していないと判定した場合にはトルク補正指令として「OFF指令」を出力する。
 トルク制限演算器23は、スリップ判定器18の出力するトルク補正指令を入力として、電動機1及び電動機4へのトルク指令の制限値(トルク指令制限値LPn,NPn)をトルク指令演算器17に出力する。トルク制限演算器23の詳細は図を用いて後述する。
 トルク指令演算器17には、運転者のアクセル操作に応じたアクセルペダルの開度を検出するアクセル開度検出器19と、運転者のブレーキ操作に応じたブレーキペダルの開度を検出するブレーキ開度検出器20と、運転者のステアリング操作に応じたステアリングの角度を検出するステアリング角度検出器21が接続されている。
 トルク指令演算器17は、アクセル開度検出器19が出力するアクセル開度検出値と、ブレーキ開度検出器20が出力するブレーキ開度検出値と、ステアリング角度検出器21が出力するステアリング角度検出値と、スリップ判定器18が出力するトルク補正指令(ON指令/OFF指令)と、トルク制限演算器23が出力するトルク指令制限値LPn,NPn(n=1、2、3、…)とを入力値として電動機1及び電動機4へのトルク指令を算出し、その算出したトルク指令をトルク制御器16に出力する。トルク指令演算器17の詳細は図を用いて後述する。なお、以下においては、運転者のアクセルペダル操作、ブレーキペダル操作及びステアリング操作によって決定されるトルク指令であって、トルク指令演算器17においてアクセル開度検出値、ブレーキ開度検出値及びステアリング角度検出値から算出されるものを「トルク指示値」と称することがある。
 電流検出器14は、電力変換器13と電動機1の間に接続されており、これらの間に流れる電流を検出するものである。電流検出器14の電流検出値はトルク制御器16に出力されている。また、電流検出器15は、電力変換器13と電動機4の間に接続されており、これらの間に流れる電流を検出するものである。電流検出器15の電流検出値はトルク制御器16に出力されている。
 トルク制御器16は、トルク指令演算器17が出力する電動機1へのトルク指令と、電流検出器14の出力する電流検出値と、速度検出器9の出力する回転速度検出値とに基づいて、電動機1の出力するトルクが電動機1へのトルク指令に従うように、パルス幅変調制御(PWM制御)により電力変換器13へのゲートパルス信号を出力する。また、トルク制御器16は、トルク指令演算器17が出力する電動機4へのトルク指令と、電流検出器15が出力する電流検出値と、速度検出器10が出力する回転速度検出値とに基づいて、電動機4の出力するトルクが電動機4へのトルク指令に従うように、PWM制御により電力変換器13へのゲートパルス信号を出力する。
 電力変換器13はトルク制御器16からのゲートパルス信号を受け、IGBT(絶縁ゲートバイポーラトランジスタ)等のスイッチング素子が高速にスイッチングを行うことで、電動機1,4に対する高応答なトルク制御を実現する。
 次にスリップ判定器18の詳細な構成について説明する。図2は本発明の第1の実施の形態に係るスリップ判定器18の構成図である。なお、先の図と同じ部分には同じ符号を付して説明は省略する(後の図も同様とする)。図2に示すスリップ判定器18は、駆動輪3,6及び従動輪7,8の車輪速度から駆動輪3,6のスリップ率λを演算する演算手段として、左駆動輪車輪速度演算器24と、右駆動輪車輪速度演算器25と、左従動輪車輪速度演算器26と、右従動輪車輪速度演算器27と、駆動輪車輪速度演算器28と、従動輪車輪速度演算器29と、トルク補正判定器30とを備えている。
 左駆動輪車輪速度演算器24は、速度検出器9の出力する電動機1の回転速度検出値を入力として、駆動輪3の車輪速度検出値を出力する。右駆動輪車輪速度演算器25は、速度検出器10の出力する電動機4の回転速度検出値を入力として、駆動輪6の車輪速度検出値を出力する。
 左従動輪車輪速度演算器26は、速度検出器11の出力する従動輪7の回転速度検出値を入力として、従動輪7の車輪速度検出値を出力する。右従動輪車輪速度演算器27は、速度検出器12の出力する従動輪8の回転速度検出値を入力として、従動輪8の車輪速度検出値を出力する。
 駆動輪車輪速度演算器28は、左駆動輪車輪速度演算器24の出力する駆動輪3の車輪速度検出値と、右駆動輪車輪速度演算器25の出力する駆動輪6の車輪速度検出値を入力として、それらの平均値を駆動輪車輪速度検出値として出力する。従動輪車輪速度演算器29は、左従動輪車輪速度演算器26の出力する従動輪7の車輪速度検出値と、右従動輪車輪速度演算器27の出力する従動輪8の車輪速度検出値を入力として、それらの平均値を従動輪車輪速度検出値として出力する。
 図3は本発明の第1の実施の形態に係るトルク補正判定器30の構成図である。この図に示すようにトルク補正判定器30は、スリップ率演算器31と、判定器32を備えている。
 スリップ率演算器31は、駆動輪車輪速度演算器28の出力する駆動輪車輪速度検出値と従動輪車輪速度演算器29の出力する従動輪車輪速度検出値を入力としてスリップ率λを算出する処理を実行する部分である。
 図4は本発明の第1の実施の形態に係るスリップ率演算器31の構成図である。この図に示すように、スリップ率演算器31は、減算器33と、絶対値演算器34、35と、最大値選択器36と、除算器37とを備えている。
 減算器33は、駆動輪車輪速度検出値と従動輪車輪速度検出値を入力として、それらの差を出力する。絶対値演算器34は、従動輪車輪速度検出値を入力として、その絶対値を出力する。絶対値演算器35は、駆動輪車輪速度検出値を入力として、その絶対値を出力する。最大値選択器36は、絶対値演算器34の出力と絶対値演算器35の出力を入力とし、値の大きい方を出力する。除算器37は、減算器33の出力を最大値選択器36の出力で割ることで、駆動輪3,6のスリップ率λを出力する。
