WO2012026564A1 - 圧電アクチュエータ - Google Patents

圧電アクチュエータ Download PDF

Info

Publication number
WO2012026564A1
WO2012026564A1 PCT/JP2011/069249 JP2011069249W WO2012026564A1 WO 2012026564 A1 WO2012026564 A1 WO 2012026564A1 JP 2011069249 W JP2011069249 W JP 2011069249W WO 2012026564 A1 WO2012026564 A1 WO 2012026564A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
piezoelectric
piezoelectric element
piezoelectric actuator
base
Prior art date
Application number
PCT/JP2011/069249
Other languages
English (en)
French (fr)
Inventor
瀬戸口 剛
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/807,754 priority Critical patent/US9130149B2/en
Priority to EP11820024.5A priority patent/EP2610934B1/en
Priority to JP2012530727A priority patent/JP5496341B2/ja
Priority to CN201180024018.XA priority patent/CN102893420B/zh
Publication of WO2012026564A1 publication Critical patent/WO2012026564A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/886Additional mechanical prestressing means, e.g. springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/0033Welding locally a thin plate to a large piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/206Laser sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/02Forming enclosures or casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14491Electrical connection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings

Definitions

  • the present invention relates to a piezoelectric actuator used in a fuel injection device for an automobile engine, a liquid injection device such as an ink jet, a precision positioning device for an XY table, and the like.
  • the piezoelectric actuator for example, a columnar laminate in which a plurality of piezoelectric layers and internal electrode layers are laminated, and the internal electrode layers are alternately and electrically attached to the side surfaces of the laminate in the lamination direction.
  • the above piezoelectric actuator is made of a metal made by welding members such as a base and a case by laser welding or resistance welding in a state where a compressive load is applied to the piezoelectric element so that the piezoelectric element is always placed under compressive stress. It is sealed in a container.
  • a tensile stress is always applied to the joint portion (welded portion) of the container.
  • the joint portion (welded portion) is viewed in cross section as shown in FIG. ) Has a structure in which stress is concentrated in one place (bending portion 41), there is a problem that the joint portion (welded portion) may come off due to repeated tensile stress.
  • the present invention has been devised in view of the above problems, and an object of the present invention is to obtain a piezoelectric actuator capable of suppressing the detachment of the joint due to tensile stress.
  • the piezoelectric actuator of the present invention includes a piezoelectric element, a base body with which the lower end portion of the piezoelectric element is in contact with an upper surface, and an inner surface in contact with the upper end portion of the piezoelectric element, and the piezoelectric element is accommodated therein.
  • the case has a flange part joined to the base, and the upper surface of the base from the bottom surface of the case on the storage space side of the joint part between the case and the base. There are at least two bends on the inner surface formed over.
  • the piezoelectric actuator of the present invention is arranged between the lower surface of the flange and the upper surface of the base in the above configuration, and at least one of the upper surface and the lower surface is in contact with the lower surface of the flange or the upper surface of the base. It has the annular part which is a junction part, It is characterized by the above-mentioned.
  • the piezoelectric actuator of the present invention is characterized in that, in the above configuration, the annular portion has a width on the upper surface side smaller than a width on the lower surface side.
  • the piezoelectric actuator of the present invention is characterized in that, in the above configuration, an angle formed between a side surface of the annular portion on the storage space side and a lower surface of the flange portion is an acute angle.
  • the annular portion is made of a material different from that of the base and the case.
  • the piezoelectric actuator of the present invention there are two or more stress concentration points, and it is possible to suppress the disconnection of the joint due to the tensile stress. Therefore, the piezoelectric actuator can be stably driven for a long time.
  • FIG. 5 is an enlarged view of the vicinity of a bent portion shown in FIGS. 3 and 4. It is a principal part enlarged view of the conventional piezoelectric actuator.
  • FIG. 1 is a sectional view showing an example of an embodiment of a piezoelectric actuator of the present invention
  • FIG. 2 is a schematic perspective view of the piezoelectric element shown in FIG.
  • a piezoelectric actuator 1 shown in FIG. 1 has a piezoelectric element 2, a base body 7 with which the lower end portion of the piezoelectric element 2 abuts on the upper surface, and an inner surface with which the upper end portion of the piezoelectric element 2 abuts.
  • the case 3 has a flange portion 33 which is joined to the base body 7, and the flange portion 33 of the case 3 on the storage space side from the joint portion 4 between the case 3 and the base body 7.
  • the piezoelectric element 2 includes, for example, an active portion 26 in which a plurality of piezoelectric layers 25 and internal electrode layers 27 are alternately stacked, and a piezoelectric layer that is stacked at both ends in the stacking direction of the active portions 26.
  • the laminated piezoelectric element includes a laminated body 20 having 25 inactive portions 29.
  • the active part 26 is a part where the piezoelectric layer 25 extends or contracts in the stacking direction during driving
  • the inactive part 29 is a part where the piezoelectric layer 25 does not extend or contract in the stacking direction during driving.
  • the laminated body 20 constituting the piezoelectric element 2 is formed in a rectangular parallelepiped shape having, for example, a length of 4 to 7 mm, a width of 4 to 7 mm, and a height of about 20 to 50 mm.
  • the laminated body 20 shown in FIG. 2 is a quadrangular prism shape, for example, a hexagonal prism shape, an octagonal prism shape, etc. may be sufficient.
  • the plurality of piezoelectric layers 25 constituting the laminate 20 are made of piezoelectric ceramics (piezoelectric ceramics) having piezoelectric characteristics, and the piezoelectric ceramics are formed with an average particle diameter of, for example, 1.6 to 2.8 ⁇ m. .
  • the piezoelectric ceramic for example, a perovskite oxide made of PbZrO 3 —PbTiO 3 (PZT: lead zirconate titanate) or the like, lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or the like can be used.
  • the internal electrode layer 27 is made of, for example, silver, silver-palladium alloy, silver-platinum, copper, or the like, and the positive electrode and the negative electrode (or the ground electrode) each have a pair of side surfaces facing each other of the laminate 20. Are alternately derived. With this configuration, in the active portion 26, a driving voltage is applied to the piezoelectric layer 25 sandwiched between the internal electrode layers 27 adjacent in the stacking direction.
  • the laminated body 20 may include a metal layer that is a layer for relaxing stress and does not function as the internal electrode layer 27.
  • the external electrode 21 is attached to each of a pair of opposing side surfaces of the stacked body 20 in which the positive electrode and the negative electrode (or the ground electrode) of the internal electrode layer 27 are alternately led out. It is joined with.
  • the external electrode 21 is a metallized layer made of a sintered body of silver and glass, for example, and is electrically connected to the internal electrode layer 27. As shown in FIG. 1, a lead wire 13 is attached to the external electrode 21 with solder 15, and a driving voltage is applied via the lead wire 13.
  • both the positive electrode and the negative electrode (or the ground electrode) of the internal electrode layer 27 are exposed at the other pair of side surfaces of the stacked body 20 facing each other, and an oxide covering layer 23 is formed on the side surfaces.
