WO2012023156A1 - 基板搬送装置、電子デバイスの製造システムおよび電子デバイスの製造方法 - Google Patents

基板搬送装置、電子デバイスの製造システムおよび電子デバイスの製造方法 Download PDF

Info

Publication number
WO2012023156A1
WO2012023156A1 PCT/JP2010/005082 JP2010005082W WO2012023156A1 WO 2012023156 A1 WO2012023156 A1 WO 2012023156A1 JP 2010005082 W JP2010005082 W JP 2010005082W WO 2012023156 A1 WO2012023156 A1 WO 2012023156A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
substrate
drive shaft
substrate holder
drive
Prior art date
Application number
PCT/JP2010/005082
Other languages
English (en)
French (fr)
Inventor
渡邊和人
田代征仁
中村聡史
小日向大輔
佐々木俊秋
野沢直之
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to CN201080068599.2A priority Critical patent/CN103069559B/zh
Priority to JP2012529413A priority patent/JP5395271B2/ja
Priority to PCT/JP2010/005082 priority patent/WO2012023156A1/ja
Priority to KR1020137006623A priority patent/KR101404870B1/ko
Publication of WO2012023156A1 publication Critical patent/WO2012023156A1/ja
Priority to US13/752,738 priority patent/US9346171B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
    • B25J9/107Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms of the froglegs type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Definitions

