WO2012017663A1 - 単核球分離管、単核球分離システム、単核球の分離方法、単核球、及び、体内投与用薬剤 - Google Patents

単核球分離管、単核球分離システム、単核球の分離方法、単核球、及び、体内投与用薬剤 Download PDF

Info

Publication number
WO2012017663A1
WO2012017663A1 PCT/JP2011/004427 JP2011004427W WO2012017663A1 WO 2012017663 A1 WO2012017663 A1 WO 2012017663A1 JP 2011004427 W JP2011004427 W JP 2011004427W WO 2012017663 A1 WO2012017663 A1 WO 2012017663A1
Authority
WO
WIPO (PCT)
Prior art keywords
mononuclear
mononuclear cell
cell separation
tube
sample solution
Prior art date
Application number
PCT/JP2011/004427
Other languages
English (en)
French (fr)
Inventor
明彦 田口
研一 山原
Original Assignee
財団法人ヒューマンサイエンス振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人ヒューマンサイエンス振興財団 filed Critical 財団法人ヒューマンサイエンス振興財団
Publication of WO2012017663A1 publication Critical patent/WO2012017663A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3693Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/10Bone-marrow

Definitions

  • the present invention provides a mononuclear cell separation method, a mononuclear cell separation tube, a mononuclear cell separation system, a mononuclear cell separation system, and a separation method that can separate mononuclear cells from blood and the like easily and with high purity.
  • the present invention relates to a nuclear sphere and a drug for internal administration containing the mononuclear sphere as an active ingredient.
  • cardiovascular regeneration treatment by stem cell transplantation is expected as a new treatment method for ischemic heart disease.
  • Cardiovascular regenerative treatment using autologous bone marrow stem cells, myoblasts, etc. has started clinical trials about 10 years ago.
  • Treatment using bone marrow mononuclear cell fractions containing bone marrow stem cells is effective in patients with myocardial infarction.
  • the most common technique for separating mononuclear cells is Ficoll-Paque (registered trademark, Pharmacia Fine Chemicals) at the bottom of the test tube.
  • Centrifugation method of installing can be mentioned.
  • CProC is a facility for cell-based medical care and research, such as immunocell therapy, regenerative medicine, and gene therapy.
  • cell preparation room QC room, product storage room, preparation room, changing room, monitoring room, etc.
  • the cell preparation room is equipped with safety cabinets, cell culture incubators and other necessary equipment, and the cleanliness of the environment is constantly monitored and video monitored in the monitoring room.
  • the separation of mononuclear cells with the Ficoll pack described above placed on the bottom of the test tube can be performed by gently overlaying the blood sample so as not to disturb the interface with the Ficoll pack when the blood sample is transferred onto the Ficoll pack. Furthermore, after centrifugation, when collecting the mononuclear cell layer separated above the Ficoll pack with a pipette, carefully collect unnecessary components so that they are not collected with a pipette. There is a problem that it is necessary and the operation is complicated.
  • CProC is an extremely sophisticated and special facility and has a problem that the installation cost is very expensive. For this reason, the installation of CProC is a major barrier to the spread of stem cell therapy for patients with myocardial infarction, etc., and requires a closed system that can be used in general hospitals, special machinery and equipment, and special knowledge, skills, and training. There is a need for a mononuclear cell separation system that does not.
  • the present invention has been made in view of such problems, and an object thereof is to provide a mononuclear cell separation tube capable of separating mononuclear cells very easily. It is another object of the present invention to provide a simple closed mononuclear cell separation system that can be used in general hospitals.
  • the mononuclear cell separation tube is configured to have an upper chamber and a lower chamber, and a stopcock for switching the upper chamber and the lower chamber to a communication state or a non-communication state is provided.
  • a stopcock for switching the upper chamber and the lower chamber to a communication state or a non-communication state is provided.
  • sample solution can be introduced into the upper chamber without the need for troublesome operations.
  • unnecessary components can be collected by closing the stopcock
  • the mononuclear cells can be collected from the upper chamber without any troublesome operation.
  • the mononuclear cell refers to a nucleated cell having one nucleus in the cell, and means a so-called monocyte, lymphocyte and immature stem cell group.
  • a mononuclear cell separation tube having such a configuration, an air bag for taking air into and out of the mononuclear cell separation tube, and a sample solution bag for storing a sample solution are in a closed system state. Since it was connected by, a mononuclear cell separation system can be configured very easily.
  • the mononuclear cell separation tube is a method of centrifuging a sample solution comprising a plurality of components containing mononuclear cells by using a centrifugal separation medium.
  • a mononuclear cell separation tube for separating mononuclear cells having a low specific gravity component by a difference in specific gravity which is disposed on the upper side and disposed on the lower side and an introduction opening for introducing the sample solution.
  • the upper opening of the A stopcock switching state characterized in that it comprises a lid which sealed the introduction opening of the upper chamber.
  • the stopcock is a three-way stopcock having three fluid passages having first, second and third connection ports, and the first connection port is connected to the lower opening of the upper chamber, and the second connection The mouth is connected to the upper opening of the lower chamber, and after the centrifugation process, the first connection port and the third connection port are communicated to take out the mononuclear sphere as the low specific gravity component from the third connection port. Is preferred.
  • the centrifugal separation medium contains an iodine contrast agent as a main component and is stored in the lower chamber.
  • the iodinated contrast agent is preferably a nonionic water-soluble iodinated contrast agent selected from iohexol, iopamidol, iomeprol, ioxirane, ioversol, or iopromide.
  • a mononuclear cell separation system includes a mononuclear cell separation tube according to claim 1 and a sample solution bag in which a sample solution composed of a plurality of components including mononuclear cells is stored.
  • a mononuclear cell separation system includes a mononuclear cell separation tube according to any one of claims 2 to 4 and a sample solution comprising a plurality of components including mononuclear cells.
  • a first tube that connects the upper chamber and the sample solution bag through the lid of the separation tube, and a lid of the mononuclear cell separation tube that connects the upper chamber and the airbag.
  • a second tube, and a third tube that connects the mononuclear sphere storage bag and a third connection port of the three-way cock are provided.
  • the centrifugation method according to the fourth aspect of the present invention is a method for removing mononuclear cells from a sample solution comprising a plurality of components including mononuclear cells by specific gravity centrifugation using an iodinated contrast agent as a main component of the centrifugation medium. It is characterized by separating.
  • the iodinated contrast agent is preferably a nonionic water-soluble iodinated contrast agent selected from iohexol, iopamidol, iomeprol, ioxirane, ioversol, or iopromide.
  • the mononuclear sphere according to the fifth aspect of the present invention is characterized by being separated by the mononuclear sphere separation method according to claim 7 or 8.
  • a drug for in-vivo administration according to the sixth aspect of the present invention is characterized by containing the mononuclear cell according to claim 9 as an active ingredient.
  • the drug for internal administration may be used for brain disease treatment, neurodegenerative disease treatment, peripheral vascular disease treatment, heart disease treatment, cerebral palsy treatment, renal infarction treatment, dementia treatment, chronic renal failure treatment, or chronic heart failure treatment. It is preferable to be used for either.
  • the operation for introducing the sample solution into the mononuclear cell separation tube before the centrifugation and the operation for collecting the mononuclear cells after the centrifugation can be carried out very easily, and therefore troublesome operations are performed. Mononuclear cells can be separated without any trouble. Further, since this mononuclear cell separation tube is used to construct a closed mononuclear cell separation system, no special machinery / equipment or special knowledge / skill / training is required, and it can be used in general hospitals.
  • FIG. 1 is a schematic view of a mononuclear cell separation tube 100 according to the present embodiment.
  • the mononuclear cell separation tube 100 includes an upper chamber 110 formed of a cylindrical body having an introduction opening 111 disposed on the upper end side and a lower opening 112 disposed on the lower end side, and an upper side on the upper end side.
  • a three-way cock 130 including a lower chamber 120 having a bottomed cylindrical body having an opening 121 and a lower end closed, and three fluid passages having a first connection port 131, a second connection port 132, and a third connection port 133. And comprising.
  • the lower opening 112 of the upper chamber 110 and the upper opening 121 of the lower chamber 120 are configured to be narrower than the introduction opening 111. That is, a constricted portion is provided at a connection portion between the upper chamber 110 and the lower chamber 120, and a three-way cock 130 is provided at the constricted portion.
  • the three-way stopcock 130 includes a first connection port 131, a second connection port 132, and a third connection port 133 on the outer periphery, and communicates predetermined connection ports among the first to third connection ports by a rotating operation.
  • a flow path switching unit is provided.
  • the lower opening 112 of the upper chamber 110 and the upper opening 121 of the lower chamber 120 are liquid-tightly connected so as to be opened and closed by rotating the flow path switching unit. For example, when the lower opening 112 of the upper chamber 110 and the upper opening 121 of the lower chamber 120 are in communication, the first connection port 131 is connected to the lower opening 112 of the upper chamber 110 and the second connection port 132 is Connected to the upper opening 121 of the lower chamber 120.
  • the upper chamber 110 and the lower chamber 120 are covered with a case 150, whereby each chamber is protected from external impact.
  • the case 150 is provided with a notch 151, and the third connection port 133 is exposed from the notch 151.
  • the introduction opening 111 of the upper chamber 110 is sealed with a lid 140.
  • An inlet 141 through which the sample solution is introduced is provided on the top of the lid 140.
  • the material of the upper chamber 110 and the lower chamber 120 is not particularly limited as long as it is made of a material having a self-retaining property that is not deformed even by a centrifugal force. For example, a polypropylene copolymer or a polystyrene is used. Etc.
  • a centrifugation medium mainly containing an iodine contrast agent is accommodated.
  • An iodinated contrast agent is a contrast agent containing iodine, and is a pharmaceutical agent administered to a patient in order to make an image while contrasting an image or emphasizing a specific tissue at the time of image diagnosis.
  • the reason for using an iodinated contrast agent is that it is necessary to use a centrifugal medium with a high specific gravity capable of fractionating red blood cells / granulocytes and mononuclear cells, and as will be described later, the mononuclear cell fraction can be obtained by centrifugation. This is because it can be administered into the body without removing the centrifugation medium after being collected.
  • the iodine contrast agent is preferably a water-soluble iodine contrast agent, and particularly preferably a nonionic water-soluble iodine contrast agent. This is because there are substances having various anion or cation charges in cells and cell membranes in the body, and an ionic water-soluble iodine contrast agent may affect the substances.
  • the nonionic water-soluble iodinated contrast agent is not particularly limited, and for example, iohexol, iopamidol, iomeprol, ioxirane, ioversol, or iopromide can be used.
  • the centrifuge medium accommodated in the lower chamber 120 can contain medical saline, medical distilled water, and the like in addition to the iodine contrast medium.
  • the specific gravity of the centrifugation medium is not particularly limited as long as it is a specific gravity capable of fractionating red blood cells / granulocytes and mononuclear cells.
  • / Ml preferably 1.073 to 1.080 g / ml, particularly preferably 1.077 g / ml.
  • the pH of the centrifugation medium is not particularly limited as long as it does not adversely affect the mononuclear cells to be separated, but is, for example, 7.0 to 7.8, and preferably 7.2 to 7. 6 and particularly preferably 7.4.