 なお、駆動輪3,6のスリップ率λの演算には、駆動輪3,6の対地速度が本来必要であるが、ここではその近似値として従動輪7,8の車輪速度を用いている。また、ここでは、左右の従動輪7,8の平均速度と左右の駆動輪3,6の平均速度を利用してスリップ率λを算出したが、その他の演算方法を利用してスリップ率λを算出しても良い。その他の演算方法としては、例えば、左右の一方における駆動輪3,6と従動輪7,8の車輪速度を用いて算出するものがある。
 ここで、スリップ率と車輪-路面間の摩擦係数との関係について説明する。図5はスリップ率と車輪-路面間の摩擦係数との関係を示す図である。この図において、スリップ率λが正の領域は車両の加速時のスリップ率を示し、負の領域は車両の減速時のスリップ率を示す。また、摩擦係数が負の領域は車輪-路面間に発生する力が車両の進行方向と逆向きであることを表す。一般に、スリップ率の大きさ(すなわち、スリップ率の絶対値の大きさ)が小さい領域(図5においてスリップ率が零に近い領域)では、その値が増加するにつれて車輪-路面間の摩擦係数の大きさも増加するため、車輪-路面間に作用する力も増加し、スリップが発生しない。すなわち、図5においてスリップが発生しないのは、スリップ率λがλN≦λ≦λPを満たす領域である(スリップ非発生領域)。
 一方、スリップ非発生領域において車輪-路面間の摩擦係数が最大になると、それ以降はスリップ率が増加するにつれて車輪-路面間の摩擦係数の大きさが当該最大値から減少するため、車輪-路面間に作用する力も減少してスリップが発生する。図5においてスリップが発生するのはスリップ率λがλ>λPあるいはλ<λNを満たす領域である(スリップ発生領域)。したがって、スリップ率λを計算し、その計算したスリップ率λがスリップ発生領域(λN≦λ≦λP)に含まれるか否かを判定することで、スリップが発生するか否かを判定することができる。λPは、例えば、0.1~0.3に設定し、λNは、例えば、-0.1~-0.3に設定することがある。
 判定器32は、スリップ率演算器31で算出されたスリップ率値λを入力として、電動機1及び電動機4の出力するトルクを補正するか否かを判定して、その判定結果に基づいてトルク補正指令(ON指令/OFF指令指令)を出力する部分である。具体的には、判定器32は、スリップ率演算器31の出力するスリップ率λが予め定めた設定値λPを上回る場合又は予め定めた設定値λNを下回る場合には、スリップが発生していると判定し、トルク補正指令としてON指令を出力する。一方、それ以外の場合には、スリップが発生していないと判定し、OFF指令を出力する。
 トルク補正判定器30がトルク補正指令としてON指令を出力すると、トルク指令演算器17は出力するトルク指令を低減するので、駆動輪3,6のスリップが抑制されて駆動輪3,6のスリップ率λはλN≦λ≦λPを満たすようにすることができる。なお、λP及びλNは、駆動輪3,6と路面の間の摩擦係数が最大になるようなスリップ率に設定するのが良い。このようにすることで、駆動輪3,6がスリップしない限界まで駆動輪3,6を有効活用することができる。
 次にトルク制限演算器23が実行する処理の詳細について説明する。図6は本発明の第1の実施の形態に係るトルク制限演算器23がOFF指令が入力されたときに実行する処理(OFF指令処理)のフローチャートである。この図に示すように、トルク制限演算器23は、スリップ判定器18からOFF指令が入力されると、ON指令が入力されるまでの間、トルク指令制限値として初期値LP1,LN1を出力する(S601,602)。そして、ON指令が入力されたら、図7に示すON指令処理を実行する。
 ここで、トルク制限演算器23が出力するトルク指令制限値には、車両加速時に利用する正の制限値LPnと、車両減速時に利用する負の制限値LNnとがある(n=1、2、3、…)(図10,11参照)。また、各トルク指令制限値LPn,LNnは、添字のnの数が大きくなるしたがって段階的に大きさ(絶対値)小さくなるように設定されているものとする。すなわち、|LP1|>|LP2|>|LP3|>…>|LPn|が成立し、|LN1|>|LN2|>|LN3|>…>|LNn|が成立する。また、トルク制限演算器23が実行するON指令処理におけるS704(後述)では、時間T[s]が経過するごとに添字の数が1つずつ大きいトルク指令制限値がトルク指令演算器17に出力されるものとする。
 図7は本発明の第1の実施の形態に係るトルク制限演算器23がON指令が入力されたときに実行する処理(ON指令処理)のフローチャートである。この図に示すように、トルク制限演算器23は、スリップ判定器18からON指令が入力されると、タイマーを起動してON指令が入力された時刻からの経過時間[s]の計測を開始する(S701)。そして、OFF指令が入力されるか否かを監視しながら、予め設定しておいた時間T[s]に当該時間が到達するまで時間を計測する(S702,703)。
 このとき、ON指令が入力されてからの時間がT[s]に到達したら、トルク指令制限値LPn,LNnとして直前に出力していたものより一段階大きさの小さいもの(すなわち、添字の数字の大きさが1つ大きいトルク指令制限値)をトルク指令演算器17に出力する(例えば、直前に初期値LP1,LN1を出力していた場合には、LP2,LN2を出力する。)(S704)。トルク指令演算器17へのトルク指令制限値LPn,LNnの出力が完了したら、計測時間をリセットして(S705)S702戻り、以後の処理を繰り返す。一方、ON指令が入力された時刻又はS705からの経過時間を計測している間に、スリップ判定器18からOFF指令が入力された場合には、ON指令処理を終了して図6のOFF指令処理を実行する。
 このように、本実施の形態においてトルク制限演算器23から出力されるトルク指令制限値LPn,LNnの大きさは、駆動輪3,6に発生するスリップの継続時間に応じて段階的に小さくなるように設定されている。具体的には、当該制限値LPn,LNnの大きさは、駆動輪3,6のスリップの継続時間の増加に合わせて、時間T[s]が経過するごとに段階的に小さくなるように設定されている。
