WO2012005556A2 - 금속산화물 또는 금속간화합물 함유 탄소나노섬유, 그 제조방법 및 이를 이용한 리튬이차전지 - Google Patents

금속산화물 또는 금속간화합물 함유 탄소나노섬유, 그 제조방법 및 이를 이용한 리튬이차전지 Download PDF

Info

Publication number
WO2012005556A2
WO2012005556A2 PCT/KR2011/005041 KR2011005041W WO2012005556A2 WO 2012005556 A2 WO2012005556 A2 WO 2012005556A2 KR 2011005041 W KR2011005041 W KR 2011005041W WO 2012005556 A2 WO2012005556 A2 WO 2012005556A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanofibers
copper
tin
containing carbon
prepared
Prior art date
Application number
PCT/KR2011/005041
Other languages
English (en)
French (fr)
Other versions
WO2012005556A3 (ko
Inventor
이완진
정홍련
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to US13/809,155 priority Critical patent/US20130126794A1/en
Publication of WO2012005556A2 publication Critical patent/WO2012005556A2/ko
Publication of WO2012005556A3 publication Critical patent/WO2012005556A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Definitions

  • the present invention relates to carbon nanofibers, a method for manufacturing the same, and an application thereof, and more particularly, to a carbon nanofiber containing a metal oxide or an intermetallic compound, a method for manufacturing the same, and a lithium secondary battery using the same.
  • tin (Sn) is a representative cathode material that forms an alloy with lithium (Li) ions, alloying (LixSn (x ⁇ 4.4))-dealloying reaction of Sn and Li ions during charge and discharge Due to the very high theoretical capacity of 994mAh / g has been actively studied recently.
  • the electrode material due to the volume change occurring during alloying (LixSn (x ⁇ 4.4))-dealing of Li ions, the electrode material itself is easily broken or its electrical conductivity is rapidly decreased. There is a limit to the representation.
  • Tin oxide also exhibits high theoretical capacities of 875 mAh / g (SnO) and 783 mAh / g (SnO 2 ), but it is difficult to expect excellent capacity and cycle characteristics due to volume changes occurring in Sn.
  • SnO and SnO 2 react mainly in the following two stages upon insertion of Li ions.
  • Li ions are inserted into SnO and SnO 2 so that Li 2 O is produced as in (1) or (1-1), respectively.
  • Li 2 O generated in step (1) has been reported to play a role in mitigating the volume expansion generated during the alloy reaction of Li ions generated in the next step, but the formation of Li 2 O in the first cycle Very high irreversible capacity.
  • Li x Sn formed during the insertion of Li ions in step (2) is the same as the reaction generated when using Sn alone, and the volume change due to the insertion-deinsertion of Li ions is cycle characteristic. Leads to a marked reduction in
  • tin oxide is made into porous structure or amorphous or thin film, and other surfactant-mediated method, sol-gel method, inverse micro- Attempts have been made to nanosize using reverse micro-emulsion and spray pyrolysis techniques.
  • the above method is also inherently limited due to the low capacity and cycle characteristics that are far below theoretical capacity.
  • step (1) Li ions are inserted into Ni 3 Sn 4 to form 4Li 4.4 Sn with the separation of Ni, and in step (2), Li ions are separated again so that the activation process by the charge / discharge reaction is reversible.
  • the total theoretical capacity from the above reaction is 725 mAh / g.
  • the inert metal is produced to show good cycle characteristics compared to pure Sn, but the expansion and contraction of the charge and discharge process results in a fundamental volume expansion phenomenon. It is difficult.
  • Efforts have been made to manufacture nano-composite intermetallic electrodes and include spray pyrolysis, thin film, melt-spinning and ball-milling methods.
  • these methods are also inherently limited due to their low capacity and cycle characteristics that are far below theoretical capacity.
  • Sn 2 Fe, Sn 2 FeC, Cu 6 Sn 5 , Ni x Sn, and SnSb prepared by adding Fe, Ni, Ca, Co, and Cu to Sn are homogeneous nano-sized materials due to different atomic radii and melting points. The manufacture of is very difficult.
  • the method of making the intermetallic compound is mainly a calcination method, a mechanical alloying method, a solvent thermal method, etc., but it is still difficult to easily prepare the intermetallic compound. It does not implement.
  • the present invention was completed by recognizing the high capacity and excellent cycle characteristics compared to phosphorus graphite.
  • an aspect of the present invention provides a method of manufacturing carbon nanofibers in which tin oxide or copper oxide is dispersed in nano size as a metal oxide.
  • the method for producing a metal oxide-containing carbon nanofiber may include preparing a fiber precursor composition by adding a tin precursor or a copper precursor to a carbon fiber precursor material; Spinning the fiber precursor composition to produce fibers; And heat treating the fibers.
  • another aspect of the present invention provides a method of manufacturing carbon nanofibers in which an intermetallic compound in which two or more metals are bonded is dispersed in a nano size.
  • the intermetallic compound-containing carbon nanofiber manufacturing method includes the steps of preparing a fiber precursor composition by adding two or more metal precursors to a carbon fiber precursor material; Spinning the fiber precursor composition to produce fibers; And heat treating the fibers.
  • another aspect of the present invention is a lithium secondary battery electrode material using a metal oxide or intermetallic compound-containing carbon nanofibers prepared by the above-described methods, and a composite fiber web made of such carbon nanofibers.
  • the present invention it is possible to easily prepare a nano-sized metal oxide or intermetallic compound dispersed in carbon nanofibers, and to control the content and size of the metal oxide or intermetallic compound and the diameter of the fiber as appropriate.
  • the metal oxide-containing carbon nanofiber according to the present invention when used as a negative electrode of a lithium secondary battery, its discharge capacity after 100 cycles is higher than that of graphite, which is a commercially available negative electrode material, and has a high initial capacity for 100 cycles. More than 90% exhibits the characteristics maintained.
  • the carbon nanofibers containing the intermetallic compound according to the present invention show excellent initial specific capacity and excellent cycle characteristics when used as a negative electrode of a lithium secondary battery.
  • the metal oxide or intermetallic compound-containing carbon nanofiber according to the present invention is expected to be widely applied as an electrode material of a lithium secondary battery, a catalyst, and an electrode material of a solar cell.
  • Figure 1a is a scanning micrograph of the tin oxide containing carbon nanofibers (SnO x -PANPVP-700 °C) prepared at 700 °C.
  • Figure 1b is a scanning micrograph of the tin oxide containing carbon nanofibers (SnO x -PANPVP-800 °C) prepared at 800 °C.
  • Figure 1c is a scanning micrograph of the tin oxide containing carbon nanofibers (SnO x -PANPVP-900 °C) prepared at 900 °C.
  • 2A is a transmission micrograph of tin oxide-containing carbon nanofibers (SnO x -PANPVP-700 ° C) prepared at 700 ° C.
  • Figure 2b is a transmission micrograph of the tin oxide containing carbon nanofibers (SnO x -PANPVP-800 °C) prepared at 800 °C.
  • Figure 2c is a transmission micrograph of the tin oxide containing carbon nanofibers (SnO x -PANPVP-900 °C) prepared at 900 °C.
  • Figure 3a is a graph of crystallinity according to the temperature of the tin oxide containing carbon nanofibers prepared in Example 1.
  • Figure 3b is a microstructure analysis graph according to the temperature of the tin oxide-containing carbon nanofibers prepared in Experimental Example 1.
  • Figure 4a is a charge and discharge results at 700 °C of the tin oxide containing carbon nanofibers (SnO x -PANPVP-700 °C) prepared in Experimental Example 1.
  • Figure 4b is a charge and discharge results at 800 °C of the tin oxide containing carbon nanofibers (SnO x -PANPVP-800 °C) prepared in Experimental Example 1.
  • Figure 4c is the charge and discharge results at 900 °C of the tin oxide containing carbon nanofibers (SnO x -PANPVP-900 °C) prepared in Example 1.
  • Figure 8 is a transmission micrograph of the tin composite carbon nanofibers (SnO x -PAN-800 °C) prepared in Experimental Example 2.
  • Figure 11a is a scanning micrograph of the copper oxide containing carbon nanofibers (Cu x O-PANPVP-600 °C) prepared at 600 °C.
  • Figure 11b is a scanning micrograph of the copper oxide containing carbon nanofibers (Cu x O-PANPVP-700 °C) prepared at 700 °C.
  • Figure 11c is a scanning micrograph of the copper oxide containing carbon nanofibers (Cu x O-PANPVP-800 °C) prepared at 800 °C.
  • Figure 11d is a scanning micrograph of the copper oxide containing carbon nanofibers (Cu x O-PANPVP-900 °C) prepared at 900 °C.
  • 12A is a transmission micrograph of a copper oxide-containing carbon nanofiber (Cu x O-PANPVP-600 ° C) prepared at 600 ° C.
  • 12B is a transmission micrograph of a copper oxide-containing carbon nanofiber (Cu x O-PANPVP-700 ° C) prepared at 700 ° C.
  • 12C is a transmission micrograph of a copper oxide-containing carbon nanofiber (Cu x O-PANPVP-800 ° C) prepared at 800 ° C.
  • 12d is a transmission micrograph of a copper oxide-containing carbon nanofiber (Cu x O-PANPVP-900 ° C) prepared at 900 ° C.
  • Figure 13a is a graph of crystallinity according to the temperature of the copper oxide-containing carbon nanofibers prepared in Experimental Example 3.
  • FIG. 13b is an X-ray absorption spectroscopy graph according to the temperature of the copper oxide-containing carbon nanofibers prepared in Experimental Example 3.
  • FIG. 13b is an X-ray absorption spectroscopy graph according to the temperature of the copper oxide-containing carbon nanofibers prepared in Experimental Example 3.
  • FIG. 14A is a charge and discharge result at 600 ° C. of a copper oxide-containing carbon nanofiber (Cu ⁇ O-PANPVP-600 ° C.) prepared in Experimental Example 3.
  • FIG. 14A is a charge and discharge result at 600 ° C. of a copper oxide-containing carbon nanofiber (Cu ⁇ O-PANPVP-600 ° C.) prepared in Experimental Example 3.
  • FIG. 14A is a charge and discharge result at 600 ° C. of a copper oxide-containing carbon nanofiber (Cu ⁇ O-PANPVP-600 ° C.) prepared in Experimental Example 3.
  • FIG. 14C is a charge and discharge result at 800 ° C. of the copper oxide-containing carbon nanofibers (Cu ⁇ O-PANPVP-800 ° C.) prepared in Experimental Example 3.
  • FIG. 14C is a charge and discharge result at 800 ° C. of the copper oxide-containing carbon nanofibers (Cu ⁇ O-PANPVP-800 ° C.) prepared in Experimental Example 3.
  • FIG. 14C is a charge and discharge result at 800 ° C. of the copper oxide-containing carbon nanofibers (Cu ⁇ O-PANPVP-800 ° C.) prepared in Experimental Example 3.
  • FIG. 17 is a scanning micrograph of copper-containing carbon nanofibers (Cu x O-PAN-800 ° C) carbonized at 800 ° C prepared in Experimental Example 4.
  • FIG. 17 is a scanning micrograph of copper-containing carbon nanofibers (Cu x O-PAN-800 ° C) carbonized at 800 ° C prepared in Experimental Example 4.
  • FIG. 19 is a crystallinity graph of copper-containing carbon nanofibers (Cu x O-PAN-800 ° C) carbonized at 800 ° C prepared in Experimental Example 4.
  • FIG. 19 is a crystallinity graph of copper-containing carbon nanofibers (Cu x O-PAN-800 ° C) carbonized at 800 ° C prepared in Experimental Example 4.
  • FIG. 19 is a crystallinity graph of copper-containing carbon nanofibers (Cu x O-PAN-800 ° C) carbonized at 800 ° C prepared in Experimental Example 4.
