WO2012023291A1 - 経大腸吸収用医薬組成物 - Google Patents

経大腸吸収用医薬組成物 Download PDF

Info

Publication number
WO2012023291A1
WO2012023291A1 PCT/JP2011/004642 JP2011004642W WO2012023291A1 WO 2012023291 A1 WO2012023291 A1 WO 2012023291A1 JP 2011004642 W JP2011004642 W JP 2011004642W WO 2012023291 A1 WO2012023291 A1 WO 2012023291A1
Authority
WO
WIPO (PCT)
Prior art keywords
sirna
pharmaceutical composition
acid
active substance
physiologically active
Prior art date
Application number
PCT/JP2011/004642
Other languages
English (en)
French (fr)
Inventor
隆徳 横田
村上 正裕
一隆 仁科
Original Assignee
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学 filed Critical 国立大学法人東京医科歯科大学
Priority to EP11817940.7A priority Critical patent/EP2606910B1/en
Priority to US13/817,172 priority patent/US9731025B2/en
Priority to CN201180050030.8A priority patent/CN103179988B/zh
Priority to JP2012529494A priority patent/JP5892658B2/ja
Publication of WO2012023291A1 publication Critical patent/WO2012023291A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/554Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being a steroid plant sterol, glycyrrhetic acid, enoxolone or bile acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6907Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0031Rectum, anus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/02Suppositories; Bougies; Bases therefor; Ovules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5026Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • A61K9/5042Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a pharmaceutical composition for transcolon absorption, and more particularly to a pharmaceutical composition for transcolonal absorption comprising a specific physiologically active substance and a specific epithelial permeability enhancing compound.
  • peptide drugs such as hormones and cytokines, antibody drugs, and nucleic acid drugs such as siRNA and DNA plasmids are water-soluble and high molecular weight compounds, and their epithelial permeability and cell membrane permeability are extremely low.
  • target molecules (action sites) of these physiologically active substances are often present in cell membranes and cells, and technology for delivering these physiologically active substances into target cells for development as pharmaceuticals. (System) development is indispensable. Despite the development of various drug delivery systems (DDS) so far, no system has been reported that specifically delivers these physiologically active substances into target tissues, particularly target cells, without injection. .
  • DDS drug delivery systems
  • Patent Document 1 contains a nucleic acid that suppresses the expression of a target gene, to which a chylomicron or a substance introduced into chylomicron remnant is bound, and which has been induced to induce endogenous chylomicron production.
  • a target gene expression inhibitor characterized by administration to a vertebrate.
  • the administration route mainly envisaged by such expression inhibitor is injection administration such as intravenous injection.
  • Non-Patent Document 1 discloses fatty acids such as capric acid, oleic acid, linoleic acid and their monoglycerides as absorption-promoting substances that improve the intestinal permeability of hardly absorbable drugs; sugar esters of fatty acids; glycerin esters of fatty acids A chelating agent such as EDTA or citric acid; a surfactant such as sodium lauryl sulfate; Further, Non-Patent Document 2 by the present inventors describes that long-chain unsaturated fatty acids and medium-chain fatty acids are excellent as absorption promoting substances, and that long-chain unsaturated fatty acids and HCO-60 (nonionic interface) It is described that mixed micelles with an activator) are particularly excellent.
  • An object of the present invention is to provide a physiologically active substance having an action site in a cell (particularly, a water-soluble, high-molecular weight physiologically active substance) non-invasively and into a cell of a specific tissue regardless of administration by injection. It is an object of the present invention to provide a pharmaceutical composition for transcolon absorption that can be delivered with high specificity.
  • the present inventors have conducted intensive research on a method for non-invasively administering siRNA (VE-siRNA) conjugated with vitamin E without injection.
  • Endogenous chylomicron a type of lipoprotein in the body, is formed in the small intestine and mainly penetrates the mucosal epithelium of the small intestine to enter the lymphatic vessel, ascending the lymphatic vessel, and then flowing out into the vein.
  • LPL LPL
  • the present inventors formed endogenous chylomicrons containing VE-siRNA by administering VE-siRNA to the small intestine so that VE-siRNA becomes a constituent material of endogenous chylomicrons.
  • VE-siRNA was administered to the small intestine in combination with various compounds having an intestinal mucosal epithelial permeability-enhancing action in order to absorb natural chylomicron from the small intestine and deliver it into the liver cells. It hardly penetrated the mucosal epithelium, and VE-siRNA could not be efficiently delivered into the liver cells.
  • the present inventors also considered giving up intestinal administration of VE-siRNA. This is because although large intestine administration was possible as intestinal administration other than small intestine administration, chylomicrons are not formed in the large intestine, so that VE-siRNA can be applied to the large intestine in combination with various compounds having an intestinal mucosal epithelial permeability enhancing action. This is because even when administered, VE-siRNA was not considered to be taken up by endogenous chylomicrons. However, the present inventors attempted colon administration of VE-siRNA and various compounds having an intestinal mucosal epithelial permeability enhancing action.
  • the present inventors have been able to efficiently deliver VE-siRNA into liver cells by various compounds having an action for enhancing intestinal mucosal epithelial permeability, to varying degrees. As a result, the present invention has been completed.
  • a pharmaceutical composition for transcolonic absorption comprising at least the following (a) and (b): (A) a physiologically active substance having an action site in a cell and bound with a lipoprotein introduction substance; (B) a compound having an action of enhancing the permeability of the large intestine mucosa of the above-mentioned physiologically active substance; (2) The pharmaceutical composition according to the above (1), further comprising a surfactant as a compound having an action of enhancing permeability of the colonic mucosa epithelium, (3) The pharmaceutical composition according to (1) or (2) above, wherein the lipoprotein introduction substance is an introduction substance into chylomicron or chylomicron remnant, (4) The pharmaceutical composition according to (3) above, wherein the lipoprotein-introducing substance is a fat-soluble vitamin or cholesterol, (5) The pharmaceutical composition according to (4) above, wherein the fat-soluble vitamin is vitamin E or a derivative thereof, (6) The pharmaceutical composition according to (1) or (2) above, wherein the physiologically active substance can be specifically
  • composition according to (10) The pharmaceutical composition according to the above (1) or (2), wherein the compound having an action for enhancing permeability of colonic mucosal epithelium includes any one or more of the following (c) and (d): (C) medium chain fatty acids or long chain unsaturated fatty acids; (D) a salt, ester or ether of the fatty acid described in (c) (including a conjugated type in the case of a polyunsaturated fatty acid); (11) The compound having a colonic mucosal epithelial permeability enhancing action is linoleic acid, oleic acid, linolenic acid, docosahexaenoic acid, eicosapentaenoic acid, capric acid or lauric acid, or a salt, ester or ether thereof.
  • compositions (13) The pharmaceutical composition according to (1) or (2) above, which is a large intestine administration agent, an oral intestinal solvent or an oral drug delivery system.
  • a physiologically active substance having an action site in a cell is noninvasively injected into a cell of a specific tissue regardless of administration by injection.
  • a pharmaceutical composition for transcolon absorption that can be delivered with high specificity can be provided.
  • FIG. 4 is a diagram showing the results of Northern blot analysis of total RNA derived from liver cells of mice administered VE-siRNA, epithelial permeability enhancing compound and the like rectally.
  • FIG. 4 shows the results of quantitative RT-PCR for target endogenous genes for total RNA derived from liver cells of mice administered VE-siRNA, epithelial permeability enhancing compound and the like rectally. It is a figure which shows the result of having analyzed the apoB100 and apoB48 in the serum of the mouse
  • FIG. 8A It is a figure which shows the result of a Western blot.
  • FIG. 8B is a diagram showing the results of determining the ratio of the apoB100 quantitative value to the apoB48 quantitative value (apoB100 / 48 ratio) by quantifying the band concentration from the results of FIG. 8A.
  • FIG. 3 is a view showing the result of observation of a frozen section of a liver tissue of a rat administered with a p-MS suppository formulation or the like by a confocal laser microscope.
  • FIG. 3 is a view showing the results of observation of a frozen section of a large intestine tissue of a rat administered with a p-MS suppository formulation or the like with a confocal laser microscope.
  • FIG. 4 is a graph showing the serum transthyretin concentration in mice enemamed with VE-siRNA targeting the transthyretin gene, an epithelial permeability enhancing compound and the like.
  • the pharmaceutical composition for absorption of the large intestine of the present invention (hereinafter also simply referred to as “the pharmaceutical composition of the present invention”) is characterized by containing at least the following (a) and (b).
  • (B) a compound having the action of enhancing the permeability of the above-mentioned physiologically active substance to the mucosa of the large intestine (hereinafter also simply referred to as “the epithelial permeability enhancing compound in the present invention”);
  • the pharmaceutical composition of the present invention delivers the bioactive substance of the present invention with high specificity into cells of a specific tissue by noninvasively administering it to a subject so that it can be absorbed through the large intestine. Can do.
  • An outline assumed as a delivery mechanism of the pharmaceutical composition of the present invention is shown in FIG. 1 taking a representative embodiment of the present invention as an example. That is, FIG. 1 shows that “Toc-siRNA” (siRNA bound to ⁇ -tocopherol) is used as the physiologically active substance in the present invention, and linoleic acid (LA) and the surfactant HCO are used as the epithelial permeability enhancing compound in the present invention.
  • the outline of the delivery in the case of using endogenous chylomicron as a lipoprotein in the present invention using a mixed micelle (MM) with -60 is shown.
  • the pharmaceutical composition of the present invention (Toc-siRNA / MM) is administered through a suppository, oral intestinal solvent, other oral drug delivery system, etc., it is included in the pharmaceutical composition of the present invention.
  • the physiologically active substance (siRNA) is a poorly absorbable compound
  • the mucosa of the large intestine (for example, rectum) of the physiologically active substance (Toc-siRNA) in the present invention by the action of the epithelial permeability enhancing compound (MM) in the present invention. Absorption from the epithelium is promoted.
  • the absorbed physiologically active substance (Toc-siRNA) in the present invention moves into the lymphatic vessel and ascends along the flow of the lymph fluid.
  • exogenous lipids derived from meals and the like are converted into lipoproteins such as chylomicron (CM) in the mucosal epithelium of the small intestine, and the chylomicron is absorbed from the mucosal epithelium of the small intestine and migrates into the nearby lymphatic vessels.
  • the physiologically active substance (Toc-siRNA) in the present invention that rises in the lymphatic vessel meets chylomicron in the lymphatic vessel near the small intestine, and the chylomicron and the chylomicron through the lipoprotein-introducing substance part (Toc) of the physiologically active substance in the present invention.
  • a complex (Toc-siRNA / CM) is formed.
  • This complex (Toc-siRNA / CM) flows out into the vein at the venous angle and is remnantized into chylomicron remnant by lipoprotein lipase (LPL), and then remnant receptor (LDL receptor or LRP). -1 receptor) is efficiently taken up into liver cells by endocytosis via such remnant receptors.
  • LPL lipoprotein lipase
  • LRP remnant receptor
  • the lipoprotein in the present invention is not particularly limited as long as it is a lipoprotein present in the living body, but since it can be delivered with high specificity into liver cells, chylomicron or chylomicron remnant is preferably used. Among them, chylomicron can be particularly preferably exemplified.
  • physiologically active substance in the present invention as long as it is a physiologically active substance having an action site in a cell and bound to a lipoprotein-introducing substance, and can exert its physiological activity in vivo, it is a synthetic substance Even if it is a natural substance, it is not particularly limited, and as such a physiologically active substance, a commercially available substance or an appropriately prepared substance can be used.
  • physiologically active substances include molecular target compounds, intracellular receptor ligand compounds, and compounds that act on intracellular organelles. Among them, there are no harmful effects on living bodies.
  • a poorly absorbable compound having relatively high hydrophilicity and hardly absorbed from the intestinal epithelium can be exemplified more preferably.
  • Polypeptides (including peptides), and modifications or derivatives thereof can be more preferably exemplified.
  • siRNA, shRNA, antisense oligonucleotide, antagomir, nucleic acid aptamer, ribozyme and DNA decoy Nucleic acid drugs such as plasmids; Peptide drugs such as hormones and cytokines; Antibodies Drugs; can be further preferably exemplified molecular targeted drugs and biopharmaceuticals such as, among others, can be exemplified nucleic acid drugs more suitably, it can be exemplified among them siRNA particularly suitably.
  • the siRNA having the mouse apoB gene as a target gene consists of a sense strand (27mer) consisting of SEQ ID NO: 1 (5′-GUCAUCACACUGAAUACCAAUGCUGGA-3 ′) and SEQ ID NO: 2 (5′-UCCAGCAUUGGUAUUCAGUGUGAUGACAC-3 ′)
  • SEQ ID NO: 1 5′-GUCAUCACACUGAAUACCAAUGCUGGA-3 ′
  • SEQ ID NO: 2 5′-UCCAGCAUUGGUAUUCAGUGUGAUGACAC-3 ′
  • An siRNA consisting of an antisense strand (29mer) can be exemplified.
  • siRNA targeting the human transthyretin gene specifically, a sense strand (27mer) consisting of SEQ ID NO: 3 (5'-GUAACCAAGAGUAUUCCAUUUUUACUA-3 ') and SEQ ID NO: 4 (5'-UAGUAAAAAUGGAAUACUCUUGGUUACAC-3' ) SiRNA consisting of an antisense strand (29mer).
  • the nucleic acid in the above-described nucleic acid medicine is preferably a nucleic acid modified so as not to be degraded in vivo.
  • the nucleic acid is RNA
  • Anti-RNase treatment such as methylation treatment or thiophosphorylation treatment is preferred, and methylation treatment at the 2′-position of the ribose of the nucleic acid or thiophosphorylation treatment of the skeleton bond of the nucleic acid is more preferred.
  • preferred embodiments include the number and position of nucleotides that undergo methylation and thiophosphorylation. Exists. This preferred embodiment cannot be described in general because it varies depending on the sequence of the nucleic acid to be modified, but the preferred embodiment can be easily examined by confirming the activity of inhibiting the expression of the nucleic acid after modification.
  • nucleotides of nucleotide numbers 2, 5, 11, 15, 21, 24 and 25 of the sense strand SEQ ID NO: 1
  • Ribose 2 'in nucleotides 1, 2, 5, 12, 14, 21, 24, 25 and 26 of the antisense strand SEQ ID NO: 2
  • the nucleotide of the sense strand SEQ ID NO: 1
  • Thiophosphorylate the bond between nucleotides 26 and 27, and for nucleotides 3, 4, 6, 27, 28 of the antisense strand (SEQ ID NO: 2) methylate 2 ′ of its ribose
  • thiophosphorylation of the skeleton bond can be exemplified.
  • the “activity that suppresses the expression of the target gene” possessed by the nucleic acid means that the nucleic acid is not introduced when introduced into the cell.
  • the decrease in the intracellular expression of the target gene can be examined by quantifying the mRNA of the target gene or quantifying the protein encoded by the target gene.
  • the degree to which the nucleic acid used in the present invention suppresses the expression of the target gene is such that when 0.1 to 50 mg / kg of this nucleic acid is introduced into a predetermined intestinal tract, compared to the case where the nucleic acid is not introduced (see FIG.
  • the expression of the target gene in the liver cell) at the mRNA level or protein level is 80% or less, more preferably 60% or less, still more preferably 40% or less, and even more preferably 20% or less. .
  • the number of nucleotides in the sense strand and / or antisense strand may be 21, but if it exceeds 21, the dicer in the cell causes a part of the lipoprotein-introducing substance and siRNA and siRNA ( And those having 21 nucleotides) are preferably cleaved, and siRNA having 21 nucleotides can exhibit an effect of suppressing expression efficiently.
  • the nucleic acid that suppresses the expression of the target gene can be designed by a known method based on information such as the sequence of the target gene and the sequence of the portion to which the transcription factor can bind.
  • siRNA the method described in JP-A-2005-168485 is used
  • nucleic acid aptamer the method described in Nature, 1990, (346 (6287): 818-22, and for ribozyme, FEBS Lett, 1988. 239, 285 .
  • the nucleic acid that suppresses the expression of a target gene can be designed. Antisense oligonucleotides, antagomir, and DNA decoys can be easily designed based on information on the sequence of the target gene and the sequence to which the transcription factor can bind.
  • the nucleic acid can be prepared using a known method or the like.
  • antisense oligonucleotides and ribozymes determine the target sequence of mRNA or initial transcript based on the cDNA sequence or genomic DNA sequence of the target gene, and commercially available DNA / RNA automatic synthesizers (Applied Biosystems, Beckman, etc.)
  • the DNA decoy and siRNA can be prepared by synthesizing a sense strand and an antisense strand with a DNA / RNA automatic synthesizer, respectively. It can be prepared by denaturing in an annealing buffer at about 90 to about 95 ° C. for about 1 minute and then annealing at about 30 to about 70 ° C. for about 1 to about 8 hours.
  • a nucleic acid aptamer can be prepared by the method described in JP-A-2007-014292.
  • the lipoprotein-introducing substance in the present invention is not particularly limited as long as it is a hydrophobic compound having affinity for the aforementioned lipoprotein or a compound having a hydrophobic region, but it binds to lipoprotein, preferably specifically.
  • Preferred examples include natural or synthetic fat-soluble molecules and derivatives thereof that bind to them, and more preferred examples include those that have no harmful effects on living organisms or that are acceptable.
  • lipids such as glycerides, cholesterol, glycolipids and fatty acids; fat-soluble vitamins such as vitamin A, vitamin E, vitamin D and vitamin K; intermediate metabolites such as acylcarnitine and acyl CoA; and their derivatives; Vitamin E and cholesterol can be preferably exemplified, among them, in terms of higher safety.
  • Ri preferably can be exemplified, it can be particularly preferably exemplified vitamin E.
  • vitamin E the tocophenols represented by the following general formula (1) or the tocotrienols represented by the general formula (2)
  • R 1 and R 2 represent a hydrogen atom or a methyl group, and R 3 represents a hydrogen atom or a carboxylic acid residue
  • a mixture containing two or more of these compounds is preferably exemplified. it can.
  • the binding between the lipoprotein-introducing substance and the physiologically active substance may be a direct bond or an indirect bond with another substance interposed therebetween, but it may be a covalent bond or an ionic bond. It is preferable to bond directly with a chemical bond such as a hydrogen bond, and among them, a covalent bond can be particularly preferably exemplified because a more stable bond is obtained.
