WO2012014448A1 - 半導体素子と半導体素子の製造方法 - Google Patents

半導体素子と半導体素子の製造方法 Download PDF

Info

Publication number
WO2012014448A1
WO2012014448A1 PCT/JP2011/004209 JP2011004209W WO2012014448A1 WO 2012014448 A1 WO2012014448 A1 WO 2012014448A1 JP 2011004209 W JP2011004209 W JP 2011004209W WO 2012014448 A1 WO2012014448 A1 WO 2012014448A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
lift
semiconductor
columnar
manufacturing
Prior art date
Application number
PCT/JP2011/004209
Other languages
English (en)
French (fr)
Inventor
嘉孝 門脇
豊田 達憲
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to US13/516,889 priority Critical patent/US8765584B2/en
Priority to EP11812050.0A priority patent/EP2506316B1/en
Priority to KR1020127009944A priority patent/KR101255489B1/ko
Priority to CN201180037298.8A priority patent/CN103038902B/zh
Publication of WO2012014448A1 publication Critical patent/WO2012014448A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0215Bonding to the substrate
    • H01S5/0216Bonding to the substrate using an intermediate compound, e.g. a glue or solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0217Removal of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • the present invention relates to a semiconductor element and a method for manufacturing the semiconductor element, and more particularly to a semiconductor element having a configuration in which a compound semiconductor layer is formed on a support substrate and a method for manufacturing the semiconductor element.
  • Group III nitride semiconductors which are compound semiconductors, are widely used as materials for light-emitting elements such as blue and green LEDs (light-emitting diodes) and LD (laser diodes) because of their wide band gaps.
  • a p-type semiconductor layer (p-type layer) and an n-type semiconductor layer (n-type layer) are laminated by epitaxial growth.
  • this structure In order to manufacture this structure with good quality and low cost, it is generally performed by epitaxially growing a p-type layer and an n-type layer on a growth substrate made of a material other than a group III nitride semiconductor. .
  • the growth substrate materials that can be used are limited.
  • gallium nitride (GaN) which is representative of a group III nitride semiconductor, is grown on a growth substrate made of SiC, sapphire, or the like by MOCVD (metal organic chemical vapor deposition) or HVPE (hydride vapor deposition). be able to.
  • sapphire is an insulator, it is necessary to provide two electrical contact portions on the upper surface of the semiconductor layer stacked on the sapphire, reducing the effective light emitting area on the same substrate area as compared with the conductor substrate, and the same. Since both electrodes are provided on the surface, there is a problem that the current density is locally increased and the element is deteriorated due to heat generation.
  • a method for manufacturing a light-emitting element using lift-off technology is disclosed (for example, see Patent Document 1).
  • a conductive substrate is newly bonded to the p-side electrode side as a support substrate.
  • the lift-off technology when the sapphire is peeled off from the growth substrate, it is necessary to etch the lift-off layer from the periphery with an etching solution or the like. Therefore, there is a problem that the compound semiconductor layer may be cracked due to internal stress generated by the difference in thermal expansion coefficient between the growth substrate and the compound semiconductor layer during growth.
  • an object of the present invention is to provide a semiconductor element and a method for manufacturing the semiconductor element, in which the compound semiconductor layer is not cracked by internal stress of the compound semiconductor layer at the time of lift-off.
  • the semiconductor element and the semiconductor element manufacturing method according to the present invention are configured as follows.
  • a first method for manufacturing a semiconductor element is a method for manufacturing a semiconductor element having a configuration in which a semiconductor layer is bonded to a support substrate, and an element region including a semiconductor layer is formed on a growth substrate via a lift-off layer.
  • a lift-off step for separating the lower surface of the layer from the growth substrate and not separating the columnar material and the growth substrate; and a step of separating the columnar material and the support substrate.
  • the columnar object forming step includes a sacrificial layer forming step of forming a sacrificial layer on a part of the columnar object, and separating the columnar object and the support substrate. In this step, the sacrificial layer is removed.
  • the third method for producing a semiconductor element is preferably characterized in that, in the above method, the columnar body includes a core portion made of the same material as the semiconductor layer.
  • the material constituting the semiconductor layer is formed on the growth substrate via the lift-off layer, and then etching is performed.
  • the fifth method for manufacturing a semiconductor device preferably includes the step of removing the lift-off layer in the region where the columnar object is to be formed, in the step of forming the lift-off layer on the growth substrate. Is formed on the growth substrate via the lift-off layer and partially without the lift-off layer, and then etched to simultaneously form the element region and the core that is not lifted off in the lift-off process. It is characterized by.
  • the lift-off layer is formed in the device region and in the region that is to be the region where the columnar object is to be formed. And selectively forming the material constituting the semiconductor layer on the growth substrate via the lift-off layer and partially forming the material without the lift-off layer, and then performing etching to lift off the element region and the lift-off layer. A core portion that is not lifted off in the process is formed at the same time.
  • a seventh method for manufacturing a semiconductor element is a method for manufacturing a semiconductor element having a configuration in which a semiconductor layer is bonded to a support substrate, and an element region formed of a semiconductor layer is formed on a growth substrate via a lift-off layer.
  • An element region forming process to be formed, a columnar object forming process for forming a columnar object on the support substrate, a semiconductor layer bonded to the support substrate, a bonding process for bonding the columnar object to the growth substrate, and the lift-off layer are removed.
  • the method includes a lift-off process that separates the lower surface of the semiconductor layer from the growth substrate and that does not separate the columnar material and the growth substrate, and a step of separating the columnar material and the support substrate.
  • the columnar body forming step includes a sacrificial layer forming step of forming a sacrificial layer on the support substrate, and the step of separating the columnar body and the support substrate. Then, the sacrificial layer is removed.
  • the ninth method for manufacturing a semiconductor device is the above method, wherein the semiconductor layer preferably includes an n-type layer on the growth substrate side and a p-type layer formed on the n-type layer. .
  • the tenth method for manufacturing a semiconductor element is characterized in that, in the above method, preferably, before the bonding step, conductive materials are respectively formed on the surface of the semiconductor layer and the surface of the support substrate in the element region.
  • an n-type electrode bonded to the n-type layer is formed, a p-type electrode bonded to the p-type layer is formed, and the n-type electrode and the p-type electrode are formed.
  • the leakage current is 10 ⁇ A or less when a reverse voltage of 10 volts is applied between
  • the first semiconductor element is manufactured by the manufacturing method of the first to tenth semiconductor elements.
  • the present invention it is possible to provide a semiconductor element and a method for manufacturing the semiconductor element in which the compound semiconductor layer is not cracked due to internal stress of the compound semiconductor layer during lift-off.
  • n-type and p-type semiconductor layers used in this semiconductor element are obtained by epitaxial growth on a growth substrate.
  • this growth substrate is removed, and a support substrate different from the growth substrate is connected to the side opposite to the side where the growth substrate was present.
  • FIG. 1 is a flowchart showing a process of manufacturing a semiconductor device by the method of manufacturing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the substrate at each step of the method of manufacturing a semiconductor device according to the first embodiment of the present invention.
  • LED light emitting diode
  • This LED uses light emission in a laminate of a nitride semiconductor n-type layer and a p-type layer.
  • FIG. 2 the configuration of only one LED element is shown, but in practice, a plurality of LEDs can be formed on a single support substrate, and a plurality of elements are formed on the substrate. These can be used later by separating them into individual elements or by connecting them in series or in parallel.
  • the semiconductor element manufacturing method includes a compound semiconductor layer forming process (step S11), an element region forming process (step S12), a columnar object forming process (step S13), and a sacrificial layer forming process (step).
  • step S14 p-side electrode forming step (step S15), bonding layer forming step (step S16), support substrate bonding pre-step (step S17), bonding step (step S18), and peeling step (step S19).
  • an n-side electrode forming process step S20
  • a wire bonding process step S21.
  • the peeling process (step S19) is performed from the lift-off process (step S191) and the sacrificial layer etching process (step S192).
  • step S191 of the peeling process step S19
  • the columnar objects are joined. It is equity. That is, in the lift-off process (step S191), the bottom surface of the semiconductor layer and the growth substrate are separated by removing the lift-off layer, and the columnar object and the growth substrate are not separated.
  • a lift-off layer (metal buffer layer) and a compound semiconductor layer on the lift-off layer are formed on the growth substrate.
  • the metal buffer layer 12 is formed on the growth substrate 11.
  • a sapphire single crystal ((0001) substrate) is particularly preferably used.
  • scandium (Sc) having a thickness of about 100 mm can be used.
  • the metal buffer layer 12 can be formed by sputtering, vacuum deposition, or the like.
  • a nitriding treatment for example, a step of raising the temperature to 1040 ° C. or higher in an ammonia atmosphere is performed.
  • the surface of the metal buffer layer (metal layer: Sc layer) 12 is nitrided to become a scandium nitride layer (metal nitride layer: ScN layer) 12s.
  • the thickness of the ScN layer 12s can be set by adjusting the processing time, temperature, and the like.
  • an n-type nitride semiconductor layer (n-type semiconductor layer: n-type layer) 13 and a p-type nitride semiconductor layer (p-type semiconductor layer: p-type layer) are formed on the Sc metal buffer layer 12 having the ScN layer 12s. 14 are sequentially formed (epitaxial growth step). This film formation is performed, for example, by metal organic chemical vapor deposition (MOCVD), and the n-type layer 13 is doped with an impurity serving as a donor, and the p-type layer 14 is doped with an impurity serving as an acceptor.
  • MOCVD metal organic chemical vapor deposition
  • a stacked body 15 including an n-type layer 13 and a p-type layer 14 is formed, and a pn junction of a nitride semiconductor is formed therein, which becomes a light emitting layer 16.
  • the n-type layer 13 and the p-type layer 14 with few crystal defects can be grown. Therefore, the quality of the nitride semiconductor in the stacked body 15 can be improved, and the emission intensity can be increased.
  • the element region forming step (step S12) at least a part of the compound semiconductor layer (laminated body) 15 is removed by etching to simultaneously form the element region 15a, the core 21a, and the separation groove 20 (FIG. 2B). ).
  • the core portion 21a for joining the growth substrate 11 and the support substrate is formed around the element region.
  • the core portion 21 a is formed from the compound semiconductor layer (laminated body) 15.
  • the separation groove 20 has a depth that reaches the surface of the growth substrate 11 from the upper side (p-type layer 14 side) in FIG. Thereby, the stacked body 15 is divided on the substrate 11.
  • FIG. 2B a cross section in one direction is shown, but the separation groove 20 is also formed in a different direction, and a plurality of element regions 15a surrounded by the separation groove 20 are formed.
  • the separation groove 20 is formed as follows, for example.
  • a SiO 2 film is formed on the compound semiconductor layer (laminated body) 15 by CVD, patterned using a resist, and etched with BHF to form a SiO 2 mask. Thereafter, dry etching of the compound semiconductor layer is performed using SiO 2 as a mask until the sapphire substrate is exposed. Thereafter, the SiO 2 mask is removed using BHF.
  • the protective film 22 is formed so as to cover the core 21a and the metal buffer layer, and the columnar material 21 is formed. This is to prevent the core 21a from being lifted off in the lift-off process.
  • the protective film 22 is formed, for example, by depositing SiO 2 (1 ⁇ m) or the like (FIG. 2C). In FIG. 2C, the protective film 22 is also coated on the upper portion of the core portion 21a. However, a protective layer that is not removed in the lift-off process may be formed only on the side surface of the core portion.
  • the protective layer is a material that does not dissolve or peel off in the lift-off process
  • a material such as metal or resin may be used, and a sacrificial layer or a bonding layer is formed so as to cover the core and the metal buffer layer.
  • the sacrificial layer and the bonding layer may also serve as a protective layer.
  • step S14 for example, Cr (250 mm) is formed as the sacrificial layer 23 on the columnar object 21, and Pt / Au (2000 mm / 1 ⁇ m) is formed as the bonding layer 24 (FIG. 2D). ).
  • a material capable of being in ohmic contact with the p-type layer 14 is formed as the p-side electrode 25 on the entire surface of the p-type layer 14 existing on the uppermost surface.
  • Ni / Au 50/200 is formed and annealed.
  • step S16 for example, Pt / Au (2000 mm / 2 ⁇ m) is formed as the bonding layer 26 (FIG. 2D).
  • the conductive bonding layer 31 is formed on one main surface of the support substrate 30 prepared separately from the above structure (FIG. 2 (e)).
  • any substrate having sufficient mechanical strength and high thermal conductivity can be used, and its electrical conductivity is also arbitrary.
  • a single crystal silicon (Si) substrate which is a kind of semiconductor substrate can be used.
  • the conductive bonding layer 31 is formed of a conductive material that can be bonded to the bonding layer 24 and the bonding layer 26 by thermocompression bonding.
  • Ti / Pt / Au / Sn / Au 100 mm / 2000 mm / 1000 mm / as the bonding layer). (2000 mm / 1 ⁇ m) is formed.
  • step S18 the compound semiconductor layer 15, the columnar object 21, and the support substrate 30 are joined (FIG. 2 (f)).
  • the structure of FIG. 2 (d) and the structure of FIG. 2 (e) are heated so that the conductive bonding layer 31 and the bonding layers 24 and 26 are in direct contact with each other.
