WO2012013058A1 - 一种平行双螺杆挤出机用熔复型螺纹元件及其制造方法 - Google Patents

一种平行双螺杆挤出机用熔复型螺纹元件及其制造方法 Download PDF

Info

Publication number
WO2012013058A1
WO2012013058A1 PCT/CN2011/073718 CN2011073718W WO2012013058A1 WO 2012013058 A1 WO2012013058 A1 WO 2012013058A1 CN 2011073718 W CN2011073718 W CN 2011073718W WO 2012013058 A1 WO2012013058 A1 WO 2012013058A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten carbide
nickel
based tungsten
cast steel
screw extruder
Prior art date
Application number
PCT/CN2011/073718
Other languages
English (en)
French (fr)
Inventor
章鹏
Original Assignee
Zhang Peng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Peng filed Critical Zhang Peng
Priority to US13/810,188 priority Critical patent/US20130107657A1/en
Publication of WO2012013058A1 publication Critical patent/WO2012013058A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/251Design of extruder parts, e.g. by modelling based on mathematical theories or experiments
    • B29C48/2511Design of extruder parts, e.g. by modelling based on mathematical theories or experiments by modelling material flow, e.g. melt interaction with screw and barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/507Screws characterised by the material or their manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/507Screws characterised by the material or their manufacturing process
    • B29C48/509Materials, coating or lining therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49989Followed by cutting or removing material