  • the covering layer 23 By forming the covering layer 23, it is possible to prevent creeping discharge between both electrodes that occurs when a high voltage is applied during driving.
  • the oxide forming the coating layer 23 include a ceramic material.
  • the oxide can form a creeping discharge by peeling off the coating layer 23 and being able to follow the driving deformation (stretching) of the multilayer body 2 when the piezoelectric actuator is driven. A material that can be deformed by stress is preferred so as not to cause fear.
  • a partially stabilized zirconia that can be deformed by local phase transformation and volume change, Ln 1-X Si X AlO 3 + 0.5X
  • Ln is Sn, Y, La, Ce
  • piezoelectric materials such as barium titanate and lead zirconate titanate (PZT) in which the distance between ions in the crystal lattice changes so as to relieve the generated stress can be used.
  • the coating layer 23 is formed, for example, by forming it into an ink form, applying it to the side surface of the laminate 20 by dipping or screen printing, and sintering.
  • the piezoelectric actuator shown in FIG. 1 has a base body 7 with which the lower end portion of the piezoelectric element 2 abuts on the upper surface and an inner surface abutted with the upper end portion of the piezoelectric element 2, and accommodates the piezoelectric element therein. Case 3 is provided.
  • the base body (lower lid member) 7 is formed in a disk shape from a metal material such as SUS304 or SUS316L, and its peripheral portion is thin in the drawing.
  • the base 7 is formed with two through holes through which the lead pins 17 can be inserted.
  • the lead pins 17 electrically connected to the lead wires 13 are inserted into the through holes to electrically connect the external electrode 21 and the outside. Is conducting.
  • the gap between the through holes is filled with soft glass 9 to fix the lead pins 17 and prevent intrusion of outside air.
  • the case 3 is formed of a metal material such as SUS304 or SUS316L, similar to the base body 7, and the cylinder 30 and a lid member (upper lid member) provided so as to close the opening on one end side of the cylinder 30. 31).
  • the cylindrical body 30 constituting the case 3 is formed into a bellows shape by rolling or hydrostatic pressing after producing a seamless tube with a predetermined shape.
  • the cylindrical body 30 has a predetermined spring constant so that it can follow the expansion and contraction of the piezoelectric element 2 (laminated body 20) when a voltage is applied to the piezoelectric element 2, and depends on the thickness, groove shape, and number of grooves.
  • the spring constant is adjusted.
  • the one end side opening of the cylindrical body 30 is formed in a cylindrical shape, but the other end side opening of the cylindrical body 30 is formed in a so-called trumpet shape that expands radially outward.
  • the other end side opening of the cylindrical body 30 has a trumpet shape, so that the case 3 (cylindrical body 30) has a flange 33.
  • the lid member 31 constituting the case 3 is a cap-like member having an outer diameter that is the same as the inner diameter of the cylindrical body 30, and is fitted into the opening on one end side of the cylindrical body 30, in the vicinity of the opening on the one end side.
  • the outer periphery is welded to the inner wall.
  • the cylindrical body 30 and the lid member 31 may be formed separately from each other and welded, or may be integrally formed.
  • the case 3 tubular body 30
  • the flange portion 33 of the case 3 and the base body 7 are welded in a state where a compressive load is applied to the piezoelectric element 2, and the piezoelectric element 2 is sealed together with an inert gas in a storage space formed by the case 3 and the base body 7.
  • the piezoelectric actuator 1 is obtained.
  • the stress is concentrated on one bent portion 41 (one point).
  • the portion may come off, but from the lower surface of the flange portion 33 of the case 3 on the storage space side to the upper surface of the base body 7 from the joint between the case 3 and the base body 7 according to the embodiment of the present invention shown in FIG.
  • the structure having at least two bent portions 41 on the formed inner surface there are two or more stress-concentrated portions, and the disconnection of the joint portion due to tensile stress can be suppressed. Therefore, the piezoelectric actuator 1 can be driven stably for a long time.
  • it is effective in that the two bent portions 41 are separated from each other by 0.05 mm or more in terms of suppressing the joint from coming off due to tensile stress.
  • the piezoelectric actuator 1 is disposed between the lower surface of the flange portion 33 and the upper surface of the base body 7, and at least one of the upper surface and the lower surface is the lower surface of the flange portion 33 or the base body 7. It is preferable to have an annular portion 43 that is a joint with the upper surface.
  • the annular portion 43 in which the joint portion is annular there are two or more stress concentration points when viewed in cross section in all the regions sandwiched between the lower surface of the flange portion 33 of the case 3 and the upper surface of the base body 7. Furthermore, since it is formed in an annular shape, it is possible to prevent the joint from coming off due to tensile stress.
  • step difference in the side wall of the annular part 43 when there is no level
  • the annular portion 43 can be formed integrally with the base body 7 by cutting the base body 7.
  • the annular portion 43 preferably has a width a on the upper surface side smaller than a width b on the lower surface side when viewed in cross section.
  • the width a on the upper surface side of the annular portion 43 is about 0.2 to 0.48 mm
  • the width b on the lower surface side of the annular portion 43 is about 0.5 to 0.7 mm
  • the thickness of the annular portion 43 is 0.05 to It is formed to about 0.2 mm.
  • the width a on the upper surface side of the annular portion 43 is smaller than the width b on the lower surface side, the spring effect of the joint portion is improved, and deformation due to displacement of the piezoelectric actuator 1 occurs not only in the cylindrical body 30 but also in this portion. Therefore, plastic deformation of the cylindrical body 30 can be prevented. In particular, as shown in FIG. As a result, the load loss of the piezoelectric actuator 1 due to plastic deformation of the cylindrical body 30 can be prevented, and the piezoelectric actuator 1 can be driven without lowering the amount of displacement even when used for a long period of time.
  • the angle ⁇ formed by the side surface on the storage space side of the annular portion 43 and the lower surface of the flange portion 33 is an acute angle.
  • the annular portion 43 a material different from that of the base body 7 and the case 3 (tubular body 30) can be adopted.
  • the annular portion 43 functions as an intermediate layer and can relieve stress.
  • the material of the annular portion 43 is preferably a material that is softer than the base body 7 and the cylindrical body 30, and examples thereof include copper, phosphor bronze, and Kovar (Fe—Ni—Co alloy). Also in this case, it is preferable that the shape is as described above.
  • a ceramic green sheet to be the piezoelectric layer 25 is produced.
  • a ceramic slurry is prepared by mixing a calcined powder of piezoelectric ceramic, a binder made of an organic polymer such as acrylic or butyral, and a plasticizer.
  • a ceramic green sheet is produced from this ceramic slurry by using tape forming methods, such as a well-known doctor blade method and a calender roll method.
  • any piezoelectric ceramic may be used.
  • a perovskite oxide made of PbZrO 3 —PbTiO 3 can be used.
  • the plasticizer dibutyl phthalate (DBP), dioctyl phthalate (DOP), or the like can be used.
  • a conductive paste to be the internal electrode layer 27 is produced.
  • a conductive paste is prepared by adding and mixing a binder and a plasticizer to a silver-palladium alloy metal powder.
  • This conductive paste is printed on the ceramic green sheet using a screen printing method, and then a plurality of ceramic green sheets on which the conductive paste is printed are stacked, and the conductive paste is formed at both ends in the stacking direction.
  • a multilayer molded body is obtained by laminating a plurality of ceramic green sheets that are not printed.
  • the laminated body 20 is obtained by debinding the laminated molded body at a predetermined temperature and firing at 900 to 1200 ° C.