  • the present invention relates to a substrate transfer apparatus, an electronic device manufacturing system, and an electronic device manufacturing method.
  • a configuration example of a conventional substrate transfer apparatus will be described with reference to FIGS. 7A and 7B.
  • a conventional substrate transfer apparatus has an arm unit configured to be able to convert a rotational motion of a driving source into a linear motion.
  • This arm unit has two substrate holders in the vertical direction (z-axis direction), and the two substrate holders are referred to as a first substrate holder 701 and a second substrate holder 702, respectively.
  • the substrate is transported toward the process chamber in order to collect the processed substrate.
  • the device rotates.
  • the first substrate holder 701 on which no substrate is placed is moved toward the process chamber (FIG. 7A)
  • the processed substrate in the process chamber is received, and the first substrate holder 701 is moved to the contracted position. Return (FIG. 7B).
  • conventional substrate transport devices use a sensor to perform substrate replacement before and after the substrate replacement operation. The presence or absence of is detected. Based on this detection result, it is determined whether or not the substrate has been reliably transferred to the process chamber.
  • a sensor confirms that there is no substrate on the substrate holder for recovering the substrate, and after confirming that there is no substrate, the substrate transport device moves toward the process chamber. The cage is moved (see Patent Documents 1 and 2).
  • the substrate transfer apparatus of Patent Document 1 when the substrate transfer apparatus of Patent Document 1 is viewed from the upper surface side in the z-axis direction, the first substrate holder 701 and the second substrate holder 702 are overlapped.
  • the substrate on the second substrate holder 702 disposed below the first substrate holder 701 is moved from the vertically upper side in the z-axis direction. It is impossible to see.
  • the substrate on the first substrate holder 701 disposed on the upper side with respect to the second substrate holder 702 is set to the vertically lower side in the z-axis direction. It is impossible to see from.
  • a high-resolution and expensive CCD sensor and image processing apparatus are imaged from the oblique direction. And using it to detect a substrate.
  • This correspondence increases the cost of the substrate transport apparatus and also requires that image processing is performed and the presence / absence of a substrate is determined based on the result of the image processing, so that the tact time of the substrate transport apparatus is delayed.
  • an operation step for intentionally moving one of the substrate holders back and forth from the vertically upper side (or vertically lower side) to a detectable position is incorporated. Can be mentioned. Even in this correspondence, the number of operation steps for moving the substrate holder back and forth increases, so that the tact time of the substrate transfer apparatus is delayed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a substrate transfer technique capable of efficiently detecting whether or not a substrate is held by each of a plurality of substrate holders.
  • a substrate transfer apparatus includes a first substrate holder and a second substrate holder capable of respectively holding substrates, Two first driven arms connected at one end to the first substrate holder; Two second driven arms connected at one end to the second substrate holder; A first drive arm to which one of the two first driven arms and the two second driven arms is coupled; A second drive arm to which the other of the two first driven arms and the two second driven arms is connected; A first drive shaft to which the first drive arm is rotatably coupled; A second drive shaft provided coaxially with the first drive shaft and connected to the second drive arm so as to be rotationally driven independently of the first drive shaft; The first drive arm includes a first connecting portion to which the other end of the first driven arm of one of the two first driven arms is connected, and the second of one of the two second driven arms.
  • the second drive arm includes a third connecting portion to which the other end of the first driven arm of the two first driven arms is connected, and the second of the other of the two second driven arms.
  • a fourth connecting portion to which the other end of the driven arm is connected A first direction axis constituted by a straight line connecting the first connection portion and the second connection portion is separated from the rotation axis of the first drive shaft by a first distance; A second direction axis constituted by a straight line connecting the third connection portion and the fourth connection portion is separated from the rotation axis of the second drive shaft by a second distance.
  • an electronic device manufacturing system includes the substrate transport apparatus described above, And at least one process processing apparatus for performing a device manufacturing process on the substrate transported by the substrate transport apparatus.
  • At least one process processing apparatus includes a process execution step of executing a device manufacturing process on the substrate transferred in the transfer step.
  • the present invention it is possible to efficiently detect whether or not a substrate is held by each of the plurality of substrate holders. According to the present invention, it is possible to detect whether a substrate is held by each of the plurality of substrate holders from above or below vertically without using a member dedicated to sensor detection. Therefore, expensive sensing technology is not required, and the overall cost of the apparatus can be reduced. In addition, since it is not necessary to move the substrate holder back and forth for substrate detection, the tact time of the apparatus can be shortened.
  • FIG. 6A is a diagram schematically showing the characteristics of the substrate transfer apparatus according to the embodiment of the present invention.
  • the substrate transport apparatus includes a substrate holder 101 and a substrate holder 102 that can hold the respective substrates.
  • the first drive arm 601 is connected to a first drive shaft that can rotate about the center of the drive shaft.
  • the second drive arm 602 is provided coaxially with the first drive shaft, and is coupled to a second drive shaft that can be driven to rotate independently of the first drive shaft (in each embodiment below,
  • the first drive arm 601 is expressed as a first arm A
  • the second drive arm 602 is expressed as a first arm B).
  • the first drive arm 601 has a first end portion 110 (first connection portion) at one end of a link member constituting the arm and a second end portion 111 (second connection portion) at the other end.
  • the second drive arm 602 has a first end portion 120 (fourth connecting portion) at one end of a link member constituting the arm, and a second end portion 121 (third connecting portion) at the other end.
  • the first end 110 (first connecting portion) of the first drive arm 601 and the first end 120 (fourth connecting portion) of the second drive arm 602 are in a plane in which the substrate holders 101 and 102 move. In the y-axis direction (in the xy plane), it is at a position separated by a predetermined distance (OFF1).
  • This predetermined distance is referred to as a first offset distance.
  • the substrate holders 101 and 102 move between the second end portion 111 (second connection portion) of the first drive arm 601 and the second end portion 121 (third connection portion) of the second drive arm 602. It is at a position separated by a predetermined distance (OFF2) in the y-axis direction in the plane (in the xy plane).
  • This predetermined distance is referred to as a second offset distance.
  • the shape of the first drive arm 601 and the shape of the second drive arm 602 do not necessarily have the same shape.
  • the first end 110 (first connection portion) of the first drive arm 601 and the second end 121 (third connection portion) of the second drive arm 602 are point-symmetric with respect to the drive shaft center.
  • the first end 120 (fourth connecting portion) of the second drive arm 602 and the second end 111 of the first drive arm 601 are point-symmetric.
  • the driven arms 610 and 611 are connected to the substrate holder 101 (first substrate holder) as two first driven arms.
  • the substrate holder 102 (second substrate holder) is connected to driven arms 620 and 621 as two second driven arms.
  • one driven arm 610 of the two first driven arms is denoted as a second arm A1
  • the other driven arm 611 of the two first driven arms is denoted as a second arm B1.
  • One driven arm 620 of the two second driven arms is expressed as a second arm B2
  • the other driven arm 621 of the two second driven arms is expressed as a second arm A1.
  • One driven arm 610 connected to the substrate holder 101 is connected to the first drive arm 601 at the first end 110 (first connection portion) of the first drive arm 601.
  • the other driven arm 611 connected to the substrate holder 101 is connected to the second drive arm 602 at the second end 121 (third connection portion) of the second drive arm 602.
  • One driven arm 620 connected to the substrate holder 102 is connected to the second drive arm 602 at the first end 120 (fourth connection portion) of the second drive arm 602.
  • the other driven arm 621 connected to the substrate holder 102 is connected to the first drive arm 601 at the second end 111 (second connection portion) of the first drive arm 601.
  • the first end 110 (first connecting portion) of the first drive arm 601 and the first end 120 (fourth connecting portion) of the second drive arm 602 are separated by a first offset distance (OFF1).
  • the second end 111 (second connecting portion) of the first drive arm 601 and the second end 121 (third connecting portion) of the second drive arm 602 are separated by a second offset distance (OFF2). ing.
  • the substrate holders 101 and 102 are separated from the rotation axis of the first drive shaft by the movement of the driven arms (610, 611, 620, 621) that operate by the rotation of the first drive arm 601 and the second drive arm 602. It is possible to move forward.
  • the substrate holders 101 and 102 move to the rotation axis of the first drive shaft by the movement of the driven arms (610, 611, 620, 621) due to the reverse rotation of the first drive arm 601 and the second drive arm 602. It is possible to move backward in the direction of returning.
  • the forward and backward movements are hereinafter referred to as forward and backward movements.
  • the first end 110 (first connection portion) of the first drive arm 601 and the first end 120 (fourth connection portion) of the second drive arm 602 are spaced apart from each other, and the first drive arm 601 is disposed.
  • the second end portion 111 (second connecting portion) of the second drive arm 602 and the second end portion 121 (third connecting portion) of the second drive arm 602 are spaced apart from each other, whereby the substrate holder 101 moves forward and backward.
  • 150 is a different trajectory from the trajectory 151 of the advance / retreat operation of the substrate holder 102.
  • the track 151 is in a state where the angle ( ⁇ 1 + ⁇ 2) is generated with respect to the track 150 with the rotation axis of the first drive shaft as a reference (center).
  • the substrate holder 101 is disposed in a first plane orthogonal to the rotation axis of the first drive shaft, and the substrate holder 102 is disposed in a second plane orthogonal to the rotation axis of the first drive shaft.
  • the second plane is parallel to the first plane, and the position of the first plane in the gravitational direction is different from the second plane.
  • the substrate transport apparatus has two substrate holders (substrate holder 101 and substrate holder 102) on which the substrate W can be placed.
  • the substrate holder 101 is connected to a first substrate transport mechanism 504 configured by connecting a plurality of links (hereinafter referred to as “arms”), and can move on a predetermined track by the operation of the first substrate transport mechanism 504. Is possible.
  • the rotational driving force of the first motor 501 provided outside the vacuum chamber is transmitted to the first substrate transport mechanism 504 via the first driving force transmission mechanism 502 and the first driving shaft 503.
  • the substrate holder 102 can be connected to the second substrate transport mechanism 514 configured by connecting a plurality of arms, and can be moved on a predetermined track by the operation of the second substrate transport mechanism 514.
  • the rotational driving force of the second motor 511 arranged outside the vacuum chamber is transmitted to the second substrate transport mechanism 514 via the second driving force transmission mechanism 512 and the second driving shaft 513.
  • the first drive shaft 503 has a columnar shape, and the second drive shaft 513 has a hollow cylindrical shape. By disposing the first drive shaft 503 inside the second drive shaft 513, the first drive shaft 503 and the second drive shaft 513 are coaxial.
  • the detection mechanism 520 is arranged vertically above or vertically below the substrate holder 101 and the substrate holder 102 and detects the substrate holder 101 and the substrate holder 102.
  • the detection mechanism 520 can detect whether or not the substrate is held by both or at least one of the substrate holder 101 and the substrate holder 102.
  • the detection result of the detection mechanism 520 is transmitted to the controller 530.
  • the controller 530 governs the overall operation of the substrate transport apparatus based on the detection information obtained from the encoder of the first motor 501, the detection information obtained from the encoder of the second motor 511, and the detection result of the detection mechanism 520.
