WO2012008516A1 - 無人車両の走行システムおよびその走行制御方法 - Google Patents

無人車両の走行システムおよびその走行制御方法 Download PDF

Info

Publication number
WO2012008516A1
WO2012008516A1 PCT/JP2011/066060 JP2011066060W WO2012008516A1 WO 2012008516 A1 WO2012008516 A1 WO 2012008516A1 JP 2011066060 W JP2011066060 W JP 2011066060W WO 2012008516 A1 WO2012008516 A1 WO 2012008516A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading point
loading
unmanned vehicle
point
loader
Prior art date
Application number
PCT/JP2011/066060
Other languages
English (en)
French (fr)
Inventor
幸司 竹田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US13/634,446 priority Critical patent/US8843311B2/en
Priority to AU2011277414A priority patent/AU2011277414B2/en
Priority to CA2793055A priority patent/CA2793055C/en
Publication of WO2012008516A1 publication Critical patent/WO2012008516A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/02Travelling-gear, e.g. associated with slewing gears
    • E02F9/024Travelling-gear, e.g. associated with slewing gears with laterally or vertically adjustable wheels or tracks
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path

Definitions

  • the present invention relates to an unmanned vehicle traveling system and a traveling control method thereof, and more particularly, to an unmanned vehicle traveling system for traveling an unmanned vehicle along a traveling route to a loading point where a loader exists and a traveling control method thereof. It is.
  • Off-road dump trucks run on wheels driven by a diesel engine, or operate a generator by driving a diesel engine, drive an electric motor with the generated power, and use the driving force of the electric motor as a wheel. There is something that travels.
  • the work site where off-road dump trucks run has various areas such as loading and unloading sites. Each of these areas is connected by a service line called a hall load or a hall load called an access load from each other by a lead-in line or an intersection.
  • a loading area which is one of the areas, is a place where soil and sand are loaded into an off-road dump truck (referred to as an unmanned vehicle in the present invention).
  • Work vehicles such as excavators (for example, hydraulic excavators), backhoes, and wheel loaders ( In the present invention, excavation work by a loader) and loading work such as earth and sand on unmanned vehicles are performed.
  • FIG. 12 shows a case where one-side loading is performed in the loading field 1.
  • the one-side loading means that a traveling route 10 for traveling the unmanned vehicle 20 from the entrance point 11 of the loading place 1 to the loading point 12 where the loading machine 30 exists is generated and generated.
  • This is a loading operation in which the unmanned vehicle 20 is travel-controlled along the traveling route 10 and the load is loaded by the loader 30 at the loading point 12.
  • the one-side loading is a loading operation in which the unmanned vehicle 20 travels on one of the left and right sides of the loader 30 and stops at the loading point 12 during the loading operation.
  • the travel route 10 includes a final approach 16 that is a route from the entrance point 11 to the standby point 14 and a route from the standby point 14 to the loading point 12.
  • a route from the loading point 12 to the exit point 15 is referred to as an exit course 17 (17L, 17R).
  • the loader 30 is, for example, a hydraulic excavator, and includes a lower traveling body 30A having a crawler belt and an upper revolving body 30B that can turn left and right.
  • a work machine 30C including a boom, an arm, and a bucket is coupled to the upper swing body 30B.
  • the work machine 30C is operated to scoop up earth and sand and load the unmanned vehicle 20. That is, the loading point 12 indicates the position of the vessel (the one on which the load is loaded) provided in the unmanned vehicle 20 and the bucket of the loader 30.
  • a form in which the unmanned vehicle 20 travels in front of the loader 30 and performs loading work is also a form of one-side loading.
  • the unmanned vehicle 20 reaches from the entrance point 11 to the loading point 12 via the standby point 14 and the switchback point 13 near the loading point 12.
  • the standby point 14 is a place where the unmanned vehicle 20 stops and waits until receiving an instruction from the loader 30.
  • the standby point 14 also becomes a switchback point 13 that performs a switchback operation in order to approach (enter) the loading point 12 of the loader 30 in the backward traveling after the unmanned vehicle 20 has traveled in the forward traveling. It is a point.
  • switchback is not necessarily required depending on the form of loading. For example, an arc may be drawn from the entrance point 11 toward the loader 30 to reach the load point 12.
  • the switchback point 13 may coincide with the standby point 14 as described above.
  • the loading machine 30 excavates the face 1a of the loading site 1 by the working machine 30C attached to the upper swing body 30B.
  • the face 1a is assumed to be a cliff at a work site such as a mine. Then, when the operator of the loader 30 operates an operation lever (not shown), the upper turning body 30B is turned with respect to the lower traveling body 30A, the work machine 30C is positioned at the loading point 12, and the load is unmanned vehicle 20 To load.
  • the unmanned vehicle 20 moves away from the loading point 12 according to the traveling command and travels toward the exit point 15 of the loading field 1.
  • the operator of the loader 30 gives the following instruction to the unmanned vehicle 20.
  • the instruction content of the operator is transmitted to a control device (not shown) by wireless communication, and a traveling command is given from the control device to the unmanned vehicle 20 via wireless communication.
  • the operator's instructions are such that when the operator operates switches and buttons provided in the operating room of the loader 30, the instructions (electrical signals) corresponding to the operations are converted into wireless signals that can be wirelessly communicated. Wireless communication is possible with the control device using the communication device provided in the inserter 30.
  • the operator places the bucket attached to the work machine 30 ⁇ / b> C at a desired point, and the operator presses a “spot button” provided in the operating room of the work machine 30 ⁇ / b> C. Is done.
  • the travel route 10 from which the unmanned vehicle 20 reaches the loading point 12 is generated by the control device with the bucket position of the work machine 30C as the position of the loading point 12.
  • the unmanned vehicle 20 currently at the loading point 12 is loaded in order to load the unmanned vehicle 20 entering the loading place 1 next time. It is necessary to retreat from the loading point 12.
  • the instruction to evacuate from the loading point 12 is performed when the operator presses a “go button” provided in the cab of the loading machine 30.
  • the unmanned vehicle 20 receives an instruction to evacuate from the loading point 12, the unmanned vehicle 20 moves away from the loading point 12 and travels toward the exit point 15 of the loading site 1.
  • the instruction for evacuation of the unmanned vehicle 20 is also executed by wireless communication between the loader 30 and the unmanned vehicle 20 in the same manner as the above instruction for entering.
  • the process is performed on the unmanned vehicle 20 that next enters the loading place 1.
  • the operator of the loader 30 does not need to operate the “spot button”.
  • the loading operation for each unmanned vehicle 20 can be performed continuously only by repeating the button operation of “go button”.
  • FIG. 1 shows a case where double-side loading is performed in the loading field 1.
  • a left loading point 12L (left product) and a right loading point 12R (right product) are set.
  • the traveling route 10 in the case of loading on both sides is defined similarly to the traveling route 10 in the case of loading on one side.
  • the loading point 12 the final approach 16, and the exit course 17, “L” and “R” are added to the reference numerals. .
  • the left loading point 12L is a loading point at which the approach direction of the unmanned vehicle 20 to the loader 30 is the left direction
  • the right loading point 12R is the approach direction of the unmanned vehicle 20 to the loader 30 is the right direction. It is a loading point.
  • Both-side loading is a loading operation that increases the productivity by reducing the waiting time of the unmanned vehicle 20 by causing the unmanned vehicle 20 to enter the left and right of the loader 30 and performing the loading operation more continuously.
  • the operator of the loader 30 gives the following instruction to the unmanned vehicle 20.
  • the operator's instruction content is transmitted to a control device (not shown) by a radio signal, and is given as a travel command by radio signal to the unmanned vehicle 20 from the control device.
  • a) Instruction for setting the position of the left loading point 12L and the right loading point 12R In the operating room of the loader 30, the left loading point 12L (left product) and the right loading point 12R (right product) are instructed. Button "is provided. The “left / right instruction button” may be provided separately for the left instruction or the right instruction, or may be such that a left / right instruction can be performed with a single toggle switch. The operator operates the operation lever so that the bucket of the work implement 30C is positioned at a desired change loading point, and operates the upper swing body 30B and the work implement 30C.
  • the operator of the instruction loading machine 30 presses the “left / right instruction button” to select the loading point 12 on the side where the unmanned vehicle 20 should retract. Further, a “go button” is pressed to instruct the unmanned vehicle 20 to be retracted from the loading point 12 on the selected side. For example, if “left product” is instructed, a travel command is given to the unmanned vehicle 20 existing at the “left loading point 12L”, and the unmanned vehicle 20 leaves the left loading point 12L and exits 17L. Travel toward the exit point 15 of the loading place 1 through.
  • Patent Document 1 describes an invention in which the position of a loading point is automatically obtained each time the loader moves, and an unmanned vehicle generates a travel route that can reach the loading point. Yes. JP-A-8-263138
  • Both-side loading which is a form of loading work on the unmanned vehicle 20 by the loader 30 in a mine or the like, can be expected to improve productivity as compared to the one-side loading.
  • the present invention has been made in view of such circumstances, and when giving a driving command to an unmanned vehicle by loading on both sides, it is not necessary to make a left / right determination or an operation using a left / right instruction button, and to improve operator workability. This is a problem to be solved.
  • the second object of the present invention is to improve workability by eliminating the need for left / right determination and left / right instruction button operation when setting the position of a loading point by both-side loading.
  • Patent Document 1 does not assume double-sided loading, and does not mention any of the above points that cause problems with double-sided loading.
  • the first invention is Left unloading point, right loading point depending on whether the unmanned vehicle approach direction to the loading point where loading machine is loaded to unmanned vehicle is left or right with respect to loading machine Is set, and the unmanned vehicle traveling system that travels the unmanned vehicle along the traveling route to the left loading point or the right loading point according to the traveling command, Based on information on the approach direction of unmanned vehicles to the left and right loading points, a boundary line is generated to determine whether the loader's work equipment is located on the left loading point side or on the right loading point side Boundary line generating means for Detection means for detecting the orientation or position of the loader working machine; By comparing the direction of the work machine detected by the detection means and the direction of the boundary line, it is determined whether the work machine of the loader is positioned on the left loading point side or the right loading point side. Discrimination means; A travel command instruction means for instructing a travel command; A travel control means for providing a travel command to an unmanned vehicle to be loaded at the loading point determined by the determination means when
  • the second invention is The left loading point depending on whether the approach direction of the unmanned vehicle to the loading point where the unloading vehicle is loaded by the work machine of the loading station at the loading site is the left direction or the right direction with respect to the loading machine
  • the traveling system for unmanned vehicles in which the right loading point is set and the unmanned vehicle travels to the left loading point or the right loading point along the traveling route according to the traveling command, Based on information on the shape of the loading field and the position of the loading machine, a boundary line is used to determine whether the working machine of the loading machine is located on the left loading point side or on the right loading point side.
  • Boundary generation means for generating; Detection means for detecting the orientation or position of the loader working machine; By comparing the direction or position of the work machine detected by the detection means with the direction or position of the boundary line, the loader work machine is positioned on the left loading point side or on the right loading point side.
  • Determining means for determining whether or not A travel command instruction means for instructing a travel command;
  • a travel control means for providing a travel command to an unmanned vehicle to be loaded at the loading point determined by the determination means when the travel command is instructed by the travel command instruction means;
  • the third invention is Left unloading point, right loading point depending on whether the unmanned vehicle approach direction to the loading point where loading machine is loaded to unmanned vehicle is left or right with respect to loading machine
  • a boundary line generation step for generating a boundary line for determining whether the work machine of the loader is located on the left loading point side or the right loading point side
  • a travel command instruction step for instructing a travel command; Compare the direction or position of the work implement when the travel command is instructed with the direction or position of the boundary line, so that the loader work implement is positioned on the left loading point side or on the right loading point side.
  • a determining step for determining whether it is located;
  • the fourth invention is the first invention, the second invention, the third invention,
  • the travel command is a travel command for causing the unmanned vehicle to enter the loading point or a travel command for retracting the unmanned vehicle from the loading point.
  • the fifth invention Left unloading point, right loading point depending on whether the unmanned vehicle approach direction to the loading point where loading machine is loaded to unmanned vehicle is left or right with respect to loading machine Is set, and the unmanned vehicle traveling system that travels the unmanned vehicle along the traveling route to the left loading point or the right loading point according to the traveling command, Boundary line that generates a boundary line to determine whether the work implement of the loader is located on the left loading point side or on the right loading point side based on information on the approach direction to the left and right loading points Generating means; Detection means for detecting the orientation or position of the loader working machine; By comparing the direction or position of the work machine detected by the detection means with the direction or position of the boundary line, the loader work machine is positioned on the left loading point side or on the right loading point side.
  • Determining means for determining whether or not Loading point position setting instruction means for designating the position of the loading point by designating the position of the loading point;
  • the position of the loading point on the side determined by the determination means is set to the specified position, and a travel route to the set loading point is generated.
  • a travel command generation means for determining whether or not Loading point position setting instruction means for designating the position of the loading point by designating the position of the loading point;
  • the sixth invention The left loading point depending on whether the approach direction of the unmanned vehicle to the loading point where the unloading vehicle is loaded by the work machine of the loading station at the loading site is the left direction or the right direction with respect to the loading machine
  • Boundary line generating means for generating a boundary line for determining whether the working machine of the loading machine is located on the left loading point side or the right loading point side based on the shape information of the loading place
  • Detection means for detecting the orientation or position of the loader working machine; By comparing the direction or position of the work machine detected by the detection means with the direction or position of the boundary line, the loader work machine is positioned on the left loading point side or on the right loading point side.
  • Determining means for determining whether or not Loading point position setting instruction means for designating the position of the loading point by designating the position of the loading point;
  • the position of the loading point on the side determined by the determination means is set to the specified position, and a travel route to the set loading point is generated.
  • a travel command generating means for determining whether or not Loading point position setting instruction means for designating the position of the loading point by designating the position of the loading point;
  • the seventh invention is the fifth invention or the sixth invention,
  • the boundary line is regenerated every time the position of the loading point is changed.
  • the eighth invention The left loading point and the right loading point depending on whether the approach direction to the loading point where the loading machine is loaded into the unmanned vehicle is left or right with respect to the loading machine working machine
  • a boundary line generation step for generating a boundary line for determining whether the work machine of the loader is located on the left loading point side or the right loading point side
  • a loading point position setting instruction step for designating the position of the loading point by specifying the position of the loading point
  • a discrimination step for discriminating whether it is located on the point side
  • a ninth invention is the eighth invention, Each time the loading point is changed, the boundary line is generated again.
  • 1st invention-4th invention is invention which solves the 1st solution subject, when giving travel command to unmanned vehicle with both sides loading, working machine of loader when travel command is instructed to unmanned vehicle
  • the direction or position of the loader and the direction or position of the boundary line are compared to determine whether the loader's work equipment is located on the left loading point side or the right loading point side. This eliminates the need for the operator to make a left / right determination and an operation using the left / right instruction buttons, which greatly improves workability.
  • 5th invention-9th invention is invention which solves 2nd solution subject, and when setting the position of a loading point in the case of setting the position of a loading point by double-sided loading, the working machine of the loading machine
  • the direction or position of the loader and the direction or position of the boundary line are compared to determine whether the loader's work equipment is located on the left loading point side or the right loading point side. This eliminates the need for the operator to make a left / right determination and an operation using the left / right instruction buttons, which greatly improves workability.
  • an unmanned off-road dump truck (referred to as an unmanned vehicle in this specification) is assumed as the vehicle.
  • a manned excavator (for example, a hydraulic excavator) is assumed as the loader.
  • the present invention can be applied not only to the shovel but also to other types of loaders such as a backhoe, an excavator, and a wheel loader.
  • FIG. 1 is a top view of the loading place 1.
  • Wide-area work sites such as quarrying sites and mines have various areas such as loading sites, earth removal sites, gas stations, and parking lots. Each of these areas is connected to each other by a lead-in line or an intersection from each of the transport routes called “hole load” and the hall load called “access load” to each area.
  • the loading area which is one of the areas, is a place where the work of loading earth and sand into the unmanned vehicle 20 is performed.
  • excavation work is performed by a loader such as a wheel loader, a backhoe, and an excavator, and earth and sand are loaded into the unmanned vehicle 20.
  • the upper swing body 30B is freely rotatable with respect to the lower traveling body 30A.
  • the lower traveling body 30A is configured to drive the loader 30 by driving a crawler belt that is an endless track, or to drive the loader 30 by driving a tire.
  • the loading machine 30 excavates the face 1a of the loading site 1 by the working machine 30C attached to the upper swing body 30B.
  • the work machine 30C includes a boom, an arm, and a bucket, and operates the boom, arm, and bucket using a hydraulic cylinder (not shown).
  • the working machine 30C may be configured to operate the boom, arm, and bucket by winding or unwinding the wire cable instead of operating the boom, arm, and bucket according to the expansion and contraction of the hydraulic cylinder. . Further, the work machine 30C may be configured such that the clamshell bucket is hung with a wire from the tip of the boom without providing the arm.
  • the upper swing body 30B is provided with a driver's seat, and the operator can operate the operation lever provided inside the driver's seat so that the upper swing body 30B can be rotated with respect to the lower traveling body 30A.
  • the boom of the machine 30C, the vertical movement of the arm, and the vertical movement of the bucket can be performed.
  • the work implement 30 ⁇ / b> C can be positioned at the loading point 12 (left loading point 12 ⁇ / b> L, right loading point 12 ⁇ / b> R) and the load can be loaded on the unmanned vehicle 20 by the operation of the operator.
  • the unmanned vehicle 20 is a front-wheel steering vehicle in which a driver's cab (cab) is provided in front of the vehicle body, a cargo bed (bessel, body) on which a load is loaded is provided in the rear of the vehicle body, and front wheels and rear wheels are provided.
  • the unmanned vehicle 20 is not limited to such a structure, and may be a vehicle without a driver's cab or a track with front wheels and rear wheels that are endless tracks instead of tires. Further, the unmanned vehicle 20 may be a vehicle called an articulated dump truck in which a vehicle front portion and a vehicle rear portion including a loading platform are mechanically coupled.
  • the unmanned vehicle 20 is guided along the travel route 10 and travels in the loading place 1 from the entrance point 11 to the loading point 12 where the manned loading machine 30 exists (left loading point 12L, right loading point 12R). To do.
  • left and right loading points 12L and 12R are not distinguished, they are collectively referred to as “loading point 12”.
  • the entrance point 11 is a point set in advance, and is a point where a hall load (not shown) where the unmanned vehicle 20 travels and the loading place 1 intersect.
  • a standby point 14 is set on the travel route 10 as a point to wait until the unmanned vehicle 20 obtains permission of entry from the loader 30.
  • the switchback point 13 is set as the standby point 14.
  • the switchback point 13 is a point at which the unmanned vehicle 20 performs a switchback operation to approach (enter) the loading point 12 of the loader 30 in the backward travel after traveling in the forward travel.
  • the switchback point 13 is set as the standby point 14, but the standby point 14 is not necessarily limited to the switchback point 13.
  • a point on the travel route 10 that is a fixed distance (set value) away from the loading point 12 is often set as the standby point 14.
  • the switchback point 13 is closer to the loading point 12, the switchback point 13 is set as the standby point 14.
  • the standby point 14 is set at a position where the path 10 and the assumed work area first interfere with each other. This is because the wheel loader moves back and forth or left and right in order to perform the loading operation, and thus it is necessary to consider interference between the unmanned vehicle 20 and the wheel loader. However, when the switchback point 13 is closer to the entrance point 11 than the interference position, the switchback point 13 is set as the standby point 14. When the wheel loader is the loader 30, a travel route that does not switch back may be generated.