  • the osmotic pressure of the centrifugal separation medium is not particularly limited as long as it has an affinity for the mononuclear cells to be separated.
  • the osmotic pressure is 0.9 to 1.1 (ratio with respect to medical saline). ), Preferably 1.0.
  • the sample solution introduced from the introduction opening 111 of the upper chamber 110 is not particularly limited as long as it is a sample containing mononuclear cells, but preferably contains, for example, bone marrow fluid, blood, or umbilical cord blood.
  • the sample solution can contain medical saline to facilitate centrifugation of the mononuclear cells.
  • the internal volume of the upper chamber 110 and the lower chamber 120 is particularly limited as long as the erythrocyte / granulocyte fraction after centrifugation is located in the lower chamber 120 and the fraction containing mononuclear cells is located in the upper chamber 110.
  • the inner volume of the upper chamber 110: the inner volume of the lower chamber 120 can be 1: 1 to 2: 1.
  • the internal volume of the upper chamber 110 is 20 ml, for example, and the internal volume of the lower chamber 110 is 10 ml, for example.
  • the centrifugal separation medium is prepared, for example, by mixing medical saline and medical distilled water into a medical iodine contrast medium. Then, for example, 10 ml of centrifugal separation medium is disposed in the lower chamber 120, and the first connection port 131, the second connection port 132, and the third connection port 133 of the three-way cock 130 are all closed.
  • a sample solution of 20 ml is prepared by mixing 10 ml of human bone marrow stock solution with 10 ml of medical physiological saline, for example. And 20 ml of sample solutions are inject
  • the third connection port 133 of the three-way stopcock 130 is closed, and the first connection port 131 and the second connection port 132 are communicated with each other, and centrifugation is performed under a predetermined condition.
  • the first connection port 131, the second connection port 132, and the third connection port 133 are all closed.
  • the upper chamber 110 After centrifugation, the upper chamber 110 has a three-layer structure in which the lower red blood cell / granulocyte fraction is about 5 ml, the middle layer centrifugal medium is 10 ml, and the upper mononuclear cell fraction is about 15 ml. Includes about 15 ml of the fraction containing mononuclear cells and about 5 ml of the centrifugation medium, and the lower chamber 120 contains about 5 ml of the red blood cell / granulocyte fraction and about 5 ml of the centrifugation medium.
  • a component containing a mononuclear cell fraction (bone marrow stem cell fraction) and hardly containing mature granulocytes is collected.
  • the third connection port 132 of the three-way cock 130 is closed and the first connection port 131 and the third connection port 133 are communicated with each other, instead of collecting from the introduction port 141 of the lid 140 with a syringe. It is also possible to collect from the connection port 133 by a tube.
  • the upper chamber 110 contains components that hardly contain mature granulocytes, and is collected from the upper chamber 110 in a state where the communication between the upper chamber 110 and the lower chamber 120 is closed.
  • Mononuclear cells can be obtained by a simple operation without considering the collection of components.
  • the obtained mononuclear cell fraction contains some centrifuge medium, in order to remove this centrifuge medium, it is possible to carry out subsequent purification by centrifugation or the like. It is.
  • the stopcock connecting the upper chamber 110 and the lower chamber 120 is the three-way stopcock 130.
  • the scope of the present invention is not limited to such an embodiment, and the upper chamber It is also possible to simply configure a stopcock as a two-way stopcock that opens and closes the connection between 110 and the lower chamber 120.
  • FIG. 2 is a schematic diagram of a mononuclear cell separation system 900 according to this embodiment.
  • the mononuclear cell separation system 900 includes a mononuclear cell separation tube 100 having the above-described configuration, a sample solution bag 210 in which a sample solution is stored, an airbag 220 that draws air into and out of the mononuclear cell separation tube 100, And a mononuclear sphere storage bag 230 for storing the separated mononuclear spheres.
  • the airbag 220 has an expandability capable of inflating to a predetermined volume, and a predetermined amount of dust-free aseptic air is placed therein.
  • the sample solution bag 210 and the upper chamber 110 of the mononuclear sphere separation tube 100 are connected by a first tube 310. That is, one end of the first tube 310 is connected to the discharge port 211 at the lower end of the sample solution bag 210, and the other end of the first tube 310 tightly plugs the upper opening of the upper chamber 110.
  • the lid 140 passes through and is connected to the upper chamber 110.
  • the airbag 220 and the upper chamber 110 of the mononuclear sphere separation tube 100 are connected by a second tube 320. That is, one end of the second tube 320 is connected to the air outlet 221 of the airbag 220, and the other end of the second tube 320 has a lid 140 that tightly closes the upper opening of the upper chamber 110. It penetrates and is connected to the upper chamber 110.
  • the mononuclear sphere storage bag 230 and the third connection port 133 of the three-way cock 130 are connected by a third tube 330.
  • a first clamp 311 is provided to open and close the conduction of the first tube 310.
  • a second clamp 321 is provided in the middle of the second tube 320 to allow the second tube 320 to open and close.
  • a filter 312 is provided between the first clamp 311 and the discharge port 211 at the lower end of the sample solution bag 210.
  • This filter 312 is for removing fat and bone fragments contained in the sample solution when using a sample solution containing bone marrow fluid. Therefore, in the case of a sample solution containing blood instead of bone marrow fluid, the filter 312 need not be provided.
  • the sample solution bag 210, the airbag 220, the mononuclear cell storage bag 230, the first tube 310, the second tube 320, and the third tube 330 are aseptic to the outside so that the inside thereof is not infected with bacteria or viruses. Therefore, the material constituting these is not particularly limited, but is made of, for example, polyvinyl chloride or polypropylene.
  • sample solution bag 210 for example, 10 ml of physiological saline for dilution is stored in advance. Further, the centrifugal separation medium is prepared by mixing an iodine contrast medium, physiological saline and distilled water, and 10 ml of this is placed in advance in the lower chamber 120 of the mononuclear cell separation tube 100, for example. In the air bag, for example, 10 ml of dust-free sterile air is put in advance. The first clamp 311 and the second clamp 321 are closed.
  • sample solution bag 210 10 ml of a stock solution of human bone marrow is injected into the sample solution bag 210 and mixed well with the physiological saline for dilution, and a 20 ml sample solution is prepared in the sample solution bag 210.
  • FIG. 3 is a diagram for explaining a state in which the sample solution is introduced into the upper chamber 110 of the mononuclear sphere separation tube 100.
  • the sample solution bag 210 is suspended from an infusion stand 350, and the mononuclear cell separation tube 100 is placed on a tube rack (not shown).
  • all the connection ports of the three-way cock 130 of the mononuclear sphere separation tube 100 are closed.
  • the first clamp 312 and the second clamp 321 are opened. The reason for opening the second clamp 321 is to let air in the upper chamber 110 escape into the airbag 220.
  • the first clamp 311 and the second clamp 321 are closed. After that, since the empty sample solution bag 210 is not necessary, the first tube 310 is closed and cut by a heat sealer at a location between the first clamp 311 and the lid 140 in the first tube 310. .
  • the three-way cock 130 of the mononuclear cell separation tube 100 is opened so that the sample solution and the centrifugal separation medium are in contact with each other, and the mononuclear cell separation tube 100, the mononuclear cell storage bag 230, and the airbag 220 are paired. Suspended on a centrifuge (not shown) with the sides balanced. Next, centrifugation is performed, and after the centrifugation, all connection ports of the three-way cock 130 are closed.
  • the upper chamber 110 contains about 15 ml of the fraction containing mononuclear cells and about 5 ml of the centrifugation medium
  • the lower chamber 120 contains about 5 ml of the red blood cell / granulocyte fraction and the centrifugation medium. About 5 ml.
  • FIG. 4 is a diagram illustrating a state in which mononuclear cells are collected from the third connection port 133 of the three-way stopcock 130.
  • an infusion stand 360 having suspension portions at the upper and lower stages is prepared, the mononuclear cell separation tube 100 is suspended at the upper suspension section, and the mononuclear cell storage bag 230 is disposed at the lower suspension section. Suspend. And the 2nd connection port 132 of the three-way cock 130 is closed, and the 2nd clamp 321 is open
  • the reason for opening the second clamp 321 is to push out the fraction containing mononuclear cells from the third connection port 133 by pushing the air in the airbag 220 into the upper chamber 110.
  • the fraction containing the mononuclear cells in all the upper chambers 110 is moved into the mononuclear cell storage bag 230.
  • the mononuclear cell separation tube 100 from which the fraction containing the mononuclear cells is taken out is unnecessary, and is closed and cut at a predetermined position of the third tube 330 by a heat sealer.
  • a cell solution containing a mononuclear cell fraction and containing almost no mature granulocytes can be obtained in the mononuclear cell storage bag 230.
  • the stopcock connecting the upper chamber 110 and the lower chamber 120 is the three-way stopcock 130, and the cell liquid containing mononuclear cells is stored in the mononuclear cell storage bag 230.
  • the range is not limited to such an embodiment, and a two-way stopcock having a simple configuration for opening and closing the connection between the upper chamber 110 and the lower chamber 120 may be used. In such a case, after centrifugation, the fraction containing mononuclear cells is taken out from the inlet 141 at the top of the lid 140 using a syringe or the like.
  • a cell fluid containing mononuclear cells useful as a revascularization agent that can be used as it is is obtained.
  • This cell solution is a stem cell-containing solution containing mononuclear cells (CD34 + cells) at a concentration of about 2 to 5% (mononuclear cell concentration of about 10 7 to 10 8 cells / ml).
  • This cell fluid has a high mononuclear cell recovery rate of about 68 to 85%, and its survival rate is as high as about 98% or more.
  • mature granulocytes considered to be disadvantageous for angiogenesis are removed from this cell fluid with high efficiency, and the removal rate of mature granulocytes is about 96% or more.
  • the drug for in vivo administration containing mononuclear cells obtained by the invention according to the present embodiment as an active ingredient is effective as an angiogenesis inducing agent for treating cerebrovascular diseases. It is also effective for the treatment of peripheral vascular diseases such as chronic obstructive arteriosclerosis and Buerger's disease. It is also effective for the treatment and prevention of ischemic heart diseases such as angina pectoris and myocardial infarction, renal infarction, and cerebral palsy. Furthermore, the angiogenesis action by the cell fluid is effective in the treatment and prevention of various pathologies associated with systemic microcirculation disorders such as dementia, chronic renal failure, and chronic heart failure.
  • the above-mentioned drug for internal administration is prepared in the form of an injection as in the case of a normal drug for cell transplantation, and is not particularly limited, but is administered for intravascular, subcutaneous, intramuscular, intradermal administration, and the like.
  • administration from coronary arteries, endocardial side, and cerebral arteries is also possible by vascular catheter operation.
  • the dose can be appropriately determined according to the administration form, administration route, the degree of disease of the patient, and the like.
  • the dosage per adult can be, for example, an amount of about 1 ⁇ 10 6 to 1 ⁇ 10 8 cells / kg as the amount of mononuclear cells as an active ingredient.
  • the mononuclear cells used as the active ingredient of the drug for internal administration are preferably derived from self or relatives, but are not particularly limited thereto, and are derived from unrelated individuals stored in a bone marrow bank or the like. It is also possible.
  • bone marrow is collected from, for example, the hip bone between 2 to 10 days after the onset of the disease, and bone marrow mononuclear cells are separated and injected within that day.
  • the reason why bone marrow collection is 2 to 10 days after onset is that autologous neural stem cells induced after cerebral infarction gather at the injury site at this time.
