WO2011090093A1 - 車両の走行システムおよびその走行方法 - Google Patents

車両の走行システムおよびその走行方法 Download PDF

Info

Publication number
WO2011090093A1
WO2011090093A1 PCT/JP2011/050923 JP2011050923W WO2011090093A1 WO 2011090093 A1 WO2011090093 A1 WO 2011090093A1 JP 2011050923 W JP2011050923 W JP 2011050923W WO 2011090093 A1 WO2011090093 A1 WO 2011090093A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
vehicle
travel route
loading
standby
Prior art date
Application number
PCT/JP2011/050923
Other languages
English (en)
French (fr)
Inventor
友紀 尾崎
幸司 竹田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to JP2011550939A priority Critical patent/JP5200297B2/ja
Priority to US13/574,656 priority patent/US8965622B2/en
Priority to CN201180007034.8A priority patent/CN102725704B/zh
Priority to AU2011208080A priority patent/AU2011208080B2/en
Publication of WO2011090093A1 publication Critical patent/WO2011090093A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels

Definitions

  • the present invention relates to a traveling system for a vehicle and a traveling method thereof, and in particular, generates a traveling route in which the vehicle travels from an entry point of a loading field to a loading point where a loading machine exists, and the generated traveling route is
  • the present invention relates to a vehicle traveling system and a traveling method for traveling a vehicle along a vehicle.
  • manned vehicles such as manned personnel are used to avoid accidents caused by worker fatigue, save labor, and improve productivity by extending work time.
  • An unmanned vehicle traveling system for operating an unmanned dump truck is introduced instead of the off-road dump truck.
  • the work site where the unmanned dump truck travels includes areas such as a loading site 1 and a dumping site 301. These areas are connected to each other by a lead-in line or an intersection from the prepared transport path called the hall load 302 or the hall load 302 called the access load 303 to each area.
  • a loading place 1 which is one of the areas is a place where soil and sand are loaded into a dump truck (referred to as a vehicle in the present invention), such as a wheel loader (front end loader), a backhoe, and an excavator (for example, a hydraulic excavator).
  • Excavation work by a work vehicle (referred to as a loader in the present invention) and earth and sand loading work on a dump truck are performed.
  • Fig. 1 (a) shows loading place 1.
  • a travel route 10 for traveling the vehicle 20 from the entrance point 11 of the loading field 1 to the loading point 12 where the loader 30 exists is generated, and the generated travel The vehicle 20 is travel-controlled along the route 10.
  • the vehicle 20 reaches the loading point 12 from the entry point 11 via the switchback point 13 in the vicinity of the loading point 12.
  • switchback is not necessarily required depending on the form of loading.
  • an arc may be drawn from the entrance point 11 toward the loader 30 to leave the loading place 1.
  • the loading machine 30, such as a wheel loader, moves to a new excavation site, and therefore the loading point 12 sequentially varies.
  • the reason for “moving etc.” is that the loading machine 30 itself does not move and the loading point 12 may be changed by turning the working machine (bucket).
  • the loading point 12 may move without the loader 30 moving due to the approach angle with respect to the loader 30 being changed by turning the working machine or the like. That is, the loading point 12 is changed due to the cause of the following three cases.
  • the movement of the loading machine 30 is completed, a new loading point 12 'is determined, and a new travel route 10' is generated.
  • the vehicle 20 is stopped before the entrance point 11 of the loading place 1, and after the new travel route 10 'is generated, the vehicle 20 is caused to enter the loading place 1 and travel along the new travel route 10'. I was doing.
  • Patent Document 1 when there is a change in the position of the loading point, a branch point corresponding to the changed position is set on the travel route, and a branch route reaching the loading point after the position change is generated. Like to do. Japanese Patent No. 2920017
  • the production efficiency refers to the efficiency (cycle time) of reciprocating travel when a load quarried at a quarry site or the like is moved from the loading place 1 to another place using the vehicle 20.
  • the waiting time accumulates, and thus the production efficiency further decreases.
  • a traveling system is constructed that keeps the vehicle 20 running as close as possible to the loader 30 without stopping (without waiting time) as much as possible regardless of the moving position of the loader 30. It is desirable to do.
  • the present invention has been made in view of such circumstances, and even when the loading machine 12 is moved or the like and the loading point 12 is sequentially changed, the loading point 12 ′ is surely changed.
  • the problem to be solved is to improve the production efficiency by causing the vehicle 20 to travel and to keep the vehicle 20 traveling as close as possible to the loader 30 without stopping the vehicle 20 as much as possible (without waiting time). Is.
  • the position of the branch point is not a fixed point, and the position of the branch point cannot be predicted in advance. For this reason, in the end, in preparation for a change in the position of the loading point, the vehicle must wait in front of the entrance point of the loading point, and a reduction in production efficiency cannot be avoided.
  • the first invention is In a vehicle travel system that generates a travel route of a vehicle on which the vehicle travels from an entry point of a loading site to a load point where a loader exists, and travels the vehicle along the generated travel route, Based on the position information of the loading point and the position information of the entrance point, traveling route generating means for generating a traveling route from the entrance point to the loading point via the standby point near the loading point; First travel control means for causing the vehicle to travel from the entry point to the standby point along the travel route based on the travel route information generated by the travel route generation means; Standby means for waiting the vehicle at the standby point until permission is obtained from the loader; If the loader instructs the control device or / and the vehicle to change the position of the loading point while the vehicle is waiting at the waiting point or traveling from the entry point to the waiting point, Based on the position information of the loading point after the change and the position information of the standby point on the travel route before the loading point moves, a partial traveling route from the standby point to the loading
  • Partial travel route generating means If the loader does not give instructions to change the position of the loading point while the vehicle is waiting at the waiting point and traveling from the entrance point to the waiting point, Based on the travel route information generated by the route generation means, the vehicle travels from the standby point to the loading point along the travel route, The partial travel route generated by the partial travel route generation means when there is an instruction to change the position of the loading point while the vehicle is waiting at the standby point or while traveling from the entrance point to the standby point And a second travel control means for causing the vehicle to travel along the partial travel route from the standby point to the loading point after the position change.
  • the second invention is the first invention, Applicable when running multiple vehicles sequentially along the route,
  • the partial traveling route generation means generates a partial traveling route from the standby point to the loading point after the position change.
  • the travel route generating means generates a travel route from the entrance point to the loading point after the position change via the standby point at a position different from the standby point on the partial travel route, About the preceding vehicle, while traveling along the partial travel route from the standby point to the loading point after the position change based on the information of the partial travel route generated by the partial travel route generation means, For the following vehicle, traveling along the travel route from the entrance point to the standby point at a position different from the standby point on the partial travel route based on the travel route information generated by the travel route generating means.
  • the third invention is the first invention or the second invention
  • the vehicle is an unmanned vehicle
  • the loader is a manned vehicle
  • a control device Communication means for performing transmission and reception between the control device and the vehicle and between the control device and the loader are provided in the vehicle, the control device, and the loader, respectively.
  • the loader sends a position change instruction to the controller
  • the control device generates a travel route and a partial travel route according to the position change instruction transmitted from the loader
  • the control device transmits information on the travel route and the partial travel route to the vehicle
  • the vehicle travels based on the travel route and partial travel route information transmitted from the control device, and waits until permission is obtained from the loader at the standby point.
  • the fourth invention is In a traveling method of a vehicle that generates a traveling route of a vehicle on which the vehicle travels from an entrance point of a loading place to a loading point where a loading machine exists, and travels the vehicle along the generated traveling route. Based on the position information of the loading point and the position information of the entrance point, generate a travel route from the entrance point to the loading point via the standby point near the loading point, Based on the generated travel route information, the vehicle travels from the entrance point to the standby point along the travel route, Let the vehicle wait until it gets permission from the loader at the waiting point, If the loader instructs the control device or / and the vehicle to change the position of the loading point while the vehicle is waiting at the waiting point or traveling from the entry point to the waiting point, Based on the position information of the loading point after the change and the position information of the standby point on the travel route before the loading point moves, a partial traveling path from the standby point to the loading point after the position change is generated.
  • the vehicle travels from the standby point to the loading point along the travel route,
  • the partial travel route generated by the partial travel route generation means when there is an instruction to change the position of the loading point while the vehicle is waiting at the standby point or while traveling from the entrance point to the standby point
  • the vehicle is caused to travel along the partial travel route from the standby point to the loading point after the position change.
  • a fifth invention is the fourth invention, Applicable when running multiple vehicles sequentially along the route,
  • the partial traveling route generation means generates a partial traveling route from the standby point to the loading point after the position change.
  • the travel route generating means generates a travel route from the entrance point to the loading point after the position change via the standby point at a position different from the standby point on the partial travel route, About the preceding vehicle, while traveling along the partial travel route from the standby point to the loading point after the position change based on the partial travel route information generated by the partial travel route generation means, For the following vehicle, traveling along the travel route from the entrance point to a standby point at a position different from the standby point on the partial travel route based on the travel route information generated by the travel route generating means.
  • a standby point 14 is set on the travel route 10 as a point to wait until the vehicle 20 obtains permission from the loader 30.
  • the switchback point 13 is set as the standby point 14.
  • the vehicle 20 travels along the travel route 10 from the entrance point 11 of the loading place 1 to the standby point 14 and waits until permission is obtained from the loader 30 at the standby point 14.
  • the traveling route terminal portion is left as it is. It travels from the standby point 14 to the loading point 12 along 10a (FIG. 2A).
  • a partial travel route 15 from the standby point 14 to the loaded point 12 ′ after the position change is generated, and the standby on the partial travel route 15 from the entrance point 11.
  • a new travel route 10 ′ is generated via the standby point 14 ′ at a position different from the point 14 and reaching the loading point 12 ′ after the position change.
  • the preceding vehicle 20 is partially driven on the condition that there is an instruction to change the position of the loading point 12 while waiting at the standby point 14 or while traveling from the entrance point 11 to the standby point 14.
  • the vehicle travels along the route 15 from the standby point 14 to the loading point 12 'after the position change.
  • the following vehicle 20' travels along the new travel route 10 'and starts from the entrance point 11 to the partial travel route.
  • the vehicle travels to a standby point 14 ′ at a position different from the standby point 14 on 15.
  • the following vehicle 20 ′ waits at the standby point 14 ′, and either the new partial travel route (not shown) or the original travel route terminal portion 10′a, depending on whether or not the position of the loading point 12 ′ is changed. To drive.
  • the vehicles 20, 20 ′ are unmanned vehicles