  • the travel route 10 is a travel route from the unmanned vehicle 20 to the loading point 12 via the standby point 14 near the loading point 12 from the entrance point 11. Of the travel routes 10, the travel route from the standby point 14 to the loading point 12 is particularly defined as a “final approach” 16.
  • the load point 12 is sequentially changed.
  • moving etc.” means that the loading machine 30 itself does not move, and the working machine 30C is turned so that the loading point 12 which is the bucket position of the working machine 30C (the position where the load is loaded onto the unmanned vehicle 20). ) May be changed.
  • the loading points 12 of the loading machine 30 exist at the left and right positions where the working machine 30C is turned left and right with respect to the lower traveling body 30A, and are referred to as a left loading point 12L and a right loading point 12R, respectively.
  • the left loading point 12L is a loading point where the approach direction of the unmanned vehicle 20 to the work implement 30C is the left direction
  • the right loading point 12R is a loading point where the approach direction of the unmanned vehicle 20 to the work implement 30C is the right direction. It is a point.
  • the left and right loading points 12L and 12R correspond to the bucket position of the work machine 30C.
  • the bucket attached to the work machine 30C is attached with the size and shape selected according to the vehicle type of the loader 30, the type of the load, and the like.
  • the position of the bucket is a predetermined position corresponding to the center position of the inside where the loaded bucket is loaded.
  • the position corresponding to the center position is not necessarily determined as the bucket position, and a position where the loading operation can be easily performed may be arbitrarily determined as the bucket position.
  • the position of the bucket differs in the space depending on the posture of the boom or arm constituting the work implement 30C. Therefore, when the posture of the working machine 30C when the load is loaded on the unmanned vehicle 20 is taken into consideration, the length of the boom or arm of the working machine 30C attached to the working machine 30C is taken into consideration.
  • the position of the left loading point 12L or the right loading point 12R is calculated from the distance from an arbitrary position to the inside center position corresponding to the load of the bucket.
  • the length of the boom and arm and the center position of the bucket are stored in advance in the storage device 34 of the loader 30, and the posture of the work machine 30C is detected by a displacement sensor or the like, calculated by the processing device 32, and left loaded.
  • the position (X coordinate position, Y coordinate position, etc.) of the point 12L or the right loading point 12R is obtained.
  • a fixed value may be stored in storage device 34 for the sake of simplicity, and the calculation for obtaining loading point 12 may be performed using the fixed value. Good.
  • the loader 30 simultaneously holds the separate travel routes 10 (10L, 10R) for each of the left and right sides. For example, when the position of the right loading point 12R is changed, a new traveling to the new right loading point 12R is performed. The route 10 (10R) is generated and the travel route 10 (10L) reaching the left loading point 12L is not changed and is not affected.
  • the travel route 10 is generated by the control device 40 described later based on the position information of the loading point 12 and the position information of the entrance point 11.
  • “dash” is added to the reference numeral “10” as appropriate in order to distinguish the travel routes.
  • the unmanned vehicle 20 adjusts the traveling speed and the traveling direction while the unmanned vehicle 20 performs engine output control, steering control, and brake control by autonomous control according to the traveling route 10 received by wireless communication from the control device 40.
  • the unmanned vehicle 20 again moves away from the loading point 12 by autonomous control and travels toward the exit point 15.
  • the traveling direction of the unmanned vehicle 20 changes from the forward direction to the reverse direction.
  • the unmanned vehicle 20 enters in a reverse state toward the loading point 12.
  • the unmanned vehicle 20 may take the form of a travel route 10 that does not switch back and enters the loading point 12 in the forward direction depending on the terrain state of the loading field 1.
  • a new travel route 10 from the entry point 11 to the loading point 12 at the changed position is generated.
  • FIG. 2 shows a block diagram of the vehicle traveling system of the embodiment.
  • “dash” is added to the reference numeral “20” as appropriate to distinguish the vehicles from each other.
  • the control device 40 is provided with a communication device 41, a processing device 42, an input device 43, a storage device 44, and a display device 45.
  • the communication device 41 is configured by a communication device (antenna, receiver, transmitter, etc.) such as a wireless LAN.
  • the processing device 42 is configured by a CPU such as a numerical arithmetic processor.
  • the input device 43 includes a keyboard or a touch panel such as a GUI (graphical user interface) that can input numerical values and characters.
  • the storage device 44 is configured to store various information such as a hard disk, a ROM, a RAM, and a memory card.
  • the display device 45 is composed of a liquid crystal display or the like and displays various information.
  • the unmanned vehicles 20 and 20 ′ are provided with a communication device 21, a processing device 22, a position measuring device 23, a control device 24, and a storage device 25.
  • the communication device 21 is configured by a communication device (antenna, receiver, transmitter, etc.) such as a wireless LAN.
  • the processing device 22 is configured by a CPU such as a numerical arithmetic processor.
  • the position measuring device 23 is a system composed of, for example, a GPS (Global Positioning System) sensor and can measure the position (longitude / latitude / altitude) of the unmanned vehicle 20 by receiving radio waves from GPS satellites. is there.
  • the control device 24 is an electronic controller that performs engine output control, steering control, brake control, and the like of the unmanned vehicle 20 and controls acceleration / deceleration, stop, and traveling direction of the unmanned vehicle 20.
  • the storage device 25 is configured to store various information such as a hard disk, ROM, RAM, memory card, and the like.
  • the loader 30 is provided with a communication device 31, a processing device 32, an input device 33, a storage device 34, a position measuring device 35, a work machine position measuring device 35 a, and a display device 36.
  • the communication device 31 is configured by a communication device (antenna, receiver, transmitter, etc.) such as a wireless LAN.
  • the processing device 22 is configured by a CPU such as a numerical arithmetic processor.
  • the input device 33 includes a touch panel such as a keyboard and a GUI (graphical user interface) that can input numerical values and characters, push button switches for transmitting various command signals, and the like.
  • the storage device 34 is configured to store various types of information such as a hard disk, ROM, RAM, memory card, and the like.
  • the work machine position measurement device 35a measures the position of the bucket of the work machine 30C, the position of which is determined by the operation of the operation lever by the operator from a predetermined position of the load machine 30 (for example, the center of gravity position of the load machine 30). To do. Specifically, the cylinder stroke of each hydraulic cylinder for operating the boom, arm, or bucket constituting the work machine 30C is detected by a displacement sensor, and the detected displacement and the center of gravity position of the loader 30 are determined. Used to measure the space coordinates (position coordinates) of the bucket position. The bucket attached to the work machine 30C is attached with the size and shape selected according to the vehicle type of the loader 30, the type of the load, and the like.
  • the position of the bucket is determined in advance by the center position corresponding to the inside position of the bucket where the attached bucket is loaded, and loading is performed based on the center position and the expansion / contraction state of each hydraulic cylinder, in other words, the posture of the boom, arm, and bucket.
  • the position coordinates for the point 12 are obtained by calculation.
  • the position information of the bucket means the position coordinates that become the loading point 12.
  • a rotation sensor for example, a rotary sensor
  • the display device 45 is provided in the driver's seat of the loader 30 and is configured with a liquid crystal display or the like to display various information.
  • the liquid crystal display may be a resistive touch panel or may be provided with a separate operation button for display only.
  • FIG. 3 shows details of the configuration of the input device 33 of the loader 30.
  • the input device 33 is provided in the cab of the loader 30 and is configured with a touch panel.
  • the input device 33 is arranged at a position where the operator of the loader 30 can press the touch panel.
  • the input device 33 includes a left / right instruction button 33a, a spot button 33b, a come-in button 33c, a go button 33d, and a switch side button 33e.
  • the display device 36 of the loader 30 displays the boundary line 90, the travel route 10, and the unmanned vehicle 20, and the operator looks at the screen of the display device 36 and the left and right instruction buttons 33 a of the input device 33.
  • Various operations of the spot button 33b, the come-in button 33c, the go button 33d, and the switch side button 33e can be performed.
  • Each button may be provided at a predetermined location on the touch panel together with characters as shown in FIG. 3, or each switch button is displayed on the touch panel using a pattern such as an icon, and the operator has any function of which button. It may be possible to identify whether it is fulfilled.
  • the instruction from the operator of the loader 30 is performed when the operator presses each switch button of the input device 33.
  • the electrical signal corresponding to each switch button is converted into a radio signal by the processing device 32, and the radio signal is sent to the control device 40 via the communication device 31. Thereafter, information on the travel route 10 or a travel command is given to the unmanned vehicle 20 from the control device 40 by a radio signal. Details of such wireless signal exchange will be described later.
  • the left / right instruction button 33a, spot button 33b, come-in button 33c, go button 33d, and switch side button 33e will be described.
  • the left / right instruction button 33a is a button for instructing whether it is the left loading point 12L (left product) or the right loading point 12R (right product).
  • a left / right instruction signal indicating “left product” or “right product” is generated and sent to the control device 40.
  • the left / right instruction button 33a is composed of a single button, and an operation method of left product when pressed once, right product when pressed twice in succession may be set. Two buttons 33a may be provided so that one is assigned to the left product instruction and the other is assigned to the right product instruction.
  • the spot button 33b is a button for designating an initial position or a change position of the loading point 12.
  • the operator of the loader 30 operates an operation lever provided in the driver's seat to operate the upper swing body 30B or the lower traveling body 30A, and further operates the work machine 30C coupled to the upper swing body 30B.
  • a position instruction signal is generated.
  • a signal indicating the position information of the buckets of the loader 30 and the work machine 30C and a position instruction signal are transmitted from the communication device 31 to the control device 40 as radio signals.
  • the come-in button 33 c is a button for instructing a travel command for causing the unmanned vehicle 20 to enter the loading point 12.
  • an entry instruction signal is generated.
  • a signal indicating the position information of the buckets of the loader 30 and the work machine 30C and an entry instruction signal are transmitted from the communication device 31 to the control device 40 as radio signals.
  • the go button 33 d is a button for instructing a travel command for retracting the unmanned vehicle 20 from the loading point 12.
  • an evacuation instruction signal is generated.
  • a retreat instruction signal is sent from the communication device 31 to the control device 40 together with a signal indicating the position information of the loader 30 and the position information of the bucket tip of the work machine 30C.
  • the switch side button 33e is a button for instructing a travel command to the unmanned vehicle 20 on the side opposite to the side determined by the boundary line described later.
  • the switch side button 33e of the input device 33 When the operator of the loader 30 presses the switch side button 33e of the input device 33, the working machine 30C of the current loader 30 is unattended on the side opposite to the side positioned with respect to the boundary line.
  • a switch side instruction signal for instructing a traveling command to the vehicle 20 is generated, and the switch side instruction signal is transmitted from the communication device 31 to the control device 40 as a radio signal.
  • the position measuring device 23 of the unmanned vehicle 20 measures its own vehicle position.
  • a tire rotational speed sensor and a gyro provided in the unmanned vehicle 20 are used as the means for measuring the position.
  • the vehicle position is measured based on the output signal of the tire rotational speed sensor and the output signal of the gyro.
  • the position of the unmanned vehicle 20 may be measured by receiving a signal transmitted from a GPS satellite with a GPS antenna and detecting the signal with a GPS sensor.
  • the position of the unmanned vehicle 20 may be measured by a system in which a tire rotation speed sensor, a gyroscope, and a GPS sensor are combined and combined.
  • the position information measured by the unmanned vehicle 20 is processed by the processing device 22 and transmitted to the control device 40 via the communication device 21.
  • the storage device 25 stores coordinate information of the travel route 10 transmitted from the control device 40, position information indicating the position coordinates of the entrance point 11, the exit point 15, and the standby point 14, and the like.
  • the storage device 25 also stores various parameters related to engine control, steering control, and brake control (fuel injection amount parameters, steering angle parameters, hydraulic pressure of a brake hydraulic circuit) according to the curve size of the travel route 10. Are stored.
  • the communication device 41 of the control device 40 receives position information transmitted from a plurality of unmanned vehicles 20, 20 '... by wireless communication.
  • the received position information is used for management and monitoring of a plurality of unmanned vehicles 20, 20 ′.
  • a left / right instruction signal is generated and input to the processing device 32.
  • the processing device 32 transmits a left / right instruction signal to the communication device 31.
  • the communication device 31 converts the left / right instruction signal into a wireless signal capable of wireless communication and transmits the wireless signal to the control device 40.
  • the position measuring device 35 of the loader 30 measures the position of the loader 30 (the center position positioned as the center of the loader 30).
  • the position of the loader 30 is measured using the same GPS sensor as the unmanned vehicle 20, and the position of the GPS sensor is measured, and the position measurement device 35 is a product obtained from the installation position of the GPS sensor and the size of the loader 30.
  • the center position of the loading machine 30 is calculated as position information (geographic position information in the loading place 1).
  • the work machine position measuring device 35a the position of the bucket of the work machine 30C is measured.
  • the work machine position measurement device 35a considers the size, length, and posture of the boom, arm, and bucket of the work machine 30C from the measurement result of the GPS sensor attached to any place of the work machine 30C. It is calculated as the position information of the bucket (geographic position information in the loading area 1).
  • a position indication signal is generated.
  • the processing device 32 takes in the position information of the buckets of the loader 30 and the work implement 30C, which is currently measured by the position measurement device 35 and the work implement position measurement device 35a, and transmits it to the communication device 31 together with the position instruction signal. To do.
  • the communication device 31 converts the position instruction signal together with a signal indicating the position information of the buckets of the loader 30 and the work machine 30C into a wireless signal capable of wireless communication and transmits the wireless signal to the control device 40 by wireless communication.
  • an entry instruction signal is generated and input to the processing device 32.
  • the processing device 32 takes in the position information of the buckets of the loader 30 and the work implement 30C, which is currently measured by the position measurement device 35 and the work implement position measurement device 35a, and transmits it to the communication device 31 together with the approach instruction signal. To do.
  • the communication device 31 converts the approach instruction signal together with a signal indicating the position information of the buckets of the loader 30 and the work machine 30C into a wireless signal capable of wireless communication, and transmits the wireless signal to the control device 40 by wireless communication.
  • a save instruction signal is generated and input to the processing device 32.
  • the processing device 32 takes in the position information of the buckets of the loader 30 and the work implement 30C, which is currently measured by the position measurement device 35 and the work implement position measurement device 35a, and transmits it to the communication device 31 together with the retraction instruction signal. To do.
  • the communication device 31 converts the save instruction signal together with a signal indicating the position information of the buckets of the loader 30 and the work machine 30C into a wireless signal capable of wireless communication, and transmits the wireless signal to the control device 40 by wireless communication.
  • a switch side instruction signal is generated and input to the processing device 32.
  • the processing device 32 transmits a switch side instruction signal to the communication device 31.
  • the communication device 31 converts the switch side instruction signal into a wireless signal capable of wireless communication and transmits the wireless signal to the control device 40 by wireless communication.
  • the communication device 41 of the control device 40 receives various signals (wireless signals) transmitted from the loader 30.
  • the input device 43 of the control device 40 receives known geographical information of the loading site 1 such as the position and direction of the entrance point 11 of the loading site 1 to be excavated by the loader 30.
  • the processing device 42 of the control device 40 takes in the signal received by the communication device 41 and the information input from the input device 43, and executes boundary line generation processing, travel route 10 generation processing, and travel command generation processing described later. To do.
  • the generated boundary line, information on the travel route 10 and information on the position of the unmanned vehicle 20 are transmitted to the loader 30 via the communication device 41 of the control device 40.
  • the information on the travel route 10 and the travel command is transmitted to the unmanned vehicle 20 via the communication device 41 of the control device 40.
  • the communication device 31 of the loader 30 receives the boundary line, information on the travel route 10 and information on the position of the unmanned vehicle 20 from the control device 40.
  • the processing device 32 of the loader 30 takes in the boundary line, the information on the travel route 10 and the information on the position of the unmanned vehicle 20, and displays the information on the display device 36 of the loader 30.
  • the boundary line, the travel route 10, the unmanned vehicle 20 and the position of the loading machine 30 itself are graphically displayed.
  • the communication device 21 of the unmanned vehicle 20 receives the information on the travel route 10 and the travel command transmitted from the control device 40.
  • the storage device 25 stores information on the travel route 10 and the travel command transmitted from the control device 40.
  • the processing device 22 of the unmanned vehicle 20 generates a control command for traveling and steering the unmanned vehicle 20 based on the information on the travel route 10 and the travel command.
  • This control command is output to the control device 24.
  • the control device 24 controls the traveling speed and steering angle (steering) or braking of the unmanned vehicle 20, and the unmanned vehicle 20 travels along the traveling route 10.
  • FIGS. 4A, 4B, 4C, and 4D are flowcharts showing a procedure of processes performed in the traveling system or the traveling control method of this embodiment.
  • FIGS. 4A and 4B The flow of the boundary line generation process is shown in FIGS. 4A and 4B, and details of the boundary line generation process will be described with reference to FIG.
  • the operator of the loader 30 designates the position of the load point 12L on one side of the loader 30, for example, the left side, and instructs the position setting of the left load point 12L. That is, the operator is aware of the left side, operates the operation lever in the cab, turns the upper swing body 30B, operates the boom, arm, and bucket of the work implement 30C, and makes the desired left loading point 12L. To position the bucket. Thereafter, the operator presses the left / right instruction button 33a of the input device 33 to select and instruct “left product” (step 101), and presses the spot button 33b (step 102). The loader 30 transmits a left instruction signal indicating “left product” and a position instruction signal indicating its position to the control device 40 via the communication device 31.
  • the processing device 42 of the control device 40 takes in the left instruction signal and the position instruction signal sent from the loader 30 via the communication device 41. Then, the processing device 42 determines that the setting of the position of the “left loading point 12L” has been instructed by associating the left instruction signal and the position instruction signal. Then, the processing device 42 sets the work machine (bucket) position Q (see FIG. 5) sent from the loader 30 as the position of the “left loading point 12L” (step 103).
  • the processing device 42 generates a travel route 10L for the unmanned vehicle 20 to reach the set left loading point 12L.
  • a travel route 10L for the unmanned vehicle 20 to reach the set left loading point 12L.
  • the position of the loader 30 the position of the unmanned vehicle 20, and another travel route 10 ⁇ / b> R
  • Generated. By generating the travel route 10L, a vector v1 indicating the direction in which the unmanned vehicle 20 enters the left loading point 12L is obtained. However, the direction of the vector v1 is opposite to the direction in which the unmanned vehicle 20 enters in reverse (step 104).
  • the operator of the loader 30 performs an operation for instructing the loading point 12R that is opposite to the turning position of step 101 (the bucket of the work machine 30C is at the position Q as shown in FIG. 5). . That is, the position of the loading point 12R is designated on the right side of the own loading machine 30, and the position setting of the loading point 12R is instructed. The operator is aware of the right side, operates the operation lever inside the cab and operates the boom, arm, and bucket of the work implement 30C to position the bucket at the desired right loading point 12R. Thereafter, the operator presses the spot button 33b of the input device 33 (step 105).
  • the processing device 42 of the control device 40 takes in the position instruction signal sent from the loader 30. Since the position of the “left loading point 12L” has already been set, the second position instruction signal is transmitted by the operator's operation of the spot button 33b at the right loading point 12R. Therefore, the processing device 42 determines that the setting of the position of the “right loading point 12R” on the side opposite to the “left loading point 12L” is instructed by using the fact that the second position instruction signal has been received. Then, the processing device 42 sets the work machine (bucket) position Q ′ transmitted from the loader 30 as the position of the “right loading point 12R” (step 106). As shown in FIG.
  • the center position of the loader 42 is a vector parallel to the vector v1.
  • a vector vc passing through P is determined by the processing device 42 of the loader 30.