  • the drug for in-vivo administration for example, it is possible to treat sequelae caused by cerebral infarction by injecting stem cells in bone marrow to regenerate cerebral blood vessels and promoting tissue regeneration.
  • Example 1 ⁇ Isolation of bone marrow stem cells using iodine contrast medium>
  • iohexol was used as an iodinated contrast agent, and mononuclear cells were separated.
  • a well-mixed 10 U / ml medical heparin sodium (Novo heparin sodium: Mochida Pharmaceutical [Injectable Medicine]) was used as a separation stock solution for 10 ml of human bone marrow stock solution.
  • the bone marrow fluid for stem cell separation as a sample solution was prepared by adding 10 ml of physiological saline for medical use (Otsuka raw food injection: Otsuka Pharmaceutical [medicine for injection]) to this bone marrow fluid.
  • Centrifugation media were 18.68 ml of medical contrast medium (Omni Park 350: Daiichi Sankyo Co., Ltd. [Injectable pharmaceuticals]) and 51 saline for medical use (Otsuka raw food injection: Otsuka Pharmaceutical [Injectable pharmaceuticals]). .76 ml and medical distilled water (Otsuka distilled water: Otsuka Pharmaceutical [Injectable Pharmaceuticals]) were mixed to prepare 29.56 ml.
  • the centrifugal medium thus prepared had a specific gravity of 1.077, an osmotic pressure (ratio to physiological saline) of 1.0, and a pH of 7.4.
  • the 20 ml of bone marrow fluid for stem cell separation was layered slowly on 10 ml of the centrifugation medium so as not to disturb the liquid surface.
  • each fraction of erythrocyte / granulocyte fraction, separation drug layer for specific gravity centrifugation, mononuclear cell fraction (bone marrow stem cell fraction), platelet / plasma fraction It was possible to separate it into paintings.
  • 6 ml of bone marrow stem cell solution was obtained centering on the mononuclear cell fraction (bone marrow stem cell fraction).
  • the cell solution containing mononuclear cells obtained by the above method has a mononuclear cell recovery rate of about 75%, a mononuclear cell survival rate of 99%, a CD34 positive cell concentration of about 3%, and a mature granulocyte removal rate: It was about 97% and the time required was 29 minutes.
  • the cell fluid containing mononuclear cells obtained by the above-described method has a mononuclear cell recovery rate of about 52%, a mononuclear cell survival rate of 98%, a CD34 positive cell concentration of about 3%, and a mature granulocyte removal rate: About 96%, the required time was 75 minutes.
  • ⁇ Isolation of bone marrow stem cells using hydroxylethyl starch> separation of mononuclear cells was attempted using hydroxylethyl starch as a centrifugation medium. 5 ml of human bone marrow fluid was mixed with 5 ml of physiological saline mixed with heparin. Furthermore, hydroxylethyl starch was added so that the final hydroxylethyl starch concentration was 1%, and the obtained bone marrow fluid was allowed to stand at room temperature for 40 minutes to precipitate erythrocyte components and collect the supernatant. The collected liquid was set in a concentrator cell processor to separate fine suspended matters such as fat and bone fragments. Next, a cell solution containing 7 ml of mononuclear cells was obtained by washing and concentration operations.
  • the cell fluid containing mononuclear cells obtained by the above-mentioned method has a mononuclear cell recovery rate of about 70%, a mononuclear cell viability rate of 98%, a CD34 positive cell concentration of about 3%, and a mature granulocyte removal rate: About 52%, the required time was 63 minutes.
  • Example 2 is obtained in Example 1 using an SCID (Severe Combined Immunodeficiency) mouse cerebral infarction model (left middle cerebral artery M1 distal occlusion model) effective in determining the effect of a human stem cell therapeutic agent.
  • SCID severe Combined Immunodeficiency
  • the effect of cell fluid containing mononuclear cells as a therapeutic agent was investigated.
  • a cell solution administration group (hereinafter referred to as stem cell group) isolated according to the present invention, (ii) a cell group isolated by Ficoll (hereinafter referred to as Ficoll group), (iii) A cell group separated by hydroxylethyl starch (hereinafter referred to as starch group) and (iv) a physiological saline administration group (hereinafter referred to as saline group) were set.
  • 5x10 5 cells (or physiological saline) were administered to the 6 cerebral infarction model mice in each group 2 days after the creation of the cerebral infarction, and the effect of promoting the recovery of cranial nerve function in each cell administration group was verified. It was.
  • cerebral cortical nerve function 30 days after cell administration was evaluated by an open field test (responsiveness to dark conditions). Dunnett's method).
  • the experimental apparatus for the open field test was a cubic open field box with no ceiling.
  • the side and floor surfaces were made of a transparent acrylic plate having a thickness of 3 mm, and the inner dimensions were 40 ⁇ 40 cm at the floor and 30 cm in height.
  • FIG. 5 shows the measurement results of the response to darkness of the total activity (movement activity + rise response) for 30 minutes in the SCID mouse cerebral ischemia model. As shown in FIG. 5, significant enhancement of functional recovery was observed in the stem cell group and Ficoll group compared to the raw food group, but no significant therapeutic effect was observed in the starch group. The significance probability was 5%.
  • Example 3 In Example 3, cells containing mononuclear cells obtained in Example 1 were used, using an SCID (severe immunodeficiency) mouse lower limb ischemia model (left femoral artery occlusion model) effective in determining the effect of a human stem cell therapeutic agent. The effect of the liquid as a therapeutic agent was examined.
  • SCID severe immunodeficiency mouse lower limb ischemia model
  • a cell solution administration group (hereinafter referred to as stem cell group) isolated according to the present invention, (ii) a cell group isolated by Ficoll (hereinafter referred to as Ficoll group), (iii) A cell group separated by hydroxylethyl starch (hereinafter referred to as starch group) and (iv) a physiological saline administration group (hereinafter referred to as saline group) were set.
  • FIG. 6 shows the measurement results of the limb salvage effect in the SCID mouse lower limb ischemia model. As shown in FIG. 6, a significant limb salvage effect was observed in the stem cell group, Ficoll group and starch group, respectively, compared with the raw food group. Was observed. The significance probability was 5%.
  • Centrifugation medium is 16.68 ml of medical contrast medium (Omnipark 350: Daiichi Sankyo Co., Ltd. [Injectable pharmaceuticals]), 51 medical saline (Otsuka raw food injection: Otsuka Pharmaceutical [Injectable pharmaceuticals]) 51 .76 ml and medical distilled water (Otsuka distilled water: Otsuka Pharmaceutical [Injectable Pharmaceuticals]) were mixed to prepare 29.56 ml.
  • the centrifugal medium thus prepared had a specific gravity of 1.077, an osmotic pressure (ratio to physiological saline) of 1.0, and a pH of 7.4.
  • the mononuclear cell separation tube has the same configuration as that shown in FIG. 1, and about 10 ml of the centrifugal separation medium is disposed in the lower chamber 120 of the mononuclear cell separation tube 100.
  • the cell solution containing mononuclear cells obtained by the above method has a mononuclear cell recovery rate of about 80%, a mononuclear cell survival rate of 99%, a CD34 positive cell concentration of about 3%, and a mature granulocyte removal rate. : It had a characteristic of about 96%.
  • ⁇ Therapeutic effect in cerebral infarction animal model> Using SCID mouse cerebral infarction model (left middle cerebral artery M1 distal occlusion model), therapeutic agent for cell solution containing mononuclear cells obtained in ⁇ Isolation of bone marrow stem cells using mononuclear cell separator> The effect was examined.
  • a cell solution administration group (stem cell group) and (ii) a physiological saline administration group (saline group) separated according to the present invention were set. 5 ⁇ 10 5 cells (or physiological saline) were administered to the 6 cerebral infarction model mice in each group 2 days after the creation of the cerebral infarction, and the effect of promoting the recovery of cranial nerve function in each administration group was verified. .
  • FIG. 7 shows the measurement results of the reactivity of the total activity amount for 30 minutes (movement activity amount + rise reaction) to the dark condition in the SCID mouse cerebral ischemia model. As shown in FIG. 7, significant enhancement of functional recovery was observed in the stem cell group as compared with the raw food group. The significance probability was 5%.
  • FIG. 8 shows the measurement results of the limb salvage effect in the SCID mouse lower limb ischemia model. As shown in FIG. 8, a significant limb salvage effect was observed in the stem cell group as compared with the raw food group. The significance probability was 5%.
  • Example 5 ⁇ Preparation of mononuclear cell separation system>
  • mononuclear cells were isolated using the mononuclear cell separation system shown in FIG.
  • 10 ml of physiological saline for dilution Otsuka raw food injection: Otsuka Pharmaceutical
  • 100 units of heparin sodium Novo-heparin sodium
  • centrifugation medium 23.3 ml of contrast medium (Omnipark 140: Daiichi Sankyo Co., Ltd.), 25.9 ml of physiological saline (Otsuka raw food injection: Otsuka Pharmaceutical) and distilled water (Otsuka distilled water: Otsuka Pharmaceutical) ) was mixed by 0.8 ml.
  • the centrifugal medium thus prepared had a specific gravity of 1.077, an osmotic pressure (ratio to physiological saline) of 1.0, and a pH of 7.4.
  • About 10 ml of the centrifugation medium was previously placed in the lower chamber 120 of the mononuclear cell separation tube 100.
  • the air bag 220 was preliminarily filled with about 10 ml of dust-free aseptic air and had an expansion capacity of 30 ml or more. All clamps were closed.
  • the three-way cock 130 of the mononuclear cell separation tube 100 is opened so that the sample solution and the centrifugation medium are in contact with each other, and the mononuclear cell separation tube 100, the mononuclear cell storage bag 23, and the airbag 220 are centrifuged. Suspended on the machine to balance each other. Next, centrifugation was performed at 400 g for 40 minutes, and the three-way stopcock 130 was closed after centrifugation.
  • the lower chamber 120 of the mononuclear cell separation tube 100 has an erythrocyte / granulocyte fraction and centrifugation medium
  • the upper chamber 110 has a centrifugal medium, a mononuclear cell fraction (bone marrow stem cell fraction), and platelet / plasma. It was possible to separate into two fractions.
  • the mononuclear cell separation tube 100 is suspended on the drip stand, the clamp with the airbag 220 is released, and the first connection port 131 and the third connection port 133 are communicated.
  • the three-way stopcock was opened and all the liquid in the upper chamber 110 was moved into the mononuclear cell storage bag 230.
  • the 3rd tube 330 was closed with the heat sealer, and it cut
  • the cell solution containing mononuclear cells obtained by the above method has a mononuclear cell recovery rate of about 69%, a mononuclear cell survival rate of 99%, a CD34 positive cell concentration of about 3%, and a mature granulocyte removal rate. : It had a characteristic of about 96%.
  • ⁇ Therapeutic effect in cerebral infarction animal model> Using SCID mouse cerebral infarction model (left middle cerebral artery M1 distal occlusion model), therapeutic agent for cell fluid containing mononuclear cells obtained in ⁇ Isolation of bone marrow stem cells by mononuclear cell separation system> above The effect was examined.
  • a cell solution administration group (stem cell group) and (ii) a physiological saline administration group (saline group) separated according to the present invention were set. 5 ⁇ 10 5 cells (or physiological saline) were administered to the 6 cerebral infarction model mice in each group 2 days after the creation of the cerebral infarction, and the effect of promoting the recovery of cranial nerve function in each administration group was verified. .
  • FIG. 9 shows the measurement results of the reactivity of the total activity amount (moving activity amount + rise reaction) for 30 minutes to the dark condition in the SCID mouse cerebral ischemia model. As shown in FIG. 9, significant enhancement of functional recovery was observed in the stem cell group as compared with the raw food group. The significance probability was 5%.
  • FIG. 10 shows measurement results of the limb salvage effect in the SCID mouse lower limb ischemia model. As shown in FIG. 10, a significant limb salvage effect was observed in the stem cell group as compared with the raw food group. The significance probability was 5%.
  • mononuclear cells can be easily separated, and effective treatment of cerebrovascular disorders, peripheral vascular disorders, and the like can be performed with these mononuclear cells.
  • Monocyte separation tube 110 Upper chamber 120: Lower chamber 130: Three-way stopcock 131: First connection port 132: Second connection port 133: Third connection port 140: Lid 150: Case 210: Sample solution bag 220: Airbag 230: Mononuclear sphere storage bag 310: First tube 311: First clamp 312: Filter 320: Second tube 321: Second clamp 330: Third tube 350, 360: Drip stand 900: Monocyte separation system