  • an oxide ink is printed by screen printing on a pair of side surfaces from which both internal electrode layers 27 (positive electrode and negative electrode) are led out of the side surfaces of the laminate 20, and then fired at 900 to 1200 ° C. Layer 23 is formed.
  • the oxide ink disperses the powder of the oxide in a solution of a solvent, a dispersant, a plasticizer, and a binder, and then pulverizes the powder by passing three rolls several times. It is produced by dispersing powder.
  • the external electrode 21 made of a metallized layer is formed.
  • a silver glass-containing conductive paste is prepared by adding a binder to silver particles and glass powder, and printing is performed on a pair of opposing side surfaces of the laminate 20 from which the positive electrode or negative electrode of the internal electrode layer 27 is derived by screen printing.
  • the baking process is performed at a temperature of about 500 to 800 ° C.
  • the external electrode 21 made of a metallized layer is formed to complete the piezoelectric element 2.
  • a base body (lower lid member) 7 having a shape as shown in FIG. 1 formed by forming the annular portion 43 by cutting and forming a through hole by drilling is prepared.
  • the lead pin 17 is inserted into each of two through holes formed in the lid member 7, the gap is filled with soft glass 9 and fixed, and the lower end portion of the piezoelectric element 2 is bonded to the upper surface of the substrate 7 with an adhesive. .
  • the lead wire 13 soldered to the external electrode 21 of the piezoelectric element 2 with the solder 15 and the lead pin 17 attached to the substrate 7 are connected by solder.
  • a seamless cylindrical tube 30 made of SUS316L is formed into a bellows shape by rolling, and a cover member made of SUS304 (upper cover) is formed so as to close an opening on one end side (upper end side) of the tube body 30.
  • the member 3 is welded by laser welding to produce the case 3.
  • a flange portion 33 is formed on the other end side (lower end side) of the cylindrical body 30.
  • the case 3 is put on the piezoelectric element 2 bonded to the base 7, the case 3 is pulled with a predetermined load, and the load is applied to the piezoelectric element 2.
  • the flange portion 33 of the case 3 and the upper surface of the annular portion 43 provided on the base body 7 are welded by resistance welding to seal the piezoelectric element.
  • a ring to be the annular portion 43 is prepared, the upper surface of this ring is welded to the flange 33, and the lower surface of the ring is welded to the base 7. That's fine.
  • a hole for inactive gas injection is drilled at a predetermined position of the case 3, and after evacuating in the vacuum chamber to release oxygen in the case (storage space), nitrogen gas is injected into the vacuum chamber Then, nitrogen purge inside the case (storage space) is performed. Thereafter, the hole for filling the inert gas is welded by laser welding to close the hole.
  • the piezoelectric actuator 1 of the present embodiment is completed by applying a DC electric field of 0.1 to 3 kV / mm to the lead pins 11 attached to the base body 7 to polarize the laminate 20. Then, by connecting the lead pin 17 and an external power source and applying a voltage to the piezoelectric layer 25, each piezoelectric layer 25 can be largely displaced by the inverse piezoelectric effect. This makes it possible to function as an automobile fuel injection valve that injects and supplies fuel to the engine, for example.
  • the multilayer piezoelectric element of the present embodiment is used as, for example, a fuel injection device for an automobile engine, a liquid injection device such as an ink jet, a precision positioning device for an optical device, or the like.
  • a piezoelectric actuator as an example of the embodiment of the present invention was manufactured as follows.
  • a ceramic slurry is prepared by mixing a calcined powder of a piezoelectric ceramic mainly composed of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) having an average particle size of 0.4 ⁇ m, a binder and a plasticizer, and a doctor blade method.
  • a ceramic green sheet to be a piezoelectric layer having a thickness of 150 ⁇ m was prepared.
  • this ceramic green sheet On one side of this ceramic green sheet, 300 ceramic green sheets were printed by screen printing with a conductive paste serving as an internal electrode prepared by adding a binder to a silver-palladium alloy (silver 95% by mass-palladium 5% by mass). Sheets were laminated to produce a laminated molded body.
  • a conductive paste serving as an internal electrode prepared by adding a binder to a silver-palladium alloy (silver 95% by mass-palladium 5% by mass). Sheets were laminated to produce a laminated molded body.
  • the laminated molded body was dried and fired to produce a laminated body. Firing was performed at 1000 ° C. for 200 minutes after holding a temperature of 800 ° C. for 90 minutes.
  • the laminate had a rectangular parallelepiped shape, and the size thereof was 5 mm in length, 5 mm in width, and 35 mm in height.
  • an ink made of partially stabilized zirconia, piezoelectric material, the same material as the piezoelectric layer, and lead zirconate titanate is prepared, and screen printing is performed so that the coating layer has a thickness of 20 ⁇ m. Then, printing was performed on the side surface of the laminate in which both electrodes of the internal electrode layer were exposed, and then baking was performed at 1000 ° C. to form a coating layer on the side surface of the laminate.
  • a silver glass-containing conductive paste is prepared by adding a binder to silver particles and glass powder, and this is printed on the side surface of the laminate by screen printing, and baked at a temperature of about 500 to 800 ° C. After forming the electrode, the lead wire was connected to the external electrode by soldering.
  • a disk-shaped substrate was made of SUS304. Specifically, an annular portion was formed by cutting, and a substrate having the shape shown in FIG. 1 in which through holes were formed at two locations was produced. And the lead pin was attached to the through-hole formed in the base
  • the specifications of the annular portion the upper width a of the annular portion, the lower width b, and the angle ⁇ formed between the side surface of the annular portion on the storage space side and the lower surface of the flange portion are as shown in Table 1 described later. It is.
  • the thickness of the annular portion was 0.1 mm.
  • the laminate was fixed to the upper surface of the base with an adhesive, and the lead wire soldered to the external electrode and the lead pin attached to the base were connected by soldering.
  • a cap-shaped upper lid member was made of SUS304.
  • a case in which an upper lid member is fitted to a cylindrical body formed by rolling into a seamless cylinder made of SUS316L and welded by laser welding is covered with a piezoelectric element bonded to a base body (lower lid member).
  • the contact portion between the case and the annular portion of the base was welded by resistance welding to seal the piezoelectric element.
  • a hole for inert gas injection is drilled at a predetermined position of the case, and after evacuating in the vacuum chamber to release oxygen in the case (storage space), nitrogen gas is injected into the vacuum chamber. After purging nitrogen in the case (storage space), the hole for nitrogen purge was welded by laser welding to close the hole, and the nitrogen purge was completed.
  • a sample using another material for the annular portion was prepared. Specifically, a ring made of Kovar was produced, the ring was sandwiched between the case's collar and the base, and the contact portion of each member was resistance-welded and sealed.
  • a sample without an annular portion was prepared, and the case flange and the base were welded by resistance welding.
  • the piezoelectric actuators (Sample Nos. 1 and 2) of the embodiments of the present invention have almost no change in the displacement amount after the 500 Hr continuous voltage application test, and maintain the effective displacement amount necessary for the piezoelectric element.
  • the piezoelectric actuator of the comparative example (sample number 3) was stopped after 39 hours.
  • this sample was confirmed, disconnection of the joint was observed. Further, cracks were observed in the piezoelectric element due to the contact of the load accompanying the disconnection of the joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