 なお、本実施の形態では、ON指令の入力時刻から時間計測を開始し、当該入力時刻からの時間を基準にして時間T[s]経過ごとにトルク指令制限値LPn,LNnを変更する構成とした。しかし、トルク指令制限値LPn,LNnを変更する条件となる時間T[s]は、それぞれ異なる時間としても良い。また、トルク指令演算器17が出力するトルク指令がトルク指令制限値LPn,LNnに一致した時刻をトルク指令演算器17からフィードバックすることで当該時刻から時間計測を開始し、さらに、当該計測開始時刻からの時間が所定の時間(例えば、図10及び図11における時間Ta,Tb[s])に到達するごとにトルク指令制限値LPn,LNnを変更する構成としても良い。
 次にトルク指令演算器17が実行する処理の詳細について説明する。図8は本発明の第1の実施の形態に係るトルク指令演算器17がON指令が入力されたときに実行する処理(ON指令処理)のフローチャートである。
 この図に示すように、トルク指令演算器17は、スリップ判定器18からON指令が入力されると、トルク制御器16に出力しているトルク指令を直前の値(例えば、直前に駆動輪3,6のスリップが発生していない場合にはトルク指示値となる)から低減する補正を開始する(S801)。そして、トルク指令演算器17は、OFF指令が入力されたか否かをチェックしながら(S802)、予め定められた基準に従って、時間経過とともに徐々にトルク指令を小さくする補正を行う(S801,802,803)。その際、補正後のトルク指令が、トルク制限演算器23から入力されるトルク指令制限値LPn,LNnに到達した場合には(S803)、当該制限値LPn,LNnにトルク指令を保持する(S804)。S804においてトルク指令をトルク指令制限値LPn,LNnに保持する補正を開始したら、OFF指令が入力されるか否かをチェックしながら(S805)、トルク指令制限値LPn,LNnが更新されるまで待機する(S804,805,806)。そして、S806において、トルク指令制限値LPn,LNnの更新が確認されたら、S801に戻って、以後の処理を繰り返す。また、上記の処理におけるS802,805においてOFF指令が入力されたことが確認できたら、ON指令処理を終了して図9に示すOFF指令処理を実行する。
 このように本実施の形態に係るトルク指令演算器17は、ON指令が入力されているときには、トルク制限演算器23によるトルク指令制限値LPn,LNnの更新の有無に配慮しながら、当該制限値LPn,LNnに到達するまでトルク指令を低減する補正を行う。これにより駆動輪3,6に発生するスリップを防止する動作が行われる。
 なお、本実施の形態におけるトルク指令演算器17は、トルク指令がトルク指令制限値LPn,LNnと一致している場合(S804→S805→S806→S804→…)を除いて、予め定められた基準に基づいてトルク指令を低減している(具体的には、トルクの時間変化率が一定になるようにトルク指令を低減しており、図10,11(後述)に示すようにトルク指令は直線状に低減している。)。このように予め定めた基準に基づいてトルク指令を低減させると、トルク指令制限値LPn,LNnまでトルク指令を低減させるために必要な時間が算出できる。そして、当該時間よりも大きい値にT[s]を設定すれば、トルク指令とトルク指令制限値LPn,LNnが一致する時間が必ず発生することになるので、スリップ制御に伴うトルクの過剰低減を防止することができる。
 図9は本発明の第1の実施の形態に係るトルク指令演算器17がOFF指令が入力されたときに実行する処理(OFF指令処理)のフローチャートである。
 この図に示すように、トルク指令演算器17は、スリップ判定器18からOFF指令が入力されると、まず、トルク指令がトルク指示値に一致しているか否かを判定する(S901)。S901において、トルク指令の大きさ(絶対値)がトルク指示値の大きさ未満である場合には、トルク指令を回復する(大きくする)補正を行う(S902)。その際、トルク指令演算器17は、ON指令が入力されたか否かをチェックしながら(S903)、予め定められた基準に従って、トルク指示値に到達するまで時間経過とともに徐々にトルク指令を回復する(S901,902,903)。
 S901においてトルク指令がトルク指示値と一致していると判定された場合と、S904においてトルク指令がトルク指示値に到達したと判定された場合には、ON指令が入力されたか否かをチェックしながら(S906)、トルク指令をトルク指示値に保持する(S905)。また、上記の処理におけるS903,906においてON指令が入力されたことが確認できたら、OFF指令処理を終了して図8に示すON指令処理を実行する。
 このように本実施の形態に係るトルク指令演算器17は、OFF指令が入力されているときには、アクセルペダルの踏み込み量等で決定されるトルク指示値とトルク指令との大小関係に配慮しながら、当該トルク指示値に到達するまでトルク指令を回復する補正を行う。
 次に、図10、図11を用いて、本発明の第1の実施の形態に係る電気駆動車両のトルク指令演算器17、スリップ判定器18、トルク制限演算器23の動作について説明する。
 まず、車両加速中における動作について説明する。トルク指令演算器17は、アクセル開度検出器19を介して入力される運転者のアクセル操作に基づいて、車両加速中であることを判定する。図10は、本発明の第1の実施の形態に係る電気駆動車両の加速中における動作を示すタイミングチャートである。
 図10において、横軸は時間を示している。図10(A)の縦軸は、従動輪7,8及び駆動輪3,6の車輪速度を示している。図10(B)の縦軸は、スリップ判定器18の出力するトルク補正指令(ON指令/OFF指令)を示している。図10(C)の縦軸は、トルク指令演算器17の出力するトルク指令及びトルク制限演算器23の出力するトルク指令制限値LPnを示している。
 スリップ判定器18が従動輪車輪速度及び駆動輪車輪速度から駆動輪3,6のスリップを検出してトルク補正指令としてON指令を出力すると、トルク指令演算器17はトルク制限演算器23の出力するトルク指令制限値LPnを下限値としてトルク指令の大きさを低減する。一方、スリップ判定器18がトルク補正指令としてOFF指令を出力すると、トルク指令演算器17は元のトルク指令(すなわち、トルク指示値)に向かってトルク指令を回復する動作を行う。
