WO2012026143A1 - 圧縮撚線導体の製造方法 - Google Patents

圧縮撚線導体の製造方法 Download PDF

Info

Publication number
WO2012026143A1
WO2012026143A1 PCT/JP2011/053190 JP2011053190W WO2012026143A1 WO 2012026143 A1 WO2012026143 A1 WO 2012026143A1 JP 2011053190 W JP2011053190 W JP 2011053190W WO 2012026143 A1 WO2012026143 A1 WO 2012026143A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
conductor
strands
compressed
twisting
Prior art date
Application number
PCT/JP2011/053190
Other languages
English (en)
French (fr)
Inventor
宗一郎 塚本
伸司 亀井
翔 早川
大史 杉山
Original Assignee
住友電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電装株式会社 filed Critical 住友電装株式会社
Publication of WO2012026143A1 publication Critical patent/WO2012026143A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0006Apparatus or processes specially adapted for manufacturing conductors or cables for reducing the size of conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • H01B13/0292After-treatment

Definitions

  • This invention relates to a technique for twisting and compressing a plurality of strands.
  • Patent Document 1 there is a technique for manufacturing a compressed stranded conductor by twisting and compressing a plurality of strands.
  • the compression ratio is determined by (conductor cross-sectional area before compression ⁇ conductor cross-sectional area after compression) / (cross-sectional area before compression).
  • an object of the present invention is to make it possible to suppress the disturbance of the compression form as much as possible when a plurality of strands are twisted together and compressed.
  • a first aspect is a method for producing a compression stranded conductor in which a plurality of strands are twisted and compressed, and (a) a step of assembling the plurality of strands; ) A step of twisting the plurality of strands; and (c) a step of compressing the assembled plurality of strands in a plurality of divided compression steps, at least of the plurality of division compression steps One of which is performed on the plurality of strands after completion of twisting.
  • a 2nd aspect is a manufacturing method of the compression strand wire conductor concerning the 1st aspect, Comprising: At least other one of these division compression processes is the above-mentioned plurality of strands before gathering after twisting against.
  • the assembled plurality of strands are compressed in a plurality of divided compression steps, it is suppressed that the strands are rapidly compressed in one compression step.
  • inversion of the strand after compression is suppressed and disorder of a compression form can be suppressed.
  • at least one of the plurality of divided compression steps is performed on the plurality of strands after completion of twisting, the compression form after completion of twisting is stabilized.
  • the strands are finally twisted together. After that, the compression rate can be reduced. Thereby, the disorder
  • the compression stranded conductor is a conductor obtained by twisting and compressing a plurality of strands.
  • the element wire copper alloy wire such as annealed copper or hard copper, and other alloy wires are used.
  • an insulation resin or the like is extrusion coated on the outer periphery of the compression stranded conductor. That is, the compression twisted wire conductor is used as a core wire of an electric wire.
  • FIG. 1 is a schematic diagram showing a production apparatus 20 for a compressed twisted wire conductor
  • FIG. 2 is an explanatory view showing a first compression portion of the production apparatus
  • FIG. 3 is a second compression of the production apparatus. It is explanatory drawing which shows a part.
  • the apparatus 20 for manufacturing a compression stranded conductor includes an element supply unit 22, an element guide 24, an assembly compression die 28, an arcuate twisting mechanism 32, a compression die 40, and a conductor winding unit 44. I have. Then, the plurality of strands 12 drawn from the strand supply section 22 are fed to the assembly compression die 28 through the strand guide section 24, and are assembled and compressed. Thereafter, the aggregated conductor 14 is twisted by the bow-shaped twisting mechanism 32, compressed again by the compression die 40, and wound and accommodated in the conductor winding portion 44.
  • the strand supply unit 22 has a reel 23 that winds and accommodates a plurality of strands.
  • the plurality of strands may be wound and accommodated on a single reel 23, or may be wound and accommodated on separate reels 23.
  • the strand supply unit 22 may have any configuration that can continuously supply a plurality of strands.
  • the strand guide part 24 is formed in a plate shape having a plurality of guide holes 25 (see FIG. 2).
  • the guide holes 25 are formed in a number corresponding to the plurality of strands 12 to be twisted, and are formed so as to be distributed around a predetermined center (preferably at equal intervals).
  • the plurality of strands 12 are fed toward the collective compression die 28 in a state of being dispersed around a predetermined center by passing through each guide hole 25.
  • the collective compression die 28 has holes 29 for compressing the plurality of strands 12 (see FIG. 2).
  • the opening on one end side of the hole 29 has a diameter that allows insertion of a plurality of assembled wires 12, for example, the same diameter as a minimum inclusion circle that can include a cross section of the plurality of wires 12, or a larger diameter. Is formed.
  • the opening on the other end side of the hole 29 is formed to have a diameter that can compress the assembled plurality of strands 12, for example, a diameter smaller than a minimum inclusion circle that can include a cross section of the plurality of strands 12. ing.
  • the hole 29 is formed in a tapered shape whose diameter gradually decreases from the opening on the one end side toward the opening on the other end side.