Definitions

  • the present invention relates to a fusion-type threaded component and a method of manufacturing the same, and more particularly to a fusion-type threaded component for a parallel twin-screw extruder for use in the spray welding, fusion, and machining industries, and a method of manufacturing the same.
  • the present invention provides a wear resistance and high corrosion resistance. Fused-type threaded components for parallel twin-screw extruders.
  • the present invention also provides a method of manufacturing a fused-type threaded member for the parallel twin-screw extruder.
  • the technical solution adopted by the present invention to solve the problems of the prior art is to provide a fusion-type threaded component for a parallel twin-screw extruder, and the fusion-type threaded component for the parallel twin-screw extruder includes a body and a nickel
  • the tungsten carbide spray-welding layer is uniformly and concentrically melted on the outer surface of the body, and the overall thickness of the nickel-based tungsten carbide squirt layer is 1.8 mm to 2.3 mm.
  • the body is a cast steel base, and the material of the cast steel base is medium carbon steel.
  • the nickel-based tungsten carbide spray-weld layer comprises: nickel 61.75% ⁇ 60.8%, tungsten carbide 33.25% ⁇ 32.7%, boron 3% ⁇ 4%, silicon 2% ⁇ 2.5%, thickness It is 1.8 to 2.3 mm.
  • a diffusion layer of 0.04 mm to 0.1 mm is disposed between the body and the nickel-based tungsten carbide spray-welded layer.
  • the present invention also provides a method of manufacturing a fusion-type threaded component for a parallel twin-screw extruder, the method of manufacturing a fusion-type threaded component for a parallel twin-screw extruder comprising the steps of:
  • Spray welding process cast steel base blasting polishing, nitrogen protection, cast steel base preheating, nickel-based tungsten carbide spray welding;
  • melting process the threaded component of the spray-welded nickel-based tungsten carbide is placed in a vacuum electric furnace, nitrogen protection, setting of melting temperature, setting of melting time, setting constant temperature and holding time, tempering;
  • D Machining process: wire cutting of end face of threaded component, internal spline drawing of broaching machine, machining end face and inner hole and chamfer of CNC lathe, rough grinding of semi-finished grinding machine, semi-finishing, fine grinding.
  • the step A specifically includes:
  • A1 Making wax molds: According to the casting precision standard of steel billets, choose the medium-temperature wax produced in the United States, and the zirconium sand produced in Australia to make the wax mold for casting;
  • A2 Material selection: According to the casting precision and technical specifications of the billet, select the ingot that meets the quality requirements of the cast billet;
  • A3 Medium frequency furnace smelting: The selected steel ingot for casting is fed to the intermediate frequency furnace for heating and smelting, and the mixture is fully stirred. The furnace temperature is controlled at 1400 ° C ⁇ 1500 ° C ;
  • A4 Casting billet: a molten steel molten metal which is completely melted and liquefied in an intermediate frequency furnace and fully stirred, and poured into a wax mold billet one by one;
  • A5 Demoulding burr: The cast slab to be cast is fully cooled and then demolded to remove the zirconium strontium sand and the cast steel bristles remaining on the cast steel billet;
  • Tempering Tempering the cast steel billet element of precision casting in a tempering furnace at 350 °C ⁇ 400 °C to remove internal stress and prevent hydrogen embrittlement;
  • Polishing The tempered cast steel threaded component is polished to remove scale and residual zirconium sand.
  • the step B specifically includes:
  • B1 Blasting and polishing of cast steel billet: polishing the cast steel billet components to remove surface oxidation of the product Skin and buttercup;
  • B2 Nitrogen protection: The polished cast steel crepe element is placed in a nitrogen protection tank for nitrogen protection to prevent the threaded element from contacting the air to produce oxidation;
  • Preheating of cast steel billet Take out the threaded components of the cast steel billet in the nitrogen protection bucket and quickly penetrate the splined key rods to form a series of upper spray beds for preheating;
  • B4 Nickel-based tungsten carbide layer spray welding: Spraying a nickel-based tungsten carbide layer on the outer surface of the body.
  • the step C specifically includes:
  • Nitrogen gas protection A vacuum electric furnace equipped with a threaded component of spray-welded nickel-based tungsten carbide is filled with nitrogen gas at a pressure of 0.1 kg m 3 to 0.3 kg/m 3 . 3 ;
  • the melting and natural cooling time of the nickel-based tungsten carbide threaded component in the vacuum furnace is 8 hours to 10 hours;
  • C5 set constant temperature and holding time: The nickel-based tungsten carbide threaded component is melted in the vacuum electric furnace and the constant temperature is 40 minutes to 50 minutes. It is naturally cooled in the state of heat preservation, and the holding time is 8 hours to 9 hours;
  • C6 Tempering: The tempered nickel-based tungsten carbide threaded component is tempered in a tempering furnace, and the tempering temperature is
  • tempering time is 2 hours ⁇ 2.5 hours, in order to eliminate the internal stress of the component to prevent hydrogen embrittlement.
  • the step D specifically includes:
  • D1 performing a wire-cut end face of the threaded component of the molten nickel-based tungsten carbide layer
  • D2 drawing the internal spline through the broaching machine on the threaded component of the wire-cut end face;
  • D3 The end face and the inner hole chamfer of the CNC lathe on the threaded component of the internal spline will be controlled;
  • D4 The CNC grinding machine processed by the CNC milling machine is used for rough grinding, semi-finishing and fine grinding, respectively Use 60#, 120# and 240# diamond wheels.
  • the wear resistance and corrosion resistance of the fusion-type threaded component of the parallel twin-screw extruder of the invention is much better than that of the high-speed tool steel (W6Mo5Cr4v2), and the wear resistance of the thread component manufactured by the new material of the nickel-based tungsten carbide fusion new process is adopted. And corrosion resistance can be more than 4 times that of high speed tool steel (W6Mo5Cr4v2).
  • the medium carbon steel billet of the fusion twin-screw extruder of the present invention replaces the traditional bar machining process with precision casting, and the steel cost only needs one-eighth of the traditional machining, which can save the society. A quantity of high quality steel.
  • the fusion-type threaded component of the parallel twin-screw extruder of the invention has low manufacturing cost, reasonable structure, advanced technology, high cost performance, remarkable social and economic benefits, and wide application and application value.
  • Figure 1 Schematic diagram showing a partial cross-sectional structure of a fusion-type threaded element for a parallel twin-screw extruder of the present invention
  • Figure 2. Flow chart of a method for manufacturing a fusion-type threaded element for a parallel twin-screw extruder of the present invention.
  • the object of the present invention is to provide a parallel twin-screw extrusion with good wear resistance and corrosion resistance for plastic machinery, cable machinery, building materials machinery and feed machinery industry, which greatly reduces manufacturing and application costs and greatly improves production efficiency.
  • Nickel-based tungsten carbide fusion-type threaded components are used for the machine.
  • the melt-bonded crepe element for the parallel double-twist extruder described in the technical solution of the present invention may be a threaded sleeve or a kneading block.
  • FIG. 1 A schematic cross-sectional structural view of a portion of a fusion-type threaded member for a parallel twin-screw extruder according to the present invention can be referred to Fig. 1.
  • the present invention provides a fusion-type threaded element for a parallel twin-screw extruder, the melt-replicating element for the parallel twin-screw extruder comprising a body 101, a nickel-based tungsten carbide spray-welded layer 102
  • the nickel-based tungsten carbide spray-welding layer 102 is uniformly concentrically melted on the outer surface of the body 101, and the overall thickness of the nickel-based tungsten carbide spray-welded layer 102 is 1.8 mm to 2.3 mm.
  • the body 101 is a cast steel base material, and the cast steel base material is medium carbon steel.
  • the nickel-based tungsten carbide spray-welding layer 102 comprises: nickel 61.75% ⁇ 60.80%, tungsten carbide 33.25% ⁇ 32.7%, boron 3% ⁇ 4%, silicon 2% ⁇ 2.5%, thickness is 1.8 to 2.3 mm.
  • the inventors have found that the thickness of the spray-welded layer has a critical impact on the mechanical properties of the surface of the fused-type threaded component.
  • the inventors selected samples with a thickness of 0.5 mm, 1.0 mm, 1.5 mm, 1.8 mm, 2.1 mm, 2.3 mm, 2.4 mm, 2.5 mm, respectively, at a grinding load of 392 N and a grinding speed of 400 r/min.
