WO2012017815A1 - 固定式等速自在継手 - Google Patents
固定式等速自在継手 Download PDFInfo
- Publication number
- WO2012017815A1 WO2012017815A1 PCT/JP2011/066311 JP2011066311W WO2012017815A1 WO 2012017815 A1 WO2012017815 A1 WO 2012017815A1 JP 2011066311 W JP2011066311 W JP 2011066311W WO 2012017815 A1 WO2012017815 A1 WO 2012017815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- joint member
- velocity universal
- constant velocity
- universal joint
- ball
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C1/00—Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
- F16C1/02—Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing for conveying rotary movements
- F16C1/04—Articulated shafts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/10—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/06—Mixtures of thickeners and additives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D3/2237—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts where the grooves are composed of radii and adjoining straight lines, i.e. undercut free [UF] type joints
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D3/224—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
- F16D3/2245—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere where the groove centres are offset from the joint centre
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/065—Sulfides; Selenides; Tellurides
- C10M2201/066—Molybdenum sulfide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/401—Fatty vegetable or animal oils used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/10—Amides of carbonic or haloformic acids
- C10M2215/102—Ureas; Semicarbazides; Allophanates
- C10M2215/1026—Ureas; Semicarbazides; Allophanates used as thickening material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/221—Six-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbasedsulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/046—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Semi-solids; greasy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D2003/22309—Details of grooves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D2003/22316—Means for fastening or attaching the bellows or gaiters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2300/00—Special features for couplings or clutches
- F16D2300/06—Lubrication details not provided for in group F16D13/74
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2300/00—Special features for couplings or clutches
- F16D2300/10—Surface characteristics; Details related to material surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2300/00—Special features for couplings or clutches
- F16D2300/12—Mounting or assembling
Definitions
- the present invention relates to a fixed constant velocity universal joint used for a drive shaft of a power transmission device of an automobile or an industrial machine.
- the fixed type constant velocity universal joint includes an outer joint member 3 in which a plurality of track grooves 2 are formed on the inner diameter surface 1, and a pair of the track groove 2 of the outer joint member 3 on the outer diameter surface 4.
- An inner joint member 6 formed with a plurality of track grooves 5 formed therein, a plurality of balls 7 interposed between the track grooves 2 of the outer joint member 3 and the track grooves 5 of the inner joint member 6 to transmit torque;
- a cage 8 is provided between the inner diameter surface 1 of the outer joint member 3 and the outer diameter surface 4 of the inner joint member 6 to hold the balls 7.
- a plurality of window portions 9 in which the balls 7 are accommodated are arranged in the cage 8 along the circumferential direction.
- the outer joint member 3 includes a mouth portion 3a in which the track groove 2 is formed, and a stem portion 3b protruding from the bottom wall 10 of the mouth portion 3a.
- a female spline 11 is formed on the inner diameter surface of the shaft hole of the inner joint member 6, and the end of the shaft 12 is fitted into the shaft hole of the inner joint member 6.
- a male spline 13 is formed at the end of the shaft 12, and the male spline 13 is fitted into the female spline 11 of the axial hole of the inner joint member 6.
- a circumferential groove is formed at the end of the male spline 13, and a retaining ring 14 is attached to the circumferential groove as a retaining stopper.
- the track groove 2 of the outer joint member 3 has its center of curvature O1 shifted from the joint center O in the axial direction by a predetermined dimension along the joint axis L on the opening side of the outer joint member 3.
- the track groove 5 of the inner joint member 6 has a predetermined center of curvature O2 along the joint axis L on the inner side opposite to the center of curvature O1 of the track groove 2 of the outer joint member 3 in the axial direction from the joint center O.
- the center of curvature O1 and the center of curvature O2 are offset in the axial direction along the joint axis L by an equal distance from the joint center O in opposite directions.
- the opening of the constant velocity universal joint is sealed with a boot 15.
- the boot 15 includes a large diameter portion 15a, a small diameter portion 15b, and a bellows portion 15c that connects the large diameter portion 15a and the small diameter portion 15b.
- the large diameter part 15a is externally fitted by the boot mounting part 17 by the side of the opening part of the outer diameter surface of the outer joint member 3, and the boot band 16 is fastened with respect to the large diameter part 15a in the externally fitted state.
- the large diameter portion 15 a is attached to the boot attachment portion 17 of the outer joint member 3.
- the shaft 12 is formed with a boot mounting portion 18 in which a circumferential groove is formed.
- the small diameter portion 15b of the boot 15 is externally fitted to the boot mounting portion 18, and the small diameter portion 15b is fitted in the externally fitted state.
- the boot band 16 is tightened against it.
- the drive shaft which is the drive shaft of an automobile, can rotate at a high torque with a low torque, such as when driving on a flat highway, from a high torque low speed rotation condition (hereinafter referred to as a high load condition) as when climbing a hill.
- a high torque low speed rotation condition hereinafter referred to as a high load condition
- Conditions hereinafter referred to as low load conditions
- CVJ operating angle is near the maximum angle
- low torque and slow rotation conditions hereinafter referred to as high angle conditions.
- a typical load mode acts repeatedly, and a fixed type constant velocity universal joint using a ball as a torque transmission member (hereinafter, sometimes referred to as a fixed type ball type constant velocity universal joint) It is necessary to sufficiently withstand the traveling mode, and even a fixed ball type constant velocity universal joint excellent in any one condition does not have practical durability.
- sliding type constant velocity universal joints are used at a smaller (about half) operating angle than fixed ball type constant velocity universal joints, so their life may be longer than fixed ball type constant velocity universal joints. Many. Therefore, in particular, it is desired to improve the rolling life of the fixed ball type constant velocity universal joint.
- composition of lubrication varies greatly depending on the product used. This is because the tribological phenomenon is greatly different depending on the motion state of the parts to be contacted and the surface properties of the parts. Therefore, it is necessary to clearly limit the products in which lubricant is enclosed (for example, fixed ball type constant velocity universal joints for automobile drive shafts), grasp the operating condition, and consider the surface properties of the rolling surface to lubricate The composition of the agent must be determined.
- Examples of the lubricant encapsulated in the constant velocity universal joint include those described in Patent Documents 1 to 3.
- Patent Document 1 and Patent Document 2 by using such a grease composition, the wear of the constant velocity universal joint is effectively reduced and the occurrence of flaking of the lubricated portion is prevented.
- an effective grease composition is provided only under high load conditions.
- Patent Document 3 wear of a constant velocity universal joint is reduced, and generation of vibration is prevented.
- Patent Document 4 At least one of lubrication performance such as load resistance, wear resistance, and friction coefficient is improved. And according to the improved performance, it can be effectively used as a lubricant for various machines and devices suitable for it.
- Patent Documents 1 to 3 There is no description about the surface property on the contact surface as described in Patent Documents 1 to 3. However, the tribological phenomenon is greatly different depending on the motion state of the parts to be contacted and the surface properties that are in contact. For this reason, in the fixed type constant velocity universal joint using the ball in the drive shaft of the automobile, it is necessary to determine the composition of the lubricant in consideration of the operating state and considering the surface properties of the driving surface. In addition, the use described in Patent Document 4 is not limited to the constant velocity universal joint, and the surface property on the contact surface is not limited at all.
- the present invention intends to provide a fixed type constant velocity universal joint capable of realizing characteristics excellent in durability, high load condition, low load condition, and high angle condition performance at low cost. .
- the fixed type constant velocity universal joint includes an outer joint member in which track grooves are formed on the inner diameter surface, and an inner joint member in which a plurality of track grooves that are paired with the track grooves of the outer joint member are formed on the outer diameter surface. Between the track groove of the outer joint member and the track groove of the inner joint member, and between the inner surface of the outer joint member and the outer surface of the inner joint member.
- a fixed-type constant velocity universal joint having a lubricating grease sealed inside the joint, the surface roughness of the ball being Ra 0.15 ⁇ m or less, and the mating surface on which the ball rolls
- the surface roughness of the ball is made rougher than the surface roughness of the ball
- the additive composition of the lubricating grease includes base oil, diurea compound, molybdenum dithiocarbamate, zinc dialkyldithiophosphate, melamine Cyanurate are those containing molybdenum disulfide, and calcium salts of alkyl aromatic sulfonic acids.
- the surface roughness of the ball is set to Ra 0.15 ⁇ m or less, wear of the contact portion of the cage with the ball can be reduced.
- the surface roughness of parts other than the ball is ideally finished in the same way as the surface roughness of the ball in terms of tribology.
- the surface roughness of the finished surface is large due to the large and intermittent surface area. It is not economical to finish the material to Ra 0.15 ⁇ m or less.
- the surface finish of parts other than balls is ground (grinding marks remain during grinding), hardened steel cutting (remaining lead marks for cutting) or heat treated surfaces (omission of grinding, turning, etc.)
- Ra is 0.4 ⁇ m to 1.8 ⁇ m.
- Requirement that the lubricant should have at high loads is a reduction in wear and a reduction in coefficient of friction.
- the requirements that the lubricant should have at the time of low load are acceleration of initial wear (addition of compatibility), reduction of friction coefficient, and dispersion of wear powder.
- the requirements that the lubricant should have at high angles are a reduction in wear and a reduction in the coefficient of friction.
- Molybdenum disulfide acts easily in a low shear stress region such as a low load condition and has an abrasive effect than melamine cyanurate, and was added in combination.
- MoS 2 Molybdenum disulfide
- As the lubrication mechanism it is known that it has a layered lattice structure, easily shears into a thin layer by a sliding motion, and reduces the friction coefficient. It is also effective in preventing seizure of the constant velocity universal joint.
- MoDTC molybdenum dithiocarbamate
- ZnDTP zinc dialkyldithiophosphate
- ZnDTP decomposes to form a polyphosphate film on the metal surface, which forms a polymer film with viscoelasticity by covering the lubrication surface, absorbs vibration, and prevents wear by preventing metal contact It is thought that it has the effect to do.
- These friction modifiers alone or interact to exhibit high friction and wear control performance.
- calcium salt (Ca sulfonate) of alkyl aromatic sulfonic acid (preferably 0.5 to 3.5% by weight) was added to effectively disperse the wear powder.
- Calcium salts of alkyl aromatic sulfonic acids are alkyl aromatic sulfonic acids such as dinonyl naphthalene sulfonic acid and alkyl benzene sulfonic acid, which are known as metallic detergents and rust preventives used in lubricating oils such as engine oils.
- Ca sulfonate is also effective in dispersing a solid lubricant.
- vegetable oil castor oil, soybean oil, rapeseed oil, coconut oil, etc.
- An oily agent composed of one or a combination of two or more of these vegetable oils and fats is likely to be adsorbed on the metal surface and hinders contact between metals, and is considered to reduce the coefficient of friction at low load. .