  • Pressure bonding For example, the bonding condition is that a load of 12 kN is applied and thermocompression bonding is performed in a vacuum atmosphere at 300 ° C. for 60 minutes.
  • the stacked body 15 a and the columnar object 21 are bonded to the support substrate 30 through the p-side electrode 25 and the bonding layer 26, the sacrificial layer 23 and the bonding layer 24, and the conductive bonding layer 31.
  • step S19 the lift-off layer (metal buffer layer) 12 is removed and the growth substrate 11 is peeled off.
  • This peeling process includes a lift-off process (step S191) and a sacrificial layer etching process (step S192).
  • step S191 the joining of the columnar objects 21 is maintained (FIG. 2 (g)).
  • the lift-off layer (metal buffer layer) 12 is dissolved by, for example, immersing the bonded substrate 40 in hydrochloric acid and performing chemical etching (FIG. 2G).
  • the sacrificial layer etching step (step S192) for example, the sacrificial layer 23 is dissolved by performing chemical etching using a Cr selective etching solution (cerium ammonium nitrate), and the sapphire substrate 11 is peeled off.
  • step S191 of the peeling process since the joining of the columnar objects 21 is maintained, the stress applied to the compound semiconductor layer 15a is relaxed and cracks are not generated, so that the compound semiconductor layer is separated from the sapphire substrate 11. (Element region) 15a can be peeled off.
  • a high-quality LED semiconductor element having no cracks can be finally manufactured through an n-side electrode forming step (step S20) and a wire bonding step.
  • FIG. 3 is a flowchart showing a process of manufacturing a semiconductor device by the method of manufacturing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the substrate in each step of the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • the columnar material is formed by not providing a lift-off layer on the growth substrate.
  • a columnar thing is formed with a metal or resin.
  • the columnar body is formed of a metal or a resin that is not chemically etched in the lift-off process.
  • the semiconductor device manufacturing method includes a compound semiconductor layer forming step (step S31), an element region forming step (step S32), a columnar material forming step (step S33), and a sacrificial layer forming step (step).
  • step S34 includes p-side electrode forming step (step S35), bonding layer forming step (step S36), support substrate pre-bonding step (step S37), bonding step (step S38), and peeling step (step S39).
  • the peeling step (step S39) is performed from the lift-off step (step S391) and the sacrificial layer etching step (step S392).
  • step S391 of the peeling process step S39
  • the columnar objects are joined. It is equity. That is, in the lift-off process (step S391), the bottom surface of the semiconductor layer and the growth substrate are separated by removing the lift-off layer, and the columnar object and the growth substrate are not separated.
  • step S31 a lift-off layer (metal buffer layer) and a compound semiconductor layer on the lift-off layer are formed on the growth substrate (FIG. 4A). Since this process is the same as step S11 in the first embodiment, a description thereof will be omitted.
  • step S32 At least a part of the compound semiconductor layer (laminated body) 15 is removed by etching to form the element region and the isolation groove 50 (FIG. 4B). Since this step is the same as step S12 of the first embodiment except that no core is formed around the element region, description thereof will be omitted.
  • a columnar object 51 having substantially the same height as the element region is formed around a part of the element region of the separation groove region 50.
  • a seed layer 52 is formed in a part of the region of the separation groove, and a support 53 is formed by Ni plating or the like.
  • a columnar object 51 is formed by the seed layer 52 and the column 53 (FIG. 4C).
  • pillar 53 can also be formed using the resist which is not etched by the metal etching liquid used at a next process instead of Ni plating.
  • step S34 Cr / Pt / Au (250 mm / 2000 mm / 1 ⁇ m) is formed as the sacrificial layer 23 and the bonding layer 24 on the columnar body 51 (FIG. 4D). This process is the same as step S14 of the first embodiment.
  • the p-side electrode forming step (step S35) is the same step as step S15 of the first embodiment, and the p-type layer 14 is formed on the entire surface of the p-type layer 14 existing on the uppermost surface with the p-type layer 14 and ohmic.
  • a material capable of having sexual contact is formed. For example, Ni / Au (50/200) is formed and annealed.
  • step S36 Pt / Au (2000 mm / 2 ⁇ m) is formed as the bonding layer 26 as in step S16 of the first embodiment (FIG. 4E).
  • the conductive bonding layer 31 is formed on one main surface of the support substrate 30 prepared separately from the above structure. Note that, after this step, operations similar to those in steps S17 to S21 in the first embodiment are performed, and thus a cross-sectional view and a specific description are omitted.
  • step S38 the compound semiconductor layer 15, the columnar object 51, and the support substrate 30 are joined.
  • step S39 the lift-off layer (metal buffer layer) 12 is removed and the growth substrate 11 is peeled off.
  • This peeling process includes a lift-off process (step S391) and a sacrificial layer etching process (step S392). In the lift-off process (step S391), the joining of the columnar objects 51 is maintained.
  • step S391 the lift-off layer (metal buffer layer) 12 is dissolved by immersing the bonded substrate 40 in hydrochloric acid and performing chemical etching.
  • step S392 the sacrificial layer etching step (step S392), for example, the sacrificial layer 23 is dissolved by performing chemical etching using a Cr selective etching solution (cerium ammonium nitrate), and the sapphire substrate 11 is peeled off.
  • a Cr selective etching solution cerium ammonium nitrate
  • step S391 of the peeling process since the joining of the columnar objects 51 is maintained, the stress applied to the compound semiconductor layer 15a is relaxed and cracks are not generated, so that the compound semiconductor layer is separated from the sapphire substrate 11. (Element region) 15a can be peeled off.
  • FIG. 5 is a flowchart showing a process of manufacturing a semiconductor device by the method of manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the substrate in each step of the method for manufacturing a semiconductor device according to the third embodiment of the present invention.
  • a step of forming the metal buffer layer and a step of removing the metal buffer layer in the region where the columnar object (core part) is provided are provided, and then the compound semiconductor layer is formed. It has the process.
  • the semiconductor device manufacturing method includes a compound semiconductor layer forming step (Step S51), an element region forming step (Step S52), a sacrificial layer forming step (Step S53), and a p-side electrode forming step (Step S51).
  • Step S54 bonding layer forming step (Step S55), supporting substrate bonding step (Step S56), bonding step (Step S57), peeling step (Step S58), n-side electrode forming step (Step S59) ) And a wire bonding process (step S60), and the peeling process (step S58) includes a lift-off process (step S581) and a sacrificial layer etching process (step S582), and lift-off of the peeling process (step S58). In the process (step S581), the joining of the columnar objects is maintained.
  • step S191 the bottom surface of the semiconductor layer and the growth substrate are separated by removing the lift-off layer, and the columnar object and the growth substrate are not separated.
  • step S51 the metal buffer layer forming step (step S511), the step of removing the metal buffer layer in the region where the columnar body (core part) is formed (step S512), the compound semiconductor layer It has a deposition process (step S513).
  • a selectively formed metal buffer layer is used.
  • a step of forming a metal buffer layer (step S511) is performed.
  • a lift-off layer (metal buffer layer) is formed on the growth substrate.
  • the metal buffer layer 12 is formed on the growth substrate 11.
  • a sapphire single crystal ((0001) substrate) is particularly preferably used.
  • scandium (Sc) having a thickness of about 100 mm can be used.
  • the metal buffer layer 12 can be formed by sputtering, vacuum deposition, or the like.
  • step S512 of removing the metal buffer layer in the region for forming the next columnar body (core part) is executed.
  • a region 12b where the metal buffer layer is deposited on the growth substrate 11 and a region 60 where the metal buffer layer is not deposited are provided.
  • a lift-off method or an etching method using a resist or the like as a mask can be used.
  • a nitriding treatment for example, a step of raising the temperature to 1040 ° C. or higher in an ammonia atmosphere is performed.
  • the surface of the metal buffer layer (metal layer: Sc layer) 12 is nitrided to become a scandium nitride layer (metal nitride layer: ScN layer) 12s.
  • the thickness of the ScN layer 12s can be set by adjusting the processing time, temperature, and the like.
  • an n-type nitride semiconductor layer (n-type semiconductor layer: n-type layer) is formed on the region 12b where the Sc metal buffer layer 12 having the ScN layer 12s is deposited and the region 60 where it is not deposited. 13)
  • a p-type nitride semiconductor layer (p-type semiconductor layer: p-type layer) 14 is sequentially formed (epitaxial growth step). This film formation is performed, for example, by metal organic chemical vapor deposition (MOCVD), and the n-type layer 13 is doped with an impurity serving as a donor, and the p-type layer 14 is doped with an impurity serving as an acceptor.
  • MOCVD metal organic chemical vapor deposition
  • a stacked body 15 including an n-type layer 13 and a p-type layer 14 is formed, and a pn junction of a nitride semiconductor is formed therein, which becomes a light emitting layer 16.
  • the n-type layer 13 and the p-type layer 14 with few crystal defects can be grown. Therefore, the quality of the nitride semiconductor in the stacked body 15 can be improved, and the emission intensity can be increased.
  • step S52 At least a part of the compound semiconductor layer (laminated body) 15 is removed by etching to form an element region and a separation groove 61 (FIG. 6B).
  • the element region is formed, it is formed leaving the columnar body (core part) 62 for joining the growth substrate 11 and the support substrate.
  • This columnar body (core part) 62 is formed from a compound semiconductor layer (laminated body) deposited in a region 60 where no metal buffer layer is deposited.
  • the separation groove 61 is formed as follows. A SiO 2 film is formed on the compound semiconductor layer 15 by CVD, patterned using a resist, and etched with BHF to form a SiO 2 mask. Thereafter, dry etching of the compound semiconductor layer is performed using SiO 2 as a mask until the sapphire substrate is exposed. Thereafter, the SiO 2 mask is removed using BHF.
  • step S53 Cr / Pt / Au (250 ⁇ / 2000 ⁇ / 1 ⁇ m) is formed as the sacrificial layer 23 and the bonding layer 24 on the columnar body (core portion) 62 (FIG. 6D). ). This process is the same as step S14 of the first embodiment.
  • the p-side electrode forming step (step S54) is the same step as step S15 of the first embodiment, and the p-type layer 14 is formed on the entire surface of the p-type layer 14 existing on the uppermost surface as the p-side electrode 25.
  • a material capable of having sexual contact is formed. For example, Ni / Au (50/200) is formed and annealed.
  • step S55 Pt / Au (2000 mm / 2 ⁇ m) is formed as the bonding layer 26 as in step S16 of the first embodiment (FIG. 6E).
  • the conductive bonding layer 31 is formed on one main surface of the support substrate 30 prepared separately from the above structure. Note that, after this step, operations similar to those in steps S17 to S21 in the first embodiment are performed, and thus a cross-sectional view and a specific description are omitted.
  • step S57 the compound semiconductor layer 15, the columnar object 62, and the support substrate 30 are joined.
  • step S58 the lift-off layer (metal buffer layer) 12 is removed and the growth substrate 11 is peeled off.
  • This peeling process includes a lift-off process (step S581) and a sacrificial layer etching process (step S582).
  • step S581 the joining of the columnar object (core part) 62 is maintained.
  • the metal buffer layer 12 is dissolved by immersing the bonded substrate 40 in hydrochloric acid and performing chemical etching.
  • the sacrificial layer etching step for example, the sacrificial layer 23 is dissolved by performing chemical etching using a Cr selective etching solution (cerium ammonium nitrate), and the sapphire substrate 11 is peeled off.
  • step S581 of the peeling process since the bonding of the columnar body (core part) 62 is maintained, the stress applied to the compound semiconductor layer 15a is relieved and cracks are not generated, so that the sapphire substrate 11 The compound semiconductor layer (element region) 15a can be peeled off.
  • FIG. 7 is a process cross-sectional view showing the manufacturing process in this case.
  • FIGS. 7A to 7E correspond to FIGS. 6A to 6E, and only the positional relationship between the pattern of the Sc layer 12b and the columnar object 62 is different.
  • step S512 instead of the step (step S512) of removing the metal buffer layer in the region where the columnar body (core portion) is to be formed in FIG.
  • step Sc layer 12 The step of leaving the metal buffer layer (Sc layer 12) and removing the metal buffer layer in regions other than these is performed.
  • the columnar object 62 is formed by etching.
  • the Sc layer 12 (12 b) is not formed at the place where the columnar object 62 is formed, but here, the Sc layer 12 (12 b) is formed inside the columnar object 62. ) Is formed.
  • the Sc layer 12 inside the columnar body 62 is set not to be exposed from the n-type layer 13. Setting the columnar body 62 and the Sc layer 12 in this way can be performed in the same manner as in FIG.
  • the Sc layer 12 inside the columnar body 62 is not exposed from the n-type layer 13, the Sc layer 12 in the columnar body 62 is not etched even in the lift-off process, and the columnar body 62 and the growth substrate 11 are not etched. The connection between is maintained. For this reason, subsequent processes can be performed similarly to the manufacturing method of FIG. In this case, compared with the manufacturing method of FIG. 6, in the state of FIG. 7C, the height in the element region and the height of the columnar portion 62 are equal. For this reason, these height adjustments which are important in the joining process are particularly easy. Further, the Sc layer 12 inside the columnar object 62 can also be used as an alignment mark during lithography or bonding.
  • FIG. 8 is a flowchart showing a process of manufacturing a semiconductor device by the method of manufacturing a semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the substrate in each step of the method of manufacturing a semiconductor device according to the fourth embodiment of the present invention.
  • a sacrificial layer is formed on a support substrate, and a columnar object is formed on the basis of the sacrificial layer. And preferably a columnar thing is formed with a metal. Further, preferably, the columnar body is formed of a metal that is not chemically etched.
  • the method for manufacturing a semiconductor device includes a compound semiconductor layer forming step (step S71), an element region forming step (step S72), a p-side electrode forming step (step S73), and a bonding layer forming step ( Step S74), pre-support substrate bonding step (Step S75), bonding step (Step S76), peeling step (Step S77), n-side electrode forming step (Step S78), and wire bonding step (Step S79) And have.