  • FIG. 20 shows charge and discharge results of copper-containing carbon nanofibers (Cu x O-PAN-800 ° C) carbonized at 800 ° C prepared in Experimental Example 4.
  • FIG. 20 shows charge and discharge results of copper-containing carbon nanofibers (Cu x O-PAN-800 ° C) carbonized at 800 ° C prepared in Experimental Example 4.
  • FIG. 20 shows charge and discharge results of copper-containing carbon nanofibers (Cu x O-PAN-800 ° C) carbonized at 800 ° C prepared in Experimental Example 4.
  • Figure 23a is a scanning micrograph of the Ni 3 Sn 2 containing carbon nanofibers prepared at 600 °C.
  • Figure 23b is a scanning micrograph of the Ni 3 Sn 2 containing carbon nanofibers prepared at 700 °C.
  • Figure 23c is a scanning micrograph of the Ni 3 Sn 2 containing carbon nanofibers prepared at 800 °C.
  • FIG. 25A is a result of charging and discharging at 600 ° C. of Ni 3 Sn 2 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 25A is a result of charging and discharging at 600 ° C. of Ni 3 Sn 2 containing carbon nanofibers prepared in Experimental Example 5.
  • 25B is a result of charging and discharging at 700 ° C. of Ni 3 Sn 2 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 25B is a result of charging and discharging at 700 ° C. of Ni 3 Sn 2 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 25C is a result of charging and discharging at 800 ° C. of Ni 3 Sn 2 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 25C is a result of charging and discharging at 800 ° C. of Ni 3 Sn 2 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 26 shows a cycle graph according to each temperature of Ni 3 Sn 2 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 27 shows the coulombic efficiency according to the temperature of Ni 3 Sn 2 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 28A is a scanning micrograph of Cu 6 Sn 5 -containing carbon nanofibers prepared at 700 ° C.
  • FIG. 28A is a scanning micrograph of Cu 6 Sn 5 -containing carbon nanofibers prepared at 700 ° C.
  • 28b is a scanning microscope photograph of Cu 6 Sn 5 -containing carbon nanofibers prepared at 800 ° C.
  • Figure 28c is a scanning micrograph of the Cu 6 Sn 5 containing carbon nanofibers prepared at 900 °C.
  • FIG. 30 is a charge and discharge graph of Cu 6 Sn 5 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 30 is a charge and discharge graph of Cu 6 Sn 5 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 31 shows cycle characteristics of Cu 6 Sn 5 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 32 shows the coulombic efficiency of Cu 6 Sn 5 containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 33 is a scanning micrograph of SnSb-containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 33 is a scanning micrograph of SnSb-containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 34 is a crystallization diagram of SnSb-containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 34 is a crystallization diagram of SnSb-containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 35 is a charge and discharge graph of SnSb-containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 36 shows cycle characteristics of SnSb-containing carbon nanofibers prepared in Experimental Example 5.
  • FIG. 37 shows the coulombic efficiency of SnSb-containing carbon nanofibers prepared in Experimental Example 5.
  • Method for producing a metal oxide-containing carbon nanofibers comprising the steps of preparing a fiber precursor composition by adding a tin precursor or a copper precursor to the carbon fiber precursor material; Spinning the fiber precursor composition to produce fibers; And heat treating the fibers.
  • the method may further comprise carbonizing the heat treated fiber and activating the carbonized fiber.
  • the tin precursor may be at least one selected from tin nitrate, tin chloride, tin acetate, tin alkoxide or mixtures thereof, and particularly preferably tin acetate may be used.
  • the copper precursor may be at least one selected from copper nitrate, copper chloride, copper acetate, copper alkoxide or mixtures thereof, particularly preferably copper acetate.
  • the carbon nanofibers may form a composite fiber web in which tin oxide or copper oxide is evenly dispersed.
  • the manufacturing method of the composite fiber web consisting of the tin oxide or copper oxide-containing carbon nanofibers
  • the method may further include carbonizing the heat treated fibrous web at 300 to 3000 ° C. in an inert atmosphere or in a vacuum state, or activating the fibrous web.
  • the copper oxide includes any one or more mixtures selected from Cu 2 O, CuO, Cu 2 O 3 , CuO 2 , Cu 3 O 4, and the like, and preferably Cu 2 O or CuO.
  • a method for preparing carbon nanofibers containing an intermetallic compound may include preparing a fiber precursor composition by adding two or more metal precursors to a carbon fiber precursor material; Spinning the fiber precursor composition to produce fibers; And heat treating the fibers.
  • the method may further comprise carbonizing the heat treated fiber and activating the carbonized fiber.
  • the metal precursor is tin (Sn), antimony (Sb), copper (Cu), nickel (Ni), iron (Fe), cobalt (Co), titanium (Ti), magnesium (Mg), manganese (Mn), calcium (Ca), zinc (Zn), indium (In), molybdenum (Mo) and can be selected from the group consisting of metal precursors containing tungsten (W), aluminum (Al), silicon (Si) ions have.
  • At least two may be selected from metal precursors containing tin (Sn), copper (Cu), antimony (Sb) or nickel (Ni) ions, particularly preferably tin (I) acetate, copper (II) ), At least two from antimony (III) acetate or nickel (II) acetate.
  • the carbon nanofibers may form a composite fiber web in which an intermetallic compound is evenly dispersed.
  • the method may further comprise carbonizing or activating the heat-treated fibrous web to 300 ⁇ 3000 °C in an inert atmosphere or vacuum.
  • the starting precursor fiber precursor composition is prepared from the fiber precursor polymer solution by adding a tin precursor, a copper precursor or two or more metal precursors to the carbon fiber precursor material.
  • the carbon fiber precursor material is polyacrylonitrile, polyperfuryl alcohol, cellulose, glucose, polyvinyl chloride, polyacrylic acid, polylactic acid, polyethylene oxide, polypyrrole, polyimide, polyimide, polyamideimide, polyaramid, It includes any one or a mixture of two or more selected from the group consisting of polybenzylimidazole, polyaniline, phenol resins and pitches, more preferably polyacrylonitrile resin.
  • the fiber precursor composition may further include a polyvinylpyrrolidone-based resin.
  • the weight ratio of the carbon fiber precursor material and the polyvinylpyrrolidone-based resin is preferably 80 to 20: 20 to 80% by weight, more preferably. 50: 50% by weight of mixing is preferred.
  • the weight ratio of the carbon fiber precursor material and the polyvinylpyrrolidone-based resin is preferably 10 to 90: 90 to 10% by weight, more preferably 30 70 to 30 to 70% by weight of the mixture is recommended.
  • the carbon fiber precursor material used in the present invention may use a mixture of any conventional synthetic polymers and carbon precursors described above.
  • the polyacrylonitrile resin when used, if the weight average molecular weight is less than 50,000, the viscosity of the fiber precursor composition is low, and if it exceeds 500,000, the viscosity is high, which is not preferable.
  • the polyvinylpyrrolidone-based resin may be any conventional synthetic polymer having good compatibility with oxygen to allow oxygen to be bonded through interaction with the metal cation of the metal precursor during heat treatment.
  • the polyvinylpyrrolidone-based resin preferably has a weight average molecular weight of 40,000 to 1,500,000, more preferably 70,000 to 1,300,000. If the weight average molecular weight is less than 40,000, the viscosity of the fiber precursor composition is lowered, and if it exceeds 1,500,000, the viscosity is excessively increased, which is not preferable.
  • the material that can replace the polyvinylpyrrolidone-based resin may include a compound having an oxygen atom as a donor atom.
  • R is a C1 ⁇ C20 alkyl group, C6 ⁇ C20 aryl group or substituted aryl group.
  • further comprising a polyvinylpyrrolidone-based resin may be preferably used as a dispersant for metal oxides in carbon nanofibers for non-toxicity and cost reduction.
  • the mixing ratio of the polyvinylpyrrolidone-based resin is appropriately added in the range of 10 to 90% by weight, preferably 30 to 70% by weight, and in the case of the polyvinylpyrrolidone-based resin, the metal precursor cannot be easily melted, or more. Is not preferable because the carbon yield is low.
  • Solvents that can be used in the present invention is a polar solvent other than water in which the resin can be dissolved, dimethylformamide (DMF), dimethylacetamide (DMAc), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), gamma Butyrolactone, N-methylpyrrolidone, chloroform, toluene, acetone or mixtures thereof may be used.
  • the fiber precursor polymer solution is preferably prepared in a solvent of 95 to 50% by weight and a polymer of 5 to 50% by weight. Using a polymer having a solid content within the above range can prevent a decrease in physical properties due to uniform dispersion.
  • the metal precursor is added to 5 to 100 parts by weight of the carbon amount in consideration of the final carbon nanofiber yield and the amount of carbon remaining after burn-off.
  • the polyacrylonitrile polymer and the polyvinylpyrrolidone-based resin are quantified in an amount of 80 to 20% by weight: 20 to 80% by weight, and the polymer resin in the solvent is about 5 to 30% by weight, preferably 6 to Dissolve to 10% by weight.
  • the polymer solution is completely dissolved by applying a temperature of 100 to 150 ° C., and the solution is cooled to room temperature, and then one metal precursor (tin precursor or copper precursor) is added, or the selected two or more metal precursors are titrated. Add by mixing in molar ratio. At this time, considering the yield of carbon after the last burn-off (burn-off), the total carbon amount is 90 to 50% and the amount of the metal precursor is 10 to 50%.
  • the most important factor in the preparation of nanofibers using electrospinning is the proper viscosity of the composition.
  • the viscosity tends to increase. It is not suitable for spinning because of the low viscosity of the composition when prepared and the high viscosity above 30% by weight.
  • composition thus prepared was subjected to temperature homogenization, and then placed in a syringe with a needle, and electrospun by applying a voltage of 1 to 50 kV, preferably 20 to 30 kV, to prepare a fiber, and the fiber prepared in the above manner.
  • the temperature is raised to 220 ⁇ 300 °C, heat treatment for 0.5 ⁇ 10 hours under an air atmosphere.
  • the heat treatment process is a process of oxidizing the fibers from the surface in order to convert the thermoplastic resin into a thermosetting resin to prevent the fusion and thermal melting of the fibers in subsequent high temperature carbonization and activation processes.
  • thermoplastic resins are melted when carbonized and activated at high temperatures, or fusion between fibers occurs.
  • thermoplastic resins are converted into thermosetting resins through heat treatment, which is an oxidation stabilization process. If carbonization or activation is performed directly without performing the heat treatment process, exothermic reactions such as ring opening and dehydrogenation proceed rapidly and are burned rather than carbonized.
  • the heat treatment process in the present invention can form a cross-linking of oxygen or strong hydrogen bonds to reduce the volatile content in the subsequent high temperature carbonization or activation process and to cause a solid phase carbonization reaction, so the dimensions and structure of the fiber is maintained even in the carbonization process do.
  • the carbonization process in the present invention is carried out by heat treatment to maintain the dimensions and structure of the fibers, and then again by heating the raw material at a high temperature under special conditions to remove volatile non-carbon components or increase the surface area.
  • the carbonization temperature and time may be given under arbitrary conditions.
  • the heat treated fibers may be carbonized at 300 to 3000 ° C. in an inert atmosphere or in a vacuum state to prepare carbon nanofibers containing nano-sized metal oxides or intermetallic compounds.
  • the tin oxide-containing carbon nanofibers had a diameter of 50 to 300 nm, an average diameter of 175 nm, and evenly dispersed 1 to 40 nm of tin oxide inside and outside the carbon nanofibers.
  • the discharge capacity after 100 cycles was about 649 mAh / g and 90% or more of the initial capacity was maintained, thereby showing excellent capacity and cycle characteristics.
