WO2012018042A1 - 冷却ファン - Google Patents

冷却ファン Download PDF

Info

Publication number
WO2012018042A1
WO2012018042A1 PCT/JP2011/067764 JP2011067764W WO2012018042A1 WO 2012018042 A1 WO2012018042 A1 WO 2012018042A1 JP 2011067764 W JP2011067764 W JP 2011067764W WO 2012018042 A1 WO2012018042 A1 WO 2012018042A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring member
air
cooling fan
blades
fan
Prior art date
Application number
PCT/JP2011/067764
Other languages
English (en)
French (fr)
Inventor
秀岳 太田
大志 横山
幸雄 大沢
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to DE112011102626T priority Critical patent/DE112011102626T5/de
Priority to CN201180038424.1A priority patent/CN103097740B/zh
Priority to US13/813,856 priority patent/US9803645B2/en
Publication of WO2012018042A1 publication Critical patent/WO2012018042A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/326Rotors specially for elastic fluids for axial flow pumps for axial flow fans comprising a rotating shroud
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes

Definitions

  • the present invention relates to a cooling fan used in an automobile radiator or the like.
  • This application claims priority based on Japanese Patent Application No. 2010-176430 filed in Japan on August 5, 2010, the contents of which are incorporated herein by reference.
  • Most of this type of cooling fan is provided with a plurality of blades projecting radially outward at a boss portion connected to a rotational drive source such as an engine or an electric motor, and the blade is swung by the power of the rotational drive source.
  • the basic structure is such that air is blown to the object to be cooled.
  • the vicinity of the end portions of the plurality of blades is connected to each other by the ring member, so that air flowing from the outer peripheral side passes over the ring member and is sucked into the space between the blades.
  • the ring member that connects a plurality of blades has a cylindrical shape that is substantially the same height as the blades. After detouring the end of the air suction side, the fan turns suddenly in the axial direction of the fan. And if the air which flows in from an outer peripheral side turns rapidly at the edge part of a ring member, the flow velocity of air will increase locally in that part, and it will be easy to cause noise generation.
  • the air flowing from the outer peripheral side bypasses the air suction side end of the ring member and is sucked into the space between the blades as described above, so that the air bypasses the end. And the fan efficiency tends to decrease accordingly.
  • the present invention is intended to provide a cooling fan that can smoothly introduce air between the blades from the outer peripheral side, and can suppress noise generation and improve fan efficiency.
  • the cooling fan according to the present invention employs the following means in order to solve the above problems.
  • the boss portion connected to the rotational drive source, the plurality of blades projecting radially outward from the boss portion, and the vicinity of the radially outer ends of the plurality of blades
  • a cylindrical ring member that connects the ring members in an annular shape
  • an air inflow groove is provided at an axial end of the ring member on the air suction side.
  • the air inflow groove is recessed with respect to the general surface of the axial end of the ring member on the air suction side, the air sucked into the space between the blades from the outer peripheral side does not make a sudden turn but the axial direction of the fan The direction will change slowly.
  • the air inflow groove is formed between the front region in the rotational direction of all the blades on the ring member and the adjacent blades. It is arranged between the front areas in the direction of rotation.
  • the axial end of the ring member on the air discharge side is displaced in the circumferential direction from the air inflow groove. As shown in FIG.
  • the depth of the air inflow groove and the thickness reduction groove is set to the same depth.
  • the depth of the air inflow groove and the axial thickness of the ring member are The ratio is set in the range of 0.10 to 0.40.
  • the axial end of the ring member on the air discharge side of the ring member has a shaft on the air discharge side of the ring member at a position corresponding to the rear region in the rotation direction of the blade.
  • the wall part extended toward the axial direction outer side from the general surface of the edge part of a direction is provided.
  • the air inflow groove is set in the range of 1.2h to 1.3h.
  • the wall portion is bent and extended with the general surface of the axial end portion on the air discharge side of the ring member as a base point.
  • the angle between the ring member and the wall is set in a range of 15 degrees to 30 degrees.
  • the wall portion includes a rear region in the rotation direction of all the blades on the ring member and the lightening groove formed at a position corresponding to each rear region. It is provided in between.
  • a boss portion connected to the rotational drive source, a plurality of blades formed integrally with the boss portion and radially outward, and the plurality of blades And a cylindrical ring member that annularly connects the radially outer ends, and an air inflow groove is provided at an axial end of the ring member on the air suction side.
  • the air inflow groove is provided at the axial end of the ring member on the air suction side, so that the air flowing in from the outer peripheral side does not make a sudden turn through the air inflow groove of the ring member and moves in the axial direction. Since the direction is changed to be sucked into the space between the blades, it is possible to suppress an increase in the flow velocity of the air due to the sudden swirling of the air and prevent the generation of noise.
  • the air flowing from the outer peripheral side is sucked between the blades through the air inflow groove without largely detouring at the axial end of the ring member, so that fan efficiency is reliably improved. Can be made.
  • the air inflow groove is disposed between the front region in the rotational direction of all the blades on the ring member and the front region in the rotational direction of the adjacent blades. Air can be efficiently and evenly sucked from the outer peripheral side of the ring member, and the weight balance in the circumferential direction can be improved.
  • the hollow end groove is provided in the axial end portion on the air discharge side of the ring member so as to be displaced in the circumferential direction from the air inflow groove, The weight balance in the direction can be further increased.
  • the depth of the air inflow groove and the lightening groove is set to the same depth, the weight balance in the circumferential direction can be further increased.
  • the wall portion is provided at a position corresponding to the rear region in the rotational direction of the blade at the axial end of the ring member on the air discharge side, the air is supplied to the blade. Even after passing through the rear end in the rotational direction, air can be prevented from flowing out of the ring member. For this reason, the noise of a fan can be reduced more reliably.
  • fan noise can be effectively reduced by regulating the axial height of the wall portion.
  • the wall portion is bent and extended with the general surface of the axial end portion on the air discharge side of the ring member as a base point, thereby reducing fan noise without lowering fan efficiency. It can be reliably reduced.
  • the noise of the fan can be effectively reduced by regulating the angle of the wall portion.
  • the wall portion is provided between the rear region in the rotation direction of all the blades on the ring member and the lightening groove formed at a position corresponding to each rear region. Therefore, even if it is a ring member in which the lightening groove is set, it becomes possible to lay out the wall portion together. For this reason, the noise of a fan can be reduced, improving a design freedom.
  • the eleventh aspect of the present invention it is possible to prevent the occurrence of noise by suppressing an increase in the air flow velocity due to the sudden turning of the air. Moreover, fan efficiency can be improved reliably.
  • FIG. 2 is a cross-sectional view corresponding to the AA cross section of FIG. 1 of the cooling fan in the first embodiment of the present invention. It is a typical side view of the fan main body of the cooling fan in 1st Embodiment of this invention. It is a graph which shows the result of having investigated the fan efficiency and the fan noise by changing the depth of the air inflow groove
  • FIG. 1 is a front view of the cooling fan 1 according to the first embodiment