  • the method for binding the lipoprotein introduction substance and the physiologically active substance is not particularly limited.
  • the physiologically active substance is a nucleic acid
  • Nucleic acid is preferably covalently bonded according to the method described in Tetrahedron Letters 33; 2729-2732. 1992.
  • ionic bond or hydrogen bond is used, a positively charged arginine residue is used as a lipoprotein-introducing substance.
  • the arginine residue is bonded by using an ionic bond or a hydrogen bond between the positive charge of the arginine residue and the negative charge of a nucleic acid such as siRNA.
  • the number of arginine residues to be bound to the lipoprotein-introducing substance is preferably 2 or more, more preferably 3 or more, from the viewpoint of obtaining a more stable bond with the nucleic acid. More preferably.
  • the molecular weight of the physiologically active substance bound to the lipoprotein-introducing substance is not particularly limited as long as the effects of the present invention can be obtained, but such molecular weight is 1000 to 150,000 daltons from the viewpoint that the merit of the present invention can be enjoyed particularly greatly. It can be preferably exemplified within the range, more preferably within the range of 5000 to 100,000 daltons, and more preferably within the range of 5000 to 50000 daltons. It can illustrate suitably.
  • the epithelial permeability enhancing compound in the present invention contained in the pharmaceutical composition of the present invention is not particularly limited as long as it is a compound having an action of enhancing the permeability of the physiologically active substance in the present invention in the colonic mucosa epithelium.
  • the compounds that enhance the intercellular permeability in the colonic mucosa epithelium of the physiologically active substance in the present invention can be preferably exemplified, and among them, the compound having a high affinity with the lipoprotein-introducing substance in the present invention is more preferably exemplified.
  • a compound (preferably a compound that promotes) that does not interfere with complex formation between the physiologically active substance in the present invention and the lipoprotein in the present invention in a living body can be exemplified more preferably.
  • a compound (preferably a compound that promotes) that does not interfere with the lymphatic migration of the physiologically active substance in the present invention a compound (preferably a substance having no physiological activity) that is harmless to a living body at an effective dose and does not interfere with the physiological action of the physiologically active substance in the present invention is preferable.
  • a compound having a low toxicity to the colonic mucosa preferably a compound having no damaging action on the colonic mucosa
  • An emulsion more preferably a compound capable of forming a mixed micelle).
  • the epithelial permeability enhancing compound in the present invention a compound having a high affinity for the lipoprotein-introducing substance in the present invention and an action of enhancing the permeability of the physiologically active substance in the present invention in the colonic mucosal epithelium.
  • compound A a compound that acts on a molecule related to tight junction or adhesion of the epithelial cell gap, or a molecule that regulates the molecule (hereinafter also simply referred to as “compound B”).
  • the compound A can be preferably exemplified by natural or synthetic lipids and derivatives thereof, surfactants, peptides and the like, among which medium chain fatty acids and long chains More preferably unsaturated fatty acids, monoglycerides / diglycerides and derivatives thereof (preferably salts, esters or ethers) or mixtures thereof Among them, medium chain fatty acids, long chain unsaturated fatty acids, and derivatives thereof (preferably salts, esters, or ethers) are more preferably exemplified in that they are excellent in epithelial permeability enhancing action.
  • salts, esters, or ethers can be particularly preferably exemplified.
  • chelating compounds such as claudin-4 modulator, EDTA, citric acid, and derivatives thereof are preferably exemplified. be able to.
  • the medium chain fatty acid means a fatty acid having 8 to 12 carbon atoms, and examples of the medium chain fatty acid include caprylic acid (octanoic acid), pelargonic acid (nonanoic acid), capric acid (decanoic acid), lauric acid ( Dodecanoic acid) is included, among which capric acid and lauric acid can be preferably exemplified, and capric acid can be more preferably exemplified.
  • the above long-chain unsaturated fatty acid means an unsaturated fatty acid having 12 or more carbon atoms (preferably 12 or more and 30 or less, more preferably 12 or more and 24 or less, and further preferably 14 or more and 20 or less).
  • Polyunsaturated fatty acids (preferably divalent to octavalent unsaturated fatty acids, more preferably divalent to hexavalent unsaturated fatty acids, more preferably divalent to tetravalent unsaturated fatty acids)
  • long-chain unsaturated fatty acids include myristoleic acid (9-tetradecenoic acid), palmitoleic acid (9-hexadecenoic acid), oleic acid (cis-9-octadecenoic acid), and elaidic acid (trans- 9-octadecenoic acid), vaccenic acid (11-octadecenoic acid), linoleic acid (cis, cis-9,12-octadecadienoic acid), ⁇ -linolenic acid (9, 2,15-octadecatrienoic acid), ⁇ -linolenic acid (6,9,12-octadecatrienoic acid), pinolenic acid (5,9
  • the surfactant is not particularly limited as long as it has the action of enhancing the permeability of the physiologically active substance of the present invention in the mucosal epithelium of the large intestine, but HCO-60 (polyoxyethylene hydrogenated castor oil), polysorbate , Polyethylene glycol, poloxamer, monoacylglycerol, monoacyl sorbitan, fatty acid sucrose esters, polyoxyethylene alkyl ether and other nonionic surfactants; anionic surfactants such as sodium lauryl sulfate; Among them, nonionic surfactants such as polyoxyethylene hydrogenated castor oil, polysorbate, polyethylene glycol, poloxamer, monoacyl glycerin, monoacyl sorbitan, fatty acid sucrose esters, polyoxyethylene alkyl ether are suitable.
  • polyoxyethylene hydrogenated castor oil polysorbate, polyethylene glycol, poloxamer, monoacyl glycerin, monoacyl sorbitan, and fatty acid sucrose esters can be exemplified more preferably.
  • Hardened castor oil can be particularly preferably exemplified.
  • two or more kinds of epithelial permeability enhancing compounds in the present invention may be used in combination.
  • a long chain unsaturated fatty acid is used as the epithelial permeability enhancing compound in the present invention
  • the long chain unsaturated fatty acid and the present In order to form a complex (preferably a colloidal dispersion system, more preferably mixed micelles, emulsions, more preferably mixed micelles) with the physiologically active substance in the invention, it is preferable to use a surfactant in combination.
  • a medium chain fatty acid when used as the epithelial permeability enhancing compound in the present invention, it forms a complex with the physiologically active substance in the present invention without using a surfactant, but the complex (preferably Is preferably used in combination with a surfactant in order to form a colloidal dispersion system, more preferably mixed micelles, emulsions, and more preferably mixed micelles.
  • the colon as the large intestine in the above-mentioned large intestinal mucosa, the colon (ascending colon, transverse colon, descending colon, sigmoid colon) and rectum can be preferably exemplified, and among these, the rectum can be particularly suitably exemplified.
  • the dosage form of the pharmaceutical composition of the present invention or a preparation thereof is not particularly limited as long as it is an agent for absorption of the large intestine, and is a colon administration agent such as a suppository or an enema, an oral intestinal solvent, or a pulsin cap.
  • a colon administration agent such as a suppository or an enema, an oral intestinal solvent, or a pulsin cap.
  • Oros Registered Trademark
  • transcolon absorption includes absorption in the lower part of the small intestine (ileum) in addition to absorption in the large intestine including the colon and rectum.
  • an appropriate pharmaceutically acceptable carrier such as an excipient, a binder, and the like, are added to the physiologically active substance of the present invention and the epithelial permeability enhancing compound of the present invention.
  • Solvent, solubilizer, suspending agent, emulsifier, tonicity agent, buffer, stabilizer (preferably a stabilizer for physiologically active substances in the present invention), pH adjuster, colloid stabilizer, soothing agent In addition, optional components such as preservatives, antioxidants, thickeners, gelling agents, coloring agents, lubricants, disintegrating agents, wetting agents, adsorbing agents, sweetening agents, and diluents can be blended.
  • the physiologically active substance stabilizer, pH regulator, colloidal stabilizer, and antioxidant of the present invention are used from the viewpoint that the permeability of the pharmaceutical composition of the present invention in the colonic mucosal epithelium can be further enhanced.
  • a thickener and a gelling agent can be preferably exemplified.
  • a compound in which the physiologically active substance in the present invention and the epithelial permeability enhancing compound in the present invention form a complex can be preferably exemplified.
  • a colloid-dispersed system can be exemplified more preferably.
  • a mixed micelle or an emulsion can be further exemplified, and a mixed micelle formed can be exemplified. can do. This is because the pharmaceutical composition of the present invention having particularly excellent colonic mucosal epithelial permeability can be obtained in such an embodiment.
  • porous fine particle-containing suppository a preparation in which porous fine particles carrying the pharmaceutical composition of the present invention are supposited. It can be illustrated.
  • a suppository has the advantage that it is easy to manufacture, the advantage that a protective effect for the pharmaceutical composition of the present invention can be obtained, and the excessive dilution of the pharmaceutical composition of the present invention during colon administration. Has the advantage of being able to.
  • the suppository containing porous fine particles in the present invention is not particularly limited as long as it is a porous fine particle carrying the pharmaceutical composition of the present invention, and the production method thereof is any conventionally known production method (for example, a commercially available suppository base). Can also be used, but the production is simpler and a better protective effect on the pharmaceutical composition can be obtained, and the pharmaceutical composition can be administered during colon administration.
  • the mucosa-applied compound or pharmaceutical composition in the following “method for producing a mucosa-applied suppository containing porous microparticles” developed by the present inventor
  • a production method using “enema compound or pharmaceutical composition” hereinafter also referred to as “enema compound, etc.” can be preferably exemplified.
  • a mucosa-applied compound which is a polar compound having a hydrophobic group
  • a solvent used as a solvent.
  • the solution is impregnated with sponge-like porous microparticles made of a hydrophobic polymer compound, so that the mucosa-applicable compound and the like are affinityd into the voids in the porous microparticles, and the mucosa-applicable compound after administration Etc. are carried to such an extent that they can be released onto the mucous membrane.
  • the mucosa-applicable compound is a polar compound having a hydrophobic group
  • the physiologically active substance preferably includes a physiologically active substance having an action site in a cell and bound with a lipoprotein introduction substance.
  • a composition containing such a physiologically active substance can be preferably exemplified.
  • the aforementioned physiologically active substance may be one obtained by adding a hydrophobic group to a polar compound.
  • alkyl celluloses such as methyl cellulose and ethyl cellulose
  • the above-mentioned hydrophobic polymers include aminoalkyl methacrylate copolymers, ethyl acrylate / methacrylic acid / methacrylic acid trimethylammonium ethyl copolymers, phthalic acid acetate
  • Preferred examples include cellulose, methacrylic acid copolymer, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succinate, and carboxymethylethylcellulose.
  • alkylcellulose can be exemplified more preferably. Can be illustrated more suitably.
  • the shape and particle size of the porous fine particles are not particularly limited as long as the above-mentioned mucosa-applicable compound can be supported, but the shape can preferably be exemplified by columnar shape, cubic shape, and spherical shape. Is preferably exemplified by a range of 0.5 ⁇ m to 500 ⁇ m, more preferably a range of 5 ⁇ m to 50 ⁇ m.
  • Preferred examples of the hydrophobic group include the compounds exemplified as the aforementioned lipoprotein-introducing substances (eg, cholesterol and fat-soluble vitamins), and examples of the physiologically active substance include the aforementioned physiologically active substances.
  • Compounds for example, polynucleotides and polypeptides
  • the method for producing a suppository containing mucous membrane containing porous fine particles should be the same as the method for producing a suppository applied to mucosa except for using porous fine particles carrying a compound applied to mucosa instead of the compound applied to mucosa.
  • a commercially available suppository base can be used.
  • a suppository base for example, a suppository base manufactured by Gattefosse can be appropriately used according to the application.
  • the production target of the above-mentioned method for producing a porous microparticle-containing suppository suppository is not particularly limited as long as it is a mucosa-applied suppository, and is a colon suppository such as a rectal suppository, a vaginal suppository, a urethral suppository, etc. Can be preferably exemplified.
  • porous microparticles made of a water-soluble polymer When porous microparticles made of a water-soluble polymer are used, polar compounds are used as the mucosa-applied compound, etc., but such porous microparticles have a high affinity with the mucosa-applicable compound and the like, However, it is difficult to control the release of the porous fine particles from the suppository after the administration and the release of the compound applied to the mucosa from the porous fine particles. For this reason, there is no or insufficient effect of protecting the compound applied to mucosa, which is unstable on the mucous membrane such as the digestive tract, with porous microparticles, and the compound applied to the mucosa is diluted on the administration mucosa. Absorption due to passive transport is reduced.
  • the hydrophobic group such as a compound applied to mucosa is selected and adjusted.
  • the affinity between the porous microparticles and the mucosa-applied compound, etc. even after the porous microparticles are released from the suppository after administration, the mucosa-applied compound and the like obtain a protective effect from the porous microparticles, Dilution on the administered mucosa can be reduced.
  • a mechanism capable of controlling the release amount is added to the preparation. It can be set in any way and is not particularly limited as long as the effect of the present invention can be obtained.
  • the concentration in the digestive tract is preferably independently in a range of 0.1 ⁇ M to 1000 mM, more preferably 10 ⁇ M to 50 mM.
  • the pharmaceutical composition of the present invention is a liquid, for example, based on the above, it is preferably 0.1 ⁇ M to 1000 mM, more preferably 10 ⁇ M to 50 mM. be able to.
  • the molar ratio of the physiologically active substance in the present invention and the epithelial permeability enhancing compound in the present invention contained in the pharmaceutical composition of the present invention is not particularly limited as long as the effect of the present invention is obtained, but is 1: 1000.
  • the pharmaceutical composition of the present invention has an endogenous lipoprotein (preferably Is preferably administered to vertebrates under conditions where production of chylomicrons is induced.
  • the conditions under which production of endogenous lipoprotein (preferably chylomicron) is induced are not particularly limited as long as the object can be achieved, but within 12 hours after oral administration of lipids to vertebrates (for example, 10 (Within time, within 8 hours, within 6 hours, within 4 hours, within 2 hours, within 1 hour).
  • the oral administration of lipid may be the administration of lipid itself or in the form of a meal containing lipid.
  • the administration subject is starved by fasting or the like before inducing production of endogenous lipoprotein (preferably chylomicron).
  • endogenous lipoprotein preferably chylomicron.
  • the detailed mechanism of action in which the uptake efficiency of the physiologically active substance in the present invention in the present invention is improved by administering the lipid and, further, by starving the subject before administration, is not clear.
  • the LRP-1 receptor of liver cells involved in lipoprotein uptake is increased in the expression level at the cell membrane and activated by ingestion of lipids and insulin (Mol Pharmacol.
  • the expression of receptors involved in lipoprotein uptake is increased or activated by ingesting lipids, resulting in hepatic lipoproteins (preferably It is considered that the introduction efficiency of the physiologically active substance in the present invention, to which the lipoprotein introduction substance is bound, into the liver cells is improved as a result.
  • the said starvation state means the state which has not ingested food and drink (however, food and drinks, such as water without calories) for a fixed period, for example, 6 hours or more, Preferably it is 8 hours or more, More preferably, it is 12 This includes a state in which food is not given to the administration subject for an hour or more, more preferably 24 hours or more.
  • the pharmaceutical composition of the present invention is a pharmaceutical composition that is absorbed through the large intestine and can be administered orally or parenterally depending on the dosage form described above. That is, oral DDS preparations such as oral intestinal solvents can be taken orally, and colon administration agents such as suppositories and enemas can be inserted or injected from the anus.
  • the dosage of the pharmaceutical composition of the present invention depends on the age, weight, and symptoms of the administration subject, the type of the disease affected by the administration subject, the type of the physiologically active substance in the present invention contained in the pharmaceutical composition, and the like. Although different, for example, 0.1 to 30 mg / kg can be administered 1 to 3 times per day.
  • the target disease of the pharmaceutical composition of the present invention is not particularly limited as long as it is a disease caused by some abnormal physiological activity (preferably increased or decreased) and the physiologically active substance in the present invention can be improved.
  • a disease caused by abnormal physiological activity a familial amyloid neuropathy caused by expression of a mutant transthyretin gene can be preferably exemplified
  • a disease caused by enhancement of a specific gene Viral hepatitis and liver cancer caused by increased expression of the hepatitis virus gene can be preferably exemplified.
  • the subject of administration in the present invention is not particularly limited as long as it is an animal, but vertebrates can be preferably exemplified, and animals belonging to mammals or birds can be more suitably exemplified. More preferably, humans, rats, mice, pigs, rabbits, dogs, cats, monkeys, horses, cows, goats, sheep can be more preferably exemplified, and humans are particularly preferred. It can illustrate suitably.
  • composition of the present invention can also be used as an active ingredient of a colon administration agent or an oral intestinal solvent.
  • the delivery method of the present invention As a method for delivering the physiologically active substance into specific tissue cells in the present invention (hereinafter also referred to as “the delivery method of the present invention”), the above-described pharmaceutical composition of the present invention is absorbed through the large intestine. As long as it has the step (X) for administration to vertebrates, the delivery efficiency of the physiologically active substance in the present invention into tissue cells is improved, and the physiological activity of the physiologically active substance in the present invention is improved. From the viewpoint of obtaining more, it is preferable to perform such administration under conditions in which production of endogenous lipoprotein (preferably chylomicron) is induced in the body.