  • the detection information obtained from the encoder of the first motor 501 includes information on the rotation angle and rotation speed of the first motor 501.
  • the detection information obtained from the encoder of the second motor 511 includes information on the rotation angle and rotation speed of the second motor 511.
  • the controller 530 can calculate the rotation angle and rotation speed of the first drive shaft 503 based on the rotation angle and rotation speed information of the first motor 501. Further, the controller 530 can calculate the rotation angle and rotation speed of the second drive shaft 513 based on the information on the rotation angle and rotation speed of the second motor 511. These pieces of information are fed back to the control of the substrate transfer apparatus.
  • the controller 530 rotates the entire mechanism 590 of the robot arm by synchronously controlling the first motor 501 and the second motor 511 so that the first drive shaft 503 and the second drive shaft 513 operate synchronously in the same rotational direction. Can be made.
  • the controller 530 rotates the entire mechanism 590 of the robot arm to a predetermined position with respect to the substrate holding position of the process processing apparatus to be supplied or recovered.
  • the entire robot arm mechanism 590 includes, for example, substrate holders 101 and 102 and first and second substrate transport mechanisms 504 and 514.
  • the rotational driving force of the third motor 541 provided outside the vacuum chamber is transmitted to the third driving force transmission mechanism 542, and the entire mechanism 590 of the robot arm is raised or lowered in the z-axis direction.
  • the controller 530 controls the third motor 541 to control the positioning of the substrate holder 101 and the substrate holder 102 in the z-axis direction with respect to the substrate holding position of the process processing apparatus to be supplied or recovered.
  • Rotational motion of the entire robot arm mechanism 590 is referred to as revolving motion.
  • the substrate transport apparatus supplies the substrate to the process processing apparatus or has been processed from the process processing apparatus by the revolving operation and the extending operation and the contracting operation of the first and second substrate transport mechanisms (504, 514).
  • the substrate can be recovered (FIG. 6B).
  • FIG. 1A shows the configuration of the first substrate transport mechanism 504 and the second substrate transport mechanism 514 when the entire robot arm mechanism 590 is revolved in the xy plane.
  • the axial directions of the first drive shaft 503 and the second drive shaft 513 correspond to the z-axis direction perpendicular to the paper surface, and the first drive shaft 503 and the second drive shaft 513 are arranged around the drive shaft center (rotation center). Rotate.
  • the first substrate transport mechanism 504 of the present embodiment includes a first arm A, a second arm A1, and a second arm B2.
  • the second substrate transport mechanism 514 includes a first arm B, a second arm B2, and a second arm A2.
  • the first arm A is connected to the first drive shaft 503 via a member D1 so as to be rotationally driven.
  • the rotation of the first drive shaft 503 is transmitted to the first arm A by the member D1.
  • the first arm A can turn in the xy plane by the rotational drive of the first drive shaft 503.
  • the first arm B is connected to the second drive shaft 513 via the member D2 so as to be rotationally driven.
  • the rotation of the second drive shaft 513 is transmitted to the first arm B by the member D2.
  • the first arm B can also turn in the xy plane by the rotational drive of the second drive shaft 513.
  • the first end portion 110 (first connecting portion) of the first arm A and the first end portion 120 (fourth connecting portion) of the first arm B are within the plane in which the substrate holders 101 and 102 move (xy plane). (Inner) at a position separated by a predetermined distance (OFF1) in the y-axis direction. Further, the second end 111 (second connecting portion) of the first arm A and the second end 121 (third connecting portion) of the first arm B are within a plane in which the substrate holders 101 and 102 move ( It is at a position separated by a predetermined distance (OFF2) in the y-axis direction (in the xy plane).
  • the first offset distance ( OFF1) second offset distance (OFF2) is satisfied.
  • the first end 110 (first connecting portion) of the first arm A and the second end 121 (third connecting portion) of the first arm B are point-symmetric with respect to the drive shaft center.
  • the first end 120 (fourth connecting portion) of the first arm B and the second end 111 (second connecting portion) of the first arm A are point-symmetric.
  • the first arm A can be rotationally driven on a first direction axis constituted by a straight line connecting the first end 110 (first connecting portion) and the second end 111 (second connecting portion) of the first arm A.
  • the first drive shaft connected to the first drive shaft is separated from the rotation shaft (drive shaft center) by a first distance (r1).
  • the second direction axis formed by a straight line connecting the second end 121 (third connection portion) and the first end 120 (fourth connection portion) of the first arm B is the rotation of the second drive shaft. It is separated from the shaft (drive shaft center) by a second distance (r2).
  • the second drive shaft is a shaft that is provided coaxially with the first drive shaft and that is coupled to the first drive shaft so that the first arm B can be driven to rotate independently of the first drive shaft.
  • first distance (r1) second distance (r2).
  • the distance relationship with respect to the center of the drive shaft satisfies the relationship of the first distance (r1)> the second distance (r2) or the first distance (r1) ⁇ the second distance (r2). It may be a distance.
  • the substrate holder 101 is connected to one end of the second arm A1 and one end of the second arm B1.
  • the substrate holder 102 is connected to one end of the second arm B2 and one end of the second arm A2.
  • the other end of the second arm A1 is rotatably connected to one end (first end) 110 of the first arm A that is a link member, and the other end of the second arm A2 is connected to the other end of the first arm A.
  • the end (second end) 111 is rotatably connected.
  • the other end of the second arm B2 is rotatably connected to one end (first end) 120 of the first arm B that is a link member.
  • the other end of the second arm B1 is connected to the other end of the first arm B.
  • the end (second end) 121 is rotatably connected.
  • the substrate holder 101 when the first arm A, the second arm A1, and the second arm B2 are in the contracted state, the substrate holder 101 is in the retracted position.
  • the substrate holder 102 is in the retracted position.
  • the detection mechanism 520 images the substrate holders 101 and 102 from the z-axis direction (vertically upward or downward), the substrate holder 101 and the substrate holder 102 do not overlap with each other, and the detection mechanism 520 includes the substrate holder 101 and the substrate holder 101. 102 can be detected respectively.
  • the controller 530 can determine whether the substrate W is held by at least one of the substrate holders 101 and 102 based on the detection result of the detection mechanism 520.
  • FIG. 1B shows the extended state of the first arm B, the second arm B2, and the second arm A2 constituting the second substrate transport mechanism 514.
  • the substrate W can be supplied from the substrate holder 102 to a predetermined process processing apparatus.
  • the substrate W processed by a predetermined process processing apparatus can be recovered from the process processing apparatus to the substrate holder 102.
  • FIG. 2A is a bird's-eye view of the entire mechanism 590 of the robot arm in a contracted state.
  • the first arm A and the second arm A1 constituting the first substrate transport mechanism 504 are rotatably connected via the connecting member 200.
  • the connecting member 200 By using the connecting member 200, a space in the z direction can be created between the first arm A and the second arm A1, and the second arm B2 is disposed between the first arm A and the second arm A1. can do.
  • the first substrate transport mechanism 504 (first arm A, second arm A1, and second arm B2) and second substrate transport mechanism 514 (first arm B, second arm B2, and second arm A2).
  • FIG. 2B is a bird's-eye view showing an extended state of the first arm B, the second arm B2, and the second arm A2 constituting the second substrate transport mechanism 514.
  • the controller 530 controls the first motor 501 so that the first drive shaft 503 rotates counterclockwise (counter clockwise (CCW)).
  • the controller 530 controls the second motor 511 so that the second drive shaft 513 rotates in the clockwise direction (clockwise (CW)).
  • CW clockwise
  • the second arm A2 connected to the first arm A, the second arm B2 connected to the first arm B, and the substrate holder 102 constitute a link mechanism. Therefore, the substrate holder 102 moves forward in the xy plane in conjunction with the operation of the first arms A and B, and the first arm B, the second arm B2, and the second arm constituting the second substrate transport mechanism 514. A2 enters the extended state.
  • the controller 530 controls the first motor 501 and the second motor 511 synchronously so as to be reversely rotated with respect to the rotation to be extended.
  • FIG. 2C is a bird's-eye view of the first arm A, the second arm A1, and the second arm B1 constituting the first substrate transport mechanism 504 in an extended state.
  • the substrate supplied to the process processing apparatus by the substrate holder 102 described in FIG. 2B can be collected from the process processing apparatus by the operation of the first substrate transport mechanism 504 shown in FIG. 2C.
  • the controller 530 controls the first motor 501 so that the first drive shaft 503 rotates in the clockwise (CW) direction.
  • the controller 530 controls the second motor 511 so that the second drive shaft 513 rotates in the counterclockwise (CCW) direction.
  • the first arm A rotates in the CW direction
  • the first arm B rotates in the CCW direction.
  • the second arm A1 connected to the first arm A, the second arm B1 connected to the first arm B, and the substrate holder 101 constitute a link mechanism. Therefore, in conjunction with the operations of the first arms A and B, the substrate holder 101 moves forward in the xy plane, and the first arm A, the second arm A1, and the second arm that constitute the first substrate transport mechanism 504. B1 is in an expanded state.
  • the controller 530 controls the first motor 501 and the second motor 511 synchronously so as to be reversely rotated with respect to the rotation to be extended.
  • the controller 530 controls the first motor 501 and the second motor 511 so that the first drive shaft 503 and the second drive shaft 513 operate synchronously in the same rotation direction, and rotates the entire mechanism 590 of the robot arm ( Revolving operation) is also possible.
  • the controller 530 controls the extension operation, the contraction operation, and the revolution operation, which are described above, as the operation of the substrate transfer apparatus.
  • the substrate is replaced (supplied and recovered) to the process processing apparatus.
  • the operation and revolution operation will be described below.
  • a predetermined process is performed on a substrate that has already been supplied.
  • the controller 530 causes the robot arm overall mechanism 590 to revolve at a position where the traveling direction (track 151) of the substrate holder 102 matches the substrate center of the process chamber of the process processing apparatus. At this time, the movement of the position of the substrate holder 102 in the height direction (z direction) to the position lower than the substrate height of the process chamber of the process processing apparatus is simultaneously performed in parallel.
  • the controller 530 advances the substrate holder 102 by setting the second substrate transport mechanism 514 (first arm B, second arm B2, and second arm A2) to the extended state. In a state where the forward movement of the substrate holder 102 is completed, the substrate holding surface of the substrate holder 102 is positioned below the back surface of the substrate.
  • the controller 530 raises the substrate holder 102 so that the position in the height direction (z direction) of the substrate holder 102 is higher than the substrate holding position of the process chamber, and the substrate holder 102 is placed on the substrate holding surface of the substrate holder 102. Replace the treated substrate.
  • the controller 530 causes the second substrate transport mechanism 514 (the first arm B, the second arm B2, and the second arm A2) to contract and retracts the substrate holder 102. This operation completes the collection of the processed substrate from the process chamber of the process processing apparatus.
  • the controller 530 causes the robot arm overall mechanism 590 to revolve at a position where the traveling direction (orbit 150) of the substrate holder 101 matches the substrate center of the process chamber of the process processing apparatus. At this time, the movement of the position of the substrate holder 101 in the height direction (z direction) to a position higher than the height of the substrate holding position of the process chamber of the process processing apparatus is performed in parallel.
  • the controller 530 moves the first substrate transport mechanism 504 (the first arm A, the second arm A1, and the second arm B2) in the extended state, and advances the substrate holder 101. In a state where the forward movement of the substrate holder 101 is completed, the substrate holder 101 is positioned above the substrate holding position of the process chamber.