  • the loader 30 is a manned vehicle
  • the control device 40 (FIG. 3) is provided separately from these vehicles 20, 20 ′, the loader 30. Provided.
  • the loading machine 30 transmits information indicating an instruction to change the position of the loading point to the control device 40.
  • control device 40 In response to this, the control device 40 generates the travel routes 10, 10 ′ and the partial travel route 15 according to the position change instruction transmitted from the loader 30.
  • the control device 40 transmits information on the travel routes 10, 10 ′ and the partial travel route 15 to the vehicles 20, 20 ′.
  • the vehicles 20 and 20 ′ travel based on the information on the travel routes 10, 10 ′ and the partial travel route 15 transmitted from the control device 40 and obtain travel permission from the loader 30 at the standby points 14 and 14 ′. stand by. In addition, since it is “waiting until travel permission is obtained”, it does not necessarily stop at the standby points 14 and 14 ′. If traveling permission is obtained, the vehicle may pass through the vehicle without stopping at the standby points 14 and 14 '(do not wait).
  • control apparatus 40 may make it give the function of the control apparatus 40 to the loader 30 or vehicles 20,20 '. In this case, communication of information is directly performed between the loader 30 and the vehicles 20 and 20 '.
  • the fourth and fifth inventions are the same as the first and second inventions, respectively.
  • the vehicle 20 is made to wait at the standby point 14, and if there is a change in the position of the loading point 12, the partial travel route from the standby point 14 to the loading point 12 'after the position change. 15 is generated so that the vehicle 20 travels along the partial travel route 15, so even if the loader 30 moves or the load point 12 is sequentially changed, the change is surely made.
  • the vehicle 20 can be made to travel toward the loaded loading point 12.
  • the standby point 14 is set near the loading point 12 and the vehicle 20 can travel to the standby point 14 without stopping. Therefore, the vehicle 20 is stopped as much as possible (without waiting time) as much as possible.
  • the vehicle can continue to run toward 30. This improves the production efficiency.
  • the waiting time is reduced, so that the production efficiency is further improved.
  • the standby position 14 'for the following vehicle 20' is more optimal for the new loading point 12 '. In other words, it can be set to a position that is closer and can be reached in a shorter time.
  • the travel route 10 ′ travels. It is more efficient in traveling, such as shorter distance traveled. The optimality of the course between the waiting point and the loading point contributes to productivity, and the production efficiency can be further improved.
  • the preceding vehicle 20 and the following vehicle 20 ′ can continuously travel in the loading field 1 without interference, and from this point, improvement in productivity is expected.
  • Embodiments of a vehicle traveling system according to the present invention will be described below with reference to the drawings.
  • an unmanned off-road dump truck is assumed as the vehicle.
  • a manned excavator is assumed as the loader.
  • the present invention can be applied not only to a hydraulic excavator but also to other types of loaders such as a backhoe, an excavator, and a wheel loader.
  • the work site includes areas such as a loading site 1, a soil discharge site 301, a gas station (not shown), and a parking station (not shown). These areas are connected to each other by a lead-in line or an intersection from the prepared transport path called the hall load 302 or the hall load 302 called the access load 303 to each area.
  • the loading area 1 which is one of the areas is a place where the work is loaded with earth and sand, and excavation work and dumping by a loader such as a wheel loader (front end loader), a backhoe, and an excavator (for example, a hydraulic excavator). Loading of earth and sand into the truck is performed.
  • a loader such as a wheel loader (front end loader), a backhoe, and an excavator (for example, a hydraulic excavator).
  • a loader such as a wheel loader (front end loader), a backhoe, and an excavator (for example, a hydraulic excavator). Loading of earth and sand into the truck is performed.
  • Fig. 2 is a top view of the loading area 1.
  • the vehicle 20 is guided to travel along the travel route 10 and travels in the loading field 1 from the entrance point 11 to the loading point 12 where the manned loading machine 30 exists.
  • the entrance point 11 is a point set in advance, and is a point where the hall load where the vehicle 20 travels and the loading place 1 intersect.
  • a standby point 14 is set on the travel route 10 as a point to wait until the vehicle 20 obtains permission from the loader 30.
  • the switchback point 13 is set as the standby point 14.
  • the switchback point 13 is set as the standby point 14, but the standby point 14 is not necessarily limited to the switchback point 13.
  • a point on the travel route 10 that is a fixed distance (set value) away from the loading point 12 is often set as the standby point 14.
  • the switchback point 13 is nearer the loading point 12, the switchback point 13 is set as the standby point 14.
  • the wheel loader is the loader 30
  • an assumed work area of the wheel loader is created based on the position of the loading point 12 and the set size, and between the entrance point 11 and the loading point 12, In many cases, the standby point 14 is set at the position where the assumed work area first interferes. However, when the switchback point 13 is closer to the entrance point 11 than the interference position, the switchback point 13 is set as the standby point 14.
  • a travel route without switchback may be generated.
  • the travel route 10 is a route along which the vehicle 20 travels from the entrance point 11 to the loading point 12 via the standby point 14 in the vicinity of the loading point 12.
  • a travel route from the standby point 14 to the loading point 12 in the travel route 10 is referred to as a “travel route termination portion 10a”.
  • the travel route 10 is generated based on the position information of the loading point 12 and the position information of the entrance point 11.
  • a "dash” is attached
  • the vehicle 20 enters the loading place 1 from the entrance point 11, goes to the standby point 14 (switchback point 13), switches back at the standby point 14 (switchback point 13), and is the loading point 12. Stopping at the stop point (spot point), the earth and sand (load) is loaded onto the loading platform by the working machine (bucket) 30a of the loader 30.
  • the vehicle 20 is a front wheel steering vehicle in which a driver's seat (cab) is provided in front of the vehicle body, a cargo bed (bessel, body) is provided in the rear of the vehicle body, and front wheels and rear wheels are provided.
  • a driver's seat cab
  • a cargo bed bessel, body
  • front wheels and rear wheels are provided.
  • the traveling direction of the vehicle 20 changes from the forward direction to the reverse direction.
  • the vehicle 20 enters in a reverse state toward the loading point 12 (stop point; spot point) 12.
  • a new travel route 10 ′ from the entry point 11 to the loading point 12 ′ after the position change is generated.
  • the standby point 14 ′ on the travel route 10 ′ generated later is set at a position different from the standby point 14 on the travel route 10 generated earlier (see FIG. 2B).
  • a travel route from the standby point 14 ′ to the loading point 12 ′ after the position change is referred to as a “travel route termination unit 10 ′ a”.
  • a partial travel route 15 from the standby point 14 to the loading point 12 'after the position change is generated.
  • the partial travel route 15 is created based on the position information of the loading point 12 ′ after the position change and the position information of the standby point 14 on the travel route 10.
  • FIG. 3 shows a block diagram of the vehicle travel system of the embodiment.
  • “dash” is added to the reference numeral “20” in order to distinguish the vehicles.
  • a control device 40 for managing and monitoring a large number of vehicles 20, 20 ′ is provided.
  • the control device 40 is provided with a communication device 41, a processing device 42, an input device 43, a storage device 44, and a display device 45.
  • the vehicles 20 and 20 ′ are provided with a communication device 21, a processing device 22, a position measurement device 23, a control device 24, and a storage device 25.
  • the loader 30 is provided with a communication device 31, a processing device 32, an input device 33, a storage device 34, a position measuring device 35, and a display device 36.
  • the position measurement device 23 for the vehicles 20 and 20 ' measures its own vehicle position.
  • the vehicle position is measured based on the output signal of the tire rotational speed sensor and the output signal of the gyro.
  • the vehicle position may be measured by receiving a signal transmitted from a GPS satellite with a GPS antenna and detecting it with a GPS sensor.
  • the position information measured by the vehicles 20, 20 ′ is processed by the processing device 22 and transmitted to the control device 40 via the communication device 21.
  • the communication device 41 of the control device 40 receives position information transmitted from a plurality of vehicles 20, 20 ′.
  • the received position information is used for management and monitoring of the plurality of vehicles 20, 20 ′, and for generation of the travel routes 10, 10 ′ and the partial travel route 15.
  • the loading point 12 fluctuates sequentially.
  • the reason for “moving etc.” is that the loading machine 30 itself does not move, and the loading point 12 may be changed by turning the working machine (bucket) 30a. That is, as shown in FIG. 6, the loading position of the loading machine 30 exists at each position where the working machine 30a is turned left and right with respect to the vehicle body 30b.
  • the left and right turning positions are referred to as a left loading point 12L and a right loading point 12R, respectively.
  • an excavator sometimes takes double-sided loading. In this case, the two vehicles 20 approach the loading machine 30 alternately on the left and right.
  • the excavator that is the loader 30 holds the left and right separate traveling routes 10L and 10R simultaneously.
  • the right loading point 12R is designated again, only the right side is changed from the old standby point 14R before the position change.
  • the travel route 10R up to the new loading point 12R is made, and the loading point 12L of the left traveling route 10L is not changed and the left traveling route 10L is not affected.
  • both sides loading is not selected as a loading form, and when the right loading point 12R is changed to the left loading point 12L, The loading point 12 is treated as having changed.
  • the position of the loader 30 is measured.
  • the processing device 32 measures the position information of the loading point 12 based on the measured position of the own loading machine 30, and the position of the loading point 12 is changed.
  • the information of the position change instruction having the content “the position of the loading point 12 has been changed” is generated.
  • the position information of the loading point 12 and the information on the position change instruction (hereinafter referred to as position change instruction information) are transmitted to the control device 40 via the communication device 31.
  • the loader 30 is a manned vehicle, the operator of the loader 30 manually performs an operation to instruct a change in the position of the loading point 12.
  • the communication device 41 of the control device 40 receives the position information and position change instruction information of the loading point 12 transmitted from the loader 30.
  • the received position information and position change instruction information of the loading point 12 are used for management and monitoring of the loader 30 and used for generating the travel routes 10, 10 ′ and the partial travel route 15.
  • the input device 43 of the control device 40 is necessary for generating the travel routes 10, 10 ′ and the partial travel route 15 such as the range of the loading place 1 where the vehicles 20, 20 ′ should travel, the position and direction of the entrance point 11
  • the known data of the loading place 1 is input.
  • the vehicle position information transmitted from the vehicles 20, 20 ′, the position information of the loading point 12 and the position change instruction information transmitted from the loader 30, and the known loading site 1 are known.
  • the travel routes 10, 10 'and the partial travel route 15 are generated, and a travel command is generated.
  • the travel command is data having the content of instructing which of the travel routes 10, 10 ′ and the partial travel route 15 the vehicle 20, 20 ′ should travel.
  • the generated travel route 10, 10 ′, information on the partial travel route 15 and the travel command are transmitted to the vehicles 20, 20 ′ via the communication device 41.
  • the communication device 21 of the vehicles 20, 20 ′ receives the information on the travel routes 10, 10 ′, the partial travel route 15 and the travel command transmitted from the control device 40.
  • the storage device 25 stores information on the travel routes 10 and 10 ′ and the partial travel route 15 and travel commands transmitted from the control device 40.
  • the processing device 22 of the vehicles 20 and 20 ′ generates a control command for traveling and steering the own vehicle 20 and 20 ′ based on the information on the travel routes 10 and 10 ′ and the partial travel route 15 and the travel command. These control commands are output to the control device 24. As a result, the control device 24 controls the travel and steering of the vehicles 20 and 20 ′, and the vehicles 20 and 20 ′ are traveled and steered along the travel routes 10 and 10 ′ and the partial travel route 15.