  • the processing device 42 determines whether the loading point indicated by the second position instruction signal is really located on the opposite side of the loading point set by the first position instruction signal. The determination is performed using the direction of the vector vc and the position information of the loading point indicated by the second position instruction signal. If the direction indicated by the vector vc is 0 degrees (reference) and the position information of the loading point indicated by the second position instruction signal exists in the 180 degree counterclockwise direction indicated by the diagonal line in FIG.
  • the loading point indicated by the position indication signal is on the opposite side (right side) of the loading point set by the first position indication signal.
  • the direction indicated by the vector vc is 0 degrees (reference) and there is position information of the loading point indicated by the second position instruction signal in the clockwise 180 degree region, it is determined by the first position instruction signal. It is determined that it is not on the opposite side (right side) of the set loading point.
  • the processing device 42 generates a travel route 10R for the unmanned vehicle 20 to reach the set right loading point 12R.
  • a travel route 10R for the unmanned vehicle 20 to reach the set right loading point 12R.
  • the processing device 42 generates a travel route 10R for the unmanned vehicle 20 to reach the set right loading point 12R.
  • the position of the loader 30 the position of the unmanned vehicle 20, and another travel route 10 ⁇ / b> L
  • a vector v2 indicating the direction in which the unmanned vehicle 20 enters the right loading point 12R is obtained.
  • the direction of the vector v2 is opposite to the direction in which the unmanned vehicle 20 enters backward (step 107).
  • the travel routes 10L and 10R here are travel routes from the standby point 14 to the left and right loading points 12L and 12R.
  • the processing device 42 of the control device 40 performs processing for generating the boundary line 90 based on the information on the approach direction of the unmanned vehicle 20 to the left and right loading points 12L and 12R, that is, the vectors v1 and v2.
  • the boundary line 90 is a vector line for determining whether the work machine 30C of the loader 30 is positioned on the left loading point 12L side or the right loading point 12R side.
  • v3 (v1 + v2) / 2 (1)
  • a half of the sum of vectors v1 and v2 indicating the direction in which the unmanned vehicle 20 enters the left and right loading points 12L and 12R is defined as a vector v3 indicating the direction of the boundary line 90.
  • the boundary line 90 passes through the position (center position P) of the loader 30 and is obtained as a line segment in the direction represented by the vector v3 (step 108).
  • the center position P is position information of the turning center of the upper turning body 30B of the loader 30.
  • the center position P may be obtained as follows.
  • the center position P is obtained from the size (width and total length) of the loader 30, and the size of the loader 30 is stored in advance in the storage device 44 of the control device 40. And the processing apparatus of the control apparatus 40 calculates
  • FIG. 4 (c) shows a flow of processing for giving a travel command to the unmanned vehicle 20, and FIG. 6 will also be described.
  • the processing device 42 of the control device 40 receives the entry instruction signal transmitted from the loader 30 via the communication device 41. Thereby, the control device 40 determines that the entry of the unmanned vehicle 20 to the loading point 12 is instructed.
  • the processing device 42 of the control device 40 indicates a direction of the work implement 30C from the geographical position information of the position P of the loader 30 and the bucket position Q of the work implement 30C sent together with the approach instruction signal.
  • v4 is calculated.
  • the vector v4 is a vector indicating the direction from the vehicle body center position P of the loader 30 toward the bucket position Q of the work machine 30C.
  • the processing device 42 of the control device 40 compares the vector v4 indicating the direction of the working machine 30C obtained as described above with the vector v3 indicating the direction of the boundary line 90, and performs the work of the loader 30. It is determined whether the machine 30C is located on the left loading point 12L side or the right loading point 12R side.
  • the z component of the outer product v3 ⁇ v4 of the vector v3 and the vector v4 is When positive: Working machine 30C of the loader 30 is positioned on the right loading point 12R side Negative: It is determined that the working machine 30C of the loader 30 is positioned on the left loading point 12L side. That is, since the calculation result of the outer product is a vector, the positional relationship (direction) between the vector v3 and the vector v4 can be known by checking the positive / negative of the z component of the vector of the calculation result. Therefore, it can be determined whether the work implement 30C is positioned at the left loading point 12L or the right loading point 12R.
  • the position of the work machine 30C (position coordinates of the bucket position Q of the line segment PQ from the loader center position P to the bucket position Q of the work machine 30C) and the position of the boundary 90 (the center position P of the loader 30).
  • the working machine 30C of the loader 30 is positioned on the left loading point 12L side or on the right loading point 12R side in comparison with the position coordinates indicated by the line segment in the direction represented by the vector v3) It may be determined whether it has been done.
  • the processing device 42 of the control device 40 since the z component of the outer product v3 ⁇ v4 of the vector v3 and the vector v4 is positive, the processing device 42 of the control device 40 has the work machine 30C of the loader 30 positioned on the right loading point 12R side. It is determined that it has been performed, and it is determined that an instruction for a travel command for causing the unmanned vehicle 20 to enter the right loading point 12R has been issued (step 110).
  • the unmanned vehicle 20 standing by at the standby point 14 of the traveling route 10R for the unmanned vehicle 20 to reach the right loading point 12R, for example, the unloaded vehicle 12 determined in step 110.
  • a travel command for entering the right loading point 12R (travel route of the final approach 16R) is generated.
  • the generated travel command (travel route of the final approach 16R) is transmitted from the communication device 41 of the control device 40 to the unmanned vehicle 20 together with information on the travel route 10.
  • the processing device 22 When the unmanned vehicle 20 receives the travel command and the information on the travel route 10R by the communication device 21, the processing device 22 generates a control signal for the control device 24.
  • the control device 24 controls the unmanned vehicle 20 to travel from the standby point 14 to the right loading point 12R along the final approach 16R while performing travel speed control, steering angle control, and brake control (step 111).
  • steps 109 to 111 it is assumed that a travel command for instructing the unmanned vehicle 20 to enter the loading point 12 is assumed. However, the same applies to a case in which a travel command for retracting the unmanned vehicle 20 from the loading point 12 is instructed. Wireless communication, signal processing, and travel control are performed.
  • the operator works on the loading side when the loading operation is finished.
  • the go button 33d of the input device 33 is pressed. In this case, the operator does not particularly need to be aware of “left side” and “right side”, and does not need to designate “left product” and “right product” using the left and right instruction buttons 33a (step 109).
  • the processing device 42 of the control device 40 receives the save instruction signal sent from the loader 30 via the communication device 41.
  • the processing device 42 determines that there has been an instruction to retract the unmanned vehicle 20 from the loading point 12.
  • the processing device 42 determines the direction of the work machine 30C (the direction of the vector v4) based on the position P of the loader 30 and the bucket position Q of the work machine 30C sent together with the retraction instruction signal. By comparing the direction of the work machine 30C (the direction of the vector v4) with the direction of the boundary line 90 (the direction of the vector v3), the work machine 30C determines whether it is located at the left or right loading point 12L or 12R.
  • the processing device 42 assumes that the working machine 30C of the loader 30 is positioned on the right loading point 12R side. It is determined, and it is determined that an instruction for a travel command for retracting the unmanned vehicle 20 from the right loading point 12R has been made (step 110).
  • the processing device 42 of the control device 40 causes the unmanned vehicle 20 existing at the loading point 12 on the side determined in step 110, for example, the right loading point 12R, to travel from the right loading point 12R (signal). Is generated.
  • the generated travel command is transmitted to the unmanned vehicle 20 through the communication device 41 together with information on the exit course 17R corresponding to the travel route 10R. Note that the information on the exit course 17R corresponding to the travel route 10R has already been sent to the unmanned vehicle 20, and if there is no change in the exit course 17R corresponding to the travel route 10R, the exit course 17R corresponding to the travel route 10R is newly set. Not enough to send information.
  • the unmanned vehicle 20 When the unmanned vehicle 20 receives the travel command and information on the exit course 17R corresponding to the travel route 10R via the communication device 31, the unmanned vehicle 20 retreats from the right loading point 12L and travels toward the exit point 15 along the exit course 17R. As described above, the vehicle travels by performing the travel control as described above (step 111).
  • Steps 109 to 111 it is assumed that a traveling command is instructed to the unmanned vehicle 20 on the side determined by comparison with the boundary line 90, but the boundary line 90 is operated by operating the switch side button 33e. In contrast, it is also possible to instruct a travel command to the unmanned vehicle 20 on the side opposite to the determined side.
  • the unloading vehicle 20 When the loader 30 is loading the unmanned vehicle 20 at the loading point 12 on one side, the unloading vehicle 20 'is allowed to enter the loading point 12 on the opposite side to improve productivity. Sometimes you want to. In this case, the operator of the loader 30 switches the switch side button of the input device 33 in order to give permission to enter the loading point 12 to the unmanned vehicle 20 'on the side opposite to the side where the work machine 30C is currently located. 33e is operated. For example, when the loader 30 is performing a loading operation at the right loading point 12R, the operator presses the switch side button 33e of the input device 33 while the working device 30C is positioned at the right loading point 12R, Press the cam-in button 33c. Also in this case, the operator does not particularly need to be aware of “left side” and “right side”, and does not need to designate “left product” and “right product” using the left and right instruction buttons 33a (step 109).
  • the processing device 42 of the control device 40 receives the entry instruction signal transmitted from the loader 30 via the communication device 41. Thus, the processing device 42 determines that the unmanned vehicle 20 has been instructed to enter the loading point 12.
  • the processing device 42 of the control device 40 receives the switch side instruction signal transmitted from the loader 30 via the communication device 41. Based on the comparison with the boundary line 90, the processing device 42 determines that an instruction for a travel command for causing the unmanned vehicle 20 ′ to enter the loading point 12 on the side opposite to the determined side is given.
  • the processing device 42 determines the direction of the work implement 30C (the direction of the vector v4) based on the position P of the loader 30 and the position Q of the bucket of the work implement 30C received together with the entry instruction signal via the communication device 41. Then, by comparing the direction of the work machine 30C (the direction of the vector v4) with the direction of the boundary line 90 (the direction of the vector v3), it is possible to determine which of the left and right loading points 12L and 12R the work machine 30C is located. Do.
  • the processing device 42 determines that the work machine 30C of the loader 30 is located on the right loading point 12R side.
  • the processing device 42 since the switch side instruction signal has been transmitted to the processing device 42 via the communication device 41, the processing device 42 is unmanned vehicle 20 ′ at the left loading point 12L opposite to the right loading point 12R. It is determined that an instruction for a travel command to enter is made (step 110).
  • the processing device 42 of the control device 40 applies the left loading point to the unmanned vehicle 20 'located at the standby point 14 on the travel route 10L leading to the left loading point 12L, for example, the left loading point 12L determined in step 110.
  • a travel command for entering 12L is generated.
  • the generated travel command is transmitted to the unmanned vehicle 20 ′ together with information on the travel route 10L via the communication device 41.
  • the unmanned vehicle 20 ′ When the unmanned vehicle 20 ′ receives the travel command and the information on the travel route 10L via the communication device 31, the unmanned vehicle 20 ′ travels as described above and travels from the standby point 14 to the left loading point 12L through the final approach 16L (step). 111).
  • the above-described process is also performed when a travel command for retreating from the loading point 12 is instructed to the unmanned vehicle 20 'on the opposite side.
  • a travel command for retreating from the loading point 12 is instructed to the unmanned vehicle 20 'on the opposite side.
  • the operator presses the switch side button 33e of the input device 33 and presses the go button 33d with the work machine 30C positioned at the right loading point 12R, the left loading point 12L, which is the opposite loading point 12, starts.
  • a travel command for retreating is given to the unmanned vehicle 20 'existing at the left loading point 12L, and the unmanned vehicle 20' can travel from the left loading point 12L to the exit point 15 along the exit course 17L. .
  • the excavation position by the loader 30, the shape of the face 1a, or the landform of the loading field 1 changes with time. For this reason, it is necessary to change the position of the loading point 12 once set.
  • the position of the loading point 12 is designated by specifying the position of the loading point 12. That is, the operator turns the upper turning body 30B to the side where the position of the loading point 12 is desired to be changed (for example, the left loading point 12L side) by operating the operation lever in the driver's seat.
  • the processing device 42 of the control device 40 determines that an instruction to set the position of the loading point 12 has been given by receiving the position instruction signal.
  • the processing device 32 of the loader 30 determines the direction of the work machine 30C (represented by the vector v4) based on the position P of the loader 30 and the bucket position Q of the work machine 30C sent together with the position instruction signal.
  • the direction of the work machine 30C (direction represented by the vector v4) is compared with the direction of the boundary line 90 (direction represented by the vector v3) to determine which of the left and right loading points 12L and 12R It is determined whether it is a setting instruction.
  • the direction of the work machine 30C represented by the vector v4
  • the processing device 42 receives the work machine 30C sent from the loader 30. Is set as the position of the “left loading point 12L ′”. Then, the processing device 42 generates a new travel route 10 ′ L through which the unmanned vehicle 20 can reach the set left loading point 12 L ′ from the entrance point 11 through the standby point 14. The processing device 42 takes into account the position of the loader 30, the position of the unmanned vehicle 20, and another travel route 10 ⁇ / b> R, and an optimum new travel route 10 so that the unmanned vehicle 20 and the loader 30 do not interfere with each other.
  • a new vector v1 ' indicates the approach direction of the unmanned vehicle 20 to the new left loading point 12L' is obtained.
  • the direction of the vector v1 ′ is opposite to the direction in which the unmanned vehicle 20 enters in reverse (step 114).
  • the processing device 42 recalculates the boundary line 90.
  • the vector v1 indicating the approach direction to the left loading point 12L is changed to the vector v1 ′ indicating the approach direction to the new left loading point 12L ′.
  • a new travel route 10′L is generated and a new boundary line 90 ′ is generated again (step 115).
  • the boundary line 90 may be generated by the control apparatus 40 by transmitting necessary information from the loader 30 to the control apparatus 40.
  • the boundary line 90 is generated by the loader 30, and the boundary line 90 is generated.
  • Vector information may be transmitted to the control device 40.
  • FIG. 10 is a diagram illustrating a method for generating the boundary line 90 based on the shape information of the loading field 1.
  • the loading machine 30 is provided with loading field shape recognition means 37 (see the broken line in FIG. 2).
  • the loading field shape recognition means 37 is constituted by, for example, a laser beam distance measuring means, and the shape recognition of the face 1a for recognizing the shape of the face 1a by scanning the face 1a on the front face of the loader 30 to recognize the shape of the face 1a.
  • the procedure is as follows.
  • a vector v3 that is the sum of a vector v5 from the point R to the point SL and a vector v6 from the point R to the point SR is calculated.
  • the boundary line 90 is generated, and the loading points 12L and 12R are set on the left and right sides of the boundary line 90.
  • Generation of the boundary line 90 may be generated by the control apparatus 40 by transmitting necessary information from the loader 30 to the control apparatus 40.
  • the boundary line 90 is generated by the loader 30, and the boundary line 90 is generated.
  • Vector information may be transmitted to the control device 40.
  • the boundary line 90 is generated by the above-described procedures 1) to 4) (step 201).
  • the operator designates the position of one of the left and right loading points 12 and instructs the position setting of one loading point 12. That is, the operator turns the upper swing body 30B to one side (for example, the right loading point 12R side). In this case, the consciousness of “left side” and “right side” is not particularly required, and “left product” and “right product” instructions by the left and right instruction buttons 33a are also unnecessary. Then, the operator presses the spot button 33b of the input device 33 with the work machine 30C positioned on one side (step 202).
  • the processing device 42 of the control device 40 receives the position instruction signal transmitted from the loader 30 via the communication device 41. The processing device 42 determines that an instruction for setting the position of the loading point 12 has been given.
  • the processing device 42 obtains the direction of the work machine 30C (the direction represented by the vector v4) based on the position P of the loader 30 and the position Q of the bucket of the work machine 30C transmitted together with the position instruction signal.
  • the left and right loading points 12L and 12R are discriminated by comparing the direction of the work machine 30C (direction represented by the vector v4) with the direction of the boundary line 90 (direction represented by the vector v3). Is called.
  • the z component of the outer product v3 ⁇ v4 of the vector v3 and the vector v4 is positive, so that the processing device 42 is the working machine 30C of the loading machine 30. It is determined that the position is on the right loading point 12R side, and it is determined that the position setting of the right loading point 12R has been instructed (step 203).
  • the operator turns the upper swing body 30B by operating the operation lever in the driver's seat on the opposite side to the step 202 (for example, on the left loading point 12L side) as shown by the broken line in FIG. .
  • the consciousness of “opposite side” is necessary, and in particular, the consciousness of “left side” and “right side” is unnecessary. Further, it is not necessary to indicate “left product” and “right product” with the left and right instruction buttons 33a.
  • the processing device 42 of the control device 40 receives the position instruction signal transmitted from the loader 30 via the communication device 41. The processing device 42 determines that an instruction for setting the position of the loading point 12 has been given.
  • the processing device 42 determines the direction of the work machine 30C (the direction represented by the vector v4 ′) based on the position P of the loader 30 and the position Q ′ of the work machine 30C transmitted together with the position instruction signal. ) And the direction of the work machine 30C (direction represented by the vector v4 ′) is compared with the direction of the boundary line 90 (direction represented by the vector v3). Is determined. In the example shown in FIG. 10 (the working machine 30C is indicated by a broken line), since the z component of the outer product v3 ⁇ v4 ′ of the vector v3 and the vector v4 ′ is negative, the processing device 42 is the working machine of the loading machine 30. It is determined that 30C has been positioned on the left loading point 12L side, and it is determined that the position setting of the left loading point 12L has been instructed (step 206).
  • the processing device 42 determines that the position setting of the left loading point 12L is instructed, the position Q ′ of the bucket of the working machine 30C transmitted from the loading machine 30 is set as the position of the left loading point 12L. Set. Then, the processing device 42 generates a travel route 10L that allows the unmanned vehicle 20 (unmanned vehicle 20 different from the unmanned vehicle 20 shown in FIG. 10) to reach the set left loading point 12L. The processing device 42 generates an optimal travel route 10L without interference in consideration of the position of the loader 30, the position of the unmanned vehicle 20, and another travel route 10R (step 207).
  • the processing for giving a travel command to the unmanned vehicle 20 is performed in the same manner as Step 109 to Step 111 shown in FIG.
  • the landform of loading site 1 changes over time. Therefore, in FIG. 10, the loading point 12 and the approach direction to the loading point 12 may be changed while the center position P of the loading machine 30 remains unchanged. In this case, the boundary line 90 can be changed to a new boundary line 90 ′ by the same calculation as described with reference to FIG. 9 in the first embodiment.
  • information is sent from the loader 30 to the control device 40, and a travel command is sent from the control device 40 to the unmanned vehicle 20.
  • the functions of the control device 40 are loaded. It is also possible to carry out direct communication between the loader 30 and the unmanned vehicle 20 with the machine 30.
  • FIG. 1 is a top view of the loading place.
  • FIG. 2 is a block diagram of the vehicle travel system of the embodiment.
  • FIG. 3 is a diagram showing details of the configuration of the input device of the loader.
  • FIGS. 4A, 4B, 4C, and 4D are flowcharts showing a procedure of processing performed in the traveling control system of the present embodiment.
  • FIG. 5 is a diagram for explaining boundary line generation processing.
  • FIG. 6 is a diagram for explaining processing in the case of instructing a travel command for causing an unmanned vehicle to enter a loading point.
  • FIG. 7 is a diagram for explaining processing in the case of instructing a travel command for retracting the unmanned vehicle from the loading point.
  • FIG. 1 is a top view of the loading place.
  • FIG. 2 is a block diagram of the vehicle travel system of the embodiment.
  • FIG. 3 is a diagram showing details of the configuration of the input device of the loader.
  • FIGS. 4A, 4B, 4C, and 4D
  • FIG. 8 is a diagram for explaining processing in the case of instructing a travel command for causing the opposite unmanned vehicle to enter the loading point.
  • FIG. 9 is a diagram for explaining processing in the case of instructing setting of a loading point position.
  • FIG. 10 is a diagram illustrating a procedure for generating a boundary line based on information on the shape of the loading field.
  • FIG. 11 is a flowchart showing a processing procedure when setting the position of the loading point.
  • FIG. 12 is a diagram illustrating one-side loading.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 両側積込みで無人車両に走行指令を与えるに際して、左右の判断や左右指示ボタンによる操作を不要とし、作業性を向上させ、また、両側積込みで積込み点の位置を設定するに際して、左右の判断や左右指示ボタンによる操作を不要とし、作業性を向上させるための無人車両の走行システムおよびその走行制御方法である。両側積込みで無人車両に走行指令を与えるに際して、走行指令が指示されたときの作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する。また、両側積込みで積込み点の位置を設定するに際して、積込み点の位置設定が指示されたときの作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する。