  • the composition of the spray-welding layer in the sample was 60.80% of nickel, 32.7% of tungsten carbide, 4% of SJB, and 2.5% of silicon.
  • the meaning of wear and tear is the length of time that the sample becomes waste after a certain period of time.
  • the ratio of 2.4 392 400 occurs in the case of the case of the environment.
  • the brittle fracture occurs in the case of 2.5 392 400 in the condition of the case.
  • the wear resistance is similar to that of high-speed tool steel; when the thickness of the nickel-based tungsten carbide squirt layer is 1.8 mm to 2.3 mm, the wear resistance is 4 ⁇ of high-speed tool steel. 5 times.
  • the thickness of the nickel-based tungsten carbide spray-welding layer is more than 2.4 mm, the internal stress of the spray-welded layer will increase sharply, and the spray-welded layer will be cracked during the production process and become a waste product.
  • the inventors continued to study the effect of the composition of the nickel-based tungsten carbide spray-weld layer on the performance of the fusion-type threaded component.
  • the inventors selected the thickness of the nickel-based tungsten carbide spray-welding layer to 2 mm, the grinding load of 392 N, and the grinding. Speed 400r/min.
  • Comparative Example 1 Nickel 85%, tungsten carbide 10%, boron 3%, silicon 2%, tested for wear resistance, wear amount 0.00116;
  • Comparative Example 2 Nickel 75%, tungsten carbide 20%, boron 3%, silicon 2%, tested for wear resistance, wear amount 0.00057;
  • Example 5 nickel 60.80%, tungsten carbide 32.75%, boron 4%, silicon 2.5%, test wear resistance, wear amount is 0.00009;
  • Example 6 nickel 55%, tungsten carbide 40%, boron 3%, silicon 2%, test wear resistance, wear amount is 0.00003;
  • the wear resistance is only 30% of the tungsten carbide content of 33.25% ⁇ 32.7% of the spray-welded layer; but if the tungsten carbide content is higher than 33.25%, the nickel The brittleness of the base tungsten carbide spray-welding layer increases sharply, and the toughness drops sharply. Therefore, the composition of the spray-welded layer is nickel 61.75% ⁇
  • the body 101 cast steel base blank and the nickel-based tungsten carbide spray-welded layer 102 have an inter-melting layer 103 of 0.04 mm to 0.1 mm, and the inter-melting layer 103 is metallurgically bonded.
  • Mutual layer 103 Mutual layer 103
  • the volume ratio of the cast steel billet of the fusion-type threaded component is 80% to 85%, and the weight ratio is 70% to 78. %, the volume ratio of the nickel-based tungsten carbide layer is 20% to 15%, and the weight ratio is 30% to 22%.
  • the main application fields of the fusion-type threaded component for the parallel twin-screw extruder of the present invention are the plastic machinery industry, the cable machinery industry, the building materials machinery industry and the feed machinery industry, etc.
  • the technical parameters of the fusion-type threaded components are shown in the following table. :
  • the fusion-type threaded element for the parallel twin-screw extruder described in this table is a threaded sleeve.
  • the fusion-type threaded sleeve is composed of type code (L), category code (10T 35T) and its specifications.
  • the type code (L) indicates the crepe sleeve, and the category (10T ⁇ 35T) indicates the tungsten carbide content.
  • the specification refers to the diameter of the threaded sleeve.
  • the fusion-type component for the parallel twin-screw extruder described in this table is a kneading block.
  • the type of the fusion type kneading block is composed of a type code (N), a class code (10T to 35T), and a size thereof.
  • the type code ( ⁇ ) indicates the kneading block, and the category code (10T 35T) indicates the tungsten carbide content.
  • the specification refers to the outer dimensions of the kneading block.
  • Fig. 2. The manufacturing method and flow chart of the fusion-type crepe element for the twin-screw extruder of the present invention can be referred to Fig. 2. as shown in picture 2,
  • the manufacturing method of the fusion-type threaded component for the parallel double-twist extruder comprises the following steps: Step 1: Steel billet casting process: preparing wax mold, material selection, medium frequency furnace melting, casting billet, demoulding burr, tempering, Polishing
  • the second step spray welding process: cast steel billet blasting polishing, nitrogen protection, cast steel billet preheating, nickel-based tungsten carbide layer spray welding;
  • the third step the melting process: the threaded component of the spray-welded nickel-based tungsten carbide is placed in a vacuum electric furnace, nitrogen protection, setting the melting temperature, setting the melting time, setting the constant temperature and holding time, tempering ;
  • the fourth step machining process: wire cutting of the end face of the threaded component, machining of the end face and inner hole of the CNC lathe and chamfering, machining dimensions of the CNC milling machine, coarse grinding of the CNC grinding machine, semi-finishing, fine grinding.
  • wax mold According to the casting precision and technical standards of the billet, choose the American medium-temperature wax, the zirconium sand produced in Australia to make the wax mold for casting;
  • Casting billet The liquid steel molten steel which is completely melted and liquefied in the intermediate frequency furnace and fully stirred uniformly, and the wax mold billet is poured one by one;
  • tempering the precision casting of cast steel billet components, tempering in 350 ° C ⁇ 40 (TC tempering furnace, remove internal stress to prevent hydrogen embrittlement;
  • Polishing polishing the cast steel billet crepe element after tempering to remove scale and residual zirconium sand;
  • the polished cast steel billet components are sent for inspection, and the qualified products are packed for use.
  • the second step in the specific technical solution of the present invention specifically includes:
  • the cast steel base blasting polishing polishing the cast steel crepe elements to remove the surface oxide scale and burrs of the product;
  • the polished cast steel billet components are placed in a nitrogen protection bucket for nitrogen protection to prevent the threaded components from contacting the air to produce oxidation;
  • Preheating of cast steel billet take out the threaded components of the cast steel billet in the nitrogen protection bucket and quickly penetrate into the flower hair key rod, and preheat the string on the spray bed;
  • Nickel-based tungsten carbide spray welding squirting a nickel-based tungsten carbide layer on the outer surface of the body 101; 5. Inspection: inspection of the crepe elements of the sneezing nickel-based tungsten carbide layer, and the qualified product is handed over to the next melt. Complex process.
  • the third step specifically includes: - placing the threaded component of the spray-welded nickel-based tungsten carbide in a vacuum electric furnace to be melted;
  • Nitrogen gas protection The vacuum electric furnace equipped with the screw element of the sneezing nickel-based tungsten carbide is filled with nitrogen gas, and the nitrogen pressure is 0.1kg/m 3 ⁇ 0.3 kg/m 3 ;
  • the melting temperature of the nickel-based tungsten carbide threaded component in the vacuum furnace is 1000 ° C ⁇ 1200 ° C;
  • the melting time of the nickel-based tungsten carbide threaded component in the vacuum electric furnace is 8 hours -10 hours;
  • the temperature of the nickel-based tungsten carbide threaded component in the vacuum furnace is 40 minutes to 50 minutes, and the holding time is 8 hours to 9 hours;
  • Tempering The tempered nickel-based tungsten carbide threaded component is tempered in a tempering furnace, the tempering temperature is 350 ° C ⁇ 400 ° C, and the tempering time is 2 hours to 2.5 hours, thereby eliminating The internal stress of the component prevents hydrogen embrittlement; 7. Inspection: Visual inspection and instrument inspection of the nickel-based tungsten carbide component after melting and tempering, and the qualified product is packaged and transferred to the downstream machining process.
  • the wear-resisting and corrosion resistance of the fusion-type threaded component of the parallel twin-screw extruder of the invention is much better than that of the high-speed tool steel (W6Mo5Cr4 V 2 ), and the new material of the nickel-based tungsten carbide is used to make the threaded component Wear resistance and corrosion resistance up to 4 times higher than high speed tool steel (W6Mo5Cr4v2).
  • the medium carbon steel billet of the fusion twin-screw extruder of the present invention replaces the traditional bar machining process with precision casting, and the steel cost only needs one-eighth of the traditional machining, which can save a lot of society. High quality steel.
  • the fusion-type threaded component of the parallel twin-screw extruder of the invention has low manufacturing cost, reasonable structure, advanced technology, high cost performance, remarkable social and economic benefits, and wide application and application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