  • endogenous lipoprotein preferably chylomicron
  • the administration method in the above step (X) can be administered by the same method as the pharmaceutical composition of the present invention.
  • the tissues and cells that can deliver the physiologically active substance of the present invention by the delivery method of the present invention are not particularly limited as long as the lipoproteins of the present invention are tissues and cells that migrate in vivo, but the lipoproteins are chylomicron or cairo. When it is a micron remnant, it should be exemplified as a particularly preferred embodiment in that it can be delivered with high specificity into liver tissue cells (preferably in hepatocytes) or hepatocellular carcinoma cells. Can do.
  • the delivery method of the present invention can also be used as a method for treating a disease in the present invention by applying it to a diseased animal or a diseased patient.
  • the use of the physiologically active substance in the present invention and the epithelial permeability enhancing compound in the present invention for the preparation of the pharmaceutical composition (or disease therapeutic agent) for transcolonic absorption of the present invention can also be exemplified.
  • siRNA As an example of a physiologically active substance in the present invention, siRNA was prepared using the mouse apoB gene as a target gene. Specifically, siRNA consisting of a sense strand (27mer) consisting of SEQ ID NO: 1 (GUCAUCACACUGAAUACCAAUGCUGGA) and an antisense strand (29mer) consisting of SEQ ID NO: 2 (UCCAGCAUUGGUAUUCAGUGUGAUGACAC) was synthesized and subjected to appropriate chemical modification.
  • ⁇ -tocopherol which is one of the natural isomers of vitamin E, was covalently bound to the 5 ′ end of this siRNA as a lipoprotein-introducing substance by a phosphate bond to obtain VE-siRNA. (FIG. 2).
  • LA Linoleic acid
  • HCO-60 manufactured by Nikko Chemicals Co., Ltd.
  • PBS RNAse free phosphate buffer
  • the mixed micelle prepared for use and the fluorescent (Cy3) -labeled VE-siRNA (0.3 mg / head) were mixed well by pipetting, and an example preparation for delivery test (HCO-60 / LA / VE-siRNA) ( Formulation E) was prepared.
  • PBS (formulation A); the above-mentioned mixed-use micelle and the mixed preparation of PBS (HCO-60 / LA / PBS) (formulation B); the above-mentioned mixed-use micelle and fluorescent (Cy3 ) Formulation mixed with labeled siRNA (0.3 mg / head) (HCO-60 / LA / siRNA) (Formulation C); mixed micelle on use prepared using HCO-60 and PBS, and fluorescent (Cy3) label Formulations (HCO-60 / PBS / VE-siRNA) (formulation D) mixed with VE-siRNA (0.3 mg / head) were prepared.
  • mice Animal rectum Mice (ICR, 9 weeks old) were prepared as target animals to which the formulation prepared in Example 2 (1) described above was administered. After the mice were fasted overnight, chylomicron formation was promoted by oral administration of 0.4 ml of milk fat 5% every 30 minutes. Thirty minutes after the last milk administration, the mice were anesthetized with Nembutal, the intestinal tract was washed, and then any of the aforementioned preparations (about 200 ⁇ L) was administered as an enema from the anus (rectal administration). The anus was ligated. After removing the intestinal residual drug every 2 hours after the single administration of the preparation, a new preparation of the same dose was additionally administered for a total of 3 administrations.
  • formulation E was administered rectally in the same manner without pre-administration of milk after fasting (Milk ( ⁇ ) HCO-60 / LA / VE ⁇ ).
  • siRNA siRNA
  • pre-administration of milk after fasting a solution (20 mg / kg) of Triton-X100 (manufactured by Sigma) diluted with physiological saline 30 minutes before rectal administration of Formulation E (Triton-X pre i.V. HCO-60 / LA / VE-siRNA) was also administered.
  • Example 2 (2) Observation of liver distribution of siRNA with confocal microscope
  • the mouse was refluxed with 4 ° C physiological saline under anesthesia 2 hours after the last preparation administration. Then, the liver was removed. The excised liver was fixed overnight with 4% paraformaldehyde (Wako Pure Chemical Industries, Ltd.), then fixed overnight with 30% sucrose (Wako Pure Chemical Industries, Ltd.), and then OCTCompound (Sakura Finetek). And frozen sections were prepared by a conventional method. The frozen sections were stained for cell nuclei and cell fibers using TO-PRO (registered trademark) -3 (Molecular Probe) and Fluorescein (FITC) -phalloidin (Invitrogen), respectively.
  • TO-PRO registered trademark
  • FITC Fluorescein
  • FIG. 3A shows the results when Formulation A was administered
  • FIG. 3B showed the results when Formulation B was administered
  • FIG. 3C showed the results when Formulation C was administered
  • FIG. 3D administered Formulation D 3E shows the results when Formulation E was administered
  • FIG. 3F shows the results when Formulation E was administered without fast administration of milk after fasting
  • FIG. 3G shows Triton- The result at the time of administering formulation E after administering X100 solution is shown.
  • FIGS. 3A to 3G is divided into four parts.
  • the upper left shows the detection result of blue fluorescence of TO-PRO (registered trademark) -3
  • the upper right shows the detection result of green fluorescence of FITC-phalloidin.
  • the lower left shows the detection result of Cy3 red fluorescence
  • the lower right shows the result of superimposing the upper left, upper right and lower left fluorescence detection results.
  • mice ICR, 9 weeks old were prepared. After the mice were fasted for 16 hours, chylomicron formation was promoted by oral administration of 0.4 ml of milk fat 5% every 30 minutes. Thirty minutes after the last milk administration, the mice were anesthetized with Nembutal and the intestinal tract was washed. Then, about 200 ⁇ L of the preparation E (HCO-60 / LA / VE-siRNA) in Example 2 was used as an enema. The anus was administered (rectal administration), and then the anus was ligated. Two hours after the single administration of the above preparation, lymph fluid was collected from the intestinal lymphatic vessels of the mice. The diffusion time of Cy3-labeled molecules in this lymph was determined using fluorescence correlation analysis (FCS). As a control, FCS was performed in the same manner using fluorescent (Cy3) -labeled VE-siRNA instead of preparation E (HCO-60 / LA / VE-siRNA). The results of these FCS are shown in FIG.
  • FCS
  • mice (ICR, 9 weeks old) were prepared. After the mice were fasted for 16 hours, chylomicron formation was promoted by oral administration of 0.4 ml of milk fat 5% every 30 minutes. Thirty minutes after the last milk administration, the mice were anesthetized with Nembutal, the intestine was washed, the distal side of the intestine or the anus was ligated to form an intestinal loop, and from the anus of the loop, the above-mentioned Example 2 Formulation E (HCO-60 / LA / VE-siRNA) was administered at 10 mg / kg.
  • Formulation E HCO-60 / LA / VE-siRNA
  • the diffusion time of the particles to which Cy3 is bound is about 3000 ⁇ s, which coincides with the diffusion time of the chylomicron fraction when the lymph is separated by HPLC. This indicates that VE-siRNA administered from the rectum is absorbed and enters the lymphatic vessel and binds to chylomicron in the lymphatic vessel.
  • mice to be administered in addition to wild-type mice, three types of mice were prepared in which proteins related to main receptors for chylomicron were knocked out. Specifically, wild type mice (Wildtype), LDL receptor knockout mice (LDLR KO), receptor binding proteins (Receptor Associated Protein: RAP) knockout mice (RAPKO), and ApoE knockout mice (ApoE KO) were prepared.
  • Major receptors for chylomicron include LDL receptor and LRP-1 receptor, and RAP has antagonistic inhibitory action on LRP-1 receptor.
  • ApoE is one of the natural ligands of the LRP-1 receptor, and is present not in the cell membrane but in chylomicron.
  • HCO-60 / LA mixed micelles
  • HCO-60 / LA / VE-siRNA A mixture of VE-siRNA and mixed micelles (HCO-60 / LA) (HCO-60 / LA / VE-siRNA) was rectally administered to each mouse three times every 2 hours, and 2 hours after the final administration. Liver was extracted from each mouse. The method for rectal administration and the method for removing the liver were in accordance with the method described in Example 2. For LDL receptor knockout mice, in addition to the group that received HCO-60 / LA / VE-siRNA for rectal administration, a group that received intravenous RAP prior to rectal administration was also provided.
  • RNA was extracted from the extracted liver cells according to a conventional method.
  • the total RNA (10 ⁇ g) was subjected to electrophoresis on a 14% polyacrylamide gel and then transferred to a nylon membrane.
  • a probe having the same sequence as the sense strand of VE-siRNA is prepared as a probe that hybridizes with the antisense strand of the administered VE-siRNA, and this probe is Gene ⁇ ⁇ ⁇ ⁇ Images 3'-Oligolabelling Kit (AmershamABiosciences).
  • fluorescently labeled with fluorescein was detected using GeneGImages CDP-star detection Kit (Amersham Biosciences). The result is shown in FIG.
  • lane (1) when rectal administration of HCO-60 / LA / VE-siRNA to wild-type mice, two bands of 21 nt and 29 nt were clearly detected, predominantly 21 nucleotides (nt). .
  • the antisense strand of the administered VE-siRNA is 29 mer, and that when 21-mer mature siRNA antisense strand appears when cleaved by dicer in the cytoplasm, this result shows that the administered VE- This shows that siRNA is taken up into the cytoplasm of liver cells.
  • lane (3) (LDLR KO), lane (4) (RAP KO), lane (5) (ApoE) when administered to three mice knocked out proteins related to the main receptor for chylomicron In KO
  • a decrease in band concentration was observed compared to lane (1).
  • lane (2) when administered rectally to LDL receptor knockout mice (LDLR KO) intravenously injected with RAP having an antagonistic inhibitory effect on LDL receptor or LRP-1 receptor, the band is almost the same. Disappeared.
  • VE-siRNA When VE-siRNA is administered rectally as a mixed micelle, it penetrates the intestinal epithelium due to LA epithelial permeability enhancing action. Thereafter, VE-siRNA moves to the lymphatic vessels and ascends in the lymphatic vessels. At that time, VE-siRNA encounters chylomicron produced in small intestinal epithelial cells and secreted into lymphatic vessels, and forms a complex with chylomicron through a VE-modified moiety that is a lipoprotein transducing substance.
  • This VE-siRNA-chylomicron complex flows out into the vein at the venous angle and is remnantized into chylomicron remnant by lipoprotein lipase (LPL), and then remnant receptor (LDL receptor or LRP- It is taken up into liver cells having 1 receptor).
  • LPL lipoprotein lipase
  • LRP remnant receptor
  • HCO-60 / LA / VE-siRNA was rectally administered to mice three times every 2 hours, and the livers of the mice were removed 24 hours after the final administration.
  • the method for rectal administration and the method for removing the liver were in accordance with the method described in Example 2.
  • Total RNA was extracted from the extracted liver cells according to a conventional method.
  • the complementary DNA (cDNA) was synthesized using 2 ⁇ g of the total RNA.
  • quantitative RT-PCR was performed according to a conventional method using a primer / probe of the gene (apoB gene) targeted by the VE-siRNA described above.
  • HCO-60 / LA / VE-siRNA was rectally administered to mice three times every 2 hours.
  • the method for rectal administration was according to the method described in Example 3. 24 hours after the final administration, mouse serum was collected and adjusted with a homogenizing buffer (0.1% SDS, 1% Triton X, 1% sodium deoxycholate, 1 mM PMSF) to prepare a sample.
  • a homogenizing buffer 0.1% SDS, 1% Triton X, 1% sodium deoxycholate, 1 mM PMSF
  • sc11795 goat anti-ApoB manufactured by Santacruz
  • sc2020 donkey anti-goat manufactured by Santacruz
  • HCO-60 / LA / VE-siRNA was rectally administered to mice three times every 2 hours.
  • the method for rectal administration was in accordance with the method described in Example 3.
  • Mice serum was collected 24 hours after the final administration, and neutral fat level and LDL cholesterol level were measured. The result is shown in FIG.
  • Example 2 (3) instead of the preparation E (HCO-60 / LA / VE-siRNA), a preparation (DHA) in which “LA” of the preparation E was changed to “DHA” (manufactured by Cayman Chemical) / HCO-60 / VE-siRNA) (A in FIG. 10) and “HCO-60 / LA” in preparation E (Sodium Caprate, sodium caprate (Sigma, final concentration 15 mM)) / VE-siRNA) (B in FIG. 10) and a preparation (Citric acid / VE-siRNA) using Nakarai citrate (final concentration 20 mM) instead of “HCO-60 / LA” in preparation E (FIG. 10).
  • DHA preparation in which “LA” of the preparation E was changed to “DHA” (manufactured by Cayman Chemical) / HCO-60 / VE-siRNA) (A in FIG. 10) and “HCO-60 / LA” in preparation E (Sodium Caprate, sodium caprate
  • the upper left shows the detection result of blue fluorescence of TO-PRO (registered trademark) -3
  • the upper right shows the detection result of green fluorescence of FITC-phalloidin.
  • the lower left shows the detection result of Cy3 red fluorescence
  • the lower right shows the result of superimposing the upper left, upper right and lower left fluorescence detection results.
  • HCO-60 / EPA long chain unsaturated fatty acid
  • HCO-60 / oleic acid long chain unsaturated
  • VE-siRNA side effect test In order to examine the side effects of VE-siRNA in mice, the following blood test was performed.
  • HCO-60 / LA / VE-siRNA was rectally administered to mice three times every 2 hours. The administration method followed the method described in Example 3. Mouse serum was collected 3 hours after the final administration and the IFN- ⁇ value was measured. In addition, the values of Cre, ALT, Na, and K were measured with serum collected from mice 24 hours after the final administration. These values were compared between mice administered HCO-60 / LA / VE-siRNA and mice administered PBS alone. The results are shown in Table 1.
  • Example 2 The preparation E of Example 2 (HCO-60 / LA / VE-siRNA) was administered once rectal to the mice.
  • the administration method followed the method described in Example 3.
  • Four hours after the final administration the lung, kidney, spleen, heart, skeletal muscle, and brain were removed from the mouse.
  • the method for removing each organ was in accordance with the method described in Example 2.
  • a delivery test to each tissue was performed in the same manner as described in Example 2.
  • no clear Cy3 signal was observed in any tissue of lung, kidney, spleen, heart, skeletal muscle, and brain. From this result and the above-mentioned results in the liver, it was suggested that fluorescent (Cy3) -labeled VE-siRNA was mainly delivered to the liver.
  • VE-siRNA administered as a hollow suppository
  • a rectal dosage form of VE-siRNA an attempt was made to formulate into a suppository that is a solid preparation or a semisolid preparation, instead of an enema that is a liquid preparation.
  • a liquid preparation instead of an enema that is a liquid preparation.
  • FIG. 11 shows the results of observation of liver tissue.
  • FIG. 11a shows the results when the enema is administered, FIG.
  • FIG. 11b shows the results when the hollow suppository is administered
  • FIG. 11c shows an enlarged view within the frame of FIG. 11b.
  • Each of the panels in FIGS. 11a to 11c is divided into four parts.
  • the upper left shows the detection result of blue fluorescence of TO-PRO (registered trademark) -3
  • the upper right shows the detection result of green fluorescence of FITC-phalloidin.
  • the lower left shows the detection result of the red fluorescence of Cy3
  • the lower right shows the result of superposing the detection results of the upper left, upper right and lower left fluorescence.
  • VE-siRNA administered as a suppository using porous microparticles
  • the manufacturing process of hollow suppositories is somewhat complicated, and when a liquid preparation is filled inside the hollow suppository, after the suppository is administered and the liquid preparation is released into the intestine, it is the same as the enema. In addition, dilution in the intestinal lumen and enzymatic degradation are problems.
  • a method for preparing a normal suppository filled with a solid preparation inside a hollow suppository a method in which VE-siRNA mixed micelle solution is freeze-dried and homogeneously added to the suppository base can be considered.
  • porous microsphere 2 g of ethyl cellulose (manufactured by Nisshin Kasei Co., Ltd., STD 7 cps) was dissolved in 16 g of acetone (solution A). Further, 7 g of glycerin and 1 g of a 5% polyvinyl alcohol (Kuraray Co., Ltd., Kuraray Poval 220C) aqueous solution were mixed (Liquid B). Liquid B was emulsified (oil phase) by treating it for 1 minute using an emulsifier (Hiscotron (registered trademark), manufactured by Microtech Nichion).
  • Hiscotron registered trademark
  • a solution in which the above high-concentration mixed micelle / Cy3-labeled VE-siRNA-containing p-MS was dispersed in 500 ⁇ L of physiological saline was prepared as an enema.
  • the above-mentioned “JAPOCIRE (registered trademark) NA 15 PASTILLES” is one of suppository bases manufactured by Gattefosse, and specifically, a semisynthetic triglyceride group of a saturated fatty acid having 12 to 18 carbon atoms. Agent (hydroxyl value 10; melting point 34.5 ⁇ 1.0). In Japan, such a product can be purchased from, for example, CBC Corporation.
  • FIG. 14 shows a histological image of the liver after administration of a control p-MS enema (FIG. 14a) or a p-MS suppository formulation (FIG. 14b).
  • Each panel in FIGS. 14a and 14b is vertically divided into four parts, the top showing the detection result of blue fluorescence of TO-PRO (registered trademark) -3, and the second from the top is the green color of FITC-phalloidin The fluorescence detection result is shown, the third from the top shows the detection result of Cy3 red fluorescence, and the bottom shows the result of overlaying the top three fluorescence detection results.
  • VE-siRNA migration based on Cy3 fluorescence was observed in some regions.
  • Cy3 fluorescence was detected in many hepatocytes, although the fluorescence intensity itself was low.
  • FIG. 15 shows the results of examining the distribution of Cy3-VE-siRNA in the large intestine tissue 6 hours after administration.
  • 15a and 15b show the results of observing the mucosal tissue in the upper part of the large intestine
  • FIGS. 15c and 15d show the results of observing the mucosal tissue in the lower part of the large intestine.
  • FIGS. 15a and 15c show the results when p-MS enema is administered
  • FIGS. 15b and 15b show the results when p-MS suppository is administered.
  • VE-siRNA can be formulated not only as an enema but also as a suppository by using a hollow suppository. Furthermore, by using porous microparticles, it is possible to easily disperse the solution in an oleaginous suppository base to produce a suppository, which can be more efficiently delivered to liver tissue. It was done.
  • siRNA targeting the transthyretin (TTR) gene As such siRNA, a sense strand (27mer) consisting of SEQ ID NO: 3 (5'-GUAACCAAGAGUAUUCCAUUUUUACUA-3 ') and an siRNA consisting of an antisense strand (29mer) consisting of SEQ ID NO: 4 (5'-UAGUAAAAAUGGAAUACUCUUGGUUACAC-3') are synthesized. Used.
  • VE-siRNA As a lipoprotein-introducing substance, ⁇ -tocopherol (Toc), which is one of the natural isomers of vitamin E, is bound to the 5 ′ end of the antisense strand of the above-mentioned siRNA against the TTR gene by phosphate bonding.
  • a VE-siRNA was prepared by covalent binding.
  • VE-siRNA-containing enema The VE-siRNA obtained in Example 14 (1) above was used in place of the VE-siRNA used in Example 2 (1) above.
  • An enema (HCO-60 / LA / VE-siRNA) was prepared according to the method described in Example 2 (1).
  • a control enema (HCO-60 / LA / PBS) was prepared by mixing PBS with a mixed micelle solution instead of VE-siRNA.
  • hTTR V30M Tg mice female, 6 months old, body weight 30 g, group 5 mice
  • hTTR human transthyretin
  • FIG. 16 shows the hTTR concentration (mg / dL) in the serum before administration and in the serum on the 12th day after administration.
  • the present invention can be suitably used in the field relating to disease treatment, more specifically in the field relating to a pharmaceutical composition for transcolon absorption.