Description

無人車両の走行システムおよびその走行制御方法
本発明は、無人車両の走行システムおよびその走行制御方法に関し、特に、無人車両を、積込機が存在する積込み点まで走行経路に沿って走行させる無人車両の走行システムおよびその走行制御方法に関するものである。
 採石現場、鉱山などの広域の作業現場では、土砂運搬作業を行なうに際して、オフロードダンプトラックを運転する作業者の疲労による事故の回避、省人化、作業時間の延長による生産性の向上を図ることが求められる。そこで、有人の車両、たとえば有人のオフロードダンプトラックの代わりに無人のオフロードダンプトラックを稼動させるための無人車両の走行システムが導入されている。オフロードダンプトラックは、ディーゼルエンジンを動力として車輪を駆動し走行するものや、ディーゼルエンジンを駆動して発電機を作動させ、発電した電力によって電動モータを駆動し、電動モータの駆動力を車輪に伝達させて走行するものがある。
 オフロードダンプトラックが走行する作業現場には、積込場、排土場などの各エリアがある。これら各エリアが、ホールロードと呼ばれる整備された搬送路やアクセスロードと呼ばれるホールロードから各エリアへの引込み線や交差点により接続されている。
 エリアの一つである積込場は、オフロードダンプトラック(本発明では、無人車両という)へ土砂を積み込む作業を行う場所であり、ショベル(例えば油圧ショベル)、バックホー、ホイールローダといった作業車両(本発明では、積込機という)による掘削作業および無人車両への土砂等の積荷の積み込み作業が行なわれる。
(片側積込み)
 図12は、積込場1において、片側積込みを行う場合を示している。片側積込みとは、同図12に示すように、積込場1の入口点11から積込機30が存在する積込み点12まで無人車両20を走行させるための走行経路10が生成され、生成された走行経路10に沿って無人車両20が走行制御され、積込み点12において、積荷が積込機30によって積み込まれる積込み作業である。つまり、片側積込みとは、積込機30に対して左右いずれかの片側に無人車両20が走行してきて、積込み作業中は積込み点12で停車する積込み作業である。ここで、走行経路10は、入口点11から待機点14までの経路および待機点14から積込み点12までの経路である最終アプローチ16を含む。積込み点12から出口点15までの経路を出口コース17(17L、17R)と称するものとする。
積込機30は、例えば油圧ショベルであって、履帯を有した下部走行体30Aと左右に旋回可能な上部旋回体30Bを有している。上部旋回体30Bには、ブーム、アーム、バケットを備えた作業機30Cが結合されており、作業機30Cを動作させることで土砂等をすくい上げ、無人車両20に積込み作業を行う。つまり、積込み点12とは、無人車両20に備えられたベッセル(積荷を積載するもの)と積込機30のバケットとの位置を示す。なお、片側積込みの形態として、積込機30の前方に無人車両20が走行してきて、積込み作業を行う形態も、片側積込みの一形態である。
この場合、無人車両20は、入口点11から積込み点12の近傍の待機点14、スイッチバック点13を経由して積込み点12に至る。待機点14とは、無人車両20が積込機30からの指示を受けるまで停止して待機する場所である。また、待機点14は、無人車両20が、前進走行で走行してきた後に積込み機30の積込み点12へ後進走行でアプローチ(進入)するためにスイッチバック動作を行う、スイッチバック点13にもなりえる点である。ただし、積込みの形態によっては、必ずしもスイッチバックは必要ではない。たとえば、入口点11から積込機30に向かって円弧を描いて積込み点12に至る場合もある。また、上記のようにスイッチバック点13が待機点14に一致することもある。
積込機30は、上部旋回体30Bに取り付けられた作業機30Cによって、積込場1の切羽1aを掘削する。切羽1aは、鉱山などの作業現場の崖などが想定される。そして、積込機30のオペレータが図示しない操作レバーを操作することにより、下部走行体30Aに対して上部旋回体30Bを旋回させて作業機30Cを積込み点12に位置させ、積荷を無人車両20に積み込む。
積込み作業が完了すると、無人車両20は、走行指令に応じて積込み点12から離れ、積込場1の出口点15に向かって走行する。
こうした一連の作業を行う際に、積込機30のオペレータは、無人車両20に対して以下のような指示を与える。なお、無人車両走行システムでは、オペレータの指示内容は、図示しない管制装置に無線通信により送信され、管制装置から無人車両20に対して無線通信を介して走行指令が与えられる。オペレータの指示は、積込機30の運転室内部に設けられたスイッチやボタンをオペレータが操作することにより、操作に応じた指示(電気信号)が無線通信可能な無線信号に変換されて、積込機30に備えられた通信装置を用いて管制装置に無線通信可能である。
a)積込み点12の位置設定の指示
 積込機30が走行し移動することにより、あるいは作業機30Cの旋回停止位置が変わることにより、積込み点12は逐次変動する。
積込み点12の位置設定の指示は、オペレータの操作によって、作業機30Cに取り付けられたバケットを所望する地点に位置させ、オペレータが作業機30Cの運転室内部に設けられた「スポットボタン」を押すことにより行われる。積込み点12の位置設定が指示されると、作業機30Cのバケット位置を積込み点12の位置として、管制装置で、無人車両20が積込み点12に至る走行経路10が生成される。
b)積込み点12への進入の指示
 無人車両20は、上記のように待機点14に停止している間、積込み点12への進入の指示がなければ待機点14から積込み点12までの区間を走行することができない。なお、待機点14から積込み点12までの走行経路を「最終アプローチ16」という。積込み点12への無人車両20の進入の指示は、オペレータが積込機30の運転室に設けられた「カムインボタン」を押すことにより行われる。「カムインボタン」が押されることにより発生する電気信号をもとに積込機30に搭載された通信装置が無線信号(進入の指示を示す信号)を無人車両20へ送信し、無人車両20は、その無線信号を無人車両20に搭載された通信装置で受信する。このように、無人車両20が積込み点12への進入の指示を受けると、無人車両20は、待機点14から最終アプローチ16に沿って積込み点12まで走行する。
c)積込み点12から退避の指示
積込み作業が完了すると、次に積込場1に進入してくる無人車両20への積荷の積込み作業を行なうべく、現在、積込み点12にいる無人車両20を積込み点12から退避させる必要がある。積込み点12からの退避の指示は、オペレータが積込機30の運転室内部に設けられた「ゴーボタン」を押すことにより行われる。無人車両20は、積込み点12からの退避の指示を受けると、無人車両20は、積込み点12から離れ、積込場1の出口点15に向けて走行する。この無人車両20の退避の指示も、上記の進入の指示と同様に、積込機30と無人車両20との無線通信により実行される。
以下、同様に、次に積込場1に進入してくる無人車両20に対して、処理が行われる。積込機30の移動などがなく積込み点12が変動せず走行経路10が変動しない限りは、積込機30のオペレータは「スポットボタン」の操作が不要であり、「カムインボタン」、「ゴーボタン」のボタン操作を繰り返すだけで、連続して各無人車両20に対する積込み作業を行うことができる。
しかしながら、片側積込みでは、次に積込み点12に向う無人車両20の待ち時間が増加し、生産性が低くなるという問題がある。そこで、積込み点12に向う無人車両20の待ち時間が少なく、生産性の向上が期待できる「両側積込み」が広く採用されている。
(両側積込み)
 図1は、積込場1において、両側積込みを行う場合を示している。両側積込みでは、積込み点12について、左積込み点12L(左積)、右積込み点12R(右積)が設定される。両側積込みの場合の走行経路10は、片側積込みの場合の走行経路10と同様に定義される。ただし、説明の便宜上、走行経路10、積込み点12、最終アプローチ16、出口コース17について「左」、「右」を区別するときは、符号に「L」、「R」を付することにする。
左積込み点12Lは、積込機30に対する無人車両20の進入方向が左方向となる積込み点のことであり、右積込み点12Rは、積込機30に対する無人車両20の進入方向が右方向となる積込み点のことである。両側積込みとは、積込機30に対して左右に無人車両20を進入させて、より連続的に積込み作業を行うことで無人車両20の待ち時間を減少させ生産性を高める積込み作業である。
両側積込みでは、積込機30のオペレータは、無人車両20に対して以下のような指示を与える。オペレータの指示内容は、無線信号によって図示しない管制装置に送信され、管制装置から無人車両20に対して無線信号により走行指令として与えられる。
a)左積込み点12L、右積込み点12Rの位置設定の指示
 積込機30の運転室内部には、左積込み点12L(左積)、右積込み点12R(右積)を指示する「左右指示ボタン」が設けられている。「左右指示ボタン」は、左指示用あるいは右指示用として別個に設けてもよいし、一つのトグルスイッチで左右の指示が行えるようなものであっても良い。オペレータは、作業機30Cのバケットを所望する変更積込み点に位置させるように操作レバーを操作して、上部旋回体30Bや作業機30Cを動作させる。その後、オペレータは、「左右指示ボタン」を押して、無人車両20の積込み点12を設定したい側(走行経路10を生成したい側)を選択する。さらに作業機30Cのバケットを積込み点の位置として指定すべく、オペレータは「スポットボタン」を押し、積込み点12の位置設定を指示する。たとえば、「左右指示ボタン」によって「左積」が指示されたものとすると、「スポットボタン」が押されたときの作業機30Cのバケット位置が左積込み点12Lの位置として設定される。そして、設定された左積込み点12Lに至る新たな走行経路10Lが管制装置によって生成される。
b)左積込み点12L、右積込み点12Rへの進入の指示
 オペレータは、「左右指示ボタン」を押して、進入すべき側の積込み点12を選択する。さらに「カムインボタン」を押して、その選択された側の積込み点12への進入を指示する。たとえば、「左右指示ボタン」によって「左積」が指示されたものとすると、「左積込み点12L」に至る走行経路10Lに存在する無人車両20に対して走行指令が与えられ、無人車両20は、待機点14から最終アプローチ16Lを経て左積込み点12Lまで走行する。
c)左積込み点12L、右積込み点12Rから退避の指示
積込機30のオペレータは、「左右指示ボタン」押して、無人車両20が退避すべき側の積込み点12を選択する。さらに「ゴーボタン」を押して、その選択された側の積込み点12からの無人車両20の退避を指示する。たとえば、「左積」が指示されたものとすると、「左積込み点12L」に存在する無人車両20に対して走行指令が与えられ、無人車両20は、左積込み点12Lから離れ、出口コース17Lを経て積込場1の出口点15に向けて走行する。
なお、特許文献1には、積込機が移動する毎に積込み点の位置を自動的に求めて、無人車両が、その積込み点に至ることができる走行経路を生成するという発明が記載されている。
特開平8-263138号公報
 鉱山等における積込機30による無人車両20への積荷の積込み作業の形態である両側積込みは、片側積込みと比較して生産性の向上が期待できる。
しかし、両側積込みでは、
a)積込機30のオペレータは、無人車両20に走行指令(進入指令、退避指令)を与える際に常に積込機30に対して「左」、「右」の別を判断し、「左」、「右」の別を指示しなければならず、その左右の判断や左右指示ボタンによる操作が煩雑なものとなっている。すなわち、積込機30のオペレータは無人車両20に対して走行指令を与える際に、走行指令を与えようとしている無人車両20の積込機30に対する積み込み位置が、左であるか右であるかを判断して、「左右指示ボタン」を押さなければならず、オペレータの作業性が低下する要因となっている。旋回動作する上部旋回体を備えた積込機30のような場合、オペレータは旋回動作による、「左」、「右」の判断を運転席外部の景色から判別しなければならない。
b)積込機30のオペレータは、積込み点12の位置を設定する毎に常に「左」、「右」の別を判断し、「左」、「右」の別を指示しなければならず、その左右の判断や左右指示ボタンによる操作が煩雑なものとなっている。すなわち、オペレータは積込み点12の位置を設定する毎に左であるか右であるかを判断して、「左右指示ボタン」を押さなければならず、オペレータの作業性が低下する要因となっている。やはり、旋回動作する上部旋回体を備えた積込機30のような場合、オペレータは旋回動作による、「左」、「右」の判断を運転席外部の景色から判別しなければならない。
本発明は、こうした実情に鑑みてなされたものであり、両側積込みで無人車両に走行指令を与えるに際して、左右の判断や左右指示ボタンによる操作を不要とし、オペレータ作業性を向上させることを第1の解決課題とするものである。
また、本発明は、両側積込みで積込み点の位置を設定するに際して、左右の判断や左右指示ボタンによる操作を不要とし、作業性を向上させることを第2の解決課題とするものである。
なお、特許文献1は、両側積込みを前提とするものではなく、また両側積込みで問題となる上記の点については何ら言及されていない。
第1発明は、
積込機の作業機によって無人車両への積込みが行われる積込み点への無人車両の進入方向が、積込機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムにおいて、
 左右積込み点への無人車両の進入方向の情報に基づいて、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成手段と、
積込機の作業機の向きまたは位置を検出する検出手段と、
 検出手段によって検出された作業機の向きと、境界線の方向とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別手段と、
 走行指令を指示する走行指令指示手段と、
 走行指令指示手段によって走行指令が指示された場合に、判別手段で判別された側の積込み点で積込みを行うべき無人車両に対して、走行指令を与える走行制御手段と
が備えられていることを特徴とする。
第2発明は、
積込場の積込機の作業機によって無人車両への積込みが行われる積込み点への無人車両の進入方向が、積込機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムにおいて、
 積込場の形状と積込機の位置の情報に基づいて、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成手段と、
積込機の作業機の向きまたは位置を検出する検出手段と、
 検出手段によって検出された作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別手段と、
 走行指令を指示する走行指令指示手段と、
 走行指令指示手段によって走行指令が指示された場合に、判別手段で判別された側の積込み点で積込みを行うべき無人車両に対して、走行指令を与える走行制御手段と
が備えられていることを特徴とする。
第3発明は、
積込機の作業機によって無人車両への積込みが行われる積込み点への無人車両の進入方向が、積込機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムに適用される走行制御方法において、
 積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成ステップと、
走行指令を指示する走行指令指示ステップと、
 走行指令が指示されたときの作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別ステップと、
 判別された側の積込み点で積込みを行うべき無人車両に対して、走行指令を与える走行制御ステップと
を含むことを特徴とする。
第4発明は、第1発明、第2発明、第3発明において、
走行指令は、無人車両を積込み点に進入させる走行指令または無人車両を積込点から退避させる走行指令であることを特徴とする。
第5発明は、
積込機の作業機によって無人車両への積込みが行われる積込み点への無人車両の進入方向が、積込機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムにおいて、
 左右積込み点への進入方向の情報に基づいて、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成手段と、
積込機の作業機の向きまたは位置を検出する検出手段と、
 検出手段によって検出された作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別手段と、
 積込み点の位置を指定して積込み点の位置設定を指示する積込み点位置設定指示手段と、
 積込み点位置設定指示手段によって積込み点の位置設定が指示された場合に、判別手段で判別された側の積込み点の位置を、指定した位置に設定し、設定した積込み点までの走行経路を生成する走行指令生成手段と
が備えられていることを特徴とする。
第6発明は、
積込場の積込機の作業機によって無人車両への積込みが行われる積込み点への無人車両の進入方向が、積込機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムにおいて、
 積込場の形状の情報に基づいて、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成手段と、
積込機の作業機の向きまたは位置を検出する検出手段と、
 検出手段によって検出された作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別手段と、
積込み点の位置を指定して積込み点の位置設定を指示する積込み点位置設定指示手段と、
 積込み点位置設定指示手段によって積込み点の位置設定が指示された場合に、判別手段で判別された側の積込み点の位置を、指定した位置に設定し、設定した積込み点までの走行経路を生成する走行指令生成手段と
 が備えられていることを特徴とする。