 トルク制限演算器23は、最初はトルク指令制限値としてLP1を出力するが、トルク補正指令としてON指令が出力される状態がT[s]継続すると、トルク指令制限値としてLP1より大きさが小さいLP2を出力する。この後、さらにトルク補正指令としてON指令が出力される状態がT[s]継続すると、トルク指令制限値としてLP2より大きさが小さいLP3を出力する。この後、さらにトルク補正指令としてON指令が出力される状態が継続する場合は同様の動作を繰り返し、例えば、トルク指令制限値としてLPn-1を出力している状態で、トルク補正指令としてON指令が出力される状態がT[s]継続すると、トルク指令制限値としてLPn-1より大きさが小さいLPnを出力する。このように、トルク指令制限値は最大でn-1段階変化する。また、トルク指令演算器17はトルク補正指令としてOFF指令が出力されると、トルク指令制限値としてLP1を出力する(すなわち、初期値に戻す)。なお、車両の加速状態を保持するためにLP1~LPnは零以上の値とする。
 したがって、図10(C)に示すように、駆動輪3,6のスリップを検出してトルク指令の大きさを低減する場合は、トルク指令はトルク指令制限値LPnを下回らないように制限されるので、電動機1及び電動機4の出力するトルクの大きさを低減し過ぎることが無くなる。
 また、非常に滑りやすい路面を走行する場合は電動機1及び電動機4の出力するトルクの大きさを十分低減しないと駆動輪3,6のスリップが解消されない。しかし、駆動輪3,6のスリップが解消されるまでは、トルク指令制限値LPnの大きさは段階的に低減され、それに伴いトルク指令の大きさも低減されるので、走行している路面状態に応じて適切な値まで電動機1及び電動機4の出力するトルクの大きさを低減することができる。
 次に、車両減速中における動作について説明する。トルク指令演算器17は、ブレーキ開度検出器20を介して入力される運転者のブレーキ操作に基づいて、車両減速中であることを判定する。図11は、本発明の第1の実施の形態に係る電気駆動車両の減速中における動作を示すタイミングチャートである。
 図11において、横軸は時間を示している。図11(A)の縦軸は、従動輪7,8及び駆動輪3,6の車輪速度を示している。図11(B)の縦軸は、スリップ判定器18の出力するトルク補正指令(ON指令/OFF指令)を示している。図11(C)の縦軸は、トルク指令演算器17の出力するトルク指令及びトルク制限演算器23の出力するトルク指令制限値LNnを示している。
 スリップ判定器18が従動輪車輪速度及び駆動輪車輪速度から駆動輪3,6のスリップを検出してトルク補正指令としてON指令を出力すると、トルク指令演算器17はトルク制限演算器23の出力するトルク指令制限値LNnを上限値としてトルク指令の大きさを低減する。一方、スリップ判定器18がトルク補正指令としてOFF指令を出力すると、トルク指令演算器17は元のトルク指令(すなわち、トルク指示値)に向かってトルク指令を回復する動作を行う。
 トルク制限演算器23は、最初はトルク指令制限値としてLN1を出力するが、トルク補正指令としてON指令が出力される状態がT[s]継続すると、トルク指令制限値としてLN1より大きさが小さいLN2を出力する。この後、さらにトルク補正指令としてON指令が出力される状態がT[s]継続すると、トルク指令制限値としてLN2より大きさが小さいLN3を出力する。この後、さらにトルク補正指令としてON指令が出力される状態が継続する場合は同様の動作を繰り返し、例えば、トルク指令制限値としてLNn-1を出力している状態で、トルク補正指令としてON指令が出力される状態がT[s]継続すると、トルク指令制限値としてLNn-1より大きさが小さいLNnを出力する。このように、トルク指令制限値は最大でn-1段階変化する。また、トルク指令演算器17はトルク補正指令としてOFF指令が出力されると、トルク指令制限値としてLN1を出力する。なお、車両の減速状態を保持するためにLN1~LNnは零以下の値とする。
 したがって、図11(C)に示すように、駆動輪3,6のスリップを検出してトルク指令の大きさを低減する場合は、トルク指令はトルク指令制限値LNnを上回らないように制限されるので、電動機1及び電動機4の出力するトルクの大きさを低減し過ぎることが無くなる。
 また、非常に滑りやすい路面を走行する場合は電動機1及び電動機4の出力するトルクの大きさを十分低減しないと駆動輪3,6のスリップが解消されない。しかし、駆動輪3,6のスリップが解消されるまでは、トルク指令制限値LNnの大きさは段階的に低減され、それに伴いトルク指令の大きさも低減されるので、走行している路面状態に応じて適切な値まで電動機1及び電動機4の出力するトルクの大きさを低減することができる。
 以上のように、本実施の形態によれば、トルク指令の大きさに係るトルク指令制限値LPn,LNnの大きさがスリップ継続時間の増加に伴って段階的に小さく設定されるので、駆動輪3,6のスリップを解消するときに電動機1,4のトルクが低減され過ぎることが防止され、車両の加速性能及び減速性能の不必要な低下を抑制することができる。また、スリップの解消にトルクの大きさを十分小さくする必要のある路面(例えば、滑りやすい路面)を走行している場合には、スリップ継続時間の増加に伴って電動機1,4のトルクの大きさを十分低減できるので、必要なトルクの大小に関わらず駆動輪3,6のスリップを確実に解消することができる。
 なお、上記の実施の形態では、トルク指令制限値LPn,LNnは、それぞれ一定であるものとして説明したが、トルク指令演算器17から出力されるトルク指令がトルク指令制限値LPn,LNnに一致している間に、スリップ抑制制御に影響を与えない範囲内で当該トルク指令制限値を変化させても良い。この種の制御を利用したものとしては、トルク指令がトルク指令制限値に一致した時刻から、当該トルク指令制限値をトルク制限演算器23において徐々に小さくするものや、これとは反対に徐々に大きくするものがある。このようにトルク指令制限値を設定しても、最終的に電動機1,4のトルクが段階的に低減することになるので、上記と同様の効果を得ることができる。
