WO2012025905A1 - Creuset pour la solidification de lingot de silicium - Google Patents

Creuset pour la solidification de lingot de silicium Download PDF

Info

Publication number
WO2012025905A1
WO2012025905A1 PCT/IB2011/053748 IB2011053748W WO2012025905A1 WO 2012025905 A1 WO2012025905 A1 WO 2012025905A1 IB 2011053748 W IB2011053748 W IB 2011053748W WO 2012025905 A1 WO2012025905 A1 WO 2012025905A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
layer
silicon
μιη
tiles
Prior art date
Application number
PCT/IB2011/053748
Other languages
English (en)
Inventor
Charles Huguet
Emmanuel Flahaut
Hélène LIGNIER
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112013004537A priority Critical patent/BR112013004537A2/pt
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to JP2013525412A priority patent/JP5975994B2/ja
Priority to EP11760575.8A priority patent/EP2609043A1/fr
Priority to KR1020137006424A priority patent/KR20130097186A/ko
Priority to US13/819,655 priority patent/US20130247334A1/en
Priority to CN201180041722.6A priority patent/CN103080028B/zh
Publication of WO2012025905A1 publication Critical patent/WO2012025905A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00879Non-ferrous metallurgy

Definitions

  • the present invention relates to a crucible useful for solidifying a silicon ingot from silicon in the molten state.
  • It also relates to a process for preparing such a crucible and the use of such a crucible for the treatment of silicon in the molten state.
  • the crucibles according to the invention are particularly useful in silicon melting and solidification processes, for example for obtaining high purity silicon for applications in the generation of photovoltaic energy.
  • Photo voltaic cells are, for the most part, made from mono- or poly-crystalline silicon, obtained from the solidification of liquid silicon in crucibles. It is the platelets cut in the ingot formed in the crucible which serve as a basis for the manufacture of the cells.
  • the crucibles considered for the growth of the ingot are generally silica crucibles, coated with a layer of oxidized silicon nitride to prevent adhesion of the ingot to the crucible after solidification.
  • this anti-adherent behavior is based essentially on the presence of silicon nitride, S1 3 N 4 , in the form of oxidized powders, on the surface of the inner walls of the crucibles to which the silicon adheres during its cooling. .
  • silicon nitride S1 3 N 4
  • the silicon ingot is detached from these walls by cohesive rupture within the silicon nitride layer, thus relaxing the mechanical stresses resulting from the difference in coefficients of thermal expansion.
  • this technique does not prevent contamination of silicon by the impurities present in the silicon nitride powder.
  • this contamination which may exist in the areas of the silicon ingot formed in direct contact with or near walls of the crucible, makes the ingot partly unsuitable for use in photo voltaic applications.
  • the present invention aims precisely to provide new crucibles useful for the solidification of a silicon ingot from molten silicon, satisfying these needs.
  • the inventors have, in fact, discovered that these problems can be solved by forming on the surface of the internal walls of a conventional crucible a polysilazane-based coating consisting of a stack of non-joined tiles having a particular shear strength.
  • a silicon ingot formed in contact with this stack is essentially detached by cohesive rupture within said stack.
  • Polysilazane has already been selected as a material to enhance the oxidation resistance of certain carbon substrates.
  • the methods proposed for its implementation consist in the formation, on the surface of the material to be treated, of a monolayer deriving from the thermal decomposition by pyrolysis of the polysilazane previously deposited (EP 0 411 611 and Journal of the European Ceramic Society , 16 (1996), 1115-1120).
  • the present invention relates, according to a first aspect, to a crucible useful for solidifying a silicon ingot from molten silicon, characterized in that it is coated at least partially on its inner surface with least one layer formed of a material obtained by thermal decomposition of polysilazane (s), said layer having a shear strength greater than 1 Pa and less than or equal to 500 MPa and being in the form of a stack of contiguous strata of non-joined tiles.
  • s polysilazane
  • said layer has a laminated structure, each stratum being formed of non-joined and non-superposed tiles.
  • the layer derived from the thermal decomposition of polysilazane has a stratified architecture, considering that it is formed of at least two, even of several superimposed layers and disposed parallel to the treated inner surface of said crucible, each stratum being formed of non-joined tiles.
  • the layer considered according to the invention has the appearance of a stack of tiles.
  • a layer according to the invention may also be designated in the text as being "a stack of layers", each stratum being formed of non-joined tiles, or even more simply “a stack of tiles", or “Stacking”.
  • the stack according to the invention may comprise from 2 to 100 layers of tiles, said layers being superposed and contiguous.
  • the term "contiguous" means that the strata in question are contiguous and adjacent.
  • the presence of more than three contiguous tile layers within the stack according to the invention makes it possible to obtain a crucible that can be reused as it is, that is to say without having to implement treatment steps. prerequisites before reuse.
  • Such a laminated structure also makes it possible to distribute the constraint developed in the multiple interfaces more homogeneously, especially during the cooling of the silicon ingot.
  • Polysilazanes are organosilicon polymers whose main backbone consists of a sequence of silicon and nitrogen atoms.
  • Such compounds are in particular already used for the purpose of surface formation of various substrates such as, for example, graphite or silica, a coating with antioxidant and sealing properties.
  • this type of polymer is particularly advantageous for accessing a layer in the form of a stack of non-joined tiles able, on the one hand, to manifest properties anti-adherent with respect to the solid silicon and, secondly, to ensure an increased level of purity to the corresponding silicon ingot.
  • the crucibles according to the invention allow an easy detachment of the solidified silicon ingots, and this significantly reduces their pollution by the release coating.
  • the anti-adhesive properties of the crucibles according to the invention are in particular obtained via the presence of the oxidized porous layer whose deoxidation kinetics are slow enough to prevent the infiltration of the liquid silicon into the layer until contact with the substrate, and therefore allow its detachment of the substrate.
  • the lifetime of the crucibles according to the invention will depend in particular on the number of contiguous tile layers present in the stack, and will be even higher than this number will be important.
  • the present invention aims at providing a method for preparing a crucible as defined above, comprising at least the formation of said layer via (a) the formation of a first layer of tiles by (i ) contacting the inner surface of said crucible with a solution comprising at least one polysilazane, (ii) condensation-crosslinking said polysilazane, (iii) pyrolysis under controlled atmosphere and temperature and, optionally, (iv) oxidation annealing, followed by (b) forming at least one new tile stratum, contiguous to the stratum formed in step (a), by replicating steps (i) to (iii) and, optionally, (iv), said method being characterized in that the pyrolysis of step (iii) of said process is carried out at a temperature plateau carried out at a temperature of at least 1000 ° C for at least 1 hour.
  • the total number of layers in the stack according to the invention will depend on the repetition number of step (b) indicated above. This number of layers can thus be adjusted with respect to the thickness of the desired stack and the desired properties.
  • the present invention also relates, in another of its aspects, the use of a crucible as defined above, for the directed solidification of silicon.
  • the crucibles according to the invention are coated at least partially on their inner surface with at least one layer formed of a material obtained by thermal decomposition of polysilazane (s), with said layer being in the form of a stack of non-joined tiles, and having a particular shear strength.
  • the term "internal surface” means the outer surface of the walls defining the interior volume of the crucible.
  • the "internal volume of the crucible” designates, within the meaning of the invention, the volume defined by the bottom surface and the side walls of the crucible base body.
  • the material forming the layer according to the invention derives from the thermal decomposition of polysilazane (s).
  • the polysilazanes suitable for the invention may be represented by the following formula: ## STR2 ## wherein R ', R ", R'", R *, R ** and R *** represent independently of one another a hydrogen atom or a substituted or unsubstituted alkyl, aryl, vinyl or (trialkoxysilyl) alkyl radical, n and p having values such that the polysilazane has a mean molecular weight ranging from from 150 to 150,000 g / mol.
  • the material forming the layer according to the invention may be based on silicon carbide SiC, silicon nitride Si 3 N 4 and / or silicon oxycarbonitride.
  • silicon oxycarbonitride is intended to denote compounds of the general formula Si x O y N z C w , such as, for example, those described in US Pat. No. 5,438,025, for example S1NCO2 or Si No, 52 ⁇ , 45 Co, 3 2 .
  • the material forming the layer according to the invention derives from a pyrolysis-type heat treatment of a polysilazane.
  • the pyrolysis conditions in terms of temperature, speed and temperature maintenance and / or the nature of the atmosphere considered during the pyrolysis, for example argon or nitrogen, it is possible to on the one hand to access materials of particular composition for a given stratum and thus to make a stack of layers of tiles of identical or different chemical nature and, on the other hand, to modulate the structural organization of each of the strata. It is precisely through this modulation in terms of composition and / or structural organization of the material forming each layer of tiles that it is possible to achieve the required properties, in terms of shear strength of the layer according to the invention.
  • the tiles of the stack according to the invention may be silicon carbide SiC, silicon nitride S1 3 N 4 , a mixture of SiC and S1 3 N 4 , or silicon oxycarbonitride SiCNO.
  • the tiles forming all of the layers constituting said layer may be of the same material.
  • the tiles forming all the layers constituting said layer may consist of two different materials.
  • the tiles may have different compositions from one stratum to another, with regard, for example, to different conditions used to form each of the corresponding strata.
  • the stack of non-joined tile layers may be made from any technique known to those skilled in the art, and in particular by chemical vapor deposition (CVD) or dipping, and more particularly those described in the publication Bill and al. (J. of the European Ceramic Soc., Vol.16, 1996: 1115).
  • CVD chemical vapor deposition
  • dipping and more particularly those described in the publication Bill and al. (J. of the European Ceramic Soc., Vol.16, 1996: 1115).
  • the morphological characteristics of the tiles obtained according to the invention will of course also depend on the conditions of their formation, and in particular on the nature of the deposition solution as well as on the parameters chosen for the heat treatment and in particular on the temperature.
  • each of the strata of tiles forming the stack according to the invention may be between 0.2 and 50 ⁇ , in particular between 1 and 50 ⁇ , for example between 0.5 and 20 ⁇ . for example between 1 and 5 ⁇ .
  • the thickness of the stack according to the invention may be between 10 and 500 ⁇ , in particular between 20 and 500 ⁇ , for example between 30 and 400 ⁇ , preferably between 50 and 200 ⁇ .
  • the lateral spacing between two tiles can be between 0.1 ⁇ and 20 ⁇ , in particular be less than 5 ⁇ , and preferably less than 1 ⁇ .
  • the lateral dimension of the tiles can be between 4 ⁇ and 150 ⁇ , for example between 10 ⁇ and 30 ⁇ .
  • the thickness and lateral dimension of the tiles as well as the lateral spacing between two tiles can be determined conventionally by scanning electron microscopy (SEM).
  • a tile is characterized by a dimension of thickness less than its lateral dimension (length, width, diameter).
  • the lateral dimension / thickness ratio of the tiles may be between 1.2 and 200.
  • the layer in the form of a stack of non-joined tiles according to the invention is also characterized by its shear strength, which must be greater than 1 Pa and less than or equal to 500 MPa.
  • the "shear strength" of a layer means the mechanical resistance to stress developed in the plane of the layer.
  • This shear strength parameter can be determined by any conventional technique known to those skilled in the art, and in particular by the measurement defined in ASTM D1002, for example by the eXpert 2611 machine manufacturer ADMET.
  • the layer according to the invention should not be subject to a phenomenon of disintegration or crumbling during simple manipulation of the crucible. Similarly, it must not be altered by the stresses induced during the melting of the silicon charge, in particular those induced by natural convection.
  • the layer according to the invention has a shear strength greater than 1 Pa, for example greater than 10 kPa, especially greater than 50kPa.
  • the layer according to the invention must also have a shear strength lower than the stress induced by the difference in thermal expansion between the solidifying silicon and the crucible substrate.
  • the layer according to the invention has a shear strength lower than the critical stress in shear silicon, that is to say less than the minimum stress which promotes the appearance of dislocations of silicon when it is in his field of plasticity.
  • the layer according to the invention may have a shear strength of less than or equal to 300 MPa, for example less than or equal to 200 MPa, for example less than or equal to 100 MPa, for example less than or equal to 5 MPa.
  • the invention may be advantageously carried out on any type of conventional crucible, and for example on crucibles consisting of a dense ceramic substrate, for example silicon carbide SiC, silicon nitride S1 3 N 4 or silica Si0 2 , or a porous substrate, for example graphite.
  • a dense ceramic substrate for example silicon carbide SiC, silicon nitride S1 3 N 4 or silica Si0 2
  • a porous substrate for example graphite.
  • a graphite substrate will be selected, and in particular isostatic, pyrolytic, glassy, fibrous, carbon-carbon composite or flexible graphite which advantageously have good temperature resistance.
  • the crucible may further comprise at least partially on its inner surface an intermediate insulating layer.
  • This intermediate insulating layer is then located between the inner surface of the crucible and the coating layer according to the invention, that is to say formed of a material obtained by thermal decomposition of polysilazane (s).
  • Such an intermediate insulating layer is intended to isolate said substrate from the layer of the coating.
  • this layer is generally formed, at least partially, on the inner surface of said crucible prior to the formation of the layer formed of a material obtained by thermal decomposition of polysilazane (s) according to the invention.
  • This intermediate insulating layer affixed to the surface of the material forming said crucible may in particular be a dense and continuous layer of ceramic capable of ensuring a barrier or even antioxidant behavior.
  • this intermediate insulating layer may be formed of at least two different materials, alternately constituting this insulating layer.
  • the first type of one of the materials can be formed mainly, or even solely, of SiO 2 silica, and the other material can be formed mainly, or even only, of silicon carbide SiC.
  • the crucibles according to the invention may in particular be obtained by means of a preparation process comprising at least the formation of said layer via (a) the formation of a first layer of tiles by (i) setting contacting the inner surface of said crucible with a solution comprising at least one polysilazane, (ii) condensation-crosslinking said polysilazane, (iii) pyrolysis under controlled atmosphere and temperature, and optionally (iv) oxidation annealing, followed by b) forming at least one new tile stratum contiguous to the stratum formed in step (a), by reproducing steps (i) to (iii) and, optionally, (iv), said method being characterized in that the pyrolysis of step (iii) of said process is carried out at a temperature plateau carried out at a temperature of at least 1000 ° C for at least 1 hour.