  • the copper oxide-containing carbon nanofibers had a diameter of 100 to 200 nm, an average diameter of 150 nm, and copper oxides of 1 to 50 nm were uniformly dispersed inside and outside the carbon nanofibers.
  • the discharge capacity after 100 cycles was about 470 mAh / g and 90% or more of the initial capacity was maintained, thereby showing excellent capacity and cycle characteristics.
  • the intermetallic compound-containing carbon nanofibers had a diameter of 150 to 500 nm, an average diameter of 200 nm, and an intermetallic compound of 2 to 5 nm was evenly dispersed inside and outside the carbon nanofibers.
  • intermetallic compound-containing carbon nanofibers include carbon nanofibers in which a metal oxide is dispersed as a by-product in addition to the intermetallic compound.
  • an initial specific capacity was 630 mAh / g for Ni 3 Sn 2 / carbon nanofibers, and 500 mAh / for Cu 6 Sn 5 .
  • SnSb is 780 mAh / g or more, and maintained at least 90% of the initial capacity for 100 cycles, showing excellent capacity and cycle characteristics.
  • Diameter distribution and surface images were measured using a scanning microscope (FE-SEM, Hitachi, S-4700).
  • the dispersion degree of metal oxide or intermetallic compound was measured by transmission microscope (FE-TEM, JEM-2000 FXII JEOL, USA).
  • the charge / discharge capacity and cycle characteristics are coins composed of lithium (Li) metal / separator / metal oxide or carbon nanofibers containing intermetallic compound and LiPF 6 1: 1 vol% EC: DMC liquid electrolyte. Cells were prepared and investigated.
  • the homogenized tin acetate / polyacrylonitrile / polyvinylpyrrolidone solution was electrospun using an electrospinner.
  • the spinning condition was electrospun by applying a voltage of 20kV to the fiber precursor solution in a 10ml syringe attached to a 0.5mm needle.
  • the distance between the needle and the current collector was maintained at 17 cm, and the dissolution rate of the fiber precursor solution was 1 ml / h.
  • the fibrous web consisting of the separated tin acetate / polyacrylonitrile / polyvinylpyrrolidone was heat treated at 280 ° C. for 5 hours under an air atmosphere. At this time, the temperature was increased by 1 °C / min, and maintained for 5 hours at 280 °C. Thereafter, a carbonization process was performed at 700, 800, and 900 ° C. for 1 hour.
  • FIG. 1 Scanning micrographs of the tin oxide-containing carbon nanofibers prepared for each temperature as described above are shown in FIG. 1 (1a, 1b, 1c).
  • the transmission micrograph of the prepared tin oxide-containing carbon nanofibers are shown in Figure 2
  • the crystallinity of the tin oxide-containing carbon nanofibers are shown in Figure 3a
  • the microstructure analysis is shown in Figure 3b.
  • Figure 5 shows the cycle characteristics when used as a cathode
  • Figure 6 shows the Coulomb efficiency.
  • polyacrylonitrile resin weight average molecular weight 150,000
  • dimethylformamide N, N-dimethylforamide
  • tin acetate was added to the polymer solution (B) at room temperature, followed by further stirring at 120 for 5 hours.
  • the homogenized tin acetate / polyacrylonitrile polymer solution was electrospun using an electrospinner.
  • the electrospinning conditions are the same as in Experimental Example 1.
  • the fibrous web consisting of the separated tin acetate / polyacrylonitrile was heat treated at 280 ° C. for 5 hours under an air atmosphere. At this time, the temperature was increased by 1 °C / min, and maintained for 5 hours at 280 °C.
  • the carbonization process was performed for 1 hour at 800 °C.
  • FIG. 7 Scanning micrographs of the prepared tin composite carbon nanofibers (SnO x -PAN-800 ° C) are shown in FIG. 7.
  • the transmission micrograph of the prepared tin composite carbon nanofibers are shown in FIG. 8
  • the crystallinity of the tin composite carbon nanofibers is shown in FIG. 9, and when the tin composite carbon nanofibers are used in FIG.
  • the charge and discharge cycle characteristics are shown.
  • Figure 11 shows the cycle characteristics when used as a cathode
  • Figure 12 shows the Coulomb efficiency.
  • the diameter of the fiber is 200nm at 700 °C and it can be seen that the fiber diameter becomes smaller with increasing temperature.
  • the average diameter of the tin oxide-containing carbon nanofibers prepared by the method of the present invention was about 175 nm, and the fiber diameter ranged from 50 to 300 nm. It is found that the fiber made from melt spinning and gel spinning, which is a general fiber manufacturing method, is about 10 ⁇ m in diameter, but is about 50 times thinner and is made of finer microfiber than that of activated carbon nanofibers spun with polyacrylonitrile alone. Can be.
  • the tin oxide structure was not well developed inside the carbon nanofiber at 700 ° C, but that the tin oxide was developed at the nanofiber surface at 800 ° C. In addition, it was found that the tin oxide dispersed in the nano-sized at 900 °C.
  • 2A shows a transmission micrograph of the tin oxide-containing carbon nanofibers prepared at 700 ° C., and it can be seen that tin oxide is finely dispersed within 2 nm or less in the carbon nanofibers.
  • 2B and 2C show transmission micrographs of tin oxide-containing carbon nanofibers prepared at 800 ° C. and 900 ° C., respectively. As shown in FIGS. 2B and 2C, the sizes of tin oxides are very small, 4 nm and 40 nm or less, respectively. The dispersion was also very good. Therefore, in order to properly disperse the tin oxide particles in the carbon fiber it was found that the appropriate temperature should be added.
  • the tin oxide-containing carbon nanofibers manufactured at 700 ° C. formed disordered tin oxides inside the carbon nanofibers, and at 800, six oxygen (O) atoms were observed around tin (Sn IV ) atoms. 2) it was confirmed that the development of a non-uniform (disordered) type structure forming the octahedral atoms. In addition, it was confirmed that the tin oxide-containing carbon nanofibers prepared at 900 ° C. reduced the degree of disordered, thereby becoming almost similar to the structure of pure tin oxide.
  • FIG. 7 shows scanning micrographs of tin or tin oxide-containing carbon nanofibers (SnOx-PAN-800 ° C.) prepared by electrospinning a tin acetate / polyacrylonitrile solution, followed by heat treatment and carbonization at 800 ° C.
  • FIG. 7 the diameter of the prepared tin or tin oxide-containing carbon nanofibers was 250 nm, and it was confirmed that the diameter was larger than that of the sample spun by adding polyvinylpyrrolidone.
  • FIGS. 9 and 10 show charge and discharge cycle characteristics of tin or tin oxide-containing carbon nanofibers prepared by mixing tin acetate and polyacrylonitrile.
  • carbon nanofibers prepared by mixing only polyacrylonitrile contain tin oxide prepared by adding polyvinylpyrrolidone when used as a negative electrode because tin or tin oxide particles are relatively large. It can be seen that the cycle characteristics are lower than that of carbon nanofibers.
  • the high dispersion of tin oxide increases the electrochemically active site, and despite the formation of Li 2 O generated during charging and discharging, the carbon nanofibers maintain electrical conductivity and aggregate the tin oxide particles. By buffering, this electrochemical property is considered to be very good.
  • the addition of a compound having an oxygen atom as a donor atom, such as polyvinylpyrrolidone, the carbon precursor material during electrospinning and the content of the compound, the content of the tin precursor is controlled by the lithium secondary battery It can be seen that a tin oxide-containing carbon nanofiber composite having an electrochemically superior property as a negative electrode can be manufactured as a negative electrode.
  • the homogenized copper (II) acetate / polyacrylonitrile / polyvinylpyrrolidone solution was electrospun using an electrospinner.
  • the spinning condition was electrospun by applying a voltage of 20kV to the fiber precursor solution in a 10ml syringe attached to a 0.5mm needle.
  • the distance between the needle and the current collector was maintained at 17 cm, and the dissolution rate of the fiber precursor solution was 1 ml / h.
  • the fibrous web consisting of the separated copper (II) acetate / polyacrylonitrile / polyvinylpyrrolidone was heat-treated at 230 ° C. for 5 hours under an air atmosphere. At this time, the temperature was increased by 1 °C / min, and maintained at 230 °C for 5 hours.
  • the carbonization process was performed at 600 ° C., 700 ° C., 800 ° C., and 900 ° C. for 1 hour.
  • FIG. 11 Scanning micrographs of the copper oxide-containing carbon nanofibers (Cu 2 O_PANPVP_CNF) prepared for each temperature as described above are shown in FIG. 11 (11a, 11b, 11c, and 11d).
  • the transmission micrographs of the prepared copper oxide-containing carbon nanofibers are shown in Figure 12 (12a, 12b, 12c, 12d)
  • the crystallinity of the copper oxide-containing carbon nanofibers are shown in Figure 13a
  • the fine copper oxide Structural analysis is shown in Figure 13b.
  • the copper oxide-containing carbon nanofibers were used as the electrodes in FIG. 14 (14a, 14b, 14c, 14d)
  • the charge and discharge results of the electrodes were shown.
  • Figure 15 shows the cycle characteristics when used as a cathode
  • Figure 16 shows the Coulomb efficiency.
  • the homogenized copper (II) acetate / polyacrylonitrile polymer solution was electrospun using an electrospinner.
  • the electrospinning conditions are the same as in Experimental Example 3.
  • the fibrous web consisting of the separated copper (II) acetate / polyacrylonitrile was heat treated at 230 ° C. for 5 hours under an air atmosphere. At this time, the temperature was increased by 1 °C / min, and maintained at 230 °C for 5 hours.
  • the carbonization process was performed for 1 hour at 800 °C.
  • FIG. 17 Scanning micrographs of the prepared copper-containing carbon nanofibers (Cu x O-PAN-800 ° C) are shown in FIG. 17.
  • the transmission micrograph of the prepared copper-containing carbon nanofibers are shown in FIG. 18, the crystallinity of the copper-containing carbon nanofibers is shown in FIG. 19, and when the copper-containing carbon nanofibers are used in FIG.
  • the charge and discharge cycle characteristics are shown.
  • Figure 21 shows the cycle characteristics when used as a negative electrode
  • Figure 22 shows the Coulomb efficiency.
  • the diameter of the fiber is 200nm at 600 °C, it can be seen that the fiber diameter becomes smaller with increasing temperature.
  • the average diameter of the copper oxide-containing carbon nanofibers prepared by the method of the present invention was about 150 nm, and the fiber diameter ranged from 100 to 200 nm. This is about 10 ⁇ m the diameter of the fiber made from the melt spinning, which is a general fiber manufacturing method, it can be seen that not only about 50 times thinner, but also made of finer microfibers compared to activated carbon nanofibers spun with polyacrylonitrile alone.
  • crystal transport mechanism As described above, two theories are mainly used for sintering of metals or metal oxides with temperature. One is that the whole crystallite moves on the surface of the carrier and the crystals agglomerate by collision (crystal transport mechanism), and the other is that metal atoms (or molecules) are separated from the crystals and collided with the crystals. (Atomic transport mechanism). Since the sintering of the metal or metal oxide reduces the surface area of the particles, preventing the sintering mainly affects the performance of the catalyst or the secondary battery electrode material which is mainly subjected to the surface reaction.
  • Factors influencing the sintering phenomenon in the manufacturing process of the material include temperature, time, metal loading, ambient gas, initial distribution of metal particle size, carrier, etc., and suitable metal content, temperature, heat treatment time, etc. If adjusted to prevent sintering of the metal particles.
  • carbon nanofibers in which copper oxide is evenly dispersed in nano-sizes are prepared by appropriately controlling the temperature, and by using this as a negative electrode material of a lithium secondary battery, the copper oxide is inhibited from sintering even when the charge / discharge process proceeds.
  • FIG. 13A shows the crystallinity of the copper oxide-containing carbon nanofibers
  • FIG. 13B shows the microstructure.