 また、上記の実施の形態で説明した制御は、トルク指令制限値LPn,LNnの大きさを小さいものに変更するまでの間(図10,11の例では時間T[s])に、電動機1,4のトルク(トルク指令演算器17からのトルク指令)の大きさの時間変化率(図10,11におけるトルク指令の線図の傾き)を、スリップ継続時間の増加に合わせて適宜変更する制御を実行していると解することもできる。すなわち、図10に示した例では、2回目のスリップ発生中におけるトルク指令の大きさの時間変化率は、まず、当該スリップの開始時刻から第1の値に設定され、その後Tc1[s]経過後に第1の値よりも相対的に小さい第2の値(変化率は零)に設定される。このように時間T[s](=Tc1+Tc2[s])の間においてトルク指令の大きさの時間変化率を変更すると、時間変化率を一定にする場合と比較して電動機1,4のトルクが低減するまでの時間を長くできるので、上記と同様の効果を得ることができる。なお、図10に示す例では、Tc3以後も第1の値と第2の値を交互に行き来させているが、「(1)初期値→(2)当該初期値よりも相対的に小なる値→(3)当該相対的に小なる値((2)の値)よりも相対的に大なる値→(4)当該相対的に大なる値((3)の値)よりも相対的に小なる値→…(省略)」というように、時系列順に配列させた複数の値において隣り合う2つの値の関係が大小関係になるように各値を設定すれば、3つ以上の値の間を行き来させても良い。
 図12は本発明の第2の実施の形態に係る電気駆動車両の概略構成図である。第1の実施の形態に係る電気駆動車両と異なる点は、積載量センサ38と、トルク制限演算器39を備えている点にある。
 積載量センサ(積載量検出手段)38は、電気駆動車両の積載量を検出し、その検出値(積載量検出値)をトルク制限演算器39に出力するためのものである。トルク制限演算器39は、第1の実施の形態におけるトルク制限演算器23が実行する処理に加えて、積載量センサ38から入力される積載量検出値に応じてトルク指令制限値LPn,LNnの大きさを調整する処理を実行するためのものである。図13は本発明の第2の実施の形態に係る電気駆動車両における積載量とトルク指令制限値LPn,LNnの関係を示す図である。この図に示すように、トルク制限演算器39は、車両の積載量の増加に比例してトルク指令制限値LPn,LNnの大きさが大きくなるようにトルク指令制限値LPn,LNnを補正している。
 例えば、荷台を有するダンプトラックのように積載量が大きく変化する車両では、積載量に応じて駆動輪3,6の滑りやすさが変化する。一般に、積載量が大きくなると駆動輪3,6に発生する摩擦力が大きくなるので駆動輪3,6は滑りにくくなる。したがって、積載量が相対的に大きい場合は積載量が相対的に小さい場合に比べて駆動輪のトルク指令を相対的に大きくすることが好ましい。そこで、本実施の形態では、図13に示すように車両の積載量が大きくなるにつれて、トルク指令制限値LPn,LNnの大きさを大きく設定している。
 このようにトルク指令制限値LPn,LNnを設定すると、積載量が大きい場合に不必要にトルク指令の大きさが小さくなることが抑制されるので、車両の加速性能及び減速性能の不必要な低下を抑制できる。
 図14は本発明の第3の実施の形態に係る電気駆動車両の概略構成図である。第1の実施の形態に係る電気駆動車両と異なる点は、傾斜センサ40と、トルク制限演算器41を備えている点にある。
 傾斜センサ(傾斜検出手段)40は、車両が走行している路面の傾斜を検出し、その検出値(傾斜検出値)をトルク制限演算器41に出力するためのものである。トルク制限演算器41は、第1の実施の形態におけるトルク制限演算器23が実行する処理に加えて、傾斜センサ40から入力される傾斜検出値に応じてトルク指令制限値LPn,LNnの大きさを調整する処理を実行するためのものである。図15は本発明の第3の実施の形態に係る電気駆動車両における積載量とトルク指令制限値LPn,LNnの関係を示す図である。この図に示すように、トルク制限演算器41は、車両が走行する路面の傾斜の増加に比例してトルク指令制限値LPn,LNnの大きさが小さくなるようにトルク指令制限値LPn,LNnを補正している。なお、図15において、傾斜が正の場合は上り坂を、傾斜が負の場合は下り坂を表すものとする。
 例えば、車両が走行している路面の傾斜が変化する場合は、路面の傾斜に応じて駆動輪3,6の滑りやすさが変化する。一般に、路面の傾斜が小さくなると駆動輪3,6に発生する摩擦力が大きくなるので駆動輪3,6は滑りにくくなる。したがって、路面の傾斜が相対的に大きい場合は傾斜が相対的に小さい場合に比べて駆動輪のトルク指令を相対的に小さくすることが好ましい。そこで、本実施の形態では、図15に示すように車両が走行している路面の傾斜の大きさが大きくなるにつれて、トルク指令制限値LPn,LNnの大きさを小さく設定している。
 このようにトルク指令制限値LPn,LNnを設定すると、路面の傾斜が小さい場合に不必要にトルク指令の大きさが小さくなることが抑制されるので、車両の加速性能及び減速性能の不必要な低下を抑制できる。
 図16は本発明の第4の実施の形態に係る電気駆動車両の概略構成図である。第1の実施の形態に係る電気駆動車両と異なる点は、調節装置42と、トルク制限演算器43を備えている点にある。
 調節装置42は、人(運転者又はサービスマン等)がトルク指令制限値LPn,LNnを調節するための操作装置である。調節装置42としては、例えば、ダイヤルの回転量によってアナログ式にトルク指令制限値を指示するものや、スイッチを切り換えることでデジタル式にトルク指令制限値を指示するもの等がある。運転者が手動で容易にトルク指令制限値LPn,LNnを調節可能にする観点からは、調節装置42は車両の運転席に設置することが好ましい。