第7発明は、第5発明または第6発明において、
積込み点の位置が変更される毎に、境界線を生成し直すことを特徴とする。
第8発明は、
積込機の作業機によって無人車両への積込みが行われる積込み点への進入方向が、積込機の作業機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムに適用される走行制御方法において、
 積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成ステップと、
積込み点の位置を指定して積込み点の位置設定を指示する積込み点位置設定指示ステップと、
 積込み点の位置設定が指示されたときの作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別ステップと、
 判別された側の積込み点の位置を、指定された位置に設定し、設定した積込み点までの走行経路を生成する走行指令生成ステップと
を含むことを特徴とする。
第9発明は、第8発明において、
積込み点が変更される毎に、境界線を生成し直すことを特徴とする。
(発明の効果) 
第1発明~第4発明は、第1の解決課題を解決する発明であり、両側積込みで無人車両に走行指令を与えるに際して、無人車両に走行指令が指示されたときの積込機の作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するようにしたので、オペレータによる左右の判断や左右指示ボタンによる操作が不要となり、作業性が飛躍的に向上する。
第5発明~第9発明は、第2の解決課題を解決する発明であり、両側積込みで積込み点の位置を設定するに際して、積込み点の位置設定が指示されたときの積込機の作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するようにしたので、オペレータによる左右の判断や左右指示ボタンによる操作が不要となり、作業性が飛躍的に向上する。
(第1の実施例)
以下、図面を参照して本発明に係る無人車両の走行システムおよびその走行制御方法の実施の形態について説明する。なお、本実施形態では、車両として無人のオフロードダンプトラック(本明細書では、無人車両という)を想定している。また、積込機として、有人のショベル(例えば油圧ショベル)を想定している。なお、ショベルのみならず、バックホー、エクスカベータ、ホイールローダなどの他の種類の積込機にも当然本発明を適用することができる。
図1は、積込場1を上面からみた図である。
採石現場、鉱山などの広域の作業現場には、積込場、排土場、給油所、駐機所といった各エリアがある。これら各エリアは、ホールロードと呼ばれる整備された搬送路やアクセスロードと呼ばれるホールロードから各エリアへの引込み線や交差点により、相互に接続されている。
各エリアの一つである積込場は、無人車両20へ土砂を積み込む作業を行う場所である。積込み場で、ホイールローダ、バックホー、ショベルといった積込機による掘削作業が行われ、無人車両20への土砂の積み込み作業が行なわれる。
例えば、ショベルとして構成された積込機30は、下部走行体30Aに対して上部旋回体30Bが旋回自在となっている。下部走行体30Aは、無限軌道である履帯を駆動させて積込機30を走行させるものや、タイヤを駆動させて積込機30を走行させるものである。積込機30は、上部旋回体30Bに取り付けられた作業機30Cによって、積込場1の切羽1aを掘削する。作業機30Cはブーム、アーム、バケットを備えたものであって、図示しない油圧シリンダを用いてブーム、アーム、バケットを動作させるものである。なお、作業機30Cの形態は、油圧シリンダの伸縮に応じてブーム、アーム、バケットを動作させるのではなく、ワイヤーケーブルを巻き上げあるいは巻き戻してブーム、アーム、バケットを動作させるものであってもよい。また、作業機30Cにアームを備えずに、ブームの先端からクラムシェルバケットをワイヤでつるようなものであってもよい。上部旋回体30Bには、運転席が設けられ、運転席内部に備えられた、操作レバーをオペレータが操作することによって、下部走行体30Aに対して上部旋回体30Bを旋回させることができるとともに作業機30Cのブームの上下動やアームの上下動、バケットの上下動を行うことができる。したがって、オペレータの操作によって、作業機30Cを積込み点12(左積込み点12L、右積込み点12R)に位置させ、積荷を無人車両20に積み込むことができる。
無人車両20は、車体前方に運転室(キャブ)が設けられ、車体後方に積荷が積み込まれる荷台(ベッセル、ボディ)が設けられ、前輪と後輪が備えられた前輪ステアリングの車両である。なお、無人車両20は、このような構造のものに限定されず、運転室が無いものや前輪と後輪がタイヤではなく、無限軌道である履帯で構成されたものでもよい。さらに、無人車両20は、アーティキュレートダンプと呼ばれる、車両前部と荷台を備えた車両後部とが機械的に連結された車両であってもよい。
 無人車両20は、走行経路10に沿って誘導走行されて積込場1内を入口点11から有人の積込機30が存在する積込み点12(左積込み点12L、右積込み点12R)まで走行する。なお、本明細書では、左右積込点12L、12Rを区別しないときには、「積込み点12」と総称するものとする。
入口点11とは、予め設定された点であって、無人車両20が走行する、図示しないホールロードと積込場1とが交差する点のことである。また、走行経路10上に、無人車両20が積込機30から進入の許可を得るまで待機すべき点として、待機点14が設定される。例えば、スイッチバック点13が待機点14に定められる。スイッチバック点13とは、無人車両20が、前進走行で走行してきた後に積込み機30の積込み点12へ後進走行でアプローチ(進入)するためにスイッチバック動作を行う点である。
本明細書では、説明の便宜上、スイッチバック点13を待機点14としているが、待機点14は、必ずしもスイッチバック点13に限定されるわけではない。
例えば、ショベルが積込機30の場合、積込み点12から一定距離(設定値)離れた走行経路10上の点を待機点14に設定することが多い。ただし、積込み点12に、より近い地点にスイッチバック点13があるときにはスイッチバック点13が待機点14とされる。
また、ホイールローダが積込機30の場合、積込み点12の位置と、ホイールローダの設定された大きさに基づきホイールローダの想定作業エリアを作成し、入口点11から積込み点12間において、走行経路10とこの想定作業エリアとが最初に干渉する位置を、待機点14に設定することが多い。ホイールローダは、積み込み作業を行うために前後あるいは左右に移動するため、無人車両20とホイールローダとの干渉を考慮する必要があるからである。ただし、上記の干渉する位置よりも入口点11側にスイッチバック点13がある場合には、スイッチバック点13が待機点14とされる。なお、ホイールローダが積込機30の場合、スイッチバックを行わない走行経路を生成することがある。
走行経路10とは、無人車両20が、入口点11から積込み点12の近傍の待機点14を経由して積込み点12に至るまでの走行経路のことである。なお、走行経路10のうち、待機点14から積込み点12に至る走行経路を特に「最終アプローチ」16と定義する。
ショベルなどの積込機30は、新しい掘削場所へ移動等するために、その積込み点12が逐次変動する。なお、「移動等」としたのは、積込機30自体は移動せず、作業機30Cを旋回させることで、作業機30Cのバケット位置である積込み点12(無人車両20へ積荷を積み込む位置)が変更されることもあるからである。
積込機30の積込み点12は、下部走行体30Aに対して作業機30Cを左右に旋回させた左右各位置それぞれに存在し、それぞれ左積込み点12L、右積込み点12Rという。左積込み点12Lは、作業機30Cに対する無人車両20の進入方向が左方向となる積込み点のことであり、右積込み点12Rは、作業機30Cに対する無人車両20の進入方向が右方向となる積込み点のことである。左右積込み点12L、12Rは作業機30Cのバケットの位置に相当する。作業機30Cに取り付けられるバケットは、積込機30の車格や積荷の種類などによって、大きさや形状が選択されて取り付けられている。したがって、バケットの位置とは、取り付けられたバケットの積荷を入れる内部の中心位置相当をあらかじめ定めたものである。なお、バケットの形状などによっては、必ずしも中心位置相当をバケット位置と定めず、積込み作業が行いやすい位置を任意にバケット位置として定めてもよい。また、作業機30Cを構成するブームやアームの姿勢によって、バケットの位置は空間上の位置が異なる。そこで、積荷を無人車両20に積み込む際の作業機30Cの姿勢をとった場合に、その作業機30Cに取り付けられている作業機30Cのブームやアームの長さを考慮し、上部旋回体30Bの任意の位置からバケットの積荷を入れる内部の中心位置相当までの距離から左積込み点12Lあるいは右積込み点12Rの位置が演算される。ブームやアームの長さやバケットの中心位置は、あらかじめ積込機30の記憶装置34に記憶されており、作業機30Cの姿勢を変位センサ等で検出し、処理装置32で演算を行い、左積込み点12Lあるいは右積込み点12Rの位置(X座標位置、Y座標位置等)が求められる。なお、作業機30Cの姿勢を変位センサで検出するのではなく、簡便にするために固定値を記憶装置34に記憶させておき、その固定値を用いて積込み点12を求める演算を行ってもよい。
両側積込の形態では、原則として2台の無人車両20が、積込機30の左右の位置に交互に積込作業のためにアプローチ(進入)して、左積込み点12L、右積込み点12Rに至る。従って、積込機30は、左右毎に別々の走行経路10(10L、10R)を同時に保持し、例えば右積み込み点12Rの位置の変更をしたときには、新たな右積込み点12Rに至る新たな走行経路10(10R)が生成され、左積込み点12Lに至る走行経路10(10L)については変更がなく影響を受けない。
走行経路10は、積込み点12の位置情報と入口点11の位置情報に基づき、後述する管制装置40で生成される。なお、複数の走行経路10が生成される場合には、走行経路同士を区別するために、適宜、符号「10」に「ダッシュ」を付することとする。
無人車両20は、管制装置40から無線通信で受信した走行経路10に従って、無人車両20が自律制御によってエンジンの出力制御、ステアリング制御、ブレーキ制御を行いながら、走行速度や走行方向を調整し、積込場1に入口点11から入り、待機点14(スイッチバック点13)に向かい、待機点14(スイッチバック点13)でスイッチバックを行い、積込み点12で停止して、積込機30の作業機30Cによって土砂等の積荷が荷台に積み込まれる。積込み作業が終了すると、無人車両20は、やはり自律制御によって積込み点12から退避して出口点15に向かって走行する。
 待機点14(スイッチバック点13)の前後では、無人車両20の進行方向は、前進方向から後進方向に変化する。無人車両20は、積込み点12に向けて、後進状態で進入する。なお、積込場1の地形の状態などによっては、無人車両20はスイッチバックを行わず、前進方向で積込み点12に向けて進入するような走行経路10の形態をとってもよい。積込み点12が位置変更されると、入口点11から変更された位置の積込み点12に至る新しい走行経路10が生成される。
なお、位置の変更前後の左積込み点12L、右積込み点12Rを区別するために、位置の変更後の積込み点については、適宜、符号「12L」、「12R」に「ダッシュ」を付することとする。
 図2は、実施形態の車両走行システムのブロック図を示している。なお、複数台の無人車両20が積込場1を走行する場合には、適宜、車両同士を区別するために符号「20」に「ダッシュ」を付することとする。
 作業現場には、多数の無人車両20、20´...を管理、監視する管制装置40が設けられている。管制装置40には、通信装置41と処理装置42と入力装置43と記憶装置44と表示装置45とが設けられている。通信装置41は、例えば無線LANなどの通信機器(アンテナ、受信機、送信機等)で構成されるものである。処理装置42は、数値演算プロセッサなどのCPUで構成されるものである。入力装置43は、数値や文字などを入力することができる、キーボードやGUI(グラフィカルユーザーインターフェース)などのタッチパネルなどで構成される。記憶装置44は、ハードディスクやROM、RAM、メモリーカードなど、各種情報を記憶するもので構成される。表示装置45は、液晶ディスプレイなどで構成され各種情報を表示するものである。
一方、無人車両20、20´には、通信装置21と処理装置22と位置計測装置23とと制御装置24と記憶装置25が設けられている。通信装置21は、例えば無線LANなどの通信機器(アンテナ、受信機、送信機等)で構成されるものである。処理装置22は、数値演算プロセッサなどのCPUで構成されるものである。位置計測装置23は、例えばGPS(グローバルポジショニングシステム)センサなどで構成されるシステムであって、GPS衛星からの電波を受けて、無人車両20の位置(経度・緯度・高度)を計測できるものである。制御装置24は、無人車両20のエンジンの出力制御やステアリング制御、ブレーキ制御などを行い、無人車両20の加減速度や停止、走行方向の制御を行うための電子コントローラである。記憶装置25は、ハードディスクやROM、RAM、メモリーカードなど、各種情報を記憶するもので構成される。
積込機30には、通信装置31と処理装置32と入力装置33と記憶装置34と位置計測装置35と作業機位置計測装置35aと表示装置36とが設けられている。通信装置31は、例えば無線LANなどの通信機器(アンテナ、受信機、送信機等)で構成されるものである。処理装置22は、数値演算プロセッサなどのCPUで構成されるものである。入力装置33は、数値や文字などを入力することができる、キーボードやGUI(グラフィカルユーザーインターフェース)などのタッチパネル、各種指令信号を発信するための押しボタンスイッチなどで構成される。記憶装置34は、ハードディスクやROM、RAM、メモリーカードなど、各種情報を記憶するもので構成される。作業機位置計測装置35aは、積込機30の所定の位置(例えば積込機30の重心位置)から、オペレータによる操作レバーの操作によって位置を決められた、作業機30Cのバケットの位置を計測するものである。具体的には、作業機30Cを構成する、ブームあるいはアーム、バケットを動作させるための各油圧シリンダのシリンダーストロークを変位センサで検出し、検出された各変位と積込機30の重心位置とを用いて、バケットの位置の空間座標(位置座標)を計測する。作業機30Cに取り付けられるバケットは、積込機30の車格や積荷の種類などによって、大きさや形状が選択されて取り付けられている。したがって、バケットの位置とは、取り付けられたバケットの積荷を入れる内部の中心位置相当をあらかじめ定めておき、その中心位置と各油圧シリンダの伸縮状態、言い換えればブーム、アーム、バケットの姿勢から、積込み点12となる位置座標を演算して求めるものである。以下、バケットの位置情報とは、積込み点12となる位置座標のことを意味する。なお、ブーム、アーム、バケットにワイヤーケーブルを結合し、ワイヤーケーブルの巻上げや巻き戻しによって作業機30Cの姿勢を定めるものである場合も、ワイヤーケーブルの巻き上げ機に取り付けられた回転センサ(例えば、ロータリーエンコーダー等)により検出された変位を用いれば、同様に作業機位置(積込み点12)を演算、計測することが可能である。表示装置45は、積込機30の運転席の内部に設けられ、液晶ディスプレイなどで構成され各種情報を表示するものである。液晶ディスプレイは、抵抗膜式のタッチパネルでもよいし、操作ボタンを別に設けて表示だけを行うものでもよい。
図3は、積込機30の入力装置33の構成の詳細を示している。
同図3に示すように、入力装置33は、積込機30の運転室内部に設けられ、タッチパネルで構成されている。積込機30のオペレータが、タッチパネルを押圧することができるような位置に入力装置33は配置されている。入力装置33は、左右指示ボタン33a、スポットボタン33b、カムインボタン33c、ゴーボタン33d、スイッチサイドボタン33eを含んで構成されている。また、積込機30の表示装置36には、境界線90、走行経路10、無人車両20が表示されており、オペレータは、表示装置36の画面を見ながら、入力装置33の左右指示ボタン33a、スポットボタン33b、カムインボタン33c、ゴーボタン33d、スイッチサイドボタン33eの各種操作を行うことができる。
各ボタンは、図3に示すように文字とともにタッチパネルの所定の場所に設けても良いし、各スイッチボタンをアイコンなどの図柄を用いてタッチパネルに表示し、オペレータがいずれのボタンが何の機能を果たすものであるのかを識別できるようにしてもよい。
積込機30のオペレータからの指示は、オペレータが入力装置33の各スイッチボタンを押すことにより行われる。各スイッチボタンに対応した電気信号が処理装置32で無線信号に変換され、無線信号は通信装置31を経由して管制装置40に送られる。その後、管制装置40から無人車両20に走行経路10の情報または走行指令が無線信号によって与えられる。このような無線信号のやりとりについての詳細は後述する。左右指示ボタン33a、スポットボタン33b、カムインボタン33c、ゴーボタン33d、スイッチサイドボタン33eについて説明する。
・左右指示ボタン33a
左右指示ボタン33aは、左積込み点12L(左積)であるか、また右積込み点12R(右積)であるかを指示するボタンである。左右指示ボタン33aで「左積」、「右積」のいずれかを選択すると、「左積」であるか「右積」であるかを示す左右指示信号が生成され、管制装置40に送られる。図3に示すように左右指示ボタン33aは、一つのボタンで構成し、一回押すと左積、連続して二回押すと右積という操作方法を設定しておいてもよいし、左右指示ボタン33aを2つ設けて、一方を左積の指示、他方を右積の指示と振り分けてもよい。
・スポットボタン33b