  • FIG. 2 is a perspective view showing a fan main body 10 of the cooling fan 1
  • FIG. FIG. A cooling fan 1 according to the first embodiment is an axial fan used for a radiator of an automobile, and is a fan main body 10 that is rotationally driven by a rotational drive source such as an engine or an electric motor (not shown), and an outer peripheral side of the fan main body 10. And a shroud 11 for increasing the efficiency of introducing air to the radiator.
  • the shroud 11 is provided with a circular air guide hole 30 having a depth depth along the axial direction of the fan main body 10 at the approximate center of the front surface thereof, and the fan main body 10 is located inside the peripheral wall surface of the air guide hole 30. It is arranged so that it can rotate. Moreover, the area
  • the fan body 10 includes a bottomed cylindrical boss portion 12 connected to an output shaft of a rotational drive source, and a plurality of blades 13 (this first portion) projecting radially outward integrally with the outer peripheral surface of the boss portion 12.
  • a plurality of blades 13 projecting radially outward integrally with the outer peripheral surface of the boss portion 12.
  • a cylindrical ring that connects the radially outer end regions of the plurality of blades 13 in an annular shape.
  • a member 14 In the case of the first embodiment, the ring member 14 is in a state in which the position offset radially inward from the radially outer end of the blade 13 is connected in an annular shape.
  • each blade 13 is set such that the elevation angle is large on the root side and the chord length is short, and the elevation angle gradually decreases and the chord length gradually increases toward the extended end side. Has been.
  • each blade 13 is formed in an arc shape that draws a circle that is coaxial with the boss portion 12 in a front view, and a substantially constant minute gap is formed with respect to the inner peripheral surface of the air guide hole 30 of the shroud 11.
  • the blade 13 of the first embodiment has a forward wing shape in which the extended end side is curved toward the front in the rotational direction when viewed from the front, and in particular, the edge portion on the front side in the rotational direction extends. As it approaches the end, the amount of bulging forward increases.
  • bulge region 13a the region where the bulge amount is large is referred to as “bulge region 13a”.
  • the ring member 14 is provided with a plurality of air inflow grooves 16 at an axial end on the air suction side (front side of the fan main body 10), and an axial end on the air discharge side (rear surface side of the fan main body 10). Similarly, a plurality of lightening grooves 17 are formed in the part.
  • the general surface 14a at the axial end of the ring member 14 on the air suction side is formed at substantially the same height as the axial end of the blade 13 (the left end in FIG. 3).
  • the bottom portion of 16 is formed to be depressed by a predetermined depth with respect to the general surface 14a.
  • Each air inflow groove 16 is formed between the bulging area 13 a of one blade 13 and the bulging area 13 a of another blade 13 adjacent to the circumferential area of the ring member 14.
  • the air inflow grooves 16 are provided at equal intervals in the circumferential area of the ring member 14.
  • the general surface 14a at the end of the ring member 14 in the axial direction on the air suction side is formed at substantially the same height as one end of the blade 13 in the axial direction. The height may be different from one end of the blade 13 in the axial direction.
  • the general surface 14b of the axial end portion on the air discharge side of the ring member 14 is formed at substantially the same height as the other axial end portion (the right end portion in FIG. 3) of the blade 13.
  • the bottom portion of the lightening groove 17 is formed to be recessed by a predetermined depth with respect to the general surface 14b.
  • Each of the lightening grooves 17 is formed at a position facing the pressure surface of each blade 13 and at a position where at least the bottom thereof is offset on the ring member 14 from the bottom of the air inflow groove 16 in the circumferential direction.
  • the respective hollow grooves 17 are provided at equal intervals in the peripheral area of the ring member 14.
  • the general surface 14b at the axial end of the ring member 14 on the air discharge side is also formed at substantially the same height as the other axial end of the blade 13. 14b may have a height different from the other end of the blade 13 in the axial direction.
  • the air inflow groove 16 and the lightening groove 17 are not square-shaped grooves, but are formed in a trapezoidal shape having a slanted surface. Thereby, the ring member 14 can be easily molded when the fan body 10 is molded.
  • the air inflow groove 16 and the lightening groove 17 are set to the same depth. However, the depths of the air inflow groove 16 and the lightening groove 17 are not necessarily the same.
  • the fan main body 10 is a resin molded product molded from a resin material such as polypropylene, and is formed by filling the upper and lower molds with a resin material.
  • the upper mold is provided with a plurality of gates 41 (refer to two-dot chain lines in FIG. 1) for injecting a resin material (for example, five locations in the first embodiment).
  • the formation position of the gate 41 will be described in more detail. As shown in FIG. 1, the formation position of the bottom surface portion of the boss portion 12 is located at the root portion where the plurality of blades 13 are integrally provided.
  • the resin material melted in a high temperature state is injected from each gate 41, and the resin material is sequentially filled into the space where the boss portion 12 is formed and the space where the plurality of blades 13 are formed. Is done. Subsequently, the resin material is finally filled in the space in which the ring member 14 is formed. At this time, the resin material injected from the adjacent gates 41 is coupled in the vicinity of the center of the ring member 14 between the adjacent blades 13 through the spaces forming the blades 13.
  • the fan main body 10 of the cooling fan 1 is formed as having the joint portion (weld) W between the resins near the center of the ring member 14 between the adjacent blades 13 (two points in FIG. 2). (See chain line).
  • this cooling fan 1 it is possible to prevent the generation of noise due to the rapid increase in the air flow rate at the ring member 14 portion. Further, in the case of this cooling fan 1, air flowing in from the outer peripheral side of the shroud 11 passes through the air inflow groove 16 portion where a sufficient air passage area is secured and is sucked between the blades 13 with the shortest distance. The air flow resistance is small, and it can be expected that fan efficiency is sufficiently improved.
  • the air inflow groove 16 is disposed between the front region in the rotational direction of all the blades 13 on the ring member 14 and the front region in the rotational direction of the adjacent blade 13. Therefore, air can be efficiently and evenly sucked into the fan main body 10 from the outer peripheral side of the ring member 14, and the weight balance (rotation balance) in the circumferential direction of the fan main body 10 can be improved.
  • the hollowing groove 17 is provided at the axial end of the ring member 14 on the air discharge side so as to be displaced in the circumferential direction from the air inflow groove 16,
  • the circumferential weight balance is better.
  • the depth of the air inflow groove 16 and the thickness reduction groove 17 is set to the same depth, and the axial thickness of the ring member 14 is uniform over almost the entire area in the circumferential direction. Therefore, the weight balance in the circumferential direction of the ring member 14 is further improved.
  • FIG. 4 is a diagram showing the dimensional relationship of each part of the cooling fan used in this experiment.
  • L1 indicates the axial thickness of the ring member 14
  • L2 indicates the depth of the air inflow groove 16
  • L3 indicates the depth of the lightening groove 17.
  • L2 / L1 is a ring removal ratio, the ring removal ratio is changed between 0 and 1, and the fan efficiency and fan noise at that time are measured. Note that L3 / L1 was equal to L2 / L1.
  • FIG. 5 is a graph showing the experimental results at this time. As is clear from the graph of FIG. 5, good results are obtained for both fan efficiency and fan noise when the removal ratio L2 / L1 is in the range of 0.10 to 0.40. In the range of 25, particularly excellent results were obtained.