- the present grease composition is preferably based on the total weight of the grease composition: component base oil: 57.5 to 94.3% by weight, component diurea compound: 1 to 25% by weight, component melamine cyanurate: 2 to 4% by weight, molybdenum disulfide: 0.2 to 2.5% by weight, molybdenum dithiocarbamate: 1 to 3% by weight, zinc dialkyldithiophosphate: 0.5 to 1.5% by weight, alkyl aromatic sulfonic acid Calcium salt: 0.5 to 3.5% by weight, vegetable oil and fat: 0 to 3% by weight, more preferably component base oil: 57.5 to 94.3% by weight, component diurea compound: 1 to 25% by weight %, Melamine cyanurate of component: 2.5 to 3.5% by weight, molybdenum disulfide: 0.2 to 2.5% by weight, molybdenum dithiocarbamate: 1
- the content of the diurea compound is less than 1% by weight, the thickening effect is reduced and it becomes difficult to form a grease.
- the content is more than 25% by weight, the obtained composition becomes too hard and the desired effect is hardly obtained.
- the content of the component melamine cyanurate is less than 2% by weight, the content of molybdenum dithiocarbamate is less than 1% by weight, the content of zinc dialkyldithiophosphate is less than 0.5% by weight, the calcium salt of alkyl aromatic sulfonic acid If the content is less than 0.5% by weight, it may be difficult to obtain the desired effect sufficiently.
- It can be an undercut free type having a curved portion and a straight portion on the track groove bottom surface of the outer joint member and the track groove bottom surface of the inner joint member.
- the center of curvature of the track groove of the outer joint member and the center of curvature of the track groove of the inner joint member are opposite to the track groove with respect to the joint axis center line. It may be offset by an equal distance in the radial direction of the side.
- the interference between the track groove of the outer joint member and the shaft moves to the higher angle side, it is possible to increase the maximum operating angle.
- the track depth becomes shallow, and durability under high angle conditions decreases. Therefore, the back side of the track can be deepened by offsetting the center of curvature of the track groove of the outer joint member and the center of curvature of the track groove of the inner joint member in the radial direction.
- the cage material is carbon steel having a carbon content of 0.46 wt% or more and 0.50 wt% or less, and preferably has a core hardness of HRC 56-60 after quenching. It is preferable that the number of the balls is eight, the spherical angle of the outer joint member is 17 ° to 18.5 °, and a notch for incorporating the cage is provided at the spherical inlet of the outer joint member.
- the constant velocity universal joint of the present invention can realize characteristics excellent in durability, high load condition, low load condition, and high angle condition performance at low cost.
- the low load durability can be further improved. Cost reduction can be achieved by mineralizing the base oil of the additive composition.
- the maximum operating angle can be increased, and the deterioration of durability under high angle conditions can be prevented by enclosing the lubricating grease having the additive composition described above inside the joint. Furthermore, by offsetting in the radial direction, the depth side of the track groove can be deepened, and by combining this structure with the lubricating grease, high angle durability equivalent to that of a bar field type with a small maximum operating angle can be secured. .
- the strength of the cage can be further increased and the durability is also greatly improved. This is because the spherical portion holds the cage and serves to reinforce the cage. Further, since the increase in the spherical angle reduces the deviation of the cage, the inner joint member, and the ball from the bisected surface, the durability is improved. Further, by increasing the number of balls to eight, the ball diameter can be reduced, the offset amount can be reduced without sacrificing the operability, and the sliding between the outer joint member and the ball can be greatly reduced.
- the outer joint member is usually induction-hardened carbon steel of around S53C and the inner joint member is carburized and quenched, the softening resistance of the outer joint member is small, and the hardness tends to be lower than that of the inner joint member during operation. Therefore, when the load conditions are the same, the life of the fixed ball constant velocity joint is determined by the life of the outer joint member. Therefore, the life of the outer joint member can be further improved by using eight balls. Strength and durability are improved, making it possible to reduce size and weight.
- the increase of the spherical angle makes it difficult to incorporate the cage into the outer joint member, but it can be easily assembled by providing a notch for incorporating the cage at the spherical entrance.
- the cut-out portion for incorporation can be machined by turning, but the economic efficiency is greatly increased by machining by forging. If the spherical angle is less than the lower limit, the effect is small, and if it exceeds the upper limit, the machining cost of the cut-out portion for incorporation increases significantly, and forging becomes difficult.
- FIG. 1 shows a fixed type constant velocity universal joint according to the present invention.
- This fixed type constant velocity universal joint is an undercut free type, and includes an outer joint member 33 having a plurality of track grooves 32 formed on an inner surface 31.
- the inner joint member 36 having a plurality of track grooves 35 paired with the track grooves 32 of the outer joint member 33 formed on the outer diameter surface 34, and the track grooves 32 of the outer joint member 33 and the track grooves 35 of the inner joint member 36.
- a plurality of balls 37 that transmit torque between them, and a cage 38 that holds the balls 37 interposed between the inner diameter surface 31 of the outer joint member 33 and the outer diameter surface 34 of the inner joint member 36. It has.
- the cage 38 is provided with a plurality of window portions 39 in which the balls 37 are accommodated along the circumferential direction.
- eight track grooves 32 of the outer joint member 33 and eight track grooves 35 of the inner joint member 36 are formed at a 45 ° pitch in the circumferential direction, and the number of balls is eight.
- the outer joint member 33 is formed with eight inner diameter surface constituting surfaces 51 at a 45 ° pitch in the circumferential direction between the track grooves.
- the outer joint member 33 includes a mouth portion 33a in which the track groove 32 is formed and a stem portion 33b protruding from the bottom wall 40 of the mouth portion 33a.
- a female spline 41 is formed on the inner diameter surface of the shaft hole of the inner joint member 36, and the end of the shaft 42 is fitted into the shaft hole of the inner joint member 6.
- a male spline 43 is formed at the end of the shaft 42, and the male spline 43 is fitted into the female spline 41 of the axial center hole of the inner joint member 36.
- a circumferential groove is formed at the end of the male spline 43, and a retaining ring 44 as a retaining ring is attached to the circumferential groove.
- the groove bottom surface of the track groove 32 of the outer joint member 33 has a curved part 32a on the back side and a straight part 32b on the opening side (extending in parallel with the joint axis L). Further, the groove bottom surface of the track groove 35 of the inner joint member 36 has a straight portion 35a on the back side (extending parallel to the joint axis L) and a curved portion 35b on the opening side.
- the curved portion 32a of the track groove 32 has its center of curvature O1 shifted from the joint center O in the axial direction toward the opening side of the outer joint member 3 by a predetermined dimension.
- the curved portion 35b of the track groove 35 is provided with a center of curvature O2 away from the joint center O in the axial direction by a predetermined dimension on the far side opposite to the center of curvature O1 of the curved portion 32a of the outer joint member 33. Yes. That is, the curvature center O1 and the curvature center O2 are equidistant from the joint center O in the opposite directions and offset in the axial direction along the joint axis L.
- the opening of the constant velocity universal joint is sealed with a boot 45.
- the boot 45 includes a large diameter portion 45a, a small diameter portion 45b, and a bellows portion 45c that connects the large diameter portion 45a and the small diameter portion 45b.
- the large diameter part 45a is externally fitted by the boot mounting part 47 by the side of the opening part of the outer diameter surface of the outer joint member 33, and the boot band 46 is fastened with respect to the large diameter part 45a in the externally fitted state.
- the large diameter portion 45 a is mounted on the boot mounting portion 47 of the outer joint member 33.
- the shaft 42 is formed with a boot mounting portion 48 in which a circumferential groove is formed, and the small diameter portion 45b of the boot 45 is externally fitted to the boot mounting portion 48, and the small diameter portion 45b is fitted in the externally fitted state.
- the boot band 46 is tightened against it.
- a chamfer 50 as shown in FIGS. 2 and 3 is formed on the opening end face of the mouth portion 33a of the outer joint member 33.
- the notch part 52 is formed in the opening end of a pair of internal-diameter surface structure surfaces 51A and 51B which oppose each other. Therefore, the dimension between the opening ends of the pair of opposed inner surface 51, 51 that does not have the notch 52 is E, and the dimension between the openings (the notch) of the pair of inner surface 51A, 51B facing each other.
- the dimension between the open ends of the portion 52 is F, F> E.
- the spherical angle ⁇ of the outer joint member 33 is set to 17 ° to 18.5 °.
- the “spherical angle” is an axis formed by the joint opening side end portion of the inner diameter surface 31 with respect to the inner spherical surface (inner diameter surface) center (joint center) O of the outer joint member 33 as shown in FIG. It means the direction angle.
- the cage 38 is often used in carburizing and quenching.
- the carburizing treatment is advantageous in increasing wear resistance and softening resistance, but because the carbon content is as high as about 1.0% by weight, the toughness is significantly lowered in parts having notches.
- the toughness is reduced, so that the torque is not instantaneously transmitted due to brittle fracture, which may cause a problem in safety when avoiding the danger.
- a steel having a carbon content of 0.46 wt% or more and 0.50 wt% or less is quenched, and the carbon content after quenching is equal to the carburized surface carbon content (0.9 to 1.1 wt%).
- the core hardness is HRC52 or higher.
- the cage 38 has greatly improved toughness and strength, and a fixed high-angle joint having high strength and excellent durability is possible.
- the amount of carbon is less than the lower limit of the above range, the hardness is lowered and the wear resistance is significantly lowered. If the upper limit of the above range is exceeded, it will be difficult to press the window of the cage 38, and the dimensional accuracy of the press surface will be significantly reduced. Further, when the core hardness is less than the lower limit of the above range, the strength is not improved.
- the ball of a fixed type constant velocity universal joint (fixed type constant velocity universal joint using a ball as a torque transmission member) is generally from the viewpoint of smooth operation of the joint and uniform load on each ball. It is necessary to consider the finishing accuracy. For this reason, after the heat treatment, the ball is polished by putting an abrasive and a ball between the upper and lower flat plates and moving the flat plate relative to each other, and then lapping is performed to process the ball into a smooth and true sphere. For this reason, since the ball can be processed in a large amount by one process, even if the finished surface roughness is reduced, the increase in cost is small.
- the surface roughness of the ball 37 is Ra 0.15 or less. If Ra exceeds 0.15, point contact with the cage 38 causes a marked increase in wear on the rolling surface of the cage 38, which may cause abnormal noise during operation.
- the surface roughness of the parts other than the ball is ideally finished in the same manner as the surface roughness of the ball 37 in terms of tribology, but the surface roughness of the finished surface is set to Ra0 because the surface area is large and the shape is intermittent and complicated. Finishing below 15 is not economical. For this reason, the surface finish of parts other than balls is ground (grinding marks remain during grinding), hardened steel cutting (remaining lead marks for cutting) or heat treated surfaces (omission of grinding, turning, etc.) However, it is economical to reduce the surface roughness of the ball.
- Ra is 0.4 to 1.8. Note that shot blasting or tumbling may be performed after grinding.
- the life of the inner joint member is shortened due to chipping of the track shoulder.
- the fixed ball type constant velocity universal joint has a track depth at the back of the track on the offset side (the depth from the bottom of the track to the spherical surface). A) becomes shallower. For this reason, the track ellipse of the inner joint member that has been carburized and quenched is chipped due to the contact ellipse between the track and the ball riding on the shoulder portion of the track and the stress concentration on the shoulder portion.