  • the controller 530 lowers the substrate holder 101 so that the position in the height direction (z direction) of the substrate holder 101 is lower than the substrate holding position of the process chamber and is held by the substrate holder 101.
  • the substrate is transferred to the substrate holding position of the process chamber. In this state, the unprocessed substrate on the substrate holder 101 is placed at the substrate holding position of the process chamber.
  • the controller 530 retracts the substrate holder 101 by causing the first substrate transport mechanism 504 (first arm A, second arm A1, and second arm B2) to contract. This operation completes the supply of the substrate on which the unprocessed substrate is placed at the substrate holding position of the process chamber of the process processing apparatus.
  • the substrate transfer apparatus moves the substrate to each of the plurality of radially arranged process processing apparatuses (FIG. 6B). Can be supplied. Alternatively, the substrate transfer apparatus can collect the processed substrate from each process processing apparatus.
  • the present embodiment it is possible to efficiently detect whether or not a substrate is held by each of the plurality of substrate holders. According to the present invention, it is possible to detect whether a substrate is held by each of the plurality of substrate holders from above or below vertically without using a member dedicated to sensor detection. Therefore, expensive sensing technology is not required, and the overall cost of the apparatus can be reduced. In addition, since it is not necessary to move the substrate holder back and forth for substrate detection, the tact time of the apparatus can be shortened.
  • FIG. 3A shows the configuration of the first substrate transfer mechanism 504 and the second substrate transfer mechanism 514 when the entire mechanism 590 of the robot arm revolves in the xy plane.
  • the axial directions of the first drive shaft 503 and the second drive shaft 513 correspond to the z-axis direction perpendicular to the paper surface as in the first embodiment, and the first drive shaft around the drive shaft center (rotation center). 503 and the second drive shaft 513 rotate.
  • the first substrate transport mechanism 504 includes a first arm A, a second arm A1, and a second arm B2.
  • the second substrate transport mechanism 514 includes a first arm B, a second arm B2, and a second arm A2. While the first arm A and the first arm B of the present embodiment are configured by V-shaped members, the first arm A and the first arm B described in the first embodiment are linear. Both member shapes differ in the point comprised by member shape.
  • the first arms A and B have the same arm length and the direction of the x-axis (first direction axis) passing through the drive shaft center (rotation center).
  • the first arms A and B are configured to be line-symmetric with respect to the center line in the direction of the y-axis (second direction axis).
  • the first arm A functioning as the first drive arm is connected to the first drive shaft 503, and the first arm A can turn in the xy plane by the rotational drive of the first drive shaft 503.
  • the first arm B functioning as the second drive arm is connected to the second drive shaft 513, and the first arm B can turn in the xy plane by the rotational drive of the second drive shaft 513.
  • the first end 310 (first connecting portion) of the first arm A and the first end 320 (fourth connecting portion) of the first arm B are in a plane (xy plane) in which the substrate holders 101 and 102 move. (Inside) in the y-axis direction by a first offset distance (OFF3). Further, the second end 311 (second connecting portion) of the first arm A and the second end 321 (third connecting portion) of the first arm B are within a plane in which the substrate holders 101 and 102 move ( The second offset distance (OFF4) is located in the y-axis direction (in the xy plane).
  • the first offset distance ( OFF3) second offset distance (OFF4) is satisfied.
  • the first end 310 (first connecting portion) of the first arm A and the second end 321 (third connecting portion) of the first arm B are point-symmetric with respect to the drive shaft center.
  • the first end 320 (fourth connecting portion) of the first arm B and the second end 311 (second connecting portion) of the first arm A are point-symmetric.
  • the first arm A can be driven to rotate on a first direction axis formed by a straight line connecting the first end 310 (first connecting portion) and the second end 311 (second connecting portion) of the first arm A.
  • the first drive shaft connected to the first drive shaft is separated from the rotation shaft (drive shaft center) by a first distance (r3).
  • the second direction axis formed by a straight line connecting the second end 321 (third connection portion) and the first end 320 (fourth connection portion) of the first arm B is the rotation of the second drive shaft. It is separated from the shaft (drive shaft center) by a second distance (r4).
  • the second drive shaft is a shaft that is provided coaxially with the first drive shaft and that is coupled to the first drive shaft so that the first arm B can be driven to rotate independently of the first drive shaft.
  • FIG. 3A illustrates the case where the first arms A and B are configured by the same V-shaped member.
  • the first offset distance (OFF3) and the second offset distance (OFF4) are Be the same.
  • the member shapes of the first arms A and B are not limited to being the same, and the present invention can be applied even when the member shapes are different.
  • the distance relationship with respect to the center of the drive shaft satisfies the relationship of the first distance (r3)> the second distance (r4) or the first distance (r3) ⁇ the second distance (r4). It may be a distance.
  • the substrate holder 101 is connected to one end of the second arm A1 and one end of the second arm B1, which function as two first driven arms.
  • the substrate holder 102 is connected to one end of the second arm B2 and one end of the second arm A2, which function as two second driven arms.
  • the other end of the second arm A1 is rotatably connected to one end (first end) 310 of the first arm A, and the other end of the second arm A2 is the other end (second) of the first arm A.
  • End portion 311 is rotatably connected.
  • the other end of the second arm B2 is rotatably connected to one end (first end) 320 of the first arm B, and the other end of the second arm B1 is the other end (second) of the first arm B.
  • End) 321 is rotatably connected.
  • the angle formed by the straight line connecting the first end 310 of the first arm A and the second end 321 of the first arm B and the x-axis is ⁇ 3.
  • an angle formed by a straight line connecting the first end portion 320 of the first arm B and the second end portion 311 of the first arm A and the x-axis is ⁇ 4.
  • the first end 310 of the first arm A and the first end 320 of the first arm B are spaced apart, and the second end 311 of the first arm A and the second end of the first arm B Since the part 321 is spaced apart, the trajectory of the advance / retreat operation of the substrate holder 101 is different from the trajectory of the advance / retreat operation of the substrate holder 102. That is, with respect to the trajectory of the advance / retreat operation of the substrate holder 101, the trajectory of the advance / retreat operation of the substrate holder 102 is in a state where an angle ( ⁇ 3 + ⁇ 4) occurs.
  • the substrate holder 101 and the substrate holder 102 do not overlap in the direction of the rotation axis of the first drive shaft perpendicular to the xy plane.
  • the detection mechanism 520 detects the state of each of the substrate holders 101 and 102 from the z-axis direction (vertically upward or vertically downward), is the substrate W held by each of the substrate holders 101 and 102? Whether or not the controller 530 can determine based on the detection result.
  • FIG. 3B shows the extended state of the first arm B, the second arm B2, and the second arm A2 constituting the second substrate transport mechanism 514.
  • the substrate W can be supplied from the substrate holder 102 to a predetermined process processing apparatus.
  • the substrate W processed by a predetermined process processing apparatus can be recovered from the process processing apparatus to the substrate holder 102.
  • FIG. 4A is a bird's eye view of the entire mechanism 590 of the robot arm in a contracted state.
  • the first arm A and the second arm A2 constituting the second substrate transport mechanism 514 are rotatably connected via a connecting member 400.
  • a space in the z direction can be created between the first arm A and the second arm A2, and the second arm B1 is disposed between the first arm A and the second arm A2. can do.
  • FIG. 4B is a bird's-eye view showing an extended state of the first arm B, the second arm B2, and the second arm A2 constituting the second substrate transport mechanism 514.
  • the controller 530 controls the first motor 501 so that the first drive shaft 503 rotates counterclockwise (CCW).
  • the controller 530 controls the second motor 511 so that the second drive shaft 513 rotates in the clockwise (CW) direction.
  • CW clockwise
  • the second arm A2 connected to the first arm A, the second arm B2 connected to the first arm B, and the substrate holder 102 constitute a link mechanism. Therefore, the substrate holder 102 moves forward in the xy plane in conjunction with the operation of the first arms A and B, and the first arm B, the second arm B2, and the second arm constituting the second substrate transport mechanism 514. A2 enters the extended state.
  • the controller 530 controls the first motor 501 and the second motor 511 synchronously so as to be reversely rotated with respect to the rotation to be extended.
  • FIG. 4C is a bird's-eye view of the first arm A, the second arm A1, and the second arm B1 constituting the first substrate transport mechanism 504 in an extended state.
  • the substrate supplied to the process processing apparatus by the substrate holder 102 described with reference to FIG. 4B can be collected from the process processing apparatus by the operation of the first substrate transport mechanism 504 illustrated in FIG. 4C.
  • the controller 530 controls the first motor 501 so that the first drive shaft 503 rotates in the clockwise (CW) direction.
  • the controller 530 controls the second motor 511 so that the second drive shaft 513 rotates in the counterclockwise (CCW) direction.
  • the first arm A rotates in the CW direction
  • the first arm B rotates in the CCW direction.
  • the second arm A1 connected to the first arm A, the second arm B1 connected to the first arm B, and the substrate holder 101 constitute a link mechanism. Therefore, in conjunction with the operations of the first arms A and B, the substrate holder 101 moves forward in the xy plane, and the first arm A, the second arm A1, and the second arm that constitute the first substrate transport mechanism 504. B1 is in an expanded state.
  • the controller 530 controls the first motor 501 and the second motor 511 synchronously so as to be reversely rotated with respect to the rotation to be extended.
  • the controller 530 controls the first motor 501 and the second motor 511 so that the first drive shaft 503 and the second drive shaft 513 operate synchronously in the same rotation direction, and rotates the entire mechanism 590 of the robot arm ( Revolving operation) is also possible.
  • a plurality of substrate transfer apparatuses are radially arranged (FIG. 6B). ) For each substrate.
  • the substrate transfer apparatus can collect the processed substrate from each process processing apparatus.
  • the present embodiment it is possible to efficiently detect whether or not a substrate is held by each of the plurality of substrate holders. According to the present invention, it is possible to detect whether a substrate is held by each of the plurality of substrate holders from above or below vertically without using a member dedicated to sensor detection. Therefore, expensive sensing technology is not required, and the overall cost of the apparatus can be reduced. In addition, since it is not necessary to move the substrate holder back and forth for substrate detection, the tact time of the apparatus can be shortened.
  • a load lock chamber (LL1, LL2) for loading and unloading a substrate for processing in an electronic device manufacturing system, and a process processing apparatus (650 to 655) for performing various processes on the substrate are substrate transfer apparatuses. It is deployed around 660. By disposing the process processing apparatuses (650 to 655) radially with respect to the substrate transfer apparatus 660, a single substrate transfer apparatus 660 can transfer a substrate to a plurality of process processing apparatuses (650 to 655). Is possible.
  • An electronic device manufacturing system according to this embodiment includes the substrate transfer apparatus described in the above embodiment, and at least one process processing apparatus that performs a device manufacturing process on the substrate transferred by the substrate transfer apparatus. Prepare.
  • the electronic device manufacturing method includes a transport process for transporting a substrate using a substrate transport apparatus, and a process execution for executing a device manufacturing process on the substrate transported in the transport process in at least one process processing apparatus.
  • Examples of the electronic device manufactured by the electronic device manufacturing system and the electronic device manufacturing method include at least one of a semiconductor, an LCD, a solar cell, and a device for optical communication equipment.
  • the present embodiment it is possible to reduce the cost of the entire electronic device manufacturing system.
  • the tact time of the electronic device manufacturing system can be shortened.