 トルク制限演算器43は、第1の実施の形態におけるトルク制限演算器23が実行する処理に加えて、調節装置42から入力される指令(調節指令)に基づいてトルク指令制限値LPn,LNnの大きさを調整する処理を実行するためのものである。調節装置42から適宜出力される調節指令の入力を受けたトルク制限演算器43は、当該調節指令に合わせてトルク指令制限値LPn,LNnの大きさを補正する。
 このように調節装置42を設置すると、車両の走行する路面の状況に合わせて最適なトルク指令制限値LPn,LNnを適宜利用することができるので、車両の加速性能及び減速性能の不必要な低下を抑制できる。また、スリップ発生時のトルク低減の態様を運転者の嗜好に合わせることができるので、運転者の操作フィーリングを向上させることができる。
 以上の説明では、電気駆動車両の種類については特に触れなかったが、上記発明の適用対象は電動機によって駆動輪が駆動される電気駆動車両であれば良く、一般的な自動車のみに限られるものではない。例えば、ホイールローダやフォークリフト等、走行体として複数の車輪を有するホイール式の建設機械にも適用可能であることは言うまでもない。
 ここで、上記の各実施の形態の概要について説明する。
 (1)上記の実施の形態では、電動機と、当該電動機により駆動される駆動輪と、当該駆動輪にスリップが発生するときに前記電動機のトルクの大きさを低減させ、当該スリップ解消後に前記電動機のトルクの大きさを回復させる電動機制御手段とを備えた電気駆動車両において、前記駆動輪にスリップが発生している場合において、前記電動機制御手段が前記電動機のトルクの大きさを低減させるときの当該トルクの大きさには制限値が設定されており、当該制限値の大きさは、前記駆動輪に発生するスリップの継続時間の増加に合わせて段階的に小さくされることとした。これにより電動機のトルクの大きさに係る制限値がスリップ継続時間の増加に伴って段階的に小さく設定されるので、駆動輪のスリップを解消するときにトルクが低減され過ぎることが防止され、車両の加速性能及び減速性能の不必要な低下を抑制することができる。
 (2)また、前記制限値の大きさは、前記スリップの継続時間が所定時間に到達するごとに、段階的に小さくしても良い。
 (3)さらに、前記制限値の大きさは、前記駆動輪のトルクが当該制限値に一致する時間が所定時間に到達するごとに、段階的に小さくしても良い。
 (4)また、前記電動機制御手段が前記電動機のトルクの大きさを低減するときの当該トルクの時間変化は、当該トルクが前記制限値と一致している場合を除いて、予め定められているとしても良い。このように予め定めた基準に基づいてトルクを低減させると、制限値までトルクを低減させるために必要な時間が算出できる。そして、当該時間よりも大きい値にT[s]を設定すれば、トルクと制限値が一致する時間が必ず発生することになるので、スリップ制御に伴うトルクの過剰低減を防止することができる
 (5)また、前記制限値は、前記車両の加速中は零以上に設定され、前記車両の減速中は零以下に設定すると良い。
 (6)また、前記制限値の大きさは、前記車両の積載量が大きいほど大きく設定すると良い。このように制限値を設定すると、積載量が大きい場合に不必要にトルクの大きさが小さくなることが抑制されるので、車両の加速性能及び減速性能の不必要な低下を抑制できる。
 (7)また、前記制限値の大きさは、前記車両が走行している路面の傾斜が大きいほど小さく設定すると良い。このように制限値を設定すると、路面の傾斜が小さい場合に不必要にトルク指令の大きさが小さくなることが抑制されるので、車両の加速性能及び減速性能の不必要な低下を抑制できる。
 (8)また、前記制限値の大きさを調節するための調節装置をさらに備えても良い。このように調節装置を設置すると、車両の走行する路面の状況に合わせて最適な制限値を適宜利用することができるので、車両の加速性能及び減速性能の不必要な低下を抑制できる。また、スリップ発生時のトルク低減の態様を運転者の嗜好に合わせることができるので、運転者の操作フィーリングを向上させることができる。
 (9)また、前記調節装置は、前記車両の運転席に設置すると良い。
 (10)また、上記の実施の形態では、電動機と、当該電動機により駆動される駆動輪と、当該駆動輪にスリップが発生するときに前記電動機のトルクの大きさを低減させ、当該スリップ解消後に前記電動機のトルクの大きさを回復させる電動機制御手段とを備えた電気駆動車両において、スリップ発生中に前記電動機制御手段によって低減される前記電動機のトルクの大きさの時間変化率は、スリップ開始時から第1の値となり、スリップ開始後から所定時間経過後に当該第1の値よりも相対的に小さい第2の値に変化することとした。このようにトルクの大きさの時間変化率を変更すると、時間変化率を一定にする場合と比較して電動機のトルクが低減するまでの時間を長くできるので、車両の加速性能及び減速性能の不必要な低下を抑制することができる。
 1…電動機、2…ギア、3…駆動輪、4…電動機、5…ギア、6…駆動輪、7…従動輪、8…従動輪、9…速度センサ、10…速度センサ、11…速度センサ、12…速度センサ、13…電力変換器、14…電流センサ、15…電流センサ、16…トルク制御器、17…トルク指令演算器、18…スリップ判定器、19…アクセル開度検出器、20…ブレーキ開度検出器、21…ステアリング角度検出器、22…電動機制御装置、23…トルク制限演算器、24…左駆動輪車輪速度演算器、25…右駆動輪車輪速度演算器、26…左従動輪車輪速度演算器、27…右従動輪車輪速度演算器、28…駆動輪車輪速度演算器、29…従動輪車輪速度演算器、30…トルク補正判定器、31…スリップ率演算器、32…判定器、33…減算器、34…絶対値演算器、35…絶対値演算器、36…最大値選択器、37…除算器、38…積載量センサ、39…トルク制限演算器、40…傾斜センサ、41…トルク制限演算器、42…調節装置、43…トルク制限演算器