Abstract

 本発明は、細胞内に作用部位を有する生理活性物質(特に、水溶性で高分子量の生理活性物質)を、注射投与によらず非侵襲的に、且つ、特定の組織の細胞内へ高い特異性で送達し得る経大腸吸収用医薬組成物を提供することを目的とする。 本発明における経大腸吸収用医薬組成物は、少なくとも以下の(a)及び(b)を含有させることを特徴とする。 (a)細胞内に作用部位を有し、且つ、リポタンパク質導入物質が結合した生理活性物質; (b)前記生理活性物質の大腸粘膜上皮透過性亢進作用を有する化合物;

Description

経大腸吸収用医薬組成物
 本発明は、経大腸吸収用医薬組成物、より詳しくは、特定の生理活性物質と特定の上皮透過性亢進化合物を含む経大腸吸収用医薬組成物に関する。
 一般に、ホルモンやサイトカインなどのペプチド性医薬品や、抗体医薬品や、siRNA、DNAプラスミドなどの核酸医薬品のほとんどは水溶性で高分子量の化合物であって、その上皮透過性及び細胞膜透過性は極めて低い。一方、これらの生理活性物質の標的分子(作用部位)は、多くの場合は細胞膜や細胞内に存在しており、医薬品として開発するためには、これら生理活性物質を標的細胞内に送達する技術(システム)の開発が不可欠である。これまでに多様な薬物送達システム(DDS)が開発されているにもかかわらず、これらの生理活性物質を注射によらず標的組織、特に標的細胞内に特異的に送達するシステムは報告されていない。これは、非注射的に体内に薬物を送達する機能と、標的部位に特異的に送達する機能の両者を併せ持つ多機能DDSの開発がきわめて困難であることに起因していると考えられる。特に、経口は簡便な薬物投与経路であるが、薬物送達には多くの障害がある。
 本発明者らは、これまでに、標的遺伝子の発現を抑制する核酸を、内因性カイロミクロンを利用してデリバリーするシステム等について研究を進めてきた。例えば特許文献1には、カイロミクロン又はカイロミクロンレムナントへの導入物質が結合した、標的遺伝子の発現を抑制する核酸を含有し、かつ、これを内因性カイロミクロンの生産が誘導されている条件下で脊椎動物に投与することを特徴とする、標的遺伝子の発現抑制剤が記載されている。しかし、かかる発現抑制剤が主として想定している投与経路は、静脈内注射等の注射投与であった。
 医学上重要な薬物の中には、消化管からの吸収が乏しいため、注射投与されるものが多いが、注射療法は患者にとって、精神的肉体的苦痛を伴う上に、アレルギー反応や投与部位の組織障害を起こす可能性が指摘されている。したがって、注射剤に代わり得る新しい投与剤形が要望され、近年、難吸収性薬物の経口又は直腸投与剤の開発が試みられている。
 例えば、非特許文献1には、難吸収性薬物の腸管透過性を向上させる吸収促進物質として、カプリン酸、オレイン酸、リノール酸及びそれらのモノグリセリド等の脂肪酸;脂肪酸の糖エステル;脂肪酸のグリセリンエステル;EDTA、クエン酸等のキレート剤;ラウリル硫酸ナトリウム等の界面活性剤;を用いうることが記載されている。また、本発明者らによる非特許文献2には、吸収促進作用物質として、長鎖不飽和脂肪酸や中鎖脂肪酸が優れていることや、長鎖不飽和脂肪酸とHCO-60(非イオン性界面活性剤)との混合ミセルが特に優れていることが記載されている。
国際公開第2009/069313号パンフレット
D. D. Breimer and P. Speiser, Editors, "Topics in Pharmaceutical Sciences 1987", Elsevier Science Publishers B.V., Biomedical Division (1987), pp. 445-455. 薬剤学、Vol.53、No.3、p176~184(1993)
 本発明の課題は、細胞内に作用部位を有する生理活性物質(特に、水溶性で高分子量の生理活性物質)を、注射投与によらず非侵襲的に、且つ、特定の組織の細胞内へ高い特異性で送達し得る経大腸吸収用医薬組成物を提供することにある。
 本発明者らは、ビタミンEが結合したsiRNA(VE-siRNA)を注射投与によらず非侵襲的に投与する方法について鋭意研究を行った。生体内のリポタンパク質の1種である内因性カイロミクロンは小腸で形成され、主に、小腸の粘膜上皮を透過してリンパ管へ入り、リンパ管を上行し、静脈に流出後リポプロテインリパーゼ(LPL)によってカイロミクロンレムナント(chylomicron remnant)に代謝され、このカイロミクロンレムナントによって肝臓に輸送されることが従来から知られている。したがって、本発明者らは、VE-siRNAが内因性カイロミクロンの構成材料となるように、VE-siRNAを小腸に投与することによって、VE-siRNAを含む内因性カイロミクロンを形成させ、かかる内因性カイロミクロンを小腸から吸収させて肝臓細胞内へと送達させるべく、腸粘膜上皮透過性亢進作用を有する様々な化合物を併用しながらVE-siRNAを小腸に投与したが、VE-siRNAは小腸の粘膜上皮をほとんど透過せず、VE-siRNAを肝臓細胞内へ効率よく送達することはできなかった。
 そのため、本発明者らは、VE-siRNAの腸管投与は断念することも検討した。というのも、小腸投与以外の腸管投与として大腸投与が一応有り得たものの、大腸ではカイロミクロンは形成されないため、腸粘膜上皮透過性亢進作用を有する様々な化合物を併用しながらVE-siRNAを大腸に投与したとしても、VE-siRNAが内因性カイロミクロンに取り込まれるとは考えられなかったからである。しかし、本発明者らは、VE-siRNAと、腸粘膜上皮透過性亢進作用を有する様々な化合物との大腸投与を試みた。その結果、意外なことに、本発明者らは、程度の差はあれど、腸粘膜上皮透過性亢進作用を有する様々な化合物によって、VE-siRNAを肝臓細胞内に効率的に送達し得ることを見いだし、本発明を完成するに至った。
 すなわち、本発明は、
(1)少なくとも以下の(a)及び(b)を含有することを特徴とする、経大腸吸収用医薬組成物;
(a)細胞内に作用部位を有し、且つ、リポタンパク質導入物質が結合した生理活性物質;
(b)前記生理活性物質の大腸粘膜上皮透過性亢進作用を有する化合物;や、
(2)大腸粘膜上皮透過性亢進作用を有する化合物として、界面活性剤を更に含有することを特徴とする上記(1)に記載の医薬組成物や、
(3)リポタンパク質導入物質が、カイロミクロン又はカイロミクロンレムナントへの導入物質であることを特徴とする、上記(1)又は(2)に記載の医薬組成物や、
(4)リポタンパク質導入物質が、脂溶性ビタミン又はコレステロールであることを特徴とする、上記(3)に記載の医薬組成物や、
(5)脂溶性ビタミンがビタミンE又はその誘導体であることを特徴とする、上記(4)に記載の医薬組成物や、
(6)生理活性物質を肝臓細胞へ特異的に送達することができることを特徴とする、上記(1)又は(2)に記載の医薬組成物や、
(7)リポタンパク質導入物質と結合させた生理活性物質の分子量が、1000~150000ダルトンの範囲内であることを特徴とする、上記(1)又は(2)に記載の医薬組成物や、
(8)生理活性物質が、標的遺伝子の発現を抑制する核酸であることを特徴とする、上記(1)又は(2)に記載の医薬組成物や、
(9)核酸が、siRNA、shRNA、アンチセンスオリゴヌクレオチド、アンタゴmir、核酸アプタマー、リボザイム及びデコイからなる群から選択される1種又は2種以上の核酸であることを特徴とする、上記(8)に記載の医薬組成物や、
(10)大腸粘膜上皮透過性亢進作用を有する化合物が、以下の(c)又は(d)のいずれか1つ以上を含む、上記(1)又は(2)に記載の医薬組成物;
(c)中鎖脂肪酸又は長鎖不飽和脂肪酸;
(d)前記(c)記載の脂肪酸(多価不飽和脂肪酸の場合は共役型も含まれる)の、塩、エステル体又はエーテル体;や、
(11)大腸粘膜上皮透過性亢進作用を有する化合物が、リノール酸、オレイン酸、リノレン酸、ドコサヘキサエン酸、エイコサペンタエン酸、カプリン酸又はラウリン酸、或いは、それらの塩、エステル体又はエーテル体であることを特徴とする、上記(10)に記載の医薬組成物や、
(12)界面活性剤が、ポリオキシエチレン硬化ヒマシ油、ポリソルベート、ポリエチレングリコール、ポロキサマー、モノアシルグリセリン、モノアシルソルビタン又は脂肪酸ショ糖エステル類であることを特徴とする、上記(2)に記載の医薬組成物や、
(13)大腸投与剤、経口腸溶剤又は経口薬物送達システムである、上記(1)又は(2)に記載の医薬組成物に関する。
 本発明によれば、細胞内に作用部位を有する生理活性物質(特に、水溶性で高分子量の生理活性物質)を、注射投与によらず非侵襲的に、且つ、特定の組織の細胞内へ高い特異性で送達し得る経大腸吸収用医薬組成物を提供することができる。
本発明の経大腸吸収用医薬組成物の想定デリバリー機構の概要を示す図である。 VE-siRNAの化学的構造を示す図である。配列中の小文字は2’O-メチル修飾を表し、アスタリスクはホスホチオネート骨格を表し、Tocはα-tocopherolを表す。 蛍光標識VE-siRNA及び上皮透過性亢進化合物等を直腸投与したマウスの肝臓組織の凍結切片を共焦点レーザー顕微鏡で観察した結果を示す図である。 蛍光標識VE-siRNA及び上皮透過性亢進化合物等を直腸投与したマウスのリンパ液について、蛍光相関分析法(FCS)にて解析した結果を示す図である。 蛍光標識VE-siRNA及び上皮透過性亢進化合物等を直腸投与したマウスのリンパ液、又は、かかるリンパ液のリポタンパク分画について、蛍光相関分析法(FCS)にて解析した結果を示す図である。 VE-siRNA及び上皮透過性亢進化合物等を直腸投与したマウスの肝臓細胞由来のトータルRNAについて、ノザンブロット解析を行った結果を示す図である。 VE-siRNA及び上皮透過性亢進化合物等を直腸投与したマウスの肝臓細胞由来のトータルRNAについて、標的内因性遺伝子に関する定量的RT-PCRを行った結果を示す図である。 VE-siRNA及び上皮透過性亢進化合物等を直腸投与したマウスの血清中のapoB100及びapoB48をウエスタンブロットで解析した結果を示す図である。図8A:ウエスタンブロットの結果を示す図である。図8B:図8Aの結果からバンドの濃度を定量し、apoB48定量値に対するapoB100定量値の比率(apoB100/48比)を求めた結果を示す図である。 VE-siRNA及び上皮透過性亢進化合物等を直腸投与したマウスの血清中の中性脂肪値、及び、LDLコレステロール値を示す図である。 蛍光標識VE-siRNA及び各種の上皮透過性亢進化合物等を直腸投与したマウスの肝臓組織の凍結切片を共焦点レーザー顕微鏡で観察した結果を示す図である。 蛍光標識VE-siRNA及び上皮透過性亢進化合物等を含有する中空坐剤等を直腸投与したラットの肝臓組織の凍結切片を共焦点レーザー顕微鏡で観察した結果を示す図である。 エチルセルロース多孔性マイクロスフェアを走査型電顕像で観察した結果を示す図である。 Cy3標識VE-siRNA/p-MS含有坐剤の形状を示す図である。 p-MS坐剤製剤等を直腸投与したラットの肝臓組織の凍結切片を共焦点レーザー顕微鏡で観察した結果を示す図である。 p-MS坐剤製剤等を直腸投与したラットの大腸組織の凍結切片を共焦点レーザー顕微鏡で観察した結果を示す図である。 トランスサイレチン遺伝子を標的とするVE-siRNA及び上皮透過性亢進化合物等を注腸投与したマウスの、血清中トランスサイレチン濃度を示す図である。
 本発明の経大腸吸収用医薬組成物(以下、単に「本発明の医薬組成物」とも表示する。)としては、少なくとも以下の(a)及び(b)を含有することを特徴とする。
(a)細胞内に作用部位を有し、且つ、リポタンパク質導入物質が結合した生理活性物質(以下、単に「本発明における生理活性物質」とも表示する。);
(b)前記生理活性物質の大腸粘膜上皮透過性亢進作用を有する化合物(以下、単に「本発明における上皮透過性亢進化合物」とも表示する。);
 本発明の医薬組成物は、大腸管を経て吸収されるように、非侵襲的に対象に投与することによって、本発明における生理活性物質を特定の組織の細胞内へ高い特異性で送達することができる。本発明の医薬組成物のデリバリー機構として想定される概要を、本発明の代表的な態様を例として図1に示す。すなわち、図1は、本発明における生理活性物質として「Toc-siRNA」(α-トコフェロールが結合したsiRNA)を用い、本発明における上皮透過性亢進化合物として、リノール酸(LA)と界面活性剤HCO-60との混合ミセル(MM)を用い、本発明におけるリポタンパク質として内因性のカイロミクロンを利用した場合のデリバリーの概要を示している。
 図1に示されているように、本発明の医薬組成物(Toc-siRNA/MM)を坐剤や経口腸溶剤、その他経口薬物送達システム等で投与すると、本発明の医薬組成物に含まれる生理活性物質(siRNA)が難吸収性化合物であっても、本発明における上皮透過性亢進化合物(MM)の働きで、本発明における生理活性物質(Toc-siRNA)の大腸(例えば直腸)の粘膜上皮からの吸収が促進される。吸収された本発明における生理活性物質(Toc-siRNA)はリンパ管内に移行し、リンパ液の流れに沿って上行する。一方、食事等に由来する外因性脂質は、小腸の粘膜上皮においてカイロミクロン(CM)等のリポタンパク質に変換され、カイロミクロンは小腸の粘膜上皮から吸収されてその付近のリンパ管内へ移行する。リンパ管内を上行する本発明における生理活性物質(Toc-siRNA)は、小腸付近のリンパ管内でカイロミクロンと出会い、本発明における生理活性物質のリポタンパク質導入物質部分(Toc)を介してカイロミクロンと複合体(Toc-siRNA/CM)を形成する。この複合体(Toc-siRNA/CM)は、静脈角で静脈内に流出し、リポプロテインリパーゼ(lipoproptein lipase:LPL)によりカイロミクロンレムナントへとレムナント化した後、レムナント受容体(LDL受容体やLRP-1受容体)を持つ肝臓細胞において、かかるレムナント受容体を介したエンドサイトーシスによって、肝臓細胞内に効率的に取り込まれる。本発明の医薬組成物のデリバリー機構として想定される概要は以上のとおりである。
 本発明におけるリポタンパク質としては、生体内に存在するリポタンパク質である限り特に制限されないが、肝臓細胞内への高い特異性での送達が可能となることから、カイロミクロン又はカイロミクロンレムナントを好適に例示することができ、中でも、カイロミクロンを特に好適に例示することができる。
 前述の本発明における生理活性物質としては、細胞内に作用部位を有し、且つ、リポタンパク質導入物質が結合した生理活性物質であって、生体内でその生理活性を発揮し得る限り、合成物質であっても天然物質であっても特に制限されず、かかる生理活性物質としては、市販のものや適宜調製したものを用いることができる。かかる生理活性物質の中でも好ましいものとして、分子標的化合物、細胞内受容体リガンド化合物、細胞内オルガネラに作用する化合物を好適に例示することができ、中でも、生体に対する有害作用がないか、あっても認容の範囲であるものをより好適に例示することができ、中でも、親水性が比較的高く、腸管上皮から吸収されにくい難吸収性化合物をさらに好適に例示することができ、中でも、ポリヌクレオチド、ポリペプチド(ペプチドを含む)、及びそれらの修飾体又は誘導体をより好適に例示することができ、具体的には、siRNA、shRNA、アンチセンスオリゴヌクレオチド、アンタゴmir、核酸アプタマー、リボザイム及びDNAデコイ、プラスミド等の核酸医薬;ホルモン、サイトカイン等のペプチド性医薬;抗体医薬;などの分子標的薬やバイオ医薬品をさらに好適に例示することができ、中でも、核酸医薬をより好適に例示することができ、中でもsiRNAを特に好適に例示することができる。マウスapoB遺伝子を標的遺伝子とするsiRNAとして具体的には、配列番号1(5’-GUCAUCACACUGAAUACCAAUGCUGGA-3’)からなるセンス鎖(27mer)と、配列番号2(5’-UCCAGCAUUGGUAUUCAGUGUGAUGACAC-3’)からなるアンチセンス鎖(29mer)からなるsiRNAを例示することができる。またヒトトランスサイレチン遺伝子を標的遺伝子とするsiRNAとして具体的には、配列番号3(5’-GUAACCAAGAGUAUUCCAUUUUUACUA-3’)からなるセンス鎖(27mer)と、配列番号4(5’-UAGUAAAAAUGGAAUACUCUUGGUUACAC-3’)からなるアンチセンス鎖(29mer)からなるsiRNAを例示することができる。
 また、上記の核酸医薬における核酸としては、生体内で分解されにくいように修飾した核酸であることが好ましく、特に、核酸がRNAの場合は、細胞内のRNaseに対して分解されにくいように、メチル化処理やチオリン酸化処理などの抗RNase処理されていることが好ましく、核酸のリボースの2’位のメチル化処理や、核酸の骨格の結合のチオリン酸化処理がさらに好ましい。メチル化やチオリン酸化を行うヌクレオチドの数や位置は、核酸が有する発現抑制活性に若干影響を与える場合があるため、メチル化やチオリン酸化を行うヌクレオチドの数や位置等の態様には、好ましい態様が存在する。この好ましい態様は、修飾対象となる核酸の配列によっても異なるため一概にいうことはできないが、修飾後の核酸の発現抑制活性を確認することによって、好ましい態様を容易に調べることができる。例えば、前述の配列番号1及び2からなるsiRNAにおける好ましい抗RNase処理の態様としては、センス鎖(配列番号1)のヌクレオチド番号2、5、11、15、21、24及び25のヌクレオチド、並びに、アンチセンス鎖(配列番号2)のヌクレオチド番号1、2、5、12、14、21、24、25及び26のヌクレオチドにおけるリボースの2’をメチル化し、また、センス鎖(配列番号1)のヌクレオチド番号26と27のヌクレオチド間の結合をチオリン酸化し、さらに、アンチセンス鎖(配列番号2)のヌクレオチド番号3、4、6、27、28のヌクレオチドについては、そのリボースの2’をメチル化し、かつ、その骨格の結合をチオリン酸化することを例示することができる。
 上記核酸医薬における核酸が、標的遺伝子の発現を抑制する核酸である場合、かかる核酸が有する「標的遺伝子の発現を抑制する活性」とは、上記核酸を細胞内に導入した場合に、導入しない場合に比べて、その標的遺伝子の細胞内の発現を低下させる活性を意味する。標的遺伝子の細胞内の発現の低下は、該標的遺伝子のmRNAを定量したり、該標的遺伝子にコードされるタンパク質を定量するなどして調べることができる。本発明に用いる核酸が標的遺伝子の発現を抑制する程度としては、この核酸を所定の腸管内に0.1から50mg/kg導入した場合に、導入しない場合と比較して、送達組織細胞内(好ましくは肝臓細胞内)の標的遺伝子のmRNAレベル又はタンパクレベルでの発現が80%以下、より好ましくは60%以下、さらに好ましくは40%以下、さらにより好ましくは20%以下を例示することができる。
 上記核酸が、siRNAである場合、センス鎖及び/又はアンチセンス鎖のヌクレオチド数は21でもよいが、21より多くすると、細胞内のDicerによって上記リポタンパク質導入物質及びsiRNAの一部と、siRNA(ヌクレオチド数21のもの)との間が切断され、ヌクレオチド数21のsiRNAが効率的に発現抑制効果を発揮しうるため、好ましい。
 上記標的遺伝子の発現を抑制する核酸は、標的遺伝子の配列やその転写因子が結合し得る部分の配列などの情報に基づいて公知の方法により設計することができる。例えば、siRNAであれば、特開2005-168485号記載の方法を、核酸アプタマーであれば、Nature, 1990, 346(6287):818-22記載の方法を、リボザイムであれば、FEBS Lett, 1988, 239, 285.;タンパク質核酸酵素, 1990, 35, 2191.;Nucl Acids Res, 1989, 17, 7059.記載の方法などを用いて、標的遺伝子の発現を抑制する核酸を設計することができる。また、アンチセンスオリゴヌクレオチド、アンタゴmirやDNAデコイは、それぞれ標的遺伝子の配列、及び、その転写因子が結合し得る配列の情報に基づいて容易に設計することができる。