  • the supporting substrate bonding step (step S75) includes a sacrificial layer forming step (step S751), a columnar object forming step (step S752), and a bonding layer forming step (step S753).
  • the peeling process (step S77) includes a lift-off process (step S771) and a sacrificial layer etching process (step S772).
  • step S771 of the peeling process (step S77) the joining of the columnar objects is maintained. Is done. That is, in the lift-off process (step S771), the bottom surface of the semiconductor layer and the growth substrate are separated by removing the lift-off layer, and the columnar object and the growth substrate are not separated.
  • step S71 a lift-off layer (metal buffer layer) and a compound semiconductor layer on the lift-off layer are formed on the growth substrate 11. Since this process is the same as step S11 in the first embodiment, a description thereof will be omitted.
  • step S72 At least a part of the compound semiconductor layer (laminated body) 15 is removed by etching to form the element region and the separation groove 50. Since this step is the same as step S12 of the first embodiment except that no core is formed around the element region, description thereof will be omitted.
  • the p-side electrode forming step (step S73) is the same step as step S15 of the first embodiment, and the p-type layer 14 is formed on the entire surface of the p-type layer 14 existing on the uppermost surface as the p-side electrode 25.
  • a material capable of having sexual contact is formed. For example, Ni / Au (50/200) is formed and annealed.
  • step S74 Pt / Au (2000 mm / 2 ⁇ m) is formed as the bonding layer 80 as in step S16 of the first embodiment (FIG. 9B).
  • a sacrificial layer forming step (step S751) is executed.
  • Cr 250 ⁇
  • FIG. 9A the support substrate 30 is shown downward.
  • a columnar object 82 having substantially the same height as the element region formed on the growth substrate 11 is formed on the basis of the sacrificial layer 81 formed on the support substrate 30.
  • a seed layer 82a is formed on the basis of the sacrificial layer 81, and a support 82b is formed by Ni plating or the like.
  • a columnar object 82 is formed by the seed layer 82a and the column 82b (FIG. 9A).
  • pillar 82b can also be formed using the resist which is not etched by the etching liquid used at a next process instead of Ni plating.
  • step S753 Pt / Au (2000 mm / 2 ⁇ m) is formed as the bonding layer 83 on the support substrate 30 and the columnar object 82 (FIG. 9A).
  • step S76 the compound semiconductor layer 15 and the support substrate 30 are joined by joining the joining layer 80 shown in FIG. 9B and the joining layer 83 shown in FIG. 82 and the growth substrate 11 are joined (FIG. 9C).
  • step S77 the lift-off layer (metal buffer layer) 12 is removed and the growth substrate 11 is peeled off.
  • This peeling process includes a lift-off process (step S771) and a sacrificial layer etching process (step S772).
  • step S771 the joining of the columnar objects 82 is maintained (FIG. 9 (d)).
  • the metal buffer layer 12 is dissolved by immersing the bonded substrate 40 in hydrochloric acid and performing chemical etching.
  • the sacrificial layer etching step for example, the sacrificial layer 81 is dissolved by performing chemical etching using a Cr selective etching solution (cerium ammonium nitrate), and the sapphire substrate 11 is peeled off.
  • step S771 of the peeling process since the joining of the columnar objects 82 is maintained, the stress applied to the compound semiconductor layer (element region) 15a is relaxed so that cracks do not occur, and the sapphire substrate 11 The compound semiconductor layer (element region) 15a can be peeled off.
  • sapphire is used as the growth substrate 11.
  • a group III nitride such as high-quality GaN or AlGaN is provided via the buffer layer 12 or the like.
  • Other materials such as an AlN template or SiC can be used as long as they can grow semiconductors (n-type layer 13 and p-type layer 14).
  • the support substrate 30 any material other than silicon can be used.
  • the support substrate 30 serves as a mechanical support substrate for the manufactured LED and at the same time serves as a heat dissipation substrate, it preferably has high mechanical strength and high thermal conductivity.
  • the material of the support substrate 30 can be selected from a wide range of materials, and various insulating substrates, metal substrates, and semiconductor substrates can be used. A metal ceramic bonded substrate in which metal wiring is previously formed on an insulating ceramic substrate having high mechanical strength and thermal conductivity can also be used.
  • the stacked body is composed of the n-type layer 13 and the p-type layer 14 both made of a nitride semiconductor.
  • an LED or LD laser diode
  • the n-type layer 13 is formed on the growth substrate 11, the active layer is formed thereon, and then the p-type layer 14 is formed.
  • the columnar object in the above embodiment temporarily plays the role of a column between the floor and the ceiling, and is limited to a substantially cylindrical or polygonal column.
  • various forms are possible for the shape, size, and arrangement relationship.
  • the one that completely blocks the path through which the chemical etching solution can reach the lift-off layer such as a wall that surrounds four sides, is used. Should not. In order to disperse the stress evenly with respect to the shape of the part to be lifted off, it is a preferable form that the arrangement is regular.
  • the columnar object in the above embodiment needs to be peeled off after lift-off.
  • it is preferable to provide a sacrificial layer on a part of the columnar material but it is also preferable that the columnar material itself has the function of the sacrificial layer.
  • the separation part of the columnar object is on the support substrate side in order to avoid an adverse effect when the elements are individually separated, but the separation part is on the growth substrate side.
  • the location is arbitrary. For the purpose of reusing the substrate, both sides of the pillar may be peeled off.
  • the sacrificial layer in the above embodiment is not peeled off when the lift-off layer is lifted off, but may be any layer that can be separated without adversely affecting the element and the bonding layer in the subsequent sacrificial layer etching step.
  • different selective etching solutions may be used for the metal buffer layer and the sacrificial layer, which are lift-off layers.
  • the metal buffer layer for example, Sc, Cr, Zr, Hf, etc. (and their nitrides) can be selected.
  • the sacrificial layer is made of a material other than that selected in the metal buffer layer, and for example, a metal such as Cr, Ni, Ti, a resin, an adhesive, or the like can be selected.
  • the method for separating the sacrificial layer is not limited to etching, and heat, light, a mechanical method, or the like may be used.
  • the bonding layer may be made of a material other than those selected above.
  • a noble metal such as Pt or Au can be used. There are various combinations of these depending on the type of the lift-off layer, the type of the selective etching solution, and the separation method.
  • the first to fourth embodiments it is relatively preferable to have a core portion made of the same material as the semiconductor layer, like the first and third columnar objects.
  • the second and fourth which use a columnar material made of a material different from that of the semiconductor layer, the quality control becomes easier with respect to the accuracy of matching the height with the semiconductor layer, which is necessary when joining the support substrate. is there.
  • Example 1-1 Actually, the compound semiconductor layer was formed in the step exemplified in the first embodiment, and the sapphire substrate was peeled off. On the sapphire single crystal substrate (0001) surface, scandium (Sc) having a thickness of 100 mm was formed as a metal buffer layer by a sputtering method. Next, nitriding treatment was performed at 1200 ° C. for 10 minutes in an ammonia atmosphere, the metal buffer layer was nitrided, and a scandium nitride layer (ScN layer) was formed.
  • Sc scandium nitride layer
  • Non-doped AlGaN, Si-doped n-type AlGaN layer (1.5 ⁇ m), MQW active layer (0.1 ⁇ m), and Mg-doped p-type AlGaN layer (0.3 ⁇ m) are sequentially formed on the ScN layer by MOCVD.
  • a film was formed.
  • a SiO 2 film is formed on the p-type AlGaN layer by CVD, patterned using a resist, etched with BHF to form a SiO 2 mask, a compound semiconductor layer is dry etched, and the sapphire substrate is exposed.
  • SiO 2 (1 ⁇ m) was formed by CVD so as to cover the entire core.
  • Cr 250 mm
  • Pt / Au 2000 mm / 1 ⁇ m
  • Ni / Au 50/200 mm
  • Pt / Au 2000 mm / 2 ⁇ m
  • a p-type single crystal silicon (Si) substrate was used as the support substrate 30, and Ti / Pt / Au / Sn / Au (100 ⁇ / 2000 ⁇ / 1000 ⁇ / 2000 ⁇ / 1 ⁇ m) was formed as a bonding layer on the support substrate side.
  • the bonding layer on the element region and the columnar object side and the bonding layer on the support substrate side were thermocompression bonded in a vacuum atmosphere at 300 ° C. for 60 minutes by applying a load of 12 kN.
  • the bonded substrates were immersed in hydrochloric acid for 24 hours to dissolve Sc and ScN and perform chemical lift-off. Thereafter, the sacrificial layer was dissolved using a Cr selective etching solution (cerium ammonium nitrate), and the sapphire substrate was peeled off.
  • a Cr selective etching solution cerium ammonium nitrate
  • the quality of the compound semiconductor layer after sapphire substrate peeling was compared with the conventional manufacturing method by surface observation with an optical microscope.
  • FIG. 10A is a view showing a support substrate and a compound semiconductor layer in which a core portion is not formed and a sapphire substrate is peeled off without providing a columnar object
  • FIG. 10B is a columnar shape of Example 1. It is a figure which shows the support substrate and compound semiconductor layer which provided the thing, peeled the sapphire substrate, and isolate
  • a columnar columnar column having a diameter of about 90 ⁇ m was arranged at the position of the apex of a square having a side of 850 ⁇ m so as to surround a circular semiconductor layer having a diameter of 850 ⁇ m, which is equal to the semiconductor layer of each element.
  • Cross sections for one element viewed from the diagonal side of the quadrangle are illustrated in the cross-sectional views of the first to fourth embodiments.
  • Reference numeral 70 in FIG. 10 indicates a support substrate
  • reference numeral 71 indicates a compound semiconductor layer according to a conventional method
  • reference numeral 72 indicates a compound semiconductor layer according to the present invention.
  • symbol 73 of FIG.10 (b) shows the trace (surface by the side of the sacrificial layer 23 of the joining layer 24) which peeled the columnar thing.
  • FIG. 10 (a) and an electron micrograph (FIG. 10 (c)) in the conventional manufacturing method, it is confirmed that a crack occurs in the central portion of the compound semiconductor layer after the sapphire substrate is peeled off. SEM was observed. In the minute region that is etched from the outer periphery of the compound semiconductor layer and remains in the center immediately before the sapphire substrate is peeled off, stress concentration occurs between the substrate, the compound semiconductor layer, and the support substrate. It is thought that cracks were observed. However, as can be seen from FIG.
  • the compound semiconductor layer is not cracked in the manufacturing method of the present invention.
  • no cracks such as those shown in FIG. Therefore, it was confirmed that no cracks were generated when the sapphire substrate was peeled off in the examples, and it was found that cracks at locations where stress is concentrated can be suppressed by the progress of etching of the compound semiconductor layer that is lifted off by etching the lift-off layer from the periphery. .
  • Example 1-2 In the process illustrated in the first embodiment, when the sacrificial layer and the bonding layer also serve as a protective layer, the protective layer forming process is omitted, and Cr (250 mm) is formed as the sacrificial layer so as to cover the entire core portion.
  • the same procedure as in Example 1 was performed except that Pt / Au (2000 ⁇ / 1 ⁇ m) was formed as the layer and the bonding layer in the element region was Pt / Au (2000 ⁇ / 1 um).
  • the same results as in FIG. 10B were obtained, and no cracks occurred in the compound semiconductor layer.
  • Example 2 As in the process exemplified in the second embodiment, the core is not formed, the seed layer is Pt / Au / Pt / Pd (500 mm / 7500 mm / 500 mm / 500 mm), and the columnar material is Ni-plated with a thickness of 3 ⁇ m. This was performed in the same manner as in Example 1 except that the columnar material and the element region bonding layer were made of Pt / Au (2000 mm / 1 ⁇ m). The same results as in FIG. 10B were obtained, and no cracks occurred in the compound semiconductor layer.
  • Example 3 As in the process illustrated in the third embodiment, the metal buffer layer serving as the position of the core is removed by etching after forming a resist mask, and the bonding layer between the pillar and the element region is formed by Pt without forming a protective film. This was performed in the same manner as in Example 1 except that / Au (2000 mm / 1 ⁇ m) was used. The same results as in FIG. 10B were obtained, and no cracks occurred in the compound semiconductor layer.
  • Example 4 Moreover, it carried out similarly to Example 2 except having formed the columnar object through the peeling layer on the support substrate side like the process illustrated in Embodiment 4th. The trace which peeled off the columnar thing like the code
  • Example 1 the non-doped AlGaN layer of the separated compound semiconductor layer was removed by dry etching, Ti / Al was formed on the exposed n-type AlGaN layer, and IV Measurements were made.
  • Vr reverse voltage
  • the voltage of Example 1 was 10 V or higher, while that of Comparative Example 1 was as low as about 6 V. It is thought that the leakage current increased due to the occurrence of cracks. Therefore, it was found that an element with little leakage current can be obtained by the present invention.
  • the semiconductor element and the method for manufacturing the semiconductor element according to the present invention are used for a semiconductor element such as an LED optical system element and a method for manufacturing the semiconductor element.
  • Growth substrate 12 Lift-off layer (metal buffer layer) (metal layer: Sc layer) 13 n-type nitride semiconductor layer (n-type semiconductor layer: n-type layer) 14 p-type nitride semiconductor layer (p-type semiconductor layer: p-type layer) 15 Compound semiconductor layer (laminated body) 15a element region 16 light emitting layer 20 separation groove 21 columnar object 22 protective film 23 sacrificial layer 24 bonding layer 25 p-type electrode 26 bonding layer 30 support substrate 31 conductive bonding layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Led Devices (AREA)
  • Weting (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 リフトオフ時に化合物半導体層の内部応力による化合物半導体層の割れが生じない半導体素子と半導体素子の製造方法を提供する。 半導体素子の製造方法は、支持基板30上に半導体層が接合された構成を具備する半導体素子の製造方法であって、成長基板11上にリフトオフ層12を介して、半導体層からなる素子領域15aを形成する素子領域形成工程と、成長基板上に、柱状物21を形成する柱状物形成工程と、支持基板に、半導体層及び柱状物の上部を接合する接合工程と、リフトオフ層を除去することにより半導体層の下面と成長基板とを分離し、かつ柱状物と成長基板とを分離しないリフトオフ工程と、柱状物と支持基板とを分離する工程と、を具備する。