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Hematology (AREA)
  • Hospice & Palliative Care (AREA)
  • Vascular Medicine (AREA)
  • Zoology (AREA)
  • Anesthesiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Psychiatry (AREA)
  • Biotechnology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • External Artificial Organs (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Centrifugal Separators (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

 簡易に単核球を分離できる単核球の単核球分離管を提供する。遠心分離処理前には試料溶液が収納されると共に遠心分離処理後には低比重成分である単核球が位置する上チャンバ110と、遠心分離処理前には遠心分離媒体が収納されると共に遠心分離処理後には不要成分である高比重成分が位置する下チャンバ120と、上チャンバ110の下側開口と下チャンバ120の上側開口とを開閉自在に接続する三方活栓130と、上チャンバ110の上側開口を密栓する蓋140と、を備える。

Description

単核球分離管、単核球分離システム、単核球の分離方法、単核球、及び、体内投与用薬剤
 本発明は、血液等から簡単かつ純度良く単核球を分離することができる単核球の分離方法、単核球分離管、及び単核球分離システム、並びにその分離方法等により得られた単核球、及びその単核球を有効成分とする体内投与用薬剤に関する。
 近年、幹細胞移植による心血管再生治療が虚血性心疾患に対する新しい治療法として期待されている。自己骨髄幹細胞や筋芽細胞等を用いる心血管再生治療は約10年前から臨床試験が開始され、骨髄幹細胞を含む骨髄単核球分画を用いた治療法は、心筋梗塞患者での有効性が二重盲検試験で明らかにされている。
 単核球を分離する最も一般的な技術としては、特許文献1や特許文献2に記載されているように、試験管の底にフィコール・パック(Ficoll-Paque、登録商標、ファルマシア・ファイン・ケミカルズ(Pharmacia Fine Chemicals)社製)を設置する遠心分離方法をあげることができる。この方法は、所定量のフィコール・パックを試験管底に設置する工程、血液試料をフィコール・パック上にピペットで移す工程、フィコール・パックの比重よりも大きい比重を有する血液成分が、フィコール・パックを通過するように遠心分離する工程、及び、フィコール・パックの上方に分離された単核球層をピペットで採取する工程からなる。
 また、単核球の分離には、細胞に細菌やウイルスが感染しないよう高度に無菌状態が保たれており、環境温度・室圧等の作業環境が厳密にコントロールされた閉鎖系設備が必要である。そのため特許文献3に記載されているようなCProC(Cell Processing Center=セルプロセッシングセンター)にて単核球の分離が行われる。
 CProCは、免疫細胞療法や再生医療、あるいは遺伝子治療等、細胞を利用した医療や研究を行うため施設であり、例えば細胞調製室、QC室、製品保管室、準備室、更衣室、監視室等から構成されており、細胞調製室には、安全キャビネット、細胞培養インキュベーターその他必要な機器が具備されており、環境清浄度は常にモニターされ監視室にてビデオモニターされる。
特表2010-504083号公報 特表2007-509601号公報 特開2009-065844号公報
 しかし、上述のフィコール・パックを試験管底に設置する単核球の分離は、血液試料をフィコール・パック上に移すとき、フィコール・パックとの界面を乱さないように血液試料を静かに重層しなければならず、更には、遠心分離後においては、フィコール・パックの上方に分離された単核球層をピペットで採取する際には、不要な成分をピペットにて採取しないように注意深く採取する必要があり、操作が煩雑であるという問題点を有する。
 また、CProCは、上述したように極めて高度かつ特殊な施設であり、しかも設置コストも非常に高価である問題点がある。そのため、CProCの設置は、心筋梗塞患者等に対する幹細胞治療の普及に対する大きな障壁となっており、一般病院でも使用可能な閉鎖系でかつ特殊な機械・設備や特別な知識・技能・訓練を必要としない単核球の分離システムが求められている。
 本発明はかかる問題点に鑑みてなされたものであって、極めて簡易に単核球を分離できる単核球分離管を提供することを目的とする。また、一般病院でも使用可能な簡易な閉鎖系の単核球分離システムを提供することを目的とする。
 本発明においては、単核球分離管を上チャンバと下チャンバとを有して構成し、更に上チャンバと下チャンバとを連通状態又は非連通状態に切り換える活栓を設けたので、遠心分離前には下チャンバに遠心分離媒体を収納して活栓を閉じることにより、面倒な動作を要せずに上チャンバに試料溶液を導入でき、遠心分離後においては活栓を閉じることにより、不要成分の採取可能性を少なくして上チャンバから面倒な動作を要せずに単核球を採取することができる。ここで単核球とは、細胞内に核を1つ保有する有核細胞を指し、いわゆる単球、リンパ球及び未熟な幹細胞群を意味する。
 また、本発明においては、このような構成の単核球分離管と、単核球分離管に対して空気を出し入れするエアバッグと、試料溶液が収納される試料溶液バッグと、を閉鎖系状態にて接続させたので、極めて簡易に単核球分離システムを構成できる。
 具体的には、本発明の第1の観点に係る単核球分離管は、単核球を含む複数成分からなる試料溶液を、遠心分離媒体を用いて遠心分離処理することで、前記複数成分を比重の違いにより分離させ、低比重成分である単核球を採取するための単核球分離管であって、上側に配置されて前記試料溶液が導入される導入開口及び下側に配置された下側開口を有し、遠心分離処理前には前記試料溶液が収納されると共に遠心分離処理後には前記低比重成分である単核球が位置する上チャンバと、上側に上側開口が配置され下側が閉塞し、遠心分離処理前には前記遠心分離媒体が収納されると共に遠心分離処理後には不要成分である高比重成分が位置する下チャンバと、前記上チャンバの下側開口と前記下チャンバの上側開口とを、連通状態又は非連通状態に切り換える活栓と、前記上チャンバの前記導入開口を密栓する蓋と、を備えることを特徴とする。
 また、前記活栓は、第1、第2及び第3接続口を有する3個の流体通路を備えた三方活栓であり、第1接続口は前記上チャンバの下側開口に接続され、第2接続口は前記下チャンバの上側開口に接続され、遠心分離処理後に前記第1接続口及び前記第3接続口を連通させて、前記低比重成分である単核球を前記第3接続口から取り出すことが好ましい。
 また、前記遠心分離媒体は、ヨード造影剤を主成分とし、且つ、前記下チャンバに収納されていることが好ましい。
 また、前記ヨード造影剤は、イオヘキソール、イオパミドール、イオメプロール、イオキシラン、イオベルソール、又はイオプロミドから選択される非イオン性水溶性ヨード造影剤であることが好ましい。
 また、本発明の第2の観点に係る単核球分離システムは、請求項1に記載の単核球分離管と、単核球を含む複数成分からなる試料溶液が収納される試料溶液バッグと、前記単核球分離管に対して空気を出し入れするエアバッグと、前記単核球分離管の蓋を貫通して、前記上チャンバと前記試料溶液バッグとを接続する第1チューブと、前記単核球分離管の蓋を貫通して、前記上チャンバと前記エアバッグとを接続する第2チューブと、を備えることを特徴とする。
 また、本発明の第3の観点に係る単核球分離システムは、請求項2乃至4の何れか1項に記載の単核球分離管と、単核球を含む複数成分からなる試料溶液が収納される試料溶液バッグと、前記単核球分離管に対して空気を出し入れするエアバッグと、分離された低比重成分である単核球を収納する単核球収納バッグと、前記単核球分離管の蓋を貫通して、前記上チャンバと前記試料溶液バッグとを接続する第1チューブと、前記単核球分離管の蓋を貫通して、前記上チャンバと前記エアバッグとを接続する第2チューブと、前記単核球収納バッグと前記三方活栓の第3接続口とを接続する第3チューブと、を備えることを特徴とする。
 また、本発明の第4の観点に係る遠心分離方法は、ヨード造影剤を遠心分離媒体の主成分とする比重遠心分離法により、単核球を含む複数成分からなる試料溶液から単核球を分離することを特徴とする。
 また、前記ヨード造影剤は、イオヘキソール、イオパミドール、イオメプロール、イオキシラン、イオベルソール、又はイオプロミドから選択される非イオン性水溶性ヨード造影剤であることが好ましい。
 また、本発明の第5の観点に係る単核球は、請求項7又は8記載の単核球の分離方法により分離されたことを特徴とする。
 また、本発明の第6の観点に係る体内投与用薬剤は、請求項9記載の単核球を有効成分として含むことを特徴とする。
 また、前記体内投与用薬剤は、脳疾患治療、神経変性疾患治療、末梢血管疾患治療、心疾患治療、脳性麻痺治療、腎梗塞治療、認知症治療、慢性腎不全治療、又は、慢性心不全治療のいずれかに使用されることが好ましい。
 本発明によれば、遠心分離前に試料溶液を単核球分離管内に導入する際の操作及び遠心分離後に単核球を採取する操作を極めて簡易に行うことができ、そのため面倒な動作を行うこと無しに単核球を分離できる。また、この単核球分離管を使用して閉鎖系の単核球分離システムを構成するため、特殊な機械・設備や特別な知識・技能・訓練を必要とせず、一般病院でも使用できる。
第1実施形態に係る単核球分離管の概略図である。 第2実施形態に係る単核球分離システムの概略図である。 試料溶液を単核球分離管の上チャンバに導入する状態を説明する図である。 三方活栓の第3接続口から単核球を採取する状態を説明する図である。 SCIDマウス脳虚血モデルにおける大脳皮質機能回復促進効果の測定結果である。 SCIDマウス下肢虚血モデルにおける救肢効果の測定結果である。 SCIDマウス脳虚血モデルにおける大脳皮質機能回復促進効果の測定結果である。 SCIDマウス下肢虚血モデルにおける救肢効果の測定結果である。 SCIDマウス脳虚血モデルにおける大脳皮質機能回復促進効果の測定結果である。 SCIDマウス下肢虚血モデルにおける救肢効果の測定結果である。
 以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。
 (第1実施形態)
 図1は本実施形態に係る単核球分離管100の概略図である。図1に示すように、単核球分離管100は、上端側に配置された導入開口111及び下端側に配置された下側開口112を有する筒体からなる上チャンバ110と、上端側に上側開口121が配置され下端側が閉塞した有底筒体からなる下チャンバ120と、第1接続口131、第2接続口132及び第3接続口133を有する3個の流体通路を備えた三方活栓130と、を備える。
 上チャンバ110の下側開口112及び下チャンバ120の上側開口121は、導入開口111よりも狭く構成されている。即ち、上チャンバ110と下チャンバ120との接続部分にはくびれ部が設けられており、そのくびれ部に三方活栓130が設けられている。
 三方活栓130は、第1接続口131、第2接続口132及び第3接続口133を外周上に備えるとともに、回転操作によりその第1~第3接続口のうちの所定の接続口同士を連通させる流路切換部を備える。上チャンバ110の下側開口112と下チャンバ120の上側開口121とは、この流路切換部を回転させることにより開閉自在に液密に接続される。例えば、上チャンバ110の下側開口112と下チャンバ120の上側開口121とが連通状態の場合は、第1接続口131は上チャンバ110の下側開口112に接続され、第2接続口132は下チャンバ120の上側開口121に接続される。
 上チャンバ110及び下チャンバ120はケース150に覆われており、これにより各チャンバは外部衝撃から保護される。ケース150には切欠部151が設けられており、切欠部151からは第3接続口133が露出している。上チャンバ110の導入開口111は蓋140により密栓される。蓋140の上部には、試料溶液が導入される導入口141が設けられている。上チャンバ110及び下チャンバ120の材質は、遠心力に対しても変形しない自己保形性を備えた材料から構成されているならば特に限定されるものではないが、例えばポリプロピレン共重合体、ポリスチレン等により構成される。
 下チャンバ120には、ヨード造影剤を主成分とする遠心分離媒体が収納されている。ヨード造影剤は、ヨードを含有する造影剤であり、画像診断の際に画像にコントラストを付けたり特定の組織を強調して撮影するために患者に投与される医薬品である。ヨード造影剤を用いる理由は、赤血球・顆粒球と単核球とを分画できる比重の重い遠心分離媒体を用いる必要があること、かつ、後述するように、遠心分離により単核球分画が採取された後に遠心分離媒体を除去すること無しに体内投与が可能となるからである。
 ヨード造影剤は、水溶性ヨード造影剤であることが好ましく、特に非イオン性水溶性ヨード造影剤であることが好ましい。体内の細胞内や細胞膜には様々な陰イオンあるいは陽イオンの電荷を持つ物質があり、イオン性水溶性ヨード造影剤はそれに対して影響を与える可能性がありうるからである。非イオン性水溶性ヨード造影剤としては、特に限定されるものではないが、例えば、イオヘキソール、イオパミドール、イオメプロール、イオキシラン、イオベルソール、又はイオプロミド等を用いることが可能である。
 下チャンバ120に収納される遠心分離媒体には、ヨード造影剤以外に、医療用生理食塩水や医療用蒸留水等を含有することが可能である。遠心分離媒体の比重は、赤血球・顆粒球と単核球とを分画できる比重であれば特に限定されるものではないが、室温(20℃~25℃)において例えば1.066~1.083g/mlであり、好ましくは1.073~1.080g/ml、特に好ましくは1.077g/mlである。遠心分離媒体のpHは、分離される単核球に悪影響を与えないものであれば特に限定されるものではないが、例えば7.0~7.8であり、好ましくは7.2~7.6であり、特に好ましくは7.4である。遠心分離媒体の浸透圧は、分離される単核球に対して親和性を有するものであれば特に限定されるものではないが、例えば0.9~1.1(医療用生理食塩水に対する比)であり、好ましくは1.0である。