  • the direction of the stress to be received is different between the front side and the rear side in the rotation direction of the blade 13, and a twisting stress is generated in the blade 13 as a whole. This stress is concentrated near the center of the ring member 14 connecting the blades 13.
  • the temperature of the injected resin material is slightly lower at the time when it reaches the ring member 14 than when it is injected into the gate.
  • the strengths of the bonding sites W of the resins in the fan main body 10 may vary.
  • it is also conceivable to use a high-quality resin material with high bonding strength increase the thickness of the ring member 14, or increase the axial length.
  • the cost of the fan main body 10 increases as a result of an increase in the resin material or an increase in the amount of resin used.
  • the stress acting on the object tends to be distributed on the change point side.
  • the air inflow groove 16 is provided on the air suction side of the ring member 14, and the lightening groove 17 is provided on the air discharge side.
  • the stress which acts can be disperse
  • FIG. 6 is a perspective view showing the fan main body 210 of the cooling fan 201 of the second embodiment.
  • the cooling fan 201 is an axial fan used in a radiator of an automobile, and is a fan body 210 that is rotationally driven by a rotational drive source such as an engine or an electric motor (not shown).
  • a rotational drive source such as an engine or an electric motor (not shown).
  • a shroud (not shown in FIG.
  • the difference between the fan main body 210 of the second embodiment and the fan main body 10 of the first embodiment is that the ring member 14 of the first embodiment is more radial than the end of the blade 13 on the radially outer side.
  • the ring member 14 of the second embodiment is in a state in which the radially outer end of the blade 13 is connected in an annular shape, whereas the position offset inward is in an annularly connected state. is there. Therefore, in the cooling fan 201, in addition to the same effects as those of the first embodiment described above, air suction and discharge can be controlled using the entire blade 13, and the noise of the cooling fan 1 can be prevented more effectively. In addition, the fan efficiency can be improved.
  • FIG. 7 is a perspective view showing the fan main body 310 of the cooling fan 301 according to the third embodiment
  • FIG. 8 is a view showing the dimensional relationship of each part of the cooling fan 301.
  • the difference between the third embodiment and the first embodiment is that the fan body 310 of the cooling fan 301 in the third embodiment has a shaft on the air discharge side of the ring member 14.
  • the wall part 42 is formed in the edge part of a direction, it exists in the point which the wall part 42 is not formed in 1st Embodiment.
  • the wall 42 will be described in detail.
  • the wall portion 42 is formed so as to extend along the axial direction from the general surface 14b of the axial end portion of the ring member 14 on the air discharge side. And the wall part 42 is arrange
  • the wall portion 42 is an end portion on the air discharge side of the ring member 14 and is disposed at a position substantially overlapping with the air inflow groove 16 in the axial direction. Further, the wall portion 42 is inclined so that both side surfaces in the circumferential direction are positioned on the extension line of the circumferential side surface of the lightening groove 17, and is formed in a tapered trapezoidal shape as a whole.
  • the air flows outward in the radial direction of the ring member 14, and further flows into the negative pressure surface side of the fan main body 310. In such a case, a blade tip vortex is generated, and the noise of the cooling fan 301 is increased.
  • the wall portion 42 is formed at a predetermined position of the ring member 14, the air discharged from the blade 13 is obstructed by the wall portion 42 and is radially outside of the ring member 14. It becomes difficult to flow.
  • the air discharged from the blade 13 is obstructed by the wall portion 42 and is less likely to flow radially outward than the ring member 14. Furthermore, the noise of the cooling fan 301 can be reduced with certainty.
  • the wall part 42 is arrange
  • the wall portion 42 can be laid out in coexistence with the lightening groove 17, and the degree of design freedom can be increased. .
  • FIG. 8 indicates the height from the lightening groove 17 to the general surface 14 a at the axial end of the ring member 14 on the air suction side.
  • the height H of the wall portion 42 means the height in the axial direction from the air inflow groove 16 to the tip of the wall portion 42.
  • the height of the wall part 42 was changed with the case of 1.2h, and the case of 1.3h, and the fan noise at that time was compared with the noise when there is no wall part 42 (current h).
  • FIG. 9 is a graph showing the experimental results at this time.
  • the height H of the wall portion 42 is 1.2 h to 1.3 h with respect to the height h from the lightening groove 17 to the general surface 14 a at the axial end of the ring member 14 on the air suction side. It is desirable to be set within the range.
  • FIG. 10 is a perspective view showing the fan main body 410 of the cooling fan 401 of the fourth embodiment
  • FIG. 11 is a cross-sectional view taken along the line BB of FIG.
  • the difference between the fourth embodiment and the third embodiment is that the wall portion 42 of the third embodiment is formed at the end of the ring member 14 in the axial direction on the air discharge side.
  • the wall portion 43 of the fourth embodiment extends from the general surface 14b along the axial direction
  • the wall portion 43 of the fourth embodiment is formed to bend and extend obliquely outward with the general surface 14b of the ring member 14 as a base point. There is in point.
  • the wall portion 43 is provided in a state inclined obliquely outward with respect to the ring member 14 by an angle ⁇ .
  • the ring member 14 is formed in a divergent shape toward the air discharge side, and the opening area gradually increases from the air suction side toward the air discharge side.
  • FIG. 12 is an explanatory diagram showing the air flow when the fan main body 410 of the cooling fan 401 is rotationally driven.
  • the fan main body 410 of the cooling fan 401 when the fan main body 410 of the cooling fan 401 is driven to rotate, air flows from the air suction side (the back side of the paper in FIG. 12) of the cooling fan 401 to the space between the blades 13. The air is sucked into the space, and the air escapes to the air discharge side of the fan main body 410 (the front side in FIG. 12).
  • the opening area of the ring member 14 gradually increases toward the air discharge side, the flow rate of the discharged air becomes slower on the air discharge side of the ring member 14. Thereby, the air pressure by the cooling fan 401 can be increased.
  • the air pressure by the cooling fan 401 can be increased, so that the fan efficiency can be improved.
  • the angle ⁇ between the ring member 14 and the wall portion 43 is preferably set in a range of 15 degrees to 30 degrees. This will be described in more detail with reference to FIG. FIG. 13 is a graph of experimental results obtained by examining the fan efficiency by changing the angle ⁇ of the wall 43. As shown in the figure, when the angle ⁇ is set in the range of 15 degrees to 30 degrees, the fan efficiency is improved as compared with the conventional case where there is no wall portion 43 (wave ring). I can confirm.
  • the cooling fan is used for cooling the radiator, but the cooling fan according to the present invention is not limited to the radiator cooling, and may be used for cooling other devices. good.
  • the air inflow groove is provided at the axial end of the ring member on the air suction side, so that the air flowing in from the outer peripheral side does not make a sudden turn through the air inflow groove of the ring member and moves in the axial direction. Since the direction is changed to be sucked into the space between the blades, it is possible to suppress an increase in the flow velocity of the air due to the sudden swirling of the air and prevent the generation of noise.
  • the air flowing from the outer peripheral side is sucked between the blades through the air inflow groove without largely detouring at the axial end of the ring member, so that fan efficiency is reliably improved. Can be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 この冷却ファンは、回転駆動源に連結されるボス部(12)と、このボス部から径方向外側に突出する複数のブレード(13)と、この複数のブレードの径方向外側の端部の近傍を環状に連結する筒状のリング部材(14)とを備える。ボス部(12)から径方向外側に突出する複数のブレード(13)を、径方向外側の端部の近傍において、円筒状のリング部材(14)で連結する。リング部材(14)のエア吸い込み側の軸方向の端部にエア流入溝(16)を設ける。エア流入溝(16)は、リング部材(14)上の全ブレード(13)の回転方向の前部領域と隣接するブレード(13)の回転方向の前部領域の間に配置する。外周側から流入したエアは、リング部材(14)のエア流入溝(16)を通過し、緩やかに向きを変えてブレード(13)間に吸い込まれる。