- the outer joint member is often induction-hardened medium carbon steel (JIS S53C or S48C).
- JIS S53C or S48C the carbon content on the surface of the outer joint member is about half that of the carburized and quenched member.
- the toughness of the shoulder portion of the outer joint member is higher than the toughness of the shoulder portion of the inner joint member, and the shoulder portion of the outer joint member is hardly chipped and stops in a state of plastic deformation.
- the requirements that the lubricant must have are a reduction in wear and a reduction in the coefficient of friction.
- the requirements that the lubricant should have at high loads are a reduction in wear and a reduction in friction coefficient.
- the requirements that the lubricant should have at the time of low load are acceleration of initial wear (addition of compatibility), reduction of friction coefficient, and dispersion of wear powder.
- the requirements that the lubricant should have at high angles are a reduction in wear and a reduction in the coefficient of friction. Since the high angle condition is considered to be the same as the high load condition, the lubricating composition may be determined in consideration of the requirements at high load and low load.
- Melamine cyanurate easily precipitates as a white precipitate when, for example, a melamine aqueous solution and a cyanuric acid or isocyanuric acid aqueous solution are mixed.
- Melamine cyanurate is usually marketed as a white fine powder having an average particle size of 1 to 2 ⁇ m.
- melamine cyanurate melamine molecules having a 6-membered ring structure and cyanuric acid molecules are strongly bonded by hydrogen bonds and arranged in a plane, and the planes overlap each other with a weak binding force. For this reason, it is presumed to have cleavage properties like molybdenum disulfide, and melamine cyanurate is considered to give excellent lubricity.
- MoS 2 molybdenum disulfide
- MoS 2 works easily in a low shear stress region such as a low load condition and has an abrasive action than melamine cyanurate, and was added in combination.
- it is widely used as an extreme pressure additive.
- the lubrication mechanism it is known that it has a layered lattice structure, easily shears into a thin layer by a sliding motion, and reduces the friction coefficient. It is also effective in preventing seizure of the constant velocity universal joint.
- MoDTC molybdenum dithiocarbamate
- ZnDTP zinc dialkyldithiophosphate
- ZnDTP decomposes to form a polyphosphate film on the metal surface, which forms a polymer film having viscoelasticity by covering the lubricating surface. For this reason, it is thought that it has an effect which prevents vibration by absorbing vibration and preventing metal contact.
- the friction modifiers alone or interact to exhibit high friction and wear adjustment performance.
- Ca sulfonate calcium salt of alkyl aromatic sulfonic acid
- Ca sulfonate calcium salt of alkyl aromatic sulfonic acid
- vegetable oil castor oil, soybean oil, rapeseed oil, coconut oil, etc.
- An oily agent comprising one or a combination of two or more of these vegetable oils and fats is likely to be adsorbed on the metal surface and hinders contact between metals, and is considered to reduce the friction coefficient at low load.
- antioxidants, rust inhibitors, anticorrosives, and the like can be included.
- the grease composition is preferably based on the total weight of the grease composition, preferably the component base oil: 57.5 to 94.3% by weight, the component diurea compound: 1 to 25% by weight, and the melamine cyanurate of the soot component: 2 to 4% by weight, molybdenum disulfide: 0.2 to 2.5% by weight, molybdenum dithiocarbamate: 1 to 3% by weight, zinc dialkyldithiophosphate: 0.5 to 1.5% by weight, alkyl aromatic sulfonic acid Calcium salt: 0.5 to 3.5% by weight, vegetable oil and fat: 0 to 3% by weight, more preferably component base oil: 57.5 to 94.3% by weight, component diurea compound: 1 to 25% by weight %, Melamine cyanurate of component: 2.5 to 3.5% by weight, molybdenum disulfide: 0.2 to 2.5% by weight, molybdenum dithiocarbamate: 1 to 3% by weight, zinc dialkyldithiophosphate
- the content of the diurea compound is less than 1% by weight, the thickening effect is reduced and it becomes difficult to form a grease.
- the content is more than 25% by weight, the obtained composition becomes too hard and the desired effect is hardly obtained.
- the content of the component melamine cyanurate is less than 2% by weight, the content of molybdenum dithiocarbamate is less than 1% by weight, the content of zinc dialkyldithiophosphate is less than 0.5% by weight, the calcium salt of alkyl aromatic sulfonic acid If the content is less than 0.5% by weight, it may be difficult to obtain the desired effect sufficiently.
- the base oil is not particularly limited. Examples include, but are not limited to, commonly used lubricating oils such as mineral oils, synthetic oils (ester synthetic oils, ether synthetic oils, hydrocarbon synthetic oils), or mixed oils thereof. . Economically, mineral oil is desirable, but synthetic oil may be used in consideration of heat resistance.
- a urea thickener is desirable.
- the urea thickener include, but are not particularly limited to, a diurea compound and a polyurea compound.
- a diurea compound is obtained by reaction of diisocyanate and a monoamine, for example.
- diisocyanates include phenylene diisocyanate, diphenyl diisocyanate, phenyl diisocyanate, diphenylmethane diisocyanate, octadecane diisocyanate, decane diisocyanate, hexane diisocyanate, and monoamines include octylamine, dodecylamine, hexadecylamine, octadecylamine, oleylamine, aniline, Examples include p-toluidine, cyclohexylamine and the like.
- the polyurea compound can be obtained, for example, by reacting diisocyanate with a monoamine or diamine.
- Examples of the diisocyanate and monoamine include those similar to those used for the production of the diurea compound.
- Examples of the diamine include ethylenediamine, propanediamine, butanediamine, hexanediamine, octanediamine, phenylenediamine, tolylenediamine, and xylenediamine. Is mentioned.
- Melamine cyanurate is an adduct of melamine and cyanuric acid. Cyanuric acid is in a tautomeric relationship with isocyanuric acid, and commercially available melamine cyanurate is an adduct of 1 mol of melamine and 1 mol of cyanuric acid, and is in the form of melamine isocyanurate. In this specification, melamine cyanurate refers to an adduct of melamine and cyanuric acid or isocyanuric acid. Melamine cyanurate is easily deposited as a white precipitate when, for example, a melamine aqueous solution and a cyanuric acid or isocyanuric acid aqueous solution are mixed. Melamine cyanurate is usually marketed as a white fine powder having an average particle size of 1 to 2 ⁇ m.
- molybdenum disulfide is widely used as an extreme pressure additive.
- molybdenum dithiocarbamate include those represented by the following chemical formula 1.
- the zinc dialkyldithiophosphate is preferably represented by the following general formula 2.
- Calcium salt of alkyl aromatic sulfonic acid is a calcium salt of synthetic sulfonic acid such as alkyl aromatic sulfonic acid such as dinonylnaphthalene sulfonic acid and alkylbenzene sulfonic acid used in lubricating oil such as engine oil.
- alkyl aromatic sulfonic acid such as dinonylnaphthalene sulfonic acid and alkylbenzene sulfonic acid used in lubricating oil such as engine oil.
- vegetable oil castor oil, soybean oil, rapeseed oil, coconut oil, and the like are used. These vegetable fats and oils may be used alone or in combination of two or more.
- the strength of the cage 38 can be further increased and the durability is greatly improved. This is because the spherical portion holds the cage 38 and serves to reinforce the cage 38. Further, since the increase in the spherical angle reduces the deviation of the cage 38, the inner joint member 36, and the ball 37 from the uniform bisector, durability is improved. Further, by increasing the number of balls to eight, the ball diameter can be reduced, the offset amount can be reduced without sacrificing the operability, and the sliding between the outer joint member 33 and the ball 37 can be greatly reduced.
- the outer joint member 33 is typically induction-hardened carbon steel of around S53C and the inner joint member 36 is carburized and quenched, the softening resistance of the outer joint member 33 is small and the hardness is lower than that of the inner joint member 36 during operation. It's easy to do. Therefore, when the load conditions are the same, the life of the constant velocity universal joint is determined by the life of the outer joint member 33. Therefore, the life of the outer joint member 33 can be further improved by using eight balls. Strength and durability are improved, making it possible to reduce size and weight.
- the increase of the spherical angle makes it difficult to incorporate the cage 38 into the outer joint member 33, but the cage can be easily assembled by providing a notch 52 for assembling the cage at the entrance of the spherical surface. Further, the cut-out portion 52 for incorporation can be processed by turning, but the economic efficiency is greatly increased by processing by forging. If the spherical angle is less than the lower limit, the effect is small, and if it exceeds the upper limit, the forging process becomes difficult because the machining cost of the notch 52 for incorporation increases significantly.
- FIG. 4 shows another embodiment.
- the center of curvature O1 and the center of curvature O2 are offset from the joint center O by an equal distance f1 in the opposite direction and axially offset.
- the center of curvature O1 and the center of curvature O2 are offset from the joint axis center line by an equal distance f2 in the radial direction opposite to the track groove.
- the embodiment of the present invention has been described.
- the present invention is not limited to the above-described embodiment, and various modifications are possible.
- a fixed type constant velocity universal joint the undercut free type is not limited.
- a fixed constant velocity universal joint of a bar field type may be used.
- the number of balls is preferably eight, but is not limited to eight.
- the manufactured products 1, 2, 3, 4 and the comparative products 1, 2, 3 were manufactured, and the high load durability, the low load durability, the high angle durability, and the transmission efficiency were examined for each of the implemented products and the comparative products.
- the components shown in Table 1 were used for the components (outer joint member, inner joint member, cage, ball) of each of the implementation products and comparative products.
- the hardness of the track groove 32 of the outer joint member 33, the track groove 35 of the inner joint member 36, the ball contact surface of the window portion 39 of the cage 38, and the ball 37 after heat treatment are HRC60.1, 61.7, 62. 0 and 65.1. Further, as a result of measuring the decrease in hardness after holding each of these members at 200 ° C.
- the manufacturing method of the component parts of each of the implementation products and the comparison products is shown in Table 2 below.
- the first ball has a surface roughness of 0.08 ⁇ m, as described in Table 4 described later, and the second ball has a surface roughness of 0, as described in Table 4. .16 ⁇ m.
- wrapping 1 and wrapping 2 are only different in processing time.
- the lubricating greases of Examples 1, 2, 3 and Comparative Examples 1, 2, 3 were 60.6 g of diphenylmethane-4, 2000 g of mineral oil (kinematic viscosity at 100 ° C. of 13.5 mm 2 / sec) in 2000 g. 4'-diisocyanate, 31.3 g of octylamine and 66.2 g of stearylamine were reacted, and the resulting urea compound was uniformly dispersed to obtain a grease.
- Additives were added to this base grease in the formulation shown in Table 5, and the resulting compound was subjected to JIS consistency No. 1 using a three-stage roll mill. Adjusted to 1 grade.
- the lubricating grease of Example 4 was 60.3 g of diphenylmethane-4,4′-diisocyanate, 65.5 g of stearylamine and 24 in 2000 g of mineral oil (kinematic viscosity at 100 ° C. of 13.5 mm 2 / sec). .1 g of cyclohexylamine was reacted to uniformly disperse the formed urea compound to obtain a grease. Additives were added to this base grease in the formulation shown in Table 5, and the resulting compound was subjected to JIS consistency No. 1 using a three-stage roll mill. Adjusted to 1 grade.