  • a method according to the invention may comprise a preliminary step of forming an intermediate insulating layer on the inner surface of said crucible.
  • the number of layers of tiles in the layer according to the invention will depend on the number of repetitions of steps (a) and (b).
  • the stack according to the invention may comprise from 2 to 100 layers formed of tiles, these layers being superposed and contiguous.
  • one of the steps (a) or (b) is carried out under a reactive atmosphere with respect to the material derived from the polysilazane, for example under nitrogen or under air, and the other step under an inert atmosphere, for example under argon.
  • the polysilazane solution can be deposited by any conventional technique known to those skilled in the art, and for example be deposited by dipping, by turning, by pistoltician or with the aid of a brush.
  • the solution comprising at least one polysilazane may also comprise a solvent, for example an aprotic anhydrous solvent, and a polymerization initiator, for example of the organic peroxide type.
  • a solvent for example an aprotic anhydrous solvent
  • a polymerization initiator for example of the organic peroxide type.
  • aprotic anhydrous solvent there may be mentioned toluene, dimethylformamide, dimethylsulfoxide and dibutyl ether.
  • polymerization initiator As a polymerization initiator, particular mention may be made of dicumyl peroxide, diperoxyester and peroxycarbonate.
  • the morphological characteristics of the tiles obtained according to the invention depend in particular on the viscosity of the polysilazane solution deposited, and therefore in particular on the volume concentration of polysilazane in this solution.
  • the polysilazane solution used according to the invention comprises from 5 to 90% by volume, in particular from 10 to 70% by volume, for example from 10 to 50% by volume, for example from 20 to 50% by volume of polysilazane (s).
  • This solution may also further comprise silicon carbide powders and / or silicon nitride powders and / or silicon powders.
  • the addition of such powders advantageously makes it possible to adjust the viscosity of the polysilazane solution, and thus to better control the morphology of the tile layers of the stack according to the invention.
  • the pyrolysis step is carried out under a controlled atmosphere, for example in an atmosphere consisting of argon, nitrogen or air, preferably argon.
  • An additional step of oxidation annealing in air can also be performed.
  • This annealing step is of particular interest when the pyrolysis step is carried out under an atmosphere consisting of argon, nitrogen or ammonia.
  • the material obtained is in effect then either SiC or S1 3 N 4 , or a material of intermediate composition and it may be advantageous to oxidize it to increase its shear strength.
  • This annealing step is also advantageous for reinforcing the shear strength of a stack of tile layers obtained by pyrolysis carried out under an atmosphere consisting of argon and / or nitrogen.
  • the shear strength of such a stack of tile layers is already greater than 1 Pa and less than or equal to 500 MPa.
  • the annealing step has a lower interest since the material obtained is already oxidized at the end of the pyrolysis.
  • the method according to the invention makes it possible to limit, or even avoid, the contamination of the silicon ingot, and thus to obtain silicon ingots of greater purity compared to those obtained to date, and this while implementing conventional and inexpensive deposition techniques.
  • the average purity of the coatings obtained from polysilazane solutions is greater than 99.5% by weight, or even 99.996% by weight, which is much greater than that of coatings obtained from powders, for example S1 powders. 3 N 4 which have purities of the order of 98%, or even 99.96% or even less than 98%, or even 99.96%.
  • FIG. 1 schematically shows a side view of a crucible according to the invention
  • FIG. 2 schematically shows a top view of a crucible according to the invention.
  • the crucible (1) is coated on its inner surface (2) with a layer (3) formed of a material obtained by thermal decomposition of polysilazane (s).
  • This layer (3) is in the form of a stack of non-joined tiles (4), which gives it a cracked appearance on its upper surface shown in Figure 2.
  • this stack comprises several contiguous tile layers (4a) and (4b), each stratum being formed of non-contiguous and non-overlapping tiles.
  • the crucible to be treated is immersed in the various solutions described below using a nacelle and tongs.
  • the crucible used is a graphite crucible 2020PT TM of the company CARBONE LORRAINE having an outer diameter of 50 mm, an inner diameter of 30 mm and a height of 50 mm, which is previously cleaned with acetone before being put into operation. during the melting of the silicon, it is covered by a silica cover.
  • the surface of the crucible to be treated according to the invention is, in addition, previously coated with an insulating thick continuous SiC layer about 6 ⁇ thick, according to the protocol described in the publication Bill et al. (J. of the European Ceramic Soc., Vol.16, 1996: 1115) cited above.
  • the graphite of the crucible is thus infiltrated to a depth of approximately 50 ⁇ .
  • a multi-layer layer according to the invention or a stack of non-joined tiles according to the invention was formed on this crucible, according to the following protocol.
  • Each tile stratum is formed by dipping from a solution containing 30% by volume of polysilazane (Ceraset PSZ20 TM from CLARIANT) in toluene, this solution further comprising 0.1% by weight of dicumyl peroxide ( Luperox DC) as a polymerization initiator.
  • the crucible is immersed in this solution by following three cycles of soaking for 5 minutes, each soaking cycle being followed by a polymerization annealing at 200 ° C for 2 hours, followed by pyrolysis for two hours at 1400 hours. ° C, all under nitrogen, then an oxidation annealing under air for two hours at 1000 ° C.
  • a stack of non-contiguous tiles with a thickness of between 180 and 200 ⁇ is thus obtained, which consists of layers of tiles of variable thickness ranging between 13 and 28 ⁇ .
  • the crucible according to the invention thus formed is tested as follows:
  • 70 g of solid silicon are then placed manually and very gently in the resulting crucible, then melted according to the following cycle: rise in temperature at a rate of 200 ° C. per hour up to 1000 ° C. under a primary vacuum, followed by 1-hour stage with introduction of a static argon atmosphere, then temperature rise at a rate of 150 ° C per hour up to 1500 ° C and maintained at this temperature for 4 hours, and finally descent at a rate of 50 ° C per hour up to 1200 ° C, and then maintain at this temperature for 1 hour.
  • the cooling is then carried out freely until room temperature.
  • the silicon ingot thus formed is detached from the crucible according to the invention by cohesive rupture inside the coating.
  • the purity of the coating used in the crucible will be found in the silicon ingot. Pure silicon is obtained at more than 99.6% or even more than 99.996%.
  • the crucible used is identical to the crucible described in Example 1.
  • the surface of the crucible to be treated according to the invention is first coated with an insulating dense continuous layer of SiC about 45 ⁇ thick, coated with an insulating layer of Si0 2 of about 4 ⁇ , obtained by reactive infiltration according to the protocol described in the publication Israel et al. (J. of the European Ceramic Soc., Vol 31, (201 1), 2167-2174).
  • a stack of non-joined tiles according to the invention was formed on the surface of the SiO 2 intermediate layer according to the protocol described in Example 1.
  • the crucible according to the invention thus formed, and tested according to the protocol described in Example 1, proves to be capable of forming silicon ingots of purity greater than 99.996%.
  • the crucible used is a vitreous silica crucible manufactured by MondiaQuartz having an outer diameter of 50 mm, an internal diameter of 30 mm and a height of 50 mm, it is previously cleaned with acetone before being used. .
  • a stack of non-joined tiles according to the invention was formed according to the protocol described in Example 1.
  • Example 4 The crucible according to the invention thus formed, and tested according to the protocol described in Example 1, also proves to be conducive to forming very pure silicon ingots.
  • Example 4
  • the crucible used is a 2020PT TM graphite crucible from the company
  • CARBONE LORRAINE having an external diameter of 50 mm, an internal diameter of 30 mm and a height of 50 mm, it is first cleaned with acetone and then degassed under a primary vacuum at 50 ° C. for 30 minutes, before being put into artwork.
  • SiC approximately 14 ⁇ thick SiC approximately 14 ⁇ thick, according to the protocol described in the publication Bill et al.
  • a stack of thin layers according to the invention was formed on this crucible, according to the following protocol.
  • the layer according to the invention is made from a solution containing 30% by volume of polysilazane (Ceraset PSZ20 TM from Clariant) in toluene, this solution also comprising 0.1% by weight of dicumyl peroxide ( Luperox DC) as a polymerization initiator.
  • the crucible is immersed using a nacelle and tongs in this solution and then it leaves the bath slowly, and the excess liquid is evacuated by gravity.
  • the soaking is followed by a polymerization step under argon for one hour at 150 ° C. and then pyrolysis under argon for two hours at 1000 ° C.
  • a layer of thickness between 60 and 95 ⁇ is thus obtained, which consists of a stack of layers, each layer being formed of tiles of variable thickness, between 3 and 12 ⁇ .
  • the crucible according to the invention thus formed is tested as follows:
  • 70 g of electronic grade silicon are then manually deposited very gently in the resulting crucible.
  • the silicon is then melted by following the following cycle: temperature rise at a rate of 200 ° C. per hour to 1000 ° C. under primary vacuum, followed by a one-hour stage with introduction of a static argon atmosphere, then temperature rise at a rate of 150 ° C per hour up to 1500 ° C and maintained at this temperature for 4 hours, and finally descent at a speed of 50 ° C per hour to 1200 ° C.
  • the cooling is then carried out freely until room temperature.
  • the silicon ingot thus formed is detached from the crucible according to the invention after a few shocks on its periphery mainly by cohesive rupture inside the coating.
  • the crucible used is a vitreous silica crucible manufactured by MondiaQuartz having an outer diameter of 50 mm, an inside diameter of 45 mm and a height of 50 mm, it is previously cleaned with acetone before being used. .
  • a stack of thin layers according to the invention was formed on this crucible, from a solution containing 50% by volume of polysilazane (Ceraset PSZ20 TM from Clariant) in anhydrous dibutyl ether (Sigma Aldrich).
  • the crucible is immersed using a nacelle and tongs in this solution and then it leaves the bath slowly, and the excess liquid is evacuated by gravity.
  • the soaking is followed by a polymerization step under argon for two hours at 200 ° C. and then pyrolysis under argon for two hours at 1000 ° C.
  • a layer of thickness between 65 and 110 ⁇ is thus obtained, which consists of a stack of layers, each layer being formed of tiles of variable thickness, between 1 and 10 ⁇ .
  • the crucible according to the invention thus formed is tested as follows:
  • the cooling is then carried out freely until room temperature.
  • the silicon ingot thus formed is detached from the crucible according to the invention after a few shocks on its periphery mainly by cohesive rupture inside the coating.
  • the crucible used is a graphite crucible R6510 TM manufactured by the company SGL-Carbon having an outer diameter of 50 mm, an internal diameter of 40 mm and a height of 50 mm.
  • SiC layer is coated with an insulating dense continuous SiC layer about 70 ⁇ thick, obtained by chemical vapor phase reaction (CVD).
  • the SiC layer is oxidized beforehand by annealing at 1200 ° C. in air for 5 hours.
  • a stack of thin layers according to the invention was formed on this crucible, from a solution containing 50% by volume of polysilazane (Ceraset PSZ20 TM from Clariant) in anhydrous dibutyl ether (Sigma Aldrich). More precisely, the crucible is immersed with a nacelle and tongs in this solution, then it leaves the bath slowly, and the excess liquid is evacuated by gravity. The soaking is followed by a polymerization step under air for two hours at 200 ° C. and then pyrolysis under air for two hours at 1000 ° C.
  • a layer of thickness between 60 and 90 ⁇ is thus obtained, which consists of a stack of layers, each layer being formed of tiles of variable thickness, between 1 and 10 ⁇ .
  • the crucible according to the invention thus formed is tested as follows:
  • the cooling is then carried out freely until room temperature.
  • the silicon ingot thus formed is detached from the crucible according to the invention after a few shocks on its periphery mainly by cohesive rupture inside the coating.
  • the crucible used is a vitreous silica crucible manufactured by the company
  • MondiaQuartz has an outer diameter of 50 mm, an inner diameter of 45 mm and a height of 50 mm, it is previously cleaned with acetone before being implemented.
  • a stack of thin layers according to the invention was formed on this crucible, from a solution containing 80% by volume of polysilazane (Ceraset PSZ20 TM from Clariant) in anhydrous dibutyl ether (Sigma Aldrich).
  • the polysilazane solutions are applied to the crucible by spray gassing.
  • the pistoltician is followed by polymerization step under air for thirty minutes at 500 ° C on a hot plate.
  • This pistoltician / polymerization sequence at 500 ° C. is repeated six times, and then the crucible thus coated undergoes a pyrolysis step at 1000 ° C. for one hour under nitrogen.
  • the crucible according to the invention thus formed is tested as follows:
  • the cooling is then carried out freely until room temperature.
  • the silicon ingot thus formed is detached from the crucible according to the invention after a few shocks on its periphery, mainly by cohesive rupture inside the coating.
  • the crucibles used are vitreous silica crucibles manufactured by MondiaQuartz having an external diameter of 145 mm, an internal diameter of 140 mm and a height of 150 mm, they are first cleaned with acetone and ethanol before to be implemented.
  • control crucible The inner surface of the control crucible is coated in its entirety with a standard non-stick coating made of silicon nitride powder (SNE10, UBE) suspended in a mixture of water and PVA. This suspension is sprayed into 4 successive layers on the inner surface of the crucible, with air drying for 5 minutes between each layer, then it is oxidized at 900 ° C for 2 hours in air in position on its substrate. This succession of steps, 4-layer spraying / drying / oxidation, is repeated twice.
  • SNE10 silicon nitride powder
  • the vertical walls of the crucible according to the invention are coated on its inner surface with the same coating as above.
  • the internal surface forming the bottom of the crucible according to the invention is coated with a stack of thin layers according to the invention, formed from a solution containing 50% by volume of polysilazane (Ceraset PSZ20 TM). CLARIANT company) in anhydrous dibutyl ether (Sigma Aldrich).
  • This sequence of deposition / rotation / polymerization / pyrolysis steps is repeated thirty times, and then the bottom of the crucible thus coated is subjected to an oxidation annealing by exposing the crucible in air for two hours at 1000 ° C.
  • a layer of thickness between 50 and 120 ⁇ is obtained, which consists of a stack of layers, each layer being formed of tiles of variable thickness, between 1 and 10 ⁇ .
  • the crucibles thus formed are tested as follows:
  • the silicon ingot formed in the control crucible is detached from the crucible spontaneously.
  • the ingot formed in the crucible according to the invention that is to say, whose bottom is in accordance with the invention, comes off after a few shocks on its periphery mainly by cohesive rupture inside the coating.
  • the ingots thus obtained are cut into vertical slices 20 mm thick, and life analyzes of the minority carriers in these slices are performed.
  • the principle of this measurement is as follows: a pulsed laser excitation of the surface (up to 1 mm deep) makes it possible to generate electron-hole pairs in the semiconductor material which will recombine after a characteristic time (duration of life) which is strongly dependent on the amount of impurities present, from the materials of the crucible.
  • the mapping of the lifetimes in the slices of the ingots is carried out by measuring the photoconductivity decay induced by the generation of these charge carriers, and is carried out on a WT200 device from Semilab.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