Description

冷却ファン
 この発明は、自動車のラジエータ等に用いられる冷却ファンに関するものである。
 本願は、2010年8月5日に、日本に出願された特願2010-176430号に基づき優先権を主張し、その内容をここに援用する。
 この種の冷却ファンの多くは、エンジンや電動モータ等の回転駆動源に連結されるボス部に、径方向外側に突出する複数のブレードが設けられ、回転駆動源の動力によってブレードを旋回させて、冷却対象物にエアを送風する基本構造とされている。
 ところで、このような冷却ファンにおいては、ブレードの肉厚を薄くすればファン効率を高めるうえで有利であることが知られているが、ブレードの肉厚を薄くすると、回転時にブレードが撓んでばたつきが生じ易くなる。
 このため、ばたつきの抑制とブレードの肉薄化の両立を図った冷却ファンとして、複数のブレードの径方向外側の端部の近傍を円筒状のリング部材によって連結したものが案出されている(例えば、特許文献1参照)。
国際公開第2008/072516号明細書
 この従来の冷却ファンでは、複数のブレードの端部の近傍がリング部材によって相互に連結されているため、外周側から流入するエアはリング部材を乗り越えてブレード間のスペースに吸い込まれる。
 しかし、この従来の冷却ファンの場合、複数のブレードを連結するリング部材がブレードとほぼ同高さの円筒形状とされているため、外周側からブレード間のスペースに吸い込まれるエアは、リング部材のエア吸い込み側の端部を迂回してからファンの軸方向に急旋回することになる。そして、外周側から流入するエアがリング部材の端部で急旋回すると、エアの流速がその部分で局部的に高まり、そのことが騒音発生の原因となり易い。
 また、従来の冷却ファンにおいては、外周側から流れ込むエアが上述のようにリング部材のエア吸い込み側の端部を迂回してブレード間のスペースに吸い込まれるため、エアが端部を迂回する分流路が長くなり、その分ファン効率が低下し易くなる。
 そこでこの発明は、外周側からブレード間にエアをスムーズに導入できるようにして、騒音発生の抑制とファン効率の向上を図ることのできる冷却ファンを提供しようとするものである。
 この発明に係る冷却ファンでは、上記課題を解決するために以下の手段を採用した。
 本発明の第1の態様によれば、回転駆動源に連結されるボス部と、このボス部から径方向外側に突出する複数のブレードと、この複数のブレードの径方向外側の端部の近傍を環状に連結する筒状のリング部材と、を備えた冷却ファンにおいて、前記リング部材のエア吸い込み側の軸方向の端部にエア流入溝が設けられている。
 これにより、外周側から流れ込んだエアは、リング部材のエア流入溝を通ってブレード間のスペースに吸い込まれるようになる。エア流入溝は、リング部材のエア吸い込み側の軸方向の端部の一般面に対して窪んでいるため、外周側からブレード間のスペースに吸い込まれるエアは、急旋回せずにファンの軸方向に緩やかに向きを変えることになる。
 本発明の第2の態様によれば、本発明の第1の態様に係る冷却ファンにおいて、前記エア流入溝は、前記リング部材上の全ブレードの回転方向の前部領域と、隣接するブレードの回転方向の前部領域の間に配置されている。
 本発明の第3の態様によれば、本発明の第2の態様に係る冷却ファンにおいて、前記リング部材のエア吐き出し側の軸方向の端部には、前記エア流入溝と円周方向でずれるように、肉抜き溝が設けられている。
 本発明の第4の態様によれば、本発明の第3の態様に係る冷却ファンにおいて、前記エア流入溝と前記肉抜き溝の深さが同じ深さに設定されている。
 本発明の第5の態様によれば、本発明の第1の態様から第4の態様のいずれかに記載の冷却ファンにおいて、前記エア流入溝の深さと前記リング部材の軸方向の肉厚の比率が、0.10~0.40の範囲に設定されている。
 本発明の第6の態様によれば、前記リング部材におけるエア吐き出し側の軸方向の端部には、前記ブレードの回転方向の後部領域に対応する箇所に、前記リング部材におけるエア吐き出し側の軸方向の端部の一般面より軸方向外側に向かって延出した壁部が設けられている。
 本発明の第7の態様によれば、前記肉抜き溝から前記リング部材のエア吸い込み側の軸方向の端部の一般面に至る間の高さをhとしたとき、前記エア流入溝から前記壁部の先端に至る間の高さは、1.2h~1.3hの範囲に設定されている。
 本発明の第8の態様によれば、前記壁部は、前記リング部材におけるエア吐き出し側の軸方向の端部の一般面を基点に屈曲延出されている。
 本発明の第9の態様によれば、前記リング部材と前記壁部との間の角度は、15度~30度の範囲に設定されている。
 本発明の第10の態様によれば、前記壁部は、前記リング部材上の全ブレードの回転方向の後部領域と、各々の後部領域に対応する位置に形成されている前記肉抜き溝との間に設けられている。
 本発明の第11の態様によれば、回転駆動源に連結されるボス部と、このボス部に一体的に、且つ径方向外側に向かって形成された複数のブレードと、これら複数のブレードの径方向外側の端部を環状に連結する筒状のリング部材とを備え、前記リング部材のエア吸い込み側の軸方向の端部にエア流入溝が設けられている。
 この発明によれば、リング部材のエア吸い込み側の軸方向の端部にエア流入溝が設けられ、外周側から流入するエアが、リング部材のエア流入溝を通って急旋回せずに軸方向に向きを変えてブレード間のスペースに吸い込まれるようになっているため、エアが急旋回することによるエアの流速の増大を抑制して、騒音の発生を未然に防止することができる。また、この発明によれば、外周側から流入するエアが、リング部材の軸方向の端部で大きく迂回せずに、エア流入溝を通ってブレード間に吸い込まれるため、ファン効率を確実に向上させることができる。
 本発明の第2の態様によれば、エア流入溝が、リング部材上の全ブレードの回転方向の前部領域と、隣接するブレードの回転方向の前部領域の間に配置されているため、リング部材の外周側からエアを効率良く均等に吸い込むことができるとともに、円周方向の重量バランスを良好にすることができる。
 本発明の第3の態様によれば、リング部材のエア吐き出し側の軸方向の端部に、エア流入溝と円周方向でずれるように、肉抜き溝が設けられていることから、円周方向の重量バランスをより高めることができる。
 本発明の第4の態様によれば、エア流入溝と肉抜き溝の深さが同じ深さに設定されていることから、円周方向の重量バランスをさらに一層高めることができる。
 本発明の第5の態様によれば、騒音の発生を確実に防止することができると共に、ファン効率の低下を防止することができる。
 本発明の第6の態様によれば、リング部材におけるエア吐き出し側の軸方向の端部には、ブレードの回転方向の後部領域に対応する箇所に壁部が設けられているので、エアがブレードの回転方向の後方側の端部を通過した後でもリング部材の外側にエアが流れ出ることを抑制できる。このため、さらに確実にファンの騒音を低減することができる。
 本発明の第7の態様によれば、壁部の軸方向高さを規制することにより、ファンの騒音を効果的に低減することができる。
 本発明の第8の態様によれば、壁部を、リング部材におけるエア吐き出し側の軸方向の端部の一般面を基点に屈曲延出することにより、ファン効率を下げることなくファンの騒音を確実に低減できる。
 本発明の第9の態様によれば、壁部の角度を規制することにより、ファンの騒音を効果的に低減することができる。
 本発明の第10の態様によれば、リング部材上の全ブレードの回転方向の後部領域と、各々の後部領域に対応する位置に形成されている肉抜き溝との間に壁部を設けているので、肉抜き溝が設定されているリング部材であっても、共存して壁部をレイアウトすることが可能になる。このため、設計自由度を向上させつつ、ファンの騒音を低減することができる。
 本発明の第11の態様によれば、エアが急旋回することによるエアの流速の増大を抑制して、騒音の発生を未然に防止することができる。また、ファン効率を確実に向上させることができる。
この発明の第1実施形態における冷却ファンの正面図である。 この発明の第1実施形態における冷却ファンのファン本体の斜視図である。 この発明の第1実施形態における冷却ファンの図1のA-A断面に対応する断面図である。 この発明の第1実施形態における冷却ファンのファン本体の模式的な側面図である。 この発明の第1実施形態における冷却ファンのエア流入溝の深さを変えてファン効率とファン騒音を調べた結果を示すグラフである。 この発明の第2実施形態における冷却ファンのファン本体の斜視図である。 この発明の第3実施形態における冷却ファンのファン本体の斜視図である。 この発明の第3実施形態における冷却ファンのファン本体の模式的な側面図である。 この発明の第3実施形態における壁部の高さを変えてファン騒音を調べた結果を示すグラフである。 この発明の第4実施形態における冷却ファンのファン本体の斜視図である。 図10のB-B線に沿う断面図である。 この発明の第4実施形態におけるファン本体へのエアの流れを示す説明図である。 この発明の第4実施形態における壁部の角度を変化させてファン効率を調べた結果を示すグラフである。
(第1実施形態)
 以下、この発明の第1実施形態を図1~図5に基づいて説明する。
 図1は、この第1実施形態に係る冷却ファン1を正面から見た図であり、図2は、冷却ファン1のファン本体10を示す斜視図、図3は、冷却ファン1の断面を示す図である。
 この第1実施形態の冷却ファン1は、自動車のラジエータに用いられる軸流ファンであり、図示しないエンジンや電動モータ等の回転駆動源によって回転駆動されるファン本体10と、ファン本体10の外周側を覆ってラジエータに対するエアの導入効率を高めるためのシュラウド11と、を備えている。
 シュラウド11は、その前面のほぼ中央に、ファン本体10の軸方向に沿った奥行き深さを持つ円形の導風孔30が設けられ、その導風孔30の周壁面の内側にファン本体10が回転可能に配置されるようになっている。また、シュラウド11の前面の導風孔30を囲む領域は、図3に示すように、導風孔30に向かって窪むテーパ面31とされている。