- Table 3 The test conditions are shown in Table 3 below.
- ⁇ indicates excellent “excellent”, ⁇ indicates that it can be used as a constant velocity universal joint, indicates “good”, and ⁇ indicates “impossible”. ing.
- the test results are shown in Table 4 below.
- the grease of Comparative Product 1 mainly contains an additive that easily acts under high load conditions. Low load durability and transmission efficiency deteriorate. The transmission efficiency was used as an index of grease friction coefficient.
- the execution product 1 is a grease in which an additive acting from a low temperature region is additionally added to the comparison product 1 and reduced to 4% MCA. It turns out that all tests are satisfied.
- the working product 2 is a grease in which the MCA of the working product 2 is further reduced to 3%. It turns out that it is improving from the implementation product 1.
- FIG. Furthermore, the life of the comparative product 2 in which the MCA is reduced to 1.5% is deteriorated.
- the implementation product 3 is obtained by adding vegetable oil to the implementation product 2 and has a lower low-load durability life than the implementation product 2.
- the comparative product 3 when the surface roughness of the ball is Ra 0.16, the durability is remarkably lowered.
- the implementation product 4 was different from the implementation product 3 in the type of urea thickener. The performance was equivalent to that of Example Product 3.
- the fixed constant velocity universal joint may be an undercut free type or a barfield type.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Lubricants (AREA)
- Rolling Contact Bearings (AREA)
Abstract
耐久性、高負荷条件、低負荷条件、高角条件性能に優れた特性を低コストで具現化できる固定式等速自在継手を提案する。 継手内部に潤滑グリースが封入された固定式等速自在継手である。ボール37の表面粗さをRa0.15μm以下とするとともに、ボールが転動する相手面の表面粗さをボール37の表面粗さよりも粗くする。潤滑グリースの添加剤組成として、基油、ジウレア化合物、モリブデンジチオカーバメート、ジアルキルジチオリン酸亜鉛、メラミンシアヌレート、二硫化モリブデン、及びアルキル芳香族スルホン酸のカルシウム塩を含んでいる。
Description
本発明は、自動車や産業機械の動力伝達装置の駆動軸などに用いる固定式等速自在継手に関する。
固定式等速自在継手は、図5に示すように、内径面1に複数のトラック溝2が形成された外側継手部材3と、外径面4に外側継手部材3のトラック溝2と対をなす複数のトラック溝5が形成された内側継手部材6と、外側継手部材3のトラック溝2と内側継手部材6のトラック溝5との間に介在してトルクを伝達する複数のボール7と、外側継手部材3の内径面1と内側継手部材6の外径面4との間に介在してボール7を保持するケージ8とを備えている。ケージ8には、ボール7が収容される窓部9が周方向に沿って複数配設されている。
また、外側継手部材3は、前記トラック溝2が形成されたマウス部3aと、このマウス部3aの底壁10から突設されたステム部3bとからなる。内側継手部材6の軸心孔の内径面には雌スプライン11が形成され、この内側継手部材6の軸心孔にシャフト12の端部が嵌入される。このシャフト12の端部には雄スプライン13が形成され、この雄スプライン13が内側継手部材6の軸心孔の雌スプライン11に嵌合される。なお、雄スプライン13の端部には周方向溝が形成され、この周方向溝には抜け止めとしての止め輪14が装着されている。
この場合、外側継手部材3のトラック溝2は、その曲率中心O1が継手中心Oから軸方向に外側継手部材3の開口側に継手軸線Lに沿って所定寸だけずらされている。また、内側継手部材6のトラック溝5は、その曲率中心O2が継手中心Oから軸方向に外側継手部材3のトラック溝2の曲率中心O1と反対側の奥側に継手軸線Lに沿って所定の寸法だけ離して設けている。すなわち、曲率中心O1と曲率中心O2は継手中心Oから互いに逆方向に等距離だけ継手軸線Lに沿って軸方向にオフセットしている。
等速自在継手の開口部は、ブーツ15にて密封されている。ブーツ15は、大径部15aと、小径部15bと、大径部15aと小径部15bとを連結する蛇腹部15cとからなる。そして、大径部15aが外側継手部材3の外径面の開口部側のブーツ装着部17に外嵌され、その外嵌された状態で大径部15aに対してブーツバンド16を締め付ける。これによって、大径部15aが外側継手部材3のブーツ装着部17に装着される。また、シャフト12には、周方向溝が形成されたブーツ装着部18が形成され、このブーツ装着部18にブーツ15の小径部15bが外嵌され、その外嵌された状態で小径部15bに対してブーツバンド16を締め付ける。
ところで、CO2削減が強く望まれる運輸部門、特に自動車部品においては、LCA(ライフサイクルアセスメント)の観点で使用期間の延長且つ軽量化が急務な課題である。使用期間の延長を可能とするためには、特に転動寿命の向上が課題となる。また、軽量化を達成するためには、部品の耐久時の許容荷重を増加させることが必要である。このことより転動寿命の向上が強く求められている。
また、自動車の駆動軸であるドライブシャフトは、登坂時のような高いトルクで低速回転の条件(以下、高負荷条件とする)から平坦な高速道の走行時のような低いトルクで高速回転の条件(以下、低負荷条件とする)、更に、ホイールの転舵角をフル転舵(CVJの作動角が最大角付近)で低いトルクで微速回転条件(以下高角条件とする)にて使用される。このような代表的な負荷モードが繰り返し作用しており、トルク伝達部材にボールを用いた固定式等速自在継手(以下、固定式ボール型等速自在継手と呼ぶ場合がある)は、全ての走行モードに十分に耐えることが必要であり、どれか一つの条件に優れた固定式ボール型等速自在継手であっても、実用の耐久性を具備したことにはならない。また、しゅう動式等速自在継手は、固定式ボール型等速自在継手よりも小さな(約半分の)作動角で使用されるため、固定式ボール型等速自在継手よりも寿命は長い場合が多い。そのため、特に、固定式ボール型等速自在継手の転動寿命の向上が望まれる。
耐久性を考える場合、潤滑抜きでは考えられない。そして、潤滑の組成は使用される製品により大きく異なる。それは、接触する部品の運動状態と接触する面性状により、トライボロジー現象が大きく異なるためである。したがって、潤滑剤が封入される製品(例えば、自動車用ドライブシャフトの固定式ボール型等速自在継手)を明確に限定し、運転状態を把握し、更に転動面の面性状を考慮し、潤滑剤の組成が決定されなければならない。
等速自在継手に封入される潤滑剤には、例えば特許文献1~特許文献3に記載のものがある。特許文献1および特許文献2では、このようなグリース組成とすることによって、等速自在継手の摩耗を効果的に低減し、潤滑部分のフレーキングの発生を防止するものである。しかしながら、この場合、高負荷条件下のみに効果的なグリース組成を提供するものである。特許文献3では、等速自在継手の摩耗を低減し、振動の発生を防止するものである。
また、特許文献4では、耐荷重性、耐摩耗性及び摩擦係数等の潤滑性能の少なくともいずれかの性能において改善したものである。そして、その改善された性能に応じてそれに適する各種の機械や装置の潤滑剤に有効に使用することができるものである。
前記特許文献1~特許文献3に記載のもので、接触面における面性状についての記載はない。しかしながら、接触する部品の運動状態と接触する面性状により、トライボロジー現象が大きく異なる。このため、自動車のドライブシャフトにおけるボールを用いた固定式等速自在継手では、運転状態を把握し、さらに運転面の面性状を考慮して、潤滑剤の組成を決定する必要がある。また、特許文献4に記載のもは、用途が等速自在継手に限定されず、しかも接触面における面性状についても全く限定されたものではない。
そこで、本発明は斯かる実情に鑑み、耐久性、高負荷条件、低負荷条件、高角条件性能に優れた特性を低コストで具現化できる固定式等速自在継手を提供しようとするものである。
本発明の固定式等速自在継手は、内径面にトラック溝が形成された外側継手部材と、外径面に外側継手部材のトラック溝と対をなす複数のトラック溝が形成された内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、外側継手部材の内径面と内側継手部材の外径面との間に介在してボールを保持するケージとを備え、継手内部に潤滑グリースが封入された固定式等速自在継手において、前記ボールの表面粗さをRa0.15μm以下とするとともに、ボールが転動する相手面の表面粗さをボールの表面粗さよりも粗くし、かつ、前記潤滑グリースの添加剤組成として、基油、ジウレア化合物、モリブデンジチオカーバメート、ジアルキルジチオリン酸亜鉛、メラミンシアヌレート、二硫化モリブデン、及びアルキル芳香族スルホン酸のカルシウム塩を含んでいるものである。
本発明の固定式等速自在継手によれば、ボールの表面粗さをRa0.15μm以下としているので、ボールとのケージの接触部の摩耗を少なくすることができる。なお、ボール以外の部品の表面粗さは、トライボロジー的にはボールの面粗さと同等に仕上げることが理想であるが、表面積が大きく断続的で複雑な形状をしているため仕上げの表面粗さをRa0.15μm以下に仕上げることは経済的でない。そのため、ボール以外の部品の表面仕上げは研削加工(研削時の研削目が残存する)や焼入鋼切削(切削のリード目が残存する)または熱処理のままの面(研削や旋削等を省略)に留め、ボールの表面粗さよりも低下させることが経済的である。好ましくは、Ra0.4μm~1.8μmである。
高負荷時において、潤滑剤が具備すべき要件は、摩耗の低減と摩擦係数の低下である。低負荷時において、潤滑剤が具備すべき要件は、初期摩耗の促進(なじみ性の付与)と摩擦係数の低下及び摩耗粉の分散である。更に、高角時において、潤滑剤が具備すべき要件は、摩耗の低減と摩擦係数の低下である。