  • One end opening on the large diameter side of the hole 29 faces the strand guide portion 24, and the other end opening on the relatively small diameter side of the hole 29 faces the arcuate twisting mechanism 32 side. Then, the plurality of strands 12 that have passed through the strand guide section 24 are assembled into one conductor 14 when being introduced toward the opening on one end side of the hole 29 of the assembly compression die 28.
  • the conductor 14 is gradually compressed by moving from one end opening of the hole 29 to the other end opening, and is compressed so as to have a diameter corresponding to the diameter of the other end opening. .
  • the strands 12 may be gathered sequentially in multiple places.
  • the arcuate twisting mechanism 32 includes an arcuate conductor guide 34 and a rotation driving unit 36 that rotationally drives the arcuate conductor guide 34 around a predetermined rotation axis X.
  • the arcuate conductor guide 34 is configured to support the conductor 14 so as to be fed along an arcuate path.
  • an arcuate conductor guide 34 a configuration in which a groove capable of guiding the conductor 14 is formed on the outward surface of an arcuate rod-shaped member, or a configuration in which a guide ring is provided can be employed.
  • the arcuate conductor guide 34 may be configured to support the conductor 14 so as to be fed along the arcuate path.
  • the plurality of strands 12 are twisted together by the bow-shaped twisting mechanism 32, but this is not always necessary.
  • the structure which twists the strand 12 by rotating at least one of the strand supply part 22 and the conductor winding part 44 may be sufficient.
  • the rotational drive unit 36 supports the arcuate conductor guide 34 so as to be rotationally driven around a line (string) connecting both ends thereof.
  • a line (string) connecting both ends thereof connecting both ends thereof.
  • the rotation axis of the arcuate conductor guide 34 by the rotation drive unit 36 exists on the extension of the axis of the hole 29 of the collective compression die 28, the rotation axis of the arcuate conductor guide 34 by the rotation drive unit 36 exists. More specifically, both end portions of the arcuate conductor guide 34 are supported by a bearing portion 37 so as to be rotationally driven, and at least one end portion thereof is rotationally driven by a motor or the like.
  • a guide roller 38 a is provided at one end of the arcuate conductor guide 34, and a guide roller 38 b is provided at the other end of the arcuate conductor guide 34.
  • the guide roller 38 a is a fixed roller that does not rotate synchronously with the arcuate conductor guide 34
  • the guide roller 38 b is a movable roller that rotates around the rotation axis X in synchronization with the arcuate conductor guide 34. Then, the conductor 14 that has passed through the collective compression die 28 is guided toward one end of the arcuate conductor guide 34 through the guide roller 38 a, and is guided in an arc along the arcuate conductor guide 34. When the conductor 14 is guided toward the other end of the arcuate conductor guide 34, the conductor 14 is reversed via the guide roller 38b and is guided along the rotation axis X of the arcuate conductor guide 34 (FIG. 3).
  • the arcuate conductor guide 34 rotates around the rotation axis X, so that the conductor 14 including the plurality of strands 12 becomes the arcuate conductor guide. It is twisted at two places on both end sides of 34. In other words, the conductor 14 is twisted at a location P1 where the conductor 14 is guided to the arcuate conductor guide 34 from the fixed guide roller 38a. Further, after the conductor 14 is led out from the movable guide roller 38b at the other end side of the arcuate conductor guide 34 while being reversed, the conductor 14 is twisted at a point P2 reaching the compression die 40. That is, in this apparatus, the conductor 14 is twisted at two places.
  • the compression die 40 has a hole 41 for further compressing the conductor 14 (see FIG. 3).
  • the compression die 40 is disposed in the rotation locus of the arcuate conductor guide 34 in a posture in which the axis of the hole 41 coincides with the rotation axis X of the arcuate conductor guide 34.
  • One end side opening of the hole 41 has a diameter that allows the conductor 14 compressed by the collective compression die 28 to be inserted, for example, the same diameter as a minimum inclusion circle that can include the cross section of the conductor 14 or a diameter larger than that. Is formed.
  • the opening on the other end side of the hole 41 is formed to have the same diameter as the diameter capable of compressing the conductor 14 (for example, a manufacturing target diameter).
  • the hole 41 is formed in a tapered shape whose diameter gradually decreases from the one end side opening toward the other end side opening.
  • One end opening on the large diameter side of the hole 41 faces the other end side of the arcuate conductor guide 34 and the guide roller 38b side, and the other end opening on the small diameter side of the hole 41 is the arcuate conductor guide.
  • the conductor winding portion 44 faces. Then, the conductor 14 is gradually compressed by moving from the opening on one end side to the opening on the other end side of the hole 41, and is compressed into a compressed stranded conductor 16 having a target diameter corresponding to the diameter of the other end opening. ing.
  • the compressed stranded conductor 16 compressed to the target diameter by the compression die 40 is wound and accommodated in a conductor winding portion 44 provided in the rotation locus of the arcuate conductor guide 34.
  • the plurality of strands 12 are compressed and twisted as follows.
  • the plurality of strands 12 supplied from the strand supply section 22 are guided to the holes 29 of the collective compression die 28 through the plurality of guide holes 25 of the strand guide section 24 and to one conductor 14. Assembled.