Claims (10)

  1.  電動機と、当該電動機により駆動される駆動輪と、当該駆動輪にスリップが発生するときに前記電動機のトルクの大きさを低減させ、当該スリップ解消後に前記電動機のトルクの大きさを回復させる電動機制御手段とを備えた電気駆動車両において、
     前記駆動輪にスリップが発生している場合において、前記電動機制御手段が前記電動機のトルクの大きさを低減させるときの当該トルクの大きさには制限値が設定されており、
     当該制限値の大きさは、前記駆動輪に発生するスリップの継続時間の増加に合わせて段階的に小さくされることを特徴とする電気駆動車両。
  2.  請求項1に記載の電気駆動車両において、
     前記制限値の大きさは、前記スリップの継続時間が所定時間に到達するごとに、段階的に小さくされることを特徴とする電気駆動車両。
  3.  請求項1に記載の電気駆動車両において、
     前記制限値の大きさは、前記駆動輪のトルクが当該制限値に一致する時間が所定時間に到達するごとに、段階的に小さくされることを特徴とする電気駆動車両。
  4.  請求項1から3のいずれかに記載の電気駆動車両において、
     前記電動機制御手段が前記電動機のトルクの大きさを低減するときの当該トルクの時間変化は、当該トルクが前記制限値と一致している場合を除いて、予め定められていることを特徴とする電気駆動車両。
  5.  請求項1から4のいずれかに記載の電気駆動車両において、
     前記制限値は、前記車両の加速中は零以上に設定され、前記車両の減速中は零以下に設定されることを特徴とする電気駆動車両。
  6.  請求項1から5のいずれかに記載の電気駆動車両において、
     前記制限値の大きさは、前記車両の積載量が大きいほど大きく設定されることを特徴とする電気駆動車両。
  7.  請求項1から6のいずれかに記載の電気駆動車両において、
     前記制限値の大きさは、前記車両が走行している路面の傾斜が大きいほど小さく設定されることを特徴とする電気駆動車両。
  8.  請求項1から7のいずれかに記載の電気駆動車両において、
     前記制限値の大きさを調節するための調節装置をさらに備えることを特徴とする電気駆動車両。
  9.  請求項8に記載の電気駆動車両において、
     前記調節装置は、前記車両の運転席に設置されていることを特徴とする電気駆動車両。
  10.  電動機と、当該電動機により駆動される駆動輪と、当該駆動輪にスリップが発生するときに前記電動機のトルクの大きさを低減させ、当該スリップ解消後に前記電動機のトルクの大きさを回復させる電動機制御手段とを備えた電気駆動車両において、
     スリップ発生中に前記電動機制御手段によって低減される前記電動機のトルクの大きさの時間変化率は、スリップ開始時から第1の値となり、スリップ開始後から所定時間経過後に当該第1の値よりも相対的に小さい第2の値に変化することを特徴とする電気駆動車両。
PCT/JP2012/070751 2011-08-16 2012-08-15 電気駆動車両 WO2013024871A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011178154A JP2013042599A (ja) 2011-08-16 2011-08-16 電気駆動車両
JP2011-178154 2011-08-16