La présente invention concerne un creuset utile pour la solidification d'un lingot de silicium à partir de silicium fondu, caractérisé en ce qu'il est revêtu au moins partiellement sur sa surface interne d'au moins une couche formée d'un matériau obtenu par décomposition thermique de polysilazane(s), ladite couche présentant une résistance au cisaillement supérieure à 1 Pa et inférieure ou égale à 500 MPa, et se présentant sous la forme d'un empilement de strates contigües de tuiles non jointives. Elle vise en outre un procédé de préparation de tels creusets.

Description

Creuset pour la solidification de lingot de silicium
La présente invention se rapporte à un creuset utile pour la solidification d'un lingot de silicium à partir de silicium à l'état fondu.
Elle concerne également un procédé de préparation d'un tel creuset ainsi que l'utilisation d'un tel creuset pour le traitement du silicium à l'état fondu.
Les creusets selon l'invention sont notamment utilisables dans des procédés de fusion et de solidification de silicium, à des fins par exemple d'obtention de silicium de haute pureté pour des applications dans la génération d'énergie photovoltaïque.
Les cellules photo voltaïques sont, pour l'essentiel, fabriquées à partir de silicium mono- ou poly-cristallin, obtenu à partir de la solidification de silicium liquide dans des creusets. Ce sont les plaquettes découpées dans le lingot formé au sein du creuset qui servent de base à la fabrication des cellules.
Les creusets considérés pour la croissance du lingot sont généralement des creusets en silice, revêtus d'une couche de nitrure de silicium oxydé pour éviter l'adhérence du lingot au creuset après solidification.
Plus précisément, ce comportement anti-adhérent repose pour l'essentiel sur la présence de nitrure de silicium, S13N4, à l'état de poudres oxydées, en surface des parois internes des creusets auxquelles adhère le silicium au cours de son refroidissement. En refroidissant, le lingot de silicium se détache de ces parois par rupture cohésive au sein de la couche de nitrure de silicium, relaxant ainsi les contraintes mécaniques issues de la différence de coefficients d'expansion thermique.
Toutefois, cette technique ne permet pas de prévenir une contamination du silicium par les impuretés présentes dans la poudre de nitrure de silicium. Pour des raisons évidentes, cette contamination, susceptible d'exister au niveau des zones du lingot de silicium formées au contact direct ou avoisinant des parois du creuset, rend le lingot en partie impropre à un usage en applications photo voltaïques.
Il demeure donc à ce jour un besoin pour des creusets de solidification permettant de détacher facilement le lingot de silicium après son refroidissement, tout en limitant la contamination de ce lingot par le revêtement anti-adhérent. Il demeure également un besoin de tels creusets de solidification qui soient, en outre, réutilisables.
La présente invention vise précisément à proposer de nouveaux creusets utiles pour la solidification d'un lingot de silicium à partir de silicium fondu, satisfaisant à ces besoins.
Les inventeurs ont, en effet, découvert que ces problèmes peuvent être résolus en formant en surface des parois internes d'un creuset conventionnel un revêtement à base de polysilazane constitué d'un empilement de tuiles non jointives, présentant une résistance au cisaillement particulière.
Un lingot de silicium formé au contact de cet empilement s'en détache pour l'essentiel, par rupture cohésive à l'intérieur dudit empilement.
Le polysilazane a déjà été retenu comme matériau pour renforcer la résistance à l'oxydation de certains substrats carbonés. Toutefois, les procédés proposés pour sa mise en œuvre consistent en la formation, sur la surface du matériau à traiter, d'une monocouche dérivant de la décomposition thermique par pyrolyse du polysilazane préalablement déposé (EP 0 411 611 et Journal of the European Ceramic Society, 16 (1996), 1115-1120).
Toutefois, la structure spécifique obtenue dans le cadre de l'invention, à savoir une couche organisée sous la forme d'une superposition de plusieurs strates, chaque strate étant formée de tuiles non jointives et non superposées, n'y est pas réalisée.
Ainsi, la présente invention concerne, selon un premier de ses aspects, un creuset utile pour la solidification d'un lingot de silicium à partir de silicium fondu, caractérisé en ce qu'il est revêtu au moins partiellement sur sa surface interne d'au moins une couche formée d'un matériau obtenu par décomposition thermique de polysilazane(s), ladite couche présentant une résistance au cisaillement supérieure à 1 Pa et inférieure ou égale à 500 MPa et se présentant sous la forme d'un empilement de strates contigues de tuiles non jointives.
Plus particulièrement, ladite couche possède une structure stratifiée, chaque strate étant formée de tuiles non jointives et non superposées.
Ainsi, la couche dérivant de la décomposition thermique de polysilazane possède une architecture stratifiée, au regard du fait qu'elle est formée d'au moins deux, voire de plusieurs strates superposées et disposées parallèlement à la surface interne traitée dudit creuset, chaque strate étant formée de tuiles non jointives.
C'est au regard de cette superposition de strates et de la structure particulière de chaque strate formée d'un assemblage de tuiles non jointives et non superposées, que la couche considérée selon l'invention présente l'aspect d'un empilement de tuiles.
A des fins de simplification, une couche conforme à l'invention pourra également être désignée dans le texte comme étant « un empilement de strates », chaque strate étant formée de tuiles non jointives, voire plus simplement « un empilement de tuiles », ou encore « un empilement ».
Selon un mode de réalisation, l'empilement conforme à l'invention peut comprendre de 2 à 100 strates de tuiles, lesdites strates étant superposées et contigues.
Au sens de l'invention, le terme « contigu » signifie que les strates en question sont accolées et attenantes.
Avantageusement, la présence de plus de trois strates de tuiles contigues au sein de l'empilement selon l'invention permet d'obtenir un creuset qui soit réutilisable tel quel, c'est-à-dire sans devoir mettre en œuvre des étapes de traitement préalables avant réutilisation.
Une telle structure stratifiée permet en outre de répartir de façon plus homogène la contrainte développée dans les multiples interfaces au cours notamment du refroidissement du lingot de silicium.
Les polysilazanes sont des polymères organosiliciés dont le squelette principal consiste en un enchaînement d'atomes de silicium et d'azote.
Ces polymères sont déjà proposés à titre de matériaux pro-céramiques au regard de leur aptitude à former par décomposition thermique un matériau céramique composé principalement d'atomes de silicium, de carbone et d'azote.
De tels composés sont notamment déjà mis en œuvre à des fins de formation en surface de substrats divers tels que par exemple en graphite ou en silice, d'un revêtement doté de propriétés anti-oxydantes et d'étanchéité.
Contre toute attente, les inventeurs ont constaté que ce type de polymères s'avère particulièrement avantageux pour accéder à une couche se présentant sous la forme d'un empilement de tuiles non jointives apte, d'une part, à manifester des propriétés anti-adhérentes à l'égard du silicium solide et, d'autre part, à garantir un niveau de pureté accru au lingot de silicium correspondant.
Comme cela ressort des exemples de réalisation figurant ci-après, les creusets selon l'invention permettent un détachement aisé des lingots de silicium solidifiés, et ce en amoindrissant signifîcativement leur pollution par le revêtement anti-adhésif.
Ils peuvent en outre être réutilisés un grand nombre de fois sans altérer leurs propriétés et s'avèrent, à ce titre, particulièrement avantageux au niveau industriel.
Les propriétés anti-adhésives des creusets selon l'invention sont notamment obtenues via la présence de la couche poreuse oxydée dont la cinétique de désoxydation est suffisamment lente pour éviter l'infiltration du silicium liquide dans la couche jusqu'au contact avec le substrat, et donc permettre son détachement du substrat.
La durée de vie des creusets selon l'invention dépendra en particulier du nombre de strates de tuiles contiguës présentes dans l'empilement, et sera d'autant plus élevée que ce nombre sera important.
Selon un autre de ses aspects, la présente invention vise à proposer un procédé de préparation d'un creuset tel que défini précédemment, comprenant au moins la formation de ladite couche via (a) la formation d'une première strate de tuiles par (i) mise en contact de la surface interne dudit creuset, avec une solution comprenant au moins un polysilazane, (ii) condensation-réticulation dudit polysilazane, (iii) pyrolyse sous atmosphère et température contrôlées et, éventuellement, (iv) recuit d'oxydation, suivie de (b) la formation d'au moins une nouvelle strate de tuiles, contiguë à la strate formée en étape (a), par reproduction des étapes (i) à (iii) et, éventuellement, (iv), ledit procédé étant caractérisé en ce que la pyrolyse de l'étape (iii) dudit procédé est réalisée à un palier de température réalisé à une température d'au moins 1000 °C pendant au moins 1 heure.
Pour des raisons évidentes, le nombre total de strates dans l'empilement conforme à l'invention dépendra du nombre de répétition de l'étape (b) indiquée précédemment. Ce nombre de strates pourra ainsi être ajusté au regard de l'épaisseur de l'empilement recherchée et des propriétés souhaitées.
La présente invention concerne également, selon un autre de ses aspects, l'utilisation d'un creuset tel que défini précédemment, pour la solidification dirigée de silicium. Comme indiqué précédemment, les creusets selon l'invention sont revêtus au moins partiellement sur leur surface interne d'au moins une couche formée d'un matériau obtenu par décomposition thermique de polysilazane(s), avec ladite couche se présentant sous la forme d'un empilement de tuiles non jointives, et présentant une résistance au cisaillement particulière.
Au sens de l'invention, l'expression « surface interne » entend désigner la surface externe des parois définissant le volume intérieur du creuset. Le « volume intérieur du creuset » désigne, au sens de l'invention, le volume défini par la surface de fond et les parois latérales du corps de base du creuset.
Le matériau formant la couche conforme à l'invention dérive de la décomposition thermique de polysilazane(s).
Les polysilazanes convenant à l'invention peuvent être représentés par la formule suivante ^SiR^ -NR^ SiRm^-NR***) ,-, dans laquelle R', R", R' ", R*, R** et R*** repésentent indépendamment les uns des autres un atome d'hydrogène ou un radical alkyle, aryle, vinyle ou (trialkoxysilyl)alkyle substitué ou non-substitué, n et p ayant des valeurs telles que le polysilazane présente un poids moléculaire moyen allant de 150 à 150 000 g/mol.