一种平行双螺杆挤出机用熔复型螺紋元件及其制造方法
【技术领域】
本发明涉及熔复型螺纹元件及其制造方法, 特别涉及一种喷焊、熔复行业和 机械加工行业内应用的平行双螺杆挤出机用熔复型螺纹元件及其制造方法。 【背景技术】
随着我国塑料行业、 线缆行业、建材行业和饲料行业的发展, 在大量使用平 行双螺杆挤出机后, 大大地改变了单嫘杆挤出机粉碎, 输送效率低、搅拌均匀性 差、 产能不高等缺陷。
但由于平行双螺杆挤出机的不断升级换代 (转速的不断提高), 以及在应用 中需要大量地使用尼龙、玻纤、碳酸钙等高磨损原料, 因此对平行双螺杆挤出机 用螺纹元件的耐磨和耐腐蚀性能提出了更高的需求。
目前国内的平行双螺杆挤出机行业配置的最优质的高速工具钢 (W6Mo5Cr4v2)螺纹元件, 在含有尼龙、 玻纤和碳酸钙材料介质的环境中使用 1〜2个月就会遭磨损和腐蚀而需停机更换, 使用寿命非常低。
【发明内容】
为了解决现有技术中存在的平行双螺杆挤出机用的螺纹元件耐磨和耐腐蚀 性能较差, 使用寿命短这一技术问题, 本发明提供了一种髙耐磨和高耐腐蚀性能 的平行双螺杆挤出机用熔复型螺纹元件。
本发明还提供了所述平行双螺杆挤出机用熔复型螺纹元件的制造方法。 本发明解决现有技术问题所釆用的技术方案为:提供了一种平行双螺杆挤出 机用熔复型螺紋元件,所述平行双螺杆挤出机用熔复型螺纹元件包括本体、镍基 碳化钨喷焊层; 所述镍基碳化钨喷焊层均匀同心地熔复在所述本体的外表面, 所 述镍基碳化钨喷悍层的整体厚度为 1.8毫米〜 2.3毫米。 根据本发明的一优选技 术方案: 所述本体为铸钢基坯, 所述铸钢基坯的材料为中碳钢。
根据本发明的一优选技术方案: 所述镍基碳化钨喷焊层包括: 镍 61.75%~60.8%、 碳化钨 33.25%~32.7%、 硼 3%~4%、 硅 2%~2.5%, 厚度为 1.8〜 2.3毫米。 根据本发明的一优选技术方案: 所述本体与所述镍基碳化钨喷焊层之间有 0.04毫米〜 0.1毫米的扩散层。
本发明还提供了所述平行双螺杆挤出机用熔复型螺纹元件的制造方法,所述 平行双螺杆挤出机用熔复型螺纹元件的制造方法包括步骤:
A: 钢坯铸造工艺: 制作腊模、 选材、 中频炉熔炼、 铸造钢坯、 脱模打毛剌、 回火、 抛光;
B: 喷焊工艺: 铸钢基坯喷砂抛光、 氮气保护、 铸钢基坯预热、 镍基碳化钨 层喷焊;
C : 熔复工艺: 将已喷焊镍基碳化钨的螺纹元件置于真空电炉内、 冲氮气保 护、 设定熔复温度、 设定熔复时间、 设定恒温及保温时间、 回火;
D: 机械加工工艺: 螺纹元件端面的线切割、 拉床拉制内花键、 数控车床加 工端面和内孔及倒角、 数控磨床粗磨、 半精磨、 精磨。
根据本发明的一优选技术方案: 所述步骤 A具体包括:
A1 : 制作腊模: 根据钢坯的铸造精度标准, 选择美国产中温腊, 澳大利亚 产锆镱砂制作浇铸用腊模;
A2: 选材: 根据钢坯的铸造精度及技术规范, 选择符合铸钢坯质量要求的 钢锭;
A3: 中频炉熔炼: 将选取的铸造用钢锭投料到中频炉加温熔炼, 并充分搅 拌均匀, 炉温控制在 1400°C~1500°C ;
A4:铸造钢坯:将中频炉中完全熔解液化且充分搅拌均匀的液态钢水熔液, 逐个浇捣腊模钢坯;
A5 : 脱模打毛刺: 待浇铸成型的铸钢坯充分冷却后脱模, 清除残留在铸钢 坯上的锆镱砂和铸钢坯毛剌;
A6: 回火: 将精密铸造的铸钢坯螺纹元件, 在 350 °C~400°C的回火炉中回 火, 清除内应力防止氢脆;
A7: 抛光: 将经过回火后的铸钢坯螺纹元件进行抛光, 除去氧化皮和残留 的锆镱砂。
根据本发明的一优选技术方案: 所述步骤 B具体包括:
B1 : 铸钢基坯喷砂抛光: 将铸钢坯螺纹元件进行抛光, 除去产品表面氧化 皮和毛剌;
B2: 氮气保护: 将抛光好的铸钢坯嫘紋元件置于氮气保护桶内进行氮气保 护, 防止螺纹元件接触空气产生氧化;
B3 : 铸钢坯预热: 将氮气保护桶内的铸钢坯螺纹元件取出迅速穿入花毛键 杆, 成串上喷床进行预热;
B4: 镍基碳化钨层喷焊: 在本体外表面喷焊镍基碳化钨层。
根据本发明的一优选技术方案: 所述步骤 C具体包括:
C 1 : 将已喷焊镍基碳化钨的螺纹元件置于真空电炉内待熔复;
C2: 冲氮气保护: 向装有已喷焊镍基碳化钨的螺纹元件的真空电炉内充注 氮气, 氮气压力为 0.1kg m3~0.3 kg/ m33
C3 : 设定熔复温度: 镍基碳化钨螺纹元件在真空电炉内的熔复温度为
1000°C~1200°C ;
C4: 设定熔复时间: 镍基碳化钨螺紋元件在真空电炉内的熔复及自然冷却 时间为 8小时〜 10小时;
C5 :设定恒温及保温时间: 镍基碳化钨螺纹元件在真空电炉内熔复及恒温时 间为 40分钟〜 50分钟, 在保温的状态下自然冷却, 保温时间为 8小时〜 9小时; C6: 回火: 将熔复后的镍基碳化钨螺纹元件在回火炉中回火, 回火温度为
350°C~400°C , 回火的时间为 2小时〜 2.5小时, 以此消除元件的内应力防止氢脆。
根据本发明的一优选技术方案: 所述步骤 D具体包括:
D1 : 将经过熔复镍基碳化钨层的螺纹元件合格品进行线切割加工端面; D2: 将经过线切割端面的螺纹元件上的拉床拉制内花键;
D3 : 将拉控好内花键的螺纹元件上数控车床加工端面和内孔倒角; D4: 将经过数控铣床加工后的螺纹元件上数控磨床进行粗磨、 半精磨、 精 磨加工, 分别选用 60#、 120#和 240#金刚砂轮。
本发明平行双螺杆挤出机用熔复型螺纹元件耐磨性及耐腐蚀性能大大优于 高速工具钢 (W6Mo5Cr4v2 ), 采用的镍基碳化钨熔复新工艺新材料制造的螺纹 元件耐磨性能和耐腐蚀性能可达到高速工具钢 (W6Mo5Cr4v2) 的 4倍以上。
本发明平行双螺杆挤出机用熔复型螺纹元件的中碳钢基坯用精密铸造代替 传统的棒材机加工工艺, 钢材成本仅需传统机加工的八分之一, 可为社会节约大 量的优质钢材。
本发明平行双螺杆挤出机用熔复型螺紋元件制造成本低, 结构合理、工艺先 进, 性价比高, 社会效益和经济效益十分显著, 具有广泛的推广和应用价值。 【附图说明】