 【課題】 引張り応力による接合部の外れを抑制することのできる圧電アクチュエータを提供する。 【解決手段】 本発明の圧電アクチュエータは、圧電素子と、上面に圧電素子の下端部が当接される基体7と、圧電素子の上端部に当接される内面を有し、圧電素子を内部に収容するケース3とを備え、ケース3は基体7に接合される鍔部33を有しており、ケース3と基体7との接合部より収納空間側におけるケース3の鍔部33の下面から基体7の上面にかけて形成された内面に、少なくとも2個の屈曲部41があることを特徴する。

Description

圧電アクチュエータ
 本発明は、自動車エンジンの燃料噴射装置、インクジェット等の液体噴射装置、XYテーブルの精密位置決め装置等に用いられる圧電アクチュエータに関するものである。
 圧電アクチュエータとして、例えば、圧電体層および内部電極層が複数積層された柱状の積層体と、この積層体の側面に積層方向にそれぞれ被着されて内部電極層が一層おきに交互に電気的に接続された一対の外部電極とを含む圧電素子を、金属製の容器の内部に封入したものが知られている(例えば、特許文献1を参照。)。
特開2002-58261号公報
 上記の圧電アクチュエータは、圧電素子が常に圧縮応力下に置かれるように、圧電素子に圧縮荷重を印加した状態で、基体、ケース等の部材をレーザー溶接や抵抗溶接で溶接してなる金属製の容器に封入されたものである。
 したがって、容器の接合部(溶接部)には常に引張り応力がかかった状態となっており、例えば図6に示すように接合部(溶接部)を断面で見たときに、接合部(溶接部)の1箇所(屈曲部41)に応力が集中するような構造であると、引張り応力の繰り返しで接合部(溶接部)が外れるおそれがあるという問題があった。
 本発明は、上記の問題点に鑑みて案出されたものであり、その目的は、引張り応力による接合部の外れを抑制することのできる圧電アクチュエータを得ることである。
 本発明の圧電アクチュエータは、圧電素子と、上面に前記圧電素子の下端部が当接される基体と、前記圧電素子の上端部に当接される内面を有し、前記圧電素子を内部に収容するケースとを備え、前記ケースは前記基体に接合される鍔部を有しており、前記ケースと前記基体との接合部より収納空間側における前記ケースの前記鍔部の下面から前記基体の上面にかけて形成された内面に、少なくとも2個の屈曲部があることを特徴とするものである。
 また、本発明の圧電アクチュエータは、上記構成において、前記鍔部の下面と前記基体の上面との間に配置され、その上面および下面の少なくとも一方が前記鍔部の下面または前記基体の上面との接合部である環状部を有することを特徴とするものである。
 また、本発明の圧電アクチュエータは、上記構成において、前記環状部は、上面側の幅が下面側の幅より小さいことを特徴とするものである。
 また、本発明の圧電アクチュエータは、上記構成において、前記環状部の前記収納空間側の側面と前記鍔部の下面とのなす角が鋭角であることを特徴とするものである。
 更に、上記構成において、前記環状部は、前記基体および前記ケースとは材質が異なることを特徴とするものである。
 本発明の圧電アクチュエータによれば、応力集中箇所が2箇所以上となり、引張り応力による接合部の外れを抑制することができる。したがって、圧電アクチュエータを長期間安定して駆動させることができる。
本発明の圧電アクチュエータについて実施の形態の1例を示す断面図である。 図1に示す圧電素子の概略斜視図である。 図1に示す圧電アクチュエータの要部拡大図である。 図3に示す環状部の説明図である。 図3および図4に示す屈曲部近傍の拡大図である。 従来の圧電アクチュエータの要部拡大図である。
 以下、本発明の圧電アクチュエータの実施の形態の例について図面を参照して説明する。
 図1は本発明の圧電アクチュエータの実施の形態の1例を示す断面図であり、図2は図1に示す圧電素子の概略斜視図である。
 図1に示す圧電アクチュエータ1は、圧電素子2と、上面に圧電素子2の下端部が当接される基体7と、圧電素子2の上端部に当接される内面を有し、圧電素子2を内部に収容するケース3とを備え、ケース3は基体7に接合される鍔部33を有しており、ケース3と基体7との接合部4より収納空間側におけるケース3の鍔部33の下面から基体7の上面にかけて形成された内面に、少なくとも2個の屈曲部41があることを特徴するものである。
 圧電素子2は、図2に示すように、例えば圧電体層25と内部電極層27とが交互に複数積層された活性部26と、活性部26の積層方向の両端に積層された圧電体層25から成る不活性部29とを有する積層体20を備えた積層型の圧電素子である。ここで、活性部26は駆動時に圧電体層25が積層方向に伸長または収縮する部位であり、不活性部29は駆動時に圧電体層25が積層方向に伸長または収縮しない部位である。
 圧電素子2を構成する積層体20は、例えば縦4~7mm、横4~7mm、高さ20~50mm程度の直方体状に形成されている。なお、図2に示す積層体20は、四角柱形状であるが、例えば六角柱形状や八角柱形状などであってもよい。
 積層体20を構成する複数の圧電体層25は、圧電特性を有する圧電磁器(圧電セラミックス)からなり、当該圧電磁器は平均粒径が例えば1.6~2.8μmに形成されたものである。圧電磁器としては、例えばPbZrO-PbTiO(PZT:チタン酸ジルコン酸鉛)等からなるペロブスカイト型酸化物、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)などを用いることができる。
 また、内部電極層27は、例えば銀、銀-パラジウム合金、銀-白金、銅などで形成されたものであり、正極と負極(もしくはグランド極)とがそれぞれ積層体20の対向する一対の側面に互い違いに導出されている。この構成により、活性部26において、積層方向に隣り合う内部電極層27同士の間に挟まれた圧電体層25に駆動電圧を印加するものである。
 なお、積層体20には、応力を緩和するための層であって内部電極層27として機能しない金属層等が含まれていてもよい。
 そして、内部電極層27の正極と負極(もしくはグランド極)とが互い違いに導出された積層体20の対向する一対の側面には、それぞれ外部電極21が被着され、導出された内部電極層27と接合されている。外部電極21は、例えば銀およびガラスの焼結体からなるメタライズ層であり、内部電極層27との電気的に導通されている。なお、図1に示すように、外部電極21にはリード線13が半田15によって取り付けられていて、リード線13を介して駆動電圧を印加するようになっている。
 一方、積層体20の対向する他の一対の側面には、内部電極層27の正極および負極(もしくはグランド極)の両極が露出しており、この側面には酸化物からなる被覆層23が形成されている。被覆層23の形成により、駆動時に高電圧をかけた際に発生する両極間での沿面放電を防止することができる。この被覆層23を形成する酸化物としては、セラミック材料が挙げられ、特に、圧電アクチュエータを駆動した際の積層体2の駆動変形(伸縮)に追随でき、被覆層23が剥がれて沿面放電が生じるおそれのないように、応力によって変形可能な材料であることが好ましい。具体的には、応力が生じると局所的に相変態して体積変化して変形可能な部分安定化ジルコニア、Ln1-XSiAlO3+0.5X(Lnは、Sn,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,TmおよびYbのうちから選ばれるいずれか少なくとも一種を示す。x=0.01~0.3)などのセラミック材料、あるいは、生じた応力を緩和するように結晶格子内のイオン間距離が変化するチタン酸バリウム、チタン酸ジルコン酸鉛(PZT)などの圧電材料が挙げられる。この被覆層23は、例えばインク状にした後、ディッピングやスクリーン印刷によって積層体20の側面に塗布され、焼結することによって形成される。