このように、高負荷時は摩耗を防止し、低負荷時は初期の摩耗を促進する必要があり相反する特性を具備する必要がある。また、高負荷は接触面の温度が高く、低負荷は接触面の温度が低い。そこで、摩耗の防止と促進(なじみ性付与)の相反する特性を満たすため、温度や面圧条件で効果が異なる固体潤滑剤を添加する。メラミンシアヌレート(MCA)が、高負荷条件でアブレシブ作用の少なく耐摩耗性が高くこのため添加した。また、二硫化モリブデン(MoS2)が、低負荷条件のような低せん断応力域で容易に作用し且つメラミンシアヌレートよりもアブレシブ作用があり、併用添加した。その潤滑機構としては、層状格子構造を持ち、すべり運動により薄層状に容易にせん断し、摩擦係数を低下させることが知られている。また、等速自在継手の焼け付き防止にも効果がある。
また、摩擦係数の低減のため、モリブデンジチオカーバメート(MoDTC)がより高温域で反応するため、摩擦調整剤として添加した。更に、ジアルキルジチオリン酸亜鉛(ZnDTP)が、より低温域から反応する事から、摩耗調整剤として併用添加した。
ZnDTPが分解して金属表面にポリフォスフェートの膜を生成し、これが潤滑面を被覆して粘弾性を有する高分子膜を形成し、振動を吸収し、また、金属接触を妨げて摩耗を防止する効果を有すると考えられる。これらの摩擦調整剤は、単独または相互作用し高い摩擦及び摩耗調整性能を示す。
また、アルキル芳香族スルホン酸のカルシウム塩(Caスルホネート)を(好ましくは0.5~3.5重量%)摩耗粉の分散に効果があり添加した。アルキル芳香族スルホン酸のカルシウム塩は、エンジン油等の潤滑油に用いられる金属系清浄分散剤や防錆剤として知られているジノニルナフタレンスルホン酸やアルキルベンゼンスルホン酸のようなアルキル芳香族スルホン酸などの合成スルホン酸のカルシウム塩である。Caスルホネートは、固体潤滑剤の分散にも効果がある。
植物油脂としては、ヒマシ油、大豆油、ナタネ油、ヤシ油、などが用いられる。これ等の植物油脂の1種または2種以上の組合わせからなる油性剤は、金属表面に吸着しやすく金属間どうしの接触を妨げるものであり、低負荷時の摩擦係数を低下させると考えられる。
前記成分に加えて、酸化防止剤、防錆剤、防食剤等を含有させることができる。本グリース組成物は、グリース組成物の全重量に対して、好ましくは成分の基油:57.5~94.3重量%、成分のジウレア化合物:1~25重量%、成分のメラミンシアヌレート:2~4重量%、二硫化モリブデン:0.2~2.5重量%、モリブデンジチオカーバメート:1~3重量%、ジアルキルジチオリン酸亜鉛:0.5~1.5重量%、アルキル芳香族スルホン酸のカルシウム塩:0.5~3.5重量%、植物油脂:0~3重量%、さらに好ましくは成分の基油:57.5~94.3重量%、成分のジウレア化合物:1~25重量%、成分のメラミンシアヌレート:2.5~3.5重量%、二硫化モリブデン:0.2~2.5重量%、モリブデンジチオカーバメート:1~3重量%、ジアルキルジチオリン酸亜鉛:0.5~1.5重量%、アルキル芳香族スルホン酸のカルシウム塩:0.5~3.5重量%、植物油脂:0.5~3重量%を含んでいる。
ジウレア化合物の含有量が1重量%未満では、増ちょう効果が少なくなり、グリース化しにくくなり、25重量%より多いと、得られた組成物が硬くなり過ぎ、所期の効果が得られ難くなる。 成分のメラミンシアヌレートの含有量が2重量%未満、モリブデンジチオカーバメートの含有量が1重量%未満、ジアルキルジチオリン酸亜鉛の含有量が0.5重量%未満、アルキル芳香族スルホン酸のカルシウム塩の含有量が0.5重量%未満では、所期の効果を十分に得ることが困難な場合があり、一方、 成分のメラミンシアヌレート、アルキル芳香族スルホン酸のカルシウム塩、植物油脂の上限より多い場合にも、効果の増大はなく、耐久寿命向上の効果においては、むしろ逆効果である。モリブデンジチオカーバメート、ジアルキルジチオリン酸亜鉛の上限より多い場合には、添加効果が顕著でなくなる。
外側継手部材のトラック溝底面及び内側継手部材のトラック溝底面に曲線部とストレート部を有するアンダーカットフリータイプとすることができる。
このようなアンダーカットフリータイプの固定式等速自在継手において、外側継手部材のトラック溝の曲率中心と内側継手部材のトラック溝の曲率中心とを継手軸中心線に対して、そのトラック溝と反対側の径方向にそれぞれ等距離だけオフセットさせたものであってもよい。
外側継手部材のトラック溝とシャフトの干渉がより高角側に移動するため、最大作動角を大きく取ることが可能となる。しかし、トラック溝の円弧部の高角側は、最大作動角が増加すると、トラック深さが浅くなり、高角条件下での耐久性が低下する。そこで、外側継手部材のトラック溝の曲率中心と内側継手部材のトラック溝の曲率中心とを径方向にオフセットすることによって、トラックの奥側を深くすることができる。
ケージの素材は、炭素量が0.46重量%以上で0.50重量%以下の炭素鋼で、焼入れ後の硬さがHRC56~60の芯部硬さを有するのが好ましい。また、前記ボールを8個とするとともに、外側継手部材の球面角を17°~18.5°とし、かつ外側継手部材の球面入口に、ケージ組み込み用の切欠部を設けるのが好ましい。
本発明の等速自在継手は、耐久性、高負荷条件、低負荷条件、及び高角度条件性能に優れた特性を低コストで具現化できる。潤滑グリースの添加剤組成の含有量を前記のように限定することによって、低負荷耐久性をさらに向上することができる。添加剤組成の基油を鉱油することによって、低コスト化を図ることができる。
アンダーカットフリータイプとすることによって、最大作動角を大きくとることができ、しかも、前記した添加剤組成の潤滑グリースを継手内部に封入するにより高角条件下での耐久性の低下を防止できる。さらに、径方向にオフセットさせることによって、トラック溝の奥側を深くすることができ、この構造と前記潤滑グリースとの組み合わせによって、最大作動角の小さいバーフィールドタイプと同等の高角耐久性を確保できる。
ケージの素材を前記のように限定することによって、高強度で耐久性に優れた固定式高角継手が可能となる。炭素量が前記した範囲の下限未満では、硬さが低下し、耐摩耗性が著しく低下する。また、炭素量が前記した範囲の上限を超えるとケージの窓抜き加工のプレス加工が困難となり、プレス面の寸法精度が著しく低下する問題が生じる。芯部硬度の下限未満では、強度の向上が見られない。
外側継手部材の球面角を17°~18.5°とすることによって、ケージの強度を更に増加でき、耐久性も大幅に向上する。この理由は、球面部はケージを抱き抱え、ケージを補強する役目があるためである。また、球面角の増加は、ケージと内側継手部材およびボールの等速二等分面からのズレを低減するため、耐久性が向上する。また、ボール個数を8個に増加することにより、ボール径を小さくでき、作動性を犠牲にすることなくオフセット量も低減でき外側継手部材とボールの滑りを大幅に低減できる。
外側継手部材は、通常S53C前後の炭素鋼を高周波焼入れし、内側継手部材は浸炭焼入れしているため、外側継手部材の軟化抵抗は小さく運転中内側継手部材よりも硬度が低下しやすい。そのため、負荷条件が同じ場合、外側継手部材の寿命で固定式ボール等速継手の寿命は決まる。そのため、8個ボールとすることにより、より外側継手部材の寿命を向上できる。強度と耐久性が向上し、小型・軽量化が可能となる。
ところで、球面角の増加は、ケージの外側継手部材への組込みを困難とするがケージ組込み用の切欠き部を球面の入口に設けることにより組込みが容易に可能となる。更に、組込み用の切欠き部は、旋削加工で加工可能であるが、鍛造で加工することにより、経済性が大幅に増加する。球面角が下限未満と成ると、効果が小さく、上限を超えると組込み用の切欠き部の加工費が大幅に増加するのと、鍛造加工が困難となる。
以下、本発明の実施形態を図面に従って説明する。
図1は本発明に係る固定式等速自在継手を示し、この固定式等速自在継手はアンダーカットフリータイプであって、内径面31に複数のトラック溝32が形成された外側継手部材33と、外径面34に外側継手部材33のトラック溝32と対をなす複数のトラック溝35が形成された内側継手部材36と、外側継手部材33のトラック溝32と内側継手部材36のトラック溝35との間に介在してトルクを伝達する複数のボール37と、外側継手部材33の内径面31と内側継手部材36の外径面34との間に介在してボール37を保持するケージ38とを備えている。ケージ38には、ボール37が収容される窓部39が周方向に沿って複数配設されている。この場合、外側継手部材33のトラック溝32と内側継手部材36のトラック溝35とは、それぞれ周方向に45°ピッチで8本形成され、ボール数が8個とされる。このため、外側継手部材33は、図2と図3に示すように、トラック溝間に、周方向に45°ピッチで8個の内径面構成面51が形成される。
また、外側継手部材33は、前記トラック溝32が形成されたマウス部33aと、このマウス部33aの底壁40から突設されたステム部33bとからなる。内側継手部材36の軸心孔の内径面には雌スプライン41が形成され、この内側継手部材6の軸心孔にシャフト42の端部が嵌入される。このシャフト42の端部には雄スプライン43が形成され、この雄スプライン43が内側継手部材36の軸心孔の雌スプライン41に嵌合される。なお、雄スプライン43の端部には周方向溝が形成され、この周方向溝には抜け止めとしての止め輪44が装着されている。
外側継手部材33のトラック溝32の溝底面は、奥側の曲線部32aと開口側のストレート部32b(継手軸線Lと平行に延びる)とを有する。また、内側継手部材36のトラック溝35の溝底面は、奥側のストレート部35a(継手軸線Lと平行に延びる)と開口側の曲線部35bとを有する。トラック溝32の曲線部32aは、その曲率中心O1が継手中心Oから軸方向に外側継手部材3の開口側に所定の寸法だけずらされている。また、トラック溝35の曲線部35bは、その曲率中心O2が継手中心Oから軸方向に外側継手部材33の曲線部32aの曲率中心O1と反対側の奥側に所定の寸法だけ離して設けている。すなわち、曲率中心O1と曲率中心O2は継手中心Oから互いに逆方向に等距離、継手軸線Lに沿って軸方向にオフセットしている。
等速自在継手の開口部は、ブーツ45にて密封されている。ブーツ45は、大径部45aと、小径部45bと、大径部45aと小径部45bとを連結する蛇腹部45cとからなる。そして、大径部45aが外側継手部材33の外径面の開口部側のブーツ装着部47に外嵌され、その外嵌された状態で大径部45aに対してブーツバンド46を締め付ける。これによって、大径部45aが外側継手部材33のブーツ装着部47に装着される。また、シャフト42には、周方向溝が形成されたブーツ装着部48が形成され、このブーツ装着部48にブーツ45の小径部45bが外嵌され、その外嵌された状態で小径部45bに対してブーツバンド46を締め付ける。
ところで、外側継手部材33のマウス部33aの開口端面には図2と図3に示すようなチャンファ50が形成される。また、相対向する一対の内径面構成面51A、51Bの開口端に切欠部52が形成される。このため、切欠部52を有さない相対向する一対の内径面構成面51、51の開口端間寸法をEとし、相対向する一対の内径面構成面51A、51Bの開口端間寸法(切欠部52の開口端間寸法)をFとしたときに、F>Eとなる。
外側継手部材33の球面角αを17°~18.5°とする。ここで、「球面角」とは、図3に示すように、外側継手部材33の内球面(内径面)中心(継手中心)Oに対してその内径面31の継手開口側端部がなす軸方向角度を意味する。
また、固定式ボール型等速自在継手の強度で最も低強度な部品は、ケージ38である。ケージ38は浸炭焼入れで使用されることが多い。しかし、浸炭処理は、耐摩耗性や軟化抵抗の増加には有利であるが、炭素量が1.0重量%前後と高いため、切欠きを有する部品では、著しく靭性を低下させる。靭性の低下は、継手に衝撃荷重が作用した場合、脆性的に破断するため瞬間的にトルク伝達が不能となり危険回避時の安全性に問題が生じる場合がある。
そのため、本発明では、炭素量0.46重量%以上で0.50重量%以下の鋼を焼入れし、焼入れ後の炭素量を浸炭の表面炭素量(0.9~1.1重量%)の半減とし、芯部硬度をHRC52以上としている。これにより、このケージ38は、靭性と強度を大幅に向上させたものとなって、高強度で耐久性に優れた固定式高角継手が可能となる。炭素量が前記範囲の下限未満では、硬さが低下し、耐摩耗性が著しく低下する。また、前記範囲の上限を超えるとケージ38の窓抜き加工のプレス加工が困難となり、プレス面の寸法精度が著しく低下する問題が生じる。また、芯部硬度が、前記範囲の下限未満では、強度の向上が見られない。