  • X-ray diffraction analysis and fine structure analysis using X-ray absorption spectroscopy should be performed simultaneously.
  • X-ray diffraction analysis it can be seen that as the temperature increases, the position of the peak and the intensity of the peak of the copper oxide crystallinity change.
  • Microstructure analysis for 600 °C was amorphous form of copper sanhwamulga, 700 °C the copper sanhwamulga unevenness (disordered) in the form of CuO, the 800 °C unevenness in the form of CuO and Cu 2 O intermediate structure, in the 900 °C Cu 2 O It is confirmed that the structure is developed.
  • FIG. 14 (14a, 14b, 14c, 14d) and FIG. 15 show charge and discharge results and cycle characteristics when the copper oxide-containing carbon nanofibers prepared at each temperature were used as a negative electrode of a secondary battery.
  • the copper oxide-containing carbon nanofibers prepared at 800 ° C. showed the smallest irreversible capacity for 100 cycles of charge and discharge. It has a small particle distribution of copper oxide and promotes the decomposition of Li 2 O due to the high electrical conductivity of carbon nanofibers, despite the formation of Li 2 O formed by the insertion of lithium (Li) ions into the copper oxide. It seems to exhibit the best cycle characteristics by preventing expansion.
  • Figure 16 shows the coulombic efficiency, the coulombic efficiency also showed the best characteristics of the copper oxide-containing carbon nanofibers prepared at 800 °C in the first cycle, as described above.
  • FIG. 17 is an injection of copper-containing carbon nanofibers (Cu x O-PAN-800 ° C.) carbonized at 800 ° C. after electrospun and heat treatment of a copper (II) acetate / polyacrylonitrile solution as in Experimental Example 4. Micrographs are shown.
  • FIG. 19 is a graph showing the crystallinity of the copper-containing carbon nanofibers prepared by mixing copper (II) acetate and polyacrylonitrile. It can be seen that copper is present in a metallic state and crystallinity is very developed.
  • FIG. 20 shows charge and discharge cycle characteristics of copper-containing carbon nanofibers prepared by mixing copper (II) acetate and polyacrylonitrile.
  • copper (II) acetate As can be seen in Figures 20 and 21, carbon nanofibers prepared by mixing only polyacrylonitrile can be seen that the capacity decreases as the cycle proceeds when used as a cathode because copper metal is formed therein.
  • the coulombic efficiency also shows that the copper-containing carbon nanofibers prepared by mixing copper (II) acetate and polyacrylonitrile have lower values than the polyvinylpyrrolidone added carbon nanofibers of the present invention.
  • copper oxide is highly dispersed, thereby increasing electrochemically active sites, and carbon nanofibers maintain electrical conductivity despite Li 2 O generated during charging and discharging.
  • the electrochemical properties are considered to be very good by buffering the aggregation of copper oxide particles.
  • the addition of a compound having an oxygen atom as a donor atom such as polyvinylpyrrolidone, the carbon precursor material during electrospinning, and the content of the polyvinylpyrrolidone and the content of the copper precursor are controlled. If so, it is possible to produce a copper oxide carbon nanofibers having an electrochemically excellent properties as a negative electrode of a lithium secondary battery to replace the existing graphite.
  • the homogenized tin (II) acetate, copper (II) acetate, antimony (III) acetate, nickel (II) acetate were added to the polyacrylonitrile / polyvinylpyrrolidone solution, then homogenized and the homogenized solution was electrospun Was electrospun using.
  • the spinning condition was electrospun by applying a voltage of 20kV to the fiber precursor solution in a 10ml syringe attached to a 0.5mm needle. In this case, the distance between the needle and the current collector was maintained at 17 cm, and the dissolution rate of the fiber precursor solution was 1 ml / h. When the fibers were accumulated in the current collector, the nonwoven fabric was separated and separated.
  • the carbonization process was performed at 600 ° C., 700 ° C., and 800 ° C. for 1 hour.
  • FIG. 23 Scanning micrographs of Ni 3 Sn 2 -containing carbon nanofibers prepared for each temperature as described above are shown in FIG. 23 (23a, 23b, 23c).
  • the crystallinity of Ni 3 Sn 2 -containing carbon nanofibers prepared at each temperature is shown in FIG. 24, and when Ni 3 Sn 2 -containing carbon nanofibers were used as electrodes in FIG. 25 (25a, 25b, 25c), The discharge results are shown.
  • FIG. 26 shows cycle characteristics when used as a cathode
  • FIG. 27 shows Coulomb efficiency.
  • the diameter of the fiber is about 200nm at 600 °C, 700 °C, 800 °C degree, it can be seen that the particles are significantly agglomerated as the temperature increases.
  • the fiber made from melt spinning, solution spinning, and gel spinning, which is a common fiber manufacturing method, has a diameter of about 10 ⁇ m, but is about 50 times thinner and finer than the carbon nanofibers activated by polyacrylonitrile alone. It can be seen that manufactured.
  • the intermetallic compound-containing carbon nanofiber according to the present invention is considered to prevent the phenomenon of sintering even when the temperature rises compared to the case of the intermetallic compound alone production.
  • the degree of crystallinity varies with temperature and the degree of crystallinity increases with increasing temperature. This means that proper temperature conditions affect the crystallinity of the intermetallic compound.
  • the intermetallic compound and a small amount of tin oxide peak are detected at 800 ° C., indicating that the content of the intermetallic compound and tin oxide can be properly prepared according to the temperature conditions.
  • tin oxide was produced by mixing precursors at a molar ratio to prepare Ni 3 Sn 2 alone as a single phase.
  • the Ni 3 Sn 2 single phase was different in the polymer solution. It means no formation.
  • a single phase of Ni 3 Sn 2 is reported to form well when Ni and Sn precursors are added to a certain solvent and stirred at a temperature of 200 ° C. or higher for 6 hours or more.
  • a metal precursor is added to the polyacrylonitrile / polyvinylpyrrolidone mixed polymer solution, and when heated to 200 ° C.
  • Ni 3 Sn 2 Ni, Sn, NiO, SnO 2, etc. may be present in the carbon nanofibers. The same also applies to other intermetallic compounds.
  • 26 and 27 show charge and discharge results and cycle characteristics when Ni 3 Sn 2 -containing carbon nanofibers prepared at respective temperatures are used as a negative electrode of a secondary battery.
  • the carbon nanofibers containing the intermetallic compound prepared at 700 ° C. showed the smallest irreversible capacity during 100 cycles of charge and discharge. It is thought that this exhibits the best cycle characteristics in spite of the small distribution of Ni 3 Sn 2 particles and excellent electrical conductivity at 700 ° C. and the formation of LiO 2 produced when inserted into Ni 3 Sn 2 of Li ions.
  • the poor cycle characteristics are considered to be due to the aggregation of particles and the inability to charge and discharge Li ions.
  • 27 shows the coulombic efficiency, and the coulombic efficiency also showed the best characteristics of Ni 3 Sn 2 -containing carbon nanofibers prepared at 700 ° C. in the first cycle, as described above.
  • FIG. 28 shows scanning micrographs according to the temperature of Cu 6 Sn 5 -containing carbon nanofibers prepared according to Experimental Example 5.
  • FIG. 28 the fiber diameter of the Cu 6 Sn 5 -containing carbon nanofibers prepared at 700 ° C. was about 200 nm, and as the temperature was increased to 800 ° C. and 900 ° C., the fiber diameters gradually decreased, and the carbon nano fiber manufactured at 900 ° C. It can be seen that it has a diameter of 100nm.
  • a Cu 6 Sn 5 shows a graph containing the charge and discharge of the carbon nanofiber, there is a Cu 6 Sn 5 containing the charge and discharge characteristics of the carbon nanofibers produced in 700 °C shows the most excellent.
  • FIG. 33 shows scanning micrographs of SnSb-containing carbon nanofibers prepared at each temperature.
  • 34 shows the crystallinity of the SnSb-containing carbon nanofibers prepared at each temperature.
  • 35 shows the result of charge and discharge of an electrode when SnSb-containing carbon nanofibers are used as an electrode.
  • 36 shows cycle characteristics when used as a cathode, and
  • FIG. 37 shows Coulomb efficiency.
  • the intermetallic compound-containing carbon nanofibers enable high dispersion of the intermetallic compound, and the highly dispersed intermetallic compound increases the electrochemical active site and charges and discharges the inert metal of the intermetallic compound. Even though the process proceeds, it is believed that the lithium secondary battery anode material exhibits excellent characteristics by buffering the aggregation of particles.
  • the intermetallic compound-containing carbon nanofibers produced by the method according to the present invention exhibit an electrochemically excellent characteristic that replaces the existing graphite as a negative electrode of a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 금속산화물 또는 금속간화합물이 나노크기로 분산된 탄소나노섬유의 제조방법에 관한 것으로, 구체적으로 금속 전구체/탄소섬유 전구체 용액을 전기방사하고 열처리하는 공정을 포함하는 제조방법을 제공하며, 상기 금속산화물 또는 금속간화합물 함유 탄소나노섬유는 이차전지의 음극물질로 사용될 수 있다. 본 발명에 따른 금속산화물 또는 금속간화합물 함유 탄소나노섬유를 음극물질로 이용하는 이차전지는 우수한 용량을 가지며, 100 사이클 후에도 초기용량의 90%이상 유지하는 등 우수한 사이클 안정성을 가진다.

Description

금속산화물 또는 금속간화합물 함유 탄소나노섬유, 그 제조방법 및 이를 이용한 리튬이차전지
본 발명은 탄소나노섬유, 그 제조방법 및 응용에 관한 것으로서, 보다 상세하게는 금속산화물 또는 금속간화합물을 함유하는 탄소나노섬유, 그 제조방법 및 이를 이용한 리튬이차전지에 관한 것이다.
최근 고용량 리튬이차전지에 대한 관심이 증가함에 따라 음극물질로써 흑연(그라파이트, 372 mAh/g)을 대체할 수 있는 물질에 대한 연구가 활발히 진행되고 있다. 그 중, 주석(Sn)은 리튬(Li)이온과 합금을 이루는 대표적인 음극물질로써 충방전시 Sn과 Li 이온의 얼로잉(alloying)(LixSn(x<4.4))-디얼로잉(dealloying) 반응으로 인해 994mAh/g의 매우 높은 이론용량을 보여 최근 활발히 연구되고 있다. 그러나, Li 이온의 얼로잉(LixSn(x<4.4))-디얼로잉시 발생하는 부피변화에 의해 전극물질 자체가 부숴지기 쉽거나 전기전도도가 급격히 감소하는 단점을 지니고 있어 우수한 용량 및 사이클 특성을 나타내는데 한계가 있다.
주석산화물 역시 875mAh/g(SnO) 및 783mAh/g(SnO2)의 높은 이론용량을 나타내나, Sn에서 발생하는 부피변화로 인해 우수한 용량 및 사이클 특성을 기대하기 어렵다.
SnO 및 SnO2은 주로 Li 이온의 삽입 시 다음과 같은 두 단계에 걸쳐 반응이 진행된다. 두 단계 중 첫번째 단계에서는 SnO 및 SnO2 내부로 Li 이온이 삽입됨으로써 각각 (1) 또는 (1-1)과 같이 Li2O가 생성되는 반응이 이루어진다.