 そして、図1に示す圧電アクチュエータは、上面に圧電素子2の下端部が当接される基体7と、圧電素子2の上端部に当接される内面を有し、圧電素子を内部に収容するケース3とを備えている。
 具体的には、基体(下側蓋部材)7は、SUS304やSUS316Lなどの金属材料で円板状に形成されたもので、図では周縁部が薄肉になっている。また、基体7にはリードピン17を挿通可能な貫通孔が2つ形成されており、リード線13と電気的に接続されたリードピン17を貫通孔に挿通させて外部電極21と外部とを電気的に導通させている。そして、貫通孔の隙間には軟質ガラス9を充填していて、このリードピン17を固定するとともに、外気の侵入を防いでいる。
 一方、ケース3は、基体7と同様にSUS304やSUS316Lなどの金属材料で形成されたもので、筒体30と、筒体30の一端側開口を塞ぐように設けられた蓋部材(上側蓋部材)31とを有している。
 具体的には、ケース3を構成する筒体30は、所定の形状でシームレス管を作製した後、圧延加工や静水圧プレスなどによりベロー(蛇腹)形状に形成されたものである。この筒体30は、圧電素子2に電圧を印加した際に圧電素子2(積層体20)の伸縮に追従できるように、所定のバネ定数を有しており、厚み、溝形状および溝数によってそのバネ定数を調整している。そして、筒体30の一端側開口は円筒状に形成されたものであるが、筒体30の他端側開口は径方向外側に向かって広がるいわゆるラッパ状に形成されている。このように、筒体30の他端側開口がラッパ状になっていることで、ケース3(筒体30)が鍔部33を有する構造になっている。
 また、ケース3を構成する蓋部材31は、外径が筒体30の内径と同じ程度に形成されたキャップ状の部材で、筒体30の一端側開口に嵌め込まれて、一端側開口の近傍の内壁にその外周を溶接されている。
 なお、筒体30と蓋部材31とは、互いに別体に形成されて溶接されたものであってもよく、一体に形成されたものであってもよい。
 そして、図3および図4に示すように、ケース3(筒体30)は基体7に接合される鍔部33を有しており、ケース3と基体7との接合部より収納空間側におけるケース3の鍔部33の下面から基体7の上面にかけて形成された内面に、少なくとも2個の屈曲部41がある。
 このとき、圧電素子2に圧縮荷重をかけた状態でケース3の鍔部33と基体7との溶接がなされ、圧電素子2はケース3および基体7によって形成される収納空間に不活性ガスとともに封入されて圧電アクチュエータ1となっている。
 図6に示すようにケース3の鍔部33と基体7とを溶接した構造では、応力が1個の屈曲部41(1点)に集中する形状となっていたため、使用時の引張り応力により接合部が外れてしまうおそれがあったが、図3に示す本発明の実施形態であるケース3と基体7との接合部より収納空間側におけるケース3の鍔部33の下面から基体7の上面にかけて形成された内面に少なくとも2個の屈曲部41がある構造によれば、応力集中箇所が2箇所以上となり、引張り応力による接合部の外れを抑制することができる。したがって、圧電アクチュエータ1を長期間安定して駆動させることができる。なお、後述する環状部43の材質にもよるが、2個の屈曲部41は0.05mm以上離れているのが引張り応力による接合部の外れを抑制する点において効果的である。
 ここで、上記の構造とするために、圧電アクチュエータ1は、鍔部33の下面と基体7の上面との間に配置され、その上面および下面の少なくとも一方が鍔部33の下面または基体7の上面との接合部である環状部43を有するのが好ましい。接合部を環状にした環状部43を有することで、ケース3の鍔部33の下面と基体7の上面とで挟まれる全ての領域おいて断面で視たときに応力集中箇所が2箇所以上となり、更に環状に形成されているため、引張り応力による接合部の外れを防止することができる。なお、環状部43の側壁に段差がない場合は、図3および図4に示すように屈曲部が2箇所となるが、環状部43の側壁に複数の段差を設けることで、屈曲部41を2箇所以上とすることができる。
 環状部43は、基体7を切削加工することによって基体7と一体に形成することができる。この構成において、図4に示すように、環状部43は断面で視たときに上面側の幅aが下面側の幅bよりも小さいことが好ましい。例えば、環状部43の上面側の幅aは0.2~0.48mm程度、環状部43の下面側の幅bは0.5~0.7mm程度、環状部43の厚みは0.05~0.2mm程度に形成される。環状部43における上面側の幅aを下面側の幅bよりも小さくすることにより、接合部のバネ効果を向上させ、圧電アクチュエータ1の変位に対する変形を筒体30だけでなくこの部位でも起こすことができるため、筒体30の塑性変形を防止できる。特に、図4に示すように、台形形状となっているのが好ましい。この結果、筒体30の塑性変形に伴う圧電アクチュエータ1の荷重抜けを防止し、圧電アクチュエータ1を長期間使用しても変位量が低下することなく駆動することができる。
 また、上記構成において、図5に示すように、環状部43の収納空間側の側面と鍔部33の下面とのなす角αが鋭角であることが好ましい。環状部43の収納空間側の側面と鍔部33の下面とのなす角αを鋭角とすることにより、圧電アクチュエータ1の変位に対する変形を筒体30だけでなくこの部位でも起こすことができるため、筒体30の塑性変形を防止できる。この結果、筒体30の塑性変形に伴う圧電アクチュエータ1の荷重抜けを防止し、圧電アクチュエータ1を長期間使用しても変位量が低下することなく駆動することができる。
 一方、環状部43として、基体7およびケース3(筒体30)とは異なる材質のものを採用することもできる。基体7およびケース3(筒体30)とは異なる材質とすることにより、環状部43が中間層として機能し、応力緩和ができる。その結果、引張り応力による接合部の外れを抑制することができ、圧電アクチュエータ1を長期間安定して駆動させることができる。なお、この場合の環状部43の材質としては、基体7および筒体30よりもやわらかい材料であるのが好ましく、例えば銅、リン青銅、コバール(Fe-Ni-Co合金)などが挙げられる。また、この場合も上述のような形状となっているのが好ましい。
 次に、本実施の形態にかかる圧電アクチュエータ1の製造方法について説明する。
 まず、圧電体層25となるセラミックグリーンシートを作製する。具体的には、圧電セラミックスの仮焼粉末と、アクリル系,ブチラール系等の有機高分子からなるバインダーと、可塑剤とを混合してセラミックスラリーを作製する。そして、周知のドクターブレード法、カレンダーロール法等のテープ成型法を用いることにより、このセラミックスラリーからセラミックグリーンシートを作製する。圧電セラミックスとしては、圧電特性を有するものであればよく、例えば、PbZrO-PbTiOからなるペロブスカイト型酸化物などを用いることができる。また、可塑剤としては、フタル酸ジブチル(DBP),フタル酸ジオチル(DOP)などを用いることができる。
 次に、内部電極層27となる導電性ペーストを作製する。具体的には、銀-パラジウム合金の金属粉末にバインダーおよび可塑剤を添加混合することによって、導電性ペーストを作製する。この導電性ペーストを上記のセラミックグリーンシート上にスクリーン印刷法を用いて印刷し、次に、導電性ペーストが印刷されたセラミックグリーンシートを複数枚積層するとともに積層方向の両端部に導電性ペーストが印刷されていないセラミックグリーンシートを複数枚積層して積層成形体を得る。この積層成形体を所定の温度で脱バインダー処理した後、900~1200℃で焼成することによって積層体20が得られる。
 次に、積層体20の側面のうち両内部電極層27(正極および負極)が導出された一対の側面に、酸化物のインクをスクリーン印刷によって印刷した後、900~1200℃で焼成し、被覆層23を形成する。