ところで、固定式等速自在継手(トルク伝達部材にボールを用いた固定式等速自在継手)のボールは、一般的には、継手の滑らかな作動と各ボールへの均一な負荷の観点から、最も仕上げ精度を考慮する必要が有る。このため、ボールは、熱処理後には、上下の平板の間に研磨剤及びボールを入れ、平板を相対運動させる研磨を行い、その後、ラッピング仕上げして、ボールを平滑で真球に加工する。このため、ボールは、一回の処理で大量に加工できるため、仕上げの面粗さを小さくしてもコストの増加は小さい。
そこで、本発明では、ボール37の面粗さは、Ra0.15以下とする。Ra0.15を超えると、ケージ38と点接触するためケージ38の転走面の摩耗が著しく増加し、運転時異音の発生を招くことがある。
ボール以外の部品の表面粗さは、トライボロジー的にはボール37の面粗さと同等に仕上げることが理想であるが、表面積が大きく断続的で複雑な形状しているため仕上げの表面粗さをRa0.15以下に仕上げることは経済的でない。そのため、ボール以外の部品の表面仕上げは研削加工(研削時の研削目が残存する)や焼入鋼切削(切削のリード目が残存する)または熱処理のままの面(研削や旋削等を省略)に留め、ボールの表面粗さよりも低下させることが経済的である。好ましくは、Ra0.4~1.8である。尚、研削加工後ショットブラストやタンブラー加工を実施する場合がある。
このような、経済的なトライボロジー的表面形状を前提とし、それに適合した潤滑剤の組成を見出すことが極めて重要であり、効率的で経済的な潤滑が可能となる。更に、組成を決めるためには、固定式等速自在継手(トルク伝達部材にボールを用いた固定式等速自在継手)の損傷モードを詳しく把握する必要がある。そこで、損傷モードを経時的に注意深く観察し鋭意究明した。
その結果、高負荷条件では、外側継手部材と内側継手部材のトラックのはく離により寿命に至る。高負荷条件下では、境界潤滑状態で運動しており、ボールの転がり滑り運動により表面の大きなせん断応力がクライオリティとなり、表面層の軟化と摩耗が繰り返す。このため、高負荷条件下では、表面にせん断亀裂が発生し亀裂の進展によりマクロ的はく離にいたることが判った。従って、潤滑剤が具備すべき要件は、摩耗の低減と摩擦係数の低下である。
低負荷条件では、ボールのはく離により寿命に至る。低負荷条件下で比較的短寿命な固定式ボール型等速自在継手の内側継手部材・外側継手部材のトラックを経時的に観察すると、研削目が多く残っているものが短寿命であることが判った。また、運転の初期(なじみの時期)以降は、トラックの摩耗は停留することが判った。より詳細に調査した結果、低負荷条件でなじみが完了すると流体潤滑状態で運動することが多くなることが判った。すなわち、なじみ性が低下すると流体潤滑状態に至らず、トラックの研削目がボールの表面に傷をつけ、この傷より亀裂が発生し、その後進展しボールがはく離することが判った。また、もう一つの亀裂発生の要因として、なじみ時のアブレシブ摩耗の摩耗粉がボールを攻撃し傷となり、その部位より亀裂が発生しボールがはく離することが判った。従って、潤滑剤が具備すべき要件は、初期摩耗を促進(なじみ性の付与)と摩擦係数の低下及び摩耗粉の分散である。
高角条件では、内側継手部材のトラック肩部の欠けより寿命に至る。高角条件下では、固定式ボール型等速自在継手は、球面中心に対しトラックの中心が軸方向にオフセットしているためオフセットした側のトラック奥のトラック深さ(トラックの底から球面までの深さ)が浅くなる。このため、トラックとボールの接触楕円がトラック肩部に乗り上げ肩部の応力集中により、浸炭焼入れされた内側継手部材のトラック肩部が欠ける。
外側継手部材は、中炭素鋼(JIS S53CやS48C)を高周波焼入れされる場合が多く、このような場合、外側継手部材の表面の炭素量は浸炭焼入れされたものより半分ほど少ない。このため、外側継手部材の肩部の靭性は内側継手部材の肩部の靭性より高く、外側継手部材の肩部は欠け難く塑性変形の状態で止まることが判った。更に、トラックの摩耗が進展すると、より肩部への乗り上げが増加し、欠けの発生を助長することが判った。従って、潤滑剤が具備すべき要件は、摩耗の低減と摩擦係数の低下である。
以上より、高負荷時において、潤滑剤が具備すべき要件は、摩耗の低減と摩擦係数の低下である。低負荷時において、潤滑剤が具備すべき要件は、初期摩耗の促進(なじみ性の付与)と摩擦係数の低下及び摩耗粉の分散である。更に、高角時において、潤滑剤が具備すべき要件は、摩耗の低減と摩擦係数の低下である。尚、高角条件は、高負荷条件と同じと考えられるため、高負荷時と低負荷時の要件を考慮し潤滑組成を決定すれば良い。
すなわち、高負荷時は摩耗を防止し、低負荷時は初期の摩耗を促進する必要があり相反する特性を具備する必要がある。高負荷と低負荷の接触面の硬さ変化の調査より、高負荷は接触面の温度が高く、低負荷は接触面の温度が低いことを見出した。そこで、摩耗の防止と促進(なじみ性付与)の相反する特性を満たすため、温度や面圧条件で効果が異なる固体潤滑剤を添加する。メラミンシアヌレート(MCA)が、高負荷条件でアブレシブ作用の少なく耐摩耗性が高い事を見出し添加した。メラミンシアヌレートは、例えば、メラミン水溶液とシアヌル酸又はイソシアヌル酸水溶液を混合すると容易に白色の沈殿として析出してくる。メラミンシアヌレートは、通常平均粒径1~2μmの白色微粉末として市販されている。メラミンシアヌレートは、6員環構造のメラミン分子とシアヌル酸分子が水素結合で強力に結合して平面状に配列し、その平面が互いに弱い結合力で層状に重なりあっている。このため、二硫化モリブデンと同様にへき開性を有すると推定され、メラミンシアヌレートは、優れた潤滑性を与えるものと考えられる。また、二硫化モリブデン(MoS2)が、低負荷条件のような低せん断応力域で容易に作用し且つメラミンシアヌレートよりもアブレシブ作用がある事を見出し、併用添加した。一般に極圧添加剤として広く用いられている。その潤滑機構としては、層状格子構造を持ち、すべり運動により薄層状に容易にせん断し、摩擦係数を低下させることが知られている。また、等速自在継手の焼け付き防止にも効果がある。
また、モリブデンジチオカーバメート(MoDTC)がより高温域で反応する。そこで、摩擦係数の低減のため、これを摩擦調整剤として添加した。更に、ジアルキルジチオリン酸亜鉛(ZnDTP)が、より低温域から反応する事から、これを摩耗調整剤として併用添加した。
ZnDTPが分解して金属表面にポリフォスフェートの膜を生成し、これが潤滑面を被覆して粘弾性を有する高分子膜を形成する。このため、振動を吸収し、また、金属接触を妨げて摩耗を防止する効果を有すると考えられる。前記摩擦調整剤は、単独または相互作用し高い摩擦及び摩耗調整性能を示す。
また、アルキル芳香族スルホン酸のカルシウム塩(Caスルホネート)は、摩耗粉の分散に効果がある事を見出し添加(好ましくは0.5~3.5重量%)した。アルキル芳香族スルホン酸のカルシウム塩は、エンジン油等の潤滑油に用いられる金属系清浄分散剤、防錆剤として知られているジノニルナフタレンスルホン酸、アルキルベンゼンスルホン酸のようなアルキル芳香族スルホン酸などの合成スルホン酸のカルシウム塩である。Caスルホネートは、固体潤滑剤の分散にも効果がある。
植物油脂としては、ヒマシ油、大豆油、ナタネ油、ヤシ油、などが用いられる。これ等の植物油脂の1種または2種以上の組合わせからなる油性剤は、金属表面に吸着しやすく金属間同士の接触を妨げるものであり、低負荷時の摩擦係数を低下させると考えられる。前記成分に加えて、酸化防止剤、防錆剤、防食剤等を含有させることができる。
本グリース組成物は、グリース組成物の全重量に対して、好ましくは成分の基油:57.5~94.3重量%、成分のジウレア化合物:1~25重量%、 成分のメラミンシアヌレート:2~4重量%、二硫化モリブデン:0.2~2.5重量%、モリブデンジチオカーバメート:1~3重量%、ジアルキルジチオリン酸亜鉛:0.5~1.5重量%、アルキル芳香族スルホン酸のカルシウム塩:0.5~3.5重量%、植物油脂:0~3重量%、さらに好ましくは成分の基油:57.5~94.3重量%、成分のジウレア化合物:1~25重量%、成分のメラミンシアヌレート:2.5~3.5重量%、二硫化モリブデン:0.2~2.5重量%、モリブデンジチオカーバメート:1~3重量%、ジアルキルジチオリン酸亜鉛:0.5~1.5重量%、アルキル芳香族スルホン酸のカルシウム塩:0.5~3.5重量%、植物油脂:0.5~3重量%を含んでいる。
ジウレア化合物の含有量が1重量%未満では、増ちょう効果が少なくなり、グリース化しにくくなり、25重量%より多いと、得られた組成物が硬くなり過ぎ、所期の効果が得られ難くなる。成分のメラミンシアヌレートの含有量が2重量%未満、モリブデンジチオカーバメートの含有量が1重量%未満、ジアルキルジチオリン酸亜鉛の含有量が0.5重量%未満、アルキル芳香族スルホン酸のカルシウム塩の含有量が0.5重量%未満では、所期の効果を十分に得ることが困難な場合がある。一方、成分のメラミンシアヌレート、アルキル芳香族スルホン酸のカルシウム塩、植物油脂の上限より多い場合にも、効果の増大はなく、耐久寿命向上の効果においては、むしろ逆効果である。モリブデンジチオカーバメート、ジアルキルジチオリン酸亜鉛の上限より多い場合には、添加効果が顕著でなくなる。
基油に関しては特に限定するものではない。鉱物油、合成油(エステル系合成油、エーテル系合成油、炭化水素系合成油)等の普通に使用されている潤滑油またはそれらの混合油が挙げられるが、これらに限定されるものではない。経済的には、鉱油が望ましいが、耐熱性を考慮し合成油を使用しても良い。
本発明に使用する増ちょう剤としては、ウレア系増ちょう剤が望ましい。ウレア系増ちょう剤としては、例えば、ジウレア化合物、ポリウレア化合物が挙げられるが、特に限定されるものではない。ジウレア化合物は、例えば、ジイソシアネートとモノアミンの反応で得られる。ジイソシアネートとしては、フェニレンジイソシアネート、ジフェニルジイソシアネート、フェニルジイソシアネート、ジフェニルメタンジイソシアネート、オクタデカンジイソシアネート、デカンジイソシアネート、ヘキサンジイソシアネート等が挙げられ、モノアミンとしては、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、アニリン、p-トルイジン、シクロヘキシルアミン等が挙げられる。ポリウレア化合物は、例えば、ジイソシアネートとモノアミン、ジアミンとの反応で得られる。ジイソシアネート、モノアミンとしては、ジウレア化合物の生成に用いられるものと同様のものが挙げられ、ジアミンとしては、エチレンジアミン、プロパンジアミン、ブタンジアミン、ヘキサンジアミン、オクタンジアミン、フェニレンジアミン、トリレンジアミン、キシレンジアミン等が挙げられる。
メラミンシアヌレートは、メラミンとシアヌル酸の付加物である。シアヌル酸は、イソシアヌル酸と互変異性の関係にあり、通常市販されているメラミンシアヌレートは、メラミン1モルとシアヌル酸1モルの付加物であり、メラミンイソシアヌレートの形態にある。この明細書において、メラミンシアヌレートは、メラミンとシアヌル酸またはイソシアヌル酸の付加物を示すものとする。メラミンシアヌレートは、例えば、メラミン水溶液とシアヌル酸またはイソシアヌル酸水溶液を混合すると容易に白色の沈殿として析出してくる。メラミンシアヌレートは、通常平均粒径1~2μmの白色微粉末として市販されている。
アルキル芳香族スルホン酸のカルシウム塩は、エンジン油等の潤滑油に用いられるジノニルナフタレンスルホン酸やアルキルベンゼンスルホン酸のようなアルキル芳香族スルホン酸などの合成スルホン酸のカルシウム塩である。植物油脂としては、ヒマシ油、大豆油、ナタネ油、ヤシ油、などが用いられる。これ等の植物油脂は単独で用いても良いし、2種類以上を組み合わせて使用しても良い。
前記図1に示す等速自在継手では、外側継手部材33と内側継手部材36のトラック溝32、35の一部をストレートとすることにより、鍛造の加工が容易となる。また、鍛造での寸法精度も向上し、熱処理後のトラック溝32、35の仕上げが廃止、または仕上げの取代を大幅に削減でき経済的となる。また、外側継手部材33のトラック溝32とシャフト42の干渉がより高角側に移動するため、最大作動角を大きく取ることが可能となる。