 上チャンバ110の導入開口111から導入される試料溶液は、単核球を含む試料であれば特に限定されるものではないが、例えば骨髄液、血液、又は臍帯血を含むものが好ましい。試料溶液には、単核球を遠心分離しやすくするために、医療用生理食塩水を含有させることが可能である。
 上チャンバ110及び下チャンバ120の内容積は、遠心分離後の赤血球・顆粒球分画が下チャンバ120に位置し、単核球を含む分画が上チャンバ110に位置するものであれば特に限定されるものではなく、例えば、上チャンバ110の内容積:下チャンバ120の内容積を1:1~2:1とすることが可能である。
 次に、上述の構成の単核球分離管100を用いる単核球の分離を説明する。上チャンバ110の内容積は例えば20mlとし、下チャンバ110の内容積は例えば10mlとする。遠心分離媒体は、例えば、医療用であるヨード造影剤に医療用生理食塩水と医療用蒸留水とを混和することにより作成される。そして例えば10mlの遠心分離媒体を下チャンバ120に配置し、三方活栓130の第1接続口131、第2接続口132及び第3接続口133をいずれも閉じる。
 次に、ヒト骨髄液原液を例えば10mlと、医療用生理食塩水を例えば10mlと混和することにより、20mlの試料溶液を調整する。そして注射器を用いて蓋140の導入口141から、三方活栓130の全ての接続口が閉じた状態にて試料溶液20mlを注入する。上チャンバ110と下チャンバ120との連通が閉じた状態にて試料溶液を入れるので、試料溶液と遠心分離媒体との界面の乱れを考慮することなく簡易な操作にて試料溶液の導入ができる。
 そして、三方活栓130の第3接続口133を閉鎖し、第1接続口131及び第2接続口132を連通させるようにして、所定条件の下で遠心分離を行い、遠心後には三方活栓130の第1接続口131、第2接続口132及び第3接続口133をいずれも閉じるようにする。
 遠心分離後は、下層の赤血球・顆粒球分画が約5ml、中間層の遠心分離媒体が10ml、上層の単核球を含む分画が約15mlである3層構造となるので、上チャンバ110には、単核球を含む分画が約15mlと遠心分離媒体が約5ml含まれ、下チャンバ120には、赤血球・顆粒球分画が約5mlと遠心分離媒体が約5ml含まれる。
 その後、蓋140の導入口141から注射器で採取することにより、単核球分画(骨髄幹細胞分画)を含み、かつ成熟顆粒球をほとんど含まない成分が採取される。なお、蓋140の導入口141から注射器で採取するのではなく、三方活栓130の第2接続口132を閉鎖し、第1接続口131及び第3接続口133を連通させるようにして、第3接続口133からチューブにより採取することも可能である。遠心分離後は、上チャンバ110には成熟顆粒球をほとんど含まない成分が位置し、かつ、上チャンバ110と下チャンバ120との連通が閉じた状態にて上チャンバ110から採取するので、不要な成分の採取を考慮することなく簡易な操作にて単核球を得ることができる。なお、取得された単核球分画には多少の遠心分離媒体が含有されているため、この含まれている遠心分離媒体を除去するために、遠心分離等による精製をその後に行うことも可能である。
 ここで、遠心分離媒体としてヨード造影剤を用いる場合にあっては、取得された単核球分画には多少のヨード造影剤が含有されていても、そのまま体内に移植することが可能である。単核球分画の分離に医薬品ではないフィコールによる比重遠心法を用いると、フィコールが含まれている状態にて体内に投与された場合、医療上の安全性に問題があるため、遠心分離後にフィコールを除去する必要がある。そのため、フィコールを除去するため更に2回以上の遠心分離による細胞精製が必要である。そしてフィコールの除去のため、遠心分離における幹細胞の回収効率が低下し細胞損失が発生する。しかしながら、遠心分離媒体としてヨード造影剤を用いる場合にあっては、取得された単核球分画には多少のヨード造影剤が含有されていても、そのまま体内に移植することが可能であり、遠心分離後の精製やこれに伴う細胞損失を防ぐことができるという極めて大きな利点を有する。
 なお、上述の実施形態においては、上チャンバ110と下チャンバ120とを接続する活栓は三方活栓130であったが、本発明の範囲はこのような実施形態に限定されるものではなく、上チャンバ110と下チャンバ120との接続を開閉する二方活栓として活栓を簡易に構成することも可能である。
 (第2実施形態)
 上述の実施形態では単核球分離管100について説明をしたが、第2実施形態では第1実施形態の単核球分離管100を用いる閉鎖系の単核球分離システム900について説明をする。
 図2は、本実施形態に係る単核球分離システム900の概略図である。単核球分離システム900は、前述の構成の単核球分離管100と、試料溶液が収納される試料溶液バッグ210と、単核球分離管100に対して空気を出し入れするエアバッグ220と、分離された単核球を収納する単核球収納バッグ230とを備える。エアバッグ220は、所定体積に膨張可能な拡張能を有し、無塵無菌の空気が所定量入れられる。試料溶液バッグ210と単核球分離管100の上チャンバ110とは、第1チューブ310により接続されている。即ち、第1チューブ310の一方の端部は、試料溶液バッグ210の下端にある排出口211に接続しており、第1チューブ310の他方の端部は、上チャンバ110の上側開口を密栓する蓋140を貫通して上チャンバ110に接続している。また、エアバッグ220と単核球分離管100の上チャンバ110とは、第2チューブ320により接続されている。即ち、第2チューブ320の一方の端部は、エアバッグ220のエア排出口221に接続しており、第2チューブ320の他方の端部は、上チャンバ110の上側開口を密栓する蓋140を貫通して上チャンバ110に接続している。また、単核球収納バッグ230と三方活栓130の第3接続口133とは、第3チューブ330により接続されている。
 第1チューブ310の途中には、第1チューブ310の導通を開閉自在にする第1クランプ311が設けられている。また、第2チューブ320の途中には、第2チューブ320の導通を開閉自在にする第2クランプ321が設けられている。
 第1クランプ311と試料溶液バッグ210の下端にある排出口211との間には、フィルター312が設けられている。このフィルター312は、骨髄液を含む試料溶液を用いる場合に、試料溶液中に含まれている脂肪及び骨片を除去するためのものである。そのため、骨髄液ではなく血液を含む試料溶液の場合は、フィルター312は設ける必要はない。
 試料溶液バッグ210、エアバッグ220、単核球収納バッグ230、第1チューブ310、第2チューブ320、及び第3チューブ330は、これらの内部が細菌やウイルスに感染しないよう外界に対して無菌状態に保たれており、そのためこれらを構成する材質は特に限定されるものではないが、例えばポリ塩化ビニルやポリプロピレン等により構成される。
 次に、上述の構成の単核球分離システム900を用いる単核球の分離を説明する。
 試料溶液バッグ210には予め、例えば10mlの希釈用生理食塩水を収納する。また、遠心分離媒体は、ヨード造影剤、生理食塩水及び蒸留水を混和することにより作成し、これを単核球分離管100の下チャンバ120に予め例えば10ml配置する。エア用バックには、予め例えば10mlの無塵無菌空気を入れる。第1クランプ311及び第2クランプ321は閉の状態とする。
 次に、例えば10mlのヒト骨髄液の原液を試料溶液バッグ210に注入して、希釈用生理食塩水と良く混和し、試料溶液バッグ210内に20mlの試料溶液を準備する。
 図3は、試料溶液を単核球分離管100の上チャンバ110に導入する状態を説明する図である。図3に示すように、試料溶液バッグ210を点滴台350に懸架すると共に、単核球分離管100を図示しないチューブラックに立てる。この状態では単核球分離管100の三方活栓130の全ての接続口は閉じた状態とする。そして、第1クランプ312及び第2クランプ321を開放する。第2クランプ321を開放するのは上チャンバ110内の空気をエアバッグ220内に逃がすためである。試料溶液バッグ210内の全ての試料溶液が単核球分離管100の上チャンバ110に移動した後、第1クランプ311及び第2クランプ321を閉鎖する。その後は、空になった試料溶液バッグ210は不要であるため、第1チューブ310における第1クランプ311と蓋140との間の箇所にて、ヒートシーラーにより第1チューブ310を閉鎖して切断する。
 続いて、単核球分離管100の3方活栓130を試料溶液と遠心分離媒体とが接するように開放し、単核球分離管100と、単核球収納バッグ230及びエアバッグ220とを対側同士のバランスを保った状態にて、図示しない遠心機に懸架する。次いで遠心分離を行い、遠心後には三方活栓130の全ての接続口を閉じる。遠心分離後は、上チャンバ110には、単核球を含む分画が約15mlと遠心分離媒体が約5ml含まれ、下チャンバ120には、赤血球・顆粒球分画が約5mlと遠心分離媒体が約5ml含まれる。
 図4は、三方活栓130の第3接続口133から単核球を採取する状態を説明する図である。図4に示すように、懸架部を上段と下段とに有する点滴台360を用意し、単核球分離管100を上段の懸架部に懸架し、単核球収納バッグ230を下段の懸架部に懸架する。そして、三方活栓130の第2接続口132を閉鎖し、第1接続口131及び第3接続口133を連通させるようにして、第2クランプ321を開放する。ここで第2クランプ321を開放するのは、エアバッグ220内の空気を上チャンバ110内に押しやることにより、第3接続口133から単核球を含む分画を押し出すためである。このようにして全ての上チャンバ110にある単核球を含む分画を単核球収納バッグ230内に移動させる。その後は、単核球を含む分画を取り出した単核球分離管100は不要であるため、第3チューブ330の所定の箇所にてヒートシーラーにより閉鎖して切断する。その結果、単核球収納バッグ230内に、単核球分画を含み、かつ成熟顆粒球をほとんど含まない細胞液が得られる。
 なお、上述の実施形態では、上チャンバ110と下チャンバ120とを接続する活栓は三方活栓130であり、単核球を含む細胞液は単核球収納バッグ230に収納されたが、本発明の範囲はこのような実施形態に限定されるものではなく、上チャンバ110と下チャンバ120との接続を開閉する簡易な構成である二方活栓とすることも可能である。係る場合は、遠心分離後に、蓋140の上部の導入口141から注射器等により単核球を含む分画を取り出す。
 上述の第1実施形態に係る単核球分離管100及び第2実施形態に係る単核球分離システム900によれば、そのまま使用可能な血管再生剤として有用な単核球を含む細胞液を得ることができる。この細胞液は、単核球細胞(CD34細胞)を約2~5%程度の濃度(単核球細胞濃度10~10個/ml程度)含有する幹細胞含有液である。この細胞液は、単核球回収率が約68~85%と高いものであり、その生存率は約98%以上に及ぶ高いものである。また、この細胞液は、血管新生に不利と考えられる成熟顆粒球等が高効率に除去されており、成熟顆粒球除去率は約96%以上である。
 本実施形態に係る発明により得られる単核球を有効成分として含む体内投与用薬剤は、血管新生誘導剤として、脳血管疾患の治療に有効である。また例えば慢性閉塞性動脈硬化症や、ビュルガー病等の末梢血管疾患の治療に有効である。また、狭心症、心筋梗塞等の虚血性心疾患や腎梗塞、脳性麻痺の治療及び予防にも有効である。更に、この細胞液による血管新生作用により、全身の微小循環障害に伴う種々の病態、例えば認知症、慢性腎不全、慢性心不全等の治療及び予防にも有効である。
 上記の体内投与用薬剤は、通常の細胞移植用薬剤と同様に注入剤形態に調製され、特に限定されるものではないが例えば血管内、皮下、筋肉内、皮内投与等に投与される。また、心疾患患者、脳疾患患者等への適用に当たっては、血管カテーテル操作により、冠状動脈、心内膜側、脳動脈より投与することも可能である。投与量は、投与形態、投与経路、患者の疾患の程度等に応じて適宜決定することができる。一般には、成人一人一回当たりの投与量は、有効成分とする単核球の細胞量として例えば1×106~1×10個/kg程度となる量を目安とすることができる。
 体内投与用薬剤の有効成分とする単核球は、自己又は血縁者由来であるのが好ましいが、特にこれに限定されるものではなく、骨髄バンク等に保管されている非血縁者由来とすることも可能である。
 また、骨髄は疾患発症後2~10日の間に例えば腰の骨から採取し、その日のうちに骨髄単核球細胞を分離して注射することが好ましい。骨髄採取を発症後2~10日としたのは、この時期に脳梗塞後に誘導される自己神経幹細胞が損傷部位に集まるからである。
 本実施形態に係る体内投与用薬剤によれば、例えば、骨髄中の幹細胞を注射して脳の血管を再生させ、組織の再生を促すことで脳梗塞による後遺症の治療が可能となる。
 (実施例1)
 〈ヨード造影剤を用いた骨髄幹細胞の単離〉
 実施例1では、ヨード造影剤としてイオヘキソールを使用し、単核球の分離を試みた。ヒト骨髄液の原液10mlに対して、10U/mlの医療用ヘパリンナトリウム(ノボ・ヘパリンナトリウム:持田製薬[注射用医薬品])を良く混合したものを分離原液として用いた。この骨髄液に医療用生理食塩水(大塚生食注:大塚製薬[注射用医薬品])を10ml加えることにより、試料溶液としての幹細胞分離用骨髄液を調整した。遠心分離媒体は、医療用造影剤(オムニパーク350:第一三共株式会社[注射用医薬品])を18.68ml、医療用生理食塩水(大塚生食注:大塚製薬[注射用医薬品])を51.76ml及び医療用蒸留水(大塚蒸留水:大塚製薬[注射用医薬品])を29.56ml混和することにより作成した。作成されたこの遠心分離媒体の比重は1.077、浸透圧(生理食塩液に対する比)は1.0、pHは7.4であった。
 10mlの遠心分離媒体の上に、液面を乱さないように緩徐に20mlの幹細胞分離用骨髄液を重層した。次いで、20℃において800gで20分間遠心分離を行うことにより、赤血球・顆粒球分画、比重遠心用分離薬剤層、単核球分画(骨髄幹細胞分画)、血小板・血漿分画の各分画に分離することができた。その後、単核球分画(骨髄幹細胞分画)を中心に6mlの骨髄幹細胞液を得た。
 上記の手法で得られた単核球を含む細胞液は、単核球回収率:約75%、単核球生存率:99%、CD34陽性細胞濃度:約3%、成熟顆粒球除去率:約97%、所要時間29分であった。
 〈フィコールを用いた骨髄幹細胞の単離〉