 ファン本体10は、回転駆動源の出力軸に連結される有底円筒状のボス部12と、このボス部12の外周面と一体的に径方向外側に突出する複数のブレード13(この第1実施形態の場合、ブレードは5枚であり、それぞれボス部12の外周面と一体成形されている。)と、複数のブレード13の径方向外側の端部領域を環状に連結する円筒状のリング部材14と、を備えている。(この第1実施形態の場合、リング部材14は、ブレード13の径方向外側の端部より径方向内側にオフセットした位置を環状に連結した状態になっている。)
 ここで、ファン本体10について、シュラウド11の外側に露出する側の面(図1において正面に見える側の面)を前面と呼び、その裏側の面を後面と呼ぶものとすると、各ブレード13は、図1に矢印Rで示すファン本体10の回転方向の前方側がファン本体10の前面側に開くように傾斜している。したがって、ブレード13の後面側は正圧面とされ、ブレード13の前面側は負圧面とされている。また、各ブレード13は、付根部側では仰角が大きく、かつ、翼弦長が短く設定されており、延出端側に向かうにつれて仰角が次第に小さくなるとともに翼弦長が次第に長くなるように設定されている。そして、各ブレード13の延出端は、正面視でボス部12と同軸中心の円を描く円弧形状に形成され、シュラウド11の導風孔30の内周面に対してほぼ一定の微小隙間が維持されるようになっている。
 また、この第1実施形態のブレード13は、正面視で延出端側が回転方向の前方に向かって湾曲する前進翼型とされているが、特に、回転方向の前方側の縁部は延出端に近づくにつれて前方側への膨出量が大きくなっている。この膨出量の大きくなっている領域を、以下では「膨出領域13a」と呼ぶものとする。
 リング部材14は、エア吸い込み側(ファン本体10の前面側)の軸方向の端部に複数のエア流入溝16が設けられるとともに、エア吐き出し側(ファン本体10の後面側)の軸方向の端部に同様に複数の肉抜き溝17が形成されている。
 リング部材14のエア吸い込み側の軸方向の端部の一般面14aは、ブレード13の軸方向の一端(図3中の左側の端部)とほぼ同高さに形成されており、エア流入溝16の底部は、この一般面14aに対して所定深さだけ窪んで形成されている。各エア流入溝16は、リング部材14の周域において、一のブレード13の膨出領域13aと隣接する別のブレード13の膨出領域13aの間に形成されている。各エア流入溝16はリング部材14の周域に等間隔に設けられている。なお、この第1実施形態では、リング部材14のエア吸い込み側の軸方向の端部の一般面14aがブレード13の軸方向の一端とほぼ同高さに形成されているが、一般面14aはブレード13の軸方向の一端と異なる高さであっても良い。
 また、リング部材14のエア吐き出し側の軸方向の端部の一般面14bは、ブレード13の軸方向の他端(図3中の右側の端部)とほぼ同高さに形成されており、肉抜き溝17の底部は、この一般面14bに対して所定深さだけ窪んで形成されている。各肉抜き溝17は、各ブレード13の正圧面に臨む位置で、かつ、少なくともその底部が、リング部材14上でエア流入溝16の底部と円周方向でオフセットする位置に形成されている。各肉抜き溝17はリング部材14の周域に等間隔に設けられている。なお、この第1実施形態では、リング部材14のエア吐き出し側の軸方向の端部の一般面14bについてもブレード13の軸方向の他端とほぼ同高さに形成されているが、一般面14bはブレード13の軸方向の他端と異なる高さであっても良い。
 また、エア流入溝16と肉抜き溝17は、方形状の溝ではなく、傾斜面を持つ先開きの台形状に形成されている。これにより、ファン本体10の成形時には、リング部材14を容易に型成形することができる。
 また、この第1実施形態の場合、エア流入溝16と肉抜き溝17は同深さに設定されている。ただし、エア流入溝16と肉抜き溝17の深さは必ずしも同じである必要はない。
 次に、冷却ファン1のファン本体10の製造方法について説明する。
 ファン本体10は、ポリプロピレン等の樹脂材により成形された樹脂成形品であって、上下型内に樹脂材を充填することで形成されている。上型には、樹脂材を注入するためのゲート41(図1における2点鎖線参照)が複数個所(例えば、本第1実施形態では5箇所)設けられている。ゲート41の形成位置を、より詳述すると、図1に示すように、ボス部12の筒底面部成形部位であって、複数のブレード13が一体的に設けられる根元部に位置している。
 そして、上下型を型合わせした後、各ゲート41から高温状態で溶融した樹脂材が注入されて、ボス部12を形成する空間内と複数のブレード13を形成する空間内に樹脂材が順次充填される。続いて、最後にリング部材14を形成する空間に樹脂材が充填されることになる。このとき、隣接するゲート41から注入された樹脂材は、それぞれブレード13を形成する空間を経由して隣接するブレード13の間のリング部材14の中央付近で結合される。
 このように、冷却ファン1のファン本体10は、各隣接するブレード13の間のリング部材14の中央付近に樹脂同志の結合部位(ウェルド)Wを有するものとして成形される(図2における2点鎖線参照)。
 以上の構成において、この冷却ファン1のファン本体10が回転駆動されると、図3に矢印で示すように、シュラウド11の導風孔30の主に前方側からエアがブレード13間のスペースに吸い込まれ、そのエアがファン本体10の後方側に配置された図示しないラジエータに供給される。
 このとき、シュラウド11の導風孔30には、前方側だけでなくシュラウド11の外周側からもエアが流入する。このシュラウド11の外周側から流入するエアは、シュラウド11の前面のテーパ面31に沿って導風孔30方向に進み、ファン本体10のリング部材14に設けられたエア流入溝16を通過してブレード13間に吸い込まれ、軸方向に沿って吐き出される。
 このシュラウド11の外周側から流入するエアは、リング部材14の端部の一般面14aよりも低いエア流入溝16を通過してブレード13間に吸い入れられるため、そのエアはリング部材14部分で急激に旋回することなく、軸方向に緩やかに向きを変えることになる。このため、この冷却ファン1の場合、シュラウド11の外周側から流入したエアの流速がリング部材14部分で急激に増速されることがない。
 したがって、この冷却ファン1においては、エアの流速がリング部材14部分で急激に増速されることによる騒音の発生を未然に防止することができる。
 また、この冷却ファン1の場合、シュラウド11の外周側から流入したエアが、充分なエア通過面積を確保されたエア流入溝16部分を通過して最短距離をもってブレード13間に吸い入れられるため、エアの流通抵抗が少なく、その分ファン効率の充分な向上を望むことができる。
 また、この冷却ファン1においては、エア流入溝16が、リング部材14上の全ブレード13の回転方向の前部領域と、隣接するブレード13の回転方向の前部領域の間に配置されているため、リング部材14の外周側からファン本体10部分にエアを効率良く均等に吸い込むことができ、しかも、ファン本体10の円周方向の重量バランス(回転バランス)を良好にすることができる。
 さらに、この冷却ファン1では、リング部材14のエア吐き出し側の軸方向の端部にエア流入溝16と円周方向でずれるように肉抜き溝17が設けられているため、リング部材14の円周方向の重量バランスがより良好となっている。
 特に、この第1実施形態の場合、エア流入溝16と肉抜き溝17の深さが同じ深さに設定され、リング部材14の軸方向の肉厚が円周方向のほぼ全域で均等になっているため、リング部材14の円周方向の重量バランスはさらに良好となっている。
 ここで、リング部材14に形成するエア流入溝16の深さと、ファン効率及びファン騒音の関係を調べた実験結果について説明する。
 図4は、この実験で用いた冷却ファンの各部の寸法関係を示す図である。
 同図においては、L1は、リング部材14の軸方向の厚みを示し、L2は、エア流入溝16の深さ、L3は、肉抜き溝17の深さをそれぞれ示している。
 ここでは、L2/L1をリング除去比とし、そのリング除去比を0から1の間で変化させ、そのときのファン効率とファン騒音を測定した。なお、L3/L1はL2/L1と等しくした。
 図5は、このときの実験結果を示すグラフである。
 図5のグラフから明らかなように、除去比L2/L1が0.10~0.40の範囲でファン効率とファン騒音のいずれについても良好な結果が得られ、とりわけ、0.15~0.25の範囲では特に優れた結果が得られた。
 一方、この冷却ファン1のファン本体10が回転駆動すると、隣接するブレード13間で次の事象が発生する。
 図2、図4を用いて説明すると、ファン本体10が矢印Rの方向に回転したとき、ブレード13の回転方向の後方側は、通過するエアを正圧面側に向かって流すための応力(正圧面側へ吸引される力)によって、図中下方向(正圧面側)に応力を受けることになる。これに対し、ブレード13の回転方向の前方側はエアを切ってブレード13間に流入させることから図中上方向(負圧面側)に応力を受ける。
 つまり、ブレード13の回転方向の前方側と後方側とでは、受ける応力の向きが異なり、ブレード13全体として、捻られる応力が発生することになる。そして、この応力は各ブレード13の間を連結しているリング部材14に対して、その中央付近に集中する。
 ところで、先に説明したこのファン本体10の製造の過程において、注入される樹脂材の温度は、ゲートに注入される時点よりも、リング部材14に至った時点の方が若干温度が下がる。このため、ファン本体10における樹脂同志の各結合部位W(この第1実施形態の場合は計5箇所)の強度がばらつくことがある。