 酸化物のインクは、酸化物の粉体を溶剤、分散剤、可塑剤、及びバインダーの溶液に分散させた後、3本ロールを数回通すことにより、粉体の凝集を解砕するとともに、粉体を分散させて作製される。
 次に、メタライズ層から成る外部電極21を形成する。まず、銀粒子およびガラス粉末にバインダーを加えて銀ガラス含有導電性ペーストを作製し、内部電極層27の正極または負極が導出された積層体20の対向する一対の側面にスクリーン印刷法によって印刷し、500~800℃程度の温度で焼き付け処理を行なう。これにより、メタライズ層から成る外部電極21を形成して圧電素子2が完成する。
 次に、外部電極21とリード線13を半田付けする。また、切削加工にて環状部43を形成するとともにおよび穴加工にて貫通孔を形成してなる図1に示すような形状の基体(下側蓋部材)7を用意し、この基体(下側蓋部材)7に形成された2つの貫通孔にそれぞれリードピン17を挿通するとともに隙間に軟質ガラス9を充填して固定し、さらに基体7の上面に圧電素子2の下端部を接着剤で接着する。そして、圧電素子2の外部電極21に半田15にて半田付けしたリード線13と基体7に取り付けられたリードピン17とを半田で接続する。
 次に、例えばSUS316L製のシームレスの円筒状の筒体30に圧延加工によりベロー形状を形成し、この筒体30の一端側(上端側)の開口を塞ぐようにSUS304製の蓋部材(上側蓋部材)31をレーザー溶接によって溶接して、ケース3を作製する。なお、筒体30の他端側(下端側)には鍔部33が形成される。
 次に、ケース3を基体7に接着した圧電素子2に被せ、所定の荷重でケース3を引張り、圧電素子2に荷重を加える。この状態で、ケース3の鍔部33と基体7に設けられた環状部43の上面とを抵抗溶接によって溶接し、圧電素子の封止を行なう。なお、環状部43として、基体とは異なる材料のものを用いる場合は、環状部43となるリングを用意し、このリングの上面を鍔部33に溶接し、リングの下面を基体7に溶接すればよい。
 次に、ケース3の所定の位置にドリルで不活性ガス注入用の穴を開け、真空チャンバーにて真空引きしてケース内(収納空間)の酸素を抜いた後、真空チャンバーへ窒素ガスを注入し、ケース内(収納空間)の窒素パージを行なう。その後、不活性ガス注入用の穴をレーザー溶接で溶接することにより、穴を塞ぐ。
 最後に、基体7に取り付けられたリードピン11に0.1~3kV/mmの直流電界を印加し、積層体20を分極することによって、本実施の形態の圧電アクチュエータ1が完成する。そして、リードピン17と外部電源とを接続して、圧電体層25に電圧を印加することにより、各圧電体層25を逆圧電効果によって大きく変位させることができる。これにより、例えばエンジンに燃料を噴射供給する自動車用燃料噴射弁として機能させることが可能となる。
 本実施の形態の積層型圧電素子は、例えば、自動車エンジンの燃料噴射装置、インクジェット等の液体噴射装置、光学装置の精密位置決め装置等として用いられる。
 本発明の実施例の一例としての圧電アクチュエータを以下のようにして作製した。
 まず、平均粒径が0.4μmのチタン酸ジルコン酸鉛(PbZrO-PbTiO)を主成分とする圧電セラミックスの仮焼粉末、バインダー及び可塑剤を混合したセラミックスラリーを作製し、ドクターブレード法で厚み150μmの圧電体層となるセラミックグリーンシートを作製した。
 このセラミックグリーンシートの片面に、銀-パラジウム合金(銀95質量%-パラジウム5質量%)にバインダーを加えて作製した内部電極となる導電性ペーストを、スクリーン印刷法により印刷したセラミックグリーンシートを300枚積層し、積層成形体を作製した。
 次に、所定の大きさとなるようにダイシングソーマシンで積層成形体を切断した後、積層成形体を乾燥させ、焼成して積層体を作製した。焼成は、800℃の温度を90分保持した後、1000℃で200分間焼成した。積層体は直方体状であり、その大きさは、端面が縦5mm、横5mmであり、高さが35mmであった。
 次に、部分安定化ジルコニア、圧電材料、圧電体層と同じ材料、及びチタン酸ジルコン酸鉛を材料とするインクを作製し、それぞれ、被覆層の厚みが20μmとなるように、スクリーン印刷にて、内部電極層の両極が露出している積層体の側面に印刷し、その後、1000℃で焼成し、積層体の側面に被覆層を形成した。
 次に、銀粒子およびガラス粉末にバインダーを加えて銀ガラス含有導電性ペーストを作製し、これを積層体の側面にスクリーン印刷法によって印刷し、500~800℃程度の温度で焼き付け処理して外部電極を形成した後、半田付けにて外部電極にリード線を接続した。
 また、SUS304で円板状の基体を作製した。具体的には、切削にて環状部を設け、2箇所に貫通孔を形成した図1に示す形状の基体を作製した。そして、基体に形成された貫通孔に軟質ガラスでリードピンを取り付けた。なお、環状部の仕様として、環状部の上側の幅a、下側の幅b、および環状部の収納空間側の側面と鍔部の下面とのなす角αは、後述の表1に示すとおりである。また、環状部の厚みは0.1mmであった。
 次に、基体の上面に積層体を接着剤で固定し、外部電極に半田付けしたリード線と基体に取り付けられたリードピンとを半田付けで接続した。
 次に、SUS304でキャップ状の上側蓋部材を作製した。また、SUS316L製のシームレスの円筒に圧延加工によりベロー形状を形成した筒体に上側蓋部材を嵌めてレーザー溶接で溶接してなるケースを、基体(下側蓋部材)に接着した圧電素子に被せ、所定の荷重でケースを引張り、圧電素子に荷重を印加した後、ケースと基体の環状部との当接部を抵抗溶接で溶接し、圧電素子の封止を行なった。
 次に、ケースの所定の位置にドリルで不活性ガス注入用の穴を開け、真空チャンバーにて真空引きしてケース内(収納空間)の酸素を抜いた後、真空チャンバーへ窒素ガスを注入し、ケース内(収納空間)の窒素パージを行なった後、窒素パージ用の穴をレーザー溶接で溶接して穴を塞ぎ、窒素パージを完了させた。
 一方、本発明の実施例のもう一つの例として、環状部に他材料を用いた試料を作製した。具体的には、コバールからなるリングを作製し、ケースの鍔部と基体とでリングを挟み、各部材の当接部を抵抗溶接し、封止を行なった。
 さらに、比較例として、環状部が無い試料を作製し、抵抗溶接にてケースの鍔部と基体との溶接を行なった。
 最後に、これらの試料の2本のリードピンに3kV/mmの直流電界を15分間印加して分極処理を行ない、圧電アクチュエータを作製した。
 得られた圧電アクチュエータの積層体に170Vの直流電圧を印加したところ、すべての圧電アクチュエータにおいて、積層方向に変位量が得られた。
 さらに、これらの圧電アクチュエータについて、150℃の環境下で250Vの直流電圧を印加し続ける高温連続駆動試験を行なった。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、本発明の実施例の圧電アクチュエータ(試料番号1、2)は、500Hrの連続電圧印加試験後において、変位量の変化がほとんどなく、圧電素子として必要な有効変位量を維持しており、また、接合部の外れもなく、長期使用しても安定した変位量が得られることが分かった。
 これに対し、比較例の圧電アクチュエータ(試料番号3)は、39時間後に停止していた。この試料を確認したところ、接合部の外れが見られた。また、接合部の外れに伴う荷重の片当りにより、圧電素子に割れが見られた。
1・・・圧電アクチュエータ
2・・・圧電素子
3・・・ケース
5・・・絶縁材
7・・・基体
9・・・軟質ガラス
13・・・リード線
15・・・半田
17・・・リードピン
20・・・積層体
21・・・外部電極
23・・・被覆層
25・・・圧電体層
26・・・活性部
27・・・内部電極層
29・・・不活性部
30・・・筒体
31・・・蓋部材
33・・・鍔部
41・・・屈曲部
43・・・環状部