2 Li+ + SnO + 2 e- → Sn + Li2O (1)
4 Li+ + SnO2 + 4 e- → Sn + 2Li2O (1-1)
x Li+ + Sn + x e- → LixSn (x ≤ 4.4) (2)
상기 (1)단계에서 발생하는 Li2O는 다음 단계에서 발생하는 Li이온의 Sn과의 합금 반응시 발생하는 부피팽창을 완화하는 역할을 한다고 보고되고 있으나 원천적으로 Li2O의 생성은 첫 사이클에서 매우 높은 비가역용량을 나타낸다. 또한 상기 (2)단계에서 Li 이온의 삽입시 형성되는 LixSn는 Sn을 단독으로 사용했을 때 발생하는 반응과 동일하며 Li 이온의 삽입(insertion)-탈리(deinsertion)에 의한 부피변화는 사이클 특성의 현저한 감소로 이어진다. 이에 위와 같은 문제점을 해결하고자 주석산화물을 다공성 구조로 만들거나 무정형(amorphous) 또는 박막형으로 만들며, 기타 계면활성제-매개법(surfactant-mediated method), 졸-겔법(sol-gel method), 역 마이크로-에멀젼법(reverse micro-emulsion), 스프레이 열분해법(spray pyrolysis technique)을 이용하여 나노사이즈로 만들려는 시도들이 진행되었다. 그러나 위의 방법 역시 이론용량에 매우 못 미치는 낮은 용량과 사이클 특성으로 인해 원천적으로 한계가 있다.
한편, Sn에 Li과 불활성한 원소 (M= Fe, Ni, Ca, Co, Cu 등)를 첨가하여 SnxMy 금속간화합물을 제조함으로써 비가역용량없이 부피변화를 완화하려는 노력이 진행되고 있다. 이와 같은 금속간화합물의 불활성한 원소는 순수한 Li 합금 금속에 비해 상대적으로 유연하여 완충 매트릭스로써 작용함으로써 활성-물질의 부피변화를 최소화할 수 있어 순수한 Sn에 비해 사이클 안정성이 우수하다. 현재 주로 연구되는 금속간화합물로써 Sn2Fe, Sn2FeC, Cu6Sn5, NixSn 물질 등이 있으며 대부분의 금속간화합물에서 비슷한 메카니즘을 보이며 대표적으로 Ni3Sn4의 충방전 메카니즘은 아래의 메카니즘과 같다.
Ni3Sn4 + 17.6Li+ + 17.6e- → 4Li4.4Sn + 3Ni (1)
Li4.4Sn → Sn + 4.4Li+ + 4.4e- (2)
상기 (1)단계에서 Li이온이 Ni3Sn4 에 삽입되어 Ni의 분리와 함께 4Li4.4Sn 을 만들고 (2)단계에서 다시 Li이온이 분리됨으로써 충방전 반응에 의한 활성화 공정(Activation process)이 가역적으로 일어나며 위 반응에 의한 전체 이론용량은 725 mAh/g이다.
상기 메카니즘을 통해 알 수 있듯이 불활성한 금속의 생성으로 그렇지 않은 순수한 Sn에 비해 좋은 사이클 특성을 보이나 충방전 과정중의 팽창과 수축의 반복은 근본적인 부피팽창현상을 가져오므로 우수한 사이클 특성을 기대하기는 어렵다. 이에 나노-복합 금속간 전극(nano-composite intermetallic electrode)을 제조하려는 노력이 진행되며 스프레이 열분해법(spray pyrolysis), 박막법(thin film), 용융-방사법(melt-spinning), 볼-밀링법(ball-millling), 소성법(sintering), E-빔 증발법(E-beam evaporating), 환원 침전법(reductive precipitation), 전기도금법(electroplating) 등을 이용하여 리튬이차전지용 금속간화합물을 제조한 연구들이 시행되었다. 그러나, 상기 방법들 역시 이론용량에 매우 못 미치는 낮은 용량과 사이클 특성으로 인해 원천적으로 한계가 있다.
또한 Sn에 Fe, Ni, Ca, Co, Cu 등을 첨가하여 제조된 Sn2Fe, Sn2FeC, Cu6Sn5, NixSn, SnSb는 서로 다른 원자반경 및 용융점 때문에 균질한 나노크기의 물질의 제조가 매우 어렵다. 주로 금속간화합물을 만드는 방법으로는 소성법, 기계적 합금법(mechanical alloying), 용매열법(solvothermal method) 등이 사용되나 용이하게 금속간화합물을 제조하기에는 여전히 어려운 문제가 있으며, 주목할만한 용량과 사이클 특성을 구현하지는 못하고 있다.
상술한 바와 같은 리튬이차전지의 음극물질로 사용되는 흑연을 대체하고자 광범위한 연구를 진행하였으며, 그 결과 본 발명에 따른 금속산화물 함유 탄소나노섬유 또는 금속간화합물 함유 탄소나노섬유를 사용할 경우, 기존 음극물질인 흑연에 비해 높은 용량을 나타내었으며 사이클 특성도 우수함을 인지하여 본 발명을 완성하게 되었다.
상기 기술적 과제를 해결하기 위해 본 발명의 일 측면은 금속산화물로서 주석산화물 또는 구리산화물이 나노크기로 분산된 탄소나노섬유를 제조하는 방법을 제공한다.
상기 금속산화물 함유 탄소나노섬유의 제조방법은 탄소섬유 전구체 물질에 주석 전구체 또는 구리 전구체를 첨가하여 섬유전구체 조성물을 제조하는 단계; 상기 섬유전구체 조성물을 방사하여 섬유를 제조하는 단계; 및 상기 섬유를 열처리시키는 단계;를 포함한다.
상기 기술적 과제를 해결하기 위해 본 발명의 다른 측면은 2 이상의 금속이 결합된 금속간화합물이 나노크기로 분산된 탄소나노섬유를 제조하는 방법을 제공한다.
상기 금속간화합물 함유 탄소나노섬유의 제조방법은 탄소섬유 전구체 물질에 2 이상의 금속 전구체를 첨가하여 섬유전구체 조성물을 제조하는 단계; 상기 섬유전구체 조성물을 방사하여 섬유를 제조하는 단계; 및 상기 섬유를 열처리시키는 단계;를 포함한다.
상기 기술적 과제를 해결하기 위해 본 발명의 또 다른 측면은 상술한 방법들에 의해 제조된 금속산화물 또는 금속간화합물 함유 탄소나노섬유, 및 이러한 탄소나노섬유로 이루어진 복합 섬유웹을 이용한 리튬이차전지 전극물질을 제공한다.
본 발명에 따르면, 탄소나노섬유에 분산된 나노크기의 금속산화물 또는 금속간화합물을 쉽게 제조할 수 있으며, 금속산화물 또는 금속간화합물의 함량과 크기, 및 섬유의 직경을 적절하게 제어할 수 있다.
또한, 본 발명에 따른 금속산화물 함유 탄소나노섬유는 리튬이차전지의 음극으로 사용할 경우 100 사이클후의 방전용량이(discharge capacity) 상용화 음극물질인 흑연에 비해 그 용량이 매우 높고, 100 사이클 동안 초기용량의 90% 이상이 유지하는 특성을 보인다.
또한, 본 발명에 따른 금속간화합물 함유 탄소나노섬유는 리튬이차전지의 음극으로 사용할 경우 우수한 초기 비용량(specific capacity) 및 우수한 사이클 특성을 보인다.
또한, 입자상을 사용하는 기존의 경우와 비교하여, 섬유웹 상태로 제조가 되기 때문에 빠른 전자 이동이 가능하고, 활물질, 바인더 및 도전제, 기타 용매, 부대시설 등이 필요하지 않으며, 일정용매에 활물질, 바인더 및 도전제 첨가하여 슬러리를 제조하여 코팅하는 공정이 필요없다. 또한 취급이 용이하기 때문에 추후 그라파이트를 대체하는 음극물질로 기대효과가 매우 크다. 그러므로, 본 발명에 따른 금속산화물 또는 금속간화합물 함유 탄소나노섬유는 리튬이차전지의 전극물질, 촉매, 태양 전지의 전극물질로써 널리 응용될 수 있을 것으로 예상된다.
도 1a는 700℃에서 제조된 주석산화물 함유 탄소나노섬유(SnOx-PANPVP-700℃)의 주사현미경사진이다.
도 1b는 800℃에서 제조된 주석산화물 함유 탄소나노섬유(SnOx-PANPVP-800℃)의 주사현미경사진이다.
도 1c는 900℃에서 제조된 주석산화물 함유 탄소나노섬유(SnOx-PANPVP-900℃)의 주사현미경사진이다.
도 2a는 700℃에서 제조된 주석산화물 함유 탄소나노섬유(SnOx-PANPVP-700℃)의 투과현미경사진이다.
도 2b는 800℃에서 제조된 주석산화물 함유 탄소나노섬유(SnOx-PANPVP-800℃)의 투과현미경사진이다.
도 2c는 900℃에서 제조된 주석산화물 함유 탄소나노섬유(SnOx-PANPVP-900℃)의 투과현미경사진이다.
도 3a는 실시예 1에서 제조된 주석산화물 함유 탄소나노섬유의 온도에 따른 결정화도 그래프이다.
도 3b는 실험예 1에서 제조된 주석산화물 함유 탄소나노섬유의 온도에 따른 미세구조분석 그래프이다.
도 4a는 실험예 1에서 제조된 주석산화물 함유 탄소나노섬유(SnOx-PANPVP-700℃)의 700℃에서의 충방전 결과이다.
도 4b는 실험예 1에서 제조된 주석산화물 함유 탄소나노섬유(SnOx-PANPVP-800℃)의 800℃에서의 충방전 결과이다.
도 4c는 실시예 1에서 제조된 주석산화물 함유 탄소나노섬유(SnOx-PANPVP-900℃)의 900℃에서의 충방전 결과이다.
도 5는 실험예 1에서 제조된 주석산화물 함유 탄소나노섬유의 온도에 따른 사이클 특성 결과이다.
도 6은 실험예 1에서 제조된 주석산화물 함유 탄소나노섬유의 온도에 따른 쿨롱효율특성 결과이다.
도 7은 실험예 2에서 제조된 복합 탄소나노섬유(SnOx-PAN-800℃)의 주사현미경사진이다.
도 8은 실험예 2에서 제조된 주석 복합 탄소나노섬유(SnOx-PAN-800℃)의 투과현미경사진이다.
도 9는 실험예 2에서 제조된 주석 복합 탄소나노섬유(SnOx-PAN-800℃)를 전극으로 사용 시 충방전 사이클 결과이다.
도 10은 실험예 2에서 제조된 주석 복합 탄소나노섬유(SnOx-PAN-800℃)를 음극으로 사용 시 사이클 특성 결과이다.
도 11a는 600℃에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-600℃)의 주사현미경사진이다.
도 11b는 700℃에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-700℃)의 주사현미경사진이다.
도 11c는 800℃에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-800℃)의 주사현미경사진이다.
도 11d는 900℃에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-900℃)의 주사현미경사진이다.
도 12a는 600℃에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-600℃)의 투과현미경사진이다.
도 12b는 700℃에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-700℃)의 투과현미경사진이다.
도 12c는 800℃에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-800℃)의 투과현미경사진이다.
도 12d는 900℃에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-900℃)의 투과현미경사진이다.
도 13a은 실험예 3에서 제조된 구리산화물 함유 탄소나노섬유의 온도에 따른 결정화도 그래프이다.
도 13b은 실험예 3에서 제조된 구리산화물 함유 탄소나노섬유의 온도에 따른 엑스레이흡수분광도 그래프이다.
도 14a는 실험예 3에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-600℃)의 600℃에서의 충방전 결과이다.
도 14b는 실험예 3에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-700℃)의 700℃에서의 충방전 결과이다.
도 14c는 실험예 3에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-800℃)의 800℃에서의 충방전 결과이다.
도 14d는 실험예 3에서 제조된 구리산화물 함유 탄소나노섬유(CuxO-PANPVP-900℃)의 900℃에서의 충방전 결과이다.
도 15는 실험예 3에서 제조된 구리산화물 함유 탄소나노섬유의 온도에 따른 사이클 특성 결과이다.
도 16은 실험예 3에서 제조된 구리산화물 함유 탄소나노섬유의 온도에 따른 쿨롱효율특성 결과이다.