Description

半導体素子と半導体素子の製造方法
 本発明は、半導体素子と半導体素子の製造方法に関し、特に、支持基板上に化合物半導体層が形成された構成をもつ半導体素子と半導体素子の製造方法に関するものである。
 化合物半導体であるIII族窒化物半導体は、そのバンドギャップが広いために、青色、緑色等のLED(発光ダイオード)、LD(レーザーダイオード)等の発光素子の材料として広く用いられている。こうした発光素子においては、p型の半導体層(p型層)とn型の半導体層(n型層)とがエピタキシャル成長によって積層されて構成される。
 良質かつ低コストでこの構造を製造するためには、III族窒化物半導体以外の材料からなる成長基板上にp型層とn型層をエピタキシャル成長することによって得ることが一般的に行われている。この場合、特に良質の半導体層を得るためには、使用できる成長基板の材料は限られる。例えば、III族窒化物半導体の代表である窒化ガリウム(GaN)は、MOCVD(有機金属気相成長)法やHVPE(ハイドライド気相成長)等によって、SiC、サファイア等からなる成長基板上に成長させることができる。
 しかしながら、サファイアは絶縁体であるため、その上に積層される半導体層の上面に2つの電気接触部を設ける必要があり、導電体基板に比べて同一基板面積における有効発光面積を狭めるとともに、同一面に両電極を有するため、電流密度が局部的に高くなり、発熱に起因して素子の劣化を招くという問題があった。
 そこで、リフトオフ技術を利用した発光素子の製造方法が開示されている(例えば、特許文献1参照)。この製造方法においては、サファイア基板上にn型層、p型層、p側電極を順次形成した後で、p側電極側に導電性の基板を支持基板として新たに接合する。
特開2007-234671号公報
 しかしながら、リフトオフ技術によれば、サファイアを成長基板から化合物半導体層を剥離するときにリフトオフ層をエッチング液等により、周辺からエッチングしていく必要があるため、徐々にリフトオフ層と化合物半導体層が剥離していくため、成長時に成長基板と化合物半導体層の熱膨張係数の違いにより生じている内部応力により、化合物半導体層に割れが生じてしまう可能性があるという問題点がある。
 本発明の目的は、上記の課題に鑑み、リフトオフ時に化合物半導体層の内部応力による化合物半導体層の割れが生じない半導体素子と半導体素子の製造方法を提供することにある。
 本発明に係る半導体素子と半導体素子の製造方法は、上記の目的を達成するため、次のように構成される。
 第1の半導体素子の製造方法は、支持基板上に半導体層が接合された構成を具備する半導体素子の製造方法であって、成長基板上にリフトオフ層を介して、半導体層からなる素子領域を形成する素子領域形成工程と、成長基板上に、柱状物を形成する柱状物形成工程と、支持基板に、半導体層及び柱状物の上部を接合する接合工程と、リフトオフ層を除去することにより半導体層の下面と成長基板とを分離し、かつ柱状物と成長基板とを分離しないリフトオフ工程と、柱状物と支持基板とを分離する工程と、を具備することを特徴とする。
 第2の半導体素子の製造方法は、上記の方法において、好ましくは、柱状物形成工程は、柱状物の一部に犠牲層を形成する犠牲層形成工程を備え、柱状物と支持基板とを分離する工程では、犠牲層を除去することを特徴とする。
 第3の半導体素子の製造方法は、上記の方法において、好ましくは、柱状物は、半導体層と同じ材料から構成された核部を具備することを特徴とする。
 第4の半導体素子の製造方法は、上記の方法において、好ましくは、素子領域形成工程において、半導体層を構成する材料をリフトオフ層を介して成長基板上に形成した後に、エッチングを施すことにより、素子領域と核部を形成し、柱状物形成工程において、リフトオフ工程において除去されない保護層を核部側面に形成することを特徴とする。
 第5の半導体素子の製造方法は、上記の方法において、好ましくは、成長基板上にリフトオフ層を形成する工程において、柱状物を形成すべき領域におけるリフトオフ層を除去する工程を有し、半導体層を構成する材料をリフトオフ層を介して成長基板上に形成すると共に部分的にリフトオフ層を介さずに形成した後に、エッチングを施し、素子領域とリフトオフ工程においてリフトオフされない核部とを同時に形成することを特徴とする。
 第6の半導体素子の製造方法は、上記の方法において、好ましくは、成長基板上にリフトオフ層を形成する工程において、素子領域と、柱状物を形成すべき領域の内部となる領域においてリフトオフ層を選択的に形成する工程を有し、半導体層を構成する材料をリフトオフ層を介して成長基板上に形成すると共に部分的にリフトオフ層を介さずに形成した後に、エッチングを施し、素子領域とリフトオフ工程においてリフトオフされない核部とを同時に形成することを特徴とする。
 第7の半導体素子の製造方法は、支持基板上に半導体層が接合された構成を具備する半導体素子の製造方法であって、成長基板上にリフトオフ層を介して、半導体層からなる素子領域を形成する素子領域形成工程と、支持基板上に、柱状物を形成する柱状物形成工程と、支持基板に半導体層を接合し、成長基板に柱状物を接合する接合工程と、リフトオフ層を除去することにより半導体層の下面と成長基板とを分離し、かつ柱状物と成長基板とを分離しないリフトオフ工程と、柱状物と支持基板とを分離する工程と、を具備することを特徴とする。
 第8の半導体素子の製造方法は、上記の方法において、好ましくは、柱状物形成工程は、支持基板上に犠牲層を形成する犠牲層形成工程を備え、柱状物と支持基板とを分離する工程では、犠牲層を除去することを特徴とする。
 第9の半導体素子の製造方法は、上記の方法において、好ましくは、半導体層は、成長基板側にn型層、当該n型層上に形成されたp型層を具備することを特徴とする。
 第10の半導体素子の製造方法は、上記の方法において、好ましくは接合工程前において、素子領域における半導体層の表面、及び支持基板の表面に、それぞれ導電性材料を形成することを特徴とする。
 第11の半導体素子の製造方法は、上記の方法において、好ましくはn型層に接合するn型電極を形成し、p型層に接合するp型電極を形成し、n型電極とp型電極との間に10ボルトの逆方向電圧を印加したときのリーク電流が10μA以下であることを特徴とする。
 第1の半導体素子は、上記第1~第10の半導体素子の製造方法によって製造されたことを特徴とする。
 本発明によれば、リフトオフ時に化合物半導体層の内部応力による化合物半導体層の割れが生じない半導体素子と半導体素子の製造方法を提供することができる。
本発明の第1実施形態に係る半導体素子の製造方法により半導体素子を製造する工程を示すフローチャートである。 本発明の第1実施形態に係る半導体素子の製造方法の各工程での、1素子分の基板の断面図である。 本発明の第2実施形態に係る半導体装置の製造方法により半導体装置を製造する工程を示すフローチャートである。 本発明の第2実施形態に係る半導体装置の製造方法の各工程での、1素子分の基板の断面図である。 本発明の第3実施形態に係る半導体装置の製造方法により半導体装置を製造する工程を示すフローチャートである。 本発明の第3実施形態に係る半導体装置の製造方法の各工程での、1素子分の基板の断面図である。 本発明の第3実施形態に係る半導体装置の製造方法の変形例の各工程での、1素子分の基板の断面図である。 本発明の第4実施形態に係る半導体装置の製造方法により半導体装置を製造する工程を示すフローチャートである。 本発明の第4実施形態に係る半導体装置の製造方法の各工程での、1素子分の基板の断面図である。 サファイア基板剥離後の化合物半導体層の様子を示す図であり、(a)は、従来の製造方法によるものであり、(b)は、本発明の製造方法によるものである。(c)は、電子顕微鏡写真である。
 以下に、本発明の好適な実施形態(実施例)を添付図面に基づいて説明する。
 以下、本発明の第1実施形態に係る半導体素子の製造方法について説明する。この半導体素子において用いられるn型、p型の半導体層は、成長基板上にエピタキシャル成長することによって得られる。ただし、実際に製造される半導体素子においては、この成長基板は除去され、成長基板があった側と反対側に成長基板とは異なる支持基板が接続される。
 図1は、本発明の第1実施形態に係る半導体素子の製造方法により半導体素子を製造する工程を示すフローチャートである。図2は、本発明の第1実施形態に係る半導体素子の製造方法の各工程での基板の断面図である。ここでは、この半導体素子として、窒化物半導体を材料とする発光ダイオード(LED)を製造する場合につき説明する。窒化物半導体は、例えば、AlInGaN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)の式で表される半導体である。このLEDは、窒化物半導体のn型層とp型層の積層体における発光を用いている。また、図2においてはLEDの1素子分だけの構成が示されているが、実際には、単一の支持基板上に複数のLEDを形成することができ、基板上に複数の素子を形成後にこれらを個々の素子に分離、あるいは、これらを直列あるいは並列に接続して使用することができる。
 第1実施形態に係る半導体素子の製造方法は、化合物半導体層形成工程(ステップS11)と、素子領域形成工程(ステップS12)と、柱状物形成工程(ステップS13)と、犠牲層形成工程(ステップS14)と、p側電極形成工程(ステップS15)と、接合層形成工程(ステップS16)と、支持基板接合前工程(ステップS17)と、接合工程(ステップS18)と、剥離工程(ステップS19)と、n側電極形成工程(ステップS20)と、ワイヤボンディング工程(ステップS21)と、を有し、剥離工程(ステップS19)は、リフトオフ工程(ステップS191)と犠牲層エッチング工程(ステップS192)からなり、剥離工程(ステップS19)のリフトオフ工程(ステップS191)においては、柱状物の接合が維持される。すなわち、リフトオフ工程(ステップS191)においては、リフトオフ層を除去することにより半導体層の下面と成長基板とを分離し、かつ柱状物と成長基板とを分離しない。
 化合物半導体層形成工程(ステップS11)では、成長基板上に、リフトオフ層(金属バッファ層)と、リフトオフ層上の化合物半導体層を形成する。まず、図2(a)に示されるように、成長基板11上に、金属バッファ層12を形成する。成長基板11としては、サファイア単結晶((0001)基板)が特に好ましく用いられる。また、この上の金属バッファ層12としては、例えば100Å程度の膜厚のスカンジウム(Sc)を用いることができる。金属バッファ層12の成膜は、スパッタリング法、真空蒸着法等により行うことができる。
 次に、この状態で窒化処理、例えばアンモニア雰囲気で1040℃以上の高温とする工程を行なう。これにより、金属バッファ層(金属層:Sc層)12表面は窒化され、窒化スカンジウム層(金属窒化物層:ScN層)12sとなる。このScN層12sの厚さは、処理時間、温度等の調整によって設定することが可能である。
 次に、ScN層12sを持つSc金属バッファ層12上に、n型窒化物半導体層(n型半導体層:n型層)13、p型窒化物半導体層(p型半導体層:p型層)14を順次成膜する(エピタキシャル成長工程)。この成膜は、例えば有機金属気相成長法(MOCVD法)で行われ、n型層13にはドナーとなる不純物が、p型層14にはアクセプタとなる不純物がそれぞれドーピングされる。このエピタキシャル成長工程により、n型層13とp型層14からなる積層体15が形成され、その中には窒化物半導体のpn接合が形成され、発光層16となる。ScN層12s上においては、結晶欠陥の少ないn型層13及びp型層14を成長させることができる。従って、この積層体15中の窒化物半導体を高品質とすることができ、発光強度を高めることができる。