Abstract

 基板を保持することが可能な第1基板保持器と第2基板保持器とを有する基板搬送装置は第1端部と、第2端部とを有し、第1駆動軸の回転により回転可能な第1駆動アームと、第1端部に対して第1の距離だけ離間した位置にある第3端部と、第2端部に対して第2の距離だけ離間した位置にある第4端部とを有し、第1駆動軸と同軸の第2駆動軸の回転により回転可能な第2駆動アームと、第1基板保持器に連結されている2つの第1従動アームと、第2基板保持器に連結されている2つの第2従動アームと、を備える。

Description

基板搬送装置、電子デバイスの製造システムおよび電子デバイスの製造方法
 本発明は基板搬送装置、電子デバイスの製造システムおよび電子デバイスの製造方法に関するものである。
 図7A、Bの参照により、従来の基板搬送装置の構成例を説明する。従来の基板搬送装置は、駆動源の回転運動を直動運動へ変換可能に構成されたアームユニットを有する。このアームユニットは、上下方向(z軸方向)に2つの基板保持器を有し、2つの基板保持器をそれぞれ第1基板保持器701と第2基板保持器702とする。
 例えば、第2基板保持器702に未処理の基板が載っている状態で、特定のプロセスチャンバでプロセス処理が完了した時、処理済みの基板を回収するために、プロセスチャンバへ向かうように基板搬送装置は回転する。そして、基板が載置されていない第1基板保持器701をプロセスチャンバへ向けて移動させて(図7A)、プロセスチャンバ内の処理済の基板を受け取り、第1基板保持器701を収縮位置まで戻す(図7B)。
 処理済の基板の搬送が確実に行われないまま、次のプロセス処理を続けた時に発生する不具合を未然に防止するため、従来の基板搬送装置は、センサを用いて基板入れ替え動作の前後で基板の有無を検出している。この検出結果によりプロセスチャンバへ基板搬送が確実に行われたか否かが判定される。処理済みの基板を回収する際も、まず基板回収用の基板保持器上に基板が無いことをセンサにより確認し、基板が無いことが確認された後に、基板搬送装置はプロセスチャンバへ向けて基板保持器を移動させている(特許文献1、2を参照)。
特表平11-514303号公報 特開平11-207666号公報
 しかしながら、特許文献1の基板搬送装置をz軸方向の上面側から見た場合、第1基板保持器701と第2基板保持器702とが重なった構造になっている。第1基板保持器701に基板が保持されている場合に、第1基板保持器701に対して下側に配置されている第2基板保持器702上の基板をz軸方向の鉛直上方側から見ることは不可能である。また、第2基板保持器702に基板が保持されている場合に、第2基板保持器702に対して上側に配置されている第1基板保持器701上の基板をz軸方向の鉛直下方側から見ることは不可能である。
 z軸方向に重なった構造を有する基板保持器上の基板の有無の検知を可能にするための対応として、斜め方向から基板保持器を撮像し高解像度で高額なCCDセンサと画像処理装置とを用いて基板の検出を行うことが挙げられる。この対応は、基板搬送装置のコストが高くなると共に、画像処理を行い、その画像処理の結果により基板の有無の判定を行うことが必要となるため、基板搬送装置のタクトタイムは遅くなる。
 基板の有無の検知を可能にするための他の対応として、鉛直上方側(または鉛直下方側)から検知可能な位置まで、いずれか一方の基板保持器を意図的に前後移動させる動作ステップを組み込むことが挙げられる。この対応でも、基板保持器を前後移動させる動作ステップが増えることから、基板搬送装置のタクトタイムは遅くなる。
 ロボットアームをセンサで監視することが可能な構成では(特許文献2)、専用の形状を有する部材(ボス部材)が必要とされる。ロボットアームの搬送動作時に、ボス部材に干渉しないようにするため、アーム形状を湾曲させることも必要となり、基板搬送装置のコストアップにつながるという課題も生じる。
 本発明は上記の課題を鑑みてなされたものであり、複数の基板保持器のそれぞれに基板が保持されているか否かを効率的に検出することが可能な基板搬送技術を提供することを目的とする。
 本発明の一つの側面にかかる基板搬送装置は、基板をそれぞれ保持することが可能な第1基板保持器及び第2基板保持器と、
 前記第1基板保持器に一端が連結されている2つの第1従動アームと、
 前記第2基板保持器に一端が連結されている2つの第2従動アームと、
 2つの前記第1従動アームおよび2つの前記第2従動アームのうち、それぞれの一方が連結されている第1駆動アームと、
 2つの前記第1従動アームおよび2つの前記第2従動アームのうち、それぞれの他方が連結されている第2駆動アームと、
 前記第1駆動アームが回転駆動可能に連結されている第1駆動軸と、
 前記第1駆動軸と同軸に設けられ、且つ前記第1駆動軸に対して独立に前記第2駆動アームが回転駆動可能に連結されている第2駆動軸と、を備え、
 前記第1駆動アームは、2つの前記第1従動アームのうち一方の前記第1従動アームの他端が連結される第1連結部と、2つの前記第2従動アームのうち一方の前記第2従動アームの他端が連結される第2連結部と、を有し、
 前記第2駆動アームは、2つの前記第1従動アームのうち他方の前記第1従動アームの他端が連結される第3連結部と、2つの前記第2従動アームのうち他方の前記第2従動アームの他端が連結される第4連結部と、を有し、
 前記第1連結部と前記第2連結部とを結ぶ直線により構成される第1方向軸は、前記第1駆動軸の回転軸から第1の距離だけ離間し、
 前記第3連結部と前記第4連結部とを結ぶ直線により構成される第2方向軸は、前記第2駆動軸の回転軸から第2の距離だけ離間していることを特徴とする。
 あるいは、本発明の他の側面にかかる電子デバイスの製造システムは、上記の基板搬送装置と、
 前記基板搬送装置により搬送された基板に対してデバイス製造プロセスを実行する少なくとも一つのプロセス処理装置と、を備えることを特徴とする。
 あるいは、本発明の他の側面にかかる電子デバイスの製造方法は、上記の基板搬送装置を用いて基板を搬送する搬送工程と、
 少なくとも一つのプロセス処理装置において、前記搬送工程で搬送された基板に対して、デバイス製造プロセスを実行するプロセス実行工程と、を有することを特徴とする。
 本発明によれば、複数の基板保持器のそれぞれに基板が保持されているか否かを効率的に検出することが可能になる。本発明によれば、鉛直上方または鉛直下方から複数の基板保持器のそれぞれに基板が保持されているか否かを、センサ検出専用の部材を用いることなく、検出することができる。そのため、高額となるセンシング技術が不用となり、装置全体のコストダウンを図ることが可能になる。また、基板の検出のために基板保持器を前後移動させる必要がなくなるため、装置のタクトタイムの短縮化が可能になる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
第1実施形態にかかる第1及び第2基板搬送機構を説明する図。 第1実施形態にかかる第1及び第2基板搬送機構を説明する図。 第1実施形態にかかる第1及び第2基板搬送機構の動作説明図。 第1実施形態にかかる第1及び第2基板搬送機構の動作説明図。 第1実施形態にかかる第1及び第2基板搬送機構の動作説明図。 第2実施形態にかかる第1及び第2基板搬送機構を説明する図。 第2実施形態にかかる第1及び第2基板搬送機構を説明する図。 第2実施形態にかかる第1及び第2基板搬送機構の動作説明図。 第2実施形態にかかる第1及び第2基板搬送機構の動作説明図。 第2実施形態にかかる第1及び第2基板搬送機構の動作説明図。 本発明の実施形態にかかる基板搬送装置の機能構成を説明する図。 本発明の実施形態にかかる基板搬送装置の特徴を模式的に示す図。 本発明の実施形態にかかる電子デバイスの製造システムの構成を説明する図。 従来の基板搬送装置の構成例を説明する図。 従来の基板搬送装置の構成例を説明する図。
 以下、図面を参照して、本発明の好適な実施形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成要素はあくまで例示であり、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。
 図6Aは、本発明の実施形態にかかる基板搬送装置の特徴を模式的に示す図である。基板搬送装置は、基板をそれぞれ保持することが可能な基板保持器101と基板保持器102とを有する。第1駆動アーム601は駆動軸中心まわりに回転可能な第1駆動軸に連結されている。第2駆動アーム602は、第1駆動軸と同軸に設けられ、且つ、第1駆動軸に対して独立に回転駆動可能な第2駆動軸に連結されている(以下の各実施形態では、第1駆動アーム601を第1アームAと表記し、第2駆動アーム602を第1アームBと表記する)。
 第1駆動アーム601は、アームを構成するリンク部材の一端に第1端部110(第1連結部)と、他端に第2端部111(第2連結部)と、を有する。第2駆動アーム602は、アームを構成するリンク部材の一端に第1端部120(第4連結部)と、他端に第2端部121(第3連結部)と、を有する。第1駆動アーム601の第1端部110(第1連結部)と、第2駆動アーム602の第1端部120(第4連結部)とは、基板保持器101、102が移動する平面内(xy平面内)のy軸方向において、所定距離(OFF1)だけ離間した位置にある。この所定距離を第1オフセット距離という。また、第1駆動アーム601の第2端部111(第2連結部)と、第2駆動アーム602の第2端部121(第3連結部)とは、基板保持器101、102が移動する平面内(xy平面内)のy軸方向において所定距離(OFF2)だけ離間した位置にある。この所定距離を第2オフセット距離という。
 本発明の実施形態にかかる基板搬送装置において、第1駆動アーム601の形状と第2駆動アーム602の形状とは、必ずしも同一形状を有する必要はない。第1駆動アーム601の形状と、第2駆動アーム602の形状とが、例えば、x軸(第1方向軸)およびy軸(第2方向軸)に対して線対称となる場合、第1オフセット距離(OFF1)=第2オフセット距離(OFF2)の関係を満たす。また、駆動軸中心に関して第1駆動アーム601の第1端部110(第1連結部)と第2駆動アーム602の第2端部121(第3連結部)とは点対称となる。また、第2駆動アーム602の第1端部120(第4連結部)と第1駆動アーム601の第2端部111とは点対称となる。
 基板保持器101(第1基板保持器)には、2つの第1従動アームとして、従動アーム610、611が連結されている。基板保持器102(第2基板保持器)には、2つの第2従動アームとして、従動アーム620、621が連結されている。以下の各実施形態では、2つの第1従動アームのうちの一方の従動アーム610を第2アームA1と表記し、2つの第1従動アームのうちの他方の従動アーム611を第2アームB1と表記する。また、2つの第2従動アームのうちの一方の従動アーム620を第2アームB2と表記し、2つの第2従動アームのうちの他方の従動アーム621を第2アームA1と表記する。
 基板保持器101に連結されている一の従動アーム610は、第1駆動アーム601の第1端部110(第1連結部)で第1駆動アーム601と連結されている。基板保持器101に連結されている他方の従動アーム611は、第2駆動アーム602の第2端部121(第3連結部)で第2駆動アーム602に連結されている。
 基板保持器102に連結されている一の従動アーム620は、第2駆動アーム602の第1端部120(第4連結部)で第2駆動アーム602と連結されている。基板保持器102に連結されている他方の従動アーム621は、第1駆動アーム601の第2端部111(第2連結部)で第1駆動アーム601に連結されている。第1駆動アーム601の第1端部110(第1連結部)と、第2駆動アーム602の第1端部120(第4連結部)とが第1オフセット距離(OFF1)だけ離間している。また、第1駆動アーム601の第2端部111(第2連結部)と、第2駆動アーム602の第2端部121(第3連結部)とが第2オフセット距離(OFF2)だけ離間している。
 ここで、第1駆動アーム601の第1端部110(第1連結部)と第2駆動アーム602の第2端部121(第3連結部)とを結ぶ直線671とx軸とのなす角度をθ1とする。また、第2駆動アーム602の第1端部120(第4連結部)と第1駆動アーム601の第2端部111(第2連結部)とを結ぶ直線672とx軸とのなす角度をθ2とする。基板保持器101、102は、第1駆動アーム601および第2駆動アーム602の回転により動作する従動アーム(610、611、620、621)の移動により、第1駆動軸の回転軸から離間する方向に前進することが可能である。また、基板保持器101、102は、第1駆動アーム601および第2駆動アーム602の逆方向の回転による従動アーム(610、611、620、621)の移動により、第1駆動軸の回転軸に向けて戻る方向に後退することが可能である。前進動作、後退動作を以下、進退動作という。第1駆動アーム601の第1端部110(第1連結部)と第2駆動アーム602の第1端部120(第4連結部)とが離間して配置され、かつ、第1駆動アーム601の第2端部111(第2連結部)と第2駆動アーム602の第2端部121(第3連結部)とが離間して配置されることにより、基板保持器101の進退動作の軌道150は、基板保持器102の進退動作の軌道151に対して異なった軌道になる。第1駆動軸の回転軸を基準(中心)とした軌道150に対して、軌道151は角度づれ(θ1+θ2)が生じた状態になる。基板保持器101は、第1駆動軸の回転軸と直交する第1平面内に配置され、基板保持器102は、第1駆動軸の回転軸と直交する第2平面内に配置される。第1平面に対して第2平面は平行であり、且つ、第1平面の重力方向の位置と第2平面とは異なる。
 (第1実施形態)
 (基板搬送装置の機能構成)