도 17은 실험예 4에서 제조된 800℃에서 탄화된 구리 함유 탄소나노섬유(CuxO-PAN-800℃)의 주사현미경사진이다.
도 18은 실험예 4에서 제조된 800℃에서 탄화된 구리 함유 탄소나노섬유(CuxO-PAN-800℃)의 투과현미경사진이다.
도 19는 실험예 4에서 제조된 800℃에서 탄화된 구리 함유 탄소나노섬유(CuxO-PAN-800℃)의 결정화도 그래프이다.
도 20은 실험예 4에서 제조된 800℃에서 탄화된 구리 함유 탄소나노섬유(CuxO-PAN-800℃)의 충방전 결과이다.
도 21은 실험예 4에서 제조된 800℃에서 탄화된 구리 함유 탄소나노섬유(CuxO-PAN-800℃)의 사이클 특성 결과이다.
도 22는 실험예 4에서 제조된 800℃에서 탄화된 구리 함유 탄소나노섬유(CuxO-PAN-800℃)의 쿨롱효율 결과이다.
도 23a는 600℃에서 제조된 Ni3Sn2 함유 탄소나노섬유의 주사현미경사진이다.
도 23b는 700℃에서 제조된 Ni3Sn2 함유 탄소나노섬유의 주사현미경사진이다.
도 23c는 800℃에서 제조된 Ni3Sn2 함유 탄소나노섬유의 주사현미경사진이다.
도 24는 실험예 5에서 제조된 Ni3Sn2 함유 탄소나노섬유의 온도에 따른 결정화도 그래프이다.
도 25a는 실험예 5에서 제조된 Ni3Sn2 함유 탄소나노섬유의 600℃에서의 충방전 결과이다.
도 25b는 실험예 5에서 제조된 Ni3Sn2 함유 탄소나노섬유의 700℃에서의 충방전 결과이다.
도 25c는 실험예 5에서 제조된 Ni3Sn2 함유 탄소나노섬유의 800℃에서의 충방전 결과이다.
도 26은 실험예 5에서 제조된 Ni3Sn2 함유 탄소나노섬유의 각 온도에 따른 사이클 그래프를 나타낸다.
도 27은 실험예 5에서 제조된 Ni3Sn2 함유 탄소나노섬유의 온도에 따른 쿨롱효율을 나타낸다.
도 28a는 700℃에서 제조된 Cu6Sn5 함유 탄소나노섬유의 주사현미경사진이다.
도 28b는 800℃에서 제조된 Cu6Sn5 함유 탄소나노섬유의 주사현미경사진이다.
도 28c는 900℃에서 제조된 Cu6Sn5 함유 탄소나노섬유의 주사현미경사진이다.
도 29는 실험예 5에서 제조된 Cu6Sn5 함유 탄소나노섬유의 온도에 따른 결정화도 그래프이다.
도 30은 실험예 5에서 제조된 Cu6Sn5 함유 탄소나노섬유의 충방전 그래프이다.
도 31은 실험예 5에서 제조된 Cu6Sn5 함유 탄소나노섬유의 사이클 특성을 나타낸다.
도 32는 실험예 5에서 제조된 Cu6Sn5 함유 탄소나노섬유의 쿨롱효율을 나타낸다.
도 33은 실험예 5에서 제조된 SnSb 함유 탄소나노섬유의 주사현미경사진이다.
도 34는 실험예 5에서 제조된 SnSb 함유 탄소나노섬유의 결정화도이다.
도 35는 실험예 5에서 제조된 SnSb 함유 탄소나노섬유의 충방전 그래프이다.
도 36은 실험예 5에서 제조된 SnSb 함유 탄소나노섬유의 사이클 특성을 나타낸다.
도 37은 실험예 5에서 제조된 SnSb 함유 탄소나노섬유의 쿨롱효율을 나타낸다.
이하, 본 발명의 바람직한 실시예들을 상세히 설명한다. 그러나 본 발명이 하기의 실시예들에 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 금속산화물 함유 탄소나노섬유의 제조방법은, 탄소섬유 전구체 물질에 주석 전구체 또는 구리 전구체를 첨가하여 섬유전구체 조성물을 제조하는 단계; 상기 섬유전구체 조성물을 방사하여 섬유를 제조하는 단계; 및 상기 섬유를 열처리시키는 단계;를 포함한다. 또한, 상기 방법은 상기 열처리된 섬유를 탄화시키는 단계 및 탄화된 섬유를 활성화하는 단계를 더 포함할 수 있다.
상기 주석 전구체로는 주석 질산염, 주석 염화염, 주석 아세트산염, 주석 알콕시화물 또는 이들의 혼합물로부터 하나 이상 선택될 수 있고, 특히 바람직하게는 주석아세테이트가 사용될 수 있다.
상기 구리 전구체로는 구리 질산염, 구리 염화염, 구리 아세트산염, 구리 알콕시화물 또는 이들의 혼합물로부터 하나 이상 선택될 수 있고, 특히 바람직하게는 구리아세테이트가 사용될 수 있다.
또한, 상기 탄소나노섬유는 주석산화물 또는 구리산화물이 고루 분산되어 있는 복합 섬유웹의 형태를 이룰 수 있다.
구체적으로, 상기 주석산화물 또는 구리산화물 함유 탄소나노섬유로 이루어진 복합 섬유웹의 제조방법은,
a) 탄소섬유 전구체 물질에 주석 전구체 또는 구리 전구체를 첨가하여 섬유전구체 조성물을 제조하는 단계(이때, 주석 전구체 또는 구리 전구체의 중량은 최종 탄소나노섬유의 잔유물의 10 ~ 50 중량비가 되도록 계산하여 첨가함);
b) 상기 섬유전구체 조성물을 주사바늘이 부착된 실린지에 넣고 전압을 가하여 전기방사하여 제조되는 나노섬유로 복합 섬유웹을 제조하는 단계;
c) 상기 섬유웹을 상온에서 220 ~ 300℃까지 0.1~10℃/분으로 승온 시킨 후, 최종온도에서 0.5 ~ 5 시간 동안 열처리시키는 단계;를 포함할 수 있다.
또한, 상기 방법은 상기 열처리된 섬유웹을 불활성분위기 또는 진공상태에서 300 ~ 3000℃로 탄화시키는 단계 또는 활성화하는 단계를 더 포함할 수 있다.
이때, 구리산화물은 Cu2O, CuO, Cu2O3, CuO2, Cu3O4 등에서 선택되는 어느 하나 또는 그 이상의 혼합물을 포함하며, 바람직하게는 Cu2O, CuO인 것이 좋다.
본 발명의 다른 실시예에 따른 금속간화합물 함유 탄소나노섬유 제조방법은 탄소섬유 전구체 물질에 2 이상의 금속 전구체를 첨가하여 섬유전구체 조성물을 제조하는 단계; 상기 섬유전구체 조성물을 방사하여 섬유를 제조하는 단계; 및 상기 섬유를 열처리시키는 단계;를 포함한다. 또한, 상기 방법은 상기 열처리된 섬유를 탄화시키는 단계 및 탄화된 섬유를 활성화하는 단계를 더 포함할 수 있다.
상기 금속 전구체는 주석(Sn), 안티몬(Sb), 구리(Cu), 니켈(Ni), 철(Fe), 코발트(Co), 티타늄(Ti), 마그네슘(Mg), 망간(Mn), 칼슘(Ca), 아연(Zn), 인듐(In), 몰리브데늄(Mo) 및 텅스텐(W), 알루미늄(Al), 실리콘(Si) 이온을 함유하는 금속 전구체로 이루어진 군에서 2 이상 선택될 수 있다. 바람직하게는 주석(Sn), 구리(Cu), 안티몬(Sb) 또는 니켈(Ni) 이온을 함유하는 금속 전구체로부터 2 이상이 선택될 수 있고, 특히 바람직하게는 주석(I) 아세테이트, 구리(II) 아세테이트, 안티몬(III) 아세테이트 또는 니켈(II) 아세테이트로부터 2 이상 선택될 수 있다.
또한, 상기 탄소나노섬유는 금속간화합물이 고루 분산되어 있는 복합 섬유웹의 형태를 이룰 수 있다.
구체적으로, 상기 금속간화합물 함유 탄소나노섬유로 이루어진 복합 섬유웹의 제조방법은,
a) 탄소섬유 전구체 물질에 2 이상의 금속 전구체를 첨가하여 섬유전구체 조성물을 제조하는 단계(이때, 상기 2 이상의 금속 전구체의 중량은 금속간화합물이 최종 탄소나노섬유의 잔유물의 10 ~ 50 중량비가 되도록 계산하여 첨가함);
b) 상기 섬유전구체 조성물을 주사바늘이 부착된 실린지에 넣고 전압을 가하여 전기방사하여 제조되는 나노섬유로 복합 섬유웹을 제조하는 단계;
c) 상기 섬유웹을 상온에서 220 ~ 300℃까지 0.1~10℃/분으로 승온 시킨 후, 최종온도에서 0.5 ~ 5 시간 동안 열처리시키는 단계;를 포함할 수 있다.
또한, 상기 방법은 열처리된 섬유웹을 불활성분위기 또는 진공상태에서 300 ~ 3000℃로 탄화시키는 단계 또는 활성화하는 단계를 더 포함할 수 있다.
상술한 방법들에 있어서, 출발물질인 섬유전구체 조성물은 탄소섬유 전구체 물질에 주석 전구체, 구리 전구체 또는 2 이상의 금속 전구체를 첨가하여 섬유전구체 고분자용액으로 제조된다. 이때, 상기 탄소섬유 전구체 물질은 폴리아크릴로니트릴, 폴리퍼퓨릴 알콜, 셀룰로오스, 글루코오스, 폴리비닐클로라이드, 폴리아크릴산, 폴리락트산, 폴리에틸렌옥사이드, 폴리피롤, 폴리이미드, 폴리이미드, 폴리아미드이미드, 폴리아라미드, 폴리벤질이미다졸, 폴리아닐린, 페놀수지 및 피치류로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하며, 보다 바람직하게는 폴리아크릴로니트릴 수지를 사용하는 것이 좋다.
또한, 상기 섬유전구체 조성물은 폴리비닐피롤리돈계 수지를 더 포함할 수 있다. 이때, 주석 전구체 또는 구리 전구체가 첨가되는 섬유전구체 조성물의 경우, 상기 탄소섬유 전구체 물질과 상기 폴리비닐피롤리돈계 수지의 중량비는 80~20 : 20~80 중량%인 것이 바람직하며, 보다 바람직하게는 50 : 50 중량%의 비율로 혼합하는 것이 좋다. 한편, 2 이상의 금속 전구체가 첨가되는 섬유전구체 조성물의 경우, 상기 탄소섬유 전구체 물질과 상기 폴리비닐피롤리돈계 수지의 중량비는 10~90 : 90~10 중량%인 것이 바람직하며, 보다 바람직하게는 30 ~ 70 : 30 ~ 70 중량%의 비율로 혼합하는 것이 좋다.
본 발명에서 사용되는 탄소섬유 전구체 물질은 임의의 통상적인 합성고분자 및 상기 기재된 탄소전구체의 혼합물을 사용할 수 있다. 이때, 폴리아크릴로니트릴수지를 사용할 경우 중량 평균분자량이 50,000 미만이면 섬유전구체 조성물의 점도가 낮아지고, 500,000을 초과하면 점도가 높으므로 바람직하지 않다.
상기 폴리비닐피롤리돈계 수지는 열처리시 산소가 금속 전구체의 금속 양이온과 상호작용을 통하여 결합되어 양이온 착화합물을 제조할 수 있도록 하며 혼화성이 우수한 임의의 통상적인 합성고분자일 수 있다. 상기 폴리비닐피롤리돈계 수지는 중량평균분자량이 40,000 내지 1,500,000인 것을 사용하는 것이 좋고, 70,000 내지 1,300,000인 것이 보다 바람직하다. 중량평균분자량이 40,000 미만인 경우 섬유전구체 조성물의 점도를 저하시키고, 1,500,000을 초과하는 경우 점도를 과도하게 높이므로 바람직하지 않다.