 素子領域形成工程(ステップS12)では、少なくとも化合物半導体層(積層体)15の一部を、エッチングにより除去して素子領域15aと核部21aと分離溝20を同時に形成する(図2(b))。素子領域を形成するときには、成長基板11と支持基板とを接合するための核部21aを素子領域の周囲に残して形成する。この核部21aは、化合物半導体層(積層体)15から形成されたものである。図2(b)に示されるように、分離溝20は、図2中の上側(p型層14側)から、成長基板11表面に達する深さをもつ。これにより、積層体15は基板11上で分断される。図2(b)においては、一方向における断面が示されているが、この分離溝20はこれと異なる方向にも形成され、分離溝20で囲まれた複数の領域の素子領域15aが形成される。
 分離溝20の形成は、例えば、次のようにして行われる。化合物半導体層(積層体)15にCVDによりSiOを成膜して、レジストを用いてパターニングを行い、BHFでエッチングすることで、SiOのマスクを形成する。その後、SiOをマスクとして化合物半導体層のドライエッチングを行い、サファイア基板が露出するまで、エッチングを行う。その後、BHFを使用してSiOマスクを除去する。
 柱状物形成工程(ステップS13)では、核部21aおよび金属バッファ層を被覆するように保護膜22を形成し柱状物21を形成する。核部21aがリフトオフ工程でリフトオフされないようにするためである。保護膜22は、例えばSiO(1μm)などを成膜することにより形成する(図2(c))。図2(c)中、保護膜22は、核部21aの上部にも被覆させているが、リフトオフ工程において除去されない保護層を核部側面に形成するだけでもよい。また、保護層はリフトオフ工程で溶解、剥離をしない材料であれば、金属、樹脂等の材料を用いても良く、犠牲層や接合層を核部および金属バッファ層を被覆するように形成することで犠牲層や接合層が保護層を兼ねても良い。
 犠牲層形成工程(ステップS14)では、柱状物21の上部に犠牲層23として例えばCr(250Å)を、接合層24として例えばPt/Au(2000Å/1μm)を成膜する(図2(d))。
 p側電極形成工程(ステップS15)では、最上面に存在するp型層14の全面に、p側電極25として、p型層14とオーミック性接触のとれる材料を成膜する。例えば、Ni/Au(50Å/200Å)を成膜し、アニールを行う。
 接合層形成工程(ステップS16)では、接合層26として、例えば、Pt/Au(2000Å/2μm)を成膜する(図2(d))。
 支持基板接合前工程(ステップS17)では、上記の構造と別に準備した支持基板30の一方の主面上に、導電性接合層31を形成する(図2(e))。
 支持基板30としては、機械的強度が充分であり、熱伝導率の高い任意の基板を用いることができ、その電気伝導度も任意である。例えば、半導体基板の一種である単結晶シリコン(Si)基板を用いることができる。導電性接合層31は、加熱圧着することによって接合層24と接合層26と接合可能な導電性材料で形成され、例えば接合層としてTi/Pt/Au/Sn/Au(100Å/2000Å/1000Å/2000Å/1μm)を成膜する。
 接合工程(ステップS18)では、化合物半導体層15と柱状物21と支持基板30とを接合する(図2(f))。
 図2(f)に示されるように、図2(d)の構造と、図2(e)の構造とを、導電性接合層31と接合層24,26とが直接接するようにして、高温で加圧接合する。例えば、接合条件は、12kNの荷重を印加して、300℃で60分、真空雰囲気で熱圧着する。この工程により、積層体15a及び柱状物21は、p側電極25及び接合層26と、犠牲層23及び接合層24と、導電性接合層31を介して支持基板30に接合される。
 剥離工程(ステップS19)では、リフトオフ層(金属バッファ層)12を除去して成長基板11を剥離する。この剥離工程は、リフトオフ工程(ステップS191)と犠牲層エッチング工程(ステップS192)からなる。リフトオフ工程(ステップS191)においては、柱状物21の接合が維持される(図2(g))。
 リフトオフ工程(ステップS191)は、例えば、接合した基板40を塩酸に浸漬してケミカルエッチングを行うことによりリフトオフ層(金属バッファ層)12を溶解する(図2(g))。また、犠牲層エッチング工程(ステップS192)は、例えば、Cr選択エッチング液(硝酸セリウムアンモニウム)を用いて、ケミカルエッチングを行うことにより犠牲層23を溶解し、サファイア基板11を剥離する。
 この剥離工程のリフトオフ工程(ステップS191)においては、柱状物21の接合が維持されるため、化合物半導体層15aにかかる応力が緩和され、割れが生じないようにして、サファイア基板11から化合物半導体層(素子領域)15aを剥離することができる。
 従って、この剥離工程後には、n側電極形成工程(ステップS20)とワイヤボンディング工程を経て、最終的には、割れのない高品質なLED(半導体素子)を製造することができる。
 図3は、本発明の第2実施形態に係る半導体素子の製造方法により半導体素子を製造する工程を示すフローチャートである。図4は、本発明の第2実施形態に係る半導体素子の製造方法の各工程での基板の断面図である。この第2実施形態では、分離溝の形成後に、柱状物を、成長基板上にリフトオフ層を設けないことで形成する。そして、好ましくは、柱状物は金属または樹脂で形成される。さらに、好ましくは、柱状物はリフトオフ工程にてケミカルエッチングされない金属または樹脂で形成される。
 第2実施形態に係る半導体素子の製造方法は、化合物半導体層形成工程(ステップS31)と、素子領域形成工程(ステップS32)と、柱状物形成工程(ステップS33)と、犠牲層形成工程(ステップS34)と、p側電極形成工程(ステップS35)と、接合層形成工程(ステップS36)と、支持基板接合前工程(ステップS37)と、接合工程(ステップS38)と、剥離工程(ステップS39)と、n側電極形成工程(ステップS40)と、ワイヤボンディング工程(ステップS41)と、を有し、剥離工程(ステップS39)は、リフトオフ工程(ステップS391)と犠牲層エッチング工程(ステップS392)からなり、剥離工程(ステップS39)のリフトオフ工程(ステップS391)においては、柱状物の接合が維持される。すなわち、リフトオフ工程(ステップS391)においては、リフトオフ層を除去することにより半導体層の下面と成長基板とを分離し、かつ柱状物と成長基板とを分離しない。
 化合物半導体層形成工程(ステップS31)では、成長基板上に、リフトオフ層(金属バッファ層)と、リフトオフ層上の化合物半導体層を形成する(図4(a))。この工程は、第1実施形態でのステップS11と同様であるので説明を省略する。
 素子領域形成工程(ステップS32)では、少なくとも化合物半導体層(積層体)15の一部を、エッチングにより除去して素子領域と分離溝50を形成する(図4(b))。この工程では、素子領域の周囲に核部を形成しないこと以外は、第1実施形態のステップS12と同様であるので説明を省略する。
 柱状物形成工程(ステップS33)では、分離溝の領域50の一部の素子領域の周囲に素子領域と略同じ高さの柱状物51を形成する。柱状物51は、まず、分離溝の領域の一部にシード層52を形成し、Niメッキ等により支柱53を形成する。シード層52と支柱53により柱状物51が形成される(図4(c))。なお、支柱53は、Niめっきの代わりに、後の工程で用いる金属エッチング液によってエッチングされないレジストを用いて形成することもできる。
 犠牲層形成工程(ステップS34)では、柱状物51の上部に犠牲層23と接合層24として例えばCr/Pt/Au(250Å/2000Å/1μm)を成膜する(図4(d))。この工程は、第1の実施形態のステップS14と同様である。
 p側電極形成工程(ステップS35)では、第1実施形態のステップS15と同様の工程であり、最上面に存在するp型層14の全面に、p側電極25として、p型層14とオーミック性接触のとれる材料を成膜する。例えば、Ni/Au(50Å/200Å)を成膜し、アニールを行う。
 接合層形成工程(ステップS36)では、第1実施形態のステップS16と同様に接合層26として、Pt/Au(2000Å/2μm)を成膜する(図4(e))。
 支持基板接合前工程(ステップS37)では、上記の構造と別に準備した支持基板30の一方の主面上に、導電性接合層31を形成する。なお、この工程以降は、第1実施形態でのステップS17~ステップS21までの工程と同様な操作を行うので、断面図と具体的な説明は省略している。
 接合工程(ステップS38)では、化合物半導体層15と柱状物51と支持基板30とを接合する。
 剥離工程(ステップS39)では、リフトオフ層(金属バッファ層)12を除去して成長基板11を剥離する。この剥離工程は、リフトオフ工程(ステップS391)と犠牲層エッチング工程(ステップS392)からなる。リフトオフ工程(ステップS391)においては、柱状物51の接合が維持される。
 リフトオフ工程(ステップS391)は、例えば、接合した基板40を塩酸に浸漬してケミカルエッチングを行うことによりリフトオフ層(金属バッファ層)12を溶解する。また、犠牲層エッチング工程(ステップS392)は、例えば、Cr選択エッチング液(硝酸セリウムアンモニウム)を用いて、ケミカルエッチングを行うことにより犠牲層23を溶解し、サファイア基板11を剥離する。
 この剥離工程のリフトオフ工程(ステップS391)においては、柱状物51の接合が維持されるため、化合物半導体層15aにかかる応力が緩和され、割れが生じないようにして、サファイア基板11から化合物半導体層(素子領域)15aを剥離することができる。
 従って、この剥離工程後には、n側電極形成工程(ステップS40)とワイヤボンディング工程(ステップS41)を経て、最終的には、割れのない高品質なLED(半導体素子)を製造することができる。
 図5は、本発明の第3実施形態に係る半導体素子の製造方法により半導体素子を製造する工程を示すフローチャートである。図6は、本発明の第3実施形態に係る半導体素子の製造方法の各工程での基板の断面図である。この第3実施形態では、化合物半導体層形成工程において、金属バッファ層を形成する工程と柱状物(核部)を設ける領域の金属バッファ層を取り除く工程を設け、その後に、化合物半導体層を形成する工程を有することを特徴としている。
 第3実施形態に係る半導体素子の製造方法は、化合物半導体層形成工程(ステップS51)と、素子領域形成工程(ステップS52)と、犠牲層形成工程(ステップS53)と、p側電極形成工程(ステップS54)と、接合層形成工程(ステップS55)と、支持基板接合前工程(ステップS56)と、接合工程(ステップS57)と、剥離工程(ステップS58)と、n側電極形成工程(ステップS59)と、ワイヤボンディング工程(ステップS60)と、を有し、剥離工程(ステップS58)は、リフトオフ工程(ステップS581)と犠牲層エッチング工程(ステップS582)からなり、剥離工程(ステップS58)のリフトオフ工程(ステップS581)においては、柱状物の接合が維持される。すなわち、リフトオフ工程(ステップS191)においては、リフトオフ層を除去することにより半導体層の下面と成長基板とを分離し、かつ柱状物と成長基板とを分離しない。また、化合物半導体層形成工程(ステップS51)において、金属バッファ層形成工程(ステップS511)と、柱状物(核部)を形成する領域の金属バッファ層を取り除く工程(ステップS512)と、化合物半導体層堆積工程(ステップS513)を有している。