 このような事情に鑑みると、ファン本体10の回転駆動時に、リング部材14に加わる応力がリング部材14の樹脂同志の結合部位Wに集中しないようにファン本体10の強度を増す必要がある。このため、使用する樹脂材自体を結合強度の強い高品位のものとしたり、リング部材14の厚みを増したり、軸方向長さを長くすることも考えられる。
 しかしながら、このようにすると、樹脂材が高くなったり、樹脂の使用量が増えたりすることで、結果的にファン本体10のコストが増大してしまう課題がある。
 一般的に、物体に作用する応力は、その物体に形状の変化点(屈曲点)等がある場合、この変化点側に分散する傾向がある。ここで、本第1実施形態では、リング部材14のエア吸い込み側にエア流入溝16を設けると共に、エア吐き出し側に肉抜き溝17を設けている。このため、上記課題に対して、作用する応力を各溝16,17の変化点C付近(図2参照)に分散させることができる。よって、コストを増大させることなく、ファン本体10の強度を確保することができる。
(第2実施形態)
 次に、この発明の第2実施形態を図6に基づいて説明する。尚、第1実施形態と同一態様には、同一符号を付して説明する(以下の実施形態についても同様)。
 図6は、この第2実施形態の冷却ファン201のファン本体210を示す斜視図である。
 同図に示すように、この第2実施形態において、冷却ファン201は、自動車のラジエータに用いられる軸流ファンであり、図示しないエンジンや電動モータ等の回転駆動源によって回転駆動されるファン本体210と、ファン本体210の外周側を覆ってラジエータに対するエアの導入効率を高めるためのシュラウド(図6においては不図示)とを備えている点、ファン本体210は、回転駆動源の出力軸に連結される有底円筒状のボス部12と、このボス部12の外周面と一体的に径方向外側に突出する複数のブレード13と、複数のブレード13の径方向外側の端部領域を環状に連結する円筒状のリング部材14とを備えている点等の基本的構成は、前述した第1実施形態と同様である(以下の実施形態についても同様)。
 ここで、この第2実施形態のファン本体210と、第1実施形態のファン本体10との相違点は、第1実施形態のリング部材14は、ブレード13の径方向外側の端部より径方向内側にオフセットした位置を環状に連結した状態になっているのに対し、第2実施形態のリング部材14は、ブレード13の径方向外側の端部を環状に連結した状態になっている点にある。
 したがって、冷却ファン201においては、前述の第1実施形態と同様の効果に加え、ブレード13全体を用いてエアの吸い込みや吐き出しを制御することができ、より効果的に冷却ファン1の騒音を防止できると共に、ファン効率を向上させることが可能になる。
(第3実施形態)
 次に、この発明の第3実施形態を図7~図9に基づいて説明する。
 図7は、この第3実施形態の冷却ファン301のファン本体310を示す斜視図、図8は、冷却ファン301の各部の寸法関係を示す図である。
 図7、図8に示すように、この第3実施形態と第1実施形態との相違点は、第3実施形態における冷却ファン301のファン本体310には、リング部材14のエア吐き出し側の軸方向の端部に壁部42が形成されているが、第1実施形態には壁部42が形成されていない点にある。
 壁部42についてより詳述する。
 この壁部42は、リング部材14のエア吐き出し側の軸方向の端部の一般面14bから軸方向に沿って延出形成されている。そして、壁部42は、全ブレード13の回転方向(図8における矢印R方向)の後部領域と、各々の後部領域に対応する位置に形成されている肉抜き溝17との間に配置されている。換言すれば、壁部42は、リング部材14のエア吐き出し側の端部であって、かつ、エア流入溝16と軸方向でほぼ重なる位置に配置されている。
 さらに、壁部42は、円周方向の両側面が肉抜き溝17の円周方向側面の延長線上に位置するように傾斜しており、全体として先細りの台形状に形成されている。
 以上の構成において、冷却ファン301のファン本体310が回転駆動されると、冷却ファン301のエア吸い込み側(ファン本体310の前面側、図8における上側)からエアがブレード13間のスペースに吸い込まれ、そのエアがファン本体310のエア吐き出し側(ファン本体310の後面側、図8における下側)へと抜けていく。このとき、ブレード13のリング部材14よりも径方向内側で、かつ、正圧面内側では、ブレード13に沿ってエアが流れる。そして、エアは、回転方向の後方側の縁部を過ぎると慣性力によりリング部材14の外側へ流れようとする。
 ここで、リング部材14に壁部42が形成されていない場合、エアは、リング部材14の径方向外側に流れ、さらに、ファン本体310の負圧面側へと流れ込んでしまう。このような場合、翼端渦が発生するので、冷却ファン301の騒音が大きくなってしまう。
 しかしながら、この第3実施形態では、リング部材14の所定の位置に壁部42が形成されているので、ブレード13から吐き出されたエアが壁部42に邪魔されてリング部材14よりも径方向外側に流れにくくなる。
 したがって、冷却ファン301においては、前述の第1実施形態と同様の効果に加え、ブレード13から吐き出されたエアが壁部42に邪魔されてリング部材14よりも径方向外側に流れにくくなるので、さらに確実に冷却ファン301の騒音を低減することができる。
 また、壁部42は、全ブレード13の回転方向(図8における矢印R方向)の後部領域と、各々の後部領域に対応する位置に形成されている肉抜き溝17との間に配置されている。このように、肉抜き溝17が形成されているリング部材14であっても、肉抜き溝17と共存して壁部42をレイアウトすることが可能になり、設計の自由度を高めることができる。
 ここで、図8、図9に基づいて、リング部材14に形成する壁部42の高さHと、ファン騒音の関係を調べた実験結果について説明する。
 図8においては、hは、肉抜き溝17からリング部材14のエア吸い込み側の軸方向の端部の一般面14aに至る間の高さを示す。また、壁部42の高さHとは、エア流入溝16から壁部42の先端に至る間の軸方向の高さをいうものとする。そして、壁部42の高さを1.2hの場合と1.3hの場合とで変化させ、そのときのファン騒音を壁部42が無い場合(現行h)の騒音と比較した。
 図9は、このときの実験結果を示すグラフである。
 同図から明らかなように、壁部42の高さが1.2h~1.3hの範囲に設定されているとき、壁部42が無い場合と比較してファン騒音が良好に低減されるという結果が得られた。
 したがって、壁部42の高さHは、肉抜き溝17からリング部材14のエア吸い込み側の軸方向の端部の一般面14aに至る間の高さhに対し、1.2h~1.3hの範囲に設定されていることが望ましい。
(第4実施形態)
 次に、この発明の第4実施形態を図10~図13に基づいて説明する。
 図10は、この第4実施形態の冷却ファン401のファン本体410を示す斜視図、図11は、図10のB-B線に沿う断面図である。
 図10、図11に示すように、この第4実施形態と第3実施形態との相違点は、第3実施形態の壁部42は、リング部材14のエア吐き出し側の軸方向の端部の一般面14bから軸方向に沿って延出形成されているのに対し、第4実施形態の壁部43は、リング部材14の一般面14bを基点として斜め外側に向かうように屈曲延出形成されている点にある。
 すなわち、壁部43は、リング部材14に対して角度θだけ斜め外側に傾斜した状態で設けられている。このため、リング部材14は、エア吐き出し側に向かって末広がり状に形成され、エア吸い込み側からエア吐き出し側に向かうに従い、徐々に開口面積が大きくなる。
 図12は、冷却ファン401のファン本体410が回転駆動されたときのエアの流れを示す説明図である。
 同図に示すように、上述のような構成において、冷却ファン401のファン本体410が回転駆動されると、冷却ファン401のエア吸い込み側(図12における紙面奥側)からエアがブレード13間のスペースに吸い込まれ、そのエアがファン本体410のエア吐き出し側(図12における紙面手前側)へと抜けていく。このとき、リング部材14の開口面積がエア吐き出し側に向かって徐々に大きくなるので、吐き出されるエアの流速がリング部材14のエア吐き出し側で遅くなる。これにより、冷却ファン401によるエア圧力を増大させることができる。
 したがって、冷却ファン401においては、前述の第3実施形態と同様の効果に加え、冷却ファン401によるエア圧力を増大させることができるので、ファン効率を向上させることができる。
 ここで、リング部材14と壁部43との間の角度θは、15度~30度の範囲に設定されていることが望ましい。より詳しく、図13に基づいて説明する。
 図13は、壁部43の角度θを変化させてファン効率を調べた実験結果のグラフである。
 同図に示すように、角度θが15度~30度の範囲に設定されている場合、従来や壁部43が無い場合(波型リング)と比較してファン効率が向上していることが確認できる。
 なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、上記の実施形態は、冷却ファンをラジエータの冷却に用いているが、本発明に係る冷却ファンは、ラジエータ冷却用に限定されるものではなく、その他の機器を冷却するものであっても良い。
 この発明によれば、リング部材のエア吸い込み側の軸方向の端部にエア流入溝が設けられ、外周側から流入するエアが、リング部材のエア流入溝を通って急旋回せずに軸方向に向きを変えてブレード間のスペースに吸い込まれるようになっているため、エアが急旋回することによるエアの流速の増大を抑制して、騒音の発生を未然に防止することができる。また、この発明によれば、外周側から流入するエアが、リング部材の軸方向の端部で大きく迂回せずに、エア流入溝を通ってブレード間に吸い込まれるため、ファン効率を確実に向上させることができる。
 1,201,301,401  冷却ファン
 12  ボス部
 13  ブレード
 14  リング部材
 16  エア流入溝
 17  肉抜き溝
 30  導風孔
 42,43  壁部