또한, 상기 폴리비닐피롤리돈계 수지를 대체할 수 있는 물질로는 공여 원자로서 산소원자를 갖는 화합물을 포함할 수 있다. 상기 공여 원자로서 산소원자를 갖는 화합물은 분자 내에 -RO, -C=O-, -CO-, -SO-, -O-R-CO-, -O-R-O-, -OC-R-CO-, -NH-R-CO- 및 -NH-R-O- 중에서 선택되는 어느 하나 또는 둘 이상의 기능기를 포함하며, 올레산 또는 글리세리드를 포함하는 화합물로 대체될 수 있다. 이때, R은 C1~C20의 알킬기, C6~C20의 아릴기 또는 치환된 아릴기이다.
본 발명에서는 폴리비닐피롤리돈계 수지를 더 포함하는 것이 무독성 및 비용절감을 위해서 탄소나노섬유 내 금속산화물의 분산제로서 바람직하게 사용될 수 있다.
상기 폴리비닐피롤리돈계 수지의 혼합비율은 10 ~ 90 중량%, 바람직하게는 30 ~ 70 중량%의 범위로 첨가하는 것이 적절하며, 상기 범위 이하인 경우는 금속 전구체를 쉽게 녹일 수 없고, 그 이상인 경우는 탄소수율이 낮기 때문에 바람직하지 않다.
본 발명에서 사용될 수 있는 용매는 상기 수지가 용해될 수 있는 물외의 극성용매로, 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 테트라하이드로퓨란(THF), 디메틸설폭사이드(DMSO), 감마부티로락톤, N-메틸피롤리돈, 클로로포름, 톨루엔, 아세톤 또는 이들의 혼합물이 사용될 수 있다. 바람직하게는, 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 테트라하이드로퓨란(THF)으로부터 하나 이상 선택될 수 있다.
상기 섬유전구체 고분자용액은 용매를 95 내지 50 중량%로 하고 고분자는 5 내지 50 중량%로 제조하는 것이 바람직하다. 상기 범위 내의 고형분의 고분자를 사용하하는 것은 균일한 분산으로 인해 물성 저하를 방지할 수 있다. 또한 금속 전구체는 최종 탄소나노섬유 수율과 번-오프된 후 남은 탄소량을 고려하여 그 탄소량의 5 내지 100 중량부가 되도록 첨가한다.
바람직한 일양태로, 폴리아크릴로니트릴 고분자와 폴리비닐피롤리돈계 수지를 80 ~ 20중량% : 20 ~ 80중량%로 정량한 후 용매 중에 고분자 수지가 약 5 ~ 30 중량%, 바람직하게는 6 ~ 10 중량%가 되도록 녹인다. 그 후, 100 내지 150℃의 온도를 가하여 고분자 용액을 완전하게 녹인 후 상기 용액을 실온까지 냉각한 다음 1종의 금속 전구체(주석 전구체 또는 구리 전구체)를 첨가하거나, 선택된 2종 이상의 금속 전구체를 적정몰비로 혼합하여 첨가한다. 이때 최종 번-오프(burn-off) 후 탄소의 수율을 고려하여 전체 탄소량을 90 ~ 50%로 하고 금속 전구체의 양을 10 ~ 50%로 한다.
전기방사를 이용한 나노섬유 제조 시 가장 중요한 요소는 조성물의 적절한 점도인데, 상기의 혼합고분자의 용액에 금속 전구체를 넣을 경우 점도가 증가하는 경향이 있으므로, 그것을 고려하면 고분자의 함량을 5 중량% 미만으로 제조하는 경우 조성물의 점도가 낮고, 30 중량%를 초과하는 경우 점도가 높기 때문에 방사하기에 적절하지 못하다.
이렇게 제조한 조성물을 다시 온도를 가하여 균질화한 후 주사바늘이 부착된 실린지에 넣고, 1 ~ 50kV, 바람직하게는 20 ~ 30kV의 전압을 가하여 전기방사하여 섬유를 제조하고, 상기의 방식으로 제조된 섬유를 220 ~ 300℃까지 승온시키고, 공기분위기 하에서 0.5 ~ 10시간 동안 열처리시킨다.
열처리 공정은 열가소성 수지를 열경화성 수지로 변환시켜 잇따른 고온 탄소화 및 활성화 공정에서 섬유의 융착 및 열용융을 방지하기 위해 섬유를 표면으로부터 산화처리하는 과정이다. 보통 열가소성 수지는 고온에서 탄소화 및 활성화시키면 용융되거나 섬유간의 융착이 발생하게 되는데 이를 방지하기 위해서 산화안정화 공정인 열처리를 통해 열경화성 수지로 변환시키는 것이다. 만일 열처리 공정을 행하지 않고 직접 탄소화나 활성화를 수행하면 개환 및 탈수소 등의 발열반응이 급격하게 진행되어 탄화되기보다는 연소된다. 이에 본 발명에서의 열처리 공정은 산소의 가교 또는 강한 수소결합을 형성시켜 후속하는 고온 탄소화나 활성화 공정에서 휘발분을 감소시키고 고상 탄소화 반응이 일어나게 할 수 있으므로 탄소화 과정에서도 섬유의 치수 및 구조가 유지된다.
본 발명에서의 탄화 공정은, 섬유의 치수 및 구조를 유지하기 위해 열처리 공정을 거친 후, 다시 휘발성의 비탄소 성분을 제거하거나 표면적을 증가시키기 위하여 특수 조건하에서 고온으로 원료물질을 가열해 줌으로써 수행된다. 이때 탄화 온도 및 시간은 임의의 조건으로 주어질 수 있다. 구체적으로 상기 열처리된 섬유를 불활성분위기 또는 진공상태에서 300 ~ 3000℃로 탄화시켜 나노사이즈의 금속산화물 또는 금속간화합물이 함유된 탄소나노섬유를 제조할 수 있다.
본 발명의 실시예들에 따라 결과적으로 생성되는 금속산화물 또는 금속간화합물이 함유된 탄소나노섬유 및 그 특성은 다음과 같다:
주석산화물 함유 탄소나노섬유는 직경이 50 ~ 300nm이고, 평균직경이 175nm이며, 탄소나노섬유 내외부에 1 ~ 40nm의 주석산화물이 고루 분산되어 있었다.
상기 주석산화물 함유 탄소나노섬유를 리튬이차전지의 음극으로 사용하였을 때 100 사이클 후의 방전용량이(discharge capacity) 약 649mAh/g이고 초기용량의 90% 이상이 유지됨으로써, 우수한 용량 및 사이클 특성을 보였다.
구리산화물 함유 탄소나노섬유는 직경이 100 ~ 200nm이고, 평균직경이 150nm이며, 탄소나노섬유 내외부에 1 ~ 50nm의 구리산화물이 고루 분산되어 있었다.
상기 구리산화물 함유 탄소나노섬유를 리튬이차전지의 음극으로 사용하였을 때 100 사이클 후의 방전용량이 약 470mAh/g이고 초기용량의 90% 이상이 유지됨으로써, 우수한 용량 및 사이클 특성을 보였다.
금속간화합물 함유 탄소나노섬유는 직경이 150 ~ 500nm이고, 평균직경이 200nm이며, 탄소나노섬유 내외부에 2 ~ 5nm의 금속간화합물이 고루 분산되어 있었다.
또한, 금속간화합물 함유 탄소나노섬유는 금속간화합물 이외에 그의 부산물로 금속산화물이 분산된 탄소나노섬유를 포함한다.
상기 금속간화합물 함유 탄소나노섬유를 리튬이차전지의 음극으로 사용하였을 때 초기 비용량(specific capacity)이 Ni3Sn2/탄소나노섬유의 경우 630mAh/g이고, Cu6Sn5의 경우 500 mAh/g이고, SnSb의 경우 780 mAh/g 이상이고, 100 사이클 동안 초기용량의 90% 이상이 유지됨으로써, 우수한 용량 및 사이클 특성을 보였다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.
하기 실험예에서 사용된 물성 측정방법은 다음과 같다.
- 직경분포 및 표면 이미지는 주사현미경(FE-SEM, Hitachi, S-4700)을 이용하여 측정하였다.
- 금속산화물 또는 금속간화합물의 분산도는 투과현미경(FE-TEM, JEM-2000 FXII JEOL, USA)을 이용하여 측정하였다.
- 금속산화물 또는 금속간화합물의 결정화도 및 미세구조분석은 엑스선회절분석(XRD, D/MAX Uitima , Rigaku, Japan) 및 엑스선흡수분광법(Extended Xray Absorption Fine Structure(EXAFS), Pohang Accelerator Laboratory, Korea)을 이용하여 측정하였다.
- 리튬이차전지의 음극으로써 충방전용량 및 사이클 특성은 리튬(Li)금속/세퍼레이터/금속산화물 또는 금속간화합물 함유 탄소나노섬유, LiPF6 1:1 vol%의 EC:DMC 액체전해질로 구성되는 코인셀을 제조하여 조사하였다.
- 상기 코인셀에 대해 충방전기를 이용하여 충방전실험을 실시하였다.
<주석산화물 함유 탄소나노섬유의 제조 및 특성 분석>
[실험예 1]
폴리아크릴로니트릴 수지(중량평균분자량 150,000) 0.4g 및 폴리피롤리돈 수지(분자량 1,700,000) 0.4g을 9g의 디메틸포름아미드(N,N-dimethylforamide) 용매에 가한 후 120℃에서 5시간 동안 용해하여 고분자용액(A)를 제조하였다. 실온에서 주석아세테이트(분자량 236.78) 0.1097g을 상기 고분자용액(A)에 첨가한 후 다시 120℃에서 5시간 동안 교반하였다.
상기 균질화된 주석 아세테이트/폴리아크릴로니트릴/폴리비닐피롤리돈 용액을 전기방사기를 이용하여 전기방사하였다. 이때 방사조건은 0.5mm의 주사바늘이 부착된 10㎖ 실린지에 상기 섬유전구체 용액을 넣고 20kV의 전압을 가하여 전기방사 하였다. 이때 주사바늘과 집전체간의 거리는 17cm로 유지하고 섬유전구체 용액의 용출속도는 1㎖/h로 하며, 집전체에서 섬유가 집적되면 부직포를 떼어내어 분리하였다.
분리된 주석 아세테이트/폴리아크릴로니트릴/폴리비닐피롤리돈으로 구성된 섬유웹을 280℃에서 공기분위기 하에 5시간 동안 열처리시켰다. 이때 1℃/분씩 승온시키고, 280℃에서 5시간 동안 유지하였다. 이후, 700, 800, 900℃에서 각각 1시간 동안 탄화공정을 수행하였다.
상기와 같이 온도별로 제조된 주석산화물 함유 탄소나노섬유의 주사현미경사진을 도 1(1a, 1b, 1c)에 나타내었다. 또한, 상기 제조된 주석산화물 함유 탄소나노섬유의 투과현미경사진을 도 2에 나타내었고, 주석산화물 함유 탄소나노섬유의 결정화도는 도 3a에 나타내었고 미세구조분석은 도 3b에 나타내었다. 도 4(4a, 4b, 4c)에 주석산화물 함유 탄소나노섬유를 전극으로 사용한 경우 전극의 충방전 결과를 나타내었다. 또한 도 5는 음극으로 사용하는 경우 사이클 특성을 나타내며, 도 6은 쿨롱효율을 나타낸다.