 一方、対照群として、遠心分離媒体としてフィコールを使用して単核球の分離を試みた。脳梗塞患者に対する自己骨髄幹細胞移植の臨床試験[臨床試験ID番号:日本UMIN000001133、米国NCT01028794]と同様に、遠心分離媒体としてフィコール[GEHealthcare社製:Ficoll-Paque PREMIUM]を用い、その他の条件は上述の〈ヨード造影剤を用いた骨髄幹細胞の単離〉と同様とした。単核球を含む細胞液の分離を行った後、生理食塩水と遠心機を用い、2度洗浄を行うことによりフィコールの除去を行った。
 上記の手法で得られた単核球を含む細胞液は、単核球回収率:約52%、単核球生存率:98%、CD34陽性細胞濃度:約3%、成熟顆粒球除去率:約96%、所要時間75分であった。
 〈ヒドロキシルエチルデンプンを用いた骨髄幹細胞の単離〉
 更に、対照群として、遠心分離媒体としてヒドロキシルエチルデンプンを使用し単核球の分離を試みた。ヒト骨髄液5mlをヘパリン混和の生理食塩水5mlと混和した。さらに、ヒドロキシルエチルデンプンを最終ヒドロキシルエチルデンプン濃度が1%となるように加え、得られた骨髄液を室温で40分間静置し、赤血球成分を沈降させ上清液を回収した。回収液を、濃縮機セルプロセッサーにセットし、脂肪分、骨片等の微小浮遊物を分離した。次いで、洗浄及び濃縮操作により、7mlの単核球を含む細胞液を得た。
 上記の手法で得られた単核球を含む細胞液は、単核球回収率:約70%、単核球生存率:98%、CD34陽性細胞濃度:約3%、成熟顆粒球除去率:約52%、所要時間63分であった。
 (実施例2)
 実施例2では、ヒト幹細胞治療薬の効果判定に有効なSCID(SevereCombined Immunodeficiency=重症免疫不全)マウス脳梗塞モデル(左中大脳動脈M1遠位部閉塞モデル)を用いて、実施例1で得られた単核球を含む細胞液の治療薬剤としての効果の検討を行った。他の手法との比較検討のため、(i)本発明で分離された細胞液投与群(以下、幹細胞群)、(ii)フィコールによる分離された細胞群(以下、フィコール群)、(iii)ヒドロキシルエチルデンプンにより分離された細胞群(以下、デンプン群)、(iv)生理食塩水投与群(以下、生食群)を設定した。
 各群6匹の脳梗塞モデルマウスに対し、脳梗塞作成2日後に5x10個の細胞(あるいは生理食塩水)を尾静脈より投与し、各細胞投与群の脳神経機能回復促進効果の検証を行った。神経機能回復の評価項目に関しては、細胞投与30日後の大脳皮質神経機能をオープンフィールドテスト(暗条件に対する反応性)で評価し、統計解析は一元配置分散分析法(ポストホックとして生食群を対照としたDunnett法)を用いて行った。オープンフィールドテストの実験装置は、天井部のない立方体のオープンフィールドボックスであった。側面及び床面は厚さ3mmの透明アクリル版製で、内寸は、床部が40×40cm、高さが30cmであった。実験室は防音されており、オープンフィールドボックスには、赤外線センサー(7×7で、床から2cmと4.5cm)がついており、下のセンサーで移動活動量を、上のセンサーで立ち上がり反応を30分間検出し、コンピューターで記録した。マウスは夜行性であり暗条件にすると移動活動量及び立ち上がり反応が通常では増加するが、脳梗塞に起因する大脳皮質機能障害によりその暗条件への反応が減弱・消失する。本試験では、暗条件への反応性を評価することにより脳梗塞後の皮質機能の回復の程度の評価を行った。図5は、SCIDマウス脳虚血モデルにおける30分間の総活動量(移動活動量+立ち上がり反応)の暗条件に対する反応性(Responseto Darkness)の測定結果である。図5に示すように、生食群と比し、幹細胞群及びフィコール群では有意な機能回復促進が観察されたが、デンプン群では有意な治療効果が観察されなかった。なお有意確率は5%であった。
 (実施例3)
 実施例3では、ヒト幹細胞治療薬の効果判定に有効なSCID(重症免疫不全)マウス下肢虚血モデル(左大腿動脈閉塞モデル)を用いて、実施例1で得られた単核球を含む細胞液の治療薬剤としての効果の検討を行った。他の手法との比較検討のため、(i)本発明で分離された細胞液投与群(以下、幹細胞群)、(ii)フィコールによる分離された細胞群(以下、フィコール群)、(iii)ヒドロキシルエチルデンプンにより分離された細胞群(以下、デンプン群)、(iv)生理食塩水投与群(以下、生食群)を設定した。
 各群6匹の下肢虚血モデルマウスに対し、下肢虚血作成直後に計1x10個の細胞(あるいは生理食塩水)を3か所の大腿部筋肉内に投与し、下肢虚血モデル作成30日後の救肢促進効果の検証を行った。虚血レベルは、0点:正常、1点:軽度の変色、2点:中等度から重度の変色、3点:壊死、4点:離断のようにして評価を行った。統計解析はクラスカル・ワーリス検定を用いて行った。図6は、SCIDマウス下肢虚血モデルにおける救肢効果の測定結果である。図6に示すように、生食群と比し、幹細胞群、フィコール群、デンプン群でそれぞれ有意な救肢効果が観察されたが、デンプン群との比較においても、幹細胞群でさらに有意な治療効果が観察された。なお有意確率は5%であった。
 (実施例4)
 〈単核球分離管による骨髄幹細胞の単離〉
 遠心分離媒体は、医療用造影剤(オムニパーク350:第一三共株式会社[注射用医薬品])を16.68ml、医療用生理食塩水(大塚生食注:大塚製薬[注射用医薬品])を51.76ml及び医療用蒸留水(大塚蒸留水:大塚製薬[注射用医薬品])を29.56ml混和することにより作成した。作成された遠心分離媒体の比重は1.077、浸透圧(生理食塩液に対する比)は1.0、pHは7.4であった。そして単核球分離管は図1に示したものと同様の構成とし、約10mlの遠心分離媒体を単核球分離管100の下チャンバ120に配置した。
 次に、ヒト骨髄液の原液10mlに対して、10U/mlの医療用ヘパリンナトリウム(ノボ・ヘパリンナトリウム:持田製薬[注射用医薬品])を良く混合したものを分離原液として用いた。この骨髄液に医療用生理食塩水(大塚生食注:大塚製薬[注射用医薬品])を10ml加えることにより、試料溶液としての幹細胞分離用骨髄液を調整した。
 そして活栓を閉じた状態にし、注射器を用いて20mlの幹細胞分離用骨髄液を上チャンバ110に注入し、注入後に活栓を開放した。次いで、400gで40分間遠心分離を行い、遠心後に活栓を閉鎖した。その結果、下チャンバ120に赤血球・顆粒球分画及び遠心分離媒体、上チャンバ110には遠心分離媒体、単核球分画(骨髄幹細胞分画)及び血小板・血漿分画の2分画に分離することができた。上層を注射器で採取することにより、単核球分画(骨髄幹細胞分画)を含み、かつ成熟顆粒球をほとんど含まない単核球を含む細胞液を得た。
 上記の手法にて得られた単核球を含む細胞液は、単核球回収率:約80%、単核球生存率:99%、CD34陽性細胞濃度:約3%、成熟顆粒球除去率:約96%の特性を有するものであった。
 上記の手法で得られた単核球を含む細胞液の細菌汚染、真菌汚染に関する検討を行った。即ち、10%牛胎児血清入り細胞培養液、CDLP寒天培地及びサブロー寒天培地に各1mlの骨髄幹細胞液を混和あるいは塗布し、37℃で30日間培養を行ったが、細胞及び真菌の増殖は全く観察されなかった。
 〈脳梗塞動物モデルでの治療効果〉
 SCIDマウス脳梗塞モデル(左中大脳動脈M1遠位部閉塞モデル)を用いて、上記の〈単核球分離管による骨髄幹細胞の単離〉で得られた単核球を含む細胞液の治療薬剤としての効果の検討を行った。(i)本発明で分離された細胞液投与群(幹細胞群)、及び(ii)生理食塩水投与群(生食群)を設定した。各群6匹の脳梗塞モデルマウスに対し、脳梗塞作成2日後に5x10個の細胞(あるいは生理食塩水)を尾静脈より投与し、それぞれ投与群の脳神経機能回復促進効果の検証を行った。神経機能回復の評価項目に関しては、細胞投与30日後の大脳皮質神経機能をオープンフィールドテストで評価し、統計解析はt検定を用いて行った。図7は、SCIDマウス脳虚血モデルにおける30分間の総活動量(移動活動量+立ち上がり反応)の暗条件に対する反応性の測定結果である。図7に示すように、生食群と比し、幹細胞群では有意な機能回復促進が観察された。なお有意確率は5%であった。
 〈下肢虚血動物モデルでの治療効果〉
 SCIDマウス下肢虚血モデル(左大腿動脈閉塞モデル)を用いて、上記の〈単核球分離管による骨髄幹細胞の単離〉で得られた骨髄幹細胞液の治療薬剤としての効果の検討を行った。(i)本発明で分離された細胞液投与群(幹細胞群)、及び(ii)生理食塩水投与群(生食群)を設定した。各群6匹の下肢虚血モデルマウスに対し、下肢虚血作成直後に計1x10個の細胞(あるいは生理食塩水)を3か所の大腿部筋肉内に投与し、下肢虚血モデル作成30日後の救肢促進効果の検証を行った。虚血レベルは、0点:正常、1点:軽度の変色、2点:中等度から重度の変色、3点:壊死、4点:離断のようにして評価を行った。統計解析はマン・ホイットニ検定を用いて行った。図8は、SCIDマウス下肢虚血モデルにおける救肢効果の測定結果である。図8に示すように、生食群と比し、幹細胞群で有意な救肢効果が観察された。なお有意確率は5%であった。
 (実施例5)
 〈単核球分離システムの準備〉
 実施例5では、図2に示した単核球分離システムを用いて単核球の単離を試みた。試料溶液バッグ210には予め、10mlの希釈用生理食塩水(大塚生食注:大塚製薬)及び100単位のヘパリンナトリウム(ノボ・ヘパリンナトリウム)が収納された。また、遠心分離媒体として、造影剤(オムニパーク140:第一三共株式会社)を23.3ml、生理食塩水(大塚生食注:大塚製薬)を25.9ml及び蒸留水(大塚蒸留水:大塚製薬)を0.8ml混和することにより作成した。作成された遠心分離媒体の比重は1.077、浸透圧(生理食塩液に対する比)は1.0、pHは7.4であった。この約10mlの遠心分離媒体を単核球分離管100の下チャンバ120に予め配置した。エア用バック220には、予め約10mlの無塵無菌空気を入れるとともに、30ml以上の拡張能を持たせた。全てのクランプは閉の状態とした。
 〈単核球分離システムによる骨髄幹細胞の単離〉
 次に、ヒト骨髄液の原液10mlを注射器により試料溶液バッグ210に注入して、良く混和した。そして図3に示したように、試料溶液バッグ210を点滴台350に懸架すると共に、単核球分離管100をチューブラックに立てた後、第1クランプ311及び第2クランプ321を開放した。全ての骨髄液が単核球分離管100に移動した後、第1クランプ311及び第2クランプ321を閉鎖し、ヒートシーラーにより第1チューブ310を閉鎖し、ヒートシーリングポイントの試料溶液バッグ210側で切断した。
 続いて、単核球分離管100の3方活栓130を試料溶液と遠心分離媒体とが接するように開放し、単核球分離管100と、単核球収納バッグ23及びエアバッグ220とを遠心機に懸架して、対側同士のバランスを取った。次いで、400gで40分間遠心分離を行い、遠心後に3方活栓130を閉鎖した。その結果、単核球分離管100の下チャンバ120には赤血球・顆粒球分画及び遠心分離媒体、上チャンバ110には遠心分離媒体、単核球分画(骨髄幹細胞分画)及び血小板・血漿分画の2分画に分離することができた。
 続いて、図4に示したように、単核球分離管100を点滴台に懸架し、エアバック220とのクランプを開放するとともに、第1接続口131及び第3接続口133を連通するように三方活栓を開放し、全ての上チャンバ110にある液体を単核球収納バッグ230内に移動させた。続いて、ヒートシーラーにより第3チューブ330を閉鎖して、ヒートシーリングポイントの単核球分離管100側で切断した。
 その結果、単核球収納バッグ230内に、単核球分画(骨髄幹細胞分画)を含み、かつ成熟顆粒球をほとんど含まない骨髄幹細胞液を得ることができた。
 上記の手法にて得られた単核球を含む細胞液は、単核球回収率:約69%、単核球生存率:99%、CD34陽性細胞濃度:約3%、成熟顆粒球除去率:約96%の特性を有するものであった。
 上記の手法で得られた単核球を含む細胞液の細菌汚染、真菌汚染に関する検討を行った。即ち、10%牛胎児血清入り細胞培養液、CDLP寒天培地及びサブロー寒天培地に各1mlの細胞液を混和あるいは塗布し、37℃で30日間培養を行ったが、細胞及び真菌の増殖は全く観察されなかった。
 〈脳梗塞動物モデルでの治療効果〉
 SCIDマウス脳梗塞モデル(左中大脳動脈M1遠位部閉塞モデル)を用いて、上記の〈単核球分離システムによる骨髄幹細胞の単離〉で得られた単核球を含む細胞液の治療薬剤としての効果の検討を行った。(i)本発明で分離された細胞液投与群(幹細胞群)、及び(ii)生理食塩水投与群(生食群)を設定した。各群6匹の脳梗塞モデルマウスに対し、脳梗塞作成2日後に5x10個の細胞(あるいは生理食塩水)を尾静脈より投与し、それぞれ投与群の脳神経機能回復促進効果の検証を行った。神経機能回復の評価項目に関しては、細胞投与30日後の大脳皮質神経機能をオープンフィールドテストで評価し、統計解析はt検定を用いて行った。図9は、SCIDマウス脳虚血モデルにおける30分間の総活動量(移動活動量+立ち上がり反応)の暗条件に対する反応性の測定結果である。図9に示すように、生食群と比し、幹細胞群では有意な機能回復促進が観察された。なお有意確率は5%であった。
 〈下肢虚血動物モデルでの治療効果〉
 SCIDマウス下肢虚血モデル(左大腿動脈閉塞モデル)を用いて、上記の〈単核球分離システムによる骨髄幹細胞の単離〉で得られた単核球を含む細胞液の治療薬剤としての効果の検討を行った。(i)本発明で分離された細胞液投与群(幹細胞群)、及び(ii)生理食塩水投与群(生食群)を設定した。各群6匹の下肢虚血モデルマウスに対し、下肢虚血作成直後に計1x10個の細胞(あるいは生理食塩水)を3か所の大腿部筋肉内に投与し、下肢虚血モデル作成30日後の救肢促進効果の検証を行った。虚血レベルは、0点:正常、1点:軽度の変色、2点:中等度から重度の変色、3点:壊死、4点:離断のようにして評価を行った。統計解析はマン・ホイットニ検定を用いて行った。図10は、SCIDマウス下肢虚血モデルにおける救肢効果の測定結果である。図10に示すように、生食群と比し、幹細胞群で有意な救肢効果が観察された。なお有意確率は5%であった。
 本発明によれば単核球を簡易に分離することができ、この単核球により脳血管障害や末梢血管障害等の効果的な治療が可能となる。
 100:単核球分離管
 110:上チャンバ
 120:下チャンバ
 130:三方活栓
 131:第1接続口
 132:第2接続口
 133:第3接続口
 140:蓋
 150:ケース
 210:試料溶液バッグ
 220:エアバッグ
 230:単核球収納バッグ
 310:第1チューブ
 311:第1クランプ
 312:フィルター
 320:第2チューブ
 321:第2クランプ
 330:第3チューブ
 350,360:点滴台
 900:単核球分離システム