 上記核酸は、公知の方法等を用いて調製することができる。例えばアンチセンスオリゴヌクレオチドやリボザイムは標的遺伝子のcDNA配列又はゲノミックDNA配列に基づいてmRNAもしくは初期転写産物の標的配列を決定し、市販のDNA/RNA自動合成機(アプライド・バイオシステムズ社、ベックマン社等)を用いて、これに相補的な配列を合成することにより調製することができ、また、DNAデコイやsiRNAは、センス鎖及びアンチセンス鎖をDNA/RNA自動合成機でそれぞれ合成し、適当なアニーリング緩衝液中、約90~約95℃で約1分程度変性させた後、約30~約70℃で約1~約8時間アニーリングさせること等により調製することができる。また、核酸アプタマーは、特開2007-014292号記載の方法等により調製することができる。
 前述の本発明におけるリポタンパク質導入物質としては、前述のリポタンパク質と親和性を有する疎水性化合物又は疎水性領域を有する化合物であれば特に制限されないが、リポタンパク質と結合する、好ましくは特異的に結合する、天然又は合成脂溶性分子並びにそれらの誘導体を好適に例示することができ、中でも、生体に対する有害作用がないか、あっても認容の範囲であるものをより好適に例示することができ、中でも、グリセリド、コレステロール、糖脂質、脂肪酸等の脂質;ビタミンA、ビタミンE、ビタミンD、ビタミンK等の脂溶性ビタミン;アシルカルニチン、アシルCoA等の中間代謝物;並びにそれらの誘導体;をさらに好適に例示することができ、中でも、安全性がより高い点で、ビタミンEやコレステロールをより好適に例示することができ、特にビタミンEを好適に例示することができる。なお、上記リポタンパク質導入物質は、2種類以上を組み合わせて使用してもよい。
 上記ビタミンEとしては、下記一般式(1)で示されるトコフェノール類もしくは一般式(2)で示されるトコトリエノール類
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
(式中、R、Rは水素原子またはメチル基を表し、Rは水素原子またはカルボン酸残基を表わす。)、またはこれら化合物を2種以上含有する混合物を好適に例示することができる。これらのうちα-トコフェロール(一般式(1)において、R=メチル基、R=メチル基、R=水素原子)、β-トコフェロール(一般式(1)において、R=メチル基、R=水素原子、R=水素原子)、γ-トコフェロール(一般式(1)において、R=水素原子、R=メチル基、R=水素原子)、δ-トコフェロール(一般式(1)において、R=水素原子、R=水素原子、R=水素原子)、α-トコトリエノール(一般式(2)において、R=メチル基、R=メチル基、R=水素原子)、β-トコトリエノール(一般式(2)において、R=メチル基、R=水素原子、R=水素原子)、γ-トコトリエノール(一般式(2)において、R=水素原子、R=メチル基、R=水素原子)、δ-トコトリエール(一般式(2)において、R=水素原子、R=水素原子、R=水素原子)、及び、これらの酢酸エステル、コハク酸エステルが好ましい。特に、α-トコフェロール、γ-トコフェロールが好ましい。また、ビタミンEとして、d体、l体、dl体の区別は特に問わない。
 上記リポタンパク質導入物質と上記生理活性物質との結合は、直接的な結合であってもよいし、他の物質を間に介した間接的な結合であってもよいが、共有結合、イオン結合、水素結合等の化学結合で直接的に結合していることが好ましく、中でもより安定した結合が得られることから共有結合を特に好ましく例示することができる。
 リポタンパク質導入物質と生理活性物質とを結合させる方法としては、特に制限はないが、例えば、生理活性物質が核酸である場合に、リポタンパク質導入物質と共有結合させる場合は、リポタンパク質導入物質と核酸とを、Tetrahedron Letters 33; 2729-2732. 1992.記載の方法にしたがって共有結合させることが好ましく、イオン結合や水素結合を利用する場合は、正電荷を有するアルギニン残基をリポタンパク質導入物質に結合させ、アルギニン残基のこの正電荷と、siRNA等の核酸が有する負電荷とのイオン結合や水素結合を利用して結合させることが好ましい。なお、リポタンパク質導入物質に結合させるアルギニン残基の数は、核酸とのより安定的な結合を得る観点から、2以上とすることが好ましく、3以上とすることがより好ましく、4以上とすることがさらに好ましい。
 リポタンパク質導入物質と結合させた生理活性物質の分子量としては、本発明の効果が得られる限り特に制限されないが、本発明によるメリットを特に大きく享受し得る観点から、かかる分子量が1000~150000ダルトンの範囲内であることを好適に例示することができ、中でも、5000~100000ダルトンの範囲内であることをより好適に例示することができ、中でも、5000~50000ダルトンの範囲内であることをさらに好適に例示することができる。
 本発明の医薬組成物に含まれる本発明における上皮透過性亢進化合物としては、本発明における生理活性物質の、大腸粘膜上皮における透過性を亢進する作用を有する化合物である限り特に制限されないが、中でも、本発明における生理活性物質の、大腸粘膜上皮における細胞間隙透過性を亢進する化合物を好適に例示することができ、中でも、本発明におけるリポタンパク質導入物質と親和性が高い化合物をより好適に例示することができ、中でも、本発明における生理活性物質と、本発明におけるリポタンパク質との生体内における複合体形成を妨げない化合物(好ましくは促進する化合物)をさらに好適に例示することができ、中でも、本発明における生理活性物質のリンパ移行性を妨げない化合物(好ましくは促進する化合物)をより好適に例示することができ、中でも、その有効投与量において生体に対して無害であり、且つ、本発明における生理活性物質の生理作用を妨げない化合物(好ましくは生理活性のない物質)をさらに好適に例示することができ、中でも、大腸粘膜への傷害性が低い化合物(好ましくは大腸粘膜への傷害作用のない化合物)をより好適に例示することができ、中でも、本発明における生理活性物質と複合体を形成する化合物をさらに好適に例示することができ、中でも、対象への投与時又は対象における大腸粘膜上皮を透過する時に、本発明における生理活性物質とコロイド分散系(好ましくは混合ミセル、エマルション、より好ましくは混合ミセル)を形成し得る化合物をより好適に例示することができる。本発明における上皮透過性亢進化合物として具体的には、本発明におけるリポタンパク質導入物質と親和性が高く、且つ、本発明における生理活性物質の、大腸粘膜上皮における透過性を亢進する作用を有する化合物(以下、単に「化合物A」とも表示する。)や、上皮細胞間隙のタイト結合若しくは接着に係る分子、又は、該分子を調節する分子に作用する化合物(以下、単に「化合物B」とも表示する。)を好適に例示することができ、上記化合物Aとしては、天然又は合成脂質及びその誘導体、界面活性剤、並びに、ペプチド等を好適に例示することができ、中でも、中鎖脂肪酸、長鎖不飽和脂肪酸、モノグリセリド・ジグリセリド及びこれらの誘導体(好ましくは、塩、エステル体又はエーテル体)又はこれらの混合物をより好適に例示することができ、中でも、上皮透過性亢進作用に優れている点で、中鎖脂肪酸、長鎖不飽和脂肪酸及びこれらの誘導体(好ましくは、塩、エステル体又はエーテル体)をさらに好適に例示することができ、中でも、上皮透過性亢進作用に優れているだけでなく、リポタンパク質の形成促進作用やリンパ流速上昇作用をさらに有している点で、長鎖不飽和脂肪酸及びこれらの誘導体(好ましくは、塩、エステル体又はエーテル体)を特に好適に例示することができ、上記化合物Bとしては、クローディン-4調節因子、EDTA、クエン酸等のキレート化合物及びその誘導体を好適に例示することができる。
 上記の中鎖脂肪酸とは、炭素数8~12の脂肪酸を意味し、かかる中鎖脂肪酸としては、カプリル酸(オクタン酸)、ペラルゴン酸(ノナン酸)、カプリン酸(デカン酸)、ラウリン酸(ドデカン酸)が含まれ、中でもカプリン酸、ラウリン酸を好適に例示することができ、中でもカプリン酸をより好適に例示することができる。また、上記の長鎖不飽和脂肪酸とは、炭素数12以上(好ましくは12以上30以下、より好ましくは12以上24以下、さらに好ましくは14以上20以下)の不飽和脂肪酸を意味し、一価不飽和脂肪酸であっても多価不飽和脂肪酸(好ましくは二価~八価の不飽和脂肪酸、より好ましくは二価~六価の不飽和脂肪酸、さらに好ましくは二価~四価の不飽和脂肪酸)でもよく、かかる長鎖不飽和脂肪酸としては、例えば、ミリストレイン酸(9-テトラデセン酸)、パルミトレイン酸(9-ヘキサデセン酸)、オレイン酸(cis-9-オクタデセン酸)、エライジン酸(trans-9-オクタデセン酸)、バクセン酸(11-オクタデセン酸)、リノール酸(cis,cis-9,12-オクタデカジエン酸)、α-リノレン酸(9,12,15-オクタデカトリエン酸)、γ-リノレン酸(6,9,12-オクタデカトリエン酸)、ピノレン酸(5,9,12-オクタデカトリエン酸)、エレオステアリン酸(9,11,13-オクタデカトリエン酸)、ステアリドン酸(6,9,12,15-オクタデカテトラエン酸)、ガドレイン酸(9-イコセン酸)、エイコセン酸(11-イコセン酸)、8,11-イコサジエン酸、5,8,11-イコサトリエン酸、アラキドン酸(5,8,11,14-イコサテトラエン酸)、エイコサペンタエン酸(5,8,11,14,17-イコサペンタエン酸:EPA)、エルカ酸(13-ドコセン酸)、ドコサジエン酸(13,16-ドコサジエン酸)、アドレン酸(7,10,13,16-ドコサテトラエン酸)、オズボンド酸(4,7,10,13,16-ドコサペンタエン酸)、セルボン酸(ドコサヘキサエン酸:DHA)、ネルボン酸(cis-15-テトラドコサン酸)、テトラコサペンタエン酸(9,12,15,18,21-テトラコサペンタエン酸)を好適に例示することができ、中でも、オレイン酸、リノール酸、リノレン酸、ドコサヘキサエン酸、エイコサペンタエン酸をより好適に例示することができ、中でも、リノール酸を特に好適に例示することができる。
 前述の界面活性剤としては、本発明における生理活性物質の、大腸粘膜上皮における透過性を亢進する作用を有している限り特に制限されないが、HCO-60(ポリオキシエチレン硬化ヒマシ油)、ポリソルベート、ポリエチレングリコール、ポロキサマー、モノアシルグリセリン、モノアシルソルビタン、脂肪酸ショ糖エステル類、ポリオキシエチレンアルキルエーテル等の非イオン性界面活性剤;ラウリル硫酸ナトリウム等の陰イオン性界面活性剤;などを例示することができ、中でも、ポリオキシエチレン硬化ヒマシ油、ポリソルベート、ポリエチレングリコール、ポロキサマー、モノアシルグリセリン、モノアシルソルビタン、脂肪酸ショ糖エステル類、ポリオキシエチレンアルキルエーテル等の非イオン性界面活性剤を好適に例示することができ、中でも、ポリオキシエチレン硬化ヒマシ油、ポリソルベート、ポリエチレングリコール、ポロキサマー、モノアシルグリセリン、モノアシルソルビタン、脂肪酸ショ糖エステル類をより好適に例示することができ、中でも、ポリオキシエチレン硬化ヒマシ油を特に好適に例示することができる。
 なお、本発明における上皮透過性亢進化合物は、2種以上を併用してもよく、例えば、本発明における上皮透過性亢進化合物として長鎖不飽和脂肪酸を用いる場合は、長鎖不飽和脂肪酸と本発明における生理活性物質とで複合体(好ましくはコロイド分散系、より好ましくは混合ミセル、エマルション、さらに好ましくは混合ミセル)を形成させるために、界面活性剤を併用することが好ましい。また、本発明における上皮透過性亢進化合物として中鎖脂肪酸を用いる場合は、界面活性剤を併用しなくても、本発明における生理活性物質と複合体を形成するが、より十分に複合体(好ましくはコロイド分散系、より好ましくは混合ミセル、エマルション、さらに好ましくは混合ミセル)を形成させるために、界面活性剤を併用することが好ましい。
 前述の大腸粘膜上皮における大腸としては、結腸(上行結腸、横行結腸、下行結腸、S状結腸)、直腸を好適に例示することができ、中でも、直腸を特に好適に例示することができる。
 本発明の医薬組成物又はその製剤の剤形としては、経大腸吸収用剤である限り特に制限されず、坐剤、注腸剤等の大腸投与剤や、経口腸溶剤、又は、パルシンキャップ(登録商標)(国際公開番号1990/009168)、オロス(登録商標)(F.ティーウェス、「OROS(R)浸透圧システムの発展」薬剤開発産業と薬理学、9(7)、1331-1357(1983)、F.ティーウェス「誘発・脈動・プログラム化薬剤送達」新規な薬剤送達とその治療適用、L.F.プレスコットおよびW.S.ニモス編、(ワイリー、ニューヨーク、1989)323-340ページ)、GI-MAPS(登録商標)(特開2005ー272416)等の経口薬物送達システム(経口薬物送達製剤)を好適に例示することができる。なお、ここで経大腸吸収とは、結腸、直腸等を含む大腸での吸収に加え、小腸下部(回腸)での吸収を含む。
 本発明の医薬組成物を製剤とする場合には、本発明における生理活性物質及び本発明における上皮透過性亢進化合物に、適宜の薬学的に許容される担体、例えば、賦形剤、結合剤、溶剤、溶解補助剤、懸濁化剤、乳化剤、等張化剤、緩衝剤、安定化剤(好ましくは本発明における生理活性物質の安定化剤)、pH調節剤、コロイド安定剤、無痛化剤、防腐剤、抗酸化剤、増粘剤、ゲル化剤、着色剤、滑沢剤、崩壊剤、湿潤剤、吸着剤、甘味剤、希釈剤などの任意成分を配合することができる。かかる任意成分の中でも、本発明の医薬組成物の大腸粘膜上皮における透過性をより強く亢進させ得る観点から、本発明における生理活性物質の安定化剤、pH調節剤、コロイド安定剤、抗酸化剤、増粘剤、ゲル化剤を好適に例示することができる。また、任意成分として、細胞内のエンドゾームからの脱出剤をさらに含有させると、本発明における生理活性物質の細胞内標的分子へのターゲティングを増強し得る点で好ましい。
 本発明の医薬組成物又はその製剤の好ましい態様として、本発明における生理活性物質と、本発明における上皮透過性亢進化合物とが、複合体を形成したものを好適に例示することができ、中でも、コロイド分散系を形成したものをより好適に例示することができ、中でも、混合ミセル又はエマルションを形成したものをさらに好適に例示することができ、中でも、混合ミセルを形成したものを特に好適に例示することができる。かかる態様であると、大腸粘膜上皮透過性が特に優れた本発明の医薬組成物が得られるからである。
 また、上記の大腸投与剤などの好適な一例として、本発明の医薬組成物が担持された多孔性微粒子を坐剤化した製剤(以下、「多孔性微粒子含有坐剤」と表示する。)を例示することができる。かかる坐剤は、製造が簡便であるという利点や、本発明の医薬組成物に対する保護効果が得られるという利点や、大腸投与の際に本発明の医薬組成物が過度に希釈されることを低減し得るという利点を有している。
 本発明における多孔性微粒子含有坐剤は、本発明の医薬組成物が担持された多孔性微粒子である限り特に制限されず、その製法も従来公知のいずれの製法(例えば市販の坐剤用基剤と医薬組成物とを混合する方法など)も用いることができるが、製造がより簡便であり、また、医薬組成物に対するより優れた保護効果が得られ、また、大腸投与の際に医薬組成物が希釈されることをより低減し得る観点から、本発明者が開発した以下の「多孔性微粒子を含有する粘膜適用坐剤の製造方法」における「粘膜適用化合物又は医薬組成物」(以下、「粘膜適用化合物等」とも表示する。)として、「注腸用化合物又は医薬組成物」(以下、「注腸用化合物等」とも表示する。)を利用した製造方法を好適に例示することができる。
 上記の多孔性微粒子を含有する粘膜適用坐剤(以下、「多孔性微粒子含有粘膜適用坐剤」とも表示する。)の製造方法としては、疎水基を有する極性化合物である粘膜適用化合物等を溶媒に溶解し、その溶解液に、疎水性高分子化合物からなるスポンジ様の多孔性微粒子を含浸させることによって、粘膜適用化合物等を多孔性微粒子内の空隙中に親和させ、投与後にかかる粘膜適用化合物等を粘膜上に放出可能な程度に担持させる方法である。上記の粘膜適用化合物は、疎水基を有する極性化合物であり、かかる生理活性物質とは、細胞内に作用部位を有し、且つ、リポタンパク質導入物質が結合した生理活性物質を好適に例示することができ、上記の粘膜適用医薬組成物としては、かかる生理活性物質を含む組成物を好適に例示することができる。前述の生理活性物質は、極性化合物に疎水基を付加したものであってもよい。また、上記の疎水性高分子としては、メチルセルロース、エチルセルロース等のアルキルセルロールの他、アミノアルキルメタアクリレートコポリマー、アクリル酸エチル・メタアクリル酸メチル・メタアクリル酸塩化トリメチルアンモニウムエチルのコポリマー、酢酸フタル酸セルロース、メタアクリル酸コポリマー、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシプロピルメチルセルロースアセテートサクシネート、及び、カルボキシメチルエチルセルロースなどを好適に例示することができ、中でも、アルキルセルロースをより好適に例示することができ、中でもエチルセルロースをさらに好適に例示することができる。上記の多孔性微粒子の形状や粒子径としては、上記の粘膜適用化合物等を担持させ得る限り特に制限されないが、形状としては、柱状、立方状、球状を好適に例示することができ、粒子径としては、0.5μm~500μmの範囲を好適に例示することができ、中でも5μm~50μmの範囲をより好適に例示することができる。上記の疎水基としては、前述のリポタンパク質導入物質として例示した化合物(例えばコレステロールや脂溶性ビタミン)を好適に例示することができ、上記の生理活性物質としては、前述の生理活性物質として例示した化合物(例えばポリヌクレオチドやポリペプチド)を好適に例示することができる。また、多孔性微粒子含有粘膜適用坐剤における多孔性微粒子からの粘膜適用化合物等の放出や、放出後の分散や、粘膜への吸収を制御する目的で、界面活性剤や吸収促進剤などを、粘膜適用化合物等と共に多孔性微粒子内の空隙中に担持させることもでき、また、坐剤の保存性を向上させる目的で、適切な保存剤などを、粘膜適用化合物等と共に多孔性微粒子内の空隙中に担持させることもできる。多孔性微粒子含有粘膜適用坐剤の製造方法は、粘膜適用化合物等に代えて、粘膜適用化合物等を担持させた多孔性微粒子を用いること以外は、通常の粘膜適用坐剤の製造方法を用いることができ、例えば、市販の坐剤用基剤を用いることができる。かかる坐剤用基剤としては、例えばGattefosse社製の坐剤用基剤を用途に合わせて適宜使用することができる。また、上記の多孔性微粒子含有粘膜適用坐剤の製造方法の製造対象としては、粘膜適用坐剤である限り特に制限されず、直腸坐剤などの大腸坐剤、膣坐剤、尿道坐剤等を好適に例示することができる。なお、水溶性高分子からなる多孔性微粒子を用いた場合、粘膜適用化合物等には極性化合物を用いることになるが、かかる多孔性微粒子はその粘膜適用化合物等と親和性が高く、坐剤中への分散性は確保できるものの、投与後の坐剤からの多孔性微粒子の放出と、多孔性微粒子からの粘膜適用化合物等の放出とを区別して制御することが困難である。このため、消化管などの粘膜上では不安定な粘膜適用化合物等を多孔性微粒子によって保護する作用は認められないか不十分である上、かかる粘膜適用化合物が投与粘膜上で希釈されることで受動輸送による吸収が低下してしまう。これに対して、疎水性高分子からなる多孔性微粒子と、疎水基を有する極性化合物(粘膜適用化合物等)を用いた場合は、粘膜適用化合物等の疎水基を選択・調整するなどして、多孔性微粒子と粘膜適用化合物等との親和性を調整することによって、投与後の坐剤から多孔性微粒子が放出した後も、粘膜適用化合物等が多孔性微粒子からの保護効果を得、また、投与粘膜上での希釈を低減することができる。
 本発明の医薬組成物における、本発明における生理活性物質や、本発明における上皮透過性亢進化合物の含有量としては、製剤に放出量を制御できる機構(例えば、放出制御膜など)を加えることでどのようにでも設定可能であり、本発明の効果が得られる限り特に制限されないが、消化管内での濃度がそれぞれ独立に、好ましくは0.1μM~1000mMの範囲内、より好ましくは10μM~50mMとすることを好適に例示でき、本発明の医薬組成物が液剤である場合、例えば上記を踏まえ、好ましくは0.1μM~1000mMの範囲内、より好ましくは10μM~50mMとすることを好適に例示することができる。