图 1.本发明平行双螺杆挤出机用熔复型螺紋元件局部剖面结构示意图; 图 2.本发明平行双螺杆挤出机用熔复型螺紋元件制造方法流程图。
【具体实施方式】
以下结合附图对本发明技术方案进行详细说明。
本发明的目的在于: 为塑料机械, 线缆机械, 建材机械和饲料机械行业提供 一种具有良好耐磨和耐腐蚀性能的,具有大幅降低制造和应用成本, 大幅提高生 产效率的平行双螺杆挤出机用镍基碳化钨熔复型螺紋元件。
本发明技术方案中所述的平行双嫘杆挤出机用熔复型嫘紋元件可以为螺紋 套或捏合块。
本发明所述的平行双螺杆挤出机用熔复型螺紋元件周部剖面结构示意图可 以参阅图 1。 如图 1所示, 本发明提供了一种平行双螺杆挤出机用熔复型螺纹元 件,所述平行双螺杆挤出机用熔复型元件包括本体 101、镍基碳化钨喷焊层 102; 所述镍基碳化钨喷焊层 102均匀同心的熔复在所述本体 101的外表面,所述镍基 碳化钨喷焊层 102的整体厚度为 1.8亳米〜 2.3亳米。
在本发明的优选技术方案中,所述本体 101为铸钢基坯,所述铸钢基坯的材 料为中碳钢。
在本发明的技术方案中所述镍基碳化钨喷焊层 102包括:镍 61.75%~60.80%、 碳化钨 33.25%~32.7%、 硼 3%~4%、 硅 2%~2.5%, 厚度为 1.8〜2.3毫米。
发明人发现, 喷焊层的厚度对熔复型螺紋元件表面机械性能具有关键的影 响。
发明人在研磨载荷 392N, 研磨速度 400r/min的情况下, 分别选取喷焊层厚 度为 0.5毫米、 1.0毫米、 1.5毫米、 1.8毫米、 2.1毫米、 2.3毫米、 2.4毫米、 2.5 亳米的试样进行磨损实验, 试样中喷焊层成分为镍 60.80% , 碳化钨 32.7%, SJB 4%、 硅 2.5%。 磨损吋间含义为试样经历一定时长后成为废品的时长。
上述实施例见表 1。 厚度 研磨载荷 研磨速度 磨损吋间 (h0 耐磨性能 其他 (N ) (r/min) 对 比 0.5 392 400 180 碳化钨喷焊层耐磨 例 1 性一般
对 比 1.0 392 400 200 碳化钨喷焊层耐磨 例 2 性一般
对 比 1.5 392 400 240 碳化钨喷焊层耐磨 例 3 性一般
实 施 1.8 392 400 880 碳化钨喷焊层耐磨 例 4 性优良
实 施 2.0 392 400 1000 碳化钨喷焊层耐磨 例 5 性优良
实 施 2.3 392 400 950 碳化钨喷焊层耐磨 例 6 性优良
对 比 2.4 392 400 在工况环 例 7 境中发生 脆裂 对 比 2.5 392 400 在工况环 例 7 境中发生 脆裂 表 1
镍基碳化钨喷焊层厚度小于 0.5-1.5毫米时, 耐磨性能近似于高速工具钢; 镍基碳化钨喷悍层厚度在 1.8毫米〜 2.3毫米时, 耐磨性能为高速工具钢的 4~5 倍。但当镍基碳化钨喷焊层厚度大于 2.4毫米以上时,喷焊层内应力会急剧增加, 喷焊层在生产工艺过程中会产生产生龟裂, 成为废品。
发明人继续研究了镍基碳化钨喷焊层成分对熔复型螺紋元件性能的影响。下 列实验中, 发明人将镍基碳化钨喷焊层厚度选取为 2mm, 研磨载荷 392N, 研磨 速度 400r/min。
对比例 1 : 镍 85%、 碳化钨 10%、 硼 3%、 硅 2%, 测试耐磨性能, 磨损量为 0.00116;
对比例 2: 镍 75%、 碳化钨 20%、 硼 3%、 硅 2%, 测试耐磨性能, 磨损量为 0.00057;
对比例 3 : 镍 65%、 碳化钨 30%、 硼 3%、 硅 2%, 测试耐磨性能, 磨损量为 0.00018;
对比例 4: 镍 61.75%、 碳化钨 33.25%、 硼 3%、 硅 2%, 测试耐磨性能, 磨 损量为 0.00014;
实施例 5 : 镍 60.80%、 碳化钨 32.75%、 硼 4%、 硅 2.5%, 测试耐磨性能, 磨损量为 0.00009;
实施例 6: 镍 55%、 碳化钨 40%、 硼 3%、 硅 2%, 测试耐磨性能, 磨损量为 0.00003;
上述实施例见表 2。
材料 研 磨 硏 磨 起始重 磨后重量 磨损量 磨损体 与 W6M05 4V2 其他 载荷 速度 ) (g) (g) 积 耐磨性能对比
W6M05Cr 392 400 35.2051 35.1631 0.0420 0.00119
4V2
对 比 Ni 85% 392 400 35.2054 35.1718 0.0410 0.00116 碳化钨喷焊层耐 例 1 WC2 10% 磨性一般
对 比 Ni 75% 392 400 35.2101 35.1900 0.0201 0.00057 碳化钨喷焊层耐 例 2 C2 20% 磨性一般
对 比 Ni 65% 392 400 35.3212 35.3147 0.0065 0.00018 碳化钨喷焊层耐 例 3 WC2 30% 磨性优良
实施 Ni 61.75% 392 400 35.1918 35.1868 0.0050 0.00014 碳化钨喷焊层耐 例 4 WC2 磨性优良
33.25%
实施 Ni 60.80% 392 400 35.2353 35.2321 0.0032 0.00009 碳化钨喷焊层耐 例 5 C2 磨性优良
32.7%
对 比 Ni 55% 392 400 35.2713 35.2701 0.0012 0.00003 在工况环 例 6 WC2 40% 境中发生 脆裂 对 比 Ni 50% 392 400 35.2713 35.2701 0.0012 0.00003 在工况环 例 7 WC2 45% 境中发生 脆裂 表 2
镍基碳化钨喷焊层的碳化钨含量低于 32.7%时, 耐磨性能仅为碳化钨含量 33.25%〜32.7%喷焊层的 30%;但如碳化钨含量高于 33.25%以上时,镍基碳化钨 喷焊层的脆性会急剧增加, 韧性会急剧下降。 因此, 喷焊层成分为镍 61.75%〜
60.80% 碳化钨 33.25%〜32.7%、 硼 3%〜4%、 硅 2%〜2.5%时, 熔复型螺纹元 件机械性能最优。