  • FIG. 4A is a flowchart showing a procedure of processing performed by the control device 40
  • FIG. 4B is a flowchart showing a procedure of processing performed by the vehicle 20.
  • control device 40 generates a travel route 10 from the entrance point 11 to the current loading point 12 based on the current position information of the loading point 12, and the generated traveling route 10 information and “ A travel command indicating that the vehicle should travel along the travel route 10 is transmitted to the vehicle 20 (step 101).
  • step 102 it is determined whether or not there has been an instruction to change the position of the loading point 12 from the loader 30 (step 102).
  • Step 103 whether or not there is a margin is determined by whether or not the vehicle 20 has a time margin for receiving a new traveling command and switching from the entry point 11 to the new traveling route 10 ′ to control traveling. That is, the vehicle 20 needs to receive a travel command for the travel route 10 or 10 ′ sufficiently before the entrance point 11 in order not to temporarily stop or decelerate at the entrance point 11. Therefore, even if the vehicle 20 has not yet reached the entry point 11, if the travel command for the travel route 10 has already been received and the vehicle 20 has started travel control based on this, the new travel route 10 Switching to 'becomes impossible.
  • step 104 when it is determined that the vehicle 20 has a margin to travel from the entry point 11 according to the new travel command (determination YES in step 103), based on the position information of the loading point 12 'after the position change, A new travel route 10 ′ from the entrance point 11 to the loading point 12 ′ after the position change is generated, and information on the generated new travel route 10 ′ and “run along this new travel route 10 ′” Is transmitted to the vehicle 20 (step 104).
  • the standby is performed based on the position information of the loading point 12 'after the position change.
  • a partial travel route 15 from the point 14 to the loading point 12 ′ after the position change is generated, and information on the partial travel route 15 and a travel command of “run along this partial travel route 15” are issued to the vehicle. 20 is transmitted (step 105).
  • step 201 it is determined whether or not the vehicle arrives at the entrance point 11 of the loading place 1 (step 201).
  • the travel route information received from the control device 40 and currently acquired According to the command the vehicle starts traveling from the entrance point 11. If the information on the travel route 10 and the travel command of “run along this travel route 10” are currently acquired, along the travel route 10 according to the acquired information and the travel command. Then, traveling starts from the entrance point 11 (FIG. 2A).
  • step 203 it is determined whether or not the vehicle has arrived at the standby point 14 (step 203). As a result, when it is determined that the vehicle has arrived at the standby point 14 (YES at step 203), the standby point 14 is waited until an instruction for permitting traveling is received from the loader 30.
  • the loader 30 performs leveling work, loading position movement work, and the like at the loading point 12. Since this operation varies depending on the situation and the skill level of the operator, it cannot be predicted by the system. Therefore, the vehicle 20 waits until the loader 30 is ready to receive the vehicle 20 at the loading point 12 and there is an instruction from the operator of the loader 30. If this process is automated, there is a possibility that the vehicle 20 has already departed from the standby point 14 toward the old loading point 12 when the position of the next loading point 12 is instructed. Therefore, an instruction from the operator of the loader 30 is surely waited. As will be described later, when the loading machine 30 is already prepared, the operator of the loading machine 30 issues an instruction for the loading point 12 while the vehicle 20 is traveling toward the standby point 14.
  • the vehicle 20 does not need to stop at the standby point 14 as long as the travel permission instruction is received.
  • the vehicle 20 may continue to travel. In this case, the vehicle 20 continues to travel to the loading point 12 without stopping at the standby point 14.
  • the vehicle 20 stops but continues running immediately after the temporary stop.
  • step 204 information on the partial travel route 15 and a travel command of the content “run along this partial travel route 15” are acquired from the control device 40. It is determined whether or not it has been done (step 204).
  • the vehicle 20 While the vehicle 20 is stopped at the standby point 14, or before the stop, the information on the partial travel route 15 and the travel command of the content “run along this partial travel route 15” are not acquired from the control device 40. If this happens (NO at step 204), the vehicle starts traveling from the standby point 14 toward the loading point 12 along the original travel route 10 (step 205).
  • step 204 the vehicle starts traveling along the partial travel route 15 from the standby point 14 toward the loading point 12 'after the position change (step 206; FIG. 2 ( b)).
  • the vehicle 20 is made to wait until the permission is obtained from the loader 30 at the standby point 14, and if there is a change in the position of the loading point 12, the partial travel route from the standby point 14 to the loading point 12 ′ after the position change 15 is generated so that the vehicle 20 travels along the partial travel route 15, so even if the loader 30 moves or the load point 12 is sequentially changed, the change is surely made.
  • the vehicle 20 can be made to travel toward the loaded loading point 12.
  • the standby point 14 is set near the loading point 12 and the vehicle 20 can travel to the standby point 14 without stopping. Therefore, the vehicle 20 is stopped as much as possible (without waiting time) as much as possible. It is possible to continue to run close to 30. This improves the production efficiency.
  • vehicle 20 may be read as “plural vehicles 20, 20 ′”.
  • the waiting time is not accumulated, so that the production efficiency is further improved.
  • there is a measure for causing the vehicles 20 and 20' to travel so that the vehicles do not interfere with each other at the loading point 12 or the like. Be taken.
  • control device 40 and the vehicles 20 and 20 ′ may be processed according to the flowcharts shown in FIGS. 5A and 5B.
  • FIGS. 5A and 5B a different part of FIG. 5 from the process of FIG. 4A will be described.
  • steps 103 ′, 104 ′, 105 ′, 106, and 107 are performed instead of steps 103, 104, and 105 in FIG.
  • steps 207 and 208 are performed before step 201 of FIG. 4B.
  • step 103 ' it is determined whether or not the vehicle 20 closest to the current loading point 12 is present in front of the entrance point 11 and there is room to travel from the entrance point 11 according to a new travel command (step 103 ').
  • a new travel command determination YES in step 103 ′
  • the position is changed from the entrance point 11.
  • a new travel route 10 ′ that reaches the subsequent loading point 12 ′ is generated, and information on the generated new travel route 10 ′ and a travel command of “run along this new travel route 10 ′” are issued. It transmits toward all the vehicles 20 and 20 '(step 104').
  • step 106 If it is determined that the vehicle 20 closest to the current loading point 12 cannot travel from the entrance point 11 in accordance with a new travel command (determination NO in step 103 ′), after the vehicle 20 following the preceding vehicle 20 An entry point standby command for forcibly causing the vehicle 20 'to travel to stand by before the entry point 11 is sent (step 106).
  • the vehicle 20 ′ following the entry point standby command waits before the entry point 11 (steps 207 and 208).
  • a partial travel route 15 from the standby point 14 to the loading point 12 ′ after the position change is generated, and information on the partial travel route 15 and “travel along this partial travel route 15” are provided. Is transmitted toward the preceding vehicle 20 (step 105 ').
  • control device 40 generates a new travel route 10 ′ from the entry point 11 to the loading point 12 ′ after the position change, and information on the generated new travel route 10 ′ and “this new travel route 10 ′.
  • a travel command with the content “run along the road” is transmitted to the following vehicle 20 ′ (step 107).
  • the vehicle 20 ′ following the travel command travels along the travel route 10 ′ newer than the entrance point 11 (steps 208, 201, 202).
  • the preceding vehicle 20 is required to be instructed to change the position of the loading point 12 while waiting at the standby point 14 or while traveling from the entrance point 11 to the standby point 14.
  • the vehicle travels along the partial travel route 15 from the standby point 14 to the loading point 12 ′ after the position change, but the following vehicle 20 ′ travels along the new travel route 10 ′ and enters the entry point 11.
  • the following vehicle 20 ′ similarly waits at the standby point 14 ′, and selects either a new partial travel route (not shown) or the original travel route 10 ′ depending on whether or not the position of the loading point 12 ′ is changed.
  • Drive steps 204, 205, 206).
  • the preceding vehicle 20 travels along the partial travel route 15 from the standby point 14 to the loading point 12 'after the position change, but the following vehicle 20 About ′, the vehicle travels along a new travel route 10 ′ to a standby point 14 ′ at a position different from the standby point 14 of the preceding vehicle 20.
  • the standby position 14 'for the following vehicle 20' is more optimal for the new loading point 12 '. In other words, it can be set to a position that is closer and can be reached in a shorter time.
  • the travel efficiency is improved, for example, the travel distance is shorter when traveling on the travel route 10 '. good. It is the travel time between the standby point and the loading point that has a great influence on productivity. That is, normally, during the loading of the preceding vehicle 20, the succeeding vehicle 20 reaches the standby point 14 and waits for an instruction from the operator of the loader 30, so the travel time between the standby point and the loading point is Long and short affects productivity. The optimality of the course between the waiting point and the loading point contributes to productivity, and the production efficiency can be further improved.
  • the preceding vehicle 20 and the following vehicle 20 ′ can continuously travel in the loading field 1 without interference, and from this point, improvement in productivity is expected.
  • the switchback point 13 is determined as the standby point 14. However, it can be set at any point as long as it is on the travel route 10 and is close to the loading point 12 and should wait until the vehicle 20 obtains permission from the loading machine 30. For example, a point that is a predetermined distance away from the loading point 12 may be determined as the standby point 14. Further, among the switchback point 13 and a point away from the loading point 12 by a predetermined distance, the point closest to the loading point 12 may be determined as the standby point 14.
  • the vehicle 20 is uniformly stopped at the standby point 14. However, it is only necessary to “wait until the travel permission is obtained”, and it does not necessarily stop at the standby points 14 and 14 ′. If traveling permission is obtained, the vehicle may pass through the vehicle without stopping at the standby points 14 and 14 '(do not wait). That is, the vehicle 20 may be traveled toward the loading point 12 as it is without stopping at the standby point 14 depending on the situation. For example, when the vehicle 20 approaches the standby point 14, the operator of the loader 30 is requested to approve “whether it is not necessary to stop at the standby point 14”.
  • the loading machine 30 when the loading machine 30 is ready for loading into the vehicle 20, permission is given to the effect that “the vehicle may travel toward the loading point 12 without stopping at the standby point 14”. Transmit to the vehicle 20. In response to this, the vehicle 20 continues to travel toward the loading point 12 without stopping at the standby point 14.
  • a series of communication processes may be performed directly between the vehicle 20 and the loader 30 or may be performed via the control device 40.
  • the time point when the vehicle 20 requests the loader 30 for the above-described approval may be set when the distance from the vehicle 20 to the standby point 14 reaches a predetermined distance, and the vehicle 20 arrives at the standby point 14. You may set to the time of the expected time until reaching a predetermined time.
  • the position change information is sent from the loader 30 to the control device 40, and the travel command is sent from the control device 40 to the vehicle 20.
  • the functions of the control device 40 are added. It is also possible to carry out the direct communication between the loader 30 and the vehicle 20 by holding the loader 30 or the vehicle 20.
  • FIGS. 1A and 1B are top views of the loading field, which are used to explain the prior art.
  • FIGS. 2A and 2B are top views of the loading field, which are used to explain the embodiment.
  • FIG. 3 is a block diagram of the vehicle travel system of the embodiment.
  • FIGS. 4A and 4B are flowcharts showing the processing procedure of the first embodiment.
  • FIGS. 5A and 5B are flowcharts showing the processing procedure of the second embodiment.
  • FIG. 6 is a top view showing a state in which two vehicles approach the left and right of the loader alternately when taking both-side loading as a loading form.
  • FIG. 7 is a top view of the work site.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