Claims (5)

  1.  圧電素子と、上面に前記圧電素子の下端部が当接される基体と、前記圧電素子の上端部に当接される内面を有し、前記圧電素子を内部に収容するケースとを備え、前記ケースは前記基体に接合される鍔部を有しており、前記ケースと前記基体との接合部より収納空間側における前記ケースの前記鍔部の下面から前記基体の上面にかけて形成された内面に、少なくとも2個の屈曲部があることを特徴とする圧電アクチュエータ。
  2.  前記鍔部の下面と前記基体の上面との間に配置され、その上面および下面の少なくとも一方が前記鍔部の下面または前記基体の上面との接合部である環状部を有することを特徴とする請求項1記載の圧電アクチュエータ。
  3.  前記環状部は、上面側の幅が下面側の幅より小さいことを特徴とする請求項2記載の圧電アクチュエータ。
  4.  前記環状部の前記収納空間側の側面と前記鍔部の下面とのなす角が鋭角であることを特徴とする請求項2記載の圧電アクチュエータ。
  5.  前記環状部は、前記基体および前記ケースとは材質が異なることを特徴とする請求項2記載の圧電アクチュエータ。
     
PCT/JP2011/069249 2010-08-26 2011-08-26 圧電アクチュエータ WO2012026564A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/807,754 US9130149B2 (en) 2010-08-26 2011-08-26 Piezoelectric actuator for suppressing disconnection
EP11820024.5A EP2610934B1 (en) 2010-08-26 2011-08-26 Piezoelectric actuator
JP2012530727A JP5496341B2 (ja) 2010-08-26 2011-08-26 圧電アクチュエータ
CN201180024018.XA CN102893420B (zh) 2010-08-26 2011-08-26 压电致动器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010189600 2010-08-26
JP2010-189600 2010-08-26

Publications (1)

Publication Number Publication Date
WO2012026564A1 true WO2012026564A1 (ja) 2012-03-01

Family

ID=45723553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069249 WO2012026564A1 (ja) 2010-08-26 2011-08-26 圧電アクチュエータ

Country Status (5)