また、外側継手部材33の球面角α(図2参照)を17°~18.5°とすることにより、ケージ38の強度を更に増加でき、耐久性も大幅に向上する。この理由は、球面部はケージ38を抱き抱え、ケージ38を補強する役目があるためである。また、球面角の増加は、ケージ38と内側継手部材36およびボール37の等速二等分面からのズレを低減するため、耐久性が向上する。また、ボール個数を8個に増加することにより、ボール径を小さくでき、作動性を犠牲にすることなくオフセット量も低減でき外側継手部材33とボール37の滑りを大幅に低減できる。
外側継手部材33は、通常S53C前後の炭素鋼を高周波焼入れし、内側継手部材36は浸炭焼入れしているため、外側継手部材33の軟化抵抗は小さく運転中、内側継手部材36よりも硬度が低下しやすい。そのため、負荷条件が同じ場合、外側継手部材33の寿命で等速自在継手の寿命は決まる。したがって、8個ボールとすることにより、より外側継手部材33の寿命を向上できる。強度と耐久が向上し、小型・軽量化が可能となる。但し、球面角の増加は、ケージ38の外側継手部材33への組込みを困難とするがケージ組込み用の切欠き部52を球面の入口に設けることにより組込みが容易に可能となる。更に、組込み用の切欠き部52は、旋削加工で加工可能であるが、鍛造で加工することにより、経済性が大幅に増加する。球面角が下限未満と成ると、効果が小さく、上限を超えると組込み用の切欠き部52の加工費が大幅に増加するのと、鍛造加工が困難となる。
次に図4は他の実施形態を示し、この場合の固定式等速自在継手は、曲率中心O1と曲率中心O2は継手中心Oから互いに逆方向に等距離f1、軸方向にオフセットしているとともに、曲率中心O1及び曲率中心O2を、継手軸中心線に対して、そのトラック溝と反対側の径方向にそれぞれ等距離f2だけオフセットさせている。
この図4に示す等速自在継手の他の構成は前記図1に示した等速自在継手と同様であるので、図1と同一構成(部材)については図1と同じ符号を付してそれらの説明を省略する。このため、この図4に示す等速自在継手であっても、図1に示す等速自在継手と同様の作用効果を奏する。
ところで、アンダーカットフリータイプとすることによって、円弧部のトラックの高角側のトラックは最大作動角が増加する。このため、トラック深さが浅くなり、高角条件下での耐久性が低下する。しかしながら、本グリースを封入することにより、高角条件下での耐久性の低下を防止できる。このようにアンダーカットフリータイプの等速自在継手は高角条件下での耐久性が低下するため、図4に示すようにトラックのオフセットを半径方向にもオフセットすることにより、奥側の浅いトラックを深くできる。この構造と本グリースを組み合わせることにより、図5に示した最大作動角の小さなバーフィールドタイプと同等の高角耐久性を確保できる。
以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、固定式等速自在継手として、アンダーカットフリータイプにかぎらず、バーフィールドタイプの固定式等速自在継手であってもよい。また、前記したように、ボール数としては、8個が好ましいが、8個に限るものではない。
次に実施例を示す。実施品1、2、3、4及び比較品1、2、3を製作して、各実施品及び比較品について、高負荷耐久、低負荷耐久、高角耐久、伝達効率について調べた。各実施品及び比較品の構成部品(外側継手部材、内側継手部材、ケージ、ボール)は、表1に示す材質のものを用いた。外側継手部材33のトラック溝32、内側継手部材36のトラック溝35、ケージ38の窓部39のボール接触面、ボール37の熱処理後の硬さは、それぞれHRC60.1、61.7、62.0、65.1であった。また、これらの各部材を200℃で1時間保持後の硬度の低下を測定した結果、外側継手部材33のトラック溝32、内側継手部材36のトラック溝35、ケージ38の窓部39のボール接触面、ボール38の硬さは、それぞれHRC58.2、60.5、60.8、64.5であった。この結果、軟化抵抗は、高周波焼入れの外側継手部材33が最も低いことがわかる。
各実施品及び比較品の構成部品の製造方法を次の表2に示す。表2において、第1ボールとは、後述する表4に記載のように、その面粗さが0.08μmとし、第2ボールとは、表4に記載のように、その面粗さが0.16μmとしたものである。ラッピング1とラッピング2とは表2に示すように、処理時間の違いのみである。
また、実施品1、2、3及び比較品1、2、3の潤滑グリースは、鉱油(100℃での動粘度が13.5mm2/sec)2000g中で、60.6gのジフェニルメタン-4,4’-ジイソシアネートと、31.3gのオクチルアミンと66.2gのステアリルアミンを反応させ、生成したウレア化合物を均一に分散させてグリースを得た。このベースグリースに、表5に示す配合で添加剤を添加し、得られる化合物を三段ロールミルでJISちょう度No.1グレードに調整した。
実施品4の潤滑グリースは、鉱油(100℃での動粘度が13.5mm2/sec)2000g中で、60.3gのジフェニルメタン-4,4’-ジイソシアネートと、65.5gのステアリルアミンと24.1gのシクロヘキシルアミンを反応させ、生成したウレア化合物を均一に分散させてグリースを得た。このベースグリースに、表5に示す配合で添加剤を添加し、得られる化合物を三段ロールミルでJISちょう度No.1グレードに調整した。
試験結果を次の表4に示します。比較品1のグリースは高負荷条件で作用しやすい添加剤を主に含んだものである。低負荷耐久性と伝達効率が悪化する。伝達効率は、グリースの摩擦係数の指標とした。実施品1は、低温域から作用する添加剤を比較品1に追加で添加し、MCA4%に減少したグリースである。全ての試験を満足することが判る。実施品2は、実施品2のMCAを更に3%まで減少したグリースである。実施品1より向上していることがわかる。更に、MCAを1.5%まで減少した比較品2は、寿命が悪化する。実施品3は、実施品2に植物油を添加し、実施品2より低負荷耐久寿命が向上していることがわかる。比較品3は、ボールの面粗さをRa0.16とした場合、耐久性が著しく低下する。実施品4は、実施品3よりウレア系増ちょう剤種を変更した。実施品3と同等の性能があった。
自動車や産業機械の動力伝達装置の駆動軸などに用いる。継手内部には潤滑グリースは封入される。固定式等速自在継手としては、アンダーカットフリータイプであっても、バーフィールドタイプであってもよい。
31 内径面
32、35 トラック溝
32a 曲線部
32b ストレート部
33 外側継手部材
34 外径面
35a ストレート部
35b 曲線部
36 内側継手部材
37 ボール
38 ケージ
32、35 トラック溝
32a 曲線部
32b ストレート部
33 外側継手部材
34 外径面
35a ストレート部
35b 曲線部
36 内側継手部材
37 ボール
38 ケージ
Claims (8)
- 内径面にトラック溝が形成された外側継手部材と、外径面に外側継手部材のトラック溝と対をなす複数のトラック溝が形成された内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、外側継手部材の内径面と内側継手部材の外径面との間に介在してボールを保持するケージとを備え、継手内部に潤滑グリースが封入された固定式等速自在継手において、
前記ボールの表面粗さをRa0.15μm以下とするとともに、ボールが転動する相手面の表面粗さをボールの表面粗さよりも粗くし、かつ、前記潤滑グリースの添加剤組成として、基油、ジウレア化合物、モリブデンジチオカーバメート、ジアルキルジチオリン酸亜鉛、メラミンシアヌレート、二硫化モリブデン、及びアルキル芳香族スルホン酸のカルシウム塩を含んでいることを特徴とする固定式等速自在継手。 - 前記潤滑グリースの添加剤組成が、メラミンシアヌレート:2~4重量%、二硫化モリブデン:0.2~2.5重量%、モリブデンジチオカーバメート:1~3重量%、ジアルキルジチオリン酸亜鉛:0.2~1.5重量%、アルキル芳香族スルホン酸のカルシウム塩:0.5~3.5重量%であることを特徴とする請求項1に記載の固定式等速自在継手。
- 前記潤滑グリースの添加剤組成には、さらに植物油脂が添加されていることを特徴とする請求項1又は請求項2に記載の固定式等速自在継手。
- 前記添加剤組成の基油を鉱油としたことを特徴とする請求項1~請求項3のいずれか1項に記載の固定式等速自在継手。
- 外側継手部材のトラック溝底面及び内側継手部材のトラック溝底面に曲線部とストレート部を有するアンダーカットフリータイプであることを特徴とする請求項1~請求項4のいずれか1項に記載の等速自在継手。
- 外側継手部材のトラック溝の曲率中心と内側継手部材のトラック溝の曲率中心とを継手軸中心線に対して、そのトラック溝と反対側の径方向にそれぞれ等距離だけオフセットさせたことを特徴とする請求項5に記載の固定式等速自在継手。
- ケージの素材は、炭素量が0.46重量%以上で0.50重量%以下の炭素鋼で、焼入れ後の硬さがHRC56~60の芯部硬さを有することを特徴とする請求項6に記載の固定式等速自在継手。
- 前記ボールを8個とするとともに、外側継手部材の球面角を17°~18.5°とし、かつ外側継手部材の球面入口に、ケージ組み込み用の切欠部を設けたことを特徴とする請求項7に記載の固定式等速自在継手。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180037860.7A CN103052820B (zh) | 2010-08-05 | 2011-07-19 | 固定式等速万向接头 |
US13/808,731 US8771086B2 (en) | 2010-08-05 | 2011-07-19 | Fixed-type constant velocity universal joint |
EP11814445.0A EP2602503B1 (en) | 2010-08-05 | 2011-07-19 | Fixed-type constant-velocity universal joint |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010176451 | 2010-08-05 | ||
JP2010-176451 | 2010-08-05 | ||
JP2011-155637 | 2011-07-14 | ||
JP2011155637A JP2012052654A (ja) | 2010-08-05 | 2011-07-14 | 固定式等速自在継手 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012017815A1 true WO2012017815A1 (ja) | 2012-02-09 |
Family
ID=45559321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/066311 WO2012017815A1 (ja) | 2010-08-05 | 2011-07-19 | 固定式等速自在継手 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8771086B2 (ja) |
EP (1) | EP2602503B1 (ja) |
JP (1) | JP2012052654A (ja) |
CN (1) | CN103052820B (ja) |
WO (1) | WO2012017815A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104520414A (zh) * | 2012-08-06 | 2015-04-15 | 新日铁住金株式会社 | 管状螺纹接头及用于它的润滑被膜形成用组合物 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6165497B2 (ja) * | 2012-08-03 | 2017-07-19 | Ntn株式会社 | 等速自在継手用保持器およびこれを組み込んだ固定式等速自在継手、並びにこの固定式等速自在継手を組み込んだドライブシャフト |