De tels polysilazanes sont notamment décrits dans le document US 2009/0286086.
Le matériau formant la couche conforme à l'invention peut être à base de carbure de silicium SiC, de nitrure de silicium Si3N4 et/ou d'oxycarbonitrure de silicium.
Par oxycarbonitrure de silicium, on entend désigner les composés de formule générale SixOyNzCw, tels que par exemple ceux décrits dans US 5,438,025, comme par exemple S1NCO2 ou Si No,52 Οι,45 Co,32.
Plus particulièrement, le matériau formant la couche conforme à l'invention dérive d'un traitement thermique de type pyrolyse, d'un polysilazane.
Via l'ajustement des conditions de pyrolyse, en terme de palier de température, de vitesse et de maintien en température et/ou de nature de l'atmosphère considérée lors de la pyrolyse, par exemple argon ou azote, il s'avère possible d'une part d'accéder à des matériaux de composition particulière pour une strate donnée et donc de réaliser un empilement de strates de tuiles de nature chimique identique ou non et, d'autre part, de moduler l'organisation structurelle de chacune des strates. C'est précisément à travers cette modulation en termes de composition et/ou d'organisation structurelle du matériau formant chaque strate de tuiles qu'il s'avère possible de parvenir aux propriétés requises, en terme de résistance au cisaillement de la couche conforme à l'invention.
II est à noter que l'ajustement des conditions de pyrolyse en terme de vitesse en température, plus précisément en terme de vitesse de chauffe, n'influe pas sur la perte de masse et par conséquent sur le retrait de la couche et sur la formation des tuiles.
Les tuiles de l'empilement conforme à l'invention peuvent être en carbure de silicium SiC, en nitrure de silicium S13N4, en un mélange de SiC et de S13N4, voire en oxycarbonitrure de silicium SiCNO.
Selon un mode de réalisation, les tuiles formant l'ensemble des strates constituant la dite couche peuvent être en un même matériau.
Selon un autre mode de réalisation, les tuiles formant l'ensemble des strates constituant la dite couche peuvent être constituées de deux matériaux différents. Dans ce second mode de réalisation, les tuiles peuvent avoir des compositions différentes d'une strate à une autre, au regard par exemple de conditions différentes retenues pour former chacune des strates correspondantes.
L'empilement des strates de tuiles non jointives peut être réalisé à partir de toute technique connue de l'homme du métier, et notamment par dépôt chimique en phase vapeur (CVD) ou par trempage, et plus particulièrement celles décrites dans la publication Bill et al. (J. of the European Ceramic Soc, vol. 16, 1996 : 1115).
Les caractéristiques morphologiques des tuiles obtenues selon l'invention dépendront également bien entendu des conditions de leur formation, et en particulier de la nature de la solution de dépôt ainsi que des paramètres retenus pour le traitement thermique et en particulier de la température.
De façon générale, l'épaisseur de chacune des strates de tuiles formant l'empilement conforme à l'invention peut être comprise entre 0,2 et 50 μιη, en particulier entre 1 et 50 μιη, par exemple entre 0,5 et 20 μιη, par exemple entre 1 et 5 μιη.
Quant à l'épaisseur de l'empilement conforme à l'invention, elle peut être comprise entre 10 et 500 μιη, en particulier entre 20 et 500 μιη, par exemple entre 30 et 400 μιη, de préférence entre 50 et 200 μιη. L'espacement latéral entre deux tuiles peut être compris entre 0,1 μιη et 20 μιη, en particulier être de moins de 5 μιη, et de préférence inférieur à 1 μιη.
La dimension latérale des tuiles peut être comprise entre 4 μιη et 150 μιη, par exemple entre 10 μιη et 30 μιη.
L'épaisseur et la dimension latérale des tuiles ainsi que l'espacement latéral entre deux tuiles peuvent être déterminés de façon conventionnelle par microscopie électronique à balayage (MEB).
Une tuile est caractérisée par une dimension d'épaisseur inférieure à sa dimension latérale (longueur, largeur, diamètre).
Selon l'invention, le rapport dimension latérale/épaisseur des tuiles peut être compris entre 1,2 et 200.
La couche se présentant sous la forme d'un empilement de tuiles non jointives conforme à l'invention est également caractérisée par sa résistance au cisaillement, qui doit être supérieure à 1 Pa et inférieure ou égale à 500 MPa.
Au sens de l'invention, la « résistance au cisaillement » d'une couche entend désigner la résistance mécanique à une contrainte développée dans le plan de la couche.
Elle s'oppose à une résistance à une traction qui serait en revanche la résistance à une contrainte développée perpendiculairement au plan de la couche d'empilement.
Ce paramètre de résistance au cisaillement peut être déterminé par toute technique conventionnelle connue de l'homme du métier, et notamment par la mesure définie dans la norme ASTM D1002, par exemple grâce à la machine eXpert 2611 du fabricant ADMET.
La couche conforme à l'invention ne doit pas être sujette à un phénomène de désagrégation ni d'effritement lors de simples manipulations du creuset. De même, elle ne doit pas être altérée par les contraintes induites lors de la fusion de la charge de silicium, notamment celles induites par la convection naturelle.
Ainsi, la couche conforme à l'invention présente une résistance au cisaillement supérieure à 1 Pa, par exemple supérieure à 10 kPa, notamment supérieure à 50kPa.
Par ailleurs, la couche conforme à l'invention doit également présenter une résistance au cisaillement inférieure à la contrainte induite par la différence de dilatation thermique entre le silicium en cours de solidification et le substrat du creuset. De préférence, la couche conforme à l'invention présente une résistance au cisaillement inférieure à la contrainte critique en cisaillement du silicium, c'est-à-dire inférieure à la contrainte minimale qui favorise l'apparition des dislocations du silicium lorsque celui-ci est dans son domaine de plasticité.
Cela permet en effet de faciliter notamment le détachement du lingot de silicium au cours de son refroidissement au sein du creuset, et de limiter également l'apparition de défauts, en particulier de dislocations.
En particulier, la couche conforme à l'invention peut présenter une résistance au cisaillement inférieure ou égale à 300 MPa, par exemple inférieure ou égale à 200 MPa, par exemple inférieure ou égale à 100 MPa, par exemple inférieure ou égale à 5 MPa.
L'invention peut être avantageusement réalisée sur tout type de creuset conventionnel, et par exemple sur des creusets constitués d'un substrat céramique dense, par exemple en carbure de silicium SiC, en nitrure de silicium S13N4 ou en silice Si02, ou d'un substrat poreux, par exemple en graphite.
De préférence, on choisira un substrat en graphite, et notamment en graphite isostatique, pyrolytique, vitreux, fibreux, composite carbone-carbone ou flexible qui présentent avantageusement une bonne résistance à la température.
Selon un mode de réalisation, notamment lorsque le substrat utilisé est poreux, le creuset peut comprendre en outre au moins partiellement sur sa surface interne une couche isolante intermédiaire.
Cette couche isolante intermédiaire est alors localisée entre la surface interne du creuset et la couche de revêtement conforme à l'invention, c'est à dire formée d'un matériau obtenu par décomposition thermique de polysilazane(s).
Une telle couche isolante intermédiaire est destinée à isoler ledit substrat de la couche du revêtement.
Comme il ressort de ce qui suit, cette couche est généralement formée, au moins partiellement, en surface interne dudit creuset préalablement à la formation de la couche formée d'un matériau obtenu par décomposition thermique de polysilazane(s) conforme à l'invention. Cette couche isolante intermédiaire apposée en surface du matériau formant ledit creuset pourra notamment être une couche dense et continue de céramique apte à assurer un comportement barrière, voire antioxydant.
De telles couches isolantes sont bien connues de l'homme du métier. Selon un mode de réalisation, cette couche isolante intermédiaire peut être formée d'au moins deux matériaux distincts, constituant alternativement cette couche isolante.
En particulier, le premier type de l'un des matériaux peut être formé majoritairement, voire uniquement, de silice Si02, et l'autre matériau peut être formé majoritairement, voire uniquement, de carbure de silicium SiC.
Comme indiqué précédemment, les creusets conformes à l'invention peuvent être notamment obtenus au moyen d'un procédé de préparation comprenant au moins la formation de ladite couche via (a) la formation d'une première strate de tuiles par (i) mise en contact de la surface interne dudit creuset, avec une solution comprenant au moins un polysilazane, (ii) condensation-réticulation dudit polysilazane, (iii) pyrolyse sous atmosphère et température contrôlées et, éventuellement, (iv) recuit d'oxydation, suivie de (b) la formation d'au moins une nouvelle strate de tuiles contigue à la strate formée en étape (a), par reproduction des étapes (i) à (iii) et, éventuellement, (iv), ledit procédé étant caractérisé en ce que la pyrolyse de l'étape (iii) dudit procédé est réalisée à un palier de température réalisé à une température d'au moins 1000 °C pendant au moins 1 heure.
Selon un mode de réalisation, un procédé conforme à l'invention peut comprendre une étape préalable de formation d'une couche isolante intermédiaire sur la surface interne dudit creuset.
Pour des raisons évidentes, le nombre de strates de tuiles dans la couche conforme à l'invention dépendra du nombre de répétitions des étapes (a) et (b).
Selon un mode de réalisation, l'empilement conforme à l'invention peut comprendre de 2 à 100 strates formées de tuiles, ces strates étant superposées et contigues.
Selon un mode de réalisation, l'une des étapes (a) ou (b) est réalisée sous atmosphère réactive à l'égard du matériau dérivant du polysilazane, par exemple sous azote ou sous air, et l'autre étape sous atmosphère inerte, par exemple sous argon.
Il en découle la formation de deux matériaux distincts, par exemple tels que définis précédemment. La solution de polysilazane peut être déposée par toute technique conventionnelle connue de l'homme du métier, et par exemple être déposée par trempage, par tournage, par pistolétage ou encore à l'aide d'un pinceau.
L'utilisation d'une phase liquide permet de réaliser un dépôt présentant un très bon état de surface.
Selon un mode de réalisation, la solution comprenant au moins un polysilazane peut comprendre également un solvant, par exemple un solvant anhydre aprotique, et un initiateur de polymérisation, par exemple de type peroxyde organique.