  • the conductor 14 in which the plurality of strands 12 are assembled is compressed by moving from one end side opening of the hole 29 to the other end side opening.
  • the conductor 14 compressed in this way is guided to the bow-shaped twisting mechanism 32.
  • the conductor 14 is first twisted at a point P1 guided to the arcuate conductor guide 34 from the guide roller 38a on the fixed side. Thereafter, the conductor 14 is led out from the movable guide roller 38b while being reversed at the other end of the arcuate conductor guide 34, and then twisted again at the point P2 reaching the compression die 40.
  • the assembled plurality of strands 12 are compressed by the assembly compression die 28 and the compression die 40 in a plurality of times (twice). For this reason, in each compression process (divided compression process), it is suppressed that the strand 12 is compressed rapidly. Thereby, inversion of the strand 12 after compression is suppressed and disorder of a compression form can be suppressed.
  • the conductor 14 when a high-rigidity conductor (for example, hard copper or the like) having a tensile strength of 450 MPa or more is used as the conductor 14, since it is difficult for plastic deformation, inversion due to compression tends to occur. Therefore, the inversion of the conductor 14 can be effectively suppressed by gradually compressing the plurality of times as described above.
  • the tensile strength is, for example, JISC3002 5. The value obtained by the method defined in the item of tension can be adopted.
  • a division compression process by the compression die 40 which is one of a plurality of division compression processes is performed on the conductor 14 after the completion of the twisting at the locations P1 and P2. For this reason, the compression form after completion of twisting is stabilized.
  • the strands 12 are gathered immediately before the collective compression die 28, and then twisted at points P1 and P2. Since it is performed with respect to the conductor 14 before matching, the compression rate by the compression die 40 after the plurality of strands 12 are finally twisted together by the compression die 40 can be reduced. Thereby, excessive compression after completion of final twisting can be suppressed, and disorder of the compression form can be more reliably suppressed.
  • the split compression process is performed at least once, and after the final twisting, the split compression process is performed at least once. Also good.
  • the number of twists of the strands 12 need not be plural, and the strands of the strands may be performed only once as shown in FIG. In this case, it may be an example in which the split compression process is performed at least once before the strands 12 are assembled and twisted, and the split compression process is performed at least once after twisting.
  • the assembled plurality of strands 12 are divided into a plurality of divided compression steps and compressed, and at least one of the division compression steps may be performed on the plurality of strands 12 after the completion of twisting, Regarding the other, the number of steps of twisting the plurality of strands 12 or the order of the compression steps with respect to the twisting step is arbitrary.
  • the compression rate of the collective compression die 28 and the compression die 40 can be set by adjusting the taper angles, lengths, and the like of the holes 29 and 41.
  • what compression rate to compress in each divided compression step in the range that can be processed from the total cross-sectional area of the initial plurality of strands to the total cross-sectional area of the compressed stranded conductor that becomes the target diameter, It can be set freely within a range in which the reversal of the strands 12 does not occur during each compression. In order to reduce the compression rate at one time as much as possible, it is preferable to make the compression rate of each divided compression step the same.
  • the target compression rate was 10%
  • the presence or absence of strand reversal was examined for each of the case where the compression was performed once and the case where the compression was performed twice.
  • the first compression rate was 5%
  • the second compression rate was 5%.
  • the compression ratio at the second time was considered as (conductor cross-sectional area reduced by the second compression) / (initial cross-sectional area before the first compression) (the same applies to the following). In this case, the reversal of the strand did not occur in any case.
  • the adhesion (N) was measured.
  • the contact length (mm) in FIG. 9 is the contact length between the conductor and the coating around the cross section.
  • the adhesion force is a force required to pull out a coating in which a cut is formed from a conductor in a sample piece having a predetermined length, and can be obtained by, for example, a method defined in ISO 6722 7.2 adhesion force. Can be a value. In either case, the final cross-sectional area was set to 0.13 mm.
  • the compression ratio increased to 10%, 15%, 20%, 25%, and 30%, the adhesion became 30N, 23N, 15N, 13N, and 10N.
  • the compressibility is 20% or more because the adhesion force that is preferable for the skinning operation is 15 N or less. It can also be said that it is preferable to increase the compression ratio in order to reduce the adhesion.
  • a manufacturing method in which compression is performed in a plurality of times is effective as described in the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 複数の素線を撚り合わせて圧縮する際に、圧縮形態の乱れをなるべく抑制できるようにすることを目的としている。複数の素線を撚り合わせて圧縮する圧縮撚線導体の製造方法であって、前記複数の素線を集合させる工程と、前記複数の素線を撚り合わせる工程とを備える。圧縮撚線導体の製造方法は、さらに、集合された前記複数の素線を、複数回の分割圧縮工程に分けて圧縮する工程であり、前記複数の分割圧縮工程のうちの少なくとも1つが撚り合わせ完了後の前記複数の素線に対して行われる工程をも備える。