Claims (11)

  1.  回転駆動源に連結されるボス部と、
     このボス部から径方向外側に突出する複数のブレードと、
     この複数のブレードの径方向外側の端部の近傍を環状に連結する筒状のリング部材と、を備えた冷却ファンにおいて、
     前記リング部材のエア吸い込み側の軸方向の端部にエア流入溝が設けられている冷却ファン。
  2.  前記エア流入溝は、前記リング部材上の全ブレードの回転方向の前部領域と、隣接するブレードの回転方向の前部領域の間に配置されている請求項1に記載の冷却ファン。
  3.  前記リング部材のエア吐き出し側の軸方向の端部には、前記エア流入溝と円周方向でずれるように、肉抜き溝が設けられている請求項2に記載の冷却ファン。
  4.  前記エア流入溝と前記肉抜き溝の深さが同じ深さに設定されている請求項3に記載の冷却ファン。
  5.  前記エア流入溝の深さと前記リング部材の軸方向の肉厚の比率が、0.10~0.40の範囲に設定されている請求項1~4のいずれか1項に記載の冷却ファン。
  6.  前記リング部材におけるエア吐き出し側の軸方向の端部には、前記ブレードの回転方向の後部領域に対応する箇所に、前記リング部材におけるエア吐き出し側の軸方向の端部の一般面より軸方向外側に向かって延出した壁部が設けられている請求項1~5のいずれか1項に記載の冷却ファン。
  7.  前記肉抜き溝から前記リング部材のエア吸い込み側の軸方向の端部の一般面に至る間の高さをhとしたとき、
     前記エア流入溝から前記壁部の先端に至る間の高さは、1.2h~1.3hの範囲に設定されている請求項6に記載の冷却ファン。
  8.  前記壁部は、前記リング部材におけるエア吐き出し側の軸方向の端部の一般面を基点に屈曲延出されている請求項6又は7に記載の冷却ファン。
  9.  前記リング部材と前記壁部との間の角度は、15度~30度の範囲に設定されている請求項8に記載の冷却ファン。
  10.  前記壁部は、前記リング部材上の全ブレードの回転方向の後部領域と、各々の後部領域に対応する位置に形成されている前記肉抜き溝との間に設けられている請求項6~9のいずれか1項に記載の冷却ファン。
  11.  回転駆動源に連結されるボス部と、
     このボス部に一体的に、且つ径方向外側に向かって形成された複数のブレードと、
     これら複数のブレードの径方向外側の端部を環状に連結する筒状のリング部材とを備え、
     前記リング部材のエア吸い込み側の軸方向の端部にエア流入溝が設けられている冷却ファン。
PCT/JP2011/067764 2010-08-05 2011-08-03 冷却ファン WO2012018042A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011102626T DE112011102626T5 (de) 2010-08-05 2011-08-03 Kühlungslüfter
CN201180038424.1A CN103097740B (zh) 2010-08-05 2011-08-03 冷却风扇
US13/813,856 US9803645B2 (en) 2010-08-05 2011-08-03 Cooling fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010176430 2010-08-05
JP2010-176430 2010-08-05