スポットボタン33bは、積込み点12の初期位置または変更位置を指示するボタンである。積込機30のオペレータが、運転席内部に設けられた操作レバーを操作し、上部旋回体30Bあるいは下部走行体30Aを動作させ、さらに上部旋回体30Bに結合された作業機30Cを動作させ、作業機30Cに取り付けられているバケットを、所望とする積込み点に位置させ、オペレータが、入力装置33のスポットボタン33bを押すと、位置指示信号が生成される。積込機30および作業機30Cのバケットの位置情報を示す信号と位置指示信号が無線信号として、通信装置31から管制装置40に送られる。
・カムインボタン33c
カムインボタン33cは、無人車両20を積込み点12へ進入させる走行指令を指示するボタンである。積込機30のオペレータが、入力装置33のカムインボタン33cを押すと、進入指示信号が生成される。積込機30および作業機30Cのバケットの位置情報を示す信号と進入指示信号が無線信号として、通信装置31から管制装置40に送られる。
・ゴーボタン33d
ゴーボタン33dは、無人車両20を積込み点12から退避させる走行指令を指示するボタンである。積込機30のオペレータが、入力装置33のゴーボタン33dを押すと、退避指示信号が生成される。積込機30の位置情報および作業機30Cのバケット先端の位置情報を示す信号ととともに、退避指示信号が通信装置31から管制装置40に送られる。
・スイッチサイドボタン33e
スイッチサイドボタン33eは、後述する境界線によって判断された側とは反対側の無人車両20に対して走行指令を指示するボタンである。積込機30のオペレータが、入力装置33のスイッチサイドボタン33eを押すと、現在の積込機30の作業機30Cが、境界線に対して位置している側とは反対側に位置する無人車両20に対して走行指令を指示する、スイッチサイド指示信号が生成され、スイッチサイド指示信号は、無線信号として通信装置31から管制装置40に送られる。
無人車両20の位置計測装置23では、自己の車両位置が計測される。位置計測の手段としては、たとえば無人車両20に設けられたタイヤ回転数センサとジャイロが使用される。これらタイヤ回転数センサの出力信号とジャイロの出力信号とに基づいて、車両位置が計測される。また、先に述べたようにGPS衛星から送信される信号をGPSアンテナで受信し、GPSセンサで信号を検出することにより無人車両20の位置を計測してもよい。さらには、タイヤ回転数センサとジャイロとGPSセンサとを連携させて融合させたシステムで無人車両20の位置を計測してもよい。無人車両20で計測された位置情報は、処理装置22で処理され通信装置21を介して管制装置40に送信される。記憶装置25は、管制装置40から送信された走行経路10の座標情報や入口点11や出口点15、待機点14の位置座標を示す位置情報などが記憶されている。また、記憶装置25には、走行経路10のカーブの大きさに応じたエンジン制御やステアリング制御、ブレーキ制御に関連する各種パラメータ(燃料噴射量のパラメータ、ステアリング角度のパラメータ、ブレーキの油圧回路の油圧のパラメータ等)が記憶されている。
管制装置40の通信装置41は、複数の無人車両20、20´...から送信された位置情報を無線通信により受信する。受信した位置情報は、複数の無人車両20、20´の管理、監視のために利用される。
積込機30のオペレータが、入力装置33の左右指示ボタン33aを押すと、左右指示信号が生成され、処理装置32に入力される。処理装置32は、左右指示信号を通信装置31に送信する。通信装置31は、左右指示信号を無線通信可能な無線信号に変換し、管制装置40に送信する。
積込機30の位置計測装置35では、自己の積込機30の位置(積込機30の中心として位置する中心位置)が計測される。積込機30の位置は、無人車両20と同様なGPSセンサを用い、GPSセンサの位置が計測され、位置計測装置35は、GPSセンサの設置位置と積込機30の大きさから求められる積込機30の中心位置を位置情報(積込場1の中での地理的な位置情報)として演算する。作業機位置計測装置35aでは、作業機30Cのバケットの位置が計測される。作業機位置計測装置35aは、作業機30Cの何れかの場所に取り付けられたGPSセンサの計測結果から、作業機30Cのブームやアーム、バケットの大きさ・長さや姿勢を考慮し、バケット位置をバケットの位置情報(積込場1の中での地理的な位置情報)として演算する。
積込機30のオペレータが、運転室内の操作レバーを操作することにより、作業機30Cのバケットを所望する積込み点に位置させ、入力装置33のスポットボタン33bを押すと、位置指示信号が生成され、処理装置32に入力される。処理装置32は、その時点で位置計測装置35および作業機位置計測装置35aで計測されている、積込機30および作業機30Cのバケットの位置情報を取り込み、位置指示信号とともに通信装置31に送信する。通信装置31は、位置指示信号を、積込機30および作業機30Cのバケットの位置情報を示す信号ととともに、無線通信可能な無線信号に変換し無線通信で管制装置40に送信する。
積込機30のオペレータが、入力装置33のカムインボタン33cを押すと、進入指示信号が生成され、処理装置32に入力される。処理装置32は、その時点で位置計測装置35および作業機位置計測装置35aで計測されている、積込機30および作業機30Cのバケットの位置情報を取り込み、進入指示信号とともに通信装置31に送信する。通信装置31は、進入指示信号を、積込機30および作業機30Cのバケットの位置情報を示す信号ととともに、無線通信可能な無線信号に変換し無線通信で管制装置40に送信する。
積込機30のオペレータが、入力装置33のゴーボタン33dを押すと、退避指示信号が生成され、処理装置32に入力される。処理装置32は、その時点で位置計測装置35および作業機位置計測装置35aで計測されている、積込機30および作業機30Cのバケットの位置情報を取り込み、退避指示信号とともに通信装置31に送信する。通信装置31は、退避指示信号を、積込機30および作業機30Cのバケットの位置情報を示す信号ととともに、無線通信可能な無線信号に変換し無線通信で管制装置40に送信する。
積込機30のオペレータが、入力装置33のスイッチサイドボタン33eを押すと、スイッチサイド指示信号が生成され、処理装置32に入力される。処理装置32は、スイッチサイド指示信号を通信装置31に送信する。通信装置31は、スイッチサイド指示信号を無線通信可能な無線信号に変換し無線通信で管制装置40に送信する。
管制装置40の通信装置41は、積込機30から送信された各種の信号(無線信号)を受信する。
管制装置40の入力装置43には、積込機30が掘削すべき積込場1の入口点11の位置および方向などの積込場1の既知の地理的な情報が入力される。
管制装置40の処理装置42は、通信装置41で受信した信号および入力装置43より入力された情報を取り込み、後述する境界線の生成処理、走行経路10の生成処理、走行指令の生成処理を実行する。
生成された境界線、走行経路10の情報および無人車両20の位置の情報は、管制装置40の通信装置41を介して積込機30に送信される。また、走行経路10、走行指令の情報は、管制装置40の通信装置41を介して無人車両20に送信される。
積込機30の通信装置31は、境界線、走行経路10の情報および無人車両20の位置の情報を管制装置40から受信する。積込機30の処理装置32は、境界線、走行経路10の情報および無人車両20の位置の情報を取り込み、積込機30の表示装置36に、
積込場1の地理的図形とともに、境界線、走行経路10、無人車両20および積込機30自身の位置をグラフィック表示する。
無人車両20の通信装置21は、管制装置40から送信された走行経路10、走行指令の情報を受信する。記憶装置25は、管制装置40から送信される走行経路10および走行指令の情報を記憶する。
無人車両20の処理装置22は、走行経路10および走行指令の情報に基づいて自己の無人車両20を走行させ操舵するための制御指令を生成する。この制御指令は、制御装置24に出力される。この結果、制御装置24は、自己の無人車両20の走行速度およびステアリング角度(操舵)あるいはブレーキを制御し、無人車両20は、走行経路10に沿って走行する。
 以下、図4に示すフローチャートを併せ参照して説明する。
図4(a)、(b)、(c)、(d)は、本実施例の走行システムあるいは走行制御方法で行われる処理の手順を示すフローチャートである。
境界線の生成処理の流れを図4(a)、(b)に示し、境界線の生成処理の詳細について図5を併せ説明する。
 まず積込機30のオペレータは、自己の積込機30の一方側、例えば左側に積込み点12Lの位置を指定して左積込み点12Lの位置設定を指示する。すなわち、オペレータは、左側を意識して、運転室内部の操作レバーを操作して、上部旋回体30Bを旋回させ作業機30Cのブームやアーム、バケットを動作させて、所望とする左積込み点12Lにバケットを位置決めさせる。その後、オペレータは、入力装置33の左右指示ボタン33aを押して「左積」を選択指示する(ステップ101)とともに、スポットボタン33bを押す(ステップ102)。積込機30は、通信装置31を介して、「左積」を示す左指示信号と、その位置を示す位置指示信号を管制装置40に送信する。
管制装置40の処理装置42は、通信装置41を介して、積込機30から送られてきた左指示信号と位置指示信号を取り込む。そして、処理装置42は左指示信号と位置指示信号とを関連付けて「左積込み点12L」の位置の設定が指示されたと判断する。そして、処理装置42は、積込機30から送られてきた作業機(バケット)位置Q(図5参照)を「左積込み点12L」の位置として設定する(ステップ103)。
つぎに、処理装置42は、この設定された左積込み点12Lに無人車両20が至るための走行経路10Lを生成する。積込機30の位置、無人車両20の位置、他の走行経路10Rを考慮して、無人車両20同士の干渉や無人車両20と積込機30との干渉が起きない最適な走行経路10Lが生成される。走行経路10Lが生成されることにより、無人車両20が左積込み点12Lへ進入する方向を示すベクトルv1が得られる。ただし、ベクトルv1の向きは、無人車両20が後進で進入する方向とは真逆の向きとなる(ステップ104)。
つぎに、積込機30のオペレータは、ステップ101の旋回位置(図5に示すように作業機30CのバケットがQの位置)とは反対側である積込み点12Rを指示するための操作を行う。つまり、自己の積込機30の右側に積込み点12Rの位置を指定して積込み点12Rの位置設定を指示する。オペレータは、右側を意識して、運転室内部の操作レバーを操作して、作業機30Cのブームやアーム、バケットを動作させて、所望とする右積込み点12Rにバケットを位置決めさせる。その後、オペレータは、入力装置33のスポットボタン33bを押す(ステップ105)。
管制装置40の処理装置42は、積込機30から送られてきた位置指示信号を取り込む。既に「左積込み点12L」の位置設定がなされているため、右積込み点12Rにおいてオペレータのスポットボタン33bの操作によって、2回目の位置指示信号が送信されたことになる。よって、処理装置42は、2回目の位置指示信号を受信したことを判断材料として、「左積込み点12L」とは反対側の「右積込み点12R」の位置の設定が指示されたと判断する。そして、処理装置42は、積込機30から送信された作業機(バケット)位置Q´を「右積込み点12R」の位置として設定する(ステップ106)。なお、図5に示すように、積込機30の片側(左側)のみの走行経路10が既に生成されている場合、そのベクトルv1に対して平行なベクトルであって積込機42の中心位置Pを通るベクトルvcが積込機30の処理装置42によって求められる。処理装置42は、上記の2回目の位置指示信号が示す積込み点が、最初の位置指示信号によって設定された積込み点に対して、本当に逆側に位置するものかの判断を行う。判断は、ベクトルvcの向きと、2回目の位置指示信号が示す積込み点の位置情報を用いて行う。ベクトルvcが示す方向を0度(基準)として、図5に斜線で示す反時計回りに180度の領域内に2回目の位置指示信号が示す積込み点の位置情報が存在すれば、2回目の位置指示信号が示す積込み点が最初の位置指示信号によって設定された積込み点の逆側(右側)であると判断する。加えて言えば、ベクトルvcが示す方向を0度(基準)として、時計回り180度の領域内に2回目の位置指示信号が示す積込み点の位置情報があれば、それは最初の位置指示信号によって設定された積込み点の逆側(右側)ではないと判断する。
つぎに、処理装置42は、この設定された右積込み点12Rに無人車両20が至るための走行経路10Rを生成する。積込機30の位置、無人車両20の位置、他の走行経路10Lを考慮して、無人車両20同士の干渉や無人車両20と積込機30との干渉が起きない最適な走行経路10Rが生成される。走行経路10Rが生成されることにより、無人車両20が右積込み点12Rへ進入する方向を示すベクトルv2が得られる。ただし、ベクトルv2の向きは、無人車両20が後進で進入する方向とは真逆の向きとなる(ステップ107)。ここでの走行経路10L、10Rは、待機点14から左右積込み点12L、12Rまでの走行経路である。
つぎに、管制装置40の処理装置42は、無人車両20の左右積込み点12L、12Rへの進入方向の情報、つまり、ベクトルv1、v2に基づいて、境界線90を生成する処理を行う。境界線90とは、積込機30の作業機30Cが左積込み点12L側に位置されたか、あるいは右積込み点12R側に位置されたかを判別するためのベクトル線のことである。
具体的には、次式、
v3=(v1+v2)/2 ...(1)
のごとく、無人車両20が左右積込み点12L、12Rへ進入する方向を示すベクトルv1、v2の和の半分を、境界線90の方向を示すベクトルv3とする。境界線90は、積込機30の位置(中心位置P)を通り、ベクトルv3で表される方向の線分として得られる(ステップ108)。中心位置Pは、積込機30の上部旋回体30Bの旋回中心の位置情報である。なお、中心位置Pは、次のように求められるものであってもよい。中心位置Pは、積込機30の大きさ(幅・全長)から求められるもので、積込機30の大きさは、管制装置40の記憶装置44にあらかじめ記憶されている。そして、管制装置40の処理装置は、積込み機30の位置計測装置35により計測された地理的な位置情報を用いて、ベクトルv3の始点である中心位置Pの地理的な位置情報が求められる。
無人車両20に走行指令を与える処理の流れを図4(c)に示し、図6を併せて説明する。
(無人車両20を積込み点に進入させる走行指令の指示)
 積込機30のオペレータが積込み作業を開始すべく、無人車両20の積込み点12への進入を許可する場合には、オペレータは、運転室内部の操作レバーを操作して積込み作業を開始したい側に上部旋回体30Bを旋回させる。この場合、特に「左側」、「右側」の意識は不要であり、左右指示ボタン33aによる「左積」、「右積」の指示も不要である。そして、オペレータは、積込み作業を行いたい側に作業機30Cを位置させた状態で、入力装置33のカムインボタン33cを押す(ステップ109)。
(左右積込み点の判別)
管制装置40の処理装置42は、積込機30から送信された進入指示信号を通信装置41を介して受信する。これにより、管制装置40は無人車両20の積込み点12への進入が指示されたと判断する。
つぎに、左右いずれの積込み点12L、12Rへの進入が指示されたかについての判別が行われる。
 まず、管制装置40の処理装置42は、進入指示信号とともに送られてきた積込機30の位置Pと作業機30Cのバケットの位置Qの地理的な位置情報から作業機30Cの向きを示すベクトルv4を演算する。ベクトルv4は、積込機30の車体中心位置Pから作業機30Cのバケットの位置Qに向かう向きを示すベクトルである。
 つぎに、管制装置40の処理装置42は、上記のごとく得られた作業機30Cの向きを示すベクトルv4と、境界線90の方向を示すベクトルv3とを対比して、積込機30の作業機30Cが左積込み点12L側に位置されたか、あるいは右積込み点12R側に位置されたかを判別する。
具体的には、ベクトルv3とベクトルv4の外積v3×v4のz成分が、
正のとき:積込機30の作業機30Cが右積込み点12R側に位置された
負のとき:積込機30の作業機30Cが左積込み点12L側に位置された
と判別される。つまり、外積の計算結果はベクトルであるから、その計算結果のベクトルのz成分の正負をみることで、ベクトルv3とベクトルv4の位置関係(向き)を知ることができる。よって、作業機30Cが、左積込み点12Lに位置されたのか、右積込み点12Rに位置されたのかがわかる。
なお、作業機30Cの位置(積込機中心位置Pから作業機30Cのバケット位置Qまでの線分PQのバケット位置Qの位置座標)と境界線90の位置(積込機30の中心位置Pを通り、ベクトルv3で表される方向の線分が示す位置座標)を対比して、積込機30の作業機30Cが左積込み点12L側に位置されたか、あるいは右積込み点12R側に位置されたかを判別してもよい。図6では、ベクトルv3とベクトルv4の外積v3×v4のz成分が、正となるため、管制装置40の処理装置42は、積込機30の作業機30Cが右積込み点12Rの側に位置されたと判別し、右積込み点12Rに無人車両20を進入させる走行指令の指示がなされたと判断する(ステップ110)。
(走行制御)
 管制装置40の処理装置42では、ステップ110で判別された側の積込み点12、例えば、無人車両20が右積込み点12Rに至るための走行経路10Rの待機点14に待機している無人車両20に対して、右積込み点12Rへ進入させる走行指令(最終アプローチ16Rの走行経路)を生成する。生成された走行指令(最終アプローチ16Rの走行経路)は、管制装置40の通信装置41から走行経路10の情報とともに無人車両20に送信される。
 無人車両20は、走行指令および走行経路10Rの情報を通信装置21で受信すると、処理装置22で制御装置24に対する制御信号の生成を行う。制御装置24は、走行速度制御やステアリング角度制御、ブレーキ制御を行いながら、無人車両20を待機点14から最終アプローチ16Rに沿って右積込み点12Rまで走行制御させる(ステップ111)。
以上のステップ109~111の説明では、無人車両20を積込み点12に進入させる走行指令を指示する場合を想定したが、無人車両20を積込み点12から退避させる走行指令を指示する場合についても同様な無線通信、信号処理、走行制御が行われる。
(無人車両20を積込み点から退避させる走行指令の指示)