Publications (1)

Publication Number Publication Date
WO2013024871A1 true WO2013024871A1 (ja) 2013-02-21

Family

ID=47715188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070751 WO2013024871A1 (ja) 2011-08-16 2012-08-15 電気駆動車両

Country Status (2)

Country Link
JP (1) JP2013042599A (ja)
WO (1) WO2013024871A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792532A1 (en) * 2013-04-16 2014-10-22 ABB Oy Preventing of slip in an electrically powered vehicle
WO2015063913A1 (ja) * 2013-10-31 2015-05-07 三菱電機株式会社 トラクション制御装置
WO2015151193A1 (ja) * 2014-03-31 2015-10-08 三菱電機株式会社 車両のトラクション制御装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6223718B2 (ja) * 2013-06-03 2017-11-01 Ntn株式会社 電気自動車のスリップ制御装置
JP6167363B2 (ja) 2013-09-12 2017-07-26 日立オートモティブシステムズ株式会社 電動車両の制御装置及び電動車両の制御方法
JP6219883B2 (ja) * 2015-05-22 2017-10-25 株式会社アドヴィックス 車両用制御装置
JP2021087337A (ja) * 2019-11-29 2021-06-03 ダイムラー・アクチェンゲゼルシャフトDaimler AG 車両用制御装置
US20230021794A1 (en) * 2019-12-11 2023-01-26 Gkn Automotive Ltd. Automatically controlling a driven axle of a motor vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648304U (ja) * 1992-11-25 1994-06-28 日本輸送機株式会社 産業車両の運転状態設定装置
JP2004096822A (ja) * 2002-08-29 2004-03-25 Toyota Motor Corp 原動機の制御装置および原動機の制御方法
JP2005051849A (ja) * 2003-07-30 2005-02-24 Toyota Motor Corp 車両および車両の制御方法
JP2007245845A (ja) * 2006-03-15 2007-09-27 Nissan Motor Co Ltd 四輪駆動車の駆動力制御装置
JP2009035191A (ja) * 2007-08-03 2009-02-19 Toyota Motor Corp 車両の駆動力制御装置
WO2011089830A1 (ja) * 2010-01-22 2011-07-28 日立建機株式会社 電気駆動車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648304U (ja) * 1992-11-25 1994-06-28 日本輸送機株式会社 産業車両の運転状態設定装置
JP2004096822A (ja) * 2002-08-29 2004-03-25 Toyota Motor Corp 原動機の制御装置および原動機の制御方法
JP2005051849A (ja) * 2003-07-30 2005-02-24 Toyota Motor Corp 車両および車両の制御方法
JP2007245845A (ja) * 2006-03-15 2007-09-27 Nissan Motor Co Ltd 四輪駆動車の駆動力制御装置
JP2009035191A (ja) * 2007-08-03 2009-02-19 Toyota Motor Corp 車両の駆動力制御装置
WO2011089830A1 (ja) * 2010-01-22 2011-07-28 日立建機株式会社 電気駆動車両

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792532A1 (en) * 2013-04-16 2014-10-22 ABB Oy Preventing of slip in an electrically powered vehicle
WO2015063913A1 (ja) * 2013-10-31 2015-05-07 三菱電機株式会社 トラクション制御装置
CN105682979A (zh) * 2013-10-31 2016-06-15 三菱电机株式会社 牵引力控制装置
JP6091642B2 (ja) * 2013-10-31 2017-03-08 三菱電機株式会社 トラクション制御装置
US9688280B2 (en) 2013-10-31 2017-06-27 Mitsubishi Electric Corporation Traction control device
CN105682979B (zh) * 2013-10-31 2017-12-19 三菱电机株式会社 牵引力控制装置
WO2015151193A1 (ja) * 2014-03-31 2015-10-08 三菱電機株式会社 車両のトラクション制御装置
CN106132759A (zh) * 2014-03-31 2016-11-16 三菱电机株式会社 车辆的牵引力控制装置
JPWO2015151193A1 (ja) * 2014-03-31 2017-04-13 三菱電機株式会社 車両のトラクション制御装置
CN106132759B (zh) * 2014-03-31 2018-09-04 三菱电机株式会社 车辆的牵引力控制装置

Also Published As

Publication number Publication date
JP2013042599A (ja) 2013-02-28

Similar Documents

Publication Publication Date Title
WO2013024871A1 (ja) 電気駆動車両
WO2011089830A1 (ja) 電気駆動車両
JP5336447B2 (ja) 電気駆動車両
EP3050765B1 (en) Control device for electric vehicle
JP5878906B2 (ja) 電気自動車のモータ位置及びクリープ制御装置とその制御方法
JP6034874B2 (ja) 電動車両の回生ブレーキ制御システム
US8523296B2 (en) Electric drive vehicle
WO2013085000A1 (ja) 電動車両の制御装置
JP6014159B2 (ja) 電動車両の回生ブレーキ制御システム
JP5405440B2 (ja) 電気駆動車両
RU2729837C1 (ru) Способ и устройство управления электромотором для транспортного средства с электроприводом
US8862303B2 (en) Industrial vehicle
JP2012029473A (ja) 電動車両の制御装置
JP2018098905A (ja) 電動車両の制動制御方法、及び電動車両の制御装置
JP4845839B2 (ja) 電気駆動車両
JP2013215063A (ja) 電気自動車のクリープ制御装置
JP6020023B2 (ja) 車両用走行支援装置
JP5775434B2 (ja) アクセルペダル反力制御装置
JP2006200526A (ja) 車両の出力特性制御装置
JP5057406B2 (ja) 走行制御装置および該装置を備えたフォークリフト
US20230365001A1 (en) Control Method and Control Device for Electric Four-Wheel Drive Vehicle
JPWO2021246379A5 (ja)
JP2007252045A (ja) 車両用駆動制御装置、自動車及び車両用駆動制御方法
JPH1175304A (ja) 電気自動車のモータトルク制御装置
JP2008043141A (ja) スリップ検出手段を備えた産業車両及びスリップ検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823477

Country of ref document: EP

Kind code of ref document: A1