Description

圧縮撚線導体の製造方法
 この発明は、複数の素線を撚り合わせて圧縮する技術に関する。
 従来、特許文献1に開示のように、複数の素線を撚り合わせて圧縮することによって、圧縮撚線導体を製造する技術がある。
 また、圧縮撚線導体が複数の層によって構成されている場合には、特許文献2に開示のように、中心に近い層から1層ずつ圧縮成型する技術がある。
実開平8-1217号公報 特開2000-311528号公報
 しかしながら、特許文献1の場合でも、特許文献2の場合でも、所望の最終圧縮形状を得るためには、当該所望の最終圧縮形状に応じた圧縮率で、全ての素線を集合させて圧縮を行う必要がある。なお、ここで、圧縮率とは、(圧縮前の導体断面積-圧縮後の導体断面積)/(圧縮前の断面積)で求められる。
 しかしながら、発明者らは、複数の素線を集合させた後に圧縮を行うと、図10に示すように、複数の素線110a、110bのうちの一部の素線110aが、圧縮後に反転してしまい、圧縮形態に乱れが生じてしまうことがあるという問題を見出した。
 そこで、本発明は、複数の素線を撚り合わせて圧縮する際に、圧縮形態の乱れをなるべく抑制できるようにすることを目的とする。
 上記課題を解決するため、第1の態様は、複数の素線を撚り合わせて圧縮する圧縮撚線導体の製造方法であって、(a)前記複数の素線を集合させる工程と、(b)前記複数の素線を撚り合わせる工程と、(c)集合された前記複数の素線を、複数回の分割圧縮工程に分けて圧縮する工程であり、前記複数の分割圧縮工程のうちの少なくとも1つが撚り合わせ完了後の前記複数の素線に対して行われる工程とを備える。
 第2の態様は、第1の態様に係る圧縮撚線導体の製造方法であって、前記複数の分割圧縮工程のうちの少なくとも他の1つが、集合後撚り合わせ前の前記複数の素線に対して行われる。
 第1の態様によると、集合された前記複数の素線を、複数回の分割圧縮工程に分けて圧縮しているため、1回の圧縮工程において素線が急激に圧縮されることが抑制される。これにより、圧縮後における素線の反転が抑制され、圧縮形態の乱れを抑制することができる。また、前記複数の分割圧縮工程のうちの少なくとも1つが撚り合わせ完了後の前記複数の素線に対して行われるため、撚り合わせ完了後における圧縮形態が安定する。
 第2の態様によると、前記複数の分割圧縮工程のうちの少なくとも他の1つが、集合後撚り合わせ前の前記複数の素線に対して行われるため、複数の素線を最終的に撚り合わせた後における圧縮率を小さくすることができる。これにより、最終撚り合わせ完了後における圧縮形態の乱れをより確実に抑制することができる。
実施形態に係る圧縮撚線導体の製造装置を示す概略図である。 同上の製造装置のうちの1回目の圧縮部分を示す説明図である。 同上の製造装置のうちの2回目の圧縮部分を示す説明図である。 圧縮撚線導体を示す断面図である。 圧縮撚線導体の製造工程例を示す図である。 圧縮撚線導体の他の製造工程例を示す図である。 圧縮撚線導体の他の製造工程例を示す図である。 圧縮工程の違いと反転の有無との関係を示す図である。 圧縮率の違いと密着力との関係を示す図である。 素線の反転が生じた状態を示す図である。
 実施形態に係る圧縮撚線導体の製造方法について説明する。なお、圧縮撚線導体は、複数の素線を撚り合わせて圧縮した導体である。素線としては、軟銅或は硬銅等の銅合金線、その他の合金線が用いられる。本実施形態では、3本の素線を撚り合わせる例で説明するが、複数本の素線を撚り合わせる場合であればよい。この圧縮撚線導体の外周囲に絶縁樹脂等が押出被覆される。つまり、圧縮撚線導体は、電線の芯線として用いられる。
 図1は圧縮撚線導体の製造装置20を示す概略図であり、図2は同製造装置の1回目の圧縮部分を示す説明図であり、図3は同製造装置のうちの2回目の圧縮部分を示す説明図である。
 この圧縮撚線導体の製造装置20は、素線供給部22と、素線ガイド部24と、集合圧縮ダイス28と、弓形撚り合せ機構32と、圧縮ダイス40と、導体巻取部44とを備えている。そして、素線供給部22から引出された複数の素線12が、素線ガイド部24を通って集合圧縮ダイス28に送給されて、集合及び圧縮される。この後、集合導体14は、弓形撚り合せ機構32によって撚り合わされた後、圧縮ダイス40で再度圧縮され、導体巻取部44に巻回収容される。