 化合物半導体層形成工程(ステップS51)では、選択的に形成された金属バッファ層が用いられる。まず、金属バッファ層を形成する工程(ステップS511)を行う。この工程では、成長基板上に、リフトオフ層(金属バッファ層)を形成する。まず、図6(a)に示されるように、成長基板11上に、金属バッファ層12を形成する。成長基板11としては、サファイア単結晶((0001)基板)が特に好ましく用いられる。また、この上の金属バッファ層12としては、例えば100Å程度の膜厚のスカンジウム(Sc)を用いることができる。金属バッファ層12の成膜は、スパッタリング法、真空蒸着法等により行うことができる。
 次の柱状物(核部)を形成する領域の金属バッファ層を取り除く工程(ステップS512)を実行する。それにより、図6(a)に示されるように、成長基板11上に金属バッファ層が堆積した領域12bと、堆積していない領域60が設けられる。レジスト等をマスクとしたリフトオフ法やエッチング法を用いることができる。
 次に、この状態で窒化処理、例えばアンモニア雰囲気で1040℃以上の高温とする工程を行なう。これにより、金属バッファ層(金属層:Sc層)12表面は窒化され、窒化スカンジウム層(金属窒化物層:ScN層)12sとなる。このScN層12sの厚さは、処理時間、温度等の調整によって設定することが可能である。
 化合物半導体層堆積工程(ステップS513)では、ScN層12sを持つSc金属バッファ層12が堆積された領域12bと堆積されない領域60上に、n型窒化物半導体層(n型半導体層:n型層)13、p型窒化物半導体層(p型半導体層:p型層)14を順次成膜する(エピタキシャル成長工程)。この成膜は、例えば有機金属気相成長法(MOCVD法)で行われ、n型層13にはドナーとなる不純物が、p型層14にはアクセプタとなる不純物がそれぞれドーピングされる。このエピタキシャル成長工程により、n型層13とp型層14からなる積層体15が形成され、その中には窒化物半導体のpn接合が形成され、発光層16となる。ScN層12s上においては、結晶欠陥の少ないn型層13及びp型層14を成長させることができる。従って、この積層体15中の窒化物半導体を高品質とすることができ、発光強度を高めることができる。
 素子領域形成工程(ステップS52)では、少なくとも化合物半導体層(積層体)15の一部を、エッチングにより除去して素子領域と分離溝61を形成する(図6(b))。素子領域を形成するときには、成長基板11と支持基板とを接合するための柱状物(核部)62を残して形成する。この柱状物(核部)62は、金属バッファ層が堆積されていない領域60に堆積された化合物半導体層(積層体)から形成されたものである。
 分離溝61の形成は、例えば、次のようにして行われる。化合物半導体層15にCVDによりSiOを成膜して、レジストを用いてパターニングを行い、BHFでエッチングすることで、SiOのマスクを形成する。その後、SiOをマスクとして化合物半導体層のドライエッチングを行い、サファイア基板が露出するまで、エッチングを行う。その後、BHFを使用してSiOマスクを除去する。
 犠牲層形成工程(ステップS53)では、柱状物(核部)62の上部に犠牲層23と接合層24としてCr/Pt/Au(250Å/2000Å/1μm)を成膜する(図6(d))。この工程は、第1の実施形態のステップS14と同様である。
 p側電極形成工程(ステップS54)では、第1実施形態のステップS15と同様の工程であり、最上面に存在するp型層14の全面に、p側電極25として、p型層14とオーミック性接触のとれる材料を成膜する。例えば、Ni/Au(50Å/200Å)を成膜し、アニールを行う。
 接合層形成工程(ステップS55)では、第1実施形態のステップS16と同様に接合層26として、Pt/Au(2000Å/2μm)を成膜する(図6(e))。
 支持基板接合前工程(ステップS56)では、上記の構造と別に準備した支持基板30の一方の主面上に、導電性接合層31を形成する。なお、この工程以降は、第1実施形態でのステップS17~ステップS21までの工程と同様な操作を行うので、断面図と具体的な説明は省略している。
 接合工程(ステップS57)では、化合物半導体層15と柱状物62と支持基板30とを接合する。
 剥離工程(ステップS58)では、リフトオフ層(金属バッファ層)12を除去して成長基板11を剥離する。この剥離工程は、リフトオフ工程(ステップS581)と犠牲層エッチング工程(ステップS582)からなる。リフトオフ工程(ステップS581)においては、柱状物(核部)62の接合が維持される。
 リフトオフ工程(ステップS581)は、例えば、接合した基板40を塩酸に浸漬してケミカルエッチングを行うことにより金属バッファ層12を溶解する。また、犠牲層エッチング工程(ステップS392)は、例えば、Cr選択エッチング液(硝酸セリウムアンモニウム)を用いて、ケミカルエッチングを行うことにより犠牲層23を溶解し、サファイア基板11を剥離する。
 この剥離工程のリフトオフ工程(ステップS581)においては、柱状物(核部)62の接合が維持されるため、化合物半導体層15aにかかる応力が緩和され、割れが生じないようにして、サファイア基板11から化合物半導体層(素子領域)15aを剥離することができる。
 従って、この剥離工程後には、n側電極形成工程(ステップS59)とワイヤボンディング工程(ステップS60)を経て、最終的には、割れのない高品質なLED(半導体素子)を製造することができる。
 また、化合物半導体層形成工程(ステップS51)における金属バッファ層(金属層:Sc層)12のパターンと、素子領域形成工程(ステップS52)における柱状物(核部)62のパターンを、図6の例と異ならせることもできる。図7は、この場合の製造工程を示す工程断面図である。図7(a)~(e)は、図6(a)~(e)に対応し、Sc層12bと柱状物62のパターンの位置関係のみが異なっている。ここでは、図5における、柱状物(核部)を形成する領域の金属バッファ層を取り除く工程(ステップS512)の代わりに、素子領域と、柱状物62を形成すべき領域の内部となる領域と、における金属バッファ層(Sc層12)を残し、これら以外の領域の金属バッファ層を除去する工程を行う。
 図7(c)において、図6(c)の場合と同様に、柱状物62がエッチングによって形成される。ここで、図6の場合には、柱状物62が形成される箇所にはSc層12(12b)が形成されていなかったのに対し、ここでは、柱状物62の内部にSc層12(12b)が形成されるように設定される。ここで、柱状物62の内部のSc層12はn型層13から露出しない設定とされる。このように柱状物62とSc層12を設定することは、図6の場合と同様に行うことができる。
 この際、柱状物62の内部のSc層12はn型層13から露出しない設定とされるため、リフトオフ工程においても柱状物62中のSc層12はエッチングされず、柱状物62と成長基板11との間の接合は維持される。このため、以降の工程は図6の製造方法と同様に行うことができる。この場合には、図6の製造方法と比べて、図7(c)の状態において、素子領域における高さと柱状部62の高さが同等となる。このため、接合工程において重要となるこれらの高さ調整が特に容易となる。また、柱状物62内部のSc層12をリソグラフィや接合の際のアライメントマークとして用いることもできる。
 図8は、本発明の第4実施形態に係る半導体素子の製造方法により半導体素子を製造する工程を示すフローチャートである。図9は、本発明の第4実施形態に係る半導体素子の製造方法の各工程での基板の断面図である。この第4実施形態では、支持基板上に犠牲層を形成し、その犠牲層を基礎にして柱状物を形成する。そして、好ましくは柱状物は、金属で形成される。さらに、好ましくは柱状物は、ケミカルエッチングされない金属で形成される。
 第4実施形態に係る半導体素子の製造方法は、化合物半導体層形成工程(ステップS71)と、素子領域形成工程(ステップS72)と、p側電極形成工程(ステップS73)と、接合層形成工程(ステップS74)と、支持基板接合前工程(ステップS75)と、接合工程(ステップS76)と、剥離工程(ステップS77)と、n側電極形成工程(ステップS78)と、ワイヤボンディング工程(ステップS79)と、を有している。そして、支持基板接合前工程(ステップS75)は、犠牲層形成工程(ステップS751)と、柱状物形成工程(ステップS752)と、接合層形成工程(ステップS753)とを有している。また、剥離工程(ステップS77)は、リフトオフ工程(ステップS771)と犠牲層エッチング工程(ステップS772)からなり、剥離工程(ステップS77)のリフトオフ工程(ステップS771)においては、柱状物の接合が維持される。すなわち、リフトオフ工程(ステップS771)においては、リフトオフ層を除去することにより半導体層の下面と成長基板とを分離し、かつ柱状物と成長基板とを分離しない。
 化合物半導体層形成工程(ステップS71)では、成長基板11上に、リフトオフ層(金属バッファ層)と、リフトオフ層上の化合物半導体層を形成する。この工程は、第1実施形態でのステップS11と同様であるので説明を省略する。
 素子領域形成工程(ステップS72)では、少なくとも化合物半導体層(積層体)15の一部を、エッチングにより除去して素子領域と分離溝50を形成する。この工程では、素子領域の周囲に核部を形成しないこと以外は、第1実施形態のステップS12と同様であるので説明を省略する。
 p側電極形成工程(ステップS73)では、第1実施形態のステップS15と同様の工程であり、最上面に存在するp型層14の全面に、p側電極25として、p型層14とオーミック性接触のとれる材料を成膜する。例えば、Ni/Au(50Å/200Å)を成膜し、アニールを行う。
 接合層形成工程(ステップS74)では、第1実施形態のステップS16と同様に接合層80として、Pt/Au(2000Å/2μm)を成膜する(図9(b))。
 支持基板接合前工程(ステップS75)では、まず、犠牲層形成工程(ステップS751)を実行する。犠牲層形成工程(ステップS751)では、上記の構造と別に準備した支持基板30の一方の主面上に、犠牲層81としてCr(250Å)を成膜する。なお、図9(a)では、支持基板30を下向きに示している。
 柱状物形成工程(ステップS752)では、支持基板30に形成した犠牲層81を基礎として成長基板11上に形成した素子領域と略同じ高さの柱状物82を形成する。柱状物82は、まず、犠牲層81を基礎としてシード層82aを形成し、Niメッキ等により支柱82bを形成する。シード層82aと支柱82bにより柱状物82が形成される(図9(a))。なお、支柱82bは、Niめっきの代わりに、後の工程で用いるエッチング液によってエッチングされないようなレジストを用いて形成することもできる。
 接合層形成工程(ステップS753)では、支持基板30上と柱状物82上に接合層83として、Pt/Au(2000Å/2μm)を成膜する(図9(a))。
 接合工程(ステップS76)では、図9(b)で示した接合層80と図9(a)で示した接合層83を接合することにより化合物半導体層15と支持基板30を接合し、柱状物82と成長基板11を接合する(図9(c))。
 剥離工程(ステップS77)では、リフトオフ層(金属バッファ層)12を除去して成長基板11を剥離する。この剥離工程は、リフトオフ工程(ステップS771)と犠牲層エッチング工程(ステップS772)からなる。リフトオフ工程(ステップS771)においては、柱状物82の接合が維持される(図9(d))。