A titre de solvant anhydre aprotique, on peut notamment citer le toluène, le diméthylformamide, le diméthylsulfoxyde et le dibutyléther.
A titre d'initiateur de polymérisation, on peut notamment citer le peroxyde de dicumyle, le diperoxyester et le peroxycarbonate.
Les caractéristiques morphologiques des tuiles obtenues selon l'invention dépendent notamment de la viscosité de la solution de polysilazane déposée, et par conséquent notamment de la concentration volumique en polysilazane dans cette solution.
De préférence, la solution de polysilazane utilisée selon l'invention comprend de 5 à 90 % en volume, en particulier de 10 à 70 % en volume, par exemple de 10 à 50 % en volume, par exemple de 20 à 50 % en volume de polysilazane(s).
Cette solution peut également comprendre en outre des poudres de carbure de silicium et/ou des poudres de nitrure de silicium et/ou des poudres de silicium.
L'ajout de telles poudres permet avantageusement d'ajuster la viscosité de la solution de polysilazane, et de mieux contrôler ainsi la morphologie des strates de tuiles de l'empilement conforme à l'invention. L'étape de pyrolyse est réalisée sous atmosphère contrôlée, par exemple sous une atmosphère constituée d'argon, d'azote ou d'air, de préférence d'argon.
Une étape additionnelle de recuit d'oxydation sous air peut être également réalisée.
Cette étape de recuit présente un intérêt tout particulier lorsque l'étape de pyrolyse est réalisée sous une atmosphère constituée d'argon, d'azote ou d'ammoniaque. Le matériau obtenu est en effet alors soit du SiC, soit du S13N4, soit un matériau de composition intermédiaire et il est peut être avantageux de l'oxyder pour accroître sa résistance au cisaillement.
Cette étape de recuit s'avère en outre avantageuse pour renforcer la résistance au cisaillement d'un empilement de couches de tuiles obtenues par pyrolyse réalisée sous une atmosphère constituée d'argon et/ou d'azote.
Toutefois, il est à noter que même en l'absence d'une étape de recuit d'oxydation, la résistance au cisaillement d'un tel empilement de couches de tuiles, est déjà supérieure à 1 Pa et inférieure ou égale à 500 MPa.
Lorsque l'étape de pyrolyse est réalisée sous une atmosphère constituée d'air, l'étape de recuit possède un intérêt moindre puisque le matériau obtenu est déjà oxydé à l'issue de la pyrolyse.
Le procédé selon l'invention permet de limiter, voire d'éviter, la contamination du lingot de silicium, et d'obtenir ainsi des lingots de silicium de plus grande pureté par rapport à ceux obtenus jusqu'à ce jour, et ce tout en mettant en œuvre des techniques de dépôts conventionnelles et peu coûteuses.
Ainsi, la pureté moyenne des revêtements obtenus à partir de solutions de polysilazane est supérieure à 99,5 % en poids, voire à 99,996 % en poids, soit bien supérieure à celle des revêtements obtenus à partir de poudres, par exemple de poudres de S13N4 qui présentent des puretés de l'ordre de 98 %, voire de 99,96 % ou même inférieures à 98 %, voire à 99,96 %.
L'invention pourra être mieux comprise à l'examen du dessin annexé sur lequel :
- la figure 1 représente de façon schématique une vue de coté d'un creuset selon l'invention, et - la figure 2 représente de façon schématique une vue de dessus d'un creuset selon l'invention.
Comme cela ressort de ces Figures, le creuset (1) est revêtu sur sa surface interne (2) d'une couche (3) formée d'un matériau obtenu par décomposition thermique de polysilazane(s). Cette couche (3) se présente sous la forme d'un empilement de tuiles non jointives (4), ce qui lui donne un aspect craquelé sur sa surface supérieure représenté en Figure 2.
Plus précisément, cet empilement comprend plusieurs strates de tuiles contiguës (4a) et (4b), chaque strate étant formée de tuiles non jointives et non superposées.
La rupture de l'empilement se produit par cisaillement au sein du matériau (5) qui assure la liaison entre les tuiles (4) dans la couche (3). EXEMPLES :
Les exemples qui suivent sont réalisés avec différents types de creuset.
Au cours des différentes étapes du procédé de revêtement, le creuset à traiter est plongé dans les différentes solutions décrites ci-après à l'aide d'une nacelle et de pinces.
Exemple 1 :
Le creuset utilisé est un creuset en graphite 2020PT™ de la société CARBONE LORRAINE ayant un diamètre externe de 50 mm, un diamètre intérieur de 30 mm et une hauteur de 50 mm, qui est préalablement nettoyé à l'acétone avant d'être mis en œuvre et recouvert, au cours de la fusion du silicium, par un couvercle en silice.
La surface du creuset à traiter selon l'invention est, en outre, au préalable revêtue d'une couche continue dense isolante en SiC d'environ 6 μιη d'épaisseur, selon le protocole décrit dans la publication Bill et al. (J. of the European Ceramic Soc, vol. 16, 1996 : 1115) citée ci-dessus. Le graphite du creuset est ainsi infiltré sur une profondeur d'environ 50 μιη.
Une couche multi- strates selon l'invention ou encore un empilement de tuiles non jointives selon l'invention a été formé sur ce creuset, selon le protocole suivant.
Chaque strate de tuiles est formée par trempage à partir d'une solution contenant 30 % en volume de polysilazane (Ceraset PSZ20™ de la société CLARIANT) dans du toluène, cette solution comprenant en outre 0,1 % en poids de peroxyde de dicumyl (Luperox DC) à titre d'initiateur de polymérisation. Pour se faire, le creuset est plongé dans cette solution en suivant trois cycles de trempages de 5 minutes, chaque cycle de trempage étant suivi d'un recuit de polymérisation à 200°C pendant 2h, puis d'une pyrolyse pendant deux heures à 1400 °C, le tout sous azote, puis d'un recuit d'oxydation sous air pendant deux heures à 1000 °C.
On obtient ainsi un empilement de tuiles non jointives d'épaisseur comprise entre 180 à 200 μιη qui est constitué de strates de tuiles d'épaisseur variable, comprise entre 13 et 28 μιη.
Le creuset selon l'invention ainsi formé est testé comme suit :
70 g de silicium solide sont ensuite placés manuellement et très délicatement dans le creuset résultant, puis fondus selon le cycle suivant : montée en température à une vitesse de 200 °C par heure jusqu'à 1000 °C sous vide primaire, suivi d'un palier d'une durée d'une heure avec introduction d'une atmosphère d'argon statique, puis montée en température à une vitesse de 150 °C par heure jusqu'à 1500 °C et maintien à cette température pendant 4 heures, et enfin descente à une vitesse de 50 °C par heure jusqu'à 1200 °C, puis maintien à cette température pendant 1 heure.
Le refroidissement s'effectue ensuite librement jusqu'à température ambiante.
Après refroidissement, le lingot de silicium ainsi formé se détache du creuset conforme à l'invention par rupture cohésive à l'intérieur du revêtement.
La pureté du revêtement utilisé dans le creuset va se retrouver dans le lingot de silicium. On obtient du silicium pur à plus de 99,6 %, voire à plus de 99,996 %.
La pureté a été appréciée par la technologie GDMS (Glow-Discharge Mass Spectrometry). Exemple 2 :
Le creuset utilisé est identique au creuset décrit dans l'exemple 1. Toutefois, la surface du creuset à traiter selon l'invention est au préalable revêtue d'une couche continue dense isolante en SiC d'environ 45μιη d'épaisseur, recouverte d'une couche isolante de Si02 d'environ 4μιη, obtenue par infiltration réactive selon le protocole décrit dans la publication Israël et al. (J. of the European Ceramic Soc, vol 31, (201 1), 2167-2174). Un empilement de tuiles non jointives selon l'invention a été formé en surface de la couche intermédiaire de Si02 selon le protocole décrit dans l'exemple 1.
Le creuset selon l'invention ainsi formé, et testé selon le protocole décrit dans l'exemple 1, s'avère apte à former des lingots de silicium de pureté supérieure à 99,996 %.
Exemple 3 :
Le creuset utilisé est un creuset en silice vitreuse fabriqué par la société MondiaQuartz ayant un diamètre externe de 50 mm, un diamètre intérieur de 30 mm et une hauteur de 50 mm, il est préalablement nettoyé à l'acétone avant d'être mis en œuvre.
Un empilement de tuiles non jointives selon l'invention a été formé selon le protocole décrit dans l'exemple 1.
Le creuset selon l'invention ainsi formé, et testé selon le protocole décrit dans l'exemple 1, s'avère également propice à former des lingots de silicium très purs. Exemple 4 :
Le creuset utilisé est un creuset en graphite 2020PT™ de la société
CARBONE LORRAINE ayant un diamètre externe de 50 mm, un diamètre intérieur de 30 mm et une hauteur de 50 mm, il est préalablement nettoyé à l'acétone puis dégazé sous vide primaire à 50°C pendant 30 minutes, avant d'être mis en œuvre.
Sa surface est préalablement revêtue d'une couche continue dense isolante en
SiC d'environ 14 μιη d'épaisseur, selon le protocole décrit dans la publication Bill et al.
(J. of the European Ceramic Soc, vol 16, 1996 : 1115) citée ci-dessus. Le graphite du creuset est ainsi infiltré sur une profondeur d'environ 450 μιη.
Un empilement de strates minces selon l'invention a été formé sur ce creuset, selon le protocole suivant.
La couche selon l'invention est réalisée à partir d'une solution contenant 30 % en volume de polysilazane (Ceraset PSZ20™ de la société CLARIANT) dans du toluène, cette solution comprenant en outre 0,1 % en poids de peroxyde de dicumyl (Luperox DC) à titre d'initiateur de polymérisation.
Plus précisément, le creuset est plongé à l'aide d'une nacelle et de pinces dans cette solution puis il est sorti du bain lentement, et le liquide en excès est évacué par gravité. Le trempage est suivi d'une étape de polymérisation sous argon pendant une heure à 150°C puis d'une pyrolyse sous argon pendant deux heures à 1000°C.
Cette séquence d'étapes, trempage/polymérisation/pyrolyse sous argon, est répétée à huit reprises, puis le creuset ainsi revêtu subit un recuit d'oxydation sous air pendant deux heures à 1000°C.
On obtient ainsi une couche d'épaisseur comprise entre 60 et 95 μιη, qui est constituée d'un empilement de strates, chaque strate étant formée de tuiles d'épaisseur variable, comprise entre 3 et 12 μιη.
Le creuset selon l'invention ainsi formé est testé comme suit :
70 g de silicium de qualité électronique sont ensuite déposés manuellement très délicatement dans le creuset résultant. Le silicium est ensuite fondu en suivant le cycle suivant : montée en température à une vitesse de 200 °C par heure jusqu'à 1000 °C sous vide primaire, suivi d'un palier d'une durée d'une heure avec introduction d'une atmosphère d'argon statique, puis montée en température à une vitesse de 150 °C par heure jusqu'à 1500 °C et maintien à cette température pendant 4 heures, et enfin descente à une vitesse de 50 °C par heure jusqu'à 1200 °C.