 本発明の医薬組成物に含有される、本発明における生理活性物質と、本発明における上皮透過性亢進化合物とのモル比率としては、本発明の効果が得られる限り特に制限されないが、1:1000~1000:1の範囲内を好適に例示することができ、1:100~100:1の範囲内をより好適に例示することができ、1:10~10:1の範囲内をさらに好適に例示することができる。
 本発明の医薬組成物は、本発明における生理活性物質の組織細胞内への送達効率を向上させ、本発明における生理活性物質の生理活性をより多く得る観点から、体内において内因性リポタンパク質(好ましくはカイロミクロン)の生産が誘導されている条件下で脊椎動物に投与することが好ましい。内因性リポタンパク質(好ましくはカイロミクロン)の生産が誘導されている条件としては、当該目的を達成できる限り特に制限はないが、脊椎動物に脂質を経口投与してから12時間以内(例えば、10時間以内、8時間以内、6時間以内、4時間以内、2時間以内、1時間以内)の条件が好ましい。脂質の経口投与は、脂質そのものの投与でも良いし、脂質を含む食事の形態での投与でも良い。内因性リポタンパク質(好ましくはカイロミクロン)の生産を誘導する前に投与対象を絶食等により飢餓状態にすることがより好ましい。脂質の投与や、さらには、その前に投与対象を飢餓状態することによって、本発明における生理活性物質の細胞内への取り込み効率が向上する詳細な作用機作は明らかではない。しかしながら、リポプロテインの取り込みに関与する肝臓細胞のLRP-1受容体は脂質の経口摂取やインスリンによって細胞膜での発現量が増加し、かつ、活性化されることが知られている(Mol Pharmacol. 2007 Jul 3;17609417)ことを考慮すると、脂質を摂取させること等によって、リポプロテインの取り込みに関与する受容体の発現量が増加したり活性化され、その結果、肝臓細胞のリポタンパク質(好ましくはカイロミクロン)導入が増加して、その結果、リポタンパク質導入物質が結合した本発明における生理活性物質の肝臓細胞内への取り込み効率が向上するものと考えられる。なお、上記飢餓状態とは、一定期間飲食物(ただし、カロリーのない水等の飲食物を除く)を摂取していない状態をいい、例えば6時間以上、好ましくは8時間以上、より好ましくは12時間以上、さらに好ましくは24時間以上、投与対象に食物を与えない状態が含まれる。
 また、本発明の医薬組成物は、大腸管での吸収を経る医薬組成物であり、前述の剤型に応じて、経口的又は非経口的に投与することができる。すなわち、経口腸溶剤等の経口DDS製剤は内服することができ、坐剤、注腸剤等の大腸投与剤は、肛門から挿入又は注入することができる。
 本発明の医薬組成物の投与量は、投与対象の年齢、体重、症状や、投与対象が罹患している疾患の種類、該医薬組成物中に含まれる本発明における生理活性物質の種類等によって異なるが、例えば0.1~30mg/kgを、一日あたり1~3回に分けて投与することができる。
 本発明の医薬組成物の対象疾患としては、なんらかの生理活性の異常(好ましくは、亢進又は低下)に起因する疾患であって、本発明における生理活性物質が改善し得る疾患である限り特に制限されず、生理活性の異常に起因する疾患の例として、変異トランスサイレチン遺伝子の発現に起因する家族性アミロイドニューロパチーを好適に例示することができ、特定の遺伝子の亢進に起因する疾患の例として、肝炎ウイルス遺伝子の発現の亢進に起因するウイルス肝炎や肝臓がんを好適に例示することができる。
 本発明における投与対象としては、動物である限り特に制限されないが、脊椎動物を好適に例示することができ、哺乳類又は鳥類に属する動物をより好適に例示することができ、中でも、哺乳類に属する動物をさらに好適に例示することができ、中でも、ヒト、ラット、マウス、ブタ、ウサギ、イヌ、ネコ、サル、ウマ、ウシ、ヤギ、ヒツジをより好適に例示することができ、中でも、ヒトを特に好適に例示することができる。
 また、本発明の医薬組成物は、大腸投与剤又は経口腸溶剤の有効成分として用いることもできる。
 本発明における生理活性物質を特定の組織細胞内へデリバリーする方法(以下、「本発明のデリバリー方法」ともいう。)としては、前述の本発明の医薬組成物を、大腸管での吸収を経るように脊椎動物に投与する工程(X)を有している限り特に制限されないが、本発明における生理活性物質の組織細胞内への送達効率を向上させ、本発明における生理活性物質の生理活性をより多く得る観点から、かかる投与を、体内において内因性リポタンパク質(好ましくはカイロミクロン)の生産が誘導されている条件下で行うことが好ましい。
 上記工程(X)における投与方法としては、上記本発明の医薬組成物と同様の方法により投与することができる。
 本発明のデリバリー方法によって本発明における生理活性物質をデリバリーし得る組織及び細胞としては、本発明におけるリポタンパク質がインビボにおいて移行する組織及び細胞である限り特に制限されないが、リポタンパク質がカイロミクロン又はカイロミクロンレムナントである場合は、肝臓組織細胞内(好ましくは肝実質細胞内)や肝細胞がん細胞内へ、高い特異性でデリバリーすることが可能となる点で、特に好適な態様として例示することができる。
 なお、本発明のデリバリー方法は、疾患動物又は疾患患者に適用することによって、本発明における疾患を治療する方法として利用することもできる。
 本発明の他の態様として、本発明の経大腸吸収用医薬組成物(又は疾患治療剤)の調製のための、本発明における生理活性物質及び本発明における上皮透過性亢進化合物の使用;や、疾患の治療における、本発明における生理活性物質及び本発明における上皮透過性亢進化合物の使用;も例示することができる。
 以下に実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[ビタミンE結合small interfering RNA(VE-siRNA)の合成]
 本発明における生理活性物質の1例として、マウスapoB遺伝子を標的遺伝子とするsiRNAを作製した。具体的には、配列番号1(GUCAUCACACUGAAUACCAAUGCUGGA)からなるセンス鎖(27mer)と、配列番号2(UCCAGCAUUGGUAUUCAGUGUGAUGACAC)からなるアンチセンス鎖(29mer)からなるsiRNAを合成し、適当な化学修飾を施した。このsiRNAのアンチセンス鎖5’末端に、リポタンパク質導入物質として、ビタミンEの天然型アイソマーの一つであるα-トコフェロール(Toc)をリン酸結合で共有結合させて、VE-siRNAを得た(図2)。
[蛍光標識VE-siRNAの肝組織への送達試験1]
 本発明により、生理活性物質を効率的に肝組織へ送達することが可能かどうかを調べるために、以下のような試験を行った。
(1)製剤の調製
 透過性亢進剤として、リノール酸(LA)(和光純薬工業株式会社製)を用意し、界面活性剤として、HCO-60(日光ケミカルズ株式会社製)を用意した。LAの最終投与濃度が10mMとなるように、HCO-60(3.0w/w%)及びRNAse freeのリン酸緩衝液(PBS)を用いて調節後、ソニケーターによりソニケーションを行い、用時混合ミセルとして調製した。なお、この用時混合ミセルは、0.1N NaOHでpHを7.4に調節した。用事調製した混合ミセルと、蛍光(Cy3)標識VE-siRNA(0.3mg/head)とをピペッティングでよく混合し、送達試験用の実施例製剤(HCO-60/LA/VE-siRNA)(製剤E)を調製した。
 また、コントロールとして、PBS(製剤A);前述の用時混合ミセルと、PBSとを混合した製剤(HCO-60/LA/PBS)(製剤B);前述の用時混合ミセルと、蛍光(Cy3)標識siRNA(0.3mg/head)とを混合した製剤(HCO-60/LA/siRNA)(製剤C);HCO-60及びPBSを用いて調製した用時混合ミセルと、蛍光(Cy3)標識VE-siRNA(0.3mg/head)とを混合した製剤(HCO-60/PBS/VE-siRNA)(製剤D);をそれぞれ調製した。
(2)動物の直腸への製剤の投与
 前述の実施例2(1)で調製した製剤を投与する対象動物として、マウス(ICR、9週齢)を用意した。このマウスを一夜絶食させた後、乳脂肪5%ミルクを0.4mlずつ30分おきに三回経口投与することにより、カイロミクロン形成を促進させた。最後のミルク投与から30分後に、ネンブタールでマウスに麻酔をかけ、腸管を洗浄した後、前述のいずれかの製剤(約200μL)を注腸剤として肛門部より投与(直腸投与)し、次いで、肛門部を結紮した。製剤を単回投与してから2時間毎に腸内残留薬剤を除去後、新たに同用量の製剤を追加投与して、合計3回の投与を行った。また、実施例製剤(製剤E)については、この他にも、絶食後にミルクの前投与を行わずに、同様に製剤Eを直腸投与すること(Milk(-) HCO-60/LA/VE-siRNA)や、絶食後にミルクの前投与を同様に行い、製剤Eを直腸投与する30分間前に、生理食塩水で希釈したTriton-X100(Sigma社製)の溶液(20mg/kg)を尾静脈より投与すること(Triton-X pre i.V. HCO-60/LA/VE-siRNA)も行った。
(3)共焦点顕微鏡によるsiRNAの肝分布の観察
 前述の実施例2(2)において、最後に製剤を投与してから2時間後に、麻酔下で4℃の生理食塩水にてマウスを還流し、次いで、肝臓を摘出した。摘出した肝臓を4%パラホルムアルデヒド(和光純薬工業株式会社製)で一晩固定後、30%スクロース(和光純薬工業株式会社製)で一晩固定し、次いで、O.C.T.Compound(Sakura Finetek社製)で包埋し、常法により凍結切片を作製した。凍結切片はTO-PRO(登録商標)-3(Molecular Probe社製)、Fluorescein(FITC)-ファロイジン(Invitrogen社製)を用いて、各々細胞核、細胞線維の染色を行った。これらの凍結切片を共焦点レーザー顕微鏡で観察した結果を図3に示す。図3Aは製剤Aを投与した場合の結果を示し、図3Bは製剤Bを投与した場合の結果を示し、図3Cは製剤Cを投与した場合の結果を示し、図3Dは製剤Dを投与した場合の結果を示し、図3Eは製剤Eを投与した場合の結果を示し、図3Fは絶食後にミルクの前投与を行わずに、製剤Eを投与した場合の結果を示し、図3GはTriton-X100溶液を投与してから製剤Eを投与した場合の結果を示す。また、図3A~Gの各パネルはそれぞれ4分割されているが、それぞれ左上はTO-PRO(登録商標)-3の青色蛍光の検出結果を示し、右上はFITC-ファロイジンの緑色蛍光の検出結果を示し、左下はCy3の赤色蛍光の検出結果を示し、右下は左上と右上と左下の蛍光の検出結果を重ね合わせた結果を示す。
 コントロールとして、製剤A(PBS)を投与したA群や、製剤B(HCO-60/LA/PBS)を投与したB群では、Cy3に基づく蛍光はほとんど観察されなかった(図3A及び図3B)。これに対して、HCO-60/LA(上皮透過性亢進化合物)と、蛍光(Cy3)標識VE-siRNAとの混合ミセルである製剤E(HCO-60/LA/VE-siRNA)を投与したE群では、Cy3に基づく顕著な蛍光が認められた(図3E)。このことから、本発明における経腸管吸収用医薬組成物とすることで、生理活性物質であるsiRNAを経腸管的に肝実質細胞内に効率良く送達できることが示された。
 また、実施例製剤である製剤EからLAを除いた製剤D(HCO-60/PBS/VE-siRNA)を投与したD群では、Cy3に基づく蛍光はほとんど検出されなかった(図3D)。このことから、上皮透過促進剤であるHCO-60/LA中の脂肪酸LAが、VE-siRNAの腸管から肝臓細胞内への送達に必須の因子の一つであることが示された。
 また、実施例製剤である製剤Eにおける蛍光(Cy3)標識VE-siRNAに代えて、蛍光(Cy3)標識siRNAを用いた製剤Cを投与したC群では、Cy3に基づく蛍光はほとんど検出されなかった(図3C)。このことから、siRNAにリポタンパク質導入物質であるVEを結合させることは、siRNAの腸管から肝臓細胞内への送達に必須の因子の一つであることが示された。
 さらに、絶食後にミルクの前投与を行わずに、実施例製剤Eを直腸投与したF群(Milk(-) HCO-60/LA/VE-siRNA)でも、Cy3に基づく蛍光が検出されたが、ミルクの前投与を行ったE群ほどの顕著な蛍光ではなかった(図3F)。ミルクの前投与はカイロミクロンの形成を促進することを考慮すると、カイロミクロンの形成量が増えることにより、VE-siRNAの腸管から肝臓細胞内への送達効率が向上することが示された。このことから、生体内におけるカイロミクロンの形成は、siRNAの腸管から肝臓細胞内への送達に必須の因子の一つであることが示された。
 また、Triton-X100の前投与処理を行ったG群(Triton-X pre i.V. HCO-60/LA/VE-siRNA)では、Cy3に基づく蛍光がほとんど検出されなかった(図3G)。すなわち、G群では、ミルクの前投与を行っているにもかかわらず、E群と比較して、VE-siRNAの腸管から肝臓細胞内への送達が明らかに阻害された。Triton-X100がカイロミクロンからのレムナント形成を抑制する活性を有していることを考慮すると、この結果は、siRNAの肝移行性と、レムナントとしてのカイロミクロンの肝移行性との間に相関関係があることを示唆している。従って、カイロミクロンからのレムナントの形成は、siRNAの腸管から肝臓細胞内への送達に必須の因子の一つであることが示された。
[蛍光標識VE-siRNAのマウスのリンパ液への取り込み確認試験1]
 本発明における生理活性物質の肝組織への送達機構を調べるために、以下のような試験を行った。
 マウス(ICR、9週齢)を用意した。このマウスを16時間絶食させた後、乳脂肪5%ミルクを0.4mlずつ30分おきに三回経口投与することにより、カイロミクロン形成を促進させた。最後のミルク投与から30分後に、ネンブタールでマウスに麻酔をかけ、腸管を洗浄した後、前述の実施例2における製剤E(HCO-60/LA/VE-siRNA)を約200μL、注腸剤として肛門部より投与(直腸投与)し、次いで、肛門部を結紮した。前述の製剤を単回投与してから2時間後に、そのマウスの腸管リンパ管からリンパ液を採取した。このリンパ液中のCy3標識された分子の拡散時間を、蛍光相関分析法(FCS)を用いて求めた。また、コントロールとして、製剤E(HCO-60/LA/VE-siRNA)に代えて、蛍光(Cy3)標識VE-siRNAを用いて、同様にFCSを行った。これらのFCSの結果を図4に示す。
 図4の結果から分かるように、製剤Eを投与した場合は、Cy3に基づく蛍光の拡散時間が、コントロールを投与した場合と比べて著明に増加して2500マイクロ秒程度であった。このことは、蛍光(Cy3)標識VE-siRNAが、HCO-60/LA(上皮透過性亢進化合物)により、マウスのリンパ液内のカイロミクロン相当の大きさの分子へより多く取り込まれていることを示唆している。
[蛍光標識VE-siRNAのマウスのリンパ液への取り込み確認試験2]
 マウス(ICR、9週齢)を用意した。このマウスを16時間絶食させた後、乳脂肪5%ミルクを0.4mlずつ30分おきに三回経口投与することにより、カイロミクロン形成を促進させた。最後のミルク投与から30分後に、ネンブタールでマウスに麻酔をかけ、腸管を洗浄した後、腸管の遠位側または肛門を結紮して腸管ループを作りループの肛門部から、前述の実施例2における製剤E(HCO-60/LA/VE-siRNA)を、10mg/kg投与した。
 最終投与の2時間後に、マウスの腸管リンパ管からリンパ液を採取した。Cy3標識された分子の拡散時間を、蛍光相関分析法(FCS)を用いて求めた。また無処置のマウスから採取したリンパ液を高速液体クロマトグラフィー(HPLC)でリポタンパク分画に分離したものを、同様に拡散時間を求めてこれと比較した。その結果を図5に示す。
 図5の結果から、Cy3が結合している粒子の拡散時間は約3000μsであり、HPLCによってリンパ液を分離した際のカイロミクロン分画の拡散時間と一致した。これは直腸より投与されたVE-siRNAが吸収されてリンパ管に入り、リンパ管内でカイロミクロンと結合していることを示している。
[直腸投与したVE-siRNAのアンチセンス鎖を検出するノザンブロット解析]
 本発明における生理活性物質の肝組織への送達機構を調べるために、引き続き、以下のようなノザンブロット解析を行った。
 まず、投与対象となるマウスとして、野生型のマウスに加えて、カイロミクロンに対する主要な受容体に関連するタンパク質をノックアウトした3種類のマウスを用意した。すなわち、野生型マウス(Wildtype)、LDL受容体ノックアウトマウス(LDLR KO)、受容体結合タンパク質(Receptor Associated Protein:RAP)ノックアウトマウス(RAPKO)、ApoEノックアウトマウス(ApoE KO)を用意した。カイロミクロンに対する主要な受容体には、LDL受容体とLRP-1受容体があり、RAPはLRP-1受容体に対する拮抗阻害作用を有している。また、ApoEは、LRP-1受容体の天然リガンドの1つであり、細胞膜ではなく、カイロミクロンに存在している。
 VE-siRNAと混合ミセル(HCO-60/LA)との混合物(HCO-60/LA/VE-siRNA)を、前述の各マウスに2時間毎に3回直腸投与し、最終投与の2時間後に各マウスから肝臓を摘出した。直腸投与の方法、及び、肝臓摘出の方法は、実施例2記載の方法にしたがった。なお、LDL受容体ノックアウトマウスについては、HCO-60/LA/VE-siRNAを直腸投与した群に加えて、かかる直腸投与の前にRAPを静注した群も設けた。
 前述の摘出した肝臓の細胞から、常法にしたがって、トータルRNAを抽出した。そのトータルRNA(10μg)を、14%ポリアクリルアミドゲルにて電気泳動を行った後、ナイロンメンブレンに転写した。一方、投与したVE-siRNAのアンチセンス鎖とハイブリダイズするプローブとして、VE-siRNAのセンス鎖と同一配列のプローブを用意し、かかるプローブをGene Images 3’-Oligolabelling Kit(Amersham Biosciences社製)を用いて、フルオレセインで蛍光標識した。この蛍光標識プローブを、前述のナイロンメンブレンと反応させた後、Gene Images CDP-star detection Kit(Amersham Biosciences社製)を用いて、フルオレセインの蛍光を検出した。この結果を図6に示す。
 HCO-60/LA/VE-siRNAを野生型マウスに直腸投与した場合のレーン(1)(Wildtype)では、21ヌクレオチド(nt)優位に、21ntと29ntの2本のバンドが明瞭に検出された。投与したVE-siRNAのアンチセンス鎖は29merであり、細胞質内のダイサー(Dicer)で切断されると21merの成熟したsiRNAのアンチセンス鎖が出現することを考慮すると、この結果は投与したVE-siRNAが肝臓細胞の細胞質にまで取り込まれていることを示している。
 一方、カイロミクロンに対する主要な受容体に関連するタンパク質をノックアウトした3種類のマウスに直腸投与した場合のレーン(3)(LDLR KO)、レーン(4)(RAP KO)、レーン(5)(ApoE KO)では、レーン(1)と比較してバンド濃度の低下が認められた。特に、LDL受容体やLRP-1受容体に対する拮抗阻害作用を有しているRAPを静注した、LDL受容体ノックアウトマウス(LDLR KO)に直腸投与した場合のレーン(2)では、バンドがほぼ消失した。これらの結果は、直腸投与したHCO-60/LA/VE-siRNAが、LDL受容体、及び、LRP-1受容体を介在して肝臓細胞内に取り込まれていることを示すものと考えられる。
 この実施例5の結果に加えて、前述の実施例2~4の結果を併せ考慮すると、以下のようなデリバリー機構が考えられた。VE-siRNAは、混合ミセルとして直腸投与された際、LAの上皮透過性亢進作用により腸管上皮を透過する。その後、VE-siRNAはリンパ管に移行し、リンパ管内を上行する。その際、VE-siRNAは、小腸上皮細胞で産生されリンパ管内に分泌されたカイロミクロンと出会い、リポタンパク質導入物質であるVE修飾部分を介してカイロミクロンと複合体を形成する。このVE-siRNA-カイロミクロン複合体は、静脈角で静脈内に流出し、リポプロテインリパーゼ(lipoproptein lipase:LPL)によりカイロミクロンレムナントへとレムナント化した後、レムナント受容体(LDL受容体やLRP-1受容体)を持つ肝臓細胞内に取り込まれる。