Claims (11)

  1.  単核球を含む複数成分からなる試料溶液を、遠心分離媒体を用いて遠心分離処理することで、前記複数成分を比重の違いにより分離させ、低比重成分である単核球を採取するための単核球分離管であって、
     上側に配置されて前記試料溶液が導入される導入開口及び下側に配置された下側開口を有し、遠心分離処理前には前記試料溶液が収納されると共に遠心分離処理後には前記低比重成分である単核球が位置する上チャンバと、
     上側に上側開口が配置され下側が閉塞し、遠心分離処理前には前記遠心分離媒体が収納されると共に遠心分離処理後には不要成分である高比重成分が位置する下チャンバと、
     前記上チャンバの下側開口と前記下チャンバの上側開口とを連通状態又は非連通状態に切り換える活栓と、
     前記上チャンバの前記導入開口を密栓する蓋と、
    を備えることを特徴とする単核球分離管。
  2.  前記活栓は、第1、第2及び第3接続口を有する3個の流体通路を備えた三方活栓であり、
     第1接続口は前記上チャンバの下側開口に接続され、
     第2接続口は前記下チャンバの上側開口に接続され、
     遠心分離処理後に三方活栓の前記第1接続口及び前記第3接続口を連通させて、前記低比重成分である単核球を前記第3接続口から取り出すことを特徴とする請求項1に記載の単核球分離管。
  3.  前記遠心分離媒体は、ヨード造影剤を主成分とし、且つ、前記下チャンバに収納されていることを特徴とする請求項1に記載の単核球分離管。
  4.  前記ヨード造影剤は、イオヘキソール、イオパミドール、イオメプロール、イオキシラン、イオベルソール、又はイオプロミドから選択される非イオン性水溶性ヨード造影剤であることを特徴とする請求項3記載の単核球分離管。
  5.  請求項1に記載の単核球分離管と、
     単核球を含む複数成分からなる試料溶液が収納される試料溶液バッグと、
     前記単核球分離管に対して空気を出し入れするエアバッグと、
     前記単核球分離管の蓋を貫通して、前記上チャンバと前記試料溶液バッグとを接続する第1チューブと、
     前記単核球分離管の蓋を貫通して、前記上チャンバと前記エアバッグとを接続する第2チューブと、を備えることを特徴とする単核球分離システム。
  6.  請求項2乃至4の何れか1項に記載の単核球分離管と、
     単核球を含む複数成分からなる試料溶液が収納される試料溶液バッグと、
     前記単核球分離管に対して空気を出し入れするエアバッグと、
     分離された低比重成分である単核球を収納する単核球収納バッグと、
     前記単核球分離管の蓋を貫通して、前記上チャンバと前記試料溶液バッグとを接続する第1チューブと、
     前記単核球分離管の蓋を貫通して、前記上チャンバと前記エアバッグとを接続する第2チューブと、
     前記単核球収納バッグと前記三方活栓の第3接続口とを接続する第3チューブと、を備えることを特徴とする単核球分離システム。
  7.  ヨード造影剤を遠心分離媒体の主成分とする比重遠心分離法により、単核球を含む複数成分からなる試料溶液から単核球を分離する単核球の分離方法。
  8.  前記ヨード造影剤は、イオヘキソール、イオパミドール、イオメプロール、イオキシラン、イオベルソール、又はイオプロミドから選択される非イオン性水溶性ヨード造影剤である請求項7記載の単核球の分離方法。
  9.  請求項7記載の単核球の分離方法により分離された単核球。
  10.  請求項9記載の単核球を有効成分として含む体内投与用薬剤。
  11.  脳疾患治療、神経変性疾患治療、末梢血管疾患治療、心疾患治療、脳性麻痺治療、腎梗塞治療、認知症治療、慢性腎不全治療、又は、慢性心不全治療のいずれかに使用される請求項10記載の体内投与用薬剤。
PCT/JP2011/004427 2010-08-04 2011-08-04 単核球分離管、単核球分離システム、単核球の分離方法、単核球、及び、体内投与用薬剤 WO2012017663A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010175056A JP5771917B2 (ja) 2010-08-04 2010-08-04 単核球分離管及び単核球分離システム
JP2010-175056 2010-08-04