 より具体的に説明すると、素線供給部22は、複数本の素線を巻取収容したリール23を有している。複数本の素線は、単一のリール23に巻回収容されていてもよいし、或は、別々のリール23に巻回収容されていてもよい。素線供給部22としては、複数本の素線を連続的に供給可能な構成であればよい。
 素線ガイド部24は、複数のガイド孔25を有する板状に形成されている(図2参照)。ガイド孔25は、撚り合せ対象となる複数の素線12に合わせた数形成されており、所定の中心周りに(好ましくは均等間隔で)分散するように形成されている。そして、複数の素線12が、各ガイド孔25を通ることで所定の中心周りに分散した状態で、集合圧縮ダイス28に向けて送給されるようになっている。
 集合圧縮ダイス28は、複数の素線12を圧縮するための孔29を有している(図2参照)。孔29の一端側開口は、集合された複数の素線12を挿入可能な程度の径、例えば、複数の素線12の断面を包含可能な最小包含円と同じ径又はそれよりも大きな径に形成されている。また、孔29の他端側開口は、集合された複数の素線12を圧縮可能な程度の径、例えば、複数の素線12の断面を包含可能な最小包含円よりも小さな径に形成されている。さらに、孔29は、一端側開口から他端側開口に向けて徐々に径が小さくなるテーパー形状に形成されている。孔29のうち大きな径側の一端側開口が上記素線ガイド部24を向いており、孔29のうち比較的小さな径側の他端側開口が弓形撚り合せ機構32側を向いている。そして、上記素線ガイド部24を通った複数の素線12が、集合圧縮ダイス28の孔29の一端側開口に向けて導入される際に1本の導体14に集合される。そして、この導体14が、孔29の一端側開口から他端側開口に向うことで徐々に圧縮され、その他端側開口の径に応じた径を持つように圧縮加工されるようになっている。
 なお、多数の素線12が集合される場合には、複数箇所で順次素線12が集合されてもよい。
 弓形撚り合せ機構32は、弓状導体ガイド34と、弓状導体ガイド34を所定の回転軸X周りに回転駆動する回転駆動部36とを備えている。
 弓状導体ガイド34は、弓状の経路に沿って導体14を送給可能に支持するように構成されている。このような弓状導体ガイド34としては、弓状を描く棒状部材の外向き面に導体14をガイド可能な溝を形成した構成、或は、ガイドリングを設けた構成等を採用することができる。要するに、弓状導体ガイド34として、弧状の経路に沿って導体14を送給可能に支持できる構成であればよい。
 なお、本実施形態では、複数の素線12を弓形撚り合せ機構32で撚り合わせているが、必ずしもその必要はない。例えば、素線供給部22及び導体巻取部44の少なくとも一方を回転させることで、素線12を撚り合わせる構成であってもよい。
 回転駆動部36は、上記弓状導体ガイド34を、その両端部を結ぶ線(弦)を中心として、回転駆動可能に支持している。ここでは、集合圧縮ダイス28の孔29の軸の延長上に、回転駆動部36による弓状導体ガイド34の回転軸が存在している。より具体的には、弓状導体ガイド34の両端部が軸受部37によって回転駆動可能に支持されており、その少なくとも一端部がモータ等によって回転駆動されるように構成されている。また、弓状導体ガイド34の一端部にガイドローラ38aが設けられると共に、弓状導体ガイド34の他端部にガイドローラ38bが設けられている。なお、ガイドローラ38aは弓状導体ガイド34と同期回転しない固定側のローラであり、ガイドローラ38bは弓状導体ガイド34と同期して回転軸X周りに回転する可動側のローラである。そして、集合圧縮ダイス28を通った導体14が、ガイドローラ38aを経て弓状導体ガイド34の一端部に向けてガイドされ、弓状導体ガイド34に沿って弧状に経路案内される。また、導体14が弓状導体ガイド34の他端部に向けて案内されると、ガイドローラ38bを経由して反転し、弓状導体ガイド34の回転軸Xに沿って経路案内される(図3参照)。上記のように導体14が弓状導体ガイド34に沿って案内される際、弓状導体ガイド34が回転軸X周りに回転することによって、複数の素線12を含む導体14が弓状導体ガイド34の両端側の2箇所で撚り合わされる。すなわち、導体14が固定側のガイドローラ38aから弓状導体ガイド34に案内される箇所P1で撚り合わされる。また、導体14が弓状導体ガイド34の他端側で可動側のガイドローラ38bから反転しつつ導出された後、圧縮ダイス40に至る箇所P2で撚り合わされる。つまり、本装置においては、導体14は2箇所で撚り合わされる。