 図7を用いて無人車両20を積込み点から退避させる走行指令の指示について説明する。
 積込機30によって、積荷を無人車両20に積込む作業を終え、無人車両20が積込み点12から退避することを許可する場合には、オペレータは、積込み作業を終えた際の積込み側に作業機30Cを位置させた状態で入力装置33のゴーボタン33dを押す。この場合、オペレータは、特に「左側」、「右側」の意識は不要であり、左右指示ボタン33aによる「左積」、「右積」の指示も不要である(ステップ109)。
(左右積込み点の判別)
管制装置40の処理装置42は、積込機30から送られてきた退避指示信号を通信装置41を介して受信する。処理装置42は、無人車両20を積込み点12から退避させる指示があったと判断する。
つぎに、処理装置42は、退避指示信号とともに送られてきた積込機30の位置Pと作業機30Cのバケットの位置Qに基づき、作業機30Cの方向(ベクトルv4の方向)を求め、この作業機30Cの方向(ベクトルv4の方向)を境界線90の方向(ベクトルv3の方向)と対比することにより、作業機30Cは左右いずれの積込み点12L、12Rに位置するのかの判別を行う。
図7に示す場合は、ベクトルv3とベクトルv4の外積v3×v4のz成分が、正となるので、処理装置42は、積込機30の作業機30Cが右積込み点12R側に位置されたと判別し、右積込み点12Rから無人車両20を退避させる走行指令の指示がなされたと判断する(ステップ110)。
(走行制御)
 管制装置40の処理装置42は、ステップ110で判別された側の積込み点12、たとえば右積込み点12Rに存在する無人車両20に対して、右積込み点12Rから退避させるための走行指令(信号)を生成する。生成された走行指令は、走行経路10Rに対応する出口コース17Rの情報とともに通信装置41を介して無人車両20に送信される。なお、既に走行経路10Rに対応する出口コース17Rの情報が無人車両20に送られており、走行経路10Rに対応する出口コース17Rの変更がなければ新たに走行経路10Rに対応する出口コース17Rの情報を送信するに及ばない。
 無人車両20は、通信装置31を介して走行指令および走行経路10Rに対応する出口コース17Rの情報を受信すると、右積込み点12Lから退避して出口コース17Rに沿って出口点15に向かって走行するように、上記に述べたような走行制御を行い走行する(ステップ111)。
以上のステップ109~111の説明では、境界線90との対比によって判別された側の無人車両20に対して走行指令を指示する場合を想定したが、スイッチサイドボタン33eの操作によって、境界線90との対比によって、判別された側とは反対側の無人車両20に対して走行指令を指示する実施も可能である。
(反対側の無人車両20あるいは20´を積込み点に進入させる走行指令の指示)
 図8を用いて、反対側の無人車両20を積込み点に進入させる走行指令の指示について説明する。
 積込機30が、片側の積込み点12で無人車両20に積込み作業を行っているときに、反対側の積込み点12へ他の無人車両20´の進入を許可して生産性の向上を図りたい場合がある。この場合、積込機30のオペレータは、現在、作業機30Cが位置している側と反対側の無人車両20´に積込み点12への進入の許可を与えるために入力装置33のスイッチサイドボタン33eを操作する。たとえば、積込機30が、右積込み点12Rで積込み作業を行っているときには、作業機30Cを右積込み点12Rに位置させた状態でオペレータは、入力装置33のスイッチサイドボタン33eを押すとともに、カムインボタン33cを押す。この場合も、オペレータは、特に「左側」、「右側」の意識は不要であり、左右指示ボタン33aによる「左積」、「右積」の指示も不要である(ステップ109)。
(左右積込み点の判別)
管制装置40の処理装置42は、通信装置41を介して積込機30から送信された進入指示信号を受信する。これにより、処理装置42は、無人車両20が積込み点12への進入を指示されたと判断する。また、管制装置40の処理装置42は、積込機30から送信されたスイッチサイド指示信号を通信装置41を介して受信する。処理装置42は、境界線90との対比によって、判別された側とは反対側の積込み点12に無人車両20´を進入させる走行指令の指示がなされたと判断する。
つぎに、処理装置42は、通信装置41を介して進入指示信号とともに受信した積込機30の位置Pと作業機30Cのバケットの位置Qに基づき作業機30Cの方向(ベクトルv4の方向)を求め、この作業機30Cの方向(ベクトルv4の方向)を境界線90の方向(ベクトルv3の方向)と対比することにより、作業機30Cは左右いずれの積込み点12L、12Rに位置するのか判別を行う。
図8では、ベクトルv3とベクトルv4の外積v3×v4のz成分が、正となるので、処理装置42は、積込機30の作業機30Cが右積込み点12R側に位置されたと判別する。ここで、処理装置42には、通信装置41を介してスイッチサイド指示信号が送信されてきているので、処理装置42は、右積込み点12Rとは反対側の左積込み点12Lに無人車両20´を進入させる走行指令の指示がなされたと判断する(ステップ110)。
(走行制御)
 管制装置40の処理装置42は、ステップ110で判断された側の積込み点12、たとえば左積込み点12Lに至る走行経路10L上の待機点14に位置する無人車両20´に対して、左積込み点12Lへ進入させるための走行指令を生成する。生成された走行指令は、通信装置41を介して走行経路10Lの情報とともに無人車両20´に送信される。
 無人車両20´は、通信装置31を介して走行指令および走行経路10Lの情報を受信すると、上記のような走行制御を行い待機点14から最終アプローチ16Lを経て左積込み点12Lまで走行する(ステップ111)。
 反対側の無人車両20´に対して積込み点12から退避させる走行指令を指示する場合も上記に述べたような処理が行われる。例えば、作業機30Cを右積込み点12Rに位置させた状態で、オペレータが入力装置33のスイッチサイドボタン33eを押すとともに、ゴーボタン33dを押すと、反対側の積込み点12である左積込み点12Lから退避させる走行指令が、左積込み点12Lに存在する無人車両20´に対して与えられ、無人車両20´を左積込み点12Lから出口コース17Lに沿って出口点15に向かって走行させることができる。
 つぎに、積込み点12の位置を変更して設定する場合の処理について図4(d)のフローチャートを参照して説明する。図9に示す、積込み点の位置設定を指示する場合の処理と併せ参照しながら説明する。
(積込み点の位置設定の指示)
時間の経過とともに積込機30による掘削位置あるいは切羽1aの形状あるいは積込場1の地形は、変化する。このため、一度設定した積込み点12の位置を変更する必要がある。積込機30のオペレータは、積込み点12の位置を変更したい場合には、積込み点12の位置を指定して積込み点12の位置設定を指示する。すなわち、オペレータは、上部旋回体30Bを、運転席内の操作レバーの操作により積込み点12の位置を変更したい側(たとえば左積込み点12L側)に旋回させる。この場合、特に「左側」、「右側」の意識は不要であり、入力装置33の左右指示ボタン33aによる「左積」、「右積」の指示も不要である。そして、オペレータは運転席内の操作レバーの操作により積込み点12の位置を、作業機30Cを変更させたい側に位置させた状態で、入力装置33のスポットボタン33bを押す(ステップ112)。
(左右積込み点の判別)
管制装置40の処理装置42では、積込機30から送信された位置指示信号が通信装置41を介して受信される。処理装置42は、位置指示信号を受信することより積込み点12の位置の設定の指示がなされたと判断する。
つぎに、積込機30の処理装置32は、位置指示信号とともに送られてきた積込機30の位置Pと作業機30Cのバケットの位置Qに基づき作業機30Cの方向(ベクトルv4で表される方向)を求め、この作業機30Cの方向(ベクトルv4で表される方向)を境界線90の方向(ベクトルv3で表される方向)と対比することにより左右いずれの積込み点12L、12Rの設定の指示であるかの判別を行う。 
図9に示す例では、ベクトルv3とベクトルv4の外積v3×v4のz成分が、負となるので、積込機30の作業機30Cが左積込み点12L側に位置されたと判別され、新たな「左積込み点12L´」へ左積込み点12Lの位置変更の設定が指示されたと判断される(ステップ113)。
(走行経路の生成)
以上のようにして、処理装置42は、たとえば「左積込み点12L´」へ左積込み点12Lの位置変更の設定が指示されたと判断されると、積込機30から送られてきた作業機30Cのバケットの位置Qを「左積込み点12L´」の位置として設定する。そして、処理装置42は、入口点11から待機点14を経て、この設定された左積込み点12L´に、無人車両20が至ることができる新たな走行経路10´Lを生成する。処理装置42によって、積込機30の位置、無人車両20の位置、他の走行経路10Rを考慮して、無人車両20と積込機30とが干渉のないように最適な新たな走行経路10´Lが生成される。新たな走行経路10´Lが生成されることにより、新たな左積込み点12L´への無人車両20の進入方向を示す新たなベクトルv1´が得られる。ただし、ベクトルv1´の向きは、無人車両20が後進で進入する方向とは真逆の向きとなる(ステップ114)。
(境界線の再計算)
次に、処理装置42は、境界線90を再計算する。図9の例では、左積込み点12Lへの進入方向を示すベクトルv1が、新たな左積込み点12L´への進入方向を示すベクトルv1´に変更されたため、この新たなベクトルv1´と、右積込み点12Rへの進入方向を示すベクトルv2に基づいて、前述の(1)式と同様の演算(v3´=(v1´+v2)/2)を行い、境界線90を再計算する。新たな境界線90´は、積込機30の位置(中心位置P)を通り、ベクトルv3´で表される方向の線分として得られる。このようにして積込み点12の位置が変更される毎に、新たな走行経路10´Lが生成され、新たに境界線90´が生成し直される(ステップ115)。
(同じ側の古い積込み点、走行経路の削除)
以上のようにして、たとえば左積込み点12L´が新たに設定されると、同じ側(左側)の古い積込み点12Lのデータ、および、この古い積込み点12Lに至る古い走行経路10Lのデータは記憶内容から削除される(ステップ116)。境界線90の生成は、積込機30から必要な情報を管制装置40に送信して管制装置40が生成してもよく、積込機30で境界線90を生成して、境界線90のベクトルの情報を管制装置40に送信するようにしてもよい。
(第2の実施例)
第1の実施例では、左右積込み点12L、12Rへの進入方向の情報(ベクトルv1、v
2)に基づいて、境界線90(ベクトルv3)を生成する場合を例にとり説明した。
しかし、積込場1の形状を認識し、積込場1の形状の情報に基づいて、境界線90を生成する実施も可能である。
図10は、積込場1の形状の情報に基づいて、境界線90を生成する方法を説明する図である。この場合、積込機30には、積込場形状認識手段37が設けられる(図2の破線参照)。
積込場形状認識手段37は、たとえばレーザ光測距手段で構成され、積込機30の前面の切羽1aにレーザ光を走査して、切羽1aの形状を認識する
切羽1aの形状認識は、つぎのような手順で行われる。
1)まず、積込場形状認識手段37によって切羽1aの形状を認識する。
2)つぎに、切羽1aのうち積込機30が掘削しようとする地点、つまり積込機30から最も近い切羽1aの地点に向けて、積込機30の中心位置Pから線Sを下ろす。
3)線Sが切羽1aに交差する地点Rを求め、地点Rから切羽1aの形状に沿って左右それぞれ等距離の地点SL、SRを算出する。
4)地点Rから地点SLに向うベクトルv5と、地点Rから地点SRに向うベクトルv6との和となるベクトルv3を算出する。
5)上記4)で得られたベクトルv3が、積込機30の中心位置Pを通るように移動させ、その移動後の線分を境界線90として算出する。
 つぎに、積込み点12の位置を設定する場合について図11(a)、(b)に示すフローチャートを参照して説明する。
積込機30が、掘削位置を変える毎に、境界線90が生成され、境界線90の左右に積込み点12L、12Rが設定される。境界線90の生成は、積込機30から必要な情報を管制装置40に送信して管制装置40が生成してもよく、積込機30で境界線90を生成して、境界線90のベクトルの情報を管制装置40に送信するようにしてもよい。
(境界線の生成)
最初に、境界線90が前述した手順1)~4)により生成される(ステップ201)。
(一方の積込み点の位置設定の指示)
つぎに、オペレータは、左右のうち一方の積込み点12の位置を指定して一方の積込み点12の位置設定を指示する。すなわち、オペレータは、上部旋回体30Bを片側(たとえば右積込み点12R側)に旋回させる。この場合、特に「左側」、「右側」の意識は不要であり、左右指示ボタン33aによる「左積」、「右積」の指示も不要である。そして、オペレータは、作業機30Cを片側に位置させた状態で入力装置33のスポットボタン33bを押す(ステップ202)。
(左右積込み点の判別)
管制装置40の処理装置42は、積込機30から送信された位置指示信号を通信装置41を介して受信する。処理装置42は、積込み点12の位置の設定の指示がなされたと判断する。
つぎに、処理装置42は、位置指示信号とともに送信された積込機30の位置Pと作業機30Cのバケットの位置Qに基づき作業機30Cの方向(ベクトルv4で表される方向)を求め、この作業機30Cの方向(ベクトルv4で表される方向)を境界線90の方向(ベクトルv3で表される方向)と対比することにより左右いずれの積込み点12L、12Rであるかの判別が行われる。図10に示す例(作業機30Cを実線で示す)では、ベクトルv3とベクトルv4の外積v3×v4のz成分が、正となるので、処理装置42は、積込機30の作業機30Cが右積込み点12R側に位置されたと判別され、右積込み点12Rの位置設定が指示されたと判断する(ステップ203)。
(走行経路の生成)
以上のようにして、例えば、処理装置42は、右積込み点12Rの位置設定が指示されたと判断すると、積込機30から送られてきた作業機30Cのバケットの位置Qを右積込み点12Rの位置として設定する。そして、この設定された右積込み点12Rに無人車両20が至るまでの走行経路10Rを生成する。積込機30の位置、無人車両20の位置、他の走行経路10Lを考慮して干渉のない最適な走行経路10Rが生成される(ステップ204)。
(反対側の積込み点の位置設定の指示)
つぎに、オペレータは、図10に作業機30Cを破線で示すごとく、ステップ202とは反対側に(たとえば左積込み点12L側)に運転席内の操作レバーの操作によって上部旋回体30Bを旋回させる。この場合、「反対側」という意識だけ必要であり、特に「左側」、「右側」の意識は不要である。また、左右指示ボタン33aによる「左積」、「右積」の指示も不要である。そして、オペレータは、その反対側に作業機30Cを位置させた状態で入力装置33のスポットボタン33bを押す(ステップ205)。
(左右積込み点の判別)
管制装置40の処理装置42は、積込機30から送信された位置指示信号が通信装置41を介して受信する。処理装置42は、積込み点12の位置の設定の指示がなされたと判断する。
つぎに、処理装置42は、位置指示信号とともに送信された送られてきた積込機30の位置Pと作業機30Cの位置Q´に基づき作業機30Cの方向(ベクトルv4´で表される方向)を求め、この作業機30Cの方向(ベクトルv4´で表される方向)を境界線90の方向(ベクトルv3で表される方向)と対比することにより左右いずれの積込み点12L、12Rであるかの判別が行われる。 
図10に示す例(破線で作業機30Cを示す)では、ベクトルv3とベクトルv4´の外積v3×v4´のz成分が、負となるので、処理装置42は、積込機30の作業機30Cが左積込み点12L側に位置されたと判別され、左積込み点12Lの位置設定が指示されたと判断する(ステップ206)。
(走行経路の生成)
以上のようにして、処理装置42は、左積込み点12Lの位置設定が指示されたと判断すると、積込機30から送信された作業機30Cのバケットの位置Q´を左積込み点12Lの位置として設定する。そして、処理装置42は、無人車両20(図10に示す無人車両20とは別の無人車両20)が、この設定された左積込み点12Lに至ることができる走行経路10Lを生成する。処理装置42は、積込機30の位置、無人車両20の位置、他の走行経路10Rを考慮して干渉のない最適な走行経路10Lを生成する(ステップ207)。
無人車両20に走行指令を与える場合の処理は、図4(c)に示すステップ109~ステップ111と同様にして行われる。
(境界線の再計算)
 時間の経過とともに積込場1の地形は、変化する。このため図10において、積込機30の中心位置Pはそのままで積込み点12とその積込み点12への進入方向が変更されることがある。この場合には、第1の実施例で図9を用いて説明したのと同様の計算によって境界線90を新たな境界線90´に変更することができる。
なお、上述した各実施例では、積込機30から情報を管制装置40に送り、管制装置40から走行指令を無人車両20に対して送るようにしているが、管制装置40の機能を積込機30に持たせ、積込機30と無人車両20との間で直接通信を行う実施も可能である。
図1は、積込場の上面図である。 図2は、実施形態の車両走行システムのブロック図である。 図3は、積込機の入力装置の構成の詳細を示した図である。 図4(a)、(b)、(c)、(d)は、本実施例の走行制御システムで行われる処理の手順を示すフローチャートである。 図5は、境界線の生成処理を説明する図である。 図6は、無人車両を積込み点に進入させる走行指令を指示する場合の処理を説明する図である。 図7は、無人車両を積込み点から退避させる走行指令を指示する場合の処理を説明する図である。 図8は、反対側の無人車両を積込み点に進入させる走行指令を指示する場合の処理を説明する図である。 図9は、積込み点の位置設定を指示する場合の処理を説明する図である。 図10は、積込場の形状の情報に基づいて、境界線を生成する処置を説明する図である。 図11は、積込み点の位置を設定する場合の処理の手順を示すフローチャートである。 図12は、片側積込みを説明する図である。