Publications (1)

Publication Number Publication Date
WO2012017663A1 true WO2012017663A1 (ja) 2012-02-09

Family

ID=45559182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004427 WO2012017663A1 (ja) 2010-08-04 2011-08-04 単核球分離管、単核球分離システム、単核球の分離方法、単核球、及び、体内投与用薬剤

Country Status (2)

Country Link
JP (1) JP5771917B2 (ja)
WO (1) WO2012017663A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163453A1 (ja) * 2018-02-23 2019-08-29 富士フイルム株式会社 処理装置
WO2020196347A1 (ja) * 2019-03-28 2020-10-01 公益財団法人神戸医療産業都市推進機構 細胞濃縮用容器
CN113637579A (zh) * 2020-04-27 2021-11-12 复旦大学 一种静液压可调的细胞和组织加压培养装置
CN113874488A (zh) * 2019-06-10 2021-12-31 爱平世股份有限公司 红细胞除去装置、单核细胞回收器、细胞培养装置、细胞培养系统、细胞培养方法及单核细胞的回收方法
WO2024012260A1 (zh) * 2022-07-14 2024-01-18 苏州壹达生物科技有限公司 一种液瓶

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175797A1 (ja) * 2012-05-23 2013-11-28 独立行政法人国立循環器病研究センター 細胞分離バック、細胞分離方法及び細胞分離システム
JP6154904B2 (ja) * 2013-08-22 2017-06-28 株式会社ジェイ・エム・エス 血液成分分離用装置
JP6842081B2 (ja) * 2016-09-09 2021-03-17 米満 吉和 単核球の調製方法
JP7046838B2 (ja) 2017-01-10 2022-04-04 富士フイルム株式会社 遠心分離容器及び遠心分離装置
JPWO2018139583A1 (ja) * 2017-01-27 2019-12-19 公益財団法人神戸医療産業都市推進機構 単核球分離装置及び単核球分離方法
KR102196527B1 (ko) 2017-12-21 2020-12-31 한양대학교 산학협력단 적혈구계 세포 배양 중 적혈구를 수거하기 위한 시스템 및 방법
CN115243694A (zh) * 2020-01-08 2022-10-25 公益财团法人神户医疗产业都市推进机构 身体功能恢复促进剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321155A (ja) * 2000-05-18 2001-11-20 Matsushita Electric Ind Co Ltd 口腔連鎖球菌分画装置とその菌展開部材、およびその口腔連鎖球菌分画装置を用いた分画方法
WO2004009766A2 (en) * 2002-07-19 2004-01-29 Vesta Therapeutics, Inc. Method of obtaining viable human liver cells, including hepatic stem/progenitor cells
JP2004522452A (ja) * 2001-03-22 2004-07-29 キャピタル バイオチップ カンパニー リミテッド 細胞単離方法およびその使用
JP2005279507A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 密度勾配遠心分離による微生物抽出方法
JP2006246835A (ja) * 2005-03-14 2006-09-21 Matsushita Electric Ind Co Ltd 密度勾配用分離回収容器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093115A (en) * 1985-06-11 1992-03-03 The United States Of America As Represented By The Department Of Health And Human Services Method of preparing activated killer monocytes for treating colorectal cancer
EP1644484B1 (en) * 2003-07-11 2008-09-17 Blasticon Biotechnologische Forschung GmbH Autologous self-tolerance inducing cells of monocytic origin and their use in pharmaceutical proparations
JP2004129545A (ja) * 2002-10-09 2004-04-30 Asahi Medical Co Ltd 単球採取方法
JP4362529B2 (ja) * 2007-09-26 2009-11-11 テルモ株式会社 単球分離培養装置および樹状細胞回収方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321155A (ja) * 2000-05-18 2001-11-20 Matsushita Electric Ind Co Ltd 口腔連鎖球菌分画装置とその菌展開部材、およびその口腔連鎖球菌分画装置を用いた分画方法
JP2004522452A (ja) * 2001-03-22 2004-07-29 キャピタル バイオチップ カンパニー リミテッド 細胞単離方法およびその使用
WO2004009766A2 (en) * 2002-07-19 2004-01-29 Vesta Therapeutics, Inc. Method of obtaining viable human liver cells, including hepatic stem/progenitor cells
JP2005279507A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 密度勾配遠心分離による微生物抽出方法
JP2006246835A (ja) * 2005-03-14 2006-09-21 Matsushita Electric Ind Co Ltd 密度勾配用分離回収容器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BENDIXEN, B. ET AL.: "Properties and applications of a new type of iodinated gradient medium.", J. BIOCHEM. BIOPHYS. METHODS, vol. 28, no. 1, January 1994 (1994-01-01), pages 43 - 52, XP023454846, DOI: doi:10.1016/0165-022X(94)90063-9 *
DATABASE PUBMED [online] 17 April 1996 (1996-04-17), "Bone Marrow Transplant", retrieved from 8722348 accession no. http://www.ncbi.nlm.nih.gov/pubmed/ 8722348> Database accession no. 8722348 *
FISKER, S. ET AL.: "Isolation of rat peritoneal mononuclear and polymorphonuclear leucocytes on discontinuous gradients of Nycodenz.", J. IMMUNOL. METHODS, vol. 133, no. 1, 4 October 1990 (1990-10-04), pages 31 - 38, XP023974418, DOI: doi:10.1016/0022-1759(90)90315-M *
FORD, T.C. ET AL.: "A new one-step method for the isolation of human mononuclear cells.", J. IMMUNOL. METHODS, vol. 134, no. 2, 5 December 1990 (1990-12-05), pages 237 - 241, XP023974596, DOI: doi:10.1016/0022-1759(90)90385-9 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163453A1 (ja) * 2018-02-23 2019-08-29 富士フイルム株式会社 処理装置
JPWO2019163453A1 (ja) * 2018-02-23 2020-12-03 富士フイルム株式会社 処理装置
WO2020196347A1 (ja) * 2019-03-28 2020-10-01 公益財団法人神戸医療産業都市推進機構 細胞濃縮用容器
JP2020162447A (ja) * 2019-03-28 2020-10-08 国立大学法人滋賀医科大学 細胞濃縮用容器
JP7226738B2 (ja) 2019-03-28 2023-02-21 国立大学法人滋賀医科大学 細胞濃縮用容器
CN113874488A (zh) * 2019-06-10 2021-12-31 爱平世股份有限公司 红细胞除去装置、单核细胞回收器、细胞培养装置、细胞培养系统、细胞培养方法及单核细胞的回收方法
CN113637579A (zh) * 2020-04-27 2021-11-12 复旦大学 一种静液压可调的细胞和组织加压培养装置
WO2024012260A1 (zh) * 2022-07-14 2024-01-18 苏州壹达生物科技有限公司 一种液瓶

Also Published As

Publication number Publication date
JP2012034725A (ja) 2012-02-23
JP5771917B2 (ja) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5771917B2 (ja) 単核球分離管及び単核球分離システム
EP1893253B1 (en) Integrated system for collecting, processing and transplanting cell subsets, including adult stem cells, for regenerative medicine
AU2015321601B2 (en) Wearable hemoperfusion device
CA2932902C (en) Plasmapheresis device
KR101162097B1 (ko) 혈청조제방법 및 혈청조제장치
EP2698422B1 (en) Mononuclear cell preparation material and mononuclear cell preparation method using same
US20200002673A1 (en) Method for Preparing a Leukocyte Preparation and Leukocyte Preparation
WO2004103439A1 (ja) 血清調製用容器及びそれを用いた再生医療方法
WO2007049286A1 (en) A system for ex-vivo separation of apoptotic chromatin particles from blood or plasma
KR102100665B1 (ko) 원심분리를 위한 장치 및 그 방법
FI62138B (fi) Anordning foer paovisande av patogener i blod
WO2013175797A1 (ja) 細胞分離バック、細胞分離方法及び細胞分離システム
US9746453B2 (en) Nucleated-cell capturing filter and nucleated-cell preparation method using same
WO2004089439A2 (en) Elective collection and banking of autologous peripheral blood stem cells
TWI741033B (zh) 用以無菌處理懸濁液之器具、細胞製備用套組及細胞之製備方法
Hoetink et al. An In Vitro Pilot Study Comparing the Novel HemoClear Gravity‐Driven Microfiltration Cell Salvage System with the Conventional Centrifugal XTRA™ Autotransfusion Device
RU2625774C2 (ru) Способ и устройство для лечения нарушений, связанных с уровнем холестерина в крови
CN113016780A (zh) Vx702用于制备血小板体外保存剂的应用及相关血小板
IT8322320A1 (it) Impianti a resa superiore per la raccolta di componenti del sangue in flusso continuo
Boga et al. Assessment of corrected QT interval in sickle cell disease patients who undergo erythroapheresis
Miyamoto et al. Preliminary studies for the development of a second generation granulocytapheresis (G-CAP) column
PATTERSON Granulocyte transfusion: Nursing considerations
JP2012120457A (ja) プライミング装置機能付き細胞分離装置およびそれを用いたプライミング法。
Waldman Effects of plasticizers on red blood cells and platelets during storage
JP2018515131A (ja) 固定化プラスミノゲナーゼ組成物、調製方法、使用、及びかかる組成物を含む装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814298

Country of ref document: EP

Kind code of ref document: A1