 圧縮ダイス40は、導体14をさらに圧縮するための孔41を有している(図3参照)。ここでは、圧縮ダイス40は、孔41の軸を弓状導体ガイド34の回転軸Xと一致させた姿勢で、弓状導体ガイド34の回転軌跡内に配設されている。孔41の一端側開口は、上記集合圧縮ダイス28によって圧縮された導体14を挿入可能な程度の径、例えば、当該導体14の断面を包含可能な最小包含円と同じ径又はそれよりも大きな径に形成されている。また、孔41の他端側開口は、導体14を圧縮可能な程度の径(例えば、製造目的径)と同じ径に形成されている。さらに、孔41は、一端側開口から他端側開口に向けて徐々に径が小さくなるテーパー形状に形成されている。孔41のうち大きな径側の一端側開口は弓状導体ガイド34の他端部側及びガイドローラ38b側を向いており、孔41のうち小さな径側の他端側開口は、弓状導体ガイド34の回転軌跡内で、導体巻取部44側を向いている。そして、導体14が孔41の一端側開口から他端側開口に向うことで徐々に圧縮され、その他端側開口の径に応じた目的径の圧縮撚線導体16に圧縮加工されるようになっている。
 そして、圧縮ダイス40によって目的径に圧縮された圧縮撚線導体16は、弓状導体ガイド34の回転軌跡内に設けられた導体巻取部44に巻回収容されるようになっている。
 上記圧縮撚線導体の製造装置20において、複数の素線12は次のように圧縮及び撚り合せされる。
 すなわち、素線供給部22から供給される複数の素線12は、素線ガイド部24の複数のガイド孔25を通って、集合圧縮ダイス28の孔29に導かれ、1本の導体14に集合される。複数の素線12が集合された導体14は、孔29の一端側開口から他端側開口に向うことで圧縮される。
 このように圧縮された導体14は、弓形撚り合せ機構32に導かれる。この導体14は、まず、固定側のガイドローラ38aから弓状導体ガイド34に案内される箇所P1で撚り合わされる。その後、導体14が弓状導体ガイド34の他端側で可動側のガイドローラ38bから反転しつつ導出された後、圧縮ダイス40に至る箇所P2で再度撚り合わされる。
 この後、導体14は、圧縮ダイス40の孔41を通過する際、再度圧縮され、図4に示すように、目的径を持つ圧縮撚線導体16に加工される。
 上記実施形態によると、集合された複数の素線12を、集合圧縮ダイス28と圧縮ダイス40とで複数回(2回)に分けて圧縮している。このため、個々の圧縮工程(分割圧縮工程)において、素線12が急激に圧縮されることが抑制される。これにより、圧縮後における素線12の反転が抑制され、圧縮形態の乱れを抑制することができる。
 特に、導体14として引張り強度が450MPa以上の高剛性導体(例えば、硬銅等)を用いた場合、塑性変形し難いため、圧縮による反転が生じ易い傾向となる。そこで、上記のように複数回に分けて徐々に圧縮することで、導体14の反転を有効に抑制することができる。ここで、引張り強度とは、例えば、JISC3002の5.引張りの項目に規定された方法によって得られた値を採用することができる。
 また、複数の分割圧縮工程のうちの1つである圧縮ダイス40による分割圧縮工程が、箇所P1及びP2による撚り合せ完了後の導体14に対して行われる。このため、撚り合せ完了後における圧縮形態が安定する。
 また、複数の分割圧縮工程のうちの他の1つである集合圧縮ダイス28による分割圧縮工程が、複数の素線12を集合圧縮ダイス28の直前で集合させた後、箇所P1、P2で撚り合わせる前の導体14に対して行われるため、複数の素線12を圧縮ダイス40によって最終的に撚り合わせた後における圧縮ダイス40による圧縮率を小さくすることができる。これにより、最終撚り合せ完了後における過度な圧縮を抑制し、圧縮形態の乱れをより確実に抑制することができる。
 なお、上記実施形態では、図5に示すように、素線12を集合させた後、複数回(2回)撚り合せを行う場合において、集合直後のタイミングT1、及び、最終撚り合せ直後のタイミングT2の2回圧縮を行う例で説明したが、必ずしもその必要はない。
 図5に示す場合において、素線12を集合させた後から最終撚り合せの前において、少なくとも1回分割圧縮工程を行い、最終撚り合わせの後、少なくとも1回分割圧縮工程を行う例であってもよい。
 また、素線12の撚り合せ回数は複数回である必要はなく、図6に示すように、素線の撚り合せは1回のみ行われてもよい。この場合、素線12を集合させた後撚り合せするまでの間に少なくとも1回分割圧縮工程を行い、撚り合わせの後、少なくとも1回分割圧縮工程を行う例であってもよい。