在本发明的技术方案中所述本体 101铸钢基坯与所述镍基碳化钨喷焊层 102 之间有 0.04毫米〜 0.1毫米的互熔层 103 , 该互熔层 103为冶金态结合的互熔层 103
为使熔复型螺纹元件具有良好的互熔态结合性能和耐磨、耐腐蚀性能, 所述 的熔复型螺纹元件的铸钢坯体积比为 80%〜85%, 重量比为 70%〜78%, 镍基碳化 钨层的体积比为 20%~15%, 重量比为 30%~22%。
本发明平行双螺杆挤出机用熔复型螺纹元件的主要应用领域为塑料机械行 业、 线缆机械行业, 建材机械行业和饲料机械行业等, 熔复型螺纹元件的各项技 术参数见下表:
此表中所述的平行双螺杆挤出机用熔复型螺纹元件为螺纹套。
Figure imgf000010_0001
说明:
熔复型螺纹套由型式代号 (L)、 类别代号 (10T 35T)及其规格尺寸构成。 其中型式代号 (L) 表示嫘纹套, 类别 (10T~35T ) 表示碳化钨含量, 规格指螺 纹套外型直径尺寸。
此表中所述的平行双螺杆挤出机用熔复型元件为捏合块。
Figure imgf000010_0002
说明: 熔复型捏合块的型号由型式代号 (N)、 类别代号 (10T〜35T) 及其规格尺 寸构成。 其中型式代号 (Ν) 表示捏合块, 类别代号 (10T 35T) 表示碳化钨含 量, 规格指捏合块的外型尺寸。
本发明 行双螺杆挤出机用熔复型嫘紋元件制造方法及流程图可以参阅图 2。 如图 2所示,
所述平行双嫘杆挤出机用熔复型螺纹元件的制造方法包括步骤: 第一步: 钢坯铸造工艺: 制作腊模、 选材、 中频炉熔炼、 铸造钢坯、 脱模打 毛刺、 回火、 抛光;
第二步: 喷焊工艺: 铸钢坯喷砂抛光、 氮气保护、 铸钢坯预热、 镍基碳化钨 层喷焊;
第三步: 熔复工艺: 将已喷焊镍基碳化钨的螺纹元件置于真空电炉内、 冲氮 气保护、 设定熔复温度、 设定熔复时间、 设定恒温及保温时间、 回火;
第四步: 机械加工工艺: 螺纹元件端面的线切割、数控车床加工端面和内孔 及倒角、 数控铣床加工外型尺寸、 数控磨床粗磨、 半精磨、 精磨。
在本发明的具体技术方案中所述步骤第一步具体包括:
一、 制作腊模: 根据钢坯的铸造精度及技术标准, 选择美国产中温腊, 澳 大利亚产锆镱砂制作浇铸用腊模;
二、选材:根据钢坯的铸造精度技术规范,选择符合铸钢坯质量要求的钢锭, 实践中优选 45号钢;
三、 中频炉熔炼: 将选取的铸造用钢锭投料到中频炉加温熔炼, 并充分搅 拌均匀, 炉温控制在 1400°C~1500°C ;
四、铸造钢坯: 将中频炉中完全熔解液化且充分搅拌均匀的液态钢水熔液, 逐个浇捣腊模钢坯;
五、 脱模打毛刺: 待浇铸成型的铸钢坯充分冷却后脱模, 清除残留在铸钢 坯上的锆镱砂和铸钢坯毛刺;
六、 回火: 将精密铸造的铸钢坯螺纹元件, 在 350°C~40(TC的回火炉中回 火, 清除内应力防止氢脆;
七、抛光: 将经过回火后的铸钢坯嫘纹元件进行抛光, 除去氧化皮和残留的 锆镱砂;
八、 检验: 将抛光后的铸钢坯螺纹元件送交检验, 合格产品装箱待用。 在本发明的具体技术方案中所述第二步具体包括:
一、 铸钢基坯喷砂抛光: 将铸钢坯嫘纹元件进行抛光, 除去产品表面氧化 皮和毛剌;
二、 氮气保护: 将抛光好的铸钢坯螺纹元件置于氮气保护桶内进行氮气保 护, 防止螺纹元件接触空气产生氧化;
三、铸钢坯预热:将氮气保护桶内的铸钢坯螺纹元件取出迅速穿入花毛键杆, 成串上喷床进行预热;
四、 镍基碳化钨层喷焊: 在本体 101外表面喷悍镍基碳化钨层; 五、检验: 对喷悍镍基碳化钨层的嫘纹元件进行检验, 合格产品装箱移交下 道熔复工序。
在本发明的具体技术方案中所述第三步具体包括- 一、 将已喷焊镍基碳化钨的螺纹元件置于真空电炉内待熔复;
二、冲氮气保护: 向装有已喷悍镍基碳化钨的螺纹元件的真空电炉内充注氮 气, 氮气压力为 0.1kg/m3~0.3 kg/m3
三、 设定熔复温度: 镍基碳化钨螺纹元件在真空电炉内的熔复温度为 1000°C〜1200°C ;
四、设定熔复时间:镍基碳化钨螺纹元件在真空电炉内的熔复时间为 8小时 -10小时;
五、设定恒温及保温时间: 镍基碳化钨螺紋元件在真空电炉内恒温时间为 40 分钟〜 50分钟, 保温时间为 8小时〜 9小时;
六、 回火: 将熔复后的镍基碳化钨螺纹元件在回火炉中回火, 回火的温度为 350°C~400°C , 回火的时间为 2小时〜 2.5小时, 以此消除元件的内应力防止氢脆; 七、检验: 对熔复和回火后的镍基碳化钨元件进行目測和仪器检验, 合格产 品装箱流转下道机加工工序。
在本发明的具体技术方案中所述第四步具体包括:
一、 将经过熔复镍基碳化钨层的螺紋元件合格品进行线切割加工端面; 二、 将经过线切割后的螺紋元件上拉床拉控内花键;
三、 将拉控好内花键的螺纹元件上数控车床加工端面和内孔及倒角; 四、将经过数控铣床加工后的螺纹元件上数控磨床进行粗磨、 半精磨、精磨 加工, 分别选用 60#、 120#和 240#金刚砂轮。
五、 成品检验: 对经过熔复和机械加工后的元件成品逐个进行检验、 检测、 分流合格和不合格产品;
六、 对检验、 检测合格的熔复型螺纹元件产品进行分类包装入库。
本发明平行双螺杆挤出机用熔复型螺纹元件耐磨性及耐腐蚀性能大大优于 高速工具钢 (W6Mo5Cr4V2 ), 采用的镍基碳化钨熔复新工艺新材料使得该螺纹 元件的耐磨性能和耐腐蚀性能可达到高速工具钢 (W6Mo5Cr4v2) 的 4倍以上。
本发明平行双螺杆挤出机用熔复型螺纹元件的中碳钢基坯用精密铸造代替 传统的棒材机加工工艺, 钢材成本仅需传统机加工的八分之一, 可为社会节约大 量的优质钢材。
本发明平行双螺杆挤出机用熔复型螺纹元件制造成本低, 结构合理、工艺先 进, 性价比高, 社会效益和经济效益十分显著, 具有广泛的推广和应用价值。
以上内容是结合具体的优选技术方案对本发明所作的进一步详细说明,不能 认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都 应当视为属于本发明的保护范围。