Le refroidissement s'effectue ensuite librement jusqu'à température ambiante. Après refroidissement, le lingot de silicium ainsi formé se détache du creuset conforme à l'invention après quelques chocs sur son pourtour majoritairement par rupture cohésive à l'intérieur du revêtement.
Exemple 5 :
Le creuset utilisé est un creuset en silice vitreuse fabriqué par la société MondiaQuartz ayant un diamètre externe de 50 mm, un diamètre intérieur de 45 mm et une hauteur de 50 mm, il est préalablement nettoyé à l'acétone avant d'être mis en œuvre.
Un empilement de couches minces selon l'invention a été formé sur ce creuset, à partir d'une solution contenant 50 % en volume de polysilazane (Ceraset PSZ20™ de la société CLARIANT) dans du dibutyl-éther anhydre (Sigma Aldrich).
Plus précisément, le creuset est plongé à l'aide d'une nacelle et de pinces dans cette solution puis il est sorti du bain lentement, et le liquide en excès est évacué par gravité. Le trempage est suivi d'une étape de polymérisation sous argon pendant deux heures à 200°C puis d'une pyrolyse sous argon pendant deux heures à 1000°C.
Cette séquence d'étapes, trempage/polymérisation/pyrolyse sous argon, est répétée à douze reprises, puis le creuset ainsi revêtu subit un recuit d'oxydation sous air pendant deux heures à 1000°C.
On obtient ainsi une couche d'épaisseur comprise entre 65 et 110 μιη, qui est constituée d'un empilement de strates, chaque strate étant formée de tuiles d'épaisseur variable, comprise entre 1 et 10 μιη.
Le creuset selon l'invention ainsi formé est testé comme suit :
72 g de silicium de qualité électronique sont ensuite déposés manuellement très délicatement dans le creuset résultant. Le silicium est ensuite fondu en suivant le cycle suivant : montée en température à une vitesse de 200 °C par heure jusqu'à 1000 °C sous vide primaire, suivi d'un palier d'une durée d'une heure avec introduction d'une atmosphère d'argon statique, puis montée en température à une vitesse de 150 °C par heure jusqu'à 1500 °C et maintien à cette température pendant 4 heures, et enfin descente à une vitesse de 50 °C par heure jusqu'à 1200 °C.
Le refroidissement s'effectue ensuite librement jusqu'à température ambiante. Après refroidissement, le lingot de silicium ainsi formé se détache du creuset conforme à l'invention après quelques chocs sur son pourtour majoritairement par rupture cohésive à l'intérieur du revêtement.
Exemple 6 :
Le creuset utilisé est un creuset en graphite R6510™ fabriqué par la société SGL-Carbon ayant un diamètre externe de 50 mm, un diamètre intérieur de 40 mm et une hauteur de 50 mm.
Sa surface est revêtue d'une couche continue dense isolante en SiC d'environ 70 μιη d'épaisseur, obtenue par réaction chimique en phase vapeur (CVD). La couche de SiC est préalablement oxydée par un recuit à 1200°C sous air pendant 5h.
Un empilement de couches minces selon l'invention a été formé sur ce creuset, à partir d'une solution contenant 50 % en volume de polysilazane (Ceraset PSZ20™ de la société CLARIANT) dans du dibutyl-éther anhydre (Sigma Aldrich). Plus précisément, le creuset est plongé à l'aide d'une nacelle et de pinces dans cette solution puis il est sorti du bain lentement, et le liquide en excès est évacué par gravité. Le trempage est suivi d'une étape de polymérisation sous air pendant deux heures à 200°C puis d'une pyrolyse sous air pendant deux heures à 1000°C.
Cette séquence d'étapes, trempage/polymérisation/pyrolyse sous air, est répétée à dix reprises.
On obtient ainsi une couche d'épaisseur comprise entre 60 et 90 μιη, qui est constituée d'un empilement de strates, chaque strate étant formée de tuiles d'épaisseur variable, comprise entre 1 et 10 μιη.
Le creuset selon l'invention ainsi formé est testé comme suit :
72 g de silicium de qualité électronique sont ensuite déposés manuellement très délicatement dans le creuset résultant. Le silicium est ensuite fondu en suivant le cycle suivant : montée en température à une vitesse de 200 °C par heure jusqu'à 1000 °C sous vide primaire, suivi d'un palier d'une durée d'une heure avec introduction d'une atmosphère d'argon statique, puis montée en température à une vitesse de 150 °C par heure jusqu'à 1500 °C et maintien à cette température pendant 4 heures, et enfin descente à une vitesse de 50 °C par heure jusqu'à 1200 °C.
Le refroidissement s'effectue ensuite librement jusqu'à température ambiante.
Après refroidissement, le lingot de silicium ainsi formé se détache du creuset conforme à l'invention après quelques chocs sur son pourtour majoritairement par rupture cohésive à l'intérieur du revêtement.
Exemple 7 :
Le creuset utilisé est un creuset en silice vitreuse fabriqué par la société
MondiaQuartz ayant un diamètre externe de 50 mm, un diamètre intérieur de 45 mm et une hauteur de 50 mm, il est préalablement nettoyé à l'acétone avant d'être mis en œuvre.
Un empilement de couches minces selon l'invention a été formé sur ce creuset, à partir d'une solution contenant 80 % en volume de polysilazane (Ceraset PSZ20™ de la société CLARIANT) dans du dibutyl-éther anhydre (Sigma Aldrich).
Dans le cas de ce mode de réalisation, les solutions de polysilazanes sont appliquées sur le creuset par pulvérisation par pistolétage. Le pistolétage est suivi d'une étape de polymérisation sous air pendant trente minutes à 500°C sur une plaque chauffante.
Cette séquence pistolétage/polymérisation à 500°C est répétée à six reprises, puis le creuset ainsi revêtu subit une étape de pyrolyse à 1000°C pendant une heure sous azote.
Cette séquence d'étapes est répétée à quatre reprises.
Le creuset selon l'invention ainsi formé est testé comme suit :
72 g de silicium de qualité électronique sont ensuite déposés manuellement très délicatement dans le creuset résultant. Le silicium est ensuite fondu en suivant le cycle suivant : montée en température à une vitesse de 200 °C par heure jusqu'à 1000 °C sous vide primaire, suivi d'un palier d'une durée d'une heure avec introduction d'une atmosphère d'argon statique, puis montée en température à une vitesse de 150 °C par heure jusqu'à 1500 °C et maintien à cette température pendant 4 heures, et enfin descente à une vitesse de 50 °C par heure jusqu'à 1200 °C.
Le refroidissement s'effectue ensuite librement jusqu'à température ambiante.
Après refroidissement, le lingot de silicium ainsi formé se détache du creuset conforme à l'invention après quelques chocs sur son pourtour, majoritairement par rupture cohésive à l'intérieur du revêtement.
Exemple 8 : Comparaison d'un creuset traité selon l'invention avec un creuset standard
Les creusets utilisés sont des creusets en silice vitreuse fabriqués par la société MondiaQuartz ayant un diamètre externe de 145 mm, un diamètre intérieur de 140 mm et une hauteur de 150 mm, ils sont préalablement nettoyés à l'acétone et à l'éthanol avant d'être mis en œuvre.
La surface interne du creuset témoin est revêtue sur sa totalité d'un revêtement anti-adhérent standard fait de poudre de nitrure de silicium (SNE10, UBE) en suspension dans un mélange d'eau et de PVA. Cette suspension est projetée par pulvérisation en 4 couches successives sur la surface interne du creuset, avec séchage à l'air pendant 5 minutes entre chaque couche, puis elle est oxydée à 900°C pendant 2h sous air en position sur son substrat. Cette succession d'étape, pulvérisation en 4 couches/séchage/oxydation, est répétée 2 fois.
Les parois verticales du creuset selon l'invention sont revêtues sur sa surface interne du même revêtement que ci-dessus.
En revanche, la surface interne formant le fond du creuset selon l'invention est revêtue d'un empilement de couches minces conforme à l'invention, formé à partir d'une solution contenant 50 % en volume de polysilazane (Ceraset PSZ20™ de la société CLARIANT) dans du dibutyl-éther anhydre (Sigma Aldrich).
Plus précisément, il est déposé dans le fond du creuset 1 ml de solution. Le creuset est ensuite mis en rotation sur un plateau tournant jusqu'à étalement total de la couche, et le liquide en excès est évacué par gravité (ruissellement le long des parois verticales nues). Le dépôt par tournage est suivi d'une étape de polymérisation sous air pendant deux heures à 200°C puis d'une pyrolyse sous air pendant deux heures à 1000°C.
Cette séquence d'étapes dépôt/rotation/polymérisation/pyrolyse est répétée à trente reprises, puis le fond du creuset ainsi revêtu subit un recuit d'oxydation en exposant le creuset sous air pendant deux heures à 1000°C.
On obtient ainsi au fond du creuset une couche d'épaisseur comprise entre 50 et 120 μιη, qui est constituée d'un empilement de strates, chaque strate étant formée de tuiles d'épaisseur variable, comprise entre 1 et 10 μιη.
Les creusets ainsi formés sont testés comme suit :
2.3 kg de silicium de qualité électronique sont ensuite déposés manuellement très délicatement dans chacun des creusets résultants. Le silicium est ensuite fondu en suivant le cycle suivant : montée en température à une vitesse de 200 °C par heure jusqu'à 1000 °C sous vide primaire, suivi de l'introduction d'une atmosphère d'argon circulant à un débit de 0,5 1/min, puis montée en température à une vitesse de 150 °C par heure jusqu'à 1550 °C et maintien à cette température pendant 5 heures, et enfin descente à une vitesse de 50 °C par heure jusqu'à 1200 °C. Le refroidissement s'effectue ensuite à une vitesse de 200°C par heure jusqu'à température ambiante.
Après refroidissement, le lingot de silicium formé dans le creuset témoin se détache du creuset spontanément. Le lingot formé dans le creuset selon l'invention, c'est- à-dire dont le fond est conforme à l'invention, se détache après quelques chocs sur son pourtour majoritairement par rupture cohésive à l'intérieur du revêtement.
Les lingots ainsi obtenus sont découpés en tranches verticales de 20 mm d'épaisseur, et des analyses de durée de vie des porteurs minoritaires dans ces tranches sont réalisées.
Le principe de cette mesure est le suivant : une excitation laser puisée de la surface (jusqu'à 1 mm de profondeur) permet de générer des paires électron-trou dans le matériau semi-conducteur qui vont se recombiner après un temps caractéristique (durée de vie) qui est fortement dépendant de la quantité d'impuretés présentes, issues des matériaux du creuset. La cartographie des durées de vie dans les tranches des lingots est réalisée par une mesure de la décroissance de photoconductivié, induite par la génération de ces porteurs de charge, et elle est réalisée sur un appareil WT200 de chez Semilab.
Ces analyses prouvent que le silicium en contact avec les zones du creuset conforme à l'invention (fond du lingot dit selon l'invention) présente des durées de vie, et donc une pureté bien meilleures que le silicium au contact du revêtement dit standard (fond du lingot dit témoin). L'épaisseur de la zone polluée est estimée à 6 mm environ dans le lingot dit témoin tandis qu'elle est comprise entre 2 et 3 mm dans le lingot dit selon l'invention.