 積込機が移動等して積込点が逐次変更される場合であっても確実に変更された積込点に向けて車両を走行させるようにするとともに、車両を極力停止させることなく(待ち時間なく)出来る限り積込機の近くまで走行させ続けるようにして生産効率を向上させる車両の走行システムおよび走行方法である。走行経路上に、車両が積込機から許可を得るまで待機すべき点として待機点が設定される。たとえばスイッチバック点が待機点に定められる。車両は、走行経路に沿って、積込場の入口点から待機点まで走行し、待機点で積込機から許可を得るまで待機する。車両が待機点で待機中に、あるいは入口点から待機点までの間を走行中に、積込点の位置変更の指示があると、部分走行経路が生成され、車両は、部分走行経路に沿って待機点から位置変更後の積込点まで走行する。一方、車両が待機点で待機中に、および入口点から待機点までの間を走行中に、積込点の位置変更の指示がなかった場合には、そのまま走行経路に沿って待機点から積込点まで走行する。

Description

車両の走行システムおよびその走行方法
 本発明は、車両の走行システムおよびその走行方法に関し、特に、車両が、積込場の入口点から積込機が存在する積込点まで走行する走行経路を生成し、生成された走行経路に沿って車両を走行させる車両の走行システムおよぼその走行方法に関するものである。
 採石現場、鉱山などの広域の作業現場では、土砂運搬作業を行なうに際して作業者の疲労による事故の回避、省人化、作業時間の延長による生産性の向上を図るべく、有人の車両、たとえば有人のオフロードダンプトラックの代わりに無人のダンプトラックを稼動させるための無人車両走行システムが導入されている。
 図7に示すように、無人ダンプトラックが走行する作業現場には、積込場1、排土場301などの各エリアがある。これら各エリアがホールロード302と呼ばれる整備された搬送路やアクセスロード303と呼ばれるホールロード302から各エリアへの引込み線や交差点により接続されている。
 エリアの一つである積込場1は、ダンプトラック(本発明では、車両という)へ土砂を積み込む作業を行う場所であり、ホイールローダ(フロントエンドローダ)、バックホー、ショベル(例えば油圧ショベル)といった作業車両(本発明では、積込機という)による掘削作業およびダンプトラックへの土砂の積込作業が行なわれる。
 図1(a)は、積込場1を示している。
同図1(a)に示すように、積込場1の入口点11から積込機30が存在する積込点12まで車両20を走行させるための走行経路10が生成され、生成された走行経路10に沿って車両20が走行制御される。
この場合、車両20は、入口点11から積込点12の近傍のスイッチバック点13を経由して積込点12に至る。ただし、積込みの形態によっては、必ずしもスイッチバックは必要ではない。たとえば、入口点11から積込機30に向かって円弧を描いて積込場1を出て行く場合もある。
ここで、図1(b)に示すように、ホイールローダなどの積込機30は、新しい掘削場所へ移動等するため、積込点12が逐次変動する。なお、「移動等」としたのは、積込機30自体は移動せず、作業機(バケット)を旋回させることで積込点12が変更されることもあるからである。たとえば、作業機の旋回などにより積込機30に対するアプローチ角度が変更するなどして、積込機30が移動することなく積込点12が移動することがある。すなわち、つぎの3ケースの原因によって積込点12が変更される。
1)移動+旋回
2)移動のみ
3)旋回のみ
車両20が積込点12に向って走行中に 積込点12が変わってしまうことがよくある。積込点12が変わると、それに対応する新しい走行経路10´(図1(b)に破線にて示す)に沿って車両20を走行させて新たな積込点12´まで導く必要がある。
しかし、車両20が入口点11を超えて走行経路10を走行しているときに、車両20が新しい走行経路10´に乗り換えることは、難しい。これは、入口点11に十分近い位置に接近した後は、コンピュータの演算等に必要な時間を確保できないため、急な経路変更は難しいからである。また、未だ入口点11通過前であっても、同様の理由により、急な経路変更制御は難しい場合がある。
そこで、従来は、こうした積込点12の位置変更に対処するために、積込機30の移動等が完了して新たな積込点12´が確定し新しい走行経路10´が生成されるまで、積込場1の入口点11の手前で車両20を停止させ、新しい走行経路10´が生成されてから車両20を積込場1に進入させて新しい走行経路10´に沿って走行させるようにしていた。
なお、特許文献1には、積込点の位置変更があった場合に、その変更位置に応じた分岐点を走行経路上に設定して、位置変更後の積込点に至る分岐経路を生成するようにしている。
特許第2920017号公報
 上述したように積込機30が移動等する毎に、車両20を積込場1の入口点11の手前で停止させ新しい走行経路10´を生成してから車両20を積込場1に進入させるようにすると、生産効率が著しく低下する。ここで、生産効率とは、採石現場などで採石された積荷を積込場1から別の場所へ車両20を用いて移動する際の往復走行の効率(サイクルタイム)のことをいう。とりわけ、複数台の車両20が積込場1内に順次進入するような場合には、待ち時間が累積するため生産効率が一層低下する。
よって、生産効率を向上させるには、積込機30の移動位置いかんにかかわらず車両20を極力停止させることなく(待ち時間なく)出来る限り積込機30の近くまで走行させ続ける走行システムを構築することが望ましい。
本発明は、こうした実情に鑑みてなされたものであり、積込機30が移動等して積込点12が逐次変更される場合であっても確実に変更された積込点12´に向けて車両20を走行させるようにするとともに、車両20を極力停止させることなく(待ち時間なく)出来る限り積込機30の近くまで走行させ続けるようにして生産効率を向上させることを解決課題とするものである。
なお、上述の特許文献1記載の発明では、分岐点の位置は固定された地点ではなく、またその分岐点の位置を予め予測できるものでもない。このため車両としては、結局、積込点の位置変更に備えて、積込場の入口点の手前で待機せざるを得なく、生産効率の低下は免れ得ない。
 第1発明は、
積込場の入口点から積込機が存在する積込点まで車両が走行する車両の走行経路を生成し、生成された走行経路に沿って車両を走行させる車両の走行システムにおいて、
 積込点の位置情報と入口点の位置情報に基づき、入口点から積込点の近傍の待機点を経由して積込点に至る走行経路を生成する走行経路生成手段と、
 走行経路生成手段によって生成された走行経路の情報に基づき車両を走行経路に沿って、入口点から待機点まで走行させる第1の走行制御手段と、

 
車両を待機点で積込機から許可を得るまで待機させる待機手段と、
 車両が待機点で待機中に、あるいは入口点から待機点までの間を走行中に、積込機から管制装置または/および車両に積込点の位置変更の指示があった場合に、当該位置変更後の積込点の位置情報と積込点が移動する前の前記走行経路上の待機点の位置情報に基づき、待機点から当該位置変更後の積込点までの部分走行経路を生成する部分走行経路生成手段と、
車両が待機点で待機中に、および入口点から待機点までの間を走行中に、積込機から管制装置または/および車両に積込点の位置変更の指示がなかった場合には、走行経路生成手段によって生成された走行経路の情報に基づき車両を走行経路に沿って、待機点から積込点まで走行させるとともに、
車両が待機点で待機中に、あるいは入口点から待機点までの間を走行中に、積込点の位置変更の指示があった場合には、部分走行経路生成手段によって生成された部分走行経路の情報に基づき車両を部分走行経路に沿って待機点から位置変更後の積込点まで走行させる第2の走行制御手段と
を備えたことを特徴とする。
第2発明は、第1発明において、
複数の車両を走行経路に沿って順次走行させる場合に適用され、
積込機から管制装置または/および車両に積込点の位置変更の指示があった場合には、部分走行経路生成手段により、待機点から当該位置変更後の積込点までの部分走行経路を生成するとともに、
走行経路生成手段により、入口点から、前記部分走行経路上の待機点とは異なる位置の待機点を経由して位置変更後の積込点に至る走行経路を生成し、
先行する車両については、部分走行経路生成手段によって生成された部分走行経路の情報に基づき部分走行経路に沿って当該待機点から位置変更後の積込点まで走行させるとともに、
後行する車両については、走行経路生成手段によって生成された走行経路の情報に基づき走行経路に沿って、入口点から前記部分走行経路上の待機点とは異なる位置の待機点まで走行させること
を特徴とする。
第3発明は、第1発明または第2発明において、
車両は、無人車両であり、積込機は、有人車両であり、
管制装置が設けられ、
 管制装置と車両との間で、および管制装置と積込機との間で、送受信を行う通信手段が車両、管制装置、積込機に各々設けられ、
 積込機は、位置変更の指示を管制装置に送信し、
管制装置は、積込機から送信された位置変更指示に従い走行経路および部分走行経路を生成し、
管制装置は、走行経路および部分走行経路の情報を車両に送信し、
車両は、管制装置から送信された走行経路および部分走行経路の情報に基づき走行するとともに、待機点で積込機から許可を得るまで待機すること
を特徴とする。
第4発明は、
積込場の入口点から積込機が存在する積込点まで車両が走行する車両の走行経路を生成し、生成された走行経路に沿って車両を走行させる車両の走行方法において、
 積込点の位置情報と入口点の位置情報に基づき、入口点から積込点の近傍の待機点を経由して積込点に至る走行経路を生成し、
 当該生成された走行経路の情報に基づき車両を走行経路に沿って、入口点から待機点まで走行させ、
 車両を待機点で積込機から許可を得るまで待機させ、
 車両が待機点で待機中に、あるいは入口点から待機点までの間を走行中に、積込機から管制装置または/および車両に積込点の位置変更の指示があった場合に、当該位置変更後の積込点の位置情報と積込点が移動する前の前記走行経路上の待機点の位置情報に基づき、待機点から当該位置変更後の積込点までの部分走行経路を生成し、
車両が待機点で待機中に、および入口点から待機点までの間を走行中に、積込機から管制装置または/および車両に積込点の位置変更の指示がなかった場合には、走行経路生成手段によって生成された走行経路の情報に基づき車両を走行経路に沿って、待機点から積込点まで走行させるとともに、
車両が待機点で待機中に、あるいは入口点から待機点までの間を走行中に、積込点の位置変更の指示があった場合には、部分走行経路生成手段によって生成された部分走行経路の情報に基づき車両を部分走行経路に沿って待機点から位置変更後の積込点まで走行させる ことを特徴とする。
第5発明は、第4発明において、
複数の車両を走行経路に沿って順次走行させる場合に適用され、
積込機から管制装置または/および車両に積込点の位置変更の指示があった場合には、部分走行経路生成手段により、待機点から当該位置変更後の積込点までの部分走行経路を生成するとともに、