Claims

权利要求书
1. 一种平行双螺杆挤出机用熔复型嫘纹元件, 其特征在于:
所述平行双螺杆挤出机用熔复型螺纹元件包括本体 (101 ) 和镍基碳化钨喷 焊层 (102);
所述镍基碳化钨喷焊层(102)均匀同心地熔复在所述本体(101 )的外表面, 所述镍基碳化钨喷焊层 (102) 的整体厚度为 1.8亳米〜 2.3亳米。
2. 根据权利要求 1所述平行双嫘杆挤出机用熔复型螺纹元件, 其特征在于 所述本体 (101 ) 为铸钢基坯, 所述铸钢基坯的材料为中碳钢。
3.根据权利要求 1所述平行双螺杆挤出机用熔复型螺纹元件, 其特征在于: 所述镍基碳化钨喷焊层 ( 102 ) 包括: 镍 61.75%~60.80%、 碳化钨
33.25%~32.7%、 硼 3%~4%、 硅 2%~2.5%。
4.根据权利要求 1所述平行双螺杆挤出机用熔复型螺纹元件, 其特征在于: 所述本体 (101 ) 与所述镍基碳化钨喷焊层 (102) 之间有 0.04毫米〜 0.1毫 米的扩散层 ( 103 )。
5.—种制造如权利要求 1所述平行双螺杆挤出机用熔复型螺紋元件的方法, 其特征在于:
所述平行双螺杆挤出机用熔复型螺纹元件的制造方法包括步骤:
A: 钢坯铸造工艺: 制作腊模、 选材、 中频炉熔炼、 铸造钢坯、 脱模打毛剌、 回火、 抛光;
B: 喷焊工艺: 铸钢基坯喷砂抛光、 氮气保护、 铸钢坯预热、 喷焊镍基碳化 钨层;
C: 熔复工艺: 将已喷焊镍基碳化钨层的螺纹元件置于真空电炉内、 冲氮气 保护、 设定熔复温度、 设定熔复时间、 设定恒温及保温时间、 回火;
D: 机械加工工艺: 螺纹元件端面线切割、 数控车床加工螺纹端面和内孔及 倒角、数控铣床加工螺纹元件外型尺寸、数控磨床粗磨、半精磨、精磨螺紋元件。
6.根据权利要求 5所述平行双螺杆挤出机用熔复型螺纹元件的制造方法, 其 特征在于- 所述步骤 A具体包括:
A1 : 制作腊模: 根据钢坯的铸造精度标准, 选择美国产中温腊, 澳大利亚 产锆镱砂制作浇铸用腊模;
A2: 选材: 根据钢坯的铸造精度及技术规范, 选择符合铸钢坯质量要求的 钢锭;
A3: 中频炉熔炼: 将选取的铸造用钢锭投料到中频炉内加温熔炼, 并充分 搅拌均匀, 炉温控制在 1400°C~1500°C ;
A4: 铸造钢坯: 将中频炉中完全熔解液化且充分搅拌均匀的液态钢水熔液, 逐个浇捣腊模钢坯;
A5 : 脱模打毛刺: 待浇铸成型的铸钢坯充分冷却后脱模, 清除残留在铸钢 坯上的锆镜砂和铸钢坯毛剌;
A6: 回火:将精密铸造的铸钢坯螺纹元件,在 350°C〜400°C的回火炉中回火, 清除内应力防止氢脆;
A7: 抛光: 将经过回火后的铸钢坯螺纹元件进行抛光, 除去氧化皮和残留 的锆镱砂。
7.根据权利要求 5所述平行双螺杆挤出机用熔复型螺纹元件的制造方法, 其 特征在于:
所述歩骤 B具体包括:
B1 : 铸钢基坯喷砂抛光: 将铸钢坯螺纹元件进行抛光, 除去产品表面氧化 皮和毛剌;
B2: 氮气保护: 将抛光好的铸钢坯螺纹元件置于氮气保护桶内进行氮气保 护, 防止螺紋元件接触空气产生氧化;
B3 : 铸钢坯预热: 将氮气保护桶内的铸钢坯螺纹元件取出迅速穿入花键杆, 成串上喷床进行预热;
B4: 镍基碳化钨层喷焊: 在铸钢基坯螺纹元件表面喷镍基碳化钨层。
8.根据权利要求 5所述平行双螺杆挤出机用熔复型螺纹元件的制造方法, 其 特征在于:
所述步骤 C具体包括:
C1: 将已喷焊镍基碳化钨层螺紋元件置于真空电炉内待熔复;
C2: 冲氮气保护: 向装有已喷焊镍基碳化钨的螺纹元件的真空电炉内充注 氮气, 氮气压力为 0. Ikg/m3~0.3 kg/ m3; C3 : 设定熔复温度: 镍基碳化钨螺纹元件在真空电炉内的熔复温度为 1000 °C~1200°C ;
C4: 设定熔复时间: 镍基碳化钨螺纹元件在真空电炉内的熔复及自然冷却 时间为 8小时〜 10小时;
C5 :设定恒温及保温时间: 镍基碳化钨螺纹元件在真空电炉内熔复及恒温时 间为 40分钟〜 50分钟, 在保温的状态下自然冷却, 保温时间为 8小时〜 9小时;
C6: 回火: 将熔复后的镍基碳化钨螺纹元件在回火炉中回火, 回火温度为 350'C~400°C, 回火的时间为 2小时〜 2.5小时, 消除元件的内应力防止氢脆。
9.根据权利要求 5所述平行双螺杆挤出机用熔复型螺纹元件的制造方法, 其 特征在于:
所述步骤 D具体包括:
D1 : 将经过熔复镍基碳化钨层的螺纹元件合格品进行线切割加工端面; D2: 将经过线切割端面的螺纹元件上的拉床拉制内花键;
D3 : 将拉控好内花键的螺紋元件上数控车床加工端面和内孔及倒角; D4: 将经过线切割和数控铣床加工后的螺纹元件上数控磨床进行粗磨、 半 精磨、 精磨加工, 分别选用 60#、 120#和 240#金刚砂轮。
PCT/CN2011/073718 2010-07-26 2011-05-06 一种平行双螺杆挤出机用熔复型螺纹元件及其制造方法 WO2012013058A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/810,188 US20130107657A1 (en) 2010-07-26 2011-05-06 Remelting type thread element for parallel dual-screw extruder and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102372049A CN101905802B (zh) 2010-07-26 2010-07-26 一种制造平行双螺杆挤出机用熔复型螺纹元件的方法
CN201010237204.9 2010-07-26

Publications (1)

Publication Number Publication Date
WO2012013058A1 true WO2012013058A1 (zh) 2012-02-02

Family

ID=43261430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073718 WO2012013058A1 (zh) 2010-07-26 2011-05-06 一种平行双螺杆挤出机用熔复型螺纹元件及其制造方法

Country Status (3)