Claims

REVENDICATIONS
1. Creuset utile pour la solidification d'un lingot de silicium à partir de silicium fondu, caractérisé en ce qu'il est revêtu au moins partiellement sur sa surface interne d'au moins une couche formée d'un matériau obtenu par décomposition thermique de polysilazane(s), ladite couche présentant une résistance au cisaillement supérieure à 1 Pa et inférieure ou égale à 500 MPa, et se présentant sous la forme d'un empilement de strates contigues de tuiles non jointives.
2. Creuset selon la revendication précédente, caractérisé en ce que l'épaisseur de chacune des strates de tuiles formant ledit empilement est comprise entre 0,2 et 50 μιη, en particulier entre 1 et 50 μιη, par exemple entre 0,5 et 20 μιη, par exemple entre 1 et 5 μιη.
3. Creuset selon selon la revendication 1 ou 2, caractérisé en ce que l'épaisseur dudit empilement est comprise entre 10 et 500 μιη, en particulier entre 20 et 500 μιη, par exemple entre 30 et 400 μιη, de préférence entre 50 et 200 μιη.
4. Creuset selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit empilement comprend de 2 à 100 strates de tuiles, les dites strates étant superposées et contiguës.
5. Creuset selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite couche présente une résistance au cisaillement inférieure ou égale à 300 MPa, par exemple inférieure ou égale à 200 MPa, par exemple inférieure ou égale à 100 MPa, par exemple inférieure ou égale à 5 MPa.
6. Creuset selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit matériau formant la couche est à base de carbure de silicium SiC, de nitrure de silicium S13N4 et/ou d'oxycarbonitrure de silicium.
7. Creuset selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites tuiles sont en carbure de silicium SiC, en nitrure de silicium S13N4, en un mélange de SiC et de S13N4, voire en oxycarbonitrure de silicium SiCNO.
8. Creuset selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites tuiles formant l'ensemble des strates constituant ladite couche, sont en un même matériau.
9. Creuset selon l'une quelconque des revendications 1 à 7, caractérisé en ce que lesdites tuiles formant l'ensemble des strates constituant ladite couche, sont constituées de deux matériaux différents.
10. Creuset selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites tuiles sont espacées latéralement de 0,1 μιη à 20 μιη, en particulier de moins de 5 μιη, et de préférence inférieur à 1 μιη.
11. Creuset selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre au moins partiellement sur sa surface interne une couche isolante intermédiaire située entre sa surface interne et ladite couche formée d'un matériau obtenu par décomposition thermique de polysilazane(s).
12. Creuset selon la revendication précédente, caractérisé en ce que ladite couche isolante intermédiaire est formée d'au moins deux matériaux distincts, constituant alternativement cette couche isolante.
13. Creuset selon la revendication précédente, dans lequel le premier type de l'un des matériaux est formé majoritairement, voire uniquement, de silice Si02, et l'autre matériau est formé majoritairement, voire uniquement, de carbure de silicium SiC.
14. Creuset selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est constitué d'un substrat céramique dense, par exemple en carbure de silicium SiC, en nitrure de silicium S13N4 ou en silice Si02 ou d'un substrat poreux, par exemple en graphite.
15. Procédé de préparation d'un creuset selon l'une quelconque des revendications précédentes, comprenant au moins la formation de ladite couche via (a) la formation d'une première strate de tuiles par (i) mise en contact de la surface interne dudit creuset, avec une solution comprenant au moins un polysilazane, (ii) condensation- réticulation dudit polysilazane, (iii) pyrolyse sous atmosphère et température contrôlées et, éventuellement, (iv) recuit d'oxydation, suivie de (b) la formation d'au moins une nouvelle strate de tuiles, contiguë à la strate formée en étape (a), par reproduction des étapes (i) à (iii) et, éventuellement, (iv), ledit procédé étant caractérisé en ce que la pyrolyse de l'étape (iii) dudit procédé est réalisée à un palier de température réalisé à une température d'au moins 1000 °C pendant au moins 1 heure.
16. Procédé selon la revendication 15, caractérisé en ce que l'une des étapes (a) ou (b) est réalisée sous atmosphère réactive à l'égard du matériau dérivant du polysilazane, par exemple sous azote ou sous air, et l'autre étape sous atmosphère inerte, par exemple sous argon.
17. Procédé selon l'une quelconque des revendications 15 à 16, caractérisé en ce qu'il comprend une étape préalable de formation d'une couche isolante intermédiaire sur la surface interne dudit creuset.
18. Procédé selon l'une quelconque des revendications 15 à 17, caractérisé en ce que la solution comprenant au moins un polysilazane comprend également un solvant, par exemple un solvant anhydre aprotique, et un initiateur de polymérisation, par exemple de type peroxyde organique.
19. Procédé selon l'une quelconque des revendications 15 à 18, caractérisé en ce que la solution comprenant au moins un polysilazane comprend en outre des poudres de carbure de silicium et/ou des poudres de nitrure de silicium et/ou des poudres de silicium.
20. Procédé selon l'une quelconque des revendications 15 à 19, caractérisé en ce que ladite solution comprend de 5 à 90 % en volume, en particulier de 10 à 70 % en volume, par exemple de 10 à 50 % en volume, par exemple de 20 à 50 % en volume de polysilazane(s).
21. Procédé selon l'une quelconque des revendications 18 à 20, caractérisé en ce que ledit solvant anhydre aprotique est choisi parmi le toluène, le diméthylformamide, le diméthylsulfoxyde, et le dibutyléther.
22. Utilisation d'un creuset tel que défini selon l'une quelconque des revendications 1 à 14, pour la solidification dirigée de silicium.
PCT/IB2011/053748 2010-08-27 2011-08-26 Creuset pour la solidification de lingot de silicium WO2012025905A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112013004537A BR112013004537A2 (pt) 2010-08-27 2011-08-23 cadinho de uso para solidificação de um lingote de silício a partir de silício fundido, processo para preparar um cadinho e uso de um cadinho
JP2013525412A JP5975994B2 (ja) 2010-08-27 2011-08-26 シリコンインゴットを凝固させるためのるつぼ
EP11760575.8A EP2609043A1 (fr) 2010-08-27 2011-08-26 Creuset pour la solidification de lingot de silicium
KR1020137006424A KR20130097186A (ko) 2010-08-27 2011-08-26 규소 주괴를 고형화시키기 위한 도가니
US13/819,655 US20130247334A1 (en) 2010-08-27 2011-08-26 Crucible for Solidifying a Silicon Ingot
CN201180041722.6A CN103080028B (zh) 2010-08-27 2011-08-26 用于凝固硅锭的坩埚

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1056804A FR2964117B1 (fr) 2010-08-27 2010-08-27 Creuset pour la solidification de lingot de silicium
FR1056804 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012025905A1 true WO2012025905A1 (fr) 2012-03-01

Family

ID=43037050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/053748 WO2012025905A1 (fr) 2010-08-27 2011-08-26 Creuset pour la solidification de lingot de silicium

Country Status (8)