 また、図7に示すように、複数の素線12の集合直後に撚り合せが行われるような場合にあっては、その後に、複数回の分割圧縮工程を行うようにするとよい。
 すなわち、集合された複数の素線12を複数回の分割圧縮工程に分けて圧縮し、そのうちの少なくとも1つの分割圧縮工程が撚り合せ完了後の複数の素線12に対して行われればよく、その他に関しては、複数の素線12を撚り合わせる工程の数或は当該撚り合わせ工程に対する圧縮工程の順序は任意である。
 なお、集合圧縮ダイス28、圧縮ダイス40における圧縮率の設定は、孔29、41のテーパー角、長さ等を調整することによって行うことができる。また、各分割圧縮工程においてどの程度の圧縮率で圧縮するかについては、当初の複数の素線の合計断面積から目的径となる圧縮撚線導体の合計断面積に加工できる範囲で、かつ、各圧縮時に素線12の反転等が生じない範囲で自由に設定することができる。1回での圧縮率をなるべく小さくするためには、各分割圧縮工程の圧縮率を同じにすることが好ましい。
 図8に示すように、複数の素線12を集合させた導体14を圧縮した場合において、反転の有無を実験した。実験では、硬銅からなる素線12を3本撚り合わせる場合について調べた。
 目標圧縮率10%である場合において、1回圧縮で行う場合と、2回圧縮で行う場合とのそれぞれについて素線反転の有無を調べた。2回圧縮の場合には、1回目の圧縮率を5%、2回目の圧縮率を5%とした。なお、2回目の圧縮率は、(2回目の圧縮によって減少した導体断面積)/(1回目の圧縮を行う前の当初の断面積)で考えた(以下も同様)。この場合、いずれの場合でも素線の反転は生じなかった。
 目標圧縮率15%、及び、20%である各場合において、1回圧縮、2回圧縮のいずれの場合でも、素線の反転は生じなかった。
 目標圧縮率が25%である場合において、1回圧縮では素線反転の問題が生じた。これに対して、1回目の圧縮率を10%、2回目の圧縮率を15%として2回圧縮を行うと、素線反転の問題は生じなかった。
 同様に、目標圧縮率が30%である場合において、1回圧縮では素線反転の問題が生じた。これに対して、1回目の圧縮率を15%、2回目の圧縮率を15%として2回圧縮を行うと、素線反転の問題は生じなかった。
 上記から、複数回に分けて圧縮を行うことで、素線反転の問題が有効に抑制されることが判明した。
 また、圧縮率が25%以上になると素線反転の問題が生じ易くなる一方、圧縮率が20%以下では素線反転の問題が生じ難いことがわかる。そこで、個々の分割圧縮工程における圧縮率が20%以下となるように設定することが好ましいと考えられる。
 ところで、複数の素線を撚り合わせた導体に樹脂を押出被覆する場合、樹脂が各素線間に入り込んでしまうと、導体と被覆との密着力が高くなり、皮剥し難くなってしまう。皮剥し易くするためには、導体表面をなるべく凹凸の少ない表面にすることが有効と考えられ、そのためには、導体をなるべく高い圧縮率で圧縮することが有効と考えられる。
 このような要請から導体をなるべく高い圧縮率で圧縮するためにも、上記のように複数の分割圧縮工程に分けて圧縮を行うことは有効といえる。
 実際、図9に示すように、複数の圧縮率で導体を圧縮した場合において、密着力(N)を測定してみた。なお、図9における接触長(mm)は、断面周りにおける導体と被覆との接触長である。また、密着力は、所定長さの試料片において、導体から切込みが形成された被覆を引抜く際に要する力であり、例えば、ISO6722の7.2密着力に規定されている方法により得られる値とすることができる。なお、いずれの場合も、最終断面積が0.13mmとなるようにした。
 すると、圧縮率が10%、15%、20%、25%、30%と大きくなるに伴って、密着力は30N、23N、15N、13N、10Nとなった。通常、皮剥作業上、好ましいとされる密着力は15N以下とされているため、圧縮率は20%以上であることが好ましいといえる。また、密着力を小さくするためには、圧縮率を大きくすることが好ましいともいえる。そして、圧縮率を大きくするためには、上記実施形態で説明したように、複数回に分けて圧縮を行う製造方法が有効であるといえる。
 以上のようにこの発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。