 図5の参照により、本発明の実施形態にかかる基板搬送装置の機能構成を説明する。基板搬送装置は、基板Wの載置が可能な二つの基板保持器(基板保持器101、基板保持器102)を有する。基板保持器101は、複数のリンク(以下、「アーム」)の連結により構成される第1基板搬送機構504と接続し、第1基板搬送機構504の動作により所定の軌道上を移動することが可能である。真空室外に配備された第1モータ501の回転駆動力は、第1駆動力伝達機構502および第1駆動軸503を介して、第1基板搬送機構504に伝達される。
 基板保持器102についても同様に、複数のアームの連結により構成される第2基板搬送機構514と接続し、第2基板搬送機構514の動作により所定の軌道上を移動することが可能である。真空室外に配備された第2モータ511の回転駆動力は、第2駆動力伝達機構512および第2駆動軸513を介して、第2基板搬送機構514に伝達される。
 第1駆動軸503は円柱形状を有し、第2駆動軸513は、中空の円筒形状を有する。第2駆動軸513の内部に第1駆動軸503が配置されることにより、第1駆動軸503と第2駆動軸513とは同軸となる。
 検出機構520は、基板保持器101および基板保持器102に対して鉛直上方または鉛直下方に配置され、基板保持器101および基板保持器102を検出する。検出機構520は、基板保持器101、基板保持器102の双方、または少なくともいずれか一方に基板が保持されているか否かを検出することが可能である。検出機構520の検出結果は、コントローラ530に送信される。コントローラ530は、第1モータ501のエンコーダから得られる検出情報、第2モータ511のエンコーダから得られる検出情報、および検出機構520の検出結果に基づいて、基板搬送装置の全体的な動作を司る。第1モータ501のエンコーダから得られる検出情報には、第1モータ501の回転角度および回転速度の情報が含まれる。また、第2モータ511のエンコーダから得られる検出情報には、第2モータ511の回転角度および回転速度の情報が含まれる。コントローラ530は、第1モータ501の回転角度および回転速度の情報により、第1駆動軸503の回転角度および回転速度を算出することが可能である。また、コントローラ530は、第2モータ511の回転角度および回転速度の情報により、第2駆動軸513の回転角度および回転速度を算出することが可能である。これらの情報は、基板搬送装置の制御にフィードバックされる。
 コントローラ530は、第1駆動軸503と第2駆動軸513とが同一回転方向に同期動作するように第1モータ501及び第2モータ511を同期制御することで、ロボットアームの全体機構590を回転させることができる。コントローラ530は、基板の供給または回収の対象となるプロセス処理装置の基板保持位置に対して、ロボットアームの全体機構590を回転させて所定の位置に位置決めする。ロボットアームの全体機構590には、例えば、基板保持器101、102と、第1および第2基板搬送機構504、514とが含まれる。真空室外に配備された第3モータ541の回転駆動力は、第3駆動力伝達機構542に伝達され、ロボットアームの全体機構590をz軸方向に上昇または降下させる。コントローラ530は、第3モータ541を制御して、基板の供給または回収の対象となるプロセス処理装置の基板保持位置に対する、基板保持器101および基板保持器102のz軸方向における位置決めを制御する。
 ロボットアームの全体機構590の回転動作を公転動作という。公転動作と、第1および第2基板搬送機構(504、514)の伸張動作及び収縮動作とにより、基板搬送装置はプロセス処理装置に対して基板を供給し、または、プロセス処理装置から処理済みの基板を回収できる(図6B)。
 (基板搬送機構)
 次に、図1A、Bの参照により、第1実施形態にかかる第1基板搬送機構504、第2基板搬送機構514の構成を説明する。図1Aは、xy平面において、ロボットアームの全体機構590の公転時における第1基板搬送機構504、第2基板搬送機構514の構成を示している。第1駆動軸503および第2駆動軸513の軸方向は、紙面に対して垂直なz軸方向に対応し、駆動軸中心(回転中心)まわりに第1駆動軸503および第2駆動軸513が回転する。
 本実施形態の第1基板搬送機構504は、第1アームA、第2アームA1、および第2アームB2により構成される。また、第2基板搬送機構514は、第1アームB、第2アームB2、および第2アームA2により構成される。第1アームAは部材D1を介して第1駆動軸503に回転駆動可能に連結されている。第1駆動軸503の回転は、部材D1により第1アームAに伝達される。第1駆動軸503の回転駆動により、第1アームAはxy平面内を旋回可能である。第1アームBは部材D2を介して第2駆動軸513に回転駆動可能に連結されている。第2駆動軸513の回転は、部材D2により第1アームBに伝達される。第2駆動軸513の回転駆動により、第1アームBもxy平面内を旋回可能である。
 第1アームAの第1端部110(第1連結部)と第1アームBの第1端部120(第4連結部)とは、基板保持器101、102が移動する平面内(xy平面内)のy軸方向に所定距離(OFF1)だけ離間した位置にある。また、第1アームAの第2端部111(第2連結部)と第1アームBの第2端部121(第3連結部)とは、基板保持器101、102が移動する平面内(xy平面内)のy軸方向に所定距離(OFF2)だけ離間した位置にある。
 第1アームAの形状と、第1アームBの形状とが、例えば、x軸(第1方向軸)およびy軸(第2方向軸)に対して線対称となる場合、第1オフセット距離(OFF1)=第2オフセット距離(OFF2)の関係を満たす。また、駆動軸中心に関して第1アームAの第1端部110(第1連結部)と第1アームBの第2端部121(第3連結部)とは点対称となる。また、第1アームBの第1端部120(第4連結部)と第1アームAの第2端部111(第2連結部)とは点対称となる。
 第1アームAの第1端部110(第1連結部)と第2端部111(第2連結部)とを結ぶ直線により構成される第1方向軸は、第1アームAが回転駆動可能に連結されている第1駆動軸の回転軸(駆動軸中心)から第1の距離(r1)だけ離間している。また、第1アームBの第2端部121(第3連結部)と第1端部120(第4連結部)とを結ぶ直線により構成される第2方向軸は、第2駆動軸の回転軸(駆動軸中心)から第2の距離(r2)だけ離間している。ここで、第2駆動軸は、第1駆動軸と同軸に設けられ、且つ、第1駆動軸に対して独立に第1アームBが回転駆動可能に連結されている軸である。
 図1Aに示す状態は、第1アームA、Bが同一の形状の部材により構成されている場合を例示しており、この場合、第1オフセット距離(OFF1)と第2オフセット距離(OFF2)とは同一になる。また、駆動軸中心を基準とした距離の関係は、第1の距離(r1)=第2の距離(r2)となる。尚、第1アームA、Bの部材形状は、同一である場合に限らず、異なる部材形状の場合であっても本発明は適用可能である。また、駆動軸中心を基準とした距離の関係は第1の距離(r1)>第2の距離(r2)、または、第1の距離(r1)<第2の距離(r2)なる関係を満たす距離であってもよい。
 基板保持器101は、第2アームA1の一端と、第2アームB1の一端とに連結されている。また、基板保持器102は、第2アームB2の一端と、第2アームA2の一端とに連結されている。第2アームA1の他端は、リンク部材である第1アームAの一端(第1端部)110に回転可能に連結されており、第2アームA2の他端は、第1アームAの他端(第2端部)111に回転可能に連結されている。第2アームB2の他端は、リンク部材である第1アームBの一端(第1端部)120に回転可能に連結されており、第2アームB1の他端は、第1アームBの他端(第2端部)121に回転可能に連結されている。
 図1A、Bにおいて、第1アームA、第2アームA1、および第2アームB2が収縮状態にあるとき、基板保持器101は後退した位置にある。第1アームB、第2アームB2、および第2アームA2が収縮状態にあるとき、基板保持器102は後退した位置にある。後退した位置にある基板保持器101と基板保持器102とは、xy平面に垂直な第1駆動軸の回転軸方向で重ならずに、角度づれ(θ=θ1+θ2)が生じた状態で配置される。すなわち、基板保持器101がxy平面内(第1平面内)を移動する際の軌道150と、基板保持器102がxy平面内(第2平面内)を移動する際の軌道151と、は角度(θ=θ1+θ2)だけずれる。検出機構520がz軸方向(鉛直上方または下方)から基板保持器101、102を撮像した場合に、基板保持器101と基板保持器102とは重ならず、検出機構520は基板保持器101、102をそれぞれ検出可能である。基板保持器101、102のうち少なくともいずれか一方の基板保持器に基板Wが保持されているか否かを、コントローラ530は検出機構520の検出結果に基づき判定可能である。
 図1Bは、第2基板搬送機構514を構成する第1アームB、第2アームB2、および第2アームA2の伸張状態を示す。この伸張状態において、基板保持器102から所定のプロセス処理装置に基板Wを供給することができる。あるいは、所定のプロセス処理装置で処理された基板Wをプロセス処理装置から基板保持器102に回収することができる。
 図2Aは、収縮状態にあるロボットアームの全体機構590の鳥瞰図である。第1基板搬送機構504を構成する第1アームAと第2アームA1とは、連結部材200を介して回転可能に連結される。連結部材200を介することにより、第1アームAと第2アームA1との間にz方向のスペースを作ることができ、第1アームAと第2アームA1との間に第2アームB2を配置することができる。これにより、第1基板搬送機構504(第1アームA、第2アームA1、および第2アームB2)および第2基板搬送機構514(第1アームB、第2アームB2、および第2アームA2)を3次元空間内にコンパクトに構成することができる。
 図2Bは、第2基板搬送機構514を構成する第1アームB、第2アームB2、および第2アームA2の伸張状態を示す鳥瞰図である。図2Bに示すような伸張状態にする場合、コントローラ530は、第1駆動軸503が反時計周り(カウンタークロックワイズ(CCW))方向に回転するように第1モータ501を制御する。その動作と同期動作により、コントローラ530は、第2駆動軸513が時計回り(クロックワイズ(CW))方向に回転するように第2モータ511を制御する。この同期動作により、第1アームAはCCW方向に回転し、第1アームBはCW方向に回転する。
 第1アームAに連結された第2アームA2と、第1アームBに連結された第2アームB2と、基板保持器102とは、リンク機構を構成している。このため、第1アームA、Bの動作に連動して基板保持器102がxy平面内を前進し、第2基板搬送機構514を構成する第1アームB、第2アームB2、および第2アームA2は伸張状態になる。基板保持器102を元の位置に戻す場合、コントローラ530は、伸張状態にする回転に対して逆回転となるように、第1モータ501と第2モータ511とを同期制御する。
 図2Cは、第1基板搬送機構504を構成する第1アームA、第2アームA1、および第2アームB1の伸張状態の鳥瞰図である。例えば、図2Bで説明した基板保持器102によってプロセス処理装置に供給した基板を、図2Cに示す第1基板搬送機構504の動作により、プロセス処理装置から処理済みの基板を回収することができる。図2Cに示すような伸張状態にする場合、コントローラ530は、第1駆動軸503が時計周り(CW)方向に回転するように第1モータ501を制御する。その動作と同期動作により、コントローラ530は、第2駆動軸513が反時計回り(CCW)方向に回転するように第2モータ511を制御する。この同期動作により、第1アームAはCW方向に回転し、第1アームBはCCW方向に回転する。
 第1アームAに連結された第2アームA1と、第1アームBに連結されたと第2アームB1と、基板保持器101とは、リンク機構を構成している。このため、第1アームA、Bの動作に連動し、基板保持器101がxy平面内を前進し、第1基板搬送機構504を構成する第1アームA、第2アームA1、および第2アームB1は伸張状態になる。基板保持器101を元の位置に戻す場合、コントローラ530は、伸張状態にする回転に対して逆回転となるように、第1モータ501と第2モータ511とを同期制御する。
 コントローラ530は第1駆動軸503と第2駆動軸513とが同一回転方向に同期して動作するように第1モータ501及び第2モータ511を制御して、ロボットアームの全体機構590を回転(公転動作)させることも可能である。
 (基板搬送装置の動作)
 コントローラ530は、基板搬送装置の動作として、先に説明した伸張状態にする伸張動作、収縮状態にする収縮動作、および公転動作を制御する。具体例として、基板保持器101に未処理の基板が載置されていて、基板保持器102に基板が載置されていない状態を仮定し、プロセス処理装置への基板の入れ替え(供給、回収)の動作と公転動作とを以下に説明する。プロセス処理装置において、既に供給された基板に所定のプロセス処理が実行されているものとする。
 (1)プロセス処理の完了後に、コントローラ530は、基板保持器102の進行方向(軌道151)がプロセス処理装置のプロセスチャンバの基板中心と合う位置にロボットアームの全体機構590を公転動作させる。この際、基板保持器102の高さ方向(z方向)の位置も、プロセス処理装置のプロセスチャンバの基板高さより下がった位置に移動する動作が同時平行で行われる。
 (2)その後、コントローラ530は、第2基板搬送機構514(第1アームB、第2アームB2、および第2アームA2)を伸張状態にして、基板保持器102を前進させる。基板保持器102の前進動作が完了した状態で、基板保持器102の基板保持面は、基板の裏面に対して下方に位置する。
 (3)コントローラ530は基板保持器102の高さ方向(z方向)の位置がプロセスチャンバの基板保持位置よりも高くなるように基板保持器102を上昇させて基板保持器102の基板保持面に処理済みの基板を載せかえる。
 (4)その後、コントローラ530は、第2基板搬送機構514(第1アームB、第2アームB2、および第2アームA2)を収縮状態にして、基板保持器102を後退させる。この動作により、処理済みの基板がプロセス処理装置のプロセスチャンバから処理済みの基板の回収が完了する。