CN104229041B (zh) * | 2014-09-30 | 2019-03-26 | 张金星 | 一种前轮驱动自行车 |
CN104265784B (zh) * | 2014-09-30 | 2019-03-29 | 张金星 | 自行车前轮驱动的万向节式传动轮 |
JP6181219B1 (ja) * | 2016-02-16 | 2017-08-16 | Ntn株式会社 | 等速自在継手の外側継手部材の鍛造方法 |
CN114718961B (zh) * | 2022-04-29 | 2023-03-17 | 江苏大洋精锻有限公司 | 一种耐磨损汽车传动轴星形套 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6112791A (ja) | 1984-06-28 | 1986-01-21 | Yuka Meramin Kk | 固体潤滑剤含有グリ−ス |
JP2004123858A (ja) | 2002-10-01 | 2004-04-22 | Kyodo Yushi Co Ltd | 等速ジョイント用グリース組成物 |
JP2005226038A (ja) * | 2004-02-16 | 2005-08-25 | Kyodo Yushi Co Ltd | ステアリング用等速ジョイント用グリース組成物及びステアリング用等速ジョイント |
JP3988895B2 (ja) | 1996-03-22 | 2007-10-10 | 協同油脂株式会社 | 等速ジョイント用グリース組成物 |
JP3988897B2 (ja) | 1996-06-07 | 2007-10-10 | 協同油脂株式会社 | 等速ジョイント用グリース組成物 |
JP2007271039A (ja) * | 2006-03-31 | 2007-10-18 | Ntn Corp | 固定式等速自在継手 |
JP2008069282A (ja) * | 2006-09-14 | 2008-03-27 | Ntn Corp | 等速ジョイント用グリース組成物および等速ジョイント |
JP2008196635A (ja) * | 2007-02-14 | 2008-08-28 | Ntn Corp | 固定式等速自在継手 |
JP2008297402A (ja) * | 2007-05-30 | 2008-12-11 | Kyodo Yushi Co Ltd | 等速ジョイント用グリース組成物及びそれを封入した等速ジョイント |
JP2009121673A (ja) * | 2007-10-22 | 2009-06-04 | Ntn Corp | 等速自在継手 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3320611B2 (ja) * | 1996-06-05 | 2002-09-03 | 協同油脂株式会社 | 等速ジョイント用グリース組成物 |
US6506122B2 (en) * | 2000-05-19 | 2003-01-14 | Ntn Corporation | Constant velocity universal joint |
JP2008064291A (ja) * | 2006-09-11 | 2008-03-21 | Ntn Corp | 鋼球転動構造及び等速自在継手 |
WO2008099678A1 (ja) | 2007-02-14 | 2008-08-21 | Ntn Corporation | 固定式等速自在継手 |
EP2284411B1 (en) * | 2008-05-30 | 2013-05-01 | NTN Corporation | Fixed type, constant velocity universal joint |
JP5344422B2 (ja) * | 2008-09-12 | 2013-11-20 | 協同油脂株式会社 | 等速ジョイント用グリース組成物及び等速ジョイント |
-
2011
- 2011-07-14 JP JP2011155637A patent/JP2012052654A/ja not_active Withdrawn
- 2011-07-19 EP EP11814445.0A patent/EP2602503B1/en not_active Not-in-force
- 2011-07-19 CN CN201180037860.7A patent/CN103052820B/zh not_active Expired - Fee Related
- 2011-07-19 US US13/808,731 patent/US8771086B2/en not_active Expired - Fee Related
- 2011-07-19 WO PCT/JP2011/066311 patent/WO2012017815A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6112791A (ja) | 1984-06-28 | 1986-01-21 | Yuka Meramin Kk | 固体潤滑剤含有グリ−ス |
JP3988895B2 (ja) | 1996-03-22 | 2007-10-10 | 協同油脂株式会社 | 等速ジョイント用グリース組成物 |
JP3988897B2 (ja) | 1996-06-07 | 2007-10-10 | 協同油脂株式会社 | 等速ジョイント用グリース組成物 |
JP2004123858A (ja) | 2002-10-01 | 2004-04-22 | Kyodo Yushi Co Ltd | 等速ジョイント用グリース組成物 |
JP2005226038A (ja) * | 2004-02-16 | 2005-08-25 | Kyodo Yushi Co Ltd | ステアリング用等速ジョイント用グリース組成物及びステアリング用等速ジョイント |
JP2007271039A (ja) * | 2006-03-31 | 2007-10-18 | Ntn Corp | 固定式等速自在継手 |
JP2008069282A (ja) * | 2006-09-14 | 2008-03-27 | Ntn Corp | 等速ジョイント用グリース組成物および等速ジョイント |
JP2008196635A (ja) * | 2007-02-14 | 2008-08-28 | Ntn Corp | 固定式等速自在継手 |
JP2008297402A (ja) * | 2007-05-30 | 2008-12-11 | Kyodo Yushi Co Ltd | 等速ジョイント用グリース組成物及びそれを封入した等速ジョイント |
JP2009121673A (ja) * | 2007-10-22 | 2009-06-04 | Ntn Corp | 等速自在継手 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2602503A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104520414A (zh) * | 2012-08-06 | 2015-04-15 | 新日铁住金株式会社 | 管状螺纹接头及用于它的润滑被膜形成用组合物 |
EP2881454A4 (en) * | 2012-08-06 | 2016-03-16 | Nippon Steel & Sumitomo Metal Corp | TUBULAR THREADED FITTING AND LUBRICATING FILM FORMING COMPOSITION USED THEREFOR |
RU2604526C2 (ru) * | 2012-08-06 | 2016-12-10 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Трубное резьбовое соединение и образующая смазочное покрытие композиция для применения в нем |
CN104520414B (zh) * | 2012-08-06 | 2017-06-20 | 新日铁住金株式会社 | 管状螺纹接头及用于它的润滑被膜形成用组合物 |
Also Published As
Publication number | Publication date |
---|---|
EP2602503B1 (en) | 2021-03-10 |
EP2602503A4 (en) | 2018-04-04 |
JP2012052654A (ja) | 2012-03-15 |
EP2602503A1 (en) | 2013-06-12 |
US8771086B2 (en) | 2014-07-08 |
CN103052820A (zh) | 2013-04-17 |
CN103052820B (zh) | 2016-04-06 |
US20130109483A1 (en) | 2013-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012017815A1 (ja) | 固定式等速自在継手 | |
EP1724328B1 (en) | Grease composition for constant velocity joint and constant velocity joint | |
WO2011142411A1 (ja) | ボール型等速ジョイント用グリース組成物 | |
EP0773280A2 (en) | Grease composition for constant velocity joints | |
KR102099167B1 (ko) | 그리스 조성물 | |
CN105793402B (zh) | 等速万向节用润滑脂组合物及封入该润滑脂组合物的等速万向节 | |
KR100410724B1 (ko) | 등속조인트용그리스(Grease)조성물 | |
JP4829523B2 (ja) | 等速ジョイント用グリースおよび等速ジョイント | |
JP5575513B2 (ja) | 等速自在継手の外側継手部材、等速自在継手、および継手アッセンブリ | |
CN101490434A (zh) | 等速万向接头 | |
JP5007029B2 (ja) | グリース組成物および該グリース封入転がり軸受 | |
JP2005226038A (ja) | ステアリング用等速ジョイント用グリース組成物及びステアリング用等速ジョイント | |
JP2006335876A (ja) | 等速ジョイント用グリースおよび等速ジョイント | |
JP2006283830A (ja) | 等速自在継手 | |
CN106104039B (zh) | 固定式等速万向联轴器 | |
US9243671B2 (en) | Fixed type constant velocity universal joint | |
JP2007078120A (ja) | トリポード型等速自在継手 | |
JP2019039470A (ja) | 転がり軸受 | |
JP2008133911A (ja) | グリース封入転がり軸受 | |
JP4948255B2 (ja) | 転がり軸受 | |
JP2023144584A (ja) | 固定式等速自在継手 | |
JP2024062019A (ja) | 等速ジョイント用グリース組成物 | |
JP2006299036A (ja) | 等速ジョイント用グリースおよび等速ジョイント | |
JP2009174657A (ja) | トランスミッション用転がり軸受 | |
JP2008032078A (ja) | グリース密封型転がり軸受 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180037860.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11814445 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13808731 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011814445 Country of ref document: EP |