Claims (2)

  1.  複数の素線を撚り合わせて圧縮する圧縮撚線導体の製造方法であって、
     (a)前記複数の素線を集合させる工程と、
     (b)前記複数の素線を撚り合わせる工程と、
     (c)集合された前記複数の素線を、複数回の分割圧縮工程に分けて圧縮する工程であり、前記複数の分割圧縮工程のうちの少なくとも1つが撚り合わせ完了後の前記複数の素線に対して行われる工程と、
     を備える圧縮撚線導体の製造方法。
  2.  請求項1記載の圧縮撚線導体の製造方法であって、
     前記複数の分割圧縮工程のうちの少なくとも他の1つが、集合後撚り合わせ前の前記複数の素線に対して行われる、圧縮撚線導体の製造方法。
PCT/JP2011/053190 2010-08-23 2011-02-16 圧縮撚線導体の製造方法 WO2012026143A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-185784 2010-08-23
JP2010185784A JP2012043720A (ja) 2010-08-23 2010-08-23 圧縮撚線導体の製造方法

Publications (1)

Publication Number Publication Date
WO2012026143A1 true WO2012026143A1 (ja) 2012-03-01

Family

ID=45723163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053190 WO2012026143A1 (ja) 2010-08-23 2011-02-16 圧縮撚線導体の製造方法

Country Status (2)

Country Link
JP (1) JP2012043720A (ja)
WO (1) WO2012026143A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246949A (ja) * 2012-05-25 2013-12-09 Yazaki Corp 電線
JP2014199817A (ja) * 2014-06-13 2014-10-23 矢崎総業株式会社 電線

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214890A (en) * 1975-07-28 1977-02-04 Fujikura Ltd Compressed conductor manufacturing method and equipment
JPS5731193Y2 (ja) * 1974-08-26 1982-07-08
JPH02170313A (ja) * 1988-12-23 1990-07-02 Furukawa Electric Co Ltd:The 圧縮撚線導体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731193Y2 (ja) * 1974-08-26 1982-07-08
JPS5214890A (en) * 1975-07-28 1977-02-04 Fujikura Ltd Compressed conductor manufacturing method and equipment
JPH02170313A (ja) * 1988-12-23 1990-07-02 Furukawa Electric Co Ltd:The 圧縮撚線導体の製造方法

Also Published As

Publication number Publication date
JP2012043720A (ja) 2012-03-01

Similar Documents

Publication Publication Date Title
CA2285932C (en) Multi-wire sz and helical stranded conductor and method of forming same
JP6195385B2 (ja) 同軸ケーブル用の撚り合わされた内部導体を製造するための方法および同軸ケーブル
JP2012508830A5 (ja)
US20140367146A1 (en) Apparatus and Method for Forming Wire
CN108463859B (zh) 铝电线、以及铝电线的制造方法
CN102017018A (zh) 电线及其制造方法
WO2012026143A1 (ja) 圧縮撚線導体の製造方法
US7322220B2 (en) Apparatus for manufacturing trapezoidal wire using two-set shaping rollers
EP1676000B1 (en) Method and device for manufacturing a wire cord
WO2014112174A1 (ja) 撚線導体、被覆電線、および撚線導体の製造方法
JP4783348B2 (ja) 平角成形撚線及び平角成形撚線の製造方法
JPH07249329A (ja) 高圧縮多層同心撚線の製造方法及びその装置
JP2015225835A (ja) 架空送電線、及び、架空送電線の製造方法
JP2006265797A (ja) 集合ケーブルの製造方法及びその装置
JP2011113848A (ja) 平型電線、平型電線の製造方法、平型絶縁電線および平型絶縁電線の製造方法
JP2009138295A (ja) スチール・コード
JP2009293165A (ja) スチール・コード
KR920001937B1 (ko) 압축 도체의 제조장치 및 제조방법
JP2000133071A (ja) 電気コード及びその製造方法
JP2000311528A (ja) 圧縮撚線導体の製造方法
JP7248502B2 (ja) ワイヤロープ用心材,ワイヤロープおよびその製造方法
JP6948561B2 (ja) 撚り線導体の製造方法
JP4675763B2 (ja) 撚線機
JPH0750575B2 (ja) バンチャで圧縮導線を製造する方法および装置
JP2003331671A (ja) 分割導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819619

Country of ref document: EP

Kind code of ref document: A1