Publications (1)

Publication Number Publication Date
WO2012018042A1 true WO2012018042A1 (ja) 2012-02-09

Family

ID=45559538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067764 WO2012018042A1 (ja) 2010-08-05 2011-08-03 冷却ファン

Country Status (5)

Country Link
US (1) US9803645B2 (ja)
JP (1) JP5901908B2 (ja)
CN (1) CN103097740B (ja)
DE (1) DE112011102626T5 (ja)
WO (1) WO2012018042A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8960136B2 (en) * 2012-05-17 2015-02-24 Spartan Motors, Inc. Method and apparatus for managing airflow and powertrain cooling
US10174481B2 (en) * 2014-08-26 2019-01-08 Cnh Industrial America Llc Shroud wear ring for a work vehicle
US20160208823A1 (en) * 2015-01-19 2016-07-21 Hamilton Sundstrand Corporation Shrouded fan rotor
CN107407290B (zh) 2015-04-08 2019-07-26 雷顿股份公司 风扇叶片及相关方法
JP1555680S (ja) * 2016-03-01 2016-08-08
JP6487876B2 (ja) * 2016-06-06 2019-03-20 ミネベアミツミ株式会社 インペラ及びそのインペラを備えるファン
US10962275B2 (en) * 2018-01-25 2021-03-30 Johnson Controls Technology Company Condenser unit with fan
CN114466975B (zh) * 2019-09-27 2024-02-23 株式会社电装 送风机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092562A (ja) * 2005-09-27 2007-04-12 Denso Corp 冷却ファンおよび送風機
JP2008163888A (ja) * 2006-12-28 2008-07-17 Denso Corp 送風ファンおよび送風機
JP2010096084A (ja) * 2008-10-16 2010-04-30 Mitsubishi Heavy Ind Ltd プロペラファン

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US855131A (en) * 1905-12-05 1907-05-28 Wenzel Preidel Screw-propeller.
JPS6021518Y2 (ja) * 1980-03-07 1985-06-26 アイシン精機株式会社 内燃機関の冷却装置用フアン
EP0571391B1 (en) * 1990-12-14 1996-10-23 Stealth Propulsion Pty. Ltd. Propeller with shrouding ring attached to blades
US6375416B1 (en) * 1993-07-15 2002-04-23 Kevin J. Farrell Technique for reducing acoustic radiation in turbomachinery
US5577888A (en) * 1995-06-23 1996-11-26 Siemens Electric Limited High efficiency, low-noise, axial fan assembly
US20020141871A1 (en) * 2001-01-30 2002-10-03 Lakshimikantha Medamaranahally Axial-flow fan having inner and outer blades
FR2833050B1 (fr) * 2001-12-03 2005-11-11 Abb Solyvent Ventec Ventilateur helicoide avec un moyen reducteur de bruit
US7484925B2 (en) * 2005-05-10 2009-02-03 Emp Advanced Development, Llc Rotary axial fan assembly
GB0600532D0 (en) 2006-01-12 2006-02-22 Rolls Royce Plc A blade and rotor arrangement
CN101139996B (zh) * 2006-09-07 2012-01-04 台达电子工业股份有限公司 风扇及其叶轮
JPWO2008072516A1 (ja) * 2006-12-11 2010-03-25 株式会社ミツバ 冷却ファン
JP5157940B2 (ja) 2009-01-29 2013-03-06 沖電気工業株式会社 紙幣処理機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092562A (ja) * 2005-09-27 2007-04-12 Denso Corp 冷却ファンおよび送風機
JP2008163888A (ja) * 2006-12-28 2008-07-17 Denso Corp 送風ファンおよび送風機
JP2010096084A (ja) * 2008-10-16 2010-04-30 Mitsubishi Heavy Ind Ltd プロペラファン

Also Published As

Publication number Publication date
US20130209242A1 (en) 2013-08-15
JP2012052528A (ja) 2012-03-15
US9803645B2 (en) 2017-10-31
DE112011102626T5 (de) 2013-05-08
CN103097740B (zh) 2016-01-20
JP5901908B2 (ja) 2016-04-13
CN103097740A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5901908B2 (ja) 冷却ファン
JP6022941B2 (ja) 自動車等のファン用プロペラ
JP5152226B2 (ja) 電動送風機及びそれを用いた電気掃除機
WO2016068280A1 (ja) 送風装置および掃除機
EP2383473B1 (en) Propeller fan
WO2015146013A1 (ja) 扇風機用のプロペラファン、扇風機
US11649829B2 (en) Impeller with a seamless connection of the impeller blades to a disc body
JP2008184999A (ja) 送風機羽根車
US9995313B2 (en) Ceiling fan blade
JP2013032711A (ja) 電動送風機及びそれを用いた電気掃除機
JP5901907B2 (ja) 冷却ファン
JP5100711B2 (ja) ターボファン
WO2015049914A1 (ja) プロペラファンおよび送風装置
CA2940270A1 (en) Blower fan with blade ring
WO2017056752A1 (ja) 風力発電用の翼部材
JP2014525547A (ja) フランシスタービンまたはフランシスポンプまたはフランシスポンプタービン
JP2013019335A (ja) 冷却ファン
JP2006097488A (ja) 送風機
JP2014172568A (ja) ウォータージェット推進機
JP6188016B2 (ja) 遠心送風機
WO2008059775A1 (fr) Turbine pour ventilateur à multiples pales
JP6450601B2 (ja) 水力機械のステーリングおよび水力機械
JP7069406B2 (ja) プロペラファンおよび送風装置
WO2022009284A1 (ja) 多翼羽根車および遠心送風機
JP4925946B2 (ja) 軸流ファン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038424.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814667

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 112011102626

Country of ref document: DE

Ref document number: 1120111026269

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13813856

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11814667

Country of ref document: EP

Kind code of ref document: A1