Country Link
US (1) US20130247334A1 (fr)
EP (1) EP2609043A1 (fr)
JP (1) JP5975994B2 (fr)
KR (1) KR20130097186A (fr)
CN (1) CN103080028B (fr)
BR (1) BR112013004537A2 (fr)
FR (1) FR2964117B1 (fr)
WO (1) WO2012025905A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986228A1 (fr) * 2012-01-31 2013-08-02 Commissariat Energie Atomique Creuset pour la solidification de lingot de silicium.
DE102012019519A1 (de) 2012-10-05 2014-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer diffusionshemmenden Beschichtung, Tiegel zum Schmelzen und/oder Kristallisieren von Nicht-Eisen Metallen sowie Verwendungszwecke
WO2014140901A3 (fr) * 2013-03-14 2015-02-19 Abdallah Nouri Procédé et système de solidification directionnelle
US9352389B2 (en) 2011-09-16 2016-05-31 Silicor Materials, Inc. Directional solidification system and method
DE102016201495A1 (de) 2016-02-01 2017-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tiegel mit einer Innenbeschichtung aus SiC als Diffusionsbarriere für Metalle sowie Verfahren zu dessen Herstellung, Verwendung und darin hergestellte Halbleiterkristalle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557334B2 (ja) * 2010-12-27 2014-07-23 コバレントマテリアル株式会社 シリコン単結晶引上げ用シリカガラスルツボ
JP6564151B1 (ja) * 2019-02-28 2019-08-21 株式会社アドマップ SiC膜単体構造体
CN112457027B (zh) * 2020-11-26 2022-10-11 西安鑫垚陶瓷复合材料有限公司 大尺寸圆截面陶瓷基复合材料构件熔融渗硅工装及方法
KR102677112B1 (ko) * 2022-05-09 2024-06-20 (주)셀릭 저저항 대구경 잉곳 제조장치
CN116462520A (zh) * 2023-04-28 2023-07-21 长沙新立硅材料科技有限公司 一种用于单晶硅拉制的无氧氮化硅坩埚的制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411611A1 (fr) 1989-08-01 1991-02-06 Nkk Corporation Méthode pour produire un matériau de carbone ayant une bonne résistance à l'oxydation
US5438025A (en) 1992-05-29 1995-08-01 Alliedsignal Inc. Silicon oxycarbonitride by pyrolysis of polycyclosiloxanes in ammonia
DE102005032790A1 (de) * 2005-06-06 2006-12-07 Deutsche Solar Ag Behälter mit Beschichtung und Herstellungsverfahren
WO2007039310A1 (fr) * 2005-10-06 2007-04-12 Vesuvius Crucible Company Creuset pour la cristallisation de silicium et son procédé de fabrication
US20090098300A1 (en) * 2006-02-23 2009-04-16 Stefan Brand Coatings Comprisings Polysilazane for Preventing Scaling and Corrosion
US20090119882A1 (en) * 2007-11-08 2009-05-14 Krishna Uibel Firmly adhering silicon nitride-containing release layer
US20090286086A1 (en) 2005-09-08 2009-11-19 Andreas Dierdorf Coatings Containing Polysilazanes for Metal and Polymer Surfaces
JP2010053008A (ja) * 2008-08-29 2010-03-11 Kyocera Corp 坩堝及びその製造方法、並びに結晶シリコン粒子の製造装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU603724B2 (en) * 1988-01-22 1990-11-22 Ethyl Corporation Organoborosilazane polymers
JPH0365574A (ja) * 1989-08-01 1991-03-20 Nkk Corp 炭素と炭化ケイ素からなる多孔体の製造方法
JPH0365581A (ja) * 1989-08-01 1991-03-20 Nkk Corp 炭素焼結体の耐酸化性向上方法
US5837318A (en) * 1995-04-26 1998-11-17 Mcdonnell Douglas Corporation Process for production of low dielectric ceramic composites
US8405183B2 (en) * 2003-04-14 2013-03-26 S'Tile Pole des Eco-Industries Semiconductor structure
DE112004001567B4 (de) * 2003-08-26 2010-09-30 Kyocera Corp. Auf Siliciumnitrid basierendes Sintermaterial und Verfahren zur Erzeugung desselben und ein schmelzfestes Bauteil und ein verschleissfestes Bauteil unter Verwendung desselben
DE10342042A1 (de) * 2003-09-11 2005-04-07 Wacker-Chemie Gmbh Verfahren zur Herstellung eines Si3N4 beschichteten SiO2-Formkörpers
JP2010030851A (ja) * 2008-03-24 2010-02-12 Kyocera Corp 結晶シリコン粒子の製造方法、坩堝及びその製造方法、並びに結晶シリコン粒子の製造装置
JP5367080B2 (ja) * 2008-08-29 2013-12-11 アクティエボラゲット・エスコーエッフ 大型セラミック転がり要素
WO2011010597A1 (fr) * 2009-07-24 2011-01-27 株式会社東芝 Feuille isolante de nitrure de silicium et structure de module semi-conducteur utilisant celle-ci
US8242033B2 (en) * 2009-12-08 2012-08-14 Corning Incorporated High throughput recrystallization of semiconducting materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411611A1 (fr) 1989-08-01 1991-02-06 Nkk Corporation Méthode pour produire un matériau de carbone ayant une bonne résistance à l'oxydation
US5438025A (en) 1992-05-29 1995-08-01 Alliedsignal Inc. Silicon oxycarbonitride by pyrolysis of polycyclosiloxanes in ammonia
DE102005032790A1 (de) * 2005-06-06 2006-12-07 Deutsche Solar Ag Behälter mit Beschichtung und Herstellungsverfahren
US20090286086A1 (en) 2005-09-08 2009-11-19 Andreas Dierdorf Coatings Containing Polysilazanes for Metal and Polymer Surfaces
WO2007039310A1 (fr) * 2005-10-06 2007-04-12 Vesuvius Crucible Company Creuset pour la cristallisation de silicium et son procédé de fabrication
US20090098300A1 (en) * 2006-02-23 2009-04-16 Stefan Brand Coatings Comprisings Polysilazane for Preventing Scaling and Corrosion
US20090119882A1 (en) * 2007-11-08 2009-05-14 Krishna Uibel Firmly adhering silicon nitride-containing release layer
JP2010053008A (ja) * 2008-08-29 2010-03-11 Kyocera Corp 坩堝及びその製造方法、並びに結晶シリコン粒子の製造装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Ceraset Polysilazane 20", 31 December 2008 (2008-12-31), XP002610439, Retrieved from the Internet <URL:http://www.kioncorp.com/datasheets/Ceraset%20Polysilazane%2020%20Product%20Bulletin.pdf> [retrieved on 20101118] *
BILL ET AL., J. OF THE EUROPEAN CERAMIC SOC., vol. 16, 1996, pages 1115
BILL J ET AL: "Polymer-Derived Ceramic Coatings on C/C-SiC Composites", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 16, no. 10, 1 January 1996 (1996-01-01), ELSEVIER SCIENCE PUBLISHERS, BARKING, ESSEX, GB, pages 1115 - 1120, XP004047417, ISSN: 0955-2219, DOI: 10.1016/0955-2219(96)00025-8 *
COBLENZ W S ET AL: "FORMATION OF CERAMIC COMPOSITES AND COATINGS UTILIZING POLYMER PYROLYSIS", EMERGENT PROCESS METHODS FOR HIGH-TECHNOLOGY CERAMICS : [PROCEEDINGS OF THE CONFERENCE ON EMERGENT PROCESS METHODS FOR HIGH-TECHNOLOGY CERAMICS, vol. 7, 1 January 1984 (1984-01-01), NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA, pages 271 - 285, XP008129155, ISBN: 978-0-306-41677-4 *
ISRAEL ET AL., J. OF THE EUROPEAN CERAMIC SOC., vol. 131, 2011, pages 2167 - 2174
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 16, 1996, pages 1115 - 1120
KROKE E: "Silazane derived ceramics and related materials", MATERIALS SCIENCE AND ENGINEERING R: REPORTS, vol. 26, no. 4-6, 1 April 2000 (2000-04-01), ELSEVIER SEQUOIA S.A., LAUSANNE, CH, pages 97 - 199, XP004198439, ISSN: 0927-796X, DOI: 10.1016/S0927-796X(00)00008-5 *
S.M. HU: "stress-related problems in silicon technology", J. APPL. PHYS., vol. 70, 15 September 1991 (1991-09-15), pages R53 - R80, XP002664023, DOI: 10.1063/1.349282 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352389B2 (en) 2011-09-16 2016-05-31 Silicor Materials, Inc. Directional solidification system and method
FR2986228A1 (fr) * 2012-01-31 2013-08-02 Commissariat Energie Atomique Creuset pour la solidification de lingot de silicium.
WO2013114313A2 (fr) * 2012-01-31 2013-08-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Creuset pour la solidification de lingot de silicium
WO2013114313A3 (fr) * 2012-01-31 2013-10-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Creuset pour la solidification de lingot de silicium et son procede de fabrication
US9428844B2 (en) 2012-01-31 2016-08-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Crucible for solidifying a silicon ingot
DE102012019519A1 (de) 2012-10-05 2014-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer diffusionshemmenden Beschichtung, Tiegel zum Schmelzen und/oder Kristallisieren von Nicht-Eisen Metallen sowie Verwendungszwecke
WO2014140901A3 (fr) * 2013-03-14 2015-02-19 Abdallah Nouri Procédé et système de solidification directionnelle
CN105229206A (zh) * 2013-03-14 2016-01-06 希利柯尔材料股份有限公司 定向凝固系统和方法
US9663872B2 (en) 2013-03-14 2017-05-30 Silicor Materials, Inc. Directional solidification system and method
CN105229206B (zh) * 2013-03-14 2019-03-26 希利柯尔材料股份有限公司 定向凝固系统和方法
DE102016201495A1 (de) 2016-02-01 2017-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tiegel mit einer Innenbeschichtung aus SiC als Diffusionsbarriere für Metalle sowie Verfahren zu dessen Herstellung, Verwendung und darin hergestellte Halbleiterkristalle
DE102016201495B4 (de) 2016-02-01 2019-05-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tiegel mit einer Innenbeschichtung aus SiC als Diffusionsbarriere für Metalle sowie Verfahren zu dessen Herstellung, Verwendung und darin hergestellte Halbleiterkristalle

Also Published As

Publication number Publication date
CN103080028A (zh) 2013-05-01
JP5975994B2 (ja) 2016-08-23
US20130247334A1 (en) 2013-09-26
EP2609043A1 (fr) 2013-07-03
CN103080028B (zh) 2016-08-24
BR112013004537A2 (pt) 2016-06-07
FR2964117A1 (fr) 2012-03-02
JP2013536150A (ja) 2013-09-19
FR2964117B1 (fr) 2012-09-28
KR20130097186A (ko) 2013-09-02

Similar Documents

Publication Publication Date Title
EP2609043A1 (fr) Creuset pour la solidification de lingot de silicium
EP3330240B1 (fr) Procede pour la siliciuration surfacique de graphite
EP2632877B1 (fr) Procédé pour revêtir une pièce d&#39;un revêtement de protection contre l&#39;oxydation.
EP2326607B1 (fr) Materiau a architecture multicouche, dedie a une mise en contact avec du silicium liquide
LU86916A1 (fr) Carbone résistant à l&#39;oxidation et procédé pour sa fabrication.
FR2935618A1 (fr) Procede pour former un revetement anti-adherent a base de carbure de silicium
EP2809836B1 (fr) Creuset pour la solidification de lingot de silicium et son procede de fabrication
EP1888813B1 (fr) Procede de densification rapide d&#39;un substrat fibreux poreux par formation d&#39;un depot solide au sein de la porosite du substrat
EP3046895A1 (fr) Substrat à revêtement peu perméable pour solidification de silicium
WO2015036975A1 (fr) Substrat pour la solidification de lingot de silicium
EP0668376B1 (fr) Procédé de production de trichites ou whiskers fibreux, longs de carbure de silicium
EP3833497A1 (fr) Revetement ceramique pour noyau de fonderie
FR2701256A1 (fr) Procédé d&#39;obtention d&#39;un matériau céramique à base de Sialon par réduction d&#39;un précurseur aluminosilicaté et application à la formation de revêtement céramique sur un substrat réfractaire.
EP2855743B1 (fr) Procede de formation d&#39;une couche de silicium epitaxiee
FR2857009A1 (fr) Materiau ceramique a base de carbure de silicium pour utilisation dans des milieux agressifs
BE1008161A3 (fr) Carbone resistant a l&#39;oxydation et procede pour le fabriquer.
EP0426529A1 (fr) Revêtements en céramique, procédé de fabrication desdits revêtements et substrats ainsi revêtus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041722.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11760575

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011760575

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013525412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137006424

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13819655

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013004537

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013004537

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130226