走行経路生成手段により、入口点から、前記部分走行経路上の待機点とは異なる位置の待機点を経由して位置変更後の積込点に至る走行経路を生成し、
先行する車両については、部分走行経路生成手段によって生成された部分走行経路の情報に基づき部分走行経路に沿って当該待機点から位置変更後の積込点まで走行させるとともに、
後行する車両については、走行経路生成手段によって生成された走行経路の情報に基づき走行経路に沿って、入口点から前記部分走行経路上の待機点とは異なる位置の待機点まで走行させること
を特徴とする。
(発明の作用)
第1発明の作用を図2を用いて説明する。
図2(a)に示すように、走行経路10上に、車両20が積込機30から許可を得るまで待機すべき点として待機点14が設定される。たとえばスイッチバック点13が待機点14に定められる。
車両20は、走行経路10に沿って、積込場1の入口点11から待機点14まで走行し、待機点14で積込機30から許可を得るまで待機する。
図2(b)に示すように、車両20が待機点14で待機中に、あるいは入口点11から待機点14までの間を走行中に、積込点12の位置変更の指示があると、部分走行経路15が生成され、車両20は、部分走行経路15に沿って待機点14から位置変更後の積込点12´まで走行する。
一方、車両20が待機点14で待機中に、および入口11点から待機点14までの間を走行中に、積込点12の位置変更の指示がなかった場合には、そのまま走行経路終端部10aに沿って待機点14から積込点12まで走行する(図2(a))。
第2発明の作用を図2を用いて説明する。
複数の車両20、20´が走行経路10に沿って順次走行する場合を想定する。
積込点12の位置変更の指示があると、待機点14から位置変更後の積込点12´までの部分走行経路15が生成されるとともに、入口点11から、部分走行経路15上の待機点14とは異なる位置の待機点14´を経由して位置変更後の積込点12´に至る新しい走行経路10´が生成される。
先行する車両20については、待機点14で待機中に、あるいは入口点11から待機点14までの間を走行中に、積込点12の位置変更の指示があったことを条件に、部分走行経路15に沿って待機点14から位置変更後の積込点12´まで走行するが、後行する車両20´については、新しい走行経路10´に沿って走行し、入口点11から部分走行経路15上の待機点14とは異なる位置の待機点14´まで走行する。なお、後行車両20´は、同様にして待機点14´で待機し、積込点12´の位置変更の有無によって図示しない新たな部分走行経路または元の走行経路終端部10´aのいずれかを走行する。
第3発明では、車両20、20´は、無人車両とされ、積込機30は、有人車両とされ、これら車両20、20´、積込機30とは別に管制装置40(図3)が設けられる。
 積込機30は、積込点12の位置変更があると、積込点の位置変更の指示を示す情報を管制装置40に送信する。
管制装置40は、これを受けて積込機30から送信された位置変更指示に従い走行経路10、10´および部分走行経路15を生成する。
管制装置40は、走行経路10、10´および部分走行経路15の情報を車両20、20´に送信する。
車両20、20´は、管制装置40から送信された走行経路10、10´および部分走行経路15の情報に基づき走行するとともに、待機点14、14´で積込機30から走行許可を得るまで待機する。なお、「走行許可を得るまで待機」であるため、必ずしも待機点14、14´で停止するに及ばない。走行許可を得ていれば待機点14、14´で停止することなくそのまま通過する(待機しない)ことがある。
なお、管制装置40の機能を積込機30あるいは車両20、20´に持たせるようにしてもよい。この場合、積込機30と車両20、20´との間で情報の通信が直接行われる。
 第4発明、第5発明についてはそれぞれ、第1発明、第2発明と同様である。
(発明の効果)
第1発明および第4発明によれば、車両20を待機点14で待機させて、積込点12の位置変更があると待機点14から位置変更後の積込点12´に至る部分走行経路15を生成して車両20を部分走行経路15に沿って走行させるようにしているので、積込機30が移動等して積込点12が逐次変更される場合であっても、確実に変更された積込点12に向けて車両20を走行させることができる。待機点14は、積込点12の近くに設定され、車両20としては、停止することなく待機点14まで走行できるので、車両20を極力停止させることなく(待ち時間なく)出来る限り積込機30に向けて走行させ続けることができる。これにより生産効率が向上する。複数台の車両20、20´が積込場1内に順次進入するような場合には、待ち時間が少なくなるため生産効率が一層向上する。
第2発明および第5発明によれば、積込点12の位置変更があると、先行する車両20については、部分走行経路15に沿って待機点14から位置変更後の積込点12´まで走行するが、後行する車両20´については、新しい走行経路10´に沿って先行車両20の待機点14とは異なる位置の待機点14´まで走行する。このように先行車両20と後行車両20´で待機点14、14´を異ならせるようにしたので、後行車両20´にとっての待機位置14´を、新しい積込点12´にとって、より最適な、つまり、より近い、より短時間で到達できる位置に設定することができる。すなわち、同じ積込点12´に至る場合、待機点14を経由した部分走行経路15と待機点14´を経由する新しい走行経路(全走行経路)10´を対比すると、走行経路10´を走行した方が走行距離が短いなど走行上の効率が良い。こうした待機点と積込点間のコースの最適性が生産性に寄与することとなり、一層生産効率を向上させることができる。
また、先行車両20と後行車両20´が干渉することなく連続して積込場1内を走行することが可能となり、この点からも生産性の向上が期待される。
以下、図面を参照して本発明に係る車両の走行システムの実施の形態について説明する。なお、本実施形態では、車両として無人のオフロードダンプトラックを想定している。また、積込機として、有人のショベルを想定している。なお、油圧ショベルのみならず、バックホー、エクスカベータ、ホイルローダなどの他の種類の積込機にも当然本発明を適用することができる。
図7に示すように、作業現場には、積込場1、排土場301、図示しない給油所、図示しない駐機所などの各エリアがある。これら各エリアがホールロード302と呼ばれる整備された搬送路やアクセスロード303と呼ばれるホールロード302から各エリアへの引込み線や交差点により接続されている。
 各エリアの一つである積込場1は、車両へ土砂を積み込む作業を行う場所であり、ホイールローダ(フロントエンドローダ)、バックホー、ショベル(例えば油圧ショベル)といった積込機による掘削作業およびダンプトラックへの土砂の積込作業が行なわれる。
 図2は、積込場1を上面からみた図である。
車両20は、走行経路10に沿って誘導走行されて積込場1内を入口点11から有人の積込機30が存在する積込点12まで走行する。ここで、入口点11とは、予め設定された点であって、車両20が走行するホールロードと積込場1とが交差する点のことである。また、走行経路10上に、車両20が積込機30から許可を得るまで待機すべき点として待機点14が設定される。たとえばスイッチバック点13が待機点14に定められる。
本明細書では、説明の便宜上、スイッチバック点13を待機点14としているが、待機点14は、必ずしもスイッチバック点13に限定されるわけではない。
たとえば、ショベルやバックホーが積込機30の場合、積込点12から一定距離(設定値)離れた走行経路10上の点を待機点14に設定することが多い。ただし、積込点12により近い地点にスイッチバック点13があるときにはスイッチバック点13が待機点14とされる。
また、ホイルローダが積込機30の場合、積込点12の位置と設定された大きさに基づきホイルローダの想定作業エリアを作成し、入口点11と積込点12間において、走行経路10とこの想定作業エリアとが最初に干渉する位置を、待機点14に設定することが多い。ただし、上記干渉位置よりも入口点11側にスイッチバック点13がある場合には、スイッチバック点13が待機点14とされる。なお、ホイルローダが積込機30の場合、スイッチバックのない走行経路を生成することがある。
走行経路10は、入口点11から積込点12の近傍の待機点14を経由して積込点12に至る車両20が走行する経路のことである。走行経路10のうち、待機点14から積込点12に至る走行経路を「走行経路終端部10a」とする。
走行経路10は、積込点12の位置情報と入口点11の位置情報に基づき生成される。なお、時間的に前後して複数の走行経路10が生成される場合には、走行経路同士を区別するために、後から生成された走行経路については符号「10」に「ダッシュ」を付することとする。
すなわち、車両20は、積込場1に入口点11から入り、待機点14(スイッチバック点13)に向かい、待機点14(スイッチバック点13)でスイッチバックを行い、積込点12である停止点(スポット点)で停止して、積込機30の作業機(バケット)30aによって土砂(積荷)が荷台に積み込まれる。
 車両20は、車体前方に運転席(キャブ)が設けられ、車体後方に荷台(ベッセル、ボディ)が設けられ、前輪と後輪が備えられた前輪ステアリングの車両である。
待機点14(スイッチバック点13)の前後では、車両20の進行方向は、前進方向から後進方向に変化する。車両20は、積込点12(停止点;スポット点)12に向けて、後進状態で進入する。
積込点12が位置変更されると、入口点11から位置変更後の積込点12´に至る新しい走行経路10´が生成される。後から生成される走行経路10´上の待機点14´は、先に生成された走行経路10上の待機点14とは異なる位置に設定される(図2(b)参照)。走行経路10´のうち、待機点14´から位置変更後の積込点12´に至る走行経路を「走行経路終端部10´a」とする。
 また、積込点12が位置変更されると、待機点14から位置変更後の積込点12´に至る部分走行経路15が生成される。部分走行経路15は、位置変更後の積込点12´の位置情報と走行経路10上の待機点14の位置情報に基づき作成される。
なお、位置変更前後の両積込点を区別するために、上記のごとく変更後の積込点については符号「12」に「ダッシュ」を付することとする。同様に位置変更前後の両待機点を区別するために、上記のごとく変更後の待機点については符号「14」に「ダッシュ」を付することとする(図2(b)参照)。

 図3は、実施形態の車両走行システムのブロック図を示している。なお、複数台の車両20が積込場1を走行する場合には、車両同士を区別するために符号「20」に「ダッシュ」を付することとする。
 作業現場には、多数の車両20、20´…を管理、監視する管制装置40が設けられている。管制装置40には、通信装置41と処理装置42と入力装置43と記憶装置44と表示装置45とが設けられている。
一方、車両20、20´には、通信装置21と処理装置22と位置計測装置23と制御装置24と記憶装置25が設けられている。
積込機30には、通信装置31と処理装置32と入力装置33と記憶装置34と位置計測装置35と表示装置36とが設けられている。
 車両20、20´の位置計測装置23では、自己の車両位置が計測される。位置計測の手段としては、たとえば車両20、20´に設けられたタイヤ回転数センサとジャイロが使用される。これらタイヤ回転数センサの出力信号とジャイロの出力信号とに基づいて、車両位置が計測される。またGPS衛星から送信される信号をGPSアンテナで受信し、GPSセンサで検出することにより車両位置を計測してもよい。
 車両20、20´で計測された位置情報は、処理装置22で処理され通信装置21を介して管制装置40に送信される。
管制装置40の通信装置41では、複数の車両20、20´…から送信された位置情報を受信する。受信した位置情報は、複数の車両20、20´の管理、監視に使用されるとともに、走行経路10、10´および部分走行経路15の生成に使用される。