 リフトオフ工程(ステップS771)は、例えば、接合した基板40を塩酸に浸漬してケミカルエッチングを行うことにより金属バッファ層12を溶解する。また、犠牲層エッチング工程(ステップS772)は、例えば、Cr選択エッチング液(硝酸セリウムアンモニウム)を用いて、ケミカルエッチングを行うことにより犠牲層81を溶解し、サファイア基板11を剥離する。
 この剥離工程のリフトオフ工程(ステップS771)においては、柱状物82の接合が維持されるため、化合物半導体層(素子領域)15aにかかる応力が緩和され、割れが生じないようにして、サファイア基板11から化合物半導体層(素子領域)15aを剥離することができる。
 従って、この剥離工程後には、n側電極形成工程(ステップS78)とワイヤボンディング工程(ステップS79)を経て、最終的には、割れのない高品質なLED(半導体素子)を製造することができる。
 なお、上記実施形態においては、成長基板11として、サファイアを用いて説明したが、成長基板11としては、サファイア以外にも、バッファ層12等を介して良質のGaNやAlGaNなどのIII族窒化物半導体(n型層13、p型層14)を成長させることができるものであれば、他の材料、例えばAlNテンプレートやSiC等を用いることも可能である。
 また、支持基板30としては、シリコン以外にも、任意の材料を用いることが可能である。ただし、支持基板30は、製造されたLEDの機械的支持基板となると同時に、放熱基板ともなるため、高い機械的強度をもち、かつ高い熱伝導率をもつことが好ましい。支持基板30の材料は、広い範囲の材料の中から選択することが可能であり、各種の絶縁性基板、金属基板、半導体基板を用いることが可能である。また、機械的強度及び熱伝導率が高い絶縁性セラミックス基板上に金属配線が予め形成された金属セラミックス接合基板を用いることもできる。
 なお、上記の例では、積層体は、共に窒化物半導体からなるn型層13、p型層14で構成されるものとした。しかしながら、この他の場合であっても、同様の効果を奏することは明らかである。例えば、単純なpn接合を利用したLEDではなく、n型層とp型層との間に活性層となる多重量子井戸構造を設けた構造のLEDやLD(レーザーダイオード)を同様に製造できることも明らかである。この場合には、エピタキシャル成長工程において、n型層13を成長基板11上に形成し、この上に活性層を形成してからp型層14を形成する。
 上記実施形態における柱状物とは、例えば成長基板を床、支持基板を天井としたときに、一時的に床と天井の間の柱の役割を担うものであり、略円柱や多角柱などに限らず、その形状、大きさおよび配置関係については、様々な形態が可能である。ただし、いくつかのリフトオフ法のうち、ケミカルエッチングを用いる場合には、例えば四方を囲む壁のようにリフトオフ層にケミカルエッチングのエッチング液が届くことができる経路を完全に塞いでしまうものは使用すべきではない。リフトオフされる部分の形状に対して応力を均等に分散させるべく、配置に規則性があることは、好ましい形態である。
 上記実施形態における柱状物は、リフトオフ後に剥離する必要がある。剥離を容易にするために柱状物の一部に犠牲層を設けることが好ましいが、柱状物自体が犠牲層の機能を合わせ持つ場合も好ましい。また、本実施の形態において柱状物の剥離箇所が支持基板側となるようにしているのは、素子を個々に分離する際の悪影響を避けるためであるが、剥離箇所は成長基板側であってもよく、その場所は任意である。基板再利用などの目的で、柱の両側を剥離してもよい。
 上記実施形態における犠牲層は、リフトオフ層をリフトオフする際に剥離されないが、その後の犠牲層エッチング工程で素子や接合層に悪影響を与えずに分離が可能な層であればよい。ケミカルリフトオフの場合、リフトオフ層である金属バッファ層と犠牲層に異なる選択エッチング液があればよい。金属バッファ層は、例えばSc、Cr、Zr、Hfなど(およびそれらの窒化物)を選択できる。犠牲層は、金属バッファ層で選択された以外の材料で、例えばCr、Ni、Tiなどの金属や樹脂、接着剤等を選択できる。なお、犠牲層を分離する方法は、エッチングに限らず、熱や光、機械的方法等を用いるものでも良い。接合層は、上記で選択された以外の材料でよく、例えばPt、Auなどの貴金属を使用できる。リフトオフ層の種類によって、および選択エッチング液の種類や分離方法によって、これらの組み合わせは多岐に亘る。
 実施形態第1~第4のうち、第1および第3の柱状物のように、半導体層と同じ材料から構成された核部を具備することが比較的好ましい。半導体層と異なる材料からなる柱状物を用いる第2および第4に比べ、支持基板との接合時に必要な、半導体層との高さを合わせる精度を出すことに関し、品質管理が容易となるためである。
(実施例1-1)
 実際に、実施形態第1に例示した工程で化合物半導体層を形成し、サファイヤ基板剥離を行った。サファイア単結晶基板(0001)面上に金属バッファ層として100Åの膜厚のスカンジウム(Sc)をスパッタリング法により成膜した。
 次に、アンモニア雰囲気で1200℃で10分間の窒化処理を行い、金属バッファ層は窒化され、窒化スカンジウム層(ScN層)が形成された。
 次に、ScN層上に、ノンドープAlGaNを2um、Siドープn型AlGaN層(1.5μm)、MQW活性層(0.1μm)、Mgドープp型AlGaN層(0.3μm)を順次MOCVD法で成膜した。
 p型AlGaN層上にCVDによりSiOを成膜して、レジストを用いてパターニングを行い、BHFでエッチングすることでSiOマスクを形成し、化合物半導体層のドライエッチングを行い、サファイア基板が露出するまで、エッチングを行った。その後、BHFを使用してSiOマスクを除去し、直径850μmの円形の素子領域と、素子領域の周辺に、直径約90μmの核部を形成した。
 核部全体を被覆するように保護膜としてSiO(1μm)をCVDにより成膜した。核部の上部の保護膜上に犠牲層としてCr(250Å)を、接合層としてPt/Au(2000Å/1μm)を成膜した。
 また、素子領域のp型層全面に、p側電極としてNi/Au(50Å/200Å)を成膜して550℃で15分のアニールを行った。その後、接合層として、Pt/Au(2000Å/2μm)を成膜した。
 支持基板30としてp型単結晶シリコン(Si)基板を用い、支持基板側の接合層としてTi/Pt/Au/Sn/Au(100Å/2000Å/1000Å/2000Å/1μm)を成膜した。素子領域および柱状物側の接合層と、支持基板側の接合層とを、12kNの荷重を印加して、300℃で60分、真空雰囲気で熱圧着した。
 接合した基板を塩酸に24時間浸漬してScおよびScNを溶解してケミカルリフトオフを行った。その後、Cr選択エッチング液(硝酸セリウムアンモニウム)を用いて犠牲層を溶解し、サファイア基板を剥離した。
 サファイア基板剥離後の化合物半導体層の品質を、光学顕微鏡での表面観察により、従来の製造方法と比較した。
 ここで、比較対照とした従来の製造方法では、素子領域の周囲に柱状物を設けずにサファイア基板剥離を行ったものである。図10(a)は、核部を形成せず、柱状物を設けずにサファイア基板を剥離した、支持基板と化合物半導体層を示す図であり、図10(b)は、実施例1の柱状物を設けてサファイア基板を剥離し、その後、柱状物を分離した支持基板と化合物半導体層を示す図である。本実施例では、各素子の半導体層に対して等しく、直径850μmの円形の半導体層を囲うように、1辺850μmの四角形の頂点の位置に、直径約90μmの円柱の柱状物を配置した。この四角形の対角線側から見た1素子分の断面が、実施形態第1~4の断面図に例示される。図10の符号70は、支持基板を示し、符号71は、従来の方法での化合物半導体層、符号72は、本発明での化合物半導体層を示す。また、図10(b)の符号73は、柱状物を剥離した跡(接合層24の犠牲層23側の面)を示す。図10(a)および電子顕微鏡写真(図10(c))に示されるように、従来の製造方法では、サファイア基板剥離後の化合物半導体層の中央部に割れが生じていることが金属顕微鏡およびSEM観察された。化合物半導体層の外周部からエッチングされ、サファイア基板が剥離する直前に中央部に残る微小領域で、基板と化合物半導体層および支持基板との間の応力の集中が生じた結果、剥離後にこのような割れが観察されたと考えられる。しかしながら、図10(b)から分かるように、本発明の製造方法では、化合物半導体層に割れが生じていない。本発明の製造方法では電子顕微鏡による観察でも例えば図10(c)のような割れは観察されなかった。従って、実施例におけるサファイア基板剥離時に割れが生じないことが確認でき、リフトオフ層を周辺からエッチングしてリフトオフされる化合物半導体層のエッチングの進行により応力が集中する箇所の割れを抑制できることが分かった。
(実施例1-2)
 実施形態1に例示した工程において、犠牲層および接合層が保護層を兼ねる場合、保護層の形成工程を省き、核部全体を被覆するように犠牲層としてCr(250Å)を成膜し、接合層としてPt/Au(2000Å/1um)を成膜し、素子領域の接合層をPt/Au(2000Å/1um)とした以外は実施例1と同様に行った。図10(b)と同様の結果が得られ、化合物半導体層に割れは生じなかった。
(実施例2)
 実施形態第2に例示した工程のように、核部を形成せず、シード層としてPt/Au/Pt/Pd(500Å/7500Å/500Å/500Å)とし、柱状物を厚さ3μmのNiメッキにより形成し、柱状物と素子領域の接合層をPt/Au(2000Å/1μm)とした以外は、実施例1と同様に行った。図10(b)と同様の結果が得られ、化合物半導体層に割れは生じなかった。
(実施例3)
 実施形態第3に例示した工程のように、核部の位置となる金属バッファ層を、レジストマスクを形成しエッチングにより除去し、保護膜を形成せずに柱状物と素子領域の接合層をPt/Au(2000Å/1μm)とした以外は、実施例1と同様に行った。図10(b)と同様の結果が得られ、化合物半導体層に割れは生じなかった。
(実施例4)
 また、実施形態第4に例示する工程のように、支持基板側に剥離層を介して柱状物を形成した以外は実施例2と同様に行った。図10(b)の符号73のような柱状物を剥離した跡は見られず、化合物半導体層に割れは生じなかった。
 また、実施例1および比較例において作成したサンプルについて、さらに剥離した化合物半導体層のノンドープのAlGaN層をドライエッチングにより除去し、露出したn型AlGaN層にTi/Alを形成して、I-V測定を行った。逆方向電圧Vr(-10μA)において、実施例1が10V以上であったのに対して、比較例1では約6Vと低かった。割れが発生したことでリーク電流が増加したと考えられる。よって本発明により、リーク電流の少ない素子が得られることが分かった。
 以上の実施形態で説明された構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値および各構成の組成(材質)等については例示にすぎない。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。
 本発明に係る半導体素子と半導体素子の製造方法は、LED光学系素子等の半導体素子と半導体素子を製造する方法に利用される。
 11    成長基板
 12    リフトオフ層(金属バッファ層)(金属層:Sc層)
 13    n型窒化物半導体層(n型半導体層:n型層)
 14    p型窒化物半導体層(p型半導体層:p型層)
 15    化合物半導体層(積層体)
 15a   素子領域
 16    発光層
 20    分離溝
 21    柱状物
 22    保護膜
 23    犠牲層
 24    接合層
 25    p型電極
 26    接合層
 30    支持基板
 31    導電性接合層