[投与したVE-siRNAの配列特異的な遺伝子発現抑制効果を確認する定量的RT-PCR]
 本発明における生理活性物質が肝組織へ送達され、細胞内で実際に機能を発揮しているかどうかを調べるために、以下のような定量的RT-PCRを行った。
 HCO-60/LA/VE-siRNAをマウスに2時間おきに3回直腸投与して、最終投与の24時間後にマウスの肝臓を摘出した。直腸投与の方法、及び、肝臓摘出の方法は、実施例2記載の方法にしたがった。前述の摘出した肝臓の細胞から、常法にしたがって、トータルRNAを抽出した。そのトータルRNAのうち2μgを用いて、その相補的DNA(cDNA)を合成した。このcDNAを鋳型とし、前述のVE-siRNAの標的となる遺伝子(apoB遺伝子)のプライマー・プローブを用いて、常法にしたがって定量的RT-PCRを行った。一方、内在性コントロールとして、前述のVE-siRNAの標的とならない内在性遺伝子についても同様の定量的RT-PCRを行った。また、HCO-60/LA/VE-siRNAに代えて、混合ミセル(HCO-60/LA)のみを直腸投与して、同様の方法で定量的RT-PCRを行った。これらの定量的RT-PCRの結果から、それぞれのマウス個体における内在性遺伝子の発現量に対する標的遺伝子の発現量の比率(相対標的mRNAレベル)を求めた。VE-siRNAを投与したマウス(混合ミセル+VE-siRNA)と、混合ミセルのみを投与したマウス(混合ミセル単独)との間で、相対標的mRNAレベルの値を比較した。その結果を図7に示す。
 図7の結果から分かるように、HCO-60/LA/VE-siRNAを投与した群では、混合ミセル(HCO-60/LA)のみを投与した群と比較すると、標的遺伝子の発現を約40%抑制することができた(図7)。この結果から、本発明における生理活性物質は、直腸投与された後、肝組織へ送達され、細胞内で実際に機能(生理活性)を発揮することが示された。
[投与したVE-siRNAの配列特異的な遺伝子発現抑制効果を確認するウエスタンブロット解析]
 本発明における生理活性物質が肝組織へ送達され、細胞内で実際に機能を発揮しているかどうかを調べるために、以下のようなウエスタンブロット解析を行った。
 HCO-60/LA/VE-siRNAをマウスに2時間おきに3回直腸投与した。直腸投与の方法は、実施例3記載の方法にしたがった。最終投与の24時間後にマウス血清を採取しホモジナイズバッファー(0.1%SDS、1%TritonX、1%sodium deoxycholate、1mM PMSF)で調整し、サンプルとした。1次抗体にsc11795 goat anti-ApoB(Santacruz社製)を500倍希釈して用いた。また2次抗体にsc2020 donkey anti-goat(Santacruz社製)を2000倍希釈して用いた。Supersignal West Femto Maximum Sensitivity Substrate(Thermo社製)で蛍光発色させ、Chemi Doc XRS-J(BIO RAD社製)で撮影した。検出結果からバンドの濃度を定量してapoB100/48比を求めた。VE-siRNAを投与したマウスと、混合ミセルのみを投与したマウスとの間で、apoB100/48比を比較した。これらの結果を図8のA、Bに示す。
 図8のA、Bの結果から分かるように、HCO-60/LA/VE-siRNAを投与した群では、混合ミセルのみを投与した群と比較すると、標的遺伝子が発現するタンパク質が約74%減少していた。この結果から、タンパク質のレベルでも、本発明における生理活性物質は、直腸投与された後、肝組織へ送達され、細胞内で実際に機能を発揮することが示された。
[投与したVE-siRNAの配列特異的な遺伝子発現抑制効果を確認する血清中の中性脂肪、LDLコレステロール値の測定]
 本発明における生理活性物質が肝組織へ送達され、細胞内で実際に機能を発揮しているかどうかを調べるために、引き続き、以下のような解析を行った。
 HCO-60/LA/VE-siRNAをマウスに2時間おきに3回直腸投与した。直腸投与の方法は、実施例3記載の方法に従った。最終投与の24時間後にマウス血清を採取し中性脂肪値とLDLコレステロール値を測定した。その結果を図9に示す。
 図9の結果から分かるように、HCO-60/LA/VE-siRNAを投与した群では、混合ミセルのみを投与した群と比較すると、血清中の中性脂肪値とLDLコレステロール値はどちらも約40%低下していた。この結果から、本発明における生理活性物質は、直腸投与された後、肝組織へ送達され、細胞内で実際に機能を発揮して、血清中脂質を抑制する医薬として有効に働くことが示された。
[蛍光標識VE-siRNAの肝組織への送達試験2]
 HCO-60/LA以外の上皮透過性亢進化合物を用いた場合であっても、生理活性物質を効率的に肝組織へ送達することが可能かどうかを調べるために、以下のような試験を行った。
 前述の実施例2の(3)において、製剤E(HCO-60/LA/VE-siRNA)に代えて、製剤Eの「LA」を「DHA」(Cayman chemical社製)に変更した製剤(DHA/HCO-60/VE-siRNA)(図10のA)や、製剤Eの「HCO-60/LA」に代えて、カプリン酸ナトリウム(Sigma社製、 最終濃度15mM)を用いた製剤(Sodium Caprate/VE-siRNA)(図10のB)や、製剤Eの「HCO-60/LA」に代えて、クエン酸ナカライ、最終濃度20mM)を用いた製剤(Citric acid/VE-siRNA)(図10のC)や、製剤Eの「HCO-60/LA」に代えて、界面活性剤Labrasol(登録商標)(GATTEFOSSE社製;2w/v%)、すなわち、PEG-8カプリル/カプリングリセリドを用いた製剤(Labrasol/VE-siRNA)(図10のD)を用いて、実施例2記載の方法と同様の方法で、肝組織への送達試験を行った。かかる送達試験において、マウスの肝臓組織の凍結切片を共焦点レーザー顕微鏡で観察した結果を図10A~Dに示す。また、図10A~Dの各パネルはそれぞれ4分割されているが、それぞれ左上はTO-PRO(登録商標)-3の青色蛍光の検出結果を示し、右上はFITC-ファロイジンの緑色蛍光の検出結果を示し、左下はCy3の赤色蛍光の検出結果を示し、右下は左上と右上と左下の蛍光の検出結果を重ね合わせた結果を示す。
 図10A~Dの結果から分かるように、HCO-60/LA以外の上皮透過性亢進化合物を用いた場合であっても、送達効率の程度に違いはあるものの、生理活性物質を肝組織へ送達できることが示された。しかし、界面活性剤Labrasol(登録商標)を用いた場合は、肝組織への移行は認められるものの肝実質細胞内への送達があまり認められず(図10D)、キレート剤であるクエン酸を用いた場合は、HCO-60/DHA(長鎖不飽和脂肪酸)を用いた場合(図10A)と同程度に、肝実質細胞への送達を促進する効果が認められ、カプリン酸ナトリウム(中鎖脂肪酸塩)を用いた場合は、肝実質細胞への送達促進効果が最も優れていた。また、図には結果を示していないが、HCO-60/LAに代えて、HCO-60/EPA(長鎖不飽和脂肪酸)を用いた場合や、HCO-60/オレイン酸(長鎖不飽和脂肪酸)を用いた場合にも、HCO-60/DHAを用いた場合と同程度以上の送達促進効果が示された。
 以上の結果から、本発明の医薬組成物において、HCO-60/LA以外の上皮透過性亢進化合物を用いた場合であっても、生理活性物質を肝組織へ送達することが可能ではあるが、長鎖不飽和脂肪酸や中鎖脂肪酸をコロイド分散系の形態としたものなど、特定のものが特に有効であることが明らかとなった。
[VE-siRNAの副作用試験]
 VE-siRNAのマウスにおける副作用を調べるために以下のような血液試験を行った。
 HCO-60/LA/VE-siRNAをマウスに2時間おきに3回直腸投与した。投与方法は実施例3記載の方法に従った。最終投与の3時間後にマウス血清を採取しIFN-α値を測定した。また、最終投与24時間後のマウスから採取した血清でCre、ALT、Na、Kの値をそれぞれ測定した。HCO-60/LA/VE-siRNAを投与したマウスとPBSのみを投与したマウスとの間でこれらの値を比較した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から分かるように、HCO-60/LA/VE-siRNA投与したマウス群では、PBSのみを投与したマウス群と比較すると、各値に有意な差は認められなかった。この結果から、VE-siRNAを投与しても生体内へ副作用を及ぼさないことが示された。
[蛍光標識VE-siRNAの各組織への送達試験]
 VE-siRNAの送達が、肝細胞特異的なものであるかどうかを確認するために、以下のような、肝細胞以外の臓器への送達試験を行った。
 実施例2の製剤E(HCO-60/LA/VE-siRNA)をマウスに単回直腸投与した。投与方法は実施例3記載の方法に従った。最終投与4時間後にマウスから肺と腎臓、脾臓、心臓、骨格筋、脳を摘出した。各臓器摘出の方法は、実施例2記載の方法にしたがった。さらに、実施例2記載の方法と同様の方法で、各組織への送達試験を行った。しかし、肺、腎臓、脾臓、心臓、骨格筋、脳のいずれの組織でも、明らかなCy3シグナルは認められなかった。この結果、及び、先に示した肝での結果より、蛍光(Cy3)標識VE-siRNAが主に肝臓にデリバリーされていることが示唆された。
[VE-siRNAの中空坐剤としての投与]
 VE-siRNAの直腸投与剤形として、液状製剤である注腸剤に変えて、固形製剤又は半固形製剤である坐剤への製剤化を試みた。まずは、液状又は固形製剤を充填することのできる中空坐剤を用いて評価した。
(1)中空坐剤の調製
 油脂性坐剤基剤(SUPPOCIRE AM PASTILLES,GATTEFOSSE社製)10gを加温融解し、ダイズ油1~10gを添加・混和し、坐剤用基剤を調製した。なお、ダイズ油10gを添加した基剤の溶融点は約32℃であった。約50℃にて融解させた坐剤基剤を、予め-20℃に冷却した坐剤鋳型に流し込み、基剤と型との接触部分が固化した時点で、中心軸付近の固化していない部分の基剤を抜き取る方法により中空坐剤を調製した。
(2)Cy3標識VE-siRNA含有中空坐剤の調製
 実施例2の製剤E(HCO-60/LA/VE-siRNA)で、LAの最終濃度を100mMとし、これに粘膜保護剤としてタウリン(最終濃度100mM)を添加し、冷却下、短時間ソニケーションを行うことにより混合ミセル液を調製した。アニーリング後凍結乾燥したCy3標識VE-siRNA(1mg)を本混合ミセル液で溶解し、上記実施例12(1)の中空型坐剤に注入した後、同坐剤基剤で密封することで、Cy3標識VE-siRNAを含有する中空坐剤を調製した。なお、Cy3標識VE-siRNA(1mg)の混合ミセル液に、PBSを添加して全量200μLとした注腸剤をポジティブの対照製剤とした。
(3)肝送達性のin vivo評価
 ラット(Wistar、オス、7週齢、体重180g)を一夜絶食させ、薬剤投与2時間前より、濃縮ミルク(乳脂肪分20%)を1.2mLずつ30分おきに3回投与した。最終のミルク投与から30分後、ネンブタール麻酔し、各製剤を肛門部より投与後、肛門部を結紮した。投与4時間後、実施例2記載の方法に従い、肝臓と大腸を摘出し、共焦点顕微鏡によるsiRNAの分布を観察した。図11に肝臓組織を観察した結果を示す。図11aは注腸剤を投与した場合の結果を示し、図11bは中空坐剤を投与した場合の結果を示し、図11cは図11bの枠内の拡大図を示す。また、図11a~cの各パネルは4分割されているが、それぞれ左上はTO-PRO(登録商標)-3の青色蛍光の検出結果を示し、右上はFITC-ファロイジンの緑色蛍光の検出結果を示し、左下はCy3の赤色蛍光の検出結果を示し、右下は左上と右上と左下の蛍光の検出結果を重ね合わせた結果を示す。
 図11に示すように、注腸剤投与の場合(図11a)、中空型坐剤投与の場合(図11b、c)のいずれの場合においても、Cy3に基づく明らかな蛍光が検出され、VE-siRNAの肝臓への移行・分布が確認された。
[多孔性微粒子を用いた坐剤としてのVE-siRNAの投与]
 中空坐剤は製造工程がやや複雑であり、また、中空坐剤内部に液状製剤を充填した場合は、坐剤投与して液状製剤が腸内に放出された後は、注腸剤と同様に、腸管腔内での希釈や酵素分解などが課題となる。一方、中空坐剤内部に固形製剤を充填した通常の坐剤を調製する方法としては、VE-siRNA混合ミセル液を凍結乾燥して坐剤基剤に均質添加する方法が考えられるが、VE-siRNA混合ミセル液の凍結乾燥製剤の品質制御には課題が多い。そこで、発明者らは、多くの中空部を有する多孔性微粒子を用いることで、VE-siRNAの混合ミセル液を簡便に粉末固形化し、汎用される油脂性坐剤基剤中に均質に混合分散して坐剤を調製する方法を考案した。この製剤によれば、製造工程が簡便であるという利点や、多孔性微粒子内に保持されたVE-siRNAが腸管腔内での酵素による分解や希釈から保護されるという利点が得られる。
(1)ポーラスマイクロスフェア(p-MS)の調製
 エチルセルロース(日新化成社製、STD 7cps)2gをアセトン16gに溶解した(A液)。また、グリセリン7gと5%ポリビニルアルコール(クラレ社製、クラレポバール220C)水溶液1gを混和した(B液)。A液中にB液を、乳化機(ヒスコトロン(登録商標)、マイクロテック・ニチオン社製)を用いて1分間処理し乳化した(油相)。一方、グリセリン45gと5%ポリビニルアルコール(クラレ社製、クラレポバール220C)水溶液5gを混和した液を調製し、スリーワンモーターにて600rpmで撹拌下、油相を注入し、1分間撹拌した。得られた乳化液を、直ちに500mLの精製水中に注ぎ、撹拌して、油相を固化させた後、目開き20μmのふるいを用いてp-MSを減圧濾過した。濾取したp-MSは、100mLの精製水で2回洗浄した後、少量の精製水にて再懸濁させ、凍結乾燥した。得られた多孔性マイクロスフェアを走査型電子顕微鏡で観察した結果を図12に示す。
(2)Cy3標識VE-siRNA含有p-MS坐剤の調製
 Cy3標識VE-siRNA(10mg/mL)/50mM LA/HCO-60の混合ミセル40μLをp-MS 9mgに含浸させた後、JAPOCIRE(登録商標)NA 15 PASTILLES:ダイズ油=9:1の混合基剤500μL中に均質に混和・分散させて、Cy3標識VE-siRNA/p-MS含有坐剤を作製した(図13)。また、対照製剤として、上記の高濃度混合ミセル/Cy3標識VE-siRNA含有p-MSを生理食塩水500μLに分散した溶液を注腸剤として調製した。なお、上記の「JAPOCIRE(登録商標)NA 15 PASTILLES」とは、Gattefosse社製の坐剤用基剤の1種であり、具体的には、炭素数12~18の飽和脂肪酸の半合成トリグリセリド基剤(水酸基価10;融点34.5±1.0)である。日本では、かかる製品を例えばCBC株式会社から購入することができる。
(3)p-MS製剤からの肝移行性のin vivo評価
 実施例12に従い、一夜絶食したラット(Wistar、オス、4週齢、体重80g)に、濃縮ミルク(乳脂肪分20%)を0.5mlずつ30分おきに3回投与した後、最後のミルク投与から30分後にネンブタール麻酔をかけ、腸管洗浄後、各製剤を肛門部より投与した。投与後肛門部を結紮し、ボールマンケージ内にラットを保持した。投与6時間後、実施例2記載の方法にしたがい、肝臓、大腸、腎臓、心臓、筋肉、小腸を摘出し、共焦点顕微鏡法により、各製剤投与後のsiRNAの分布を観察した。図14は、コントロール用p-MS注腸剤(図14a)、または、p-MS坐剤製剤(図14b)投与後の肝臓の組織像を示す。図14a及びbの各パネルは縦に4分割されているが、それぞれ一番上はTO-PRO(登録商標)-3の青色蛍光の検出結果を示し、上から2番目はFITC-ファロイジンの緑色蛍光の検出結果を示し、上から3番目はCy3の赤色蛍光の検出結果を示し、一番下は上の3つの蛍光の検出結果を重ね合わせた結果を示す。
 図14a、bのいずれの場合も、一部の領域でCy3の蛍光に基づくVE-siRNAの移行が観察された。特にp-MS坐剤製剤の投与で、蛍光の強度自体は低いものの、多くの肝細胞内でCy3の蛍光が検出された。
 図15は、同じく投与後6時間後の大腸組織におけるCy3-VE-siRNAの分布を調べた結果を示す。図15a及びbは、大腸上部の粘膜組織を観察した結果を表し、図15c及びdは、大腸下部の粘膜組織を観察した結果を表す。また、図15a及びcは、p-MS注腸剤を投与した場合の結果を表し、図15b及びdは、p-MS坐剤を投与した場合の結果を表す。
 p-MS坐剤投与では、大腸下部(図15d)と比較して、大腸上部の粘膜組織内に強いCy3の移行・残存が認められた(図15b)。一方、p-MS注腸剤投与の場合は、大腸下部(図15c)においては、坐剤投与時と同等であるが、大腸上部でのCy3の移行・残存はほとんど認められなかった(図15a)。また、p-MS注腸剤及びp-MS坐剤投与後の小腸、筋肉、心臓、腎臓にはCy3はほとんど検出されなかった。この結果、Cy3標識VE-siRNAは、p-MS坐剤として調製することによって、大腸部よりも肝細胞に、より効率的にデリバリーされていることが示唆された。
 このように、VE-siRNAは注腸剤としてのみならず、中空坐剤を用いることで、坐剤としての製剤化が可能であることが示された。また、さらに多孔性微粒子を用いることで、液剤を容易に油脂性坐剤基剤中に均質に分散させて坐剤を製することが可能であり、より効率的に肝臓組織へデリバリーできることが示された。
[トランスサイレチン遺伝子を標的遺伝子としたVE-siRNAの遺伝子発現抑制効果]
 マウスapoB遺伝子を標的遺伝子とするsiRNA以外の、本発明における生理活性物質として、トランスサイレチン(TTR)遺伝子を標的遺伝子とするsiRNAを用いた試験を試みた。かかるsiRNAとして、配列番号3(5’-GUAACCAAGAGUAUUCCAUUUUUACUA-3’)からなるセンス鎖(27mer)と、配列番号4(5’-UAGUAAAAAUGGAAUACUCUUGGUUACAC-3’)からなるアンチセンス鎖(29mer)からなるsiRNAを合成して用いた。
(1)VE-siRNAの合成
 TTR遺伝子に対する上記siRNAのアンチセンス鎖5’末端に、リポタンパク質導入物質として、ビタミンEの天然型アイソマーの一つであるα-トコフェロール(Toc)をリン酸結合で共有結合させて、VE-siRNAを作製した。
(2)VE-siRNA含有注腸剤の調製
 上記実施例2(1)で用いたVE-siRNAに代えて、上記実施例14(1)で得たVE-siRNAを用いたこと以外は、上記実施例2(1)記載の方法にしたがって、注腸剤(HCO-60/LA/VE-siRNA)を調製した。また、コントロールとして、VE-siRNAに代えて、PBSを混合ミセル液と混合して、コントロール注腸剤(HCO-60/LA/PBS)を調製した。
(3)肝送達性のin vivo評価
 ヒトトランスサイレチン(hTTR)遺伝子を持つトランスジェニックマウスである、hTTR V30M Tgマウス(メス、6月齢、体重30g、一群5匹)をネンブタール麻酔し、肛門部付近に残存する糞を軽微な下腹部マッサージにより排出させた後、上記(2)にて調製した各注腸剤をそれぞれ肛門部より投与した(一回投与量:10mg/kg)。投与後、肛門部をクリップで止めた状態で、20分間マウスを静置した後、クリップをはずし、マウスを通常の飼育ケージに戻した。この投与方法を4時間毎に、一日3回、連続5日間行った。投与前、また投与開始後6日目、9日目、12日目の時点で採血を行い、全血を遠心分離して血清を採取した。各血清中のhTTRの濃度(mg/dL)を測定した。投与前の血清、及び、投与開始12日目の血清中のhTTRの濃度(mg/dL)を図16に示す。図16から分かるように、TTRに対するVE-siRNAと、本混合ミセルとからなる注腸剤を投与することにより、血清におけるTTR分泌タンパク質を抑制し得ることが実証された。
 本発明は、疾患の治療に関する分野、より詳しくは、経大腸吸収用医薬組成物に関する分野に好適に利用することができる。