ショベルなどの積込機30は、新しい掘削場所へ移動等するため、その積込点12が逐次変動する。なお、「移動等」としたのは、積込機30自体は移動せず、作業機(バケット)30aを旋回させることで積込点12が変更されることもあるからである。すなわち、図6に示すように、積込機30の積込位置は、車体30bに対して作業機30aを左右に旋回させた位置それぞれに存在する。左右旋回位置をそれぞれ左積込点12L、右積込点12Rという。積込形態として、ショベルでは両側積込をとることがある。この場合、2台の車両20が積込機30の左右交互に積込アプローチする。したがって積込機30であるショベルは、左右別々の走行経路10L、10Rを同時に保持し、例えば右側積込点12Rを指定しなおしたときには、右側のみ位置変更前の旧い待機点14Rから位置変更後の新たな積込点12Rまでの走行経路10Rが作られ、左側の走行経路10Lの積込点12Lについては変更がなく左側走行経路10Lは影響を受けない。ただし、積込機30がバックホーの場合や、ショベルであっても積込形態として両側積込を選択していない場合であって、右積込点12Rから左積込点12Lに変わったときには、積込点12が変わったものとして扱う。
積込機30の位置計測装置35では、自己の積込機30の位置が計測される。積込点12の位置変更があると、処理装置32では、計測された自己の積込機30の位置等に基づき積込点12の位置情報が計測されるとともに、積込点12の位置が変更された場合に、「積込点12の位置が変更された」ことを内容とする位置変更の指示の情報が生成される。積込点12の位置情報と位置変更の指示の情報(以下、位置変更指示情報)は、通信装置31を介して、管制装置40に送信される。積込機30が有人車両の場合、積込機30のオペレータが手動で積込点12の位置の変更を指示する操作を行う。
管制装置40の通信装置41では、積込機30から送信された積込点12の位置情報および位置変更指示情報を受信する。受信した積込点12の位置情報および位置変更指示情報は、積込機30の管理、監視に使用されるとともに、走行経路10、10´および部分走行経路15の生成に使用される。
管制装置40の入力装置43には、車両20、20´が走行すべき積込場1の範囲、入口点11の位置および方向など、走行経路10、10´、部分走行経路15の生成に必要な積込場1の既知のデータが入力される。
管制装置40の処理装置42では、車両20、20´から送信された車両位置情報および積込機30から送信された積込点12の位置情報および位置変更指示情報並びに積込場1の既知のデータに基づき走行経路10、10´、部分走行経路15が生成されるとともに、走行指令が生成される。ここで、走行指令は、走行経路10、10´、部分走行経路15のいずれに沿って車両20、20´が走行すべきかを指令することを内容とするデータのことである。
生成された走行経路10、10´、部分走行経路15の情報および走行指令は、通信装置41を介して車両20、20´に送信される。
車両20、20´の通信装置21では、管制装置40から送信された走行経路10、10´、部分走行経路15の情報および走行指令を受信する。記憶装置25には、管制装置40から送信される走行経路10、10´、部分走行経路15の情報および走行指令が記憶される。
車両20、20´の処理装置22は、走行経路10、10´、部分走行経路15の情報および走行指令に基づいて自己の車両20、20´を走行させ操舵するための制御指令を生成する。これら制御指令は、制御装置24に出力される。この結果、制御装置24は、自己の車両20、20´の走行および操舵を制御し、車両20、20´は、走行経路10、10´、部分走行経路15に沿って走行、操舵される。
(第1の実施例)
以下、図4に示すフローチャートと図2を併せ参照して説明する。
図4(a)は、管制装置40で行われる処理の手順を示すフローチャートで、図4(b)は、車両20で行われる処理の手順を示すフローチャートである。
まず、管制装置40では、現在の積込点12の位置情報に基づいて、入口点11から現在の積込点12に至る走行経路10を生成し、この生成された走行経路10の情報と「この走行経路10に沿って走行せよ」という内容の走行指令を車両20に向けて送信する(ステップ101)。
つぎに、積込機30より積込点12の位置変更の指示があったか否かが判断される(ステップ102)。
積込機30より位置変更の指示があった場合には、つぎに車両20が入口点11の手前に存在し、入口点11から新しい走行指令にしたがい走行できる余裕があるか否かが判断される(ステップ103)。ここで、余裕があるか否かは、車両20が新しい走行指令を受け取り入口点11から新しい走行経路10´へ切換えて走行制御できる時間的余裕があるか否かにより判断される。すなわち車両20は、入口点11で一時停止あるいは減速しないためには、入口点11の十分手前で走行経路10または10´の走行指令を受け取る必要がある。したがって車両20が未だ入口点11に到達していなくても、すでに走行経路10の走行指令を受け取っており、これに基づいて車両20が走行制御を開始している場合には、新しい走行経路10´への切り替えは不能となる。
この結果、車両20が入口点11から新しい走行指令にしたがい走行できる余裕があると判断された場合には(ステップ103の判断YES)、位置変更後の積込点12´の位置情報に基づき、入口点11から位置変更後の積込点12´に至る新しい走行経路10´を生成して、この生成された新しい走行経路10´の情報と「この新しい走行経路10´に沿って走行せよ」という内容の走行指令を車両20に向けて送信する(ステップ104)。
一方、車両20が入口点11から新しい走行指令にしたがい走行できる余裕がないと判断された場合には(ステップ103の判断NO)、位置変更後の積込点12´の位置情報に基づき、待機点14から位置変更後の積込点12´に至る部分走行経路15を生成して、この部分走行経路15の情報と「この部分走行経路15に沿って走行せよ」という内容の走行指令を車両20に向けて送信する(ステップ105)。
車両20では、積込場1の入口点11に到着した否かが判断され(ステップ201)、入口点11に到着した時点で、管制装置40より受け取り現在取得されている走行経路の情報と走行指令にしたがい、入口点11より走行を開始する。現在、走行経路10の情報と「この走行経路10に沿って走行せよ」という内容の走行指令が取得されている場合には、その取得されている情報および走行指令にしたがい、走行経路10に沿って入口点11より走行を開始する(図2(a))。なお、入口点11到着までに、新しい走行経路10´の情報と「この新しい走行経路10´に沿って走行せよ」という内容の走行指令が取得されている場合には、その取得されている情報および走行指令にしたがい、新しい走行経路10´に沿って入口点11より走行を開始する(ステップ202;図2(b)の破線参照)。
以下、図2(a)に示すように、走行経路10に沿って車両20が走行を開始した以後の処理について説明する。
つぎに、車両20では、待機点14に到着したか否かが判断される(ステップ203)。この結果、待機点14に到着したと判断した場合には(ステップ203の判断YES)、この待機点14で、積込機30より走行許可の指示があるまで待機する。
通常、積込機30は積込点12で整地作業や積込位置移動作業などを行っている。この作業は、状況やオペレータの熟練度により異なるため、システムによる予測は不能である。したがって積込機30が車両20を積込点12に受け入れる準備が完了して積込機30のオペレータからの指示があるまで車両20は待機する。この処理を自動化すると、次の積込点12の位置の指示をしたときに、すでに車両20は古い積込点12に向けて待機点14を出発している可能性が生じてしまう。このため確実に積込機30のオペレータからの指示を待つようにしている。なお、後述するように、すでに積込機30の準備が完了している場合には、車両20が待機点14に向けて走行中に積込機30のオペレータが積込点12の指示を出すことになる。したがって、走行許可の指示を受けていれば、車両20は待機点14で停止するには及ばない。車両20は走行を継続することがある。この場合、待機点14に止まることなく車両20は積込点12まで走行を継続することになる。積込点12までの移動中、スイッチバック点13など一時停止が不可欠な場所がある場合は車両20は停止するが、一時停止後すぐに走行を継続する。
そして車両20が待機点14で停止している間あるいはその停止前までに、 管制装置40より部分走行経路15の情報と「この部分走行経路15に沿って走行せよ」という内容の走行指令が取得されたか否かが判断される(ステップ204)。

車両20が待機点14で停止している間あるいはその停止前までに管制装置40より部分走行経路15の情報と「この部分走行経路15に沿って走行せよ」という内容の走行指令が取得されなかった場合には(ステップ204の判断NO)、元の走行経路10に沿って待機点14から積込点12に向けて走行を開始する(ステップ205)。
これに対して車両20が待機点14で停止している間あるいはその停止前までに、管制装置40より部分走行経路15の情報と「この部分走行経路15に沿って走行せよ」という内容の走行指令が取得された場合には(ステップ204の判断YES)、部分走行経路15に沿って待機点14から位置変更後の積込点12´に向けて走行を開始する(ステップ206;図2(b))。
以上のようにして、車両20が待機点14で待機中に、あるいは入口点11から待機点14までの間を走行中に、積込点12の位置変更の指示があると、部分走行経路15が生成され、車両20は、部分走行経路15に沿って待機点14から位置変更後の積込点12´まで走行する(図2(b))。一方、車両20が待機点14で待機中に、および入口11点から待機点14までの間を走行中に、積込点12の位置変更の指示がなかった場合には、そのまま走行経路10に沿って待機点14から積込点12まで走行する(図2(a))。
この結果、本第1実施例によれば、つぎのような効果が得られる。
すなわち、車両20を待機点14で積込機30から許可を得るまで待機させて、積込点12の位置変更があると待機点14から位置変更後の積込点12´に至る部分走行経路15を生成して車両20を部分走行経路15に沿って走行させるようにしているので、積込機30が移動等して積込点12が逐次変更される場合であっても、確実に変更された積込点12に向けて車両20を走行させることができる。待機点14は、積込点12の近くに設定され、車両20としては、停止することなく待機点14まで走行できるので、車両20を極力停止させることなく(待ち時間なく)出来る限り積込機30の近くまで走行させ続けることができる。これにより生産効率が向上する。
上記した処理は当然、複数の車両20、20´が走行経路10に沿って順次走行する場合に適用することができる。この場合、上記説明中、「車両20」を「複数の車両20、20´」と読み替えて実施すればよい。複数台の車両20、20´が積込場1内に順次進入するような場合には、待ち時間が累積しなくなるため生産効率が一層向上する。なお、複数台の車両20、20´が積込場1内に順次進入するような場合には、積込点12等で車両同士が干渉しないように各車両20、20´を走行させる措置がとられる。
(第2実施例)
 つぎに、先行する車両20が部分走行経路15に沿って走行した場合には、その先行車両に後行する車両20´を強制的に入口点11の手前で待機させ、新しい走行経路10´、つまり入口点11から位置変更後の積込点12´に至る走行経路10´に沿って走行させる実施例について説明する。
この場合、図4(a)、(b)に示すフローチャートに代えて図5(a)、(b)に示すフローチャートで管制装置40、車両20、20´に処理を行わせればよい。以下、図5について図4(a)の処理と異なる部分について説明する。
図5(a)に示すように、図4(a)のステップ103、104、105に代えて、ステップ103´、104´、105´、106、107の処理が行われる。また、図5(b)に示すように、図4(b)のステップ201の前にステップ207、208の処理が行われる。
すなわち、現在積込点12に最も近い車両20が入口点11の手前に存在し、入口点11から新しい走行指令にしたがい走行できる余裕があるか否かが判断される(ステップ103´)。この結果、現在積込点12に最も近い車両20が入口点11から新しい走行指令にしたがい走行できる余裕があると判断された場合には(ステップ103´の判断YES)、入口点11から位置変更後の積込点12´に至る新しい走行経路10´を生成して、この生成された新しい走行経路10´の情報と「この新しい走行経路10´に沿って走行せよ」という内容の走行指令を全車両20、20´に向けて送信する(ステップ104´)。
一方、現在積込点12に最も近い車両20が入口点11から新しい走行指令にしたがい走行できる余裕がないと判断された場合には(ステップ103´の判断NO)、先行する車両20に続く後行する車両20´を強制的に入口点11の手前で待機させるための入口点待機指令を送る(ステップ106)。
この入口点待機指令を受けて後行する車両20´は、入口点11の手前で待機する(ステップ207、208)。
管制装置40では、待機点14から位置変更後の積込点12´に至る部分走行経路15が生成され、この部分走行経路15の情報と「この部分走行経路15に沿って走行せよ」という内容の走行指令が先行する車両20に向けて送信される(ステップ105´)。
さらに管制装置40では、入口点11から位置変更後の積込点12´に至る新しい走行経路10´が生成されて、この生成された新しい走行経路10´の情報と「この新しい走行経路10´に沿って走行せよ」という内容の走行指令が後行する車両20´に向けて送信される(ステップ107)。
この走行指令を受けて後行する車両20´は、入口点11より新しい走行経路10´に沿って走行する(ステップ208、201、202)。
このように、先行する車両20については、待機点14で待機中に、あるいは入口点11から待機点14までの間を走行中に、積込点12の位置変更の指示があったことを条件に、部分走行経路15に沿って待機点14から位置変更後の積込点12´まで走行するが、後行する車両20´については、新しい走行経路10´に沿って走行し、入口点11から部分走行経路15上の待機点14とは異なる位置の待機点14´まで走行する。なお、後行する車両20´は、同様にして待機点14´で待機し、積込点12´の位置変更の有無によって図示しない新たな部分走行経路または元の走行経路10´のいずれかを走行する(ステップ204、205、206)。
この結果、本第2実施例によれば、つぎのような効果が得られる。
すなわち、積込点12の位置変更があると、先行する車両20については、部分走行経路15に沿って待機点14から位置変更後の積込点12´まで走行するが、後行する車両20´については、新しい走行経路10´に沿って先行車両20の待機点14とは異なる位置の待機点14´まで走行する。このように先行車両20と後行車両20´で待機点14、14´を異ならせるようにしたので、後行車両20´にとっての待機位置14´を、新しい積込点12´にとって、より最適な、つまり、より近い、より短時間で到達できる位置に設定することができる。すなわち、同じ積込点12´に至る場合、部分走行経路15と新しい走行経路(全走行経路)10´を対比すると、走行経路10´を走行した方が走行距離が短いなど走行上の効率が良い。生産性に大きな影響を与えるのは、とりわけ待機点と積込点間の走行時間である。つまり、通常、先行車両20の積込中に、後行車両20は待機点14に到達して積込機30のオペレータから指示を待っているため、待機点から積込点間の走行時間の長短は生産性に影響するのである。こうした待機点と積込点間のコースの最適性が生産性に寄与することとなり、一層生産効率を向上させることができる。
また、先行車両20と後行車両20´が干渉することなく連続して積込場1内を走行することが可能となり、この点からも生産性の向上が期待される。
上述した実施例では、スイッチバック点13を待機点14に定めるようにしている。しかし、走行経路10上にあって、積込点12に近い位置にあり、車両20が積込機30から許可を得るまで待機すべき点であれば、任意の地点に設定可能である。たとえば、積込点12から所定距離離れた地点を待機点14に定めてもよい。また、スイッチバック点13と、積込点12から所定距離離れた地点のうち、積込点12から最も近い方の地点を待機点14に定めてもよい。
上述した実施例では、車両20を待機点14に一律に停止させるようにしている。しかし、「走行許可を得るまで待機」すればよく、必ずしも待機点14、14´で停止するに及ばない。走行許可を得ていれば待機点14、14´で停止することなくそのまま通過する(待機しない)ことがある。すなわち、状況に応じて車両20を待機点14で停止させることなくそのまま積込点12に向けて走行させてもよい。たとえば、車両20が待機点14に接近した時点で、積込機30のオペレータに「待機点14に停止する必要がないか」の承認を求める。この結果、積込機30において車両20への積込みの準備が完了している場合には、「待機点14に停止することなく積込点12に向けて走行してもよい」旨の許可を車両20に送信する。これを受けて、車両20は、待機点14で停止することなくそのまま積込点12に向けて走行を続ける。この場合、一連の通信処理は、車両20と積込機30と間で直接行ってもよく、管制装置40を経由して行ってもよい。また、車両20から積込機30に上述の承認を求める時点は、車両20から待機点14までの距離が所定距離に達した時点に設定してもよく、車両20が待機点14に到着するまでの予想時間が所定の時間に達した時点に設定してもよい。
なお、上述した実施例では、積込機30から位置変更の情報を管制装置40に送り、管制装置40から走行指令を車両20に対して送るようにしているが、管制装置40の機能を積込機30あるいは車両20に持たせ、積込機30と車両20との間で直接通信を行う実施も可能である。
図1(a)、(b)は、積込場の上面図で、従来技術を説明するために用いた図である。 図2(a)、(b)は、積込場の上面図で、実施例を説明するために用いた図である。 図3は、実施形態の車両走行システムのブロック図である。 図4(a)、(b)は、第1の実施例の処理の手順を示すフローチャートである。 図5(a)、(b)は、第2の実施例の処理の手順を示すフローチャートである。 図6は、積込形態として両側積込をとる場合に2台の車両が積込機の左右交互に積込アプローチする様子を示した上面図である。 図7は、作業現場を上面からみた図である。

Claims (5)

  1. 積込場の入口点から積込機が存在する積込点まで車両が走行する車両の走行経路を生成し、生成された走行経路に沿って車両を走行させる車両の走行システムにおいて、
     積込点の位置情報と入口点の位置情報に基づき、入口点から積込点の近傍の待機点を経由して積込点に至る走行経路を生成する走行経路生成手段と、
     走行経路生成手段によって生成された走行経路の情報に基づき車両を走行経路に沿って、入口点から待機点まで走行させる第1の走行制御手段と、
     車両を待機点で積込機から許可を得るまで待機させる待機手段と、
     車両が待機点で待機中に、あるいは入口点から待機点までの間を走行中に、積込機から管制装置または/および車両に積込点の位置変更の指示があった場合に、当該位置変更後の積込点の位置情報と積込点が移動する前の前記走行経路上の待機点の位置情報に基づき、待機点から当該位置変更後の積込点までの部分走行経路を生成する部分走行経路生成手段と、
    車両が待機点で待機中に、および入口点から待機点までの間を走行中に、積込機から管制装置または/および車両に積込点の位置変更の指示がなかった場合には、走行経路生成手段によって生成された走行経路の情報に基づき車両を走行経路に沿って、待機点から積込点まで走行させるとともに、
    車両が待機点で待機中に、あるいは入口点から待機点までの間を走行中に、積込点の位置変更の指示があった場合には、部分走行経路生成手段によって生成された部分走行経路の情報に基づき車両を部分走行経路に沿って待機点から位置変更後の積込点まで走行させる第2の走行制御手段と
    を備えたことを特徴とする車両の走行システム。
  2. 請求項1において、複数の車両を走行経路に沿って順次走行させる場合に適用され、
    積込機から管制装置または/および車両に積込点の位置変更の指示があった場合には、部分走行経路生成手段により、待機点から当該位置変更後の積込点までの部分走行経路を生成するとともに、
    走行経路生成手段により、入口点から、前記部分走行経路上の待機点とは異なる位置の待機点を経由して位置変更後の積込点に至る走行経路を生成し、
    先行する車両については、部分走行経路生成手段によって生成された部分走行経路の情報に基づき部分走行経路に沿って当該待機点から位置変更後の積込点まで走行させるとともに、
    後行する車両については、走行経路生成手段によって生成された走行経路の情報に基づき走行経路に沿って、入口点から前記部分走行経路上の待機点とは異なる位置の待機点まで走行させること
    を特徴とする車両の走行システム。
  3. 請求項1または2において、
    車両は、無人車両であり、積込機は、有人車両であり、

    管制装置が設けられ、
     管制装置と車両との間で、および管制装置と積込機との間で、送受信を行う通信手段が車両、管制装置、積込機に各々設けられ、
     積込機は、位置変更の指示を管制装置に送信し、
    管制装置は、積込機から送信された位置変更指示に従い走行経路および部分走行経路を生成し、
    管制装置は、走行経路および部分走行経路の情報を車両に送信し、
    車両は、管制装置から送信された走行経路および部分走行経路の情報に基づき走行するとともに、待機点で積込機から許可を得るまで待機すること
    を特徴とする車両の走行システム。
  4. 積込場の入口点から積込機が存在する積込点まで車両が走行する車両の走行経路を生成し、生成された走行経路に沿って車両を走行させる車両の走行方法において、
     積込点の位置情報と入口点の位置情報に基づき、入口点から積込点の近傍の待機点を経由して積込点に至る走行経路を生成し、
     当該生成された走行経路の情報に基づき車両を走行経路に沿って、入口点から待機点まで走行させ、
     車両を待機点で積込機から許可を得るまで待機させ、
     車両が待機点で待機中に、あるいは入口点から待機点までの間を走行中に、積込機から管制装置または/および車両に積込点の位置変更の指示があった場合に、当該位置変更後の積込点の位置情報と積込点が移動する前の前記走行経路上の待機点の位置情報に基づき、待機点から当該位置変更後の積込点までの部分走行経路を生成し、
    車両が待機点で待機中に、および入口点から待機点までの間を走行中に、積込機から管制装置または/および車両に積込点の位置変更の指示がなかった場合には、走行経路生成手段によって生成された走行経路の情報に基づき車両を走行経路に沿って、待機点から積込点まで走行させるとともに、
    車両が待機点で待機中に、あるいは入口点から待機点までの間を走行中に、積込点の位置変更の指示があった場合には、部分走行経路生成手段によって生成された部分走行経路の情報に基づき車両を部分走行経路に沿って待機点から位置変更後の積込点まで走行させる ことを特徴とする車両の走行方法。
  5. 請求項4において、複数の車両を走行経路に沿って順次走行させる場合に適用され、
    積込機から管制装置または/および車両に積込点の位置変更の指示があった場合には、部分走行経路生成手段により、待機点から当該位置変更後の積込点までの部分走行経路を生成するとともに、

    走行経路生成手段により、入口点から、前記部分走行経路上の待機点とは異なる位置の待機点を経由して位置変更後の積込点に至る走行経路を生成し、
    先行する車両については、部分走行経路生成手段によって生成された部分走行経路の情報に基づき部分走行経路に沿って当該待機点から位置変更後の積込点まで走行させるとともに、
    後行する車両については、走行経路生成手段によって生成された走行経路の情報に基づき走行経路に沿って、入口点から前記部分走行経路上の待機点とは異なる位置の待機点まで走行させること
    を特徴とする車両の走行方法。
PCT/JP2011/050923 2010-01-25 2011-01-20 車両の走行システムおよびその走行方法 WO2011090093A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011550939A JP5200297B2 (ja) 2010-01-25 2011-01-20 車両の走行システムおよびその走行方法
US13/574,656 US8965622B2 (en) 2010-01-25 2011-01-20 Vehicular driving system and driving method thereof
CN201180007034.8A CN102725704B (zh) 2010-01-25 2011-01-20 车辆行驶系统及其行驶方法
AU2011208080A AU2011208080B2 (en) 2010-01-25 2011-01-20 Vehicular driving system and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010013160 2010-01-25
JP2010-013160 2010-01-25

Publications (1)

Publication Number Publication Date
WO2011090093A1 true WO2011090093A1 (ja) 2011-07-28

Family

ID=44306893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050923 WO2011090093A1 (ja) 2010-01-25 2011-01-20 車両の走行システムおよびその走行方法

Country Status (5)

Country Link
US (1) US8965622B2 (ja)
JP (1) JP5200297B2 (ja)
CN (1) CN102725704B (ja)
AU (1) AU2011208080B2 (ja)
WO (1) WO2011090093A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8812198B1 (en) 2013-04-02 2014-08-19 Caterpillar Inc. Docking assistance and display system
US8874326B2 (en) 2013-03-06 2014-10-28 Caterpillar Inc. Docking assistance system
WO2015025371A1 (ja) * 2013-08-20 2015-02-26 株式会社小松製作所 管理システム及び管理方法
WO2016132758A1 (ja) * 2015-02-20 2016-08-25 日立建機株式会社 交通管制サーバ、車載端末装置及び交通管制システム
WO2016167374A1 (ja) * 2016-04-28 2016-10-20 株式会社小松製作所 作業機械の管理装置
WO2016167375A1 (ja) * 2016-04-28 2016-10-20 株式会社小松製作所 作業機械の管理装置
JP2017199395A (ja) * 2017-06-08 2017-11-02 株式会社小松製作所 作業機械の管理方法
JP2020077057A (ja) * 2018-11-05 2020-05-21 株式会社デンソーテン 情報処理装置および情報処理方法
WO2021106331A1 (ja) * 2019-11-25 2021-06-03 村田機械株式会社 自律走行台車、制御方法、及び、プログラム
JP2021156080A (ja) * 2020-03-30 2021-10-07 住友重機械工業株式会社 施工支援システム及び施工支援装置
WO2023188650A1 (ja) 2022-03-30 2023-10-05 日立建機株式会社 車両管理システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2849407C (en) * 2013-08-30 2016-04-12 Motohide Sugihara Mining machine management system and mining machine management method
KR102140854B1 (ko) * 2014-02-06 2020-08-03 얀마 파워 테크놀로지 가부시키가이샤 자율 주행 작업 차량의 주행 경로 설정 방법
JP6067876B2 (ja) 2015-08-31 2017-01-25 株式会社小松製作所 鉱山の管理システム
JP6960975B2 (ja) * 2016-03-30 2021-11-05 ヤンマーパワーテクノロジー株式会社 経路生成システム
JP6622131B2 (ja) * 2016-03-30 2019-12-18 ヤンマー株式会社 経路生成装置
JP6811652B2 (ja) * 2017-03-09 2021-01-13 ヤンマーパワーテクノロジー株式会社 経路生成システム
US11226627B2 (en) 2019-06-20 2022-01-18 Caterpillar Global Mining Llc System for modifying a spot location
AU2019250202A1 (en) * 2019-10-17 2021-05-06 Caterpillar Underground Mining Pty Ltd System and method for changing orientation of machines
CN112590817B (zh) * 2020-12-23 2023-01-17 江苏徐工工程机械研究院有限公司 运输系统的安全保护系统、方法和机群管理设备
CN113086054B (zh) * 2021-03-17 2022-03-22 北京易控智驾科技有限公司 用于矿山无人驾驶的待装车辆等待位生成方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263138A (ja) * 1995-03-24 1996-10-11 Komatsu Ltd 無人ダンプ走行コースデータ作成方法及び作成装置
JP2008097632A (ja) * 1998-02-13 2008-04-24 Komatsu Ltd 車両の誘導装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2920017B2 (ja) * 1992-03-11 1999-07-19 新キャタピラー三菱株式会社 走行体のコース学習誘導方法およびその装置
JPH09198134A (ja) * 1996-01-18 1997-07-31 Komatsu Ltd 無人ダンプの作業エリア内への進入インターロック方法及びその装置
US5961560A (en) * 1996-12-19 1999-10-05 Caterpillar Inc. System and method for managing access of a fleet of mobile machines to a service resource
US5931875A (en) * 1996-12-19 1999-08-03 Caterpillar Inc. System and method for managing a fleet of mobile machines for dumping at a plurality of dump points
WO1998037468A1 (fr) * 1997-02-20 1998-08-27 Komatsu Ltd. Systeme de surveillance de vehicules
US6064926A (en) * 1997-12-08 2000-05-16 Caterpillar Inc. Method and apparatus for determining an alternate path in response to detection of an obstacle
JPH11296229A (ja) 1998-02-13 1999-10-29 Komatsu Ltd 車両の誘導装置
US6236924B1 (en) * 1999-06-21 2001-05-22 Caterpillar Inc. System and method for planning the operations of an agricultural machine in a field
JP4082831B2 (ja) * 1999-10-26 2008-04-30 株式会社小松製作所 車両の管制装置
WO2001088827A1 (en) * 2000-05-15 2001-11-22 Modular Mining Systems, Inc. Permission system for control of autonomous vehicles
US6507777B1 (en) * 2000-10-13 2003-01-14 Advanced Micro Devices, Inc. System and method for a remote calling system for an automatic guided vehicle
US7398137B2 (en) * 2004-08-25 2008-07-08 Caterpillar Inc. System and method for remotely controlling machine operations using mapping information
WO2007012198A1 (en) * 2005-07-26 2007-02-01 Macdonald, Dettwiler & Associates Inc. Guidance, navigation, and control system for a vehicle
US8626541B2 (en) * 2007-08-31 2014-01-07 Caterpillar Inc. System for managing loading operations of haul vehicles
US8428790B2 (en) * 2009-12-22 2013-04-23 Caterpillar Inc. Systems and methods for machine control in designated areas
US8983707B2 (en) * 2010-11-30 2015-03-17 Caterpillar Inc. Machine control system having autonomous dump queuing
US8930043B2 (en) * 2010-11-30 2015-01-06 Caterpillar Inc. Machine control system having autonomous resource queuing
US8868302B2 (en) * 2010-11-30 2014-10-21 Caterpillar Inc. System for autonomous path planning and machine control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263138A (ja) * 1995-03-24 1996-10-11 Komatsu Ltd 無人ダンプ走行コースデータ作成方法及び作成装置
JP2008097632A (ja) * 1998-02-13 2008-04-24 Komatsu Ltd 車両の誘導装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8874326B2 (en) 2013-03-06 2014-10-28 Caterpillar Inc. Docking assistance system
US8812198B1 (en) 2013-04-02 2014-08-19 Caterpillar Inc. Docking assistance and display system
WO2015025371A1 (ja) * 2013-08-20 2015-02-26 株式会社小松製作所 管理システム及び管理方法
US9383754B2 (en) 2013-08-20 2016-07-05 Komatsu Ltd. Management system and management method
WO2016132758A1 (ja) * 2015-02-20 2016-08-25 日立建機株式会社 交通管制サーバ、車載端末装置及び交通管制システム
JP2016153987A (ja) * 2015-02-20 2016-08-25 日立建機株式会社 交通管制サーバ、車載端末装置及び交通管制システム
WO2016167374A1 (ja) * 2016-04-28 2016-10-20 株式会社小松製作所 作業機械の管理装置
WO2016167375A1 (ja) * 2016-04-28 2016-10-20 株式会社小松製作所 作業機械の管理装置
JPWO2016167375A1 (ja) * 2016-04-28 2017-04-27 株式会社小松製作所 作業機械の管理装置
JPWO2016167374A1 (ja) * 2016-04-28 2017-04-27 株式会社小松製作所 作業機械の管理装置
US10591917B2 (en) 2016-04-28 2020-03-17 Komatsu Ltd. Work machine management apparatus
US10108196B2 (en) 2016-04-28 2018-10-23 Komatsu Ltd. Work machine management apparatus
US10394250B2 (en) 2016-04-28 2019-08-27 Komatsu Ltd. Work machine management apparatus
JP2017199395A (ja) * 2017-06-08 2017-11-02 株式会社小松製作所 作業機械の管理方法
JP2020077057A (ja) * 2018-11-05 2020-05-21 株式会社デンソーテン 情報処理装置および情報処理方法
WO2021106331A1 (ja) * 2019-11-25 2021-06-03 村田機械株式会社 自律走行台車、制御方法、及び、プログラム
JPWO2021106331A1 (ja) * 2019-11-25 2021-06-03
JP7272461B2 (ja) 2019-11-25 2023-05-12 村田機械株式会社 自律走行台車、制御方法、及び、プログラム
JP2021156080A (ja) * 2020-03-30 2021-10-07 住友重機械工業株式会社 施工支援システム及び施工支援装置
WO2023188650A1 (ja) 2022-03-30 2023-10-05 日立建機株式会社 車両管理システム

Also Published As

Publication number Publication date
CN102725704B (zh) 2014-10-01
US8965622B2 (en) 2015-02-24
US20120296495A1 (en) 2012-11-22
AU2011208080A1 (en) 2012-08-16
JP5200297B2 (ja) 2013-06-05
AU2011208080B2 (en) 2014-05-01
JPWO2011090093A1 (ja) 2013-05-23
CN102725704A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5200297B2 (ja) 車両の走行システムおよびその走行方法
JP4082831B2 (ja) 車両の管制装置
US10311526B2 (en) Management system and method for operating a mining machine
US9383754B2 (en) Management system and management method
JP5369339B2 (ja) 車両の走行制御装置および方法
US8285456B2 (en) System for controlling a multimachine caravan
WO2016051526A1 (ja) 無人運搬車両の走行制御方法及びシステム
JP4605805B2 (ja) 車両の走行管制装置
JPH09198134A (ja) 無人ダンプの作業エリア内への進入インターロック方法及びその装置
JP2023126541A (ja) 作業現場の管理システム及び作業現場の管理方法
AU2017332935B2 (en) Management system for work vehicle and management method for work vehicle
JP7444547B2 (ja) 作業現場の管理システム及び作業現場の管理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007034.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734699

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550939

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13574656

Country of ref document: US

Ref document number: 2011208080

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011208080

Country of ref document: AU

Date of ref document: 20110120

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11734699

Country of ref document: EP

Kind code of ref document: A1