Claims (9)

  1. 積込機の作業機によって無人車両への積込みが行われる積込み点への無人車両の進入方向が、積込機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムにおいて、
     左右積込み点への無人車両の進入方向の情報に基づいて、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成手段と、
    積込機の作業機の向きまたは位置を検出する検出手段と、
     検出手段によって検出された作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別手段と、
     走行指令を指示する走行指令指示手段と、
     走行指令指示手段によって走行指令が指示された場合に、判別手段で判別された側の積込み点で積込みを行うべき無人車両に対して、走行指令を与える走行制御手段と
    が備えられていることを特徴とする無人車両の走行システム。
  2. 積込場の積込機の作業機によって無人車両への積込みが行われる積込み点への無人車両の進入方向が、積込機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムにおいて、
     積込場の形状の情報に基づいて、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成手段と、
    積込機の作業機の向きまたは位置を検出する検出手段と、
     検出手段によって検出された作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別手段と、
     走行指令を指示する走行指令指示手段と、
     走行指令指示手段によって走行指令が指示された場合に、判別手段で判別された側の積込み点で積込みを行うべき無人車両に対して、走行指令を与える走行制御手段と
    が備えられていることを特徴とする無人車両の走行システム。
  3. 積込機の作業機によって無人車両への積込みが行われる積込み点への無人車両の進入方向が、積込機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムに適用される走行制御方法において、
     積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成ステップと、
    走行指令を指示する走行指令指示ステップと、
     走行指令が指示されたときの作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別ステップと、
     判別された側の積込み点で積込みを行うべき無人車両に対して、走行指令を与える走行制御ステップと
    を含むことを特徴とする無人車両の走行システムにおける走行制御方法。
  4. 走行指令は、無人車両を積込み点に進入させる走行指令または無人車両を積込点から退避させる走行指令であることを特徴とする請求項1、2記載の無人車両の走行システムまた請求項3記載の無人車両の走行システムにおける走行制御方法。
  5. 積込機の作業機によって無人車両への積込みが行われる積込み点への無人車両の進入方向が、積込機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムにおいて、
     左右積込み点への進入方向の情報に基づいて、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成手段と、
    積込機の作業機の向きまたは位置を検出する検出手段と、
     検出手段によって検出された作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別手段と、
     積込み点の位置を指定して積込み点の位置設定を指示する積込み点位置設定指示手段と、
     積込み点位置設定指示手段によって積込み点の位置設定が指示された場合に、判別手段で判別された側の積込み点の位置を、指定した位置に設定し、設定した積込み点までの走行経路を生成する走行指令生成手段と
    が備えられていることを特徴とする無人車両の走行システム。
  6. 積込場の積込機の作業機によって無人車両への積込みが行われる積込み点への無人車両の進入方向が、積込機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムにおいて、
     積込場の形状の情報に基づいて、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成手段と、
    積込機の作業機の向きまたは位置を検出する検出手段と、
     検出手段によって検出された作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別手段と、
    積込み点の位置を指定して積込み点の位置設定を指示する積込み点位置設定指示手段と、
     積込み点位置設定指示手段によって積込み点の位置設定が指示された場合に、判別手段で判別された側の積込み点の位置を、指定した位置に設定し、設定した積込み点までの走行経路を生成する走行指令生成手段と
     が備えられていることを特徴とする無人車両の走行システム。
  7. 積込み点の位置が変更される毎に、境界線を生成し直すことを特徴とする請求項5または6記載の無人車両の走行システム。
  8. 積込機の作業機によって無人車両への積込みが行われる積込み点への進入方向が、積込機の作業機に対して左方向、右方向であるかに応じて左積込み点、右積込み点が設定され、無人車両を走行指令にしたがって走行経路に沿って左積込み点または右積込み点まで走行させる無人車両の走行システムに適用される走行制御方法において、
     積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別するための境界線を生成する境界線生成ステップと、
    積込み点の位置を指定して積込み点の位置設定を指示する積込み点位置設定指示ステップと、
     積込み点の位置設定が指示されたときの作業機の向きまたは位置と、境界線の方向または位置とを対比して、積込機の作業機が左積込み点側に位置されたか、あるいは右積込み点側に位置されたかを判別する判別ステップと、
     判別された側の積込み点の位置を、指定された位置に設定し、設定した積込み点までの走行経路を生成する走行指令生成ステップと
    を含むことを特徴とする無人車両の走行システムにおける走行制御方法。
  9. 積込み点が変更される毎に、境界線を生成し直すことを特徴とする請求項8記載の無人車両の走行システムにおける走行制御方法。
PCT/JP2011/066060 2010-07-16 2011-07-14 無人車両の走行システムおよびその走行制御方法 WO2012008516A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/634,446 US8843311B2 (en) 2010-07-16 2011-07-14 Drive system for unmanned vehicle and method of drive control of the same
AU2011277414A AU2011277414B2 (en) 2010-07-16 2011-07-14 Drive system for unmanned vehicle and method of drive control of the same
CA2793055A CA2793055C (en) 2010-07-16 2011-07-14 Drive system for unmanned vehicle and method of drive control of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-161659 2010-07-16
JP2010161659A JP5303798B2 (ja) 2010-07-16 2010-07-16 無人車両の走行システムおよびその走行制御方法

Publications (1)

Publication Number Publication Date
WO2012008516A1 true WO2012008516A1 (ja) 2012-01-19

Family

ID=45469512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066060 WO2012008516A1 (ja) 2010-07-16 2011-07-14 無人車両の走行システムおよびその走行制御方法

Country Status (5)

Country Link
US (1) US8843311B2 (ja)
JP (1) JP5303798B2 (ja)
AU (1) AU2011277414B2 (ja)
CA (1) CA2793055C (ja)
WO (1) WO2012008516A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303798B2 (ja) * 2010-07-16 2013-10-02 株式会社小松製作所 無人車両の走行システムおよびその走行制御方法
US8954241B2 (en) * 2012-08-10 2015-02-10 Caterpillar Inc. Mining truck spotting under a shovel
AU2013204965B2 (en) 2012-11-12 2016-07-28 C2 Systems Limited A system, method, computer program and data signal for the registration, monitoring and control of machines and devices
WO2015025369A1 (ja) * 2013-08-20 2015-02-26 株式会社小松製作所 管理システム及び管理方法
CA2849407C (en) * 2013-08-30 2016-04-12 Motohide Sugihara Mining machine management system and mining machine management method
WO2015087382A1 (ja) * 2013-12-09 2015-06-18 日立建機株式会社 行動指示システム及び方法
JP6243926B2 (ja) * 2013-12-12 2017-12-06 日立建機株式会社 車両走行システム、搬送車の停車姿勢設定装置が実行する方法、及び搬送車の停車姿勢設定装置
JP6253677B2 (ja) * 2014-02-06 2017-12-27 ヤンマー株式会社 併走作業システム
WO2016051526A1 (ja) * 2014-09-30 2016-04-07 日立建機株式会社 無人運搬車両の走行制御方法及びシステム
JP6977000B2 (ja) * 2016-03-18 2021-12-08 ヤンマーパワーテクノロジー株式会社 作業車両用経路生成システム
DE102016004382A1 (de) * 2016-04-08 2017-10-12 Liebherr-Werk Biberach Gmbh Verfahren und Vorrichtung zum Planen und/oder Steuern und/oder Simulieren des Betriebs einer Baumaschine
AU2016248873B2 (en) * 2016-04-28 2018-01-04 Komatsu Ltd. Work machine management apparatus
WO2016167374A1 (ja) * 2016-04-28 2016-10-20 株式会社小松製作所 作業機械の管理装置
JP6701125B2 (ja) * 2017-06-08 2020-05-27 株式会社小松製作所 作業機械の管理方法
DE102017112765A1 (de) * 2017-06-09 2018-12-13 Liebherr-Werk Biberach Gmbh Verfahren und Vorrichtung zum Heben einer Last
JP7216472B2 (ja) * 2017-10-04 2023-02-01 株式会社小松製作所 作業システムおよび制御方法
JP7202064B2 (ja) * 2017-10-04 2023-01-11 株式会社小松製作所 作業機械制御装置および制御方法
JP7311667B2 (ja) * 2017-10-04 2023-07-19 株式会社小松製作所 作業システムおよび制御方法
JP7011924B2 (ja) * 2017-11-09 2022-01-27 株式会社小松製作所 情報提供装置、積込作業支援システム及び情報提供方法
JP7275010B2 (ja) * 2019-11-29 2023-05-17 株式会社クボタ 自動走行制御システム、及び、コンバイン
JP2021156080A (ja) * 2020-03-30 2021-10-07 住友重機械工業株式会社 施工支援システム及び施工支援装置
JP7450492B2 (ja) * 2020-07-31 2024-03-15 日立建機株式会社 無人作業機械
EP4190977A4 (en) * 2020-07-31 2024-09-04 Hitachi Construction Mach Co UNMANNED CONSTRUCTION VEHICLE
JP7450491B2 (ja) * 2020-07-31 2024-03-15 日立建機株式会社 無人作業機械
JP7453128B2 (ja) * 2020-11-26 2024-03-19 大成建設株式会社 施工支援システムおよび施工支援方法
US12071746B2 (en) 2021-05-12 2024-08-27 Deere & Company System and method for assisted positioning of transport vehicles relative to a work machine during material loading
US11953337B2 (en) 2021-05-12 2024-04-09 Deere & Company System and method for assisted positioning of transport vehicles for material discharge in a worksite
US11965308B2 (en) 2021-05-12 2024-04-23 Deere & Company System and method of truck loading assistance for work machines
US11966220B2 (en) 2021-05-25 2024-04-23 Deere & Company Method and user interface for selectively assisted automation of loading operation stages for work vehicles
CN113758495B (zh) * 2021-09-10 2023-11-14 上海伯镭智能科技有限公司 一种基于矿山无人驾驶的寻路方法
WO2023209647A1 (en) * 2022-04-29 2023-11-02 Kubota Corporation Interactive vehicle automation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297942A (ja) * 1992-04-20 1993-11-12 Fujita Corp 土工事の自動搬送システム
JPH0683443A (ja) * 1991-09-30 1994-03-25 Komatsu Ltd 無人ダンプトラックの積込み位置走行システム
JPH08263138A (ja) * 1995-03-24 1996-10-11 Komatsu Ltd 無人ダンプ走行コースデータ作成方法及び作成装置
JPH10181889A (ja) * 1996-12-19 1998-07-07 Caterpillar Inc 積載機械を有する積載資源へのアクセスを管理するためのシステムおよび方法
JPH10212035A (ja) * 1997-01-28 1998-08-11 Komatsu Ltd 積込運搬車両の作業制御装置
JPH11293708A (ja) * 1998-04-15 1999-10-26 Hitachi Constr Mach Co Ltd 自動運転建設機械
JP2009023753A (ja) * 2007-07-18 2009-02-05 Toyo Koken Kk 三次元空間搬送装置及び三次元空間搬送方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA948824B (en) * 1993-12-08 1995-07-11 Caterpillar Inc Method and apparatus for operating geography altering machinery relative to a work site
US5850341A (en) * 1994-06-30 1998-12-15 Caterpillar Inc. Method and apparatus for monitoring material removal using mobile machinery
US5806016A (en) * 1996-03-28 1998-09-08 Caterpillar Inc. Method for determining the course of a machine
JP5303798B2 (ja) * 2010-07-16 2013-10-02 株式会社小松製作所 無人車両の走行システムおよびその走行制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683443A (ja) * 1991-09-30 1994-03-25 Komatsu Ltd 無人ダンプトラックの積込み位置走行システム
JPH05297942A (ja) * 1992-04-20 1993-11-12 Fujita Corp 土工事の自動搬送システム
JPH08263138A (ja) * 1995-03-24 1996-10-11 Komatsu Ltd 無人ダンプ走行コースデータ作成方法及び作成装置
JPH10181889A (ja) * 1996-12-19 1998-07-07 Caterpillar Inc 積載機械を有する積載資源へのアクセスを管理するためのシステムおよび方法
JPH10212035A (ja) * 1997-01-28 1998-08-11 Komatsu Ltd 積込運搬車両の作業制御装置
JPH11293708A (ja) * 1998-04-15 1999-10-26 Hitachi Constr Mach Co Ltd 自動運転建設機械
JP2009023753A (ja) * 2007-07-18 2009-02-05 Toyo Koken Kk 三次元空間搬送装置及び三次元空間搬送方法

Also Published As

Publication number Publication date
JP2012022611A (ja) 2012-02-02
US20130211712A1 (en) 2013-08-15
JP5303798B2 (ja) 2013-10-02
CA2793055A1 (en) 2012-01-19
AU2011277414B2 (en) 2014-05-08
CA2793055C (en) 2014-10-14
AU2011277414A1 (en) 2012-10-04
US8843311B2 (en) 2014-09-23

Similar Documents

Publication Publication Date Title
JP5303798B2 (ja) 無人車両の走行システムおよびその走行制御方法
JP5140864B2 (ja) 無人車両の走行システムおよび走行経路生成方法
JP5362691B2 (ja) 無人車両の走行システムにおける走行制御方法および無人車両の走行システム
CN105518556B (zh) 车辆行驶系统以及车辆行驶控制方法
JP6159031B2 (ja) 作業機械の管理装置
JP7274831B2 (ja) 作業機械
WO2015151359A1 (ja) 車両走行管制システム及び管制サーバ
WO2011090093A1 (ja) 車両の走行システムおよびその走行方法
WO2016051526A1 (ja) 無人運搬車両の走行制御方法及びシステム
CN111902583A (zh) 挖土机
JP2023126541A (ja) 作業現場の管理システム及び作業現場の管理方法
JP7236826B2 (ja) 作業機械
CN114829710A (zh) 挖土机、远程操作支援装置
KR102520923B1 (ko) 건설 기계의 상태 예측 방법
WO2021182297A1 (ja) 運搬車両を制御するためのシステム及び方法
JP2017199395A (ja) 作業機械の管理方法
JP2019139809A (ja) 作業機械の管理装置及び作業機械の管理方法
KR102423054B1 (ko) 자율 주행 방법 및 이를 이용하는 무인 도저
US8874326B2 (en) Docking assistance system
KR20220157732A (ko) 건설 기계의 상태 예측 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011277414

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2793055

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2011277414

Country of ref document: AU

Date of ref document: 20110714

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13634446

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11806846

Country of ref document: EP

Kind code of ref document: A1