Claims (13)

  1.  少なくとも以下の(a)及び(b)を含有することを特徴とする、経大腸吸収用医薬組成物;
    (a)細胞内に作用部位を有し、且つ、リポタンパク質導入物質が結合した生理活性物質;
    (b)前記生理活性物質の大腸粘膜上皮透過性亢進作用を有する化合物。
  2.  大腸粘膜上皮透過性亢進作用を有する化合物として、界面活性剤を更に含有することを特徴とする請求項1に記載の医薬組成物。
  3.  リポタンパク質導入物質が、カイロミクロン又はカイロミクロンレムナントへの導入物質であることを特徴とする、請求項1又は2に記載の医薬組成物。
  4.  リポタンパク質導入物質が、脂溶性ビタミン又はコレステロールであることを特徴とする、請求項3に記載の医薬組成物。
  5.  脂溶性ビタミンがビタミンE又はその誘導体であることを特徴とする、請求項4に記載の医薬組成物。
  6.  生理活性物質を肝臓細胞へ特異的に送達することができることを特徴とする、請求項1又は2に記載の医薬組成物。
  7.  リポタンパク質導入物質と結合させた生理活性物質の分子量が、1000~150000ダルトンの範囲内であることを特徴とする、請求項1又は2に記載の医薬組成物。
  8.  生理活性物質が、標的遺伝子の発現を抑制する核酸であることを特徴とする、請求項1又は2に記載の医薬組成物。
  9.  核酸が、siRNA、shRNA、アンチセンスオリゴヌクレオチド、アンタゴmir、核酸アプタマー、リボザイム及びデコイからなる群から選択される1種又は2種以上の核酸であることを特徴とする、請求項8に記載の医薬組成物。
  10.  大腸粘膜上皮透過性亢進作用を有する化合物が、以下の(c)又は(d)のいずれか1つ以上を含む、請求項1又は2に記載の医薬組成物;
    (c)中鎖脂肪酸又は長鎖不飽和脂肪酸;
    (d)前記(c)記載の脂肪酸の、塩、エステル体又はエーテル体。
  11.  大腸粘膜上皮透過性亢進作用を有する化合物が、リノール酸、オレイン酸、リノレン酸、ドコサヘキサエン酸、エイコサペンタエン酸、カプリン酸又はラウリン酸、或いは、それらの塩、エステル体又はエーテル体であることを特徴とする、請求項10に記載の医薬組成物。
  12.  界面活性剤が、ポリオキシエチレン硬化ヒマシ油、ポリソルベート、ポリエチレングリコール、ポロキサマー、モノアシルグリセリン、モノアシルソルビタン又は脂肪酸ショ糖エステル類であることを特徴とする、請求項2に記載の医薬組成物。
  13.  大腸投与剤、経口腸溶剤又は経口薬物送達システムである、請求項1又は2に記載の医薬組成物。
     
PCT/JP2011/004642 2010-08-20 2011-08-19 経大腸吸収用医薬組成物 WO2012023291A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11817940.7A EP2606910B1 (en) 2010-08-20 2011-08-19 Pharmaceutical composition for transcolonic absorption
US13/817,172 US9731025B2 (en) 2010-08-20 2011-08-19 Pharmaceutical composition for transcolonic absorption
CN201180050030.8A CN103179988B (zh) 2010-08-20 2011-08-19 经大肠吸收用药物组合物
JP2012529494A JP5892658B2 (ja) 2010-08-20 2011-08-19 経大腸吸収用医薬組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010185501 2010-08-20
JP2010-185501 2010-08-20

Publications (1)

Publication Number Publication Date
WO2012023291A1 true WO2012023291A1 (ja) 2012-02-23

Family

ID=45604960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004642 WO2012023291A1 (ja) 2010-08-20 2011-08-19 経大腸吸収用医薬組成物

Country Status (5)

Country Link
US (1) US9731025B2 (ja)
EP (1) EP2606910B1 (ja)
JP (1) JP5892658B2 (ja)
CN (1) CN103179988B (ja)
WO (1) WO2012023291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094745A1 (ja) * 2015-12-01 2017-06-08 国立大学法人大阪大学 核酸を含む経腸投与用組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3077511A4 (en) 2013-12-06 2017-07-05 Dicerna Pharmaceuticals Inc. Methods and compositions for the specific inhibition of transthyretin (ttr) by double-stranded rna
CN113952301A (zh) * 2021-11-17 2022-01-21 胡振华 中链脂肪酸作为促吸收剂制备药物组合物乳剂的应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009168A1 (en) 1989-02-16 1990-08-23 National Research Development Corporation Dispensing device
JP2001261551A (ja) * 2000-03-14 2001-09-26 Tendou Seiyaku Kk 坐剤及びその製造法
WO2002024161A1 (fr) * 2000-09-21 2002-03-28 Taisho Pharmaceutical Co., Ltd. Suppositoires soutenus dans le rectum inférieur
JP2002510319A (ja) * 1997-07-01 2002-04-02 アイシス・ファーマシューティカルス・インコーポレーテッド オリゴヌクレオチドの消化管を介したデリバリーのための組成物及び方法
JP2003524586A (ja) * 1998-05-21 2003-08-19 アイシス・ファーマシューティカルス・インコーポレーテッド オリゴヌクレオチドの非−非経口投与のための組成物と方法
JP2005168485A (ja) 2003-11-20 2005-06-30 Tsutomu Suzuki siRNAの設計方法
JP2005272416A (ja) 2004-03-26 2005-10-06 Bioserentack Co Ltd 消化管粘膜付着性ddsを用いる赤血球増殖因子エリスロポエチン類およびインターフェロン類の経口製剤
JP2007014292A (ja) 2005-07-08 2007-01-25 Tokyo Univ Of Agriculture & Technology アプタマーの同定方法
WO2009069313A1 (en) 2007-11-28 2009-06-04 National University Corporation Tokyo Medical And Dental University System for delivering nucleic acids for suppressing target gene expression by utilizing endogenous chylomicron

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395492B1 (en) * 1990-01-11 2002-05-28 Isis Pharmaceuticals, Inc. Derivatized oligonucleotides having improved uptake and other properties
DE602004027936D1 (de) * 2003-10-29 2010-08-12 Sonus Pharmaceutical Inc Tocopherolmodifizierte therapeutische arzneimittelverbindung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009168A1 (en) 1989-02-16 1990-08-23 National Research Development Corporation Dispensing device
JP2002510319A (ja) * 1997-07-01 2002-04-02 アイシス・ファーマシューティカルス・インコーポレーテッド オリゴヌクレオチドの消化管を介したデリバリーのための組成物及び方法
JP2003524586A (ja) * 1998-05-21 2003-08-19 アイシス・ファーマシューティカルス・インコーポレーテッド オリゴヌクレオチドの非−非経口投与のための組成物と方法
JP2001261551A (ja) * 2000-03-14 2001-09-26 Tendou Seiyaku Kk 坐剤及びその製造法
WO2002024161A1 (fr) * 2000-09-21 2002-03-28 Taisho Pharmaceutical Co., Ltd. Suppositoires soutenus dans le rectum inférieur
JP2005168485A (ja) 2003-11-20 2005-06-30 Tsutomu Suzuki siRNAの設計方法
JP2005272416A (ja) 2004-03-26 2005-10-06 Bioserentack Co Ltd 消化管粘膜付着性ddsを用いる赤血球増殖因子エリスロポエチン類およびインターフェロン類の経口製剤
JP2007014292A (ja) 2005-07-08 2007-01-25 Tokyo Univ Of Agriculture & Technology アプタマーの同定方法
WO2009069313A1 (en) 2007-11-28 2009-06-04 National University Corporation Tokyo Medical And Dental University System for delivering nucleic acids for suppressing target gene expression by utilizing endogenous chylomicron

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Topics in Pharmaceutical Sciences 1987", 1987, ELSEVIER SCIENCE PUBLISHERS B.V., pages: 445 - 455
F. THEEUWES: "Novel Drug Delivery and Its Therapeutic Application", 1989, WILEY, article "Systems for Triggered, Pulsed, and Programmed Drug Delivery", pages: 323 - 340
F. THEEUWES: "OROS(R) Osmotic System Development", DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, vol. 9, no. 7, 1983
FEBS LETT, vol. 239, 1988, pages 285
JOURNAL OF PHARMACEUTICAL SCIENCE AND TECHNOLOGY, JAPAN, vol. 53, no. 3, 1993, pages 176 - 184
MOL PHARMACOL., 3 July 2007 (2007-07-03), pages 17609417
MURANISHI S. ET AL.: "ABSORPTION OF 5-FLUOROURACIL FROM VARIOUS REGIONS OF GASTROINTESTINAL TRACT IN RAT. EFFECT OF MIXED MICELLES", JOURNAL OF PHARMACOBIO-DYNAMICS, vol. 2, 1979, pages 286 - 294, XP055077000 *
NATURE, vol. 346, no. 6287, 1990, pages 818 - 22
NUCL ACIDS RES, vol. 17, 1989, pages 7059
PROTEIN, NUCLEIC ACID AND ENZYME, vol. 35, 1990, pages 2191
TANIGUCHI K. ET AL.: "ENHANCED INTESTINAL PERMEABILITY TO MACROMOLECULES II. IMPROVEMENT OF THE LARGE INTESTINAL ABSORPTION OF HEPARIN BY LIPID-SURFACTANT MIXED MICELLES IN RAT", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 4, no. 3, 1980, pages 219 - 228, XP055076999 *
TETRAHEDRON LETTERS, vol. 33, 1992, pages 2729 - 2732
YOSHIKAWA H. ET AL.: "Absorption of Oligodeoxynucleotide by Suppository from Rat Rectal Route", BIOLOGICAL & PHARMACEUTICAL BULLETIN, vol. 20, no. 10, 1997, pages 1116 - 1118, XP000721685 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094745A1 (ja) * 2015-12-01 2017-06-08 国立大学法人大阪大学 核酸を含む経腸投与用組成物
JPWO2017094745A1 (ja) * 2015-12-01 2018-09-27 国立大学法人 東京医科歯科大学 核酸を含む経腸投与用組成物

Also Published As

Publication number Publication date
JP5892658B2 (ja) 2016-03-23
EP2606910B1 (en) 2018-10-17
US20130210891A1 (en) 2013-08-15
CN103179988B (zh) 2016-02-24
EP2606910A4 (en) 2016-05-04
JPWO2012023291A1 (ja) 2013-10-28
EP2606910A1 (en) 2013-06-26
CN103179988A (zh) 2013-06-26
US9731025B2 (en) 2017-08-15

Similar Documents

Publication Publication Date Title
Yang et al. Estrone-modified pH-sensitive glycol chitosan nanoparticles for drug delivery in breast cancer
Agrawal et al. Is nanotechnology a boon for oral drug delivery?
Teng et al. The hepatic-targeted, resveratrol loaded nanoparticles for relief of high fat diet-induced nonalcoholic fatty liver disease
JP6059688B2 (ja) 「経口医薬組成物」
Elnaggar Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine
CN107406396B (zh) 阳离子性脂质
US20120195957A1 (en) Novel nanoparticle formulations for skin delivery
US20190029970A1 (en) Fatty acid conjugated nanoparticles and uses thereof
Le Dévédec et al. PEGylated bile acids for use in drug delivery systems: enhanced solubility and bioavailability of itraconazole
Zu et al. Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity
Tamilvanan Formulation of multifunctional oil-in-water nanosized emulsions for active and passive targeting of drugs to otherwise inaccessible internal organs of the human body
Ma et al. Functional nano-vector boost anti-atherosclerosis efficacy of berberine in Apoe (−/−) mice
Toriyabe et al. The delivery of small interfering RNA to hepatic stellate cells using a lipid nanoparticle composed of a vitamin A-scaffold lipid-like material
JP2011504874A (ja) 内因性カイロミクロンを利用した、標的遺伝子の発現を抑制する核酸のデリバリーシステム
Ma et al. Targeting macrophage liver X receptors by hydrogel‐encapsulated T0901317 reduces atherosclerosis without effect on hepatic lipogenesis
JP5892658B2 (ja) 経大腸吸収用医薬組成物
US20230190953A1 (en) Nanosystems as selective vehicles
CA2938861A1 (fr) Composition destinee a vectoriser un agent anticancereux
US20150297749A1 (en) Low-density lipoprotein analogue nanoparticles, and composition comprising same for targeted diagnosis and treatment of liver
WO2019016138A1 (fr) Emulsions eau-dans-huile injectables et leurs utilisations
Warner et al. Liver-specific drug delivery platforms: applications for the treatment of alcohol-associated liver disease
Xian et al. N-Trimethylated chitosan coating white adipose tissue vascular-targeting oral nano-system for the enhanced anti-obesity effects of celastrol
Yokosawa et al. Convection-enhanced delivery of a synthetic retinoid Am80, loaded into polymeric micelles, prolongs the survival of rats bearing intracranial glioblastoma xenografts
JPH075484B2 (ja) 血液脳関門通過性医薬品組成物
JP2022537042A (ja) インクレチンミメティックが装填された脂質ナノカプセル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180050030.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012529494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011817940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13817172

Country of ref document: US