Country Link
US (1) US20130107657A1 (zh)
CN (1) CN101905802B (zh)
WO (1) WO2012013058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103692635A (zh) * 2013-12-18 2014-04-02 章鹏 双螺杆机用高耐磨性能的硼化铁合金螺杆元件及其制造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905802B (zh) * 2010-07-26 2012-05-30 章鹏 一种制造平行双螺杆挤出机用熔复型螺纹元件的方法
CN102825424B (zh) * 2011-06-17 2016-01-20 南京梅山冶金发展有限公司 一种高性能垫板的生产工艺
CN103203599B (zh) * 2013-04-03 2017-07-28 威海智德真空科技有限公司 一种不锈钢中空螺杆的制造方法
CN103398174A (zh) * 2013-07-29 2013-11-20 福建鑫久铝合金压铸有限公司 一种高速往复运行活塞缸缸体的制作方法及结构
CN106735229B (zh) * 2017-01-06 2018-10-09 昆山中士设备工业有限公司 一种螺杆及其制备方法
JP6822881B2 (ja) * 2017-03-27 2021-01-27 株式会社神戸製鋼所 積層造形物の製造方法及び製造システム
CN107498269B (zh) * 2017-09-27 2019-04-30 中国葛洲坝集团机械船舶有限公司 一种适用于干式船厢室的大型承船厢制造方法
CN108890227B (zh) * 2018-07-06 2019-12-17 江西洪都航空工业集团有限责任公司 一种工字型材数控加工方法
CN109058267A (zh) * 2018-08-15 2018-12-21 全椒县全动机械有限公司 一种内燃机简易螺钉座及其制造工艺
CN112828245B (zh) * 2020-12-31 2022-12-09 马鞍山市华威冶金机械有限公司 一种生产挤塑机筒体螺纹套的制造方法及其制造模具
CN113774310A (zh) * 2021-08-11 2021-12-10 佛山桃园先进制造研究院 一种螺杆涂层的喷焊方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136230A (en) * 1976-07-29 1979-01-23 Eutectic Corporation Wear resistant alloy coating containing tungsten carbide
JPH0857923A (ja) * 1994-08-18 1996-03-05 Hitachi Metals Ltd 耐食性、耐摩耗性、耐焼付性に優れたスクリュ
CN1318460A (zh) * 2000-04-18 2001-10-24 南嵘机械厂股份有限公司 注射成型机进料螺杆制造方法
CN200946617Y (zh) * 2006-04-28 2007-09-12 邓俊杰 一种合金螺杆
US20070243283A1 (en) * 2006-04-13 2007-10-18 Ibiden Co., Ltd. Extrusion-molding machine, extrusion-molding method, and method for manufacturing honeycomb structured body
CN101457335A (zh) * 2007-12-10 2009-06-17 恩格尔奥地利有限公司 用于制造被覆层的塑化螺杆的方法
CN101466523A (zh) * 2006-06-16 2009-06-24 泰森挤出技术有限公司 用于制造挤压机的螺杆的方法以及该螺杆
CN201325158Y (zh) * 2008-12-23 2009-10-14 舟山市汉邦机械科技有限公司 有硬质涂层的螺杆
CN101905802A (zh) * 2010-07-26 2010-12-08 章鹏 一种平行双螺杆挤出机用熔复型螺纹元件及其制造方法
CN201721924U (zh) * 2010-07-26 2011-01-26 章鹏 一种平行双螺杆挤出机用熔复型螺纹元件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266209A (ja) * 1985-05-20 1986-11-25 Hitachi Metals Ltd 非磁性耐食、耐摩スクリユ−
JP2008001081A (ja) * 2006-05-22 2008-01-10 Fujifilm Corp セルロース系樹脂フィルム及びその製造方法
CN201473021U (zh) * 2009-08-24 2010-05-19 范立国 一种绞龙

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136230A (en) * 1976-07-29 1979-01-23 Eutectic Corporation Wear resistant alloy coating containing tungsten carbide
JPH0857923A (ja) * 1994-08-18 1996-03-05 Hitachi Metals Ltd 耐食性、耐摩耗性、耐焼付性に優れたスクリュ
CN1318460A (zh) * 2000-04-18 2001-10-24 南嵘机械厂股份有限公司 注射成型机进料螺杆制造方法
US20070243283A1 (en) * 2006-04-13 2007-10-18 Ibiden Co., Ltd. Extrusion-molding machine, extrusion-molding method, and method for manufacturing honeycomb structured body
CN200946617Y (zh) * 2006-04-28 2007-09-12 邓俊杰 一种合金螺杆
CN101466523A (zh) * 2006-06-16 2009-06-24 泰森挤出技术有限公司 用于制造挤压机的螺杆的方法以及该螺杆
CN101457335A (zh) * 2007-12-10 2009-06-17 恩格尔奥地利有限公司 用于制造被覆层的塑化螺杆的方法
CN201325158Y (zh) * 2008-12-23 2009-10-14 舟山市汉邦机械科技有限公司 有硬质涂层的螺杆
CN101905802A (zh) * 2010-07-26 2010-12-08 章鹏 一种平行双螺杆挤出机用熔复型螺纹元件及其制造方法
CN201721924U (zh) * 2010-07-26 2011-01-26 章鹏 一种平行双螺杆挤出机用熔复型螺纹元件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103692635A (zh) * 2013-12-18 2014-04-02 章鹏 双螺杆机用高耐磨性能的硼化铁合金螺杆元件及其制造方法

Also Published As

Publication number Publication date
US20130107657A1 (en) 2013-05-02
CN101905802B (zh) 2012-05-30
CN101905802A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
WO2012013058A1 (zh) 一种平行双螺杆挤出机用熔复型螺纹元件及其制造方法
CN105603418B (zh) 利用熔覆粉末在激光熔覆中提高42CrMo钢显微硬度的方法
CN105500223B (zh) 高速高效金刚石磨轮及其制备方法和使用方法
CN102773991B (zh) 金属螺杆及其制备方法
CN107119207B (zh) 一种非计量比TiC增强铜基复合材料及其制备方法
CN110819866B (zh) 一种WC-Co-B4C硬质合金的制备方法
CN102717507A (zh) 金属机筒及其制作方法
CN104278193B (zh) 一种合金铸铁玻璃模具口模材料及其制备方法
CN111910136B (zh) 一种三维纤维骨架韧化金属陶瓷及其制备方法
CN102974825A (zh) 一种钻头的制造方法
CN112264941A (zh) 一种新型超硬磨料群及其制备方法
CN102230173B (zh) 平行双螺杆挤出机用全披覆熔覆性螺纹元件
CN102503462B (zh) 金属连续铸造复合渣线长水口及其制备方法
CN104440610A (zh) 高精度滚筒式树脂结合剂金刚石砂轮及其制备方法
TWI387656B (zh) Preparation of Low Lead Brass Alloy and Its
CN103553621B (zh) 碳化硅质氢收集器的制备方法
CN105839035A (zh) 一种纳米氧化铝基金属陶瓷模具材料及其制备方法
CN113652587B (zh) 一种包含碳化钛基粉末冶金产品的复合铸造产品
CN102172960A (zh) 一种碳化硅陶瓷喷砂嘴的粉末注射成形方法
CN201721924U (zh) 一种平行双螺杆挤出机用熔复型螺纹元件
CN104357725B (zh) 一种耐高温金属陶瓷模具材料
CN111112569B (zh) 一种金属基陶瓷复合材料零件的加工工艺
CN103160750B (zh) 一种棒线材用均质导辊及其加工工艺
CN103242943B (zh) 金属防护润滑剂、制备方法及其应用
CN103480668A (zh) 一种新型拉丝模模芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13810188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11811760

Country of ref document: EP

Kind code of ref document: A1