Claims (12)

  1.  支持基板上に半導体層が接合された構成を具備する半導体素子の製造方法であって、
     成長基板上にリフトオフ層を介して、前記半導体層からなる素子領域を形成する素子領域形成工程と、
     前記成長基板上に、柱状物を形成する柱状物形成工程と、
     支持基板に、前記半導体層及び前記柱状物の上部を接合する接合工程と、
     前記リフトオフ層を除去することにより前記半導体層の下面と前記成長基板とを分離し、かつ前記柱状物と前記成長基板とを分離しないリフトオフ工程と、
     前記柱状物と前記支持基板とを分離する工程と、
     を具備することを特徴とする半導体素子の製造方法。
  2.  前記柱状物形成工程は、前記柱状物の一部に犠牲層を形成する犠牲層形成工程を備え、前記柱状物と前記支持基板とを分離する工程では、前記犠牲層を除去することを特徴とする請求項1記載の半導体素子の製造方法。
  3.  前記柱状物は、前記半導体層と同じ材料から構成された核部を具備することを特徴とする請求項1または2記載の半導体素子の製造方法。
  4.  前記素子領域形成工程において、前記半導体層を構成する材料を前記リフトオフ層を介して前記成長基板上に形成した後に、エッチングを施すことにより、前記素子領域と前記核部を形成し、
     前記柱状物形成工程において、前記リフトオフ工程において除去されない保護層を前記核部側面に形成することを特徴とする請求項3記載の半導体素子の製造方法。
  5.  前記成長基板上に前記リフトオフ層を形成する工程において、前記柱状物を形成すべき領域における前記リフトオフ層を除去する工程を有し、前記半導体層を構成する材料を前記リフトオフ層を介して前記成長基板上に形成すると共に部分的にリフトオフ層を介さずに形成した後に、エッチングを施し、前記素子領域とリフトオフ工程においてリフトオフされない前記核部とを同時に形成することを特徴とする請求項3記載の半導体素子の製造方法。
  6.  前記成長基板上に前記リフトオフ層を形成する工程において、前記素子領域と、前記柱状物を形成すべき領域の内部となる領域において前記リフトオフ層を選択的に形成する工程を有し、前記半導体層を構成する材料を前記リフトオフ層を介して前記成長基板上に形成すると共に部分的にリフトオフ層を介さずに形成した後に、エッチングを施し、前記素子領域とリフトオフ工程においてリフトオフされない前記核部とを同時に形成することを特徴とする請求項3記載の半導体素子の製造方法。
  7.  支持基板上に半導体層が接合された構成を具備する半導体素子の製造方法であって、
     成長基板上にリフトオフ層を介して、前記半導体層からなる素子領域を形成する素子領域形成工程と、
     前記支持基板上に、柱状物を形成する柱状物形成工程と、
     前記支持基板に前記半導体層を接合し、前記成長基板に前記柱状物を接合する接合工程と、
     前記リフトオフ層を除去することにより前記半導体層の下面と前記成長基板とを分離し、かつ前記柱状物と前記成長基板とを分離しないリフトオフ工程と、
     前記柱状物と前記支持基板とを分離する工程と、
     を具備することを特徴とする半導体素子の製造方法。
  8.  前記柱状物形成工程は、前記支持基板上に犠牲層を形成する犠牲層形成工程を備え、前記柱状物と前記支持基板とを分離する工程では、前記犠牲層を除去することを特徴とする請求項7記載の半導体素子の製造方法。
  9.  前記半導体層は、前記成長基板側にn型層、当該n型層上に形成されたp型層を具備することを特徴とする請求項1~8のいずれか1項に記載の半導体素子の製造方法。
  10.  前記接合工程前において、
     前記素子領域における前記半導体層の表面、及び前記支持基板の表面に、それぞれ導電性材料を形成することを特徴とする請求項1~9のいずれか1項に記載の半導体素子の製造方法。
  11.  前記n型層に接合するn型電極を形成し、前記p型層に接合するp型電極を形成し、前記n型電極と前記p型電極との間に10ボルトの逆方向電圧を印加したときのリーク電流が10μA以下であることを特徴とする請求項9記載の半導体素子の製造方法。
  12.  請求項1~請求項11のいずれか1項に記載の半導体素子の製造方法によって製造されたことを特徴とする半導体素子。
PCT/JP2011/004209 2010-07-30 2011-07-26 半導体素子と半導体素子の製造方法 WO2012014448A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/516,889 US8765584B2 (en) 2010-07-30 2011-07-26 Semiconductor device and manufacturing method therefor
EP11812050.0A EP2506316B1 (en) 2010-07-30 2011-07-26 Method for manufacturing a semiconductor element
KR1020127009944A KR101255489B1 (ko) 2010-07-30 2011-07-26 반도체 소자와 반도체 소자의 제조 방법
CN201180037298.8A CN103038902B (zh) 2010-07-30 2011-07-26 半导体元件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-172283 2010-07-30
JP2010172283 2010-07-30

Publications (1)

Publication Number Publication Date
WO2012014448A1 true WO2012014448A1 (ja) 2012-02-02

Family

ID=45418213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004209 WO2012014448A1 (ja) 2010-07-30 2011-07-26 半導体素子と半導体素子の製造方法

Country Status (7)

Country Link
US (1) US8765584B2 (ja)
EP (1) EP2506316B1 (ja)
JP (1) JP4836218B1 (ja)
KR (1) KR101255489B1 (ja)
CN (1) CN103038902B (ja)
TW (1) TWI506816B (ja)
WO (1) WO2012014448A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811593B (zh) * 2012-11-12 2018-06-19 晶元光电股份有限公司 半导体光电元件的制作方法
TWI549170B (zh) * 2013-07-29 2016-09-11 晶元光電股份有限公司 選擇性轉移半導體元件的方法
KR101767078B1 (ko) 2013-07-29 2017-08-10 에피스타 코포레이션 반도체 소자를 선택적으로 전이하는 방법
WO2016027186A1 (en) * 2014-08-19 2016-02-25 Koninklijke Philips N.V. Sapphire collector for reducing mechanical damage during die level laser lift-off
EP3295479B1 (en) * 2015-05-13 2018-09-26 Lumileds Holding B.V. Sapphire collector for reducing mechanical damage during die level laser lift-off
JP6289756B1 (ja) 2016-07-04 2018-03-07 三菱電機株式会社 半導体装置及びその製造方法
KR101902566B1 (ko) * 2017-07-25 2018-09-28 엘지디스플레이 주식회사 발광 표시 장치 및 이의 제조 방법
CN108878605B (zh) * 2018-05-04 2020-01-14 厦门三安光电有限公司 发光元件、发光元件阵列及其发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273463A (ja) * 2002-03-14 2003-09-26 Nichia Chem Ind Ltd 窒化物半導体レーザ素子及びその製造方法
JP2007234671A (ja) 2006-02-27 2007-09-13 Toyoda Gosei Co Ltd 発光素子およびその製造方法
JP2009218495A (ja) * 2008-03-12 2009-09-24 Mitsubishi Chemicals Corp 半導体発光素子および半導体発光装置
JP2010147166A (ja) * 2008-12-17 2010-07-01 Stanley Electric Co Ltd 半導体素子の製造方法
JP2010182979A (ja) * 2009-02-06 2010-08-19 Meijo Univ GaN系化合物半導体の成長方法及び成長層付き基板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300788A (en) * 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
US6852968B1 (en) * 1999-03-08 2005-02-08 Canon Kabushiki Kaisha Surface-type optical apparatus
US6627974B2 (en) * 2000-06-19 2003-09-30 Nichia Corporation Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate
JP2006013548A (ja) * 2005-09-12 2006-01-12 Sony Corp 窒化物半導体素子およびその製造方法
KR100649763B1 (ko) * 2005-12-09 2006-11-27 삼성전기주식회사 수직구조 질화물 발광소자의 제조방법
KR20090027220A (ko) * 2006-07-05 2009-03-16 파나소닉 주식회사 반도체발광소자 및 제조방법
US7754511B2 (en) * 2008-07-08 2010-07-13 High Power Opto. Inc. Laser lift-off method
JP5537801B2 (ja) * 2008-12-17 2014-07-02 キヤノンマシナリー株式会社 位置決め装置、位置決め方法、およびボンディング装置
JP4793468B2 (ja) * 2009-03-31 2011-10-12 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法
KR100993077B1 (ko) * 2010-02-17 2010-11-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법, 발광소자 패키지
CN101931039B (zh) * 2010-08-23 2012-07-25 安徽三安光电有限公司 具有双层交错贯穿孔洞的氮化镓基发光二极管及其制作工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273463A (ja) * 2002-03-14 2003-09-26 Nichia Chem Ind Ltd 窒化物半導体レーザ素子及びその製造方法
JP2007234671A (ja) 2006-02-27 2007-09-13 Toyoda Gosei Co Ltd 発光素子およびその製造方法
JP2009218495A (ja) * 2008-03-12 2009-09-24 Mitsubishi Chemicals Corp 半導体発光素子および半導体発光装置
JP2010147166A (ja) * 2008-12-17 2010-07-01 Stanley Electric Co Ltd 半導体素子の製造方法
JP2010182979A (ja) * 2009-02-06 2010-08-19 Meijo Univ GaN系化合物半導体の成長方法及び成長層付き基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2506316A4

Also Published As

Publication number Publication date
EP2506316B1 (en) 2017-09-06
KR20120057654A (ko) 2012-06-05
EP2506316A4 (en) 2015-10-28
KR101255489B1 (ko) 2013-04-16
CN103038902B (zh) 2015-08-19
EP2506316A1 (en) 2012-10-03
JP2012049520A (ja) 2012-03-08
TWI506816B (zh) 2015-11-01
TW201208119A (en) 2012-02-16
CN103038902A (zh) 2013-04-10
JP4836218B1 (ja) 2011-12-14
US20120256327A1 (en) 2012-10-11
US8765584B2 (en) 2014-07-01

Similar Documents

Publication Publication Date Title
JP4836218B1 (ja) 半導体素子と半導体素子の製造方法
JP5491065B2 (ja) ウエハ生産物を作製する方法、及び窒化ガリウム系半導体光素子を作製する方法
WO2016192434A1 (zh) 一种利用化学腐蚀的方法剥离生长衬底的方法
US20110147704A1 (en) Semiconductor light-emitting device with passivation layer
US9318653B2 (en) Luminescent device and manufacturing method for luminescent device and semiconductor device
KR101781438B1 (ko) 반도체 발광소자의 제조방법
KR101316115B1 (ko) 수직형 발광 다이오드 제조방법
TW202231946A (zh) 紫外線發光元件用磊晶晶圓、紫外線發光元件用金屬貼合基板的製造方法、紫外線發光元件的製造方法、及紫外線發光元件陣列的製造方法
JP5603812B2 (ja) 半導体素子の製造方法
JP2013526781A (ja) 緩和層上に成長したiii族窒化物発光デバイス
JP2023536363A (ja) Ledデバイス及びledデバイスの製造方法
US8395168B2 (en) Semiconductor wafers and semiconductor devices with polishing stops and method of making the same
US20160133792A1 (en) Semiconductor substrate and method of fabricating the same
KR101381988B1 (ko) 수직형 발광 다이오드 제조방법
KR101018244B1 (ko) 질화물계 반도체 발광소자의 제조방법
TWI387134B (zh) 發光元件及其製造方法
KR102058503B1 (ko) 초소형 발광다이오드의 제조방법 및 이에 의해 제조된 초소형 발광다이오드
KR101045949B1 (ko) 질화물 반도체 발광소자 및 이의 제조 방법
TWI460891B (zh) Preparation method and product of vertical conduction type light emitting diode
JP2014123765A (ja) ウエハ生産物、窒化ガリウム系半導体光素子
KR20120117528A (ko) 수직형 led 소자 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037298.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127009944

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13516889

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011812050

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011812050

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE