WO2012008416A1 - 処理装置 - Google Patents

処理装置 Download PDF

Info

Publication number
WO2012008416A1
WO2012008416A1 PCT/JP2011/065804 JP2011065804W WO2012008416A1 WO 2012008416 A1 WO2012008416 A1 WO 2012008416A1 JP 2011065804 W JP2011065804 W JP 2011065804W WO 2012008416 A1 WO2012008416 A1 WO 2012008416A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion
rtb
sintered magnet
based sintered
magnet body
Prior art date
Application number
PCT/JP2011/065804
Other languages
English (en)
French (fr)
Inventor
國吉 太
昭二 中山
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US13/809,198 priority Critical patent/US9324494B2/en
Priority to JP2012524545A priority patent/JP5853952B2/ja
Priority to CN201180033847.4A priority patent/CN103003899B/zh
Publication of WO2012008416A1 publication Critical patent/WO2012008416A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0018Details, accessories not peculiar to any of the following furnaces for charging, discharging or manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0031Rotary furnaces with horizontal or slightly inclined axis
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0056Furnaces through which the charge is moved in a horizontal straight path
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/02Rotary-drum furnaces, i.e. horizontal or slightly inclined of multiple-chamber or multiple-drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/14Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge
    • F27B7/16Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge the means being fixed relatively to the drum, e.g. composite means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/22Rotary drums; Supports therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/33Arrangement of devices for discharging
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2281/00Making use of special physico-chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to a processing apparatus for diffusing a heavy rare earth element RH (consisting of at least one of Dy and Tb) into an RTB-based sintered magnet.
  • RH heavy rare earth element
  • An RTB-based sintered magnet mainly composed of an R 2 T 14 B-type compound is known as the most powerful magnet among permanent magnets, such as a voice coil motor (VCM) of a hard disk drive, It is used for various motors such as motors for hybrid vehicles and home appliances.
  • VCM voice coil motor
  • the RTB-based sintered magnet Since the RTB-based sintered magnet has a reduced coercive force at high temperatures, irreversible thermal demagnetization occurs. In order to avoid irreversible thermal demagnetization, when used for a motor or the like, it is required to maintain a high coercive force even in a high temperature range.
  • replacing the light rare earth element RL (consisting of at least one of Nd and Pr) with the heavy rare earth element RH improves the coercive force while reducing the residual magnetic flux density. There is a problem of end. Further, since the heavy rare earth element RH is a rare resource, it is required to reduce the amount of use thereof.
  • the present applicant has already supplied a heavy rare earth element RH such as Dy to the surface of the RTB-based sintered magnet body, and has converted the heavy rare earth element RH from the surface to the RTB-based sintered magnet.
  • a method (vapor deposition diffusion) of diffusing inside the magnet body is disclosed.
  • the RTB-based sintered magnet body and the RH bulk body are arranged to face each other with a predetermined interval inside a diffusion processing apparatus made of a refractory metal material.
  • the diffusion processing apparatus includes a member that holds a plurality of RTB-based sintered magnet bodies and a member that holds an RH bulk body.
  • Patent Document 2 discloses a heat-resistant sealed container containing Yb metal powder having a low boiling point and an RTB-based sintered magnet compact for the purpose of improving the magnetic properties of the RTB-based intermetallic compound magnetic material. It is disclosed that it is enclosed and heated. In the method of Patent Document 2, a Yb metal film is uniformly deposited on the surface of a sintered magnet compact, and a rare earth element is diffused from this film into the sintered magnet (Example 5 of Patent Document 2).
  • the rare earth metal has a high saturated vapor pressure such as Yb, Eu, and Sm
  • the formation of the coating on the sintered magnet body and the diffusion from the coating can be performed in the same temperature range (for example, 800 to 850 ° C.).
  • the rare earth metal is selectively selected by induction heating using a high frequency heating coil. It is necessary to heat to a high temperature.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to transfer the heavy rare earth element RH such as Dy and Tb from the surface of the RTB-based sintered magnet body without reducing the residual magnetic flux density.
  • An object of the present invention is to provide a processing apparatus suitable for mass production for diffusing.
  • the processing apparatus of the present invention includes an RH diffusion source made of a metal or an alloy of heavy rare earth element RH (made of at least one of Dy and Tb) and a diffusion processing section that rotates while heating an RTB-based sintered magnet body.
  • RH diffusion source made of a metal or an alloy of heavy rare earth element RH (made of at least one of Dy and Tb)
  • a diffusion processing section that rotates while heating an RTB-based sintered magnet body.
  • a separation unit that is adjacent to the diffusion processing unit and rotates to selectively separate the RH diffusion source from the RH diffusion source and the RTB-based sintered magnet body delivered from the diffusion processing unit; And an inclination mechanism for inclining the diffusion processing part and the separation part.
  • the separation part has a plurality of openings for discharging the RH diffusion source to the outside, and the size of the opening is smaller than that of the RTB-based sintered magnet body.
  • the separation unit sends the RTB-based sintered magnet body to the diffusion processing unit while being rotated, and the diffusion processing unit has moved from the separation unit. -Perform heat treatment on the TB sintered magnet body.
  • the diffusion processing section has a first outer wall section that houses a first inner wall section
  • the separation section has a second outer wall section that houses a second inner wall section
  • the inner wall portion has a cylindrical shape and is made of a metal or alloy made of at least one of Mo, W, Nb, and Ta.
  • a sheet-like buffer member is disposed between the inner wall portion and the outer wall portion.
  • a spiral baffle plate is provided on the inner wall portion of the diffusion processing unit, and the baffle plate of the diffusion processing unit rotates in the first direction when the RH in the diffusion processing unit.
  • the diffusion source and the RTB-based sintered magnet body are sent to the separation unit and rotated in a second direction opposite to the first direction, the RH diffusion source in the diffusion processing unit and The RTB-based sintered magnet body is held in the diffusion processing section.
  • Another treatment apparatus of the present invention is a diffusion that rotates while heating an RH diffusion source and an RTB-based sintered magnet body made of a metal or alloy of heavy rare earth element RH (consisting of at least one of Dy and Tb).
  • a separation section that is adjacent to the diffusion processing section and rotates to selectively separate the RH diffusion source from the RH diffusion source and the RTB-based sintered magnet body delivered from the diffusion processing section; And the RTB-based sintered magnet body in which the heavy rare earth element RH is diffused in the diffusion processing unit, adjacent to the separation unit, and rotated with the RH diffusion source removed.
  • a heat treatment part that performs heat treatment while at least the tilting mechanism that inclines the diffusion treatment part, the separation part, and the heat treatment part.
  • the separation unit moves the RH diffusion source to the outside while moving the RH diffusion source and the RTB-based sintered magnet body received from the diffusion processing unit to the heat treatment unit. It has a plurality of openings for discharging.
  • the diffusion processing unit has a cylindrical first inner wall that accommodates the RH diffusion source and the RTB-based sintered magnet body, and is rotated by the driving unit,
  • the RH diffusion source and the RTB system sintered magnet body are sent to the separation unit, and the separation unit accommodates the RH diffusion source and the RTB system sintered magnet body and has an opening.
  • a cylindrical second inner wall provided with a portion, discharging the RH diffusion source from the opening to the outside while being rotated by the driving unit, and the RTB-based sintering
  • the magnet body is sent to the heat treatment portion, and the heat treatment portion has a cylindrical third inner wall portion that accommodates the RTB-based sintered magnet body, and is rotated by the driving portion while being rotated by the drive portion.
  • the RTB system sintered magnet body is delivered to the discharge port.
  • a spiral baffle plate is provided on an inner wall portion of the diffusion treatment section and the heat treatment section, and the baffle plate of the diffusion treatment section has a spiral direction with respect to the baffle plate of the heat treatment section. It is held in the opposite direction.
  • the diffusion processing section has a first outer wall section that houses the first inner wall section
  • the separation section has a second outer wall section that houses the second inner wall section
  • the heat treatment The portion has a third outer wall portion that accommodates the third inner wall portion, and at least the first inner wall portion and the third inner wall portion are cylindrical and are made of at least one of Mo, W, Nb, and Ta. Made of metal or alloy.
  • a sheet-like buffer member is disposed between the inner wall portion and the outer wall portion.
  • an RH diffusion source made of a metal or an alloy of heavy rare earth element RH (made of at least one of Dy and Tb) and a diffusion treatment part that rotates while heating an RTB-based sintered magnet body, Because it has a separation part that selectively separates the RH diffusion source, it can efficiently and smoothly produce a sintered magnet with improved coercive force without reducing the residual magnetic flux density from the RH diffusion treatment process to the heat treatment process. Can do.
  • FIG. 5A is a perspective view showing a configuration example of a spiral baffle plate 70.
  • FIG. 4B is a perspective view illustrating a configuration example of the baffle plate 80.
  • (A) to (d) is a diagram showing the operation of the processing apparatus in the embodiment of FIG. 2 is a flowchart for explaining a method of manufacturing an RTB-based sintered magnet performed using the apparatus of FIG.
  • (A) is a figure which shows the preferable form of a cross-sectional structure perpendicular
  • (b) is sectional drawing which shows the preferable form of an inner wall part. It is a figure which shows the structure of another embodiment of the processing apparatus by this invention. It is a figure which shows typically the cross-sectional structure of the processing apparatus in embodiment of FIG. (A) to (d) is a diagram showing the operation of the processing apparatus in the embodiment of FIG. 8 is a flowchart for explaining a method of manufacturing an RTB-based sintered magnet performed using the apparatus of FIG.
  • the processing apparatus of the present invention includes a diffusion processing section that can rotate to heat and stir the RH diffusion source and the RTB-based sintered magnet body.
  • the RH diffusion source is made of a metal or alloy of heavy rare earth element RH (consisting of at least one of Dy and Tb). A preferred form of the RH diffusion source will be described later.
  • heating is first performed in a state where a plurality of RH diffusion sources and a plurality of RTB-based sintered magnet bodies coexist, and the RTB-based sintered magnet body is transferred from the RH diffusion source.
  • the RH diffusion source and the RTB-based sintered magnet body charged in the diffusion processing unit are not fixed by a holding member or the like and are relatively movable. Further, the RH diffusion source and the RTB-based sintered magnet body can move in the diffusion processing unit by the rotation of the diffusion processing unit, and can approach or come into contact with each other.
  • the RH diffusion source and the RTB-based sintered magnet body are maintained in a temperature range of preferably 500 ° C. or more and 1000 ° C. or less by the heating means while being moved close to and away from each other by rotation of the diffusion processing unit.
  • the diffusion processing section rotates, the RTB-based sintered magnet body and the RH diffusion source move continuously or intermittently within the diffusion processing section.
  • the position of the contact portion between the body and the RH diffusion source changes, and the RTB-based sintered magnet body and the RH diffusion source repeat proximity and separation.
  • the heavy rare earth element RH is supplied from the RH diffusion source to the RTB-based sintered magnet body and diffuses into the RTB-based sintered magnet body. (RH diffusion treatment process).
  • the RH diffusion source that has moved from the diffusion processing section and the RH diffusion source among the RTB-based sintered magnet bodies are selectively selected from the RT A separation part for separating from the B-based sintered magnet body is provided.
  • the above-described diffusion processing section can be used for heat treatment of only the RTB-based sintered magnet body after the RH diffusion source is separated.
  • the treatment apparatus of the present invention is supplied with a heavy rare earth element RH in the diffusion treatment section, and performs a heat treatment section for performing additional heat treatment on the RTB-based sintered magnet body in which the heavy rare earth element RH is diffused. May be provided.
  • the additional heat treatment performed in the heat treatment unit is a heat treatment performed in a state where the RH diffusion source is removed. In this heat treatment, the heavy rare earth element RH supplied from the RH diffusion source to the RTB-based sintered magnet body in the diffusion processing section is diffused deeper into the RTB-based sintered magnet body.
  • the separation unit is an opening for selectively discharging the RH diffusion source to the outside while moving the RH diffusion source and the RTB-based sintered magnet body delivered from the diffusion processing unit to the heat treatment unit. Has a part. By discharging the RH diffusion source in the separation unit, it is possible to smoothly shift to the next heat treatment step.
  • the diffusion treatment unit, separation unit, and heat treatment unit of the present invention can heat an object to be treated such as an RTB-based sintered magnet body and an RH diffusion source while rotating in an inclined state. .
  • an object to be processed such as an RTB-based sintered magnet body and an RH diffusion source is sequentially moved from the diffusion processing section to the separation section and from the separation section to the heat treatment section without being exposed to the atmosphere. Can be made.
  • FIG. 1 is a schematic diagram showing a configuration of a processing apparatus in the present embodiment.
  • the illustrated processing apparatus includes a diffusion processing unit 10 for performing RH diffusion processing and heat treatment as necessary, an RH diffusion source 2 and an RTB-based sintered magnet moved from the diffusion processing unit 10.
  • a separation unit 20 that selectively separates the RH diffusion source 2 from the body 1 and sends out only the RTB-based sintered magnet body 1 after the RH diffusion treatment to the diffusion treatment unit 10 as necessary. Yes.
  • the separation unit 20 is connected to the diffusion processing unit 10.
  • the diffusion processing unit 10 and the separation unit 20 are connected by a stamping joint.
  • the RTB-based sintered magnet body 1 is not exposed to the atmosphere while the RH diffusion treatment step, the RH diffusion source separation step, and the heat treatment step are sequentially performed. Further, in the RH diffusion source separation step performed between the RH diffusion treatment step and the heat treatment step, since the RH diffusion source is separated without manual intervention, the separation of the RH diffusion source 2 without reducing the processing temperature. It becomes possible to perform a process. As a result, productivity from the RH diffusion treatment process to the heat treatment process is improved.
  • the diffusion processing unit 10 and the separation unit 20 are directly coupled in FIG. 1, they may be connected via a road pipe.
  • the diffusion processing unit 10 is provided with an insertion port 15. From the insertion port 15, the RTB-based sintered magnet body 1 and the RH diffusion source 2 before the RH diffusion treatment are introduced into the diffusion processing unit 10. The RTB-based sintered magnet body 1 that has been subjected to the RH diffusion treatment step, the separation step, and the heat treatment step is taken out of the processing apparatus through the inlet 15.
  • the diffusion processing unit 10 connected to the separation unit 20 is composed of a road pipe in FIG. 1 and is rotatably supported.
  • At least one of the diffusion processing unit 10 and the separation unit 20 is provided with a tilt mechanism 50 that tilts the diffusion processing unit 10 and the separation unit 20. Due to the action of the tilting mechanism 50, the diffusion processing unit 10 and the separating unit 20 can take a horizontal or tilted state.
  • the diffusion processing unit 10 and the separation unit 20 in the present embodiment can be inclined integrally as a whole.
  • the diffusion processing unit 10 and the separation unit 20 can be rotated by a motor (not shown).
  • the diffusion processing unit 10 and the separation unit 20 can rotate in both the horizontal state and the inclined state, and the direction and speed of rotation can be arbitrarily set.
  • FIG. 2 is a diagram schematically showing a cross-sectional configuration of the processing apparatus of FIG.
  • the diffusion processing unit 10 has a space for accommodating the RH diffusion source 2 and the RTB-based sintered magnet body 1 therein, and rotates with the separation unit 20 tilted downward. By doing so, the RH diffusion source 2 and the RTB-based sintered magnet body 1 can be sent to the separation unit 20. It is also possible to send the RTB-based sintered magnet body 1 from the separating unit 20 to the diffusion processing unit 10 by tilting in the opposite direction.
  • the separation unit 20 also rotates in an inclined state, so that only the RH diffusion source 2 can be efficiently discharged out of the RH diffusion source 2 and the RTB-based sintered magnet body 1.
  • the material of the diffusion processing part 10 has heat resistance that can withstand temperatures of about 500 to 1000 ° C., and at least the inner wall part is made of a material that does not easily react with the RTB-based sintered magnet body 1 and the RH diffusion source 2. Preferably it is formed.
  • the inner wall portion of the diffusion processing unit 10 can be formed of, for example, Nb, Mo, W, Ta metal or an alloy containing at least one of them. Further, an Fe—Cr—Al alloy or an Fe—Cr—Co alloy may be used. The same applies to the separation unit 20 described later.
  • FIG. 6A shows an example of a cross-sectional configuration perpendicular to the axial direction of the diffusion processing unit 10.
  • the diffusion processing unit 10 in this example includes a cylindrical inner wall portion 14 made of the above metal or alloy, and an outer wall portion 12 that accommodates the inner wall portion 14.
  • the outer wall part 12 is formed from stainless steel, for example.
  • the inner wall part 14 of the diffusion processing unit 10 is set and connected so as to have the same diameter as the inner wall part 14 of the separation part 20 at least at a portion in contact with the inner wall part 14 of the separation part 20, diffusion is performed.
  • the RTB-based sintered magnet body 1 and the RH diffusion source 2 can be smoothly moved between the processing unit 10 and the separation unit 20.
  • the baffle plate is normally connected to the inner wall portion so as to follow the rotation of the diffusion processing portion. However, the baffle plate may be rotated independently without being connected to the inner wall portion.
  • the outer wall portion 12 and the inner wall portion 14 are formed from materials having different thermal expansion coefficients, the outer wall portion If the 12 and the inner wall part 14 are fixed in close contact, the outer wall part 12 and the inner wall part 14 may be peeled off due to thermal expansion or contraction, or the inner wall part 14 may be torn.
  • a gap is formed between the outer wall portion 12 and the inner wall portion 14 so that the outer wall portion 12 and the inner wall portion 14 do not collide. More preferably, it is provided and fixed with bolts.
  • a sheet-like cushioning member is disposed between the outer wall portion 12 and the inner wall portion 14.
  • This buffer member is preferably formed from a heat-resistant carbon material, a ceramic material, or a heat-resistant metal material, and may be formed from a non-woven fabric such as a heat-resistant felt.
  • FIG. 6B is a diagram illustrating another configuration example of the inner wall portion 14.
  • the inner wall portion 14 shown in FIG. 6B is designed such that one end 14a and the other end 14b overlap each other at room temperature by rounding a metal plate into a cylindrical shape.
  • the one end 14a and the other end 14b of the metal plate constituting the inner wall portion 14 are not fixed, and the degree of overlap can be changed according to thermal expansion and thermal contraction. For this reason, even if a temperature change of about 900 ° C. occurs and the outer diameter of the inner wall portion 14 changes greatly, it is effectively prevented from colliding with the outer wall portion 12.
  • the aforementioned buffer member may be further arranged.
  • the cross-sectional shape perpendicular to the axial direction of the outer wall portion 12 and the inner wall portion 14 of the diffusion processing portion 10 is not necessarily limited to a circle, and may be an ellipse, a polygon, or other shapes. Further, in order to promote stirring of the RTB-based sintered magnet body 1 and the RH diffusion source 2 by the rotation of the diffusion processing unit 10, a protrusion may be provided on the inner wall portion 14 of the diffusion processing unit 10.
  • a spiral first baffle plate 70 is provided inside the diffusion processing unit 10.
  • the first baffle plate 70 has a configuration as shown in FIG.
  • the magnetized body 1 can be sent to the separation unit 20, but when rotating in the second direction opposite to the first direction, the RH diffusion source 2 and the RTB-based sintered magnet body 1 Can be held in.
  • the diameter of the first baffle plate may be smaller than the inner diameter of the inner wall portion 14. In this case, the clearance between the inner wall portion 14 and the first baffle plate 70 is set so that the RH diffusion source 2 and the RTB-based sintered magnet body 1 to be introduced do not leak.
  • the first baffle plate 70 is provided in the diffusion processing unit 10, but the first baffle plate 70 may be disposed on the separation unit 20 side, You may arrange
  • an RTB-based sintered magnet body to be diffused of heavy rare earth element RH is prepared.
  • the RTB-based sintered magnet body prepared in the present invention has a known composition.
  • This RTB-based sintered magnet body has, for example, the following composition.
  • Rare earth element R 12 to 17 atomic%
  • B part of B may be substituted with C: 5 to 8 atomic%
  • additive element M Al, Ti, V, Cr, Mn, Ni, Cu , Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi
  • T mainly Fe And may contain Co
  • inevitable impurities balance
  • the rare earth element R is at least one element mainly selected from the light rare earth elements RL, but may contain a heavy rare earth element RH.
  • the heavy rare earth element RH preferably contains at least one of Dy and Tb.
  • the RTB-based sintered magnet body having the above composition is manufactured by a known manufacturing method.
  • the RTB-based sintered magnet body 1 and the RH diffusion source 2 are placed in the RTB-based sintered magnet 10 inside the diffusion processing unit 10 shown in FIG.
  • the magnetized body 1 and the RH diffusion source 2 are inserted so as to be relatively movable and close to or in contact with each other.
  • the RTB-based sintered magnet body 1 and the RH diffusion source 2 are mixed in advance and filled with a feeder (not shown).
  • the diffusion processing unit 10 and the separation unit 20 may have a horizontal inner wall or may be inclined.
  • the RH diffusion source 2 is a heavy rare earth element RH composed of at least one of Dy and Tb or an alloy containing them.
  • the RH diffusion source 2 is made of an alloy, it is preferably an alloy containing 30% by mass or more of the heavy rare earth element RH.
  • the size of the RH diffusion source 2 is smaller than that of the RTB-based sintered magnet body 1.
  • a stirring auxiliary member may be used for the purpose of promoting the contact between the RTB-based sintered magnet body 1 and the RH diffusion source 2.
  • the stirring auxiliary member serves to bring the RH diffusion source into contact with the RTB system sintered magnet body more.
  • the stirring auxiliary member is preferably a ceramic material made of zirconia, boron nitride, silicon nitride, silicon carbide, or a mixture thereof.
  • a metal material made of a group element including Mo, W, Nb, Ta, Hf, and Zr, or a mixture thereof is also preferable.
  • the stirring auxiliary member is preferably smaller than the RTB-based sintered magnet body and larger than the RH diffusion source.
  • step S20 of FIG. 5 the RH diffusion process shown in step S20 of FIG. 5 is started.
  • This RH diffusion process is performed by heating both the RTB-based sintered magnet body 1 and the RH diffusion source 2 while rotating the diffusion processing unit 10 in the state shown in FIG. At this time, it is preferable that the diffusion processing unit 10 rotates in a horizontal state. If the separation unit is in the downward direction, the rotation is performed in a direction that prevents the first baffle plate from moving to the separation unit 20.
  • the shape of the RH diffusion source 2 is preferably a shape in which the contact point between the RTB-based sintered magnet body 1 and the RH diffusion source 2 moves quickly by the rotation of the diffusion processing unit 10. Specifically, it is preferable that a curved surface is formed on the surface of the RH diffusion source 2. Examples of a preferable shape of the RH diffusion source 2 are, for example, a spherical shape, an elliptical spherical shape, and a cylindrical shape.
  • the inside of the diffusion processing unit 10 may be connected to an exhaust device such as a pump. By the action of the exhaust device, the inside of the diffusion processing unit 10 can be depressurized or pressurized while being shielded from the atmosphere (sealed state).
  • An inert gas such as Ar can be introduced into the diffusion processing unit 10 from a gas cylinder (not shown).
  • the diffusion processing unit 10 is heated by a heater (not shown).
  • the RTB-based sintered magnet body 1 and the RH diffusion source 2 housed inside are heated by the heater.
  • the diffusion processing unit 10 is supported so as to be rotatable around the central axis, but can be rotated by a motor during heating by the heater.
  • the peripheral speed at the inner wall portion of the diffusion processing unit 10 is set to 0.01 m or more per second, for example. It is preferable to set it to 0.5 m or less per second so that the RTB-based sintered magnet bodies are vigorously brought into contact with each other by rotation and are not chipped.
  • the inside of the diffusion treatment unit 10 during the RH diffusion treatment is in an inert atmosphere.
  • the “inert atmosphere” in this specification includes a vacuum or an inert gas.
  • the “inert gas” is a rare gas such as argon (Ar), for example, but chemically reacts with the RTB-based sintered magnet body 1 and the RH diffusion source 2 within the processing temperature range. Any gas that does not react with gas can be included in the “inert gas”.
  • the atmospheric gas pressure inside the diffusion processing unit 10 is close to atmospheric pressure, for example, in the technique disclosed in Patent Document 1, the heavy rare earth element RH is transferred from the RH diffusion source 2 to the surface of the RTB-based sintered magnet body 1. It becomes difficult to be supplied to.
  • the supply amount of the heavy rare earth element RH can be increased. For this reason, it is sufficient if the atmospheric gas pressure of the diffusion processing unit 10 is equal to or lower than the atmospheric pressure.
  • the correlation between the degree of vacuum and the supply amount of heavy rare earth element RH is relatively small, and even if the degree of vacuum is further increased, the supply amount of heavy rare earth element RH is not greatly affected.
  • the supply amount of the heavy rare earth element RH can be adjusted by controlling the temperature of the RTB-based sintered magnet body.
  • the plurality of RTB-based sintered magnet bodies 1 and the RH diffusion source 2 charged into the diffusion processing unit 10 are heated to a temperature of 500 ° C. or more and 1000 ° C. or less, and for a predetermined time, Keep in the temperature range. At this time, in this embodiment, the diffusion processing unit 10 is rotated.
  • the temperature range of 500 ° C. or more and 1000 ° C. or less is a temperature at which the diffusion of the rare earth element can proceed inside the RTB-based sintered magnet body 1, and the RH diffusion source 2 is subjected to RTB-based sintering.
  • the heavy rare earth element RH diffuses into the RTB-based sintered magnet body 1 and increases its coercive force.
  • the reason why diffusion occurs in such a temperature range is considered to be that the RH diffusion source and the RTB-based sintered magnet body are close to or in contact with each other, and the distance between the two becomes sufficiently small.
  • the temperature and holding time of the RH diffusion treatment are the ratio of the amounts of the RTB-based sintered magnet body 1 and the RH diffusion source 2 charged during the RH diffusion treatment step, the RTB-based sintered magnet body. 1, composition of the RH diffusion source 2, shape, amount of heavy rare earth element RH (diffusion amount) supplied to the RTB-based sintered magnet body 1 by the RH diffusion treatment, and whether or not a stirring auxiliary member is input Determined in consideration of
  • the RTB system is used in order to rotate the diffusion processing unit in a state in which the RTB system sintered magnet body 1 and the RH diffusion source 2 are relatively movable and close to or in contact with each other.
  • the sintered magnet body 1 and the RH diffusion source 2 move continuously or intermittently.
  • the intended RH diffusion can be realized. That is, the RTB-based sintered magnet body 1 and the RH diffusion source 2 are not fixed in contact with each other for a long time by being fixed at a fixed position, but are continuously or intermittently connected to the RH diffusion source 2.
  • the contact portion with the RTB-based sintered magnet body 1 moves or separates.
  • the heavy rare earth element RH can be supplied from the RH diffusion source 2 to the RTB-based sintered magnet body 1.
  • the heavy rare earth element RH is obtained from the RH diffusion source 2. While being supplied to the surface of the RTB-based sintered magnet body 1, it can be diffused into the RTB-based sintered magnet body 1.
  • “loading the RTB-based sintered magnet body and the RH diffusion source so as to be relatively movable and close to or in contact with each other” means, as described above, the RH diffusion treatment step after the charging step.
  • the RTB-based sintered magnet body 1 and the RH diffusion source 2 move continuously or intermittently in the diffusion processing section, so that the RH diffusion source 2 and the RTB-based sintered magnet body 1 Means to be fixed at a certain place so as not to be constrained by contact or proximity for a long time (for example, at 1000 ° C. for 2 minutes or more). Therefore, in the present invention, as described in Patent Document 1, it is not necessary to arrange the RTB-based sintered magnet body 1 and the RH diffusion source 2 at predetermined positions.
  • step S30 in FIG. 5 is executed. Specifically, as shown in FIG. 4B, the RTB-based sintering in the diffusion processing unit 10 is performed by rotating the diffusion processing unit 10 with the separation unit 20 inclined downward. The magnet body 1 and the RH diffusion source 2 are moved to the separation unit 20. At this time, the first baffle plate 70 conveys the RH diffusion source 2 and the RTB-based sintered magnet body 1 to the separation unit 20, so that the inner wall of the diffusion processing unit 10 as shown in FIG. It connects to a part by welding etc., and follows the rotation of the diffusion process part 10.
  • FIG. 4B the RTB-based sintering in the diffusion processing unit 10 is performed by rotating the diffusion processing unit 10 with the separation unit 20 inclined downward. The magnet body 1 and the RH diffusion source 2 are moved to the separation unit 20. At this time, the first baffle plate 70 conveys the RH diffusion source 2 and the RTB-based sintered magnet body 1 to the separation unit 20, so that the inner wall of the diffusion processing unit 10 as shown in FIG. It connects
  • the baffle plate may be connected to a shaft extending from the insertion port or the like and rotated independently.
  • the rotation direction of the diffusion processing unit 10 is selected so that the RTB-based sintered magnet body 1 and the RH diffusion source 2 are moved to the separation unit 20 as the diffusion processing unit 10 rotates.
  • the separation unit 20 has a configuration capable of selectively discharging the RH diffusion source 2.
  • an opening is provided in the inner wall of the separation part 20, and the opening is formed larger than the RH diffusion source 2 and smaller than the RTB-based sintered magnet body 1.
  • the inner wall of the separation part may be, for example, a net made of a heat-resistant material or a metal plate provided with a plurality of openings.
  • the RH diffusion source 2 falls to the outside of the separation unit from the opening provided on the inner wall of the separation unit 20 as shown in FIG. 4C (step S40 in FIG. 5). .
  • the separation unit 20 rotates even after the RH diffusion source 2 falls. Since the size of the opening is set so that only the RTB-based sintered magnet body 1 remains on the inner wall portion of the separation unit 20, the RH diffusion source 2 of the separation unit 20 is rotated by the rotation of the separation unit 20. It is discharged from the inner wall portion to the outside of the separation portion 20.
  • the dropped RH diffusion source 2 is collected in a container through a valve (not shown).
  • the separation unit 20 is further returned to the horizontal position, and the bottom of the separation unit is vibrated to remove the RH diffusion source 2 remaining in the separation unit 20. You may make it fall to the outer side of the separation part 20 from an inner wall.
  • a net is installed as a separation unit on the end face of the diffusion processing unit 10, and only the RH diffusion source is accommodated in the separation unit. Good.
  • the size of the opening of the net is set so that the RTB-based sintered magnet body 1 remains, and when the diffusion treatment unit 10 is inclined to the side in contact with the separation unit, the opening of the net is RH.
  • the diffusion source 2 moves to the separation unit, and the RTB-based sintered magnet body 1 remains in the diffusion processing unit 10.
  • the RTB-based sintered magnet body 1 is additionally subjected to heat treatment for the purpose of more uniformly diffusing the diffused heavy rare earth element RH. For this reason, first, the RTB-based sintered magnet body 1 is returned from the separation unit 20 to the diffusion processing unit 10 again. Specifically, as shown in FIG. 4 (d), the first baffle plate 70 is moved in accordance with the rotation of the diffusion processing unit 10 while the separation unit 20 and the diffusion processing unit 10 are inclined downward. The rotation direction of the diffusion processing unit 10 is selected so that the TB sintered magnet body 1 is moved from the separation unit 20 to the diffusion processing unit 10. Thus, as shown in FIG. 4D, the RTB-based sintered magnet body 1 is moved to the diffusion processing unit 10 (step S50 in FIG. 5).
  • the RTB-based sintered magnet body 1 is not moved to the separation unit 20, so that the R- There is no need to return the TB sintered magnet body 1 from the separation unit 20 to the diffusion processing unit 10 again.
  • heat treatment is performed while rotating the diffusion processing section.
  • the heat treatment is performed at a temperature of, for example, 500 ° C. to 1000 ° C. (step S60 in FIG. 5).
  • This heat treatment does not cause further supply of the heavy rare earth element RH to the surface of the RTB-based sintered magnet body 1, but the heavy rare-earth element is present inside the RTB-based sintered magnet body 1.
  • RH diffusion occurs.
  • the heat treatment time is, for example, 10 minutes to 72 hours. Preferably it is 1 to 6 hours.
  • the RTB-based sintered magnet body 1 that has been subjected to the above heat treatment is slowly cooled to lower the temperature inside the furnace to room temperature, and then discharged from the inlet 15.
  • the RTB system sintered magnet body 1 and the RH diffusion source 2 are repeatedly brought close to and separated from each other, and the heavy rare earth element RH is supplied from the surface of the RTB system sintered magnet body 1. Since the separation unit for selectively separating the RH diffusion source 2 is provided after the RH diffusion treatment, the process from the RH diffusion treatment step to the heat treatment step can be performed efficiently and smoothly without reducing the residual magnetic flux density. The productivity of the RTB-based sintered magnet with improved coercive force is greatly improved.
  • a heavy rare earth substitution layer is formed in the main phase outer shell portion, so that the outer shell of the main phase crystal grains of the RTB-based sintered magnet can be obtained.
  • the heavy rare earth substitution layer is disposed not only in the region close to the surface of the RTB-based sintered magnet body 1 but also in the region deep from the surface of the RTB-based sintered magnet body 1. Since it can be formed in the shell, the coercive force H cJ can be improved.
  • the heavy rare earth substitution layer is sufficiently thin and the heavy rare earth element RH is hardly diffused inside the main phase. The density Br is hardly lowered.
  • FIG. 7 is a schematic diagram showing another configuration of the processing apparatus in the present embodiment.
  • the processing apparatus of FIG. 7 selectively selects the RH diffusion source from the diffusion processing unit 10 for performing the RH diffusion processing, the RH diffusion source moved from the diffusion processing unit 10 and the RTB-based sintered magnet body.
  • the separation unit 20 also has a function of sending only the RTB-based sintered magnet body after the RH diffusion treatment to the heat treatment unit 30.
  • the entire diffusion processing unit 10, separation unit 20, and heat treatment unit 30 can be integrally inclined.
  • the separation unit 20 is located between the diffusion processing unit 10 and the heat treatment unit 30, and connects the diffusion processing unit 10 and the heat treatment unit 30. Therefore, the RTB-based sintered magnet body is not exposed to the atmosphere until a series of steps of the RH diffusion treatment process, the RH diffusion source separation process, and the heat treatment process is completed. Further, in the RH diffusion source separation step performed between the RH diffusion treatment step and the heat treatment step, since the RH diffusion source is separated without human intervention, the separation step of the RH diffusion source can be performed without lowering the temperature. It becomes possible to do. As a result, productivity from the RH diffusion treatment process to the heat treatment process is improved.
  • the diffusion processing unit 10 is provided with an insertion port 15. From the inlet 15, the RTB-based sintered magnet body and the RH diffusion source before the RH diffusion treatment are introduced into the diffusion processing unit 10.
  • the heat treatment section 30 is provided with a discharge port 35, and the RTB-based sintered magnet body that has been subjected to the RH diffusion treatment and the heat treatment is taken out from the treatment device.
  • the diffusion processing unit 10 and the heat treatment unit 30 connected by the separation unit 20 are each constituted by a path pipe and are rotatably supported around a central axis (not shown).
  • a tilting mechanism 50 that tilts the diffusion processing unit 10, the separation unit 20, and the heat treatment unit 30 is provided, and the diffusion processing unit 10, the separation unit 20, and the heat treatment unit 30 are operated by the tilting mechanism 50.
  • the diffusion processing unit 10, the separation unit 20, and the heat treatment unit 30 can be rotated around the central axis by a motor (not shown).
  • the diffusion processing unit 10, the separation unit 20, and the heat treatment unit 30 can rotate in any of the horizontal state and the inclined state, and the direction and speed of rotation can be arbitrarily set.
  • tilt mechanism 50 has been described, the same effect can be obtained even if the entire diffusion processing unit 10, separation unit 20, and heat treatment unit 30 are tilted at a predetermined angle.
  • FIG. 8 is a diagram schematically showing a cross-sectional configuration of the processing apparatus of FIG.
  • the diffusion processing unit 10 has a space in which the RH diffusion source 2 and the RTB-based sintered magnet body 1 are housed, and rotates in an inclined state, thereby RH diffusion.
  • the source 2 and the RTB-based sintered magnet body 1 can be sent to the separation unit 20.
  • the heat treatment section 30 has a space for accommodating the RTB-based sintered magnet body 1, and also rotates in an inclined state so that the RTB-based sintered magnet body 1 is removed from the discharge port 35. Can be sent to.
  • the separation unit 20 also rotates in an inclined state, so that only the RH diffusion source 2 can be efficiently discharged out of the RH diffusion source 2 and the RTB-based sintered magnet body 1.
  • the material of the diffusion processing part 10 has heat resistance that can withstand temperatures of about 500 to 1000 ° C., and at least the inner wall part is made of a material that does not easily react with the RTB-based sintered magnet body 1 and the RH diffusion source 2. Preferably it is formed.
  • the inner wall portion of the diffusion processing unit 10 can be formed of, for example, Nb, Mo, W, Ta metal or an alloy containing at least one of them. Further, an Fe—Cr—Al alloy or an Fe—Cr—Co alloy may be used for the inner wall portion of the diffusion treatment part 10. The same applies to the separation unit 20 and the heat treatment unit 30.
  • a spiral first baffle plate 70 is provided inside the diffusion processing unit 10.
  • the first baffle plate 70 can send the internal RH diffusion source 2 and the RTB-based sintered magnet body 1 to the separation unit 20 when the diffusion processing unit 10 rotates in the first direction.
  • the RH diffusion source 2 and the RTB-based sintered magnet body 1 can be held inside the diffusion processing unit 10.
  • a spiral second baffle plate 80 shown in FIG. 3B is provided inside the heat treatment section 30. The second baffle plate 80 is disposed so that the helical twist direction is opposite to the first baffle plate 70.
  • the second baffle plate 80 holds the RTB-based sintered magnet body 1 in the separation part 20 in the separation part 20 when the heat treatment part 30 rotates in the first direction.
  • the RTB-based sintered magnet body 1 in the separation unit 20 can be delivered into the heat treatment unit 30.
  • the first baffle plate 70 and the second baffle plate 80 are usually fixed to the inner wall portion.
  • the distance between the inner wall portion 14 and the first baffle plate 70 and the second baffle plate 80 is set so that the RH diffusion source and the RTB-based sintered magnet body to be introduced do not leak.
  • FIGS. 7 and 8 Next, the operation of another processing apparatus shown in FIGS. 7 and 8 will be described in detail with reference to FIGS. 9 (a) to (d) and FIG.
  • step S110 of FIG. 10 the RTB-based sintered magnet body 1 and the RH diffusion source 2 are loaded into the diffusion processing unit 10 shown in FIG. 9A. At this time, the RTB-based sintered magnet body 1 and the RH diffusion source 2 are mixed in advance and filled in a feeder (not shown). Here, the size of the RH diffusion source 2 is adjusted to be smaller than that of the RTB-based sintered magnet body 1.
  • the RTB-based sintered magnet body 1 and the RH diffusion source 2 are added to the diffusion processing unit 10 while the diffusion processing unit 10, the separation unit 20, and the heat treatment unit 30 remain horizontal. May be charged using a screw conveyor.
  • step S120 of FIG. 10 the RH diffusion process shown in step S120 of FIG. 10 is started.
  • both the RTB-based sintered magnet body 1 and the RH diffusion source 2 are stirred by rotating the diffusion processing unit 10 in the state shown in FIG. 9A.
  • RH diffusion treatment is performed while heating.
  • step S130 of FIG. 10 is executed. Specifically, as shown in FIG. 9B, the diffusion processing unit 10 is rotated in an inclined state, whereby the RTB-based sintered magnet body 1 and the RH diffusion source 2 are separated by the separation unit 20. Move to.
  • the first baffle plate 70 is rotated by the RTB-based sintered magnet as the diffusion processing unit 10 rotates.
  • the body 1 and the RH diffusion source 2 can be moved to the separation unit 20.
  • An opening is provided in the inner wall portion of the separation unit 20, and as shown in FIG. 9C, the RH diffusion source 2 falls from the opening provided in the inner wall portion of the separation unit 20 to the outside of the separation unit ( In step S140 in FIG. 10, the RH diffusion source 2 can be selectively discharged outside the separation unit.
  • the size of the openings is set to be larger than the size of the RH diffusion source 2 and smaller than the size of the RTB-based sintered magnet body 1.
  • the diffusion processing unit 10 is rotated in an inclined state, whereby the RTB-based sintered magnet body 1 and the RH diffusion source 2 are moved to the separation unit 20, and the separation unit 20 performs R ⁇
  • the TB sintered magnet body 1 and the RH diffusion source 2 are separated, and only the RH diffusion source 2 is discharged to the outside of the separation portion.
  • the inner wall portion may have a mesh shape or a structure in which a plurality of openings are provided in a metal plate.
  • the stirring assisting member is discharged from the separation part together with the RH diffusion source to the outside of the RTB-based sintered magnet body and the separation part, or together with the RH diffusion source, the separation part. Whether it is not discharged to the outside is arbitrarily determined according to the shape, weight, etc. of the RTB-based sintered magnet body.
  • the separation unit 20 is returned to the horizontal position, and the separation unit 20 is vibrated to screen out the RH diffusion source 2.
  • a mechanism may be further provided.
  • the RTB-based sintered magnet body 1 is heat-treated for the purpose of more uniformly diffusing the diffused heavy rare earth element RH. For this reason, first, the RTB-based sintered magnet body 1 is moved from the separation unit 20 to the heat treatment unit 30. Specifically, as shown in FIG. 9D, the heat treatment unit 30 is rotated in an appropriate direction while the separation unit 20 and the heat treatment unit 30 are inclined. At this time, the second baffle plate 80 is installed so as to move the RTB-based sintered magnet body 1 to the heat treatment unit 30 as the heat treatment unit 30 rotates (step S150 in FIG. 10). In this way, the RTB-based sintered magnet body 1 is moved to the heat treatment section 30 as shown in FIG.
  • the heat treatment is performed at a temperature of, for example, 500 ° C. to 1000 ° C. (step S160 in FIG. 10).
  • This heat treatment does not cause further supply of the heavy rare earth element RH to the surface of the RTB-based sintered magnet body 1, but the heavy rare-earth element is present inside the RTB-based sintered magnet body 1.
  • RH diffusion occurs.
  • the heat treatment time is 10 minutes to 72 hours. Preferably it is 1 to 6 hours.
  • the RTB-based sintered magnet body 1 that has been heat-treated is slowly cooled to lower the temperature inside the furnace to room temperature, and then discharged from the discharge port 35.
  • the separation part for selectively separating the RH diffusion source is provided, the process from the RH diffusion treatment process to the heat treatment process can be performed efficiently and smoothly, and the coercive force is improved without reducing the residual magnetic flux density. The productivity of the RTB-based sintered magnet is greatly improved.
  • the first baffle plate 70 is provided in the diffusion processing unit 10, but the first baffle plate 70 may be disposed on the separation unit 20 side, You may arrange
  • the second baffle plate 80 may be disposed on the separation unit 20 side, or may be disposed across both the separation unit 20 and the heat treatment unit 30.
  • first baffle plate 70 and the second baffle plate 80 are arranged so that the twist directions are opposite to each other, when the state changes from the state of FIG. 9B to the state of FIG. 9C, R ⁇ It is possible to prevent the TB-based sintered magnet body 1 from moving to the heat treatment section 30. If the second baffle plate 80 is arranged to move the first baffle plate 70 in parallel, the RTB-based sintered magnet body 1 passes through the separation portion and reaches the heat treatment portion 30. Will reach.
  • this embodiment also eliminates the time for placing the RTB-based sintered magnet body 1 and the RH diffusion source 2 in a predetermined position in the RH diffusion processing apparatus.
  • the present invention can be applied to the production of an RTB-based sintered magnet having a high residual magnetic flux density and a high coercive force.
  • a magnet is suitable for various motors such as a motor for mounting on a hybrid vehicle exposed to high temperatures, home appliances, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

 本発明の処理装置は、R-T-B系焼結磁石体1と重希土類元素RH(DyおよびTbの少なくとも一方からなる)の金属または合金からなるRH拡散源2とを加熱しながら回転する拡散処理部10と、拡散処理部10から受け取ったR-T-B系焼結磁石体1およびRH拡散源2からRH拡散源2を選択的に分離する分離部20と、重希土類元素RHが拡散されたR-T-B系焼結磁石体1に対して、RH拡散源2が取り除かれた状態で熱処理を行う熱処理部30とを備える。

Description

処理装置
 本発明は、重希土類元素RH(DyおよびTbの少なくとも一方からなる)をR-T-B系焼結磁石の内部に拡散するための処理装置に関している。
 R214B型化合物を主相とするR-T-B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車搭載用モータ等の各種モータや家電製品等に使用されている。
 R-T-B系焼結磁石は、高温域で保磁力が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温域でも高い保磁力を維持することが要求されている。
 R214B型化合物相を重希土類元素RH(Dy、Tbの少なくとも一方からなる)で置換すると、R-T-B系焼結磁石の保磁力が向上することが知られている。高温域でも高い保磁力を得るためには、R-T-B系焼結磁石中に重希土類元素RHを多く添加することが有効であると考えられてきた。
 しかし、R-T-B系焼結磁石において、軽希土類元素RL(Nd,Prの少なくとも一方からなる)を重希土類元素RHで置換すると、保磁力が向上する一方、残留磁束密度が低下してしまうという問題がある。また、重希土類元素RHは希少資源であるため、その使用量を削減することが求められている。
 そこで、近年、残留磁束密度を低下させず、より少ない重希土類元素RHによって焼結磁石の保磁力を向上させることが検討されている。本出願人は、既に特許文献1において、R-T-B系焼結磁石体表面にDy等の重希土類元素RHを供給しつつ、該表面から重希土類元素RHをR-T-B系焼結磁石体の内部に拡散させる方法(蒸着拡散)を開示している。特許文献1に開示されている方法では、高融点金属材料からなる拡散処理装置の内部において、R-T-B系焼結磁石体とRHバルク体とが所定間隔をあけて対向配置される。拡散処理装置は、複数のR-T-B系焼結磁石体を保持する部材と、RHバルク体を保持する部材とを備えている。このような装置を用いる方法では、拡散処理装置内にRHバルク体を配置する工程、保持部材と網を載せる工程、網の上にR-T-B系焼結磁石体を配置する工程、更にその上に保持部材と網を載せる工程、網の上に上方のRHバルク体を配置する工程、拡散処理装置を密閉して蒸着拡散を行う工程という一連の作業が必要となる。
 特許文献2は、R-T-B系金属間化合物磁性材料の磁気特性を向上させることを目的として、低沸点のYb金属粉末とR-T-B系焼結磁石成形体とを耐熱密封容器内に封入して加熱することを開示している。特許文献2の方法では、Yb金属の被膜を焼結磁石成形体の表面に均一に堆積し、この被膜から焼結磁石の内部に希土類元素を拡散させる(特許文献2の実施例5)。
再公表2007/102391号公報 特開2004-296973号公報
 特許文献1の方法では、拡散処理装置内において、R-T-B系焼結磁石体と重希土類元素RHからなるRHバルク体とを離間して配置する必要がある。このため、配置のための工程に手間がかかり、量産性に劣るという問題がある。また、DyやTbの供給が昇華によってなされるため、R-T-B系焼結磁石体への拡散量を増加して、より高い保磁力を得るには長時間を要する。
 一方、特許文献2の開示によると、Yb、Eu、Smのように飽和蒸気圧の高い希土類金属であれば、焼結磁石体への被膜の形成と被膜からの拡散とを同一温度範囲(例えば800~850℃)の熱処理によって実行することが可能である。しかし、DyやTbのように蒸気圧の低い希土類元素をR-T-B系焼結磁石体表面へ被膜・堆積するためには、高周波加熱用コイルを用いた誘導加熱により希土類金属を選択的に高温に加熱することが必要になる。このようにDyやTbをR-T-B系焼結磁石体よりも高い温度に加熱する場合は、DyおよびTbをR-T-B系焼結磁石体と離間させることが必要になる。特に、特許文献2の技術思想及び方法によれば、R-T-B系焼結磁石体の表面にDyやTbの被膜が厚く(例えば数十μm以上)形成されるため、R-T-B系焼結磁石体の表面近傍において主相結晶粒の内部にDyやTbが拡散してしまうため、残留磁束密度Brの低下が発生することになる。
 本発明は、上記事情に鑑みてなされたものであり、その目的は、残留磁束密度を低下させることなくDyやTbの重希土類元素RHをR-T-B系焼結磁石体の表面から内部に拡散させるための量産に適した処理装置を提供することにある。
 本発明の処理装置は、重希土類元素RH(DyおよびTbの少なくとも一方からなる)の金属または合金からなるRH拡散源およびR-T-B系焼結磁石体を加熱しながら回転する拡散処理部と、前記拡散処理部に隣接し、前記拡散処理部から送出した前記RH拡散源および前記R-T-B系焼結磁石体から前記RH拡散源を選択的に分離するため回転する分離部と、前記拡散処理部および前記分離部を傾ける傾斜機構とを備える。
 好ましい実施形態において、前記分離部は、前記RH拡散源を外部に排出する複数の開口部を有しており、前記開口部の大きさは、R-T-B系焼結磁石体よりも小さい。
 好ましい実施形態において、前記分離部は、回転させられながら、前記R-T-B系焼結磁石体を前記拡散処理部に送出し、前記拡散処理部は、前記分離部から移動してきた前記R-T-B系焼結磁石体に対する熱処理を行う。
 好ましい実施形態において、前記拡散処理部は、第1内壁部を収容する第1外壁部を有し、前記分離部は、第2内壁部を収容する第2外壁部を有し、少なくとも前記第1内壁部は、円筒形で、Mo、W、Nb、Taの少なくとも1種からなる金属または合金からなる。
 さらに好ましい実施形態において、前記内壁部と前記外壁部との間にはシート状の緩衝部材が配置されている。
 好ましい実施形態において、前記拡散処理部の内壁部には、螺旋状の邪魔板が設けられており、前記拡散処理部の邪魔板は、第1方向に回転するとき、前記拡散処理部内の前記RH拡散源および前記R-T-B系焼結磁石体を前記分離部に送出し、かつ、前記第1方向とは反対の第2方向に回転するとき、前記拡散処理部内の前記RH拡散源および前記R-T-B系焼結磁石体を前記拡散処理部内に保持する。
 本発明の他の処理装置は、重希土類元素RH(DyおよびTbの少なくとも一方からなる)の金属または合金からなるRH拡散源およびR-T-B系焼結磁石体を加熱しながら回転する拡散処理部と、前記拡散処理部に隣接し、前記拡散処理部から送出した前記RH拡散源および前記R-T-B系焼結磁石体から前記RH拡散源を選択的に分離するため回転する分離部と、前記分離部に隣接し、前記拡散処理部で重希土類元素RHが拡散された前記R-T-B系焼結磁石体に対して、前記RH拡散源が取り除かれた状態で回転しながら熱処理を行う熱処理部と、少なくとも前記拡散処理部、前記分離部および前記熱処理部を傾ける傾斜機構とを備える。
 好ましい実施形態において、前記分離部は、前記拡散処理部から受け取った前記RH拡散源および前記R-T-B系焼結磁石体を、前記熱処理部に移動させながら、前記RH拡散源を外部に排出する複数の開口部を有している。
 好ましい実施形態において、前記拡散処理部は、前記RH拡散源および前記R-T-B系焼結磁石体を収容する円筒形状の第1内壁部を有し、前記駆動部によって回転させられながら、前記RH拡散源および前記R-T-B系焼結磁石体を前記分離部に送出し、前記分離部は、前記RH拡散源および前記R-T-B系焼結磁石体を収容し、開口部が設けられた円筒形状の第2内壁部を有し、前記駆動部によって回転させられながら、前記RH拡散源を前記開口部から外部に排出し、かつ、前記R-T-B系焼結磁石体を前記熱処理部に送出し、前記熱処理部は、前記R-T-B系焼結磁石体を収容する円筒形状の第3内壁部を有し、前記駆動部によって回転させられながら、前記R-T-B系焼結磁石体を排出口に送出する。
 好ましい実施形態において、前記拡散処理部および前記熱処理部の内壁部には、螺旋状の邪魔板が設けられており、前記拡散処理部の邪魔板は、前記熱処理部の邪魔板とは螺旋方向が反対向きとなるように保持されている。
 好ましい実施形態において、前記拡散処理部は、前記第1内壁部を収容する第1外壁部を有し、前記分離部は、前記第2内壁部を収容する第2外壁部を有し、前記熱処理部は、前記第3内壁部を収容する第3外壁部を有し、少なくとも前記第1内壁部および前記第3内壁部は、円筒形で、Mo、W、Nb、Taの少なくとも1種からなる金属または合金からなる。
 さらに好ましい実施形態において、前記内壁部と前記外壁部との間にはシート状の緩衝部材が配置されている。
 本発明によれば、重希土類元素RH(DyおよびTbの少なくとも一方からなる)の金属または合金からなるRH拡散源およびR-T-B系焼結磁石体を加熱しながら回転する拡散処理部と、RH拡散源を選択的に分離する分離部を備えているため、残留磁束密度を低下させることなく保磁力の向上した焼結磁石をRH拡散処理工程から熱処理工程まで効率よくスムーズに作製することができる。
本発明による処理装置の実施形態の構成を示す図である。 図1の実施形態における処理装置の断面構成を模式的に示す図である。 (a)は螺旋状の邪魔板70の構成例を示す斜視図である。(b)は邪魔板80の構成例を示す斜視図である。 (a)から(d)は、図1の実施形態における処理装置の動作を示す図である。 図1の装置を用いて行うR-T-B系焼結磁石の製造方法を説明するためのフローチャートである。 (a)は、拡散処理部10の長軸方向に垂直な断面構成の好ましい形態を示す図であり、(b)は、内壁部の好ましい形態を示す断面図である。 本発明による処理装置の別の実施形態の構成を示す図である。 図7の実施形態における処理装置の断面構成を模式的に示す図である。 (a)から(d)は、図7の実施形態における処理装置の動作を示す図である。 図7の装置を用いて行うR-T-B系焼結磁石の製造方法を説明するためのフローチャートである。
 本発明の処理装置は、RH拡散源およびR-T-B系焼結磁石体を加熱し、かつ攪拌するため回転することができる拡散処理部を備えている。ここで、RH拡散源は、重希土類元素RH(DyおよびTbの少なくとも一方からなる)の金属または合金からなる。RH拡散源の好ましい形態などについては、後述する。
 拡散処理部内では、最初に複数のRH拡散源と複数のR-T-B系焼結磁石体とが混在する状態で加熱が行われ、RH拡散源からR-T-B系焼結磁石体に重希土類元素RHが供給される。拡散処理部内に装入されたRH拡散源およびR-T-B系焼結磁石体は、保持部材などによって固定されておらず、相対的に移動可能である。また、これらのRH拡散源およびR-T-B系焼結磁石体は、拡散処理部の回転により、拡散処理部内で移動し、相互に近接または接触することができる。
 RH拡散源およびR-T-B系焼結磁石体は、拡散処理部の回転により、近接、離間しながら、加熱手段により、好ましくは500℃以上1000℃以下の温度範囲に保持される。拡散処理部が回転することにより、R-T-B系焼結磁石体とRH拡散源とは、拡散処理部内で連続的にまたは断続的に移動するため、R-T-B系焼結磁石体とRH拡散源との接触部の位置は変化し、R-T-B系焼結磁石体とRH拡散源とは、近接・離間を繰り返す。こうした運動を加熱状態で継続するとき、重希土類元素RHがRH拡散源からR-T-B系焼結磁石体に供給されるとともに、R-T-B系焼結磁石体の内部に拡散する(RH拡散処理工程)。
 本発明の処理装置は、RH拡散処理工程が終了した後、拡散処理部から移動してきたRH拡散源およびR-T-B系焼結磁石体のうちのRH拡散源を選択的にR-T-B系焼結磁石体から分離する分離部を備えている。
 上述の拡散処理部は、RH拡散源が分離された後、R-T-B系焼結磁石体のみの熱処理に用いることも可能である。
 本発明の処理装置は、拡散処理部で重希土類元素RHの供給を受け、重希土類元素RHを拡散したR-T-B系焼結磁石体に対して追加的な熱処理を行うための熱処理部を備えていてもよい。熱処理部で行う追加的な熱処理とは、RH拡散源が取り除かれた状態で実行される熱処理である。この熱処理は、拡散処理部でRH拡散源からR-T-B系焼結磁石体に供給された重希土類元素RHを、R-T-B系焼結磁石体の内部に更に奥深く拡散させる。
 好ましい実施形態において、分離部は、拡散処理部から送出されたRH拡散源およびR-T-B系焼結磁石体を熱処理部に移動させながら、RH拡散源を選択的に外部に排出する開口部を有している。この分離部におけるRH拡散源の排出により、次の熱処理工程にスムーズに移行することが可能になる。
 本発明の拡散処理部、分離部、熱処理部は、好ましい形態において、傾斜した状態で回転しながらR-T-B系焼結磁石体、RH拡散源等の処理対象物を加熱することができる。
 本発明では、R-T-B系焼結磁石体、RH拡散源等の処理対象物を、大気に暴露することなく、順次、拡散処理部から分離部へ、分離部から熱処理部へと移動させることができる。
 (実施形態)
 以下、図面を参照しながら、本発明の処理装置の好ましい実施形態を説明する。本発明は、この実施形態に限定されるものではない。
 図1は、本実施形態における処理装置の構成を示す概略図である。図示されている処理装置は、RH拡散処理と必要に応じて熱処理とを行うための拡散処理部10と、拡散処理部10から移動してきたRH拡散源2およびR-T-B系焼結磁石体1からRH拡散源2を選択的に分離し、必要に応じてRH拡散処理後のR-T-B系焼結磁石体1のみを拡散処理部10に送出する分離部20とを備えている。本実施形態では、分離部20が拡散処理部10と連結している。拡散処理部10と分離部20は印籠継ぎ手で接続されている。R-T-B系焼結磁石体1は、RH拡散処理工程、RH拡散源の分離工程、および熱処理工程が順次行われる間、大気に暴露されることがない。また、RH拡散処理工程と熱処理工程との間に行われるRH拡散源の分離工程において、RH拡散源は人手を介することなく分離されるため、処理温度を下げることなく、RH拡散源2の分離工程を行うことが可能になる。その結果、RH拡散処理工程から熱処理工程までの生産性が向上する。ここで、図1では拡散処理部10と分離部20が直接連結されているが、路管を介して接続してもよい。
 拡散処理部10には投入口15が設けられている。投入口15からは、RH拡散処理前のR-T-B系焼結磁石体1とRH拡散源2とが拡散処理部10の内部に投入される。RH拡散処理工程、分離工程、熱処理工程が終了したR-T-B系焼結磁石体1は投入口15から処理装置外に取り出される。
 分離部20と連結された拡散処理部10は、図1では路管から構成され、回転可能に支持されている。
 拡散処理部10および分離部20の少なくとも一方には、拡散処理部10および分離部20を傾斜させる傾斜機構50が設けられている。傾斜機構50の働きにより、拡散処理部10および分離部20は、水平または傾斜状態をとることができる。本実施形態における拡散処理部10および分離部20は、それらの全体が一体で傾斜することができる。拡散処理部10および分離部20は、不図示のモータによって回転することができる。拡散処理部10および分離部20は、水平状態および傾斜状態のいずれの場合においても回転することが可能であり、回転の方向および速度は、任意に設定され得る。
 次に、図2を参照する。図2は、図1の処理装置の断面構成を模式的に示す図である。
 図2に示すように、拡散処理部10は、内部にRH拡散源2およびR-T-B系焼結磁石体1を収容する空間を有し、分離部20を下方に傾斜した状態で回転することにより、RH拡散源2およびR-T-B系焼結磁石体1を分離部20に送出することができる。また、逆方向に傾けることで分離部20から拡散処理部10へR-T-B系焼結磁石体1を送出することも可能である。分離部20も、傾斜した状態で回転することにより、RH拡散源2およびR-T-B系焼結磁石体1の中からRH拡散源2のみを効率的に外部に排出することができる。
 拡散処理部10の材料は、500~1000℃程度の温度に耐える耐熱性を有し、少なくとも内壁部は、R-T-B系焼結磁石体1およびRH拡散源2と反応しにくい材料から形成されることが好ましい。拡散処理部10の内壁部は、例えば、Nb、Mo、W、Taの金属またはそれらの少なくとも1種を含む合金から形成され得る。また、Fe-Cr-Al系合金、Fe-Cr-Co系合金を用いてもよい。このことは、後述する分離部20でも同様である。
 図6(a)は、拡散処理部10の軸方向に垂直な断面構成の一例を示している。この例における拡散処理部10は、上記の金属または合金からなる円筒状の内壁部14と、この内壁部14を収容する外壁部12とを備えている。外壁部12は、例えばステンレスから形成される。ここで、拡散処理部10の内壁部14は、少なくとも分離部20の内壁部14と接する部位において、分離部20の内壁部14と同じ径になるように設定し、接続しているので、拡散処理部10と分離部20との間でのR-T-B系焼結磁石体1およびRH拡散源2の移動がスムーズにできる。さらに、RH拡散源2およびR-T-B系焼結磁石体1を分離部20へ搬送するために内壁部14内部に図3(a)および(b)に示すような邪魔板70、80を設置する。邪魔板は通常内壁部に接続し、拡散処理部の回転に追随するようにするが、内壁部に接続せず独自に回転するようにしてもよい。
 本実施形態では、RH拡散処理動作の開始前後で900℃近い温度変化が生じ得るため、外壁部12と内壁部14とを、それぞれ、異なる熱膨張係数を有する材料から形成する場合は、外壁部12と内壁部14を密着して固定すると、熱膨張または熱収縮によって外壁部12と内壁部14とが剥がれてしまったり、内壁部14が裂けたりする恐れがある。外壁部12と内壁部14とを、それぞれ、異なる熱膨張係数を有する材料から形成する場合は、外壁部12と内壁部14とが衝突しないように、外壁部12と内壁部14とに隙間を設け、ボルトにて固定することがさらに好ましい。さらに外壁部12と内壁部14との間には、シート状の緩衝部材が配置されていることが好ましい。この緩衝部材は、耐熱性を有する例えばカーボン、セラミックス材料または耐熱性を有する金属材料から好適に形成され、例えば耐熱フエルトなどの不織布から形成されていても良い。
 図6(b)は、内壁部14の他の構成例を示す図である。図6(b)に示す内壁部14は、金属プレートを円筒状に丸め、その一端14aと他端14bとが常温時に重なりあうように設計されている。内壁部14を構成する金属プレートの一端14aと他端14bとは固定されておらず、熱膨張および熱収縮に応じて重なりの程度が変化し得る。このため、900℃程度の温度変化が生じて、内壁部14の外径が大きく変化しても、外壁部12に衝突することが効果的に防止される。外壁部12と内壁部14との間には、さらに前述の緩衝部材を配置してもよい。
 拡散処理部10の外壁部12および内壁部14の軸方向に垂直な断面形状は、必ずしも円に限定されず、楕円または多角形、あるいはその他の形状であってもよい。また、拡散処理部10の回転によるR-T-B系焼結磁石体1とRH拡散源2との攪拌を促進するため、拡散処理部10の内壁部14に突起を設けてもよい。
 再び図2を参照する。
 本実施形態では、拡散処理部10の内部に螺旋状の第1邪魔板70が設けられている。第1邪魔板70は、例えば図3(a)に示すような構成を有している。第1邪魔板70は、拡散処理部10が第1方向(図1の左側から処理装置を見たとき時計回り方向)に回転するとき、内部のRH拡散源2およびR-T-B系焼結磁石体1を分離部20に送出することができるが、第1方向とは反対の第2方向に回転するときは、RH拡散源2およびR-T-B系焼結磁石体1を内部に保持することができる。第1邪魔板の直径は内壁部14の内径より小さくしてもよい。その場合内壁部14と第1邪魔板70との間にできるクリアランスは、投入するRH拡散源2およびR-T-B系焼結磁石体1が漏れ落ちないように設定する。
 また、図2の例では、第1邪魔板70は拡散処理部10に設けられているが、第1邪魔板70は、分離部20側に配置されていても良いし、拡散処理部10と分離部20の両方にまたがって配置されていても良い。
 以下、図4(a)~(d)、図5を参照しながら、本実施形態における処理装置の動作を詳しく説明する。
 以下、本発明の好ましい実施形態で使用するR-T-B系焼結磁石体1、RH拡散源2の例を説明する。まず、本発明では、重希土類元素RHの拡散の対象とするR-T-B系焼結磁石体を準備する。本発明で準備するR-T-B系焼結磁石体は公知の組成からなる。このR-T-B系焼結磁石体は、例えば以下の組成からなる。希土類元素R:12~17原子%、B(Bの一部はCで置換されていてもよい):5~8原子%、添加元素M(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0~2原子%、T(Feを主とする遷移金属であって、Coを含んでもよい)および不可避不純物:残部
 ここで、希土類元素Rは、主として軽希土類元素RLから選択される少なくとも1種の元素であるが、重希土類元素RHを含有していてもよい。なお、重希土類元素RHは、DyおよびTbの少なくとも一方を含むことが好ましい。
 ただし、R-T-B系焼結磁石体の段階で多量の重希土類元素RHを添加したのでは、本発明の効果を充分に奏することはできないため、R-T-B系焼結磁石体に対して相対的に少ない量の重希土類元素RHが添加され得る。
 上記組成のR-T-B系焼結磁石体は、公知の製造方法によって製造される。
 [RH拡散処理]
 まず、図5のステップS10に示すように、R-T-B系焼結磁石体1およびRH拡散源2を図4(a)に示す拡散処理部10の内部にR-T-B系焼結磁石体1とRH拡散源2とを相対的に移動可能かつ近接または接触可能に装入する。このとき、R-T-B系焼結磁石体1とRH拡散源2とはあらかじめ混合されて不図示の供給機により充填されている。拡散処理部10および分離部20は図4(a)に示すように内壁部を水平にしてもよいし、傾斜していてもよい。
 RH拡散源2は、DyおよびTbの少なくとも1種からなる重希土類元素RHまたはそれらを含有する合金である。RH拡散源2が合金からなる場合、重希土類元素RHを30質量%以上含有する合金であるのが好ましい。RH拡散源2の大きさは、R-T-B系焼結磁石体1よりも小さい。
 さらに、図では示していないが、R-T-B系焼結磁石体1とRH拡散源2との接触を促進させることを目的に攪拌補助部材を用いても良い。攪拌補助部材はRH拡散源がR-T-B系焼結磁石体とより多く接触させる役割をする。また、R-T-B系焼結磁石体同士の直接接触による欠けを防止する効果もある。攪拌補助部材はジルコニア、窒化硼素、窒化ケイ素、炭化ケイ素またはこれらの混合物からなるセラミックス材料が好ましい。また、Mo、W、Nb、Ta、Hf、Zrを含む族の元素、または、これらの混合物からなる金属材料も好ましい。これらの材料は、RH拡散源と反応しにくい材料であるので、R-T-B系焼結磁石体1とRH拡散源2との分離を防止する効果が特に高い。また、攪拌補助部材はR-T-B系焼結磁石体より小さく、RH拡散源より大きいことが好ましい。
 次に、図5のステップS20に示すRH拡散処理を開始する。このRH拡散処理は、図4(a)に示す状態で拡散処理部10を回転しながらR-T-B系焼結磁石体1およびRH拡散源2の両方を加熱して行う。このとき、拡散処理部10は、水平な状態で回転することが好ましい。仮に分離部を下方にしている場合の回転は、第1邪魔板により分離部20への移動を阻止する方向で行う。
 RH拡散源2の形状は、拡散処理部10の回転によってR-T-B系焼結磁石体1とRH拡散源2との間の接触点が速やかに移動する形状であることが好ましい。具体的には、RH拡散源2の表面には曲面が形成されていることが好ましい。RH拡散源2の好ましい形状の例は、例えば、球状、楕円球状、円柱状である。
 拡散処理部10の内部は、ポンプなどの排気装置に連結されていてもよい。排気装置の働きにより、拡散処理部10の内部は、大気から遮蔽された状態(密閉状態)で減圧または加圧され得る。拡散処理部10の内部には、不図示のガスボンベからArなどの不活性ガスが導入され得る。
 拡散処理部10は、不図示のヒータによって加熱される。ヒータにより、内部に収納されたR-T-B系焼結磁石体1およびRH拡散源2が加熱される。拡散処理部10は、中心軸の回りに回転可能に支持されているが、ヒータによる加熱中もモータによって回転することができる。拡散処理部10の内壁部における周速度は、例えば毎秒0.01m以上に設定される。回転によりR-T-B系焼結磁石体同士が激しく接触して欠けないよう、毎秒0.5m以下に設定するのが好ましい。
 RH拡散処理時における拡散処理部10の内部は不活性雰囲気中であることが好ましい。本明細書における「不活性雰囲気」とは、真空、または不活性ガスを含むものとする。また、「不活性ガス」は、例えばアルゴン(Ar)などの希ガスであるが、R-T-B系焼結磁石体1およびRH拡散源2との間で処理温度の範囲内で化学的に反応しないガスであれば、「不活性ガス」に含まれ得る。拡散処理部10の内部における雰囲気ガス圧力が大気圧に近いと、例えば特許文献1に示された技術ではRH拡散源2から重希土類元素RHがR-T-B系焼結磁石体1の表面に供給されにくくなる。しかし、本発明の好ましい実施形態において、RH拡散源2とR-T-B系焼結磁石体1とが近接または接触しているため、重希土類元素RHの供給量を大きくできる。このため、拡散処理部10の雰囲気ガス圧力は大気圧以下であれば充分である。また、真空度と重希土類元素RHの供給量との相関は比較的小さく、真空度を更に高めても、重希土類元素RHの供給量は大きくは影響されない。本願では重希土類元素RHの供給量は、R-T-B系焼結磁石体の温度を管理することにより調整できる。
 本実施形態では、まず、拡散処理部10に投入した複数のR-T-B系焼結磁石体1およびRH拡散源2を、500℃以上1000℃以下の温度に加熱し、所定時間、その温度範囲に保持する。このとき、本実施形態では、拡散処理部10を回転させる。
 500℃以上1000℃以下という温度範囲は、R-T-B系焼結磁石体1内部において、希土類元素の拡散が進行し得る温度であり、RH拡散源2をR-T-B系焼結磁石体1に接触させながら加熱処理を行ったときに、重希土類元素RHはR-T-B系焼結磁石体1の内部に拡散し、その保磁力を増加させる。このような温度範囲で拡散が生じる理由は、RH拡散源とR-T-B系焼結磁石体とが近接または接触し、両者の距離が充分に小さくなるためであると考えられる。
 RH拡散処理の温度、保持時間は、RH拡散処理工程をする際のR-T-B系焼結磁石体1とRH拡散源2の投入量の比率、R-T-B系焼結磁石体1の形状、RH拡散源2の組成、形状、RH拡散処理によってR-T-B系焼結磁石体1に供給される重希土類元素RHの量(拡散量)、攪拌補助部材の投入の有無等を考慮して決められる。
 本実施形態では、R-T-B系焼結磁石体1とRH拡散源2とを相対的に移動可能かつ近接または接触可能な状態で拡散処理部を回転させるため、R-T-B系焼結磁石体1とRH拡散源2とが連続または断続的に移動する。これにより、目的とするRH拡散を実現することができる。すなわち、R-T-B系焼結磁石体1とRH拡散源2とは、一定箇所に固定して長時間接触または近接した状態とならず、連続的にまたは断続的にRH拡散源2とR-T-B系焼結磁石体1との接触部が移動または離間する。しかも、この間、RH拡散源2からR-T-B系焼結磁石体1に重希土類元素RHを供給することができる。
 こうして、重希土類元素RHを含有するRH拡散源2とR-T-B系焼結磁石体1とを連続または断続的に移動させながら加熱することにより、RH拡散源2から重希土類元素RHをR-T-B系焼結磁石体1の表面に供給しつつ、R-T-B系焼結磁石体1の内部に拡散させることができる。
 なお、「R-T-B系焼結磁石体とRH拡散源とを相対的に移動可能かつ近接または接触可能に装入する」とは、前記の通り、装入工程後のRH拡散処理工程においてR-T-B系焼結磁石体1とRH拡散源2とが拡散処理部内で連続または断続的に移動することで、RH拡散源2とR-T-B系焼結磁石体1とが一定箇所に固定して長時間(例えば、1000℃で2分以上)接触または近接した状態に拘束されないようにすることを意味する。従って、本発明では、特許文献1に記載するようにR-T-B系焼結磁石体1とRH拡散源2を所定位置に配置する必要はない。
 [分離]
 次に、図5のステップS30を実行する。具体的には、図4(b)に示すように、分離部20を下方に傾斜させた状態で拡散処理部10を回転させることにより、拡散処理部10内のR-T-B系焼結磁石体1およびRH拡散源2を分離部20に移動させる。このとき、第1邪魔板70は、RH拡散源2およびR-T-B系焼結磁石体1を分離部20へ搬送するため、図3(a)に示すように拡散処理部10の内壁部に溶接等により接続し、拡散処理部10の回転に追随するようにする。また、邪魔板が内壁部と接続していなくとも、邪魔板は投入口等から延ばしたシャフトに接続し独自に回転するようにしてもよい。拡散処理部10の回転に伴ってR-T-B系焼結磁石体1およびRH拡散源2を分離部20に移動させるよう拡散処理部10の回転方向を選択する。
 分離部20は、RH拡散源2を選択的に排出することのできる構成を有している。好ましい実施形態において、分離部20の内壁部に開口部が設けられおり、その開口部はRH拡散源2よりも大きくかつR-T-B系焼結磁石体1よりも小さく形成されている。
 分離部の内壁は、例として耐熱性を有する材料からなる網、または、複数の開口部が設けられた金属のプレートが挙げられる。
 分離部20を傾斜回転させることにより、RH拡散源2は、図4(c)に示すように、分離部20の内壁に設けた開口部から分離部外側に落下する(図5のステップS40)。分離部20はRH拡散源2が落下した後も回転する。分離部20の内壁部はR-T-B系焼結磁石体1のみが残るように開口部の大きさを設定しているので、分離部20の回転によりRH拡散源2は分離部20の内壁部から分離部20の外側に排出される。落下されたRH拡散源2は不図示のバルブを通じてコンテナに回収される。
 ここで、RH拡散源2が分離部20に残ってしまった場合は、さらに分離部20を水平に戻し、分離部の底部を振動させて分離部20に残るRH拡散源2を分離部20の内壁から分離部20の外側へ落下させてもよい。
 また、別の実施形態として、図1、図2に記載の分離部20に代えて拡散処理部10の端面にネットを分離部として設置し、RH拡散源のみ分離部に収容するようにしてもよい。このときネットの目開きの大きさはR-T-B系焼結磁石体1が残る大きさにし、拡散処理部10を分離部と接している側に傾斜させたときネットの開口部からRH拡散源2が分離部に移動し、R-T-B系焼結磁石体1は拡散処理部10に残る。
 [熱処理]
 RH拡散処理工程および分離工程後に、拡散された重希土類元素RHをより均一に拡散する目的で、R-T-B系焼結磁石体1に対する熱処理を追加的に行う。このため、まず、R-T-B系焼結磁石体1を分離部20から再び拡散処理部10に戻す。具体的には、図4(d)に示すように、分離部20および拡散処理部10を下方に傾斜させた状態で、第1邪魔板70は、拡散処理部10の回転に伴ってR-T-B系焼結磁石体1を分離部20から拡散処理部10に移動させるよう拡散処理部10の回転方向を選択する。こうして、図4(d)に示すようにR-T-B系焼結磁石体1を拡散処理部10に移動させる(図5のステップS50)。
 なお、前述した分離部の別の実施形態で拡散処理部10の端面にネットを設置した場合は、分離部20にR-T-B系焼結磁石体1が移動していないので、R-T-B系焼結磁石体1を分離部20から再び拡散処理部10に戻す動作は不要となる。
 R-T-B系焼結磁石体1を拡散処理部10に戻した後、拡散処理部を回転させながら熱処理を行う。熱処理は、例えば500℃から1000℃の温度で実行される(図5のステップS60)。この熱処理では、R-T-B系焼結磁石体1の表面に対して重希土類元素RHの更なる供給は生じないが、R-T-B系焼結磁石体1の内部において重希土類元素RHの拡散が生じる。このため、R-T-B系焼結磁石体1の表面側から奥深くに重希土類元素RHが拡散し、磁石全体として保磁力を高めることが可能になる。熱処理の時間は、例えば10分から72時間である。好ましくは1時間から6時間である。その後、前述の熱処理が完了したR-T-B系焼結磁石体1は炉内を常温まで下げる徐冷を行った後、投入口15から排出される。
 R-T-B系焼結磁石体1とRH拡散源2とを長時間近接した状態で熱処理を進行させると、重希土類元素RHが過大に供給され、R-T-B系焼結磁石体1の表面にRH被膜を生成してしまうという問題が生じてしまう場合がある。本実施形態では、RH拡散源2を取り除いた状態で熱処理を行うため、このような問題を回避することができる。
 本実施形態では、R-T-B系焼結磁石体1とRH拡散源2とを近接、離間を繰り返してR-T-B系焼結磁石体1の表面から重希土類元素RHを供給するRH拡散処理後、RH拡散源2を選択的に分離する分離部を備えているため、RH拡散処理工程から熱処理工程までを効率よくスムーズに実行することができ、残留磁束密度を低下させることなく保磁力の向上したR-T-B系焼結磁石の生産性が大きく向上する。
 重希土類元素RHを主相結晶粒の外側から拡散させることにより、主相外殻部に重希土類置換層を形成することで、R-T-B系焼結磁石の主相結晶粒の外殻部における結晶磁気異方性が高められると、主相全体の保磁力HcJが効果的に向上する。本発明では、R-T-B系焼結磁石体1の表面に近い領域だけでなく、R-T-B系焼結磁石体1の表面から奥深い領域においても重希土類置換層を主相外殻部に形成することができるため、保磁力HcJを向上させることが可能になる一方、重希土類置換層は十分に薄く、主相内部には重希土類元素RHがほとんど拡散されないため、残留磁束密度Brをほとんど低下させない。
 また、以上説明してきたように、本実施形態によれば、R-T-B系焼結磁石体1とRH拡散源2とをRH拡散処理装置内の所定位置に並べる載置の時間が不要となる。
 図7は、本実施形態における処理装置の別の構成を示す概略図である。図7の処理装置は、RH拡散処理を行うための拡散処理部10と、拡散処理部10から移動してきたRH拡散源およびR-T-B系焼結磁石体からRH拡散源を選択的に分離する分離部20と、RH拡散源が取り除かれた状態でR-T-B系焼結磁石体の熱処理を行う熱処理部30とを備えている。分離部20は、RH拡散処理後のR-T-B系焼結磁石体のみを熱処理部30に送出する機能をも有している。この例では、拡散処理部10、分離部20、および熱処理部30の全体が一体的に傾斜することが可能である。
 図7に示す処理装置では、分離部20が拡散処理部10と熱処理部30との間に位置し、拡散処理部10と熱処理部30とを連結している。このため、R-T-B系焼結磁石体は、RH拡散処理工程、RH拡散源の分離工程、熱処理工程の一連の工程が完了するまで大気に暴露されることがない。また、RH拡散処理工程と熱処理工程との間に行われるRH拡散源の分離工程において、RH拡散源は人手を介することなく分離されるため、温度を下げることなく、RH拡散源の分離工程を行うことが可能になる。その結果、RH拡散処理工程から熱処理工程までの生産性が向上する。
 拡散処理部10には投入口15が設けられている。投入口15からは、RH拡散処理前のR-T-B系焼結磁石体とRH拡散源とが拡散処理部10の内部に投入される。一方、熱処理部30には排出口35が設けられており、排出口35から、RH拡散処理および熱処理が終了したR-T-B系焼結磁石体が処理装置外に取り出される。
 分離部20によって連結された拡散処理部10および熱処理部30は、それぞれ、路管から構成され、中心軸(不図示)の周りに回転可能に支持されている。
 より詳細には、拡散処理部10、分離部20、および熱処理部30を傾斜させる傾斜機構50が設けられており、傾斜機構50の働きにより、拡散処理部10、分離部20、および熱処理部30は、水平または傾斜状態をとることができる。拡散処理部10、分離部20、および熱処理部30は、不図示のモータによって中心軸の回りを回転することができる。拡散処理部10、分離部20、および熱処理部30は、水平状態および傾斜状態のいずれの場合においても回転することが可能であり、回転の方向および速度は、任意に設定され得る。
 傾斜機構50について説明をしたが、あらかじめ拡散処理部10、分離部20、および熱処理部30の全体が所定角度に傾いていても、同様の効果を得ることができる。
 次に、図8を参照する。図8は、図7の処理装置の断面構成を模式的に示す図である。
 図8に示すように、拡散処理部10は、内部にRH拡散源2およびR-T-B系焼結磁石体1を収容する空間を有し、傾斜した状態で回転することにより、RH拡散源2およびR-T-B系焼結磁石体1を分離部20に送出することができる。熱処理部30は、R-T-B系焼結磁石体1を収容する空間を有し、これも傾斜した状態で回転することにより、R-T-B系焼結磁石体1を排出口35に送出することができる。分離部20も、傾斜した状態で回転することにより、RH拡散源2およびR-T-B系焼結磁石体1の中からRH拡散源2のみを効率的に外部に排出することができる。
 拡散処理部10の材料は、500~1000℃程度の温度に耐える耐熱性を有し、少なくとも内壁部は、R-T-B系焼結磁石体1およびRH拡散源2と反応しにくい材料から形成されることが好ましい。拡散処理部10の内壁部は、例えば、Nb、Mo、W、Taの金属またはそれらの少なくとも1種を含む合金から形成され得る。また、拡散処理部10の内壁部は、Fe-Cr-Al系合金、Fe-Cr-Co系合金を用いてもよい。このことは、分離部20、熱処理部30でも同様である。
 図8でも、拡散処理部10の内部に螺旋状の第1邪魔板70が設けられている。第1邪魔板70は、拡散処理部10が第1方向に回転するとき、内部のRH拡散源2およびR-T-B系焼結磁石体1を分離部20に送出することができるが、第1方向とは反対の第2方向に回転するときは、RH拡散源2およびR-T-B系焼結磁石体1を拡散処理部10の内部に保持することができる。同様に、熱処理部30の内部には、図3(b)に示す螺旋状の第2邪魔板80が設けられている。第2邪魔板80は、第1邪魔板70に対してらせんねじれ方向が反対向きになるよう配置される。その結果、第2邪魔板80は、熱処理部30が第1方向に回転するとき、分離部20内のR-T-B系焼結磁石体1を分離部20内に保持するが、第2方向に回転するときは、分離部20内のR-T-B系焼結磁石体1を熱処理部30の内部に送出することができる。
 第1邪魔板70、第2邪魔板80は通常内壁部に固定されている。内壁部14と第1邪魔板70、第2邪魔板80との間の間隔は、投入するRH拡散源、R-T-B系焼結磁石体が漏れ落ちないように設定する。
 次に、図9(a)~(d)、図10を参照しながら、図7、8に示した別の処理装置の動作を詳しく説明する。
 [RH拡散処理]
 まず、図10のステップS110に示すように、R-T-B系焼結磁石体1およびRH拡散源2を図9(a)に示す拡散処理部10の内部に装入する。このとき、R-T-B系焼結磁石体1とRH拡散源2とはあらかじめ混合し不図示の供給機に充填している。ここで、RH拡散源2の大きさは、R-T-B系焼結磁石体1よりも小さくなるよう調整する。
 不図示の供給機を振動または投入口を傾斜させて拡散処理部10に装入する。ここで拡散処理部10を回転させておくとR-T-B系焼結磁石体1とRH拡散源2とを拡散処理部10にスムーズに装入することができる。
 また、図9(a)のように拡散処理部10、分離部20、および熱処理部30が水平状態のまま、拡散処理部10にR-T-B系焼結磁石体1およびRH拡散源2を装入するためスクリューコンベアを用いて装入してもよい。
 次に、図10のステップS120に示すRH拡散処理を開始する。このRH拡散処理は、図9(a)に示す状態で拡散処理部10を回転させることで、装入されたR-T-B系焼結磁石体1およびRH拡散源2の両方を攪拌しつつ加熱しRH拡散処理を行う。このとき、拡散処理部10は、水平な状態で回転することが好ましい。
 RH拡散処理での他の実施条件は図4(a)を参照して説明した条件と同じである。
 [分離]
 次に、図10のステップS130を実行する。具体的には、図9(b)に示すように、拡散処理部10を傾斜させた状態で回転させ、それによってR-T-B系焼結磁石体1およびRH拡散源2を分離部20に移動させる。
 このとき、拡散処理部10の回転方向をRH拡散処理時とは逆方向に回転させることにより、第1邪魔板70は、拡散処理部10の回転に伴ってR-T-B系焼結磁石体1およびRH拡散源2を分離部20に移動させることができる。
 分離部20の内壁部には開口部が設けられており、図9(c)に示すように、RH拡散源2が分離部20の内壁部に設けた開口部から分離部外側に落下し(図10のステップS140)、分離部の外側にRH拡散源2を選択的に排出できるようになっている。
 ここで開口部の目の大きさはRH拡散源2の大きさより大きく、R-T-B系焼結磁石体1の大きさよりも小さくなるように設定されている。
 この設定により、拡散処理部10を傾斜させた状態で回転させ、それによってR-T-B系焼結磁石体1およびRH拡散源2を分離部20に移動させ、分離部20にてR-T-B系焼結磁石体1とRH拡散源2とが分離され、RH拡散源2のみが分離部の外側に排出される。好ましい実施形態において、内壁部は、網状、または、金属のプレートに複数の開口部が設けられた構成がよい。
 ここで、攪拌補助部材を用いる場合、攪拌補助部材が分離部からRH拡散源とともにR-T-B系焼結磁石体と分離部の外側に排出されるか、それともRH拡散源とともに分離部の外側に排出されずにいるかは、R-T-B系焼結磁石体の形状、重量等に応じて任意に決定する。
 さらに、R-T-B系焼結磁石体1とRH拡散源2とが分離部20に移動した後、分離部20を水平に戻し、分離部20を振動させてRH拡散源2をふるい落とす機構をさらに備えていてもよい。
[熱処理]
 RH拡散処理工程後に、拡散された重希土類元素RHをより均一に拡散する目的で、R-T-B系焼結磁石体1に対する熱処理を行う。このため、まず、R-T-B系焼結磁石体1を分離部20から熱処理部30に移動させる。具体的には、図9(d)に示すように、分離部20および熱処理部30を傾斜させた状態で、熱処理部30を適切な方向に回転させる。このとき、第2邪魔板80は、熱処理部30の回転に伴ってR-T-B系焼結磁石体1を熱処理部30に移動させるように設置する(図10のステップS150)。こうして、図9(d)に示すようにR-T-B系焼結磁石体1を熱処理部30に移動させる。
 熱処理は、例えば500℃から1000℃の温度で実行される(図10のステップS160)。この熱処理では、R-T-B系焼結磁石体1の表面に対して重希土類元素RHの更なる供給は生じないが、R-T-B系焼結磁石体1の内部において重希土類元素RHの拡散が生じる。このため、R-T-B系焼結磁石体1の表面側から奥深くに重希土類元素RHが拡散し、磁石全体として保磁力を高めることが可能になる。熱処理の時間は、10分から72時間である。好ましくは1時間から6時間である。熱処理が完了したR-T-B系焼結磁石体1は炉内を常温まで下げる徐冷を行った後、排出口35から排出される。
 本実施形態では、RH拡散源2を取り除いた状態で熱処理を行うため、R-T-B系焼結磁石体1の表面にRH被膜を生成してしまう問題を回避することができる。
 本実施形態でも、R-T-B系焼結磁石体とRH拡散源とを近接、離間を繰り返してR-T-B系焼結磁石体表面から重希土類元素RHを供給するRH拡散処理後、RH拡散源を選択的に分離する分離部を備えているため、RH拡散処理工程から熱処理工程までを効率よくスムーズに実行することができ、残留磁束密度を低下させることなく保磁力の向上したR-T-B系焼結磁石の生産性が大きく向上する。
 また、図9の例では、第1邪魔板70は拡散処理部10に設けられているが、第1邪魔板70は、分離部20側に配置されていても良いし、拡散処理部10と分離部20の両方にまたがって配置されていても良い。同様に、第2邪魔板80も、分離部20側に配置されていても良いし、分離部20と熱処理部30の両方にまたがって配置されていても良い。
 第1邪魔板70および第2邪魔板80が相互にねじれ方向が逆となるように配置されているため、図9(b)の状態から図9(c)の状態に変化するとき、R-T-B系焼結磁石体1が熱処理部30に移動することを阻止できる。もしも、第2邪魔板80が第1邪魔板70を平行に移動させた配置をとっているならば、R-T-B系焼結磁石体1は、分離部を通り抜けて熱処理部30にまで到達してしまう。
 以上、説明してきたように、本実施形態によってもR-T-B系焼結磁石体1とRH拡散源2とをRH拡散処理装置内の所定位置に並べる載置の時間が不要となる。
 本発明は、高残留磁束密度、高保磁力のR-T-B系焼結磁石の作製に適用できる。このような磁石は、高温下に晒されるハイブリッド車搭載用モータ等の各種モータや家電製品等に好適である。
  1  R-T-B系焼結磁石体
  2  RH拡散源
 10  拡散処理部
 14  内壁部
 15  投入口
 20  分離部
 30  熱処理部
 35  排出口
 50  傾斜機構
 70  第1邪魔板
 80  第2邪魔板

Claims (12)

  1.  重希土類元素RH(DyおよびTbの少なくとも一方からなる)の金属または合金からなるRH拡散源およびR-T-B系焼結磁石体を加熱しながら回転する拡散処理部と、
     前記拡散処理部に隣接し、前記拡散処理部から送出した前記RH拡散源および前記R-T-B系焼結磁石体から前記RH拡散源を選択的に分離するために回転する分離部と、
     前記拡散処理部および前記分離部を傾ける傾斜機構と、
    を備える処理装置。
  2.  前記分離部は、前記RH拡散源を分離部外側に排出する複数の開口部を有しており、前記開口部の大きさは、R-T-B系焼結磁石体よりも小さい請求項1に記載の処理装置。
  3.  前記分離部は、回転させられながら、前記R-T-B系焼結磁石体を前記拡散処理部に送出し、
     前記拡散処理部は、前記分離部から移動してきた前記R-T-B系焼結磁石体に対する熱処理を行う請求項1または2に記載の処理装置。
  4.  前記拡散処理部は、第1内壁部を収容する第1外壁部を有し、
     前記分離部は、第2内壁部を収容する第2外壁部を有し、
     少なくとも前記第1内壁部は、円筒形で、Mo、W、Nb、Taの少なくとも1種からなる金属または合金からなる請求項1から3のいずれかに記載の処理装置。
  5.  前記第1内壁部と前記第1外壁部との間または前記第2内壁部と前記第2外壁部との間にはシート状の緩衝部材が配置されている、請求項4に記載の処理装置。
  6.  前記拡散処理部の内壁部には、螺旋状の邪魔板が設けられており、
     前記拡散処理部の邪魔板は、第1方向に回転するとき、前記拡散処理部内の前記RH拡散源および前記R-T-B系焼結磁石体を前記分離部に送出し、かつ、前記第1方向とは反対の第2方向に回転するとき、前記拡散処理部内の前記RH拡散源および前記R-T-B系焼結磁石体を前記拡散処理部内に保持する、請求項1から4のいずれかに記載の処理装置。
  7.  重希土類元素RH(DyおよびTbの少なくとも一方からなる)の金属または合金からなるRH拡散源およびR-T-B系焼結磁石体を加熱しながら回転する拡散処理部と、
     前記拡散処理部に隣接し、前記拡散処理部から送出した前記RH拡散源および前記R-T-B系焼結磁石体から前記RH拡散源を選択的に分離するため回転する分離部と、
     前記分離部に隣接し、前記拡散処理部で重希土類元素RHが拡散された前記R-T-B系焼結磁石体に対して、前記RH拡散源が取り除かれた状態で回転しながら熱処理を行う熱処理部と、
     少なくとも前記拡散処理部、前記分離部および前記熱処理部を傾ける傾斜機構と、
    を備える処理装置。
  8.  前記分離部は、前記拡散処理部から送出された前記RH拡散源および前記R-T-B系焼結磁石体を、前記熱処理部に移動させながら、前記RH拡散源を分離部外側に排出する複数の開口部を有している、請求項7に記載の処理装置。
  9.  前記拡散処理部は、前記RH拡散源および前記R-T-B系焼結磁石体を収容する円筒形状の第1内壁部を有し、回転させられながら、前記RH拡散源および前記R-T-B系焼結磁石体を前記分離部に送出し、
     前記分離部は、前記RH拡散源および前記R-T-B系焼結磁石体を収容し、開口部が設けられた円筒形状の第2内壁部を有し、回転させられながら、前記RH拡散源を前記開口部から外部に排出し、かつ、前記R-T-B系焼結磁石体を前記熱処理部に送出し、
     前記熱処理部は、前記R-T-B系焼結磁石体を収容する円筒形状の第3内壁部を有し、前記駆動部によって回転させられながら、前記R-T-B系焼結磁石体を排出口に送出する請求項7または8に記載の処理装置。
  10.  前記拡散処理部および前記熱処理部の内壁部には、螺旋状の邪魔板が設けられており、
     前記拡散処理部の邪魔板は、前記熱処理部の邪魔板とは螺旋方向が反対向きとなるように保持されている、請求項7から9のいずれかに記載の処理装置。
  11.  前記拡散処理部は、前記第1内壁部を収容する第1外壁部を有し、
     前記分離部は、前記第2内壁部を収容する第2外壁部を有し、
     前記熱処理部は、前記第3内壁部を収容する第3外壁部を有し、
     少なくとも前記第1内壁部および前記第3内壁部は、円筒形で、Mo、W、Nb、Taの少なくとも1種からなる金属または合金からなる請求項7から10のいずれかに記載の処理装置。
  12.  前記内壁部と前記外壁部との間にはシート状の緩衝部材が配置されている、請求項7から11のいずれかに記載の処理装置。
PCT/JP2011/065804 2010-07-13 2011-07-11 処理装置 WO2012008416A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/809,198 US9324494B2 (en) 2010-07-13 2011-07-11 Treatment device
JP2012524545A JP5853952B2 (ja) 2010-07-13 2011-07-11 処理装置
CN201180033847.4A CN103003899B (zh) 2010-07-13 2011-07-11 处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010158363 2010-07-13
JP2010-158363 2010-07-13

Publications (1)

Publication Number Publication Date
WO2012008416A1 true WO2012008416A1 (ja) 2012-01-19

Family

ID=45469414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065804 WO2012008416A1 (ja) 2010-07-13 2011-07-11 処理装置

Country Status (4)

Country Link
US (1) US9324494B2 (ja)
JP (1) JP5853952B2 (ja)
CN (1) CN103003899B (ja)
WO (1) WO2012008416A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013108830A1 (ja) * 2012-01-19 2015-05-11 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2016189398A (ja) * 2015-03-30 2016-11-04 日立金属株式会社 拡散処理装置およびそれを用いたr−t−b系焼結磁石の製造方法
WO2017033861A1 (ja) * 2015-08-24 2017-03-02 日立金属株式会社 拡散処理装置およびそれを用いたr-t-b系焼結磁石の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815981B (zh) * 2011-05-12 2017-06-30 株式会社三德 合金片制造装置及使用其的稀土类磁铁原料用合金片的制造方法
CN105674730B (zh) * 2015-12-31 2017-12-12 张英华 铁矿烧结与筛选一体机
CN106298219B (zh) * 2016-08-17 2017-09-29 宁波永久磁业有限公司 一种制备r‑t‑b稀土永磁体的方法及装置
CN108597840B (zh) * 2018-04-04 2020-07-03 北京工业大学 一种纳米颗粒的表面扩散方法及其装置
CN108922763B (zh) * 2018-06-08 2021-01-05 深圳市瑞达美磁业有限公司 一种提高烧结磁体磁性能的方法及制备得到的磁体
CN108922764B (zh) * 2018-06-08 2021-06-04 深圳市瑞达美磁业有限公司 一种辐射取向烧结磁环的处理方法
CN113345708B (zh) * 2021-06-18 2023-02-17 安徽大地熊新材料股份有限公司 热处理设备及钕铁硼磁体的扩散方法
CN113593800B (zh) 2021-07-20 2023-01-10 烟台正海磁性材料股份有限公司 一种高性能烧结钕铁硼磁体及其制备方法
CN114682775B (zh) * 2022-06-01 2022-08-02 成都大学 一种用于合金粉末加工的热处理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138053A (ja) * 1991-11-13 1993-06-01 Takuma Co Ltd 湿灰用破砕乾燥装置
JP2004296973A (ja) * 2003-03-28 2004-10-21 Kenichi Machida 金属蒸気収着による高性能希土類磁石の製造
WO2007102391A1 (ja) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
JP2009194262A (ja) * 2008-02-17 2009-08-27 Osaka Univ 希土類磁石の製造方法
WO2011007758A1 (ja) * 2009-07-15 2011-01-20 日立金属株式会社 R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2039062A (en) * 1930-08-14 1936-04-28 American Lurgi Corp Process for the performance of chemical reactions, such as roasting, calcining, or the like
US4025297A (en) * 1975-09-22 1977-05-24 Sunbeam Equipment Corporation Rotary retort furnace
US4443186A (en) * 1982-04-14 1984-04-17 The United States Of America As Represented By The United States Department Of Energy Solar heated rotary kiln
US4728352A (en) * 1986-10-02 1988-03-01 Ppg Industries, Inc. Glass batch feed arrangement with directional adjustability
GB2229800B (en) * 1989-03-28 1993-08-04 Stein Atkinson Strody Ltd Scrap recovery apparatus
JPH0478473A (ja) 1990-07-18 1992-03-12 Robo Denshi Kenkyusho:Kk 選別装置
JPH06221765A (ja) 1993-01-28 1994-08-12 Murata Mfg Co Ltd セラミック焼成炉
JPH10300356A (ja) 1997-04-23 1998-11-13 Takasago Ind Co Ltd 外熱式ロータリーキルン
JP2007102391A (ja) * 2005-10-03 2007-04-19 Nec Engineering Ltd オーダー管理システム
CN101331566B (zh) * 2006-03-03 2013-12-25 日立金属株式会社 R-Fe-B系稀土类烧结磁铁及其制造方法
JP5598465B2 (ja) * 2009-03-31 2014-10-01 日立金属株式会社 R−t−b−m系焼結磁石用合金及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138053A (ja) * 1991-11-13 1993-06-01 Takuma Co Ltd 湿灰用破砕乾燥装置
JP2004296973A (ja) * 2003-03-28 2004-10-21 Kenichi Machida 金属蒸気収着による高性能希土類磁石の製造
WO2007102391A1 (ja) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
JP2009194262A (ja) * 2008-02-17 2009-08-27 Osaka Univ 希土類磁石の製造方法
WO2011007758A1 (ja) * 2009-07-15 2011-01-20 日立金属株式会社 R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013108830A1 (ja) * 2012-01-19 2015-05-11 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2016189398A (ja) * 2015-03-30 2016-11-04 日立金属株式会社 拡散処理装置およびそれを用いたr−t−b系焼結磁石の製造方法
WO2017033861A1 (ja) * 2015-08-24 2017-03-02 日立金属株式会社 拡散処理装置およびそれを用いたr-t-b系焼結磁石の製造方法
JPWO2017033861A1 (ja) * 2015-08-24 2018-06-07 日立金属株式会社 拡散処理装置およびそれを用いたr−t−b系焼結磁石の製造方法
US10639720B2 (en) 2015-08-24 2020-05-05 Hitachi Metals, Ltd. Diffusion treatment device and method for manufacturing R-T-B system sintered magnet using same

Also Published As

Publication number Publication date
US20130112141A1 (en) 2013-05-09
CN103003899B (zh) 2016-08-03
CN103003899A (zh) 2013-03-27
JPWO2012008416A1 (ja) 2013-09-09
US9324494B2 (en) 2016-04-26
JP5853952B2 (ja) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5853952B2 (ja) 処理装置
TWI427648B (zh) Production method of permanent magnet and permanent magnet
KR101373266B1 (ko) 진공 증기 처리 장치
KR101823425B1 (ko) R-t-b계 소결 자석의 제조 방법
US9837193B2 (en) R-T-B sintered magnet
CN101563737B (zh) 永磁铁及永磁铁的制造方法
CN106024364B (zh) R‑t‑b类烧结磁体的制造方法
CN101563739A (zh) 永磁铁及永磁铁的制造方法
JP6086293B2 (ja) R−t−b系焼結磁石の製造方法
JP2012156247A (ja) R−t−b系焼結磁石の製造方法
JP5818137B2 (ja) R−t−b系焼結磁石の製造方法
JP6432418B2 (ja) 拡散処理装置およびそれを用いたr−t−b系焼結磁石の製造方法
JP5854304B2 (ja) R−t−b系焼結磁石の製造方法
JP5887705B2 (ja) R−t−b系焼結磁石の製造方法及び製造装置
JP5742012B2 (ja) 蒸着拡散処理用ケース及びr−t−b系焼結磁石の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524545

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13809198

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806746

Country of ref document: EP

Kind code of ref document: A1