Country Link
US (1) US9130149B2 (ja)
EP (1) EP2610934B1 (ja)
JP (1) JP5496341B2 (ja)
CN (1) CN102893420B (ja)
WO (1) WO2012026564A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034867A1 (ja) * 2012-08-31 2014-03-06 京セラ株式会社 圧電アクチュエータおよびこれを備えたマスフローコントローラ
WO2014051087A1 (ja) * 2012-09-29 2014-04-03 京セラ株式会社 圧電アクチュエータおよびこれを備えたマスフローコントローラ
JPWO2013065710A1 (ja) * 2011-10-31 2015-04-02 京セラ株式会社 圧電アクチュエータ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012215774A1 (de) * 2012-09-06 2014-03-06 Robert Bosch Gmbh Piezoelektrischer Aktor
CN104538545B (zh) * 2015-01-22 2017-02-22 北京大学 一种基于铁弹畴变的大致动应变压电致动器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249802A (ja) * 1994-03-08 1995-09-26 Chichibu Onoda Cement Corp 密封式超精密微動装置
JPH08275563A (ja) * 1995-03-30 1996-10-18 Chichibu Onoda Cement Corp 密封式微動装置及びその製造方法
JP2001230461A (ja) * 2000-02-15 2001-08-24 Taiheiyo Cement Corp 圧電アクチュエータ
JP2002058261A (ja) 2000-08-04 2002-02-22 Tokin Corp 圧電アクチュエータ
JP2002532658A (ja) * 1998-12-11 2002-10-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 圧電式のアクチュエータ
JP2005124272A (ja) * 2003-10-15 2005-05-12 Nec Tokin Corp 圧電アクチュエータおよびその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113108A (en) * 1988-11-04 1992-05-12 Nec Corporation Hermetically sealed electrostrictive actuator
JP2508321B2 (ja) * 1989-12-04 1996-06-19 日本電気株式会社 圧電アクチュエ―タおよびその製造方法
JP2692396B2 (ja) * 1991-02-22 1997-12-17 日本電気株式会社 圧電アクチュエータおよびその製造方法
JPH05315666A (ja) * 1992-05-08 1993-11-26 Nec Corp 電歪効果素子
JPH0661544A (ja) * 1992-05-28 1994-03-04 Nec Corp 圧電アクチュエータ
JPH0664544A (ja) * 1992-08-20 1994-03-08 Tokimec Inc データデポ設置作業車
JPH09270542A (ja) * 1996-03-29 1997-10-14 Chichibu Onoda Cement Corp 密封式超精密微動装置
JPH1122845A (ja) * 1997-07-01 1999-01-26 Hitachi Metals Ltd 圧電アクチュエータ及びマスフローコントローラ
US6465936B1 (en) * 1998-02-19 2002-10-15 Qortek, Inc. Flextensional transducer assembly and method for its manufacture
DE19912334C2 (de) 1999-03-19 2002-07-11 Bosch Gmbh Robert Vorsteuereinrichtung
DE102005014163B4 (de) 2005-03-29 2015-09-17 Continental Automotive Gmbh Piezoelektrische Aktoreinheit mit verbesserter Wärmeleitfähigkeit sowie Kraftstoffinjektor
JP4372722B2 (ja) * 2005-04-15 2009-11-25 株式会社デンソー 燃料噴射装置
DE502006002004D1 (de) 2006-05-08 2008-12-18 Continental Automotive Gmbh Piezo-Aktor, Verfahren zum Herstellen eines Piezo-Aktors und Einspritzsystem mit einem solchen
US7429815B2 (en) * 2006-06-23 2008-09-30 Caterpillar Inc. Fuel injector having encased piezo electric actuator
DE102006043027A1 (de) * 2006-09-13 2008-03-27 Epcos Ag Verspannelement und Piezoaktor mit dem Verspannelement
JP5050164B2 (ja) * 2006-10-20 2012-10-17 京セラ株式会社 圧電アクチュエータユニット及びその製造方法
EP2079113B1 (en) * 2008-01-09 2013-03-13 Delphi Technologies Holding S.à.r.l. Gas pressurised encapsulation for an actuator
US8678299B2 (en) * 2008-10-29 2014-03-25 Korea Institute Of Machinery & Materials Hollow actuator-driven droplet dispensing apparatus
DE102009026532A1 (de) * 2009-05-28 2010-12-02 Robert Bosch Gmbh Einspritzventil für ein Fluid
DE102012215774A1 (de) * 2012-09-06 2014-03-06 Robert Bosch Gmbh Piezoelektrischer Aktor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249802A (ja) * 1994-03-08 1995-09-26 Chichibu Onoda Cement Corp 密封式超精密微動装置
JPH08275563A (ja) * 1995-03-30 1996-10-18 Chichibu Onoda Cement Corp 密封式微動装置及びその製造方法
JP2002532658A (ja) * 1998-12-11 2002-10-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 圧電式のアクチュエータ
JP2001230461A (ja) * 2000-02-15 2001-08-24 Taiheiyo Cement Corp 圧電アクチュエータ
JP2002058261A (ja) 2000-08-04 2002-02-22 Tokin Corp 圧電アクチュエータ
JP2005124272A (ja) * 2003-10-15 2005-05-12 Nec Tokin Corp 圧電アクチュエータおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2610934A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013065710A1 (ja) * 2011-10-31 2015-04-02 京セラ株式会社 圧電アクチュエータ
WO2014034867A1 (ja) * 2012-08-31 2014-03-06 京セラ株式会社 圧電アクチュエータおよびこれを備えたマスフローコントローラ
JPWO2014034867A1 (ja) * 2012-08-31 2016-08-08 京セラ株式会社 圧電アクチュエータおよびこれを備えたマスフローコントローラ
WO2014051087A1 (ja) * 2012-09-29 2014-04-03 京セラ株式会社 圧電アクチュエータおよびこれを備えたマスフローコントローラ
JP5937692B2 (ja) * 2012-09-29 2016-06-22 京セラ株式会社 圧電アクチュエータおよびこれを備えたマスフローコントローラ

Also Published As

Publication number Publication date
JP5496341B2 (ja) 2014-05-21
JPWO2012026564A1 (ja) 2013-10-28
EP2610934B1 (en) 2015-10-28
US20130162107A1 (en) 2013-06-27
CN102893420B (zh) 2015-07-15
CN102893420A (zh) 2013-01-23
EP2610934A4 (en) 2014-06-18
US9130149B2 (en) 2015-09-08
EP2610934A1 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5496341B2 (ja) 圧電アクチュエータ
JP6711908B2 (ja) 圧電アクチュエータ
JP2013211419A (ja) 積層型圧電素子および圧電アクチュエータ
JP5795127B2 (ja) 圧電アクチュエータおよびこれを備えたマスフローコントローラ
JP2015106569A (ja) 圧電アクチュエータおよびこれを備えたマスフローコントローラ
JP5550378B2 (ja) 圧電アクチュエータ
JP6313175B2 (ja) 積層型圧電素子、圧電アクチュエータおよびこれを備えたマスフローコントローラ
JP6809822B2 (ja) 圧電アクチュエータ
JP7354264B2 (ja) 圧電アクチュエータ
JP5717869B2 (ja) 圧電アクチュエータ
JP6199757B2 (ja) 積層型圧電素子、圧電アクチュエータおよびこれを備えたマスフローコントローラ
JP5832338B2 (ja) 圧電アクチュエータ
JP6144577B2 (ja) 圧電アクチュエータ
JP6809818B2 (ja) 圧電アクチュエータ
JP5937692B2 (ja) 圧電アクチュエータおよびこれを備えたマスフローコントローラ
WO2014034867A1 (ja) 圧電アクチュエータおよびこれを備えたマスフローコントローラ
JP7129478B2 (ja) 圧電アクチュエータ
JP6294190B2 (ja) 圧電アクチュエータおよびこれを備えたスピーカー
JP2018037450A (ja) 圧電アクチュエータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024018.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530727

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011820024

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13807754

Country of ref document: US