 (5)次に、コントローラ530は、基板保持器101の進行方向(軌道150)がプロセス処理装置のプロセスチャンバの基板中心と合う位置にロボットアームの全体機構590を公転動作させる。この際、基板保持器101の高さ方向(z方向)の位置は、プロセス処理装置のプロセスチャンバの基板保持位置の高さより高い位置に移動する動作が同時平行で行われる。
 (6)その後、コントローラ530は、第1基板搬送機構504(第1アームA、第2アームA1、および第2アームB2)を伸張状態にして、基板保持器101を前進させる。基板保持器101の前進動作が完了した状態で、基板保持器101は、プロセスチャンバの基板保持位置に対して上方に位置する。
 (7)コントローラ530は基板保持器101の高さ方向(z方向)の位置がプロセスチャンバの基板保持位置よりも低くなるように基板保持器101を降下させて基板保持器101に保持されている基板をプロセスチャンバの基板保持位置に載せかえる。この状態で、基板保持器101上にあった未処理基板はプロセスチャンバの基板保持位置に載置される。
 (8)その後、コントローラ530は、第1基板搬送機構504(第1アームA、第2アームA1、および第2アームB2)を収縮状態にして、基板保持器101を後退させる。この動作により、プロセス処理装置のプロセスチャンバの基板保持位置に未処理の基板を載置する基板の供給が完了する。
 以上(1)から(8)の動作をプロセス処理装置のそれぞれに対して実行することにより、基板搬送装置は、放射状に複数配置されているプロセス処理装置(図6B)のそれぞれに対して基板を供給することができる。または、基板搬送装置は、各プロセス処理装置から処理済みの基板を回収することができる。
 本実施形態によれば、複数の基板保持器のそれぞれに基板が保持されているか否かを効率的に検出することが可能になる。本発明によれば、鉛直上方または鉛直下方から複数の基板保持器のそれぞれに基板が保持されているか否かを、センサ検出専用の部材を用いることなく、検出することができる。そのため、高額となるセンシング技術が不用となり、装置全体のコストダウンを図ることが可能になる。また、基板の検出のために基板保持器を前後移動させる必要がなくなるため、装置のタクトタイムの短縮化が可能になる。
 (第2実施形態)
 次に、図3A、Bの参照により、第2実施形態にかかる第1基板搬送機構504、第2基板搬送機構514の構成を説明する。図3Aは、xy平面において、ロボットアームの全体機構590の公転時における第1基板搬送機構504、第2基板搬送機構514の構成を示している。第1駆動軸503および第2駆動軸513の軸方向は、第1実施形態と同様に、紙面に対して垂直なz軸方向に対応し、駆動軸中心(回転中心)まわりに第1駆動軸503および第2駆動軸513が回転する。
 第2実施形態において、第1基板搬送機構504は、第1アームA、第2アームA1、および第2アームB2により構成される。また、第2基板搬送機構514は、第1アームB、第2アームB2、および第2アームA2により構成される。本実施形態の第1アームAおよび第1アームBがV字形状の部材により構成されているのに対して、第1実施形態で説明した第1アームAおよび第1アームBは、直線状の部材形状により構成されている点で、両者の部材形状は相違する。
 図3A、Bに示す構成例では、簡単化のため、第1アームA、Bはアーム長が同一であり、かつ、駆動軸中心(回転中心)を通るx軸(第1方向軸)の方向およびy軸(第2方向軸)の方向の中心線に関して第1アームA、Bが線対称となるように構成されている。
 第1駆動アームとして機能する第1アームAは第1駆動軸503に連結されており、第1駆動軸503の回転駆動により、第1アームAはxy平面内を旋回可能である。第2駆動アームとして機能する第1アームBは第2駆動軸513に連結されており、第2駆動軸513の回転駆動により、第1アームBはxy平面内を旋回可能である。
 第1アームAの第1端部310(第1連結部)と第1アームBの第1端部320(第4連結部)とは、基板保持器101、102が移動する平面内(xy平面内)のy軸方向に第1オフセット距離(OFF3)だけ離間した位置にある。また、第1アームAの第2端部311(第2連結部)と第1アームBの第2端部321(第3連結部)とは、基板保持器101、102が移動する平面内(xy平面内)のy軸方向に第2オフセット距離(OFF4)だけ離間した位置にある。
 第1アームAの形状と、第1アームBの形状とが、例えば、x軸(第1方向軸)およびy軸(第2方向軸)に対して線対称となる場合、第1オフセット距離(OFF3)=第2オフセット距離(OFF4)の関係を満たす。また、駆動軸中心に関して第1アームAの第1端部310(第1連結部)と第1アームBの第2端部321(第3連結部)とは点対称となる。また、第1アームBの第1端部320(第4連結部)と第1アームAの第2端部311(第2連結部)とは点対称となる。
 第1アームAの第1端部310(第1連結部)と第2端部311(第2連結部)とを結ぶ直線により構成される第1方向軸は、第1アームAが回転駆動可能に連結されている第1駆動軸の回転軸(駆動軸中心)から第1の距離(r3)だけ離間している。また、第1アームBの第2端部321(第3連結部)と第1端部320(第4連結部)とを結ぶ直線により構成される第2方向軸は、第2駆動軸の回転軸(駆動軸中心)から第2の距離(r4)だけ離間している。ここで、第2駆動軸は、第1駆動軸と同軸に設けられ、且つ、第1駆動軸に対して独立に第1アームBが回転駆動可能に連結されている軸である。
 図3Aは、第1アームA、Bが同一のV字形状の部材により構成されている場合を例示しており、この場合、第1オフセット距離(OFF3)と第2オフセット距離(OFF4)とは同一になる。また、駆動軸中心を基準とした距離の関係は、第1の距離(r3)=第2の距離(r4)となる。尚、第1アームA、Bの部材形状は、同一である場合に限らず、異なる部材形状の場合であっても本発明は適用可能である。また、駆動軸中心を基準とした距離の関係は第1の距離(r3)>第2の距離(r4)、または、第1の距離(r3)<第2の距離(r4)なる関係を満たす距離であってもよい。
 基板保持器101は、2つの第1従動アームとして機能する、第2アームA1の一端と、第2アームB1の一端とに連結されている。また、基板保持器102は、2つの第2従動アームとして機能する、第2アームB2の一端と、第2アームA2の一端とに連結されている。第2アームA1の他端は、第1アームAの一端(第1端部)310に回転可能に連結されており、第2アームA2の他端は、第1アームAの他端(第2端部)311に回転可能に連結されている。第2アームB2の他端は、第1アームBの一端(第1端部)320に回転可能に連結されており、第2アームB1の他端は、第1アームBの他端(第2端部)321に回転可能に連結されている。
 第1アームAの第1端部310と第1アームBの第2端部321とを結ぶ直線とx軸とのなす角度をθ3とする。また、第1アームBの第1端部320と第1アームAの第2端部311とを結ぶ直線とx軸とのなす角度をθ4とする。
 第1アームAの第1端部310と第1アームBの第1端部320とが離間して配置され、かつ、第1アームAの第2端部311と第1アームBの第2端部321とが離間して配置されることにより、基板保持器101の進退動作の軌道は、基板保持器102の進退動作の軌道に対して異なった軌道になる。すなわち、基板保持器101の進退動作の軌道に対して、基板保持器102の進退動作の軌道は、角度づれ(θ3+θ4)が生じた状態になる。xy平面内に垂直な第1駆動軸の回転軸方向で、基板保持器101と基板保持器102とは重ならない。このため、検出機構520がz軸方向(鉛直上方または鉛直下方)から基板保持器101、102のそれぞれの状態を検出した場合に、基板保持器101、102のそれぞれに基板Wが保持されているか否かを、コントローラ530は検出結果に基づき判定可能である。
 図3Bは、第2基板搬送機構514を構成する第1アームB、第2アームB2、および第2アームA2の伸張状態を示す。この伸張状態において、基板保持器102から所定のプロセス処理装置に基板Wを供給することができる。あるいは、所定のプロセス処理装置で処理された基板Wをプロセス処理装置から基板保持器102に回収することができる。
 図4Aは、収縮状態にあるロボットアームの全体機構590の鳥瞰図である。第2基板搬送機構514を構成する第1アームAと第2アームA2とは、連結部材400を介して回転可能に連結される。連結部材400を介することにより、第1アームAと第2アームA2との間にz方向のスペースを作ることができ、第1アームAと第2アームA2との間に第2アームB1を配置することができる。
 図4Bは、第2基板搬送機構514を構成する第1アームB、第2アームB2、および第2アームA2の伸張状態を示す鳥瞰図である。図4Bに示すような伸張状態にする場合、コントローラ530は、第1駆動軸503が反時計周り(CCW)方向に回転するように第1モータ501を制御する。その動作と同期動作により、コントローラ530は、第2駆動軸513が時計回り(CW)方向に回転するように第2モータ511を制御する。この同期動作により、第1アームAはCCW方向に回転し、第1アームBはCW方向に回転する。
 第1アームAに連結された第2アームA2と、第1アームBに連結された第2アームB2と、基板保持器102とは、リンク機構を構成している。このため、第1アームA、Bの動作に連動して基板保持器102がxy平面内を前進し、第2基板搬送機構514を構成する第1アームB、第2アームB2、および第2アームA2は伸張状態になる。基板保持器102を元の位置に戻す場合、コントローラ530は、伸張状態にする回転に対して逆回転となるように、第1モータ501と第2モータ511とを同期制御する。
 図4Cは、第1基板搬送機構504を構成する第1アームA、第2アームA1、および第2アームB1の伸張状態の鳥瞰図である。例えば、図4Bで説明した基板保持器102によってプロセス処理装置に供給した基板を、図4Cに示す第1基板搬送機構504の動作により、プロセス処理装置から処理済みの基板を回収することができる。
 図4Cに示すような伸張状態にする場合、コントローラ530は、第1駆動軸503が時計周り(CW)方向に回転するように第1モータ501を制御する。その動作と同期動作により、コントローラ530は、第2駆動軸513が反時計回り(CCW)方向に回転するように第2モータ511を制御する。この同期動作により、第1アームAはCW方向に回転し、第1アームBはCCW方向に回転する。
 第1アームAに連結された第2アームA1と、第1アームBに連結されたと第2アームB1と、基板保持器101とは、リンク機構を構成している。このため、第1アームA、Bの動作に連動し、基板保持器101がxy平面内を前進し、第1基板搬送機構504を構成する第1アームA、第2アームA1、および第2アームB1は伸張状態になる。基板保持器101を元の位置に戻す場合、コントローラ530は、伸張状態にする回転に対して逆回転となるように、第1モータ501と第2モータ511とを同期制御する。
 コントローラ530は第1駆動軸503と第2駆動軸513とが同一回転方向に同期して動作するように第1モータ501及び第2モータ511を制御して、ロボットアームの全体機構590を回転(公転動作)させることも可能である。
 第1実施形態で説明した基板搬送装置の動作(1)~(8)を本実施形態で説明した構成で実行することにより、基板搬送装置は放射状に複数配置されているプロセス処理装置(図6B)のそれぞれに対して基板を供給することができる。または、基板搬送装置は、各プロセス処理装置から処理済みの基板を回収することができる。
 本実施形態によれば、複数の基板保持器のそれぞれに基板が保持されているか否かを効率的に検出することが可能になる。本発明によれば、鉛直上方または鉛直下方から複数の基板保持器のそれぞれに基板が保持されているか否かを、センサ検出専用の部材を用いることなく、検出することができる。そのため、高額となるセンシング技術が不用となり、装置全体のコストダウンを図ることが可能になる。また、基板の検出のために基板保持器を前後移動させる必要がなくなるため、装置のタクトタイムの短縮化が可能になる。
 (電子デバイスの製造システム、デバイスの製造方法)
 図6Bの参照により電子デバイスの製造システムの実施形態を説明する。電子デバイスの製造システムで処理するための基板を搬入、搬出するためのロードロック室(LL1、LL2)、基板に対して種々のプロセス処理を行うプロセス処理装置(650~655)は、基板搬送装置660を中心に配備されている。プロセス処理装置(650~655)を基板搬送装置660に対して放射状に配備することにより、一つの基板搬送装置660で、複数のプロセス処理装置(650~655)に対して基板の搬送を行うことが可能な構成となっている。本実施形態にかかる電子デバイスの製造システムは、上記の実施形態で説明した基板搬送装置と、基板搬送装置により搬送された基板に対してデバイス製造プロセスを実行する少なくとも一つのプロセス処理装置と、を備える。
 また、電子デバイスの製造方法は、基板搬送装置を用いて基板を搬送する搬送工程と、少なくとも一つのプロセス処理装置において、搬送工程で搬送された基板に対して、デバイス製造プロセスを実行するプロセス実行工程とを有する。電子デバイスの製造システムおよび電子デバイスの製造方法により製造される電子デバイスとしては、例えば、半導体、LCD、太陽電池、あるいは光通信機器用デバイスのうち、少なくとも1つが含まれる。
 本実施形態によれば、電子デバイスの製造システム全体のコストダウンを図ることが可能になる。また、基板の検出のために基板搬送装置における基板保持器を前後移動させる必要がなくなるため、電子デバイスの製造システムのタクトタイムの短縮化が可能になる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。

Claims (8)

  1.  基板をそれぞれ保持することが可能な第1基板保持器及び第2基板保持器と、
     前記第1基板保持器に一端が連結されている2つの第1従動アームと、
     前記第2基板保持器に一端が連結されている2つの第2従動アームと、
     2つの前記第1従動アームおよび2つの前記第2従動アームのうち、それぞれの一方が連結されている第1駆動アームと、
     2つの前記第1従動アームおよび2つの前記第2従動アームのうち、それぞれの他方が連結されている第2駆動アームと、
     前記第1駆動アームが回転駆動可能に連結されている第1駆動軸と、
     前記第1駆動軸と同軸に設けられ、且つ前記第1駆動軸に対して独立に前記第2駆動アームが回転駆動可能に連結されている第2駆動軸と、を備え、
     前記第1駆動アームは、2つの前記第1従動アームのうち一方の前記第1従動アームの他端が連結される第1連結部と、2つの前記第2従動アームのうち一方の前記第2従動アームの他端が連結される第2連結部と、を有し、
     前記第2駆動アームは、2つの前記第1従動アームのうち他方の前記第1従動アームの他端が連結される第3連結部と、2つの前記第2従動アームのうち他方の前記第2従動アームの他端が連結される第4連結部と、を有し、
     前記第1連結部と前記第2連結部とを結ぶ直線により構成される第1方向軸は、前記第1駆動軸の回転軸から第1の距離だけ離間し、
     前記第3連結部と前記第4連結部とを結ぶ直線により構成される第2方向軸は、前記第2駆動軸の回転軸から第2の距離だけ離間していることを特徴とする基板搬送装置。
  2.  前記第1の距離と前記第2の距離とは等しいことを特徴とする請求項1に記載の基板搬送装置。
  3.  前記第1基板保持器は、前記第1駆動軸の回転軸と直交する第1平面内に配置され、
     前記第2基板保持器は、前記第1駆動軸の回転軸と直交する第2平面内に配置され、
     前記第1平面に対して前記第2平面は平行であり、且つ、前記第1平面の重力方向の位置と前記第2平面とは異なることを特徴とする請求項1または2に記載の基板搬送装置。
  4.  前記第1基板保持器と前記第2基板保持器とは、前記第1駆動軸の回転軸方向で重ならないように配置されることを特徴とする請求項3に記載の基板搬送装置。
  5.  前記第1駆動軸を回転させる第1駆動手段と、
     前記第2駆動軸を回転させる第2駆動手段と、
     前記第1駆動手段の回転角度および回転速度を検出する第1検出手段と、
     前記第2駆動手段の回転角度および回転速度を検出する第2検出手段と、
     前記第1検出手段の検出結果と前記第2検出手段の検出結果とに基づき前記第1駆動手段および前記第2駆動手段を制御する制御手段と、
     を更に備えることを特徴とする請求項1または2に記載の基板搬送装置。
  6.  前記第1基板保持器は、前記第1駆動アームおよび前記第2駆動アームの回転により動作する2つの前記第1従動アームの移動により、前記第1駆動軸の回転軸から離間する方向に前進し、または、前記第1駆動軸の回転軸に向けて戻る方向に後退する進退動作が可能であり、
     前記第2基板保持器は、前記第1駆動アームおよび前記第2駆動アームの回転により動作する2つの前記第2従動アームの移動により、前記第1駆動軸の回転軸から離間する方向に前進し、または、前記第1駆動軸の回転軸に向けて戻る方向に後退する進退動作が可能であり、
     前記第1基板保持器の前記進退動作の軌道と、前記第2基板保持器の前記進退動作の軌道とは、異なることを特徴とする請求項1乃至4のいずれか1項に記載の基板搬送装置。
  7.  電子デバイスの製造システムであって、
     請求項1乃至6のいずれか1項に記載の基板搬送装置と、
     前記基板搬送装置により搬送された基板に対してデバイス製造プロセスを実行する少なくとも一つのプロセス処理装置と、
     を備えることを特徴とする電子デバイスの製造システム。
  8.  電子デバイスの製造方法であって、
     請求項1乃至6のいずれか1項に記載の基板搬送装置を用いて基板を搬送する搬送工程と、
     少なくとも一つのプロセス処理装置において、前記搬送工程で搬送された基板に対して、デバイス製造プロセスを実行するプロセス実行工程と、
     を有することを特徴とする電子デバイスの製造方法。
PCT/JP2010/005082 2010-08-17 2010-08-17 基板搬送装置、電子デバイスの製造システムおよび電子デバイスの製造方法 WO2012023156A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080068599.2A CN103069559B (zh) 2010-08-17 2010-08-17 基片输送设备以及用于制造电子装置的系统和方法
JP2012529413A JP5395271B2 (ja) 2010-08-17 2010-08-17 基板搬送装置、電子デバイスの製造システムおよび電子デバイスの製造方法
PCT/JP2010/005082 WO2012023156A1 (ja) 2010-08-17 2010-08-17 基板搬送装置、電子デバイスの製造システムおよび電子デバイスの製造方法
KR1020137006623A KR101404870B1 (ko) 2010-08-17 2010-08-17 기판 반송 장치, 전자 디바이스의 제조 시스템 및 전자 디바이스의 제조 방법
US13/752,738 US9346171B2 (en) 2010-08-17 2013-01-29 Substrate transport apparatus, and system and method for manufacturing electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/005082 WO2012023156A1 (ja) 2010-08-17 2010-08-17 基板搬送装置、電子デバイスの製造システムおよび電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/752,738 Continuation US9346171B2 (en) 2010-08-17 2013-01-29 Substrate transport apparatus, and system and method for manufacturing electronic device

Publications (1)

Publication Number Publication Date
WO2012023156A1 true WO2012023156A1 (ja) 2012-02-23

Family

ID=45604833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005082 WO2012023156A1 (ja) 2010-08-17 2010-08-17 基板搬送装置、電子デバイスの製造システムおよび電子デバイスの製造方法

Country Status (5)

Country Link
US (1) US9346171B2 (ja)
JP (1) JP5395271B2 (ja)
KR (1) KR101404870B1 (ja)
CN (1) CN103069559B (ja)
WO (1) WO2012023156A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009319A (ja) * 2013-06-28 2015-01-19 株式会社ダイヘン 搬送装置
JP2015009320A (ja) * 2013-06-28 2015-01-19 株式会社ダイヘン 搬送装置
JP2017159446A (ja) * 2017-04-20 2017-09-14 株式会社ダイヘン 搬送装置
JP2017196732A (ja) * 2017-04-20 2017-11-02 株式会社ダイヘン 搬送装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610952B2 (ja) * 2010-09-24 2014-10-22 日本電産サンキョー株式会社 産業用ロボット
WO2013088547A1 (ja) * 2011-12-15 2013-06-20 タツモ株式会社 ウエハ搬送装置
US10224232B2 (en) * 2013-01-18 2019-03-05 Persimmon Technologies Corporation Robot having two arms with unequal link lengths
US9764465B2 (en) 2013-06-28 2017-09-19 Daihen Corporation Transfer apparatus
JP6511806B2 (ja) * 2014-12-25 2019-05-15 シンフォニアテクノロジー株式会社 多関節ロボット及び多関節ロボットの制御方法
US20180317734A1 (en) * 2015-04-10 2018-11-08 American Invented Products, Inc. Coated scrubbing device with a protective handle
CN117754552A (zh) * 2017-02-15 2024-03-26 柿子技术公司 具有多个末端执行器的物料操纵机器人
CN108962803A (zh) * 2017-05-17 2018-12-07 梭特科技股份有限公司 晶粒移转装置
US10453725B2 (en) * 2017-09-19 2019-10-22 Applied Materials, Inc. Dual-blade robot including vertically offset horizontally overlapping frog-leg linkages and systems and methods including same
NL2020044B1 (en) * 2017-12-08 2019-06-19 Vdl Enabling Tech Group B V A planar multi-joint robot arm system
JP7183635B2 (ja) * 2018-08-31 2022-12-06 東京エレクトロン株式会社 基板搬送機構、基板処理装置及び基板搬送方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216691A (ja) * 1998-02-03 1999-08-10 Hitachi Ltd フロッグレッグ形ロボット並びに処理装置および処理方法
JP2002503561A (ja) * 1998-02-23 2002-02-05 アプライド マテリアルズ インコーポレイテッド 単一駆動式二重平面ロボット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647724A (en) 1995-10-27 1997-07-15 Brooks Automation Inc. Substrate transport apparatus with dual substrate holders
US6299404B1 (en) 1995-10-27 2001-10-09 Brooks Automation Inc. Substrate transport apparatus with double substrate holders
JP3770723B2 (ja) 1998-01-30 2006-04-26 ローツェ株式会社 ハンドリング用ロボット
JP4000036B2 (ja) * 2002-09-30 2007-10-31 東京エレクトロン株式会社 搬送装置
JP4515133B2 (ja) * 2004-04-02 2010-07-28 株式会社アルバック 搬送装置及びその制御方法並びに真空処理装置
US9248568B2 (en) 2005-07-11 2016-02-02 Brooks Automation, Inc. Unequal link SCARA arm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216691A (ja) * 1998-02-03 1999-08-10 Hitachi Ltd フロッグレッグ形ロボット並びに処理装置および処理方法
JP2002503561A (ja) * 1998-02-23 2002-02-05 アプライド マテリアルズ インコーポレイテッド 単一駆動式二重平面ロボット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009319A (ja) * 2013-06-28 2015-01-19 株式会社ダイヘン 搬送装置
JP2015009320A (ja) * 2013-06-28 2015-01-19 株式会社ダイヘン 搬送装置
JP2017159446A (ja) * 2017-04-20 2017-09-14 株式会社ダイヘン 搬送装置
JP2017196732A (ja) * 2017-04-20 2017-11-02 株式会社ダイヘン 搬送装置

Also Published As

Publication number Publication date
JP5395271B2 (ja) 2014-01-22
US20130202398A1 (en) 2013-08-08
JPWO2012023156A1 (ja) 2013-10-28
CN103069559B (zh) 2016-08-24
US9346171B2 (en) 2016-05-24
CN103069559A (zh) 2013-04-24
KR101404870B1 (ko) 2014-06-09
KR20130041340A (ko) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5395271B2 (ja) 基板搬送装置、電子デバイスの製造システムおよび電子デバイスの製造方法
KR102379269B1 (ko) 통합된 얼라이너를 갖는 로봇
KR101775780B1 (ko) 로봇 시스템, 로봇 교시 방법 및 로봇 교시 장치
KR101793366B1 (ko) 본딩 장치 및 본딩 방법
JP5006173B2 (ja) アライナおよびそれを用いたエッジクランプ検出方法
JP6626923B2 (ja) 被加工物の移送および印刷
TWI544566B (zh) 基板運送裝置、基板運送方法及記錄媒體
JP6148025B2 (ja) 受渡位置教示方法、受渡位置教示装置および基板処理装置
US20210170587A1 (en) Robot and Grasping System
JP6252597B2 (ja) ロボットシステム
JP2010074093A (ja) 半導体ウエーハ搬送用ハンド
CN103137526A (zh) 用于安装半导体芯片的设备
CN105575833A (zh) 一种适用于芯片高效转移的倒装键合控制方法
JP2010034376A (ja) 段積みトレイの供給装置及び供給方法、並びに部品実装装置及び方法
JP5309503B2 (ja) 位置決め装置と、位置決め方法と、これらを有する半導体製造装置
JP2009049251A (ja) ウエハ搬送装置
JP2020047922A (ja) 互いに係合するロータを備える搭載ヘッド
WO2019229884A1 (ja) 部品実装システム
JP6865562B2 (ja) 物品移載装置
JP2008311299A (ja) ウェハ位置決め装置と、これを有するウェハ貼り合わせ装置
JP5413529B2 (ja) ウェハ位置決め装置と、これを有するウェハ貼り合わせ装置
JP6236307B2 (ja) 部品実装機
CN104465472B (zh) 对准装置及对准方法
US10403539B2 (en) Robot diagnosing method
JP2014060429A (ja) ウェハ貼り合わせ装置、ウェハ貼り合わせ方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068599.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529413

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137006623

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10856116

Country of ref document: EP

Kind code of ref document: A1