[실험예 2]
폴리아크릴로니트릴 수지(중량평균분자량 150,000) 0.8g 을 9g의 디메틸포름아미드(N,N-dimethylforamide) 용매 9g에 넣고 120℃에서 5시간 동안 용해하여 고분자용액(B)를 제조하였다. 실온에서 주석 아세테이트 0.2188g을 고분자용액(B)에 첨가한 후 다시 120에서 5시간동안 교반하였다.
상기 균질화된 주석아세테이트/폴리아크릴로니트릴 고분자 용액을 전기방사기를 이용하여 전기방사하였다. 이하 전기방사조건은 상기 실험예 1과 동일하다.
분리된 주석 아세테이트/폴리아크릴로니트릴로 구성된 섬유웹을 280℃에서 공기분위기 하에서 5시간 동안 열처리시켰다. 이때 1℃/분씩 승온시키고, 280℃에서 5시간 동안 유지하였다.
열처리 공정을 거친 후, 800℃에서 1시간 동안 탄화 공정을 수행하였다.
상기 제조된 주석 복합 탄소나노섬유(SnOx-PAN-800℃)의 주사현미경사진을 도 7에 나타내었다. 또한, 상기 제조된 주석 복합 탄소나노섬유의 투과현미경사진을 도 8에 나타내었고, 주석 복합 탄소나노섬유의 결정화도를 도 9에 나타내었고, 도 10에 주석 복합 탄소나노섬유를 전극으로 사용한 경우 전극의 충방전 사이클 특성를 나타내었다. 또한, 도 11은 음극으로 사용하는 경우 사이클 특성을 나타내며, 도 12는 쿨롱효율을 나타낸다.
도 1(1a, 1b, 1c)에 나타낸 바와 같이, 섬유의 직경은 700℃에서는 200nm이고 온도가 증가함에 따라 섬유직경이 더 작아지는 것을 알 수 있었다. 본 발명의 방법에 의해 제조된 주석산화물 함유 탄소나노섬유의 평균직경은 약 175nm였고, 섬유직경의 범위는 50 내지 300nm로 나타났다. 이는 일반적인 섬유제조법인 용융방사, 겔 상태 방사로부터 만들어지는 섬유의 직경이 약 10㎛인데 반해 약 50배 이상 가늘 뿐만 아니라 폴리아크릴로니트릴 단독방사한 활성탄소나노섬유에 비해 더 가는 극세사로 제조되었음을 알 수 있다. 또한 700℃에서는 탄소나노섬유 내부에 아직 주석산화물구조가 잘 발달되지 않다가 800℃에서는 섬유표면에 주석산화물이 나노사이즈로 발달되었음을 알 수 있었다. 또한 900℃에서는 나노사이즈로 분산된 주석산화물이 뭉침을 알 수 있었다.
또한, 도 2a는 700℃에서 제조된 주석산화물 함유 탄소나노섬유의 투과현미경사진을 나타내며, 주석산화물이 탄소나노섬유 내부에 2nm 이하로 미세하게 분산되어 있는 것을 알 수 있다. 도 2b와 도 2c는 각각 800℃와 900℃에서 제조한 주석산화물 함유 탄소나노섬유의 투과현미경사진을 나타내며, 도 2b와 도 2c에서 알 수 있듯이 주석산화물의 크기는 각각 4nm 및 40nm이하로 매우작고 분산도 역시 매우 좋음을 알 수 있었다. 따라서 탄소섬유내에 주석산화물 입자를 적절하게 분산시키기 위해서는 적절한 온도를 가해야 함을 알 수 있었다. 현재까지 비탄소계 리튬이차전지의 음극물질인 Sn, Si, Ag, Bi, SnOx, Cu2O, Fe2O3, Co3O4 등을 나노사이즈로 제조하거나 박막형태로 제조하는 연구들이 활발히 수행되고는 있으나 본 발명에 따른 제조방법으로 주석산화물을 탄소나노섬유 내부에 고분산하는 예는 없다. 또한 리튬이차전지 음극물질로써 사용함으로써 주석산화물의 발생되는 문제점을 완전히 극복하였다.
도 3a에 나타낸 바와 같이, 온도에 따라 결정화도에 차이가 나며 온도가 증가함에 따라 결정화도가 증가함을 알 수 있다. 또한 주석산화물 함유 탄소나노섬유의 결정화 정도를 나타내는 피크의 크기는 순수 주석산화물(SnO2)과 비교했을 때 매우 작은 값으로써, 탄소나노섬유가 주석산화물의 뭉침현상을 방지하는 역할을 함을 알수 있다. 그러나 엑스레이회절분석은 오직 결정화에 관한 정보만 제공하기 때문에 탄소나노섬유 내부에 수나노로 분산된 주석산화물의 정확한 구조를 알기 위해서는 엑스레이회절분석과 함께 엑스선흡수분광법을 이용한 미세구조(Fine Structure)분석이 필요하다. 엑스레이 흡수 미세구조 분석결과 700℃에서 제조된 주석산화물 함유 탄소나노섬유의 경우 탄소나노섬유 내부에 불균일(disordered)의 주석산화물이 형성되었으며, 800에서는 주석(Sn) 원자 주변에 6개의 산소(O2 -) 원자가팔면체를 이루는 불균일(disordered) 구조형태로 발달되어 있음을 확인하였다. 또한 900℃에서 제조된 주석산화물 함유 탄소나노섬유의 경우 불균일(disordered) 정도가 감소하여 거의 순수 주석산화물의 구조와 비슷해지는 것을 확인하였다.
도 4 및 도 5는 각 온도에서 제조된 주석산화물 함유 탄소나노섬유를 이차전지의 음극으로 사용한 경우의 충방전 결과 및 사이클 특성을 나타낸다. 충방전 결과에서 알 수 있듯이 800℃에서 제조된 주석산화물 함유 탄소나노섬유는 충방전 100사이클 동안 비가역용량이 가장 작은 것으로 나타났다. 이는 주석산화물의 입자 분포가 작고 또한 Li이온의 주석산화물에 삽입(insetion) 시 만들어지는 Li2O의 생성함에도 불구하고 탄소나노섬유가 전도도를 유지하여 가장 좋은 사이클 특성을 보이는 것으로 보인다.
도 6은 쿨롱효율을 나타내며 쿨롱효율 역시 첫 사이클에서 800℃에서 제조된 금속산화물 함유 탄소나노섬유가 가장 좋은 특성을 나타냈으며, 이는 상기 설명한 바와 같다.
도 7은 주석아세테이트/폴리아크릴로니트릴 용액을 전기방사한 후 열처리하고 800℃에서 탄화하여 제조한 주석 또는 주석산화물 함유 탄소나노섬유(SnOx-PAN-800℃)의 주사현미경사진을 나타낸다. 이때 제조된 주석 또는 주석산화물 함유 탄소나노섬유의 직경은 250nm로 폴리비닐피롤리돈을 첨가하여 방사한 시료에 비해 직경이 큼을 확인하였다.
또한 도 8의 투과현미경 사진에서와 같이 주석 또는 주석산화물 함유 탄소나노섬유의 경우 산화물의 입자가 커 탄소나노섬유의 내외부에 존재하는 것을 알 수 있으며, 이는 본 발명의 폴리비닐피롤리돈을 첨가하여 제조한 시료가 탄소나노섬유 내에 주석산화물 입자를 보다 고루 분산시키는 역할을 한 것임을 알 수 있다.
도 9는 주석아세테이트와 폴리아크릴로니트릴 혼합하여 제조한 주석 또는 주석산화물 함유 탄소나노섬유의 충방전 사이클 특성을 나타낸다. 도 9 및 도 10에서 알 수 있듯이 폴리아크릴로니트릴만 혼합하여 제조한 탄소나노섬유는 주석 또는 주석산화물 입자가 상대적으로 크기 때문에 음극으로 사용하는 경우 폴리비닐피롤리돈을 첨가하여 제조한 주석산화물 함유 탄소나노섬유에 비해 사이클 특성이 떨어지는 것을 알 수 있다. 상기에서 설명한 바와 같이 주석산화물이 고분산됨으로써 전기화학적 활성사이트가 증가하고 또한 충방전 과정 중에 생성되는 Li2O의 생성에도 불구하고 탄소나노섬유가 전기전도도를 유지시키며, 주석산화물 입자의 뭉침 현상을 완충(buffering)해 줌으로써 이와 같이 전기화학적 특성이 매우 우수한 것으로 사료된다.
따라서, 상기 실시예의 일 양태로 폴리비닐피롤리돈과 같은 공여 원자로서 산소원자를 갖는 화합물의 첨가여부, 전기방사 시 탄소 전구체 물질 및 상기 화합물의 함량, 주석 전구체의 함량을 조절하면 리튬이차전지의 음극으로써 기존 그라파이트를 대체할 정도의 전기화학적으로 우수한 특성을 보이는 주석산화물 함유 탄소나노섬유 복합체를 제조할 수 있음을 알 수 있다.
<구리산화물 함유 탄소나노섬유의 제조 및 특성 분석>
[실험예 3]
폴리아크릴로니트릴 수지(중량평균분자량 150,000) 0.4g 및 폴리피롤리돈 수지(분자량 1,700,000) 0.4g을 9g의 디메틸포름아미드(N,N-dimethylforamide) 용매에 가한 후 120℃에서 5시간 동안 용해하여 고분자용액(A)를 제조하였다. 실온에서 구리(II)아세테이트(분자량이 181.64) 0.1572g을 상기 고분자용액(A)에 첨가한 후 다시 120℃에서 3시간 동안 교반하였다.
상기 균질화된 구리(II)아세테이트/폴리아크릴로니트릴/폴리비닐피롤리돈 용액을 전기방사기를 이용하여 전기방사하였다. 이때 방사조건은 0.5mm의 주사바늘이 부착된 10㎖ 실린지에 상기 섬유전구체 용액을 넣고 20kV의 전압을 가하여 전기방사 하였다. 이때 주사바늘과 집전체간의 거리는 17cm로 유지하고 섬유전구체 용액의 용출속도는 1㎖/h로 하며, 집전체에서 섬유가 집적되면 부직포를 떼어내어 분리하였다.
분리된 구리(II)아세테이트/폴리아크릴로니트릴/폴리비닐피롤리돈으로 구성된 섬유웹을 230℃에서 공기분위기하에 5시간 동안 열처리시켰다. 이때 1℃/분씩 승온시키고, 230℃에서 5시간 동안 유지하였다.
충분히 산화안정화를 거친 후, 600℃, 700℃, 800℃, 900℃에서 각각 1시간 동안 탄화공정을 수행하였다.
상기와 같이 온도별로 제조된 구리산화물 함유 탄소나노섬유(Cu2O_PANPVP_CNF)의 주사현미경사진을 도 11(11a, 11b, 11c, 11d)에 나타내었다. 또한, 상기 제조된 구리산화물 함유 탄소나노섬유의 투과현미경사진을 도 12(12a, 12b, 12c, 12d)에 나타내었고, 구리산화물 함유 탄소나노섬유의 결정화도는 도 13a에 나타내었고, 구리산화물의 미세구조분석은 도 13b에 나타내었다. 또한 도 14(14a, 14b, 14c, 14d)에 구리산화물 함유 탄소나노섬유를 전극으로 사용한 경우 전극의 충방전 결과를 나타내었다. 또한 도 15는 음극으로 사용하는 경우 사이클 특성을 나타내며, 도 16은 쿨롱효율을 나타내었다.
[실험예 4]
폴리아크릴로니트릴 수지(중량평균분자량 150,000) 0.8g 을 9g의 디메틸포름아미드(N,N-dimethylforamide) 용매에 넣고 120℃에서 5시간 동안 용해하여 고분자용액(B)를 제조하였다. 실온에서 구리(II)아세테이트 0.2144g을 고분자용액(B)에 첨가한 후 다시 120℃에서 3시간동안 교반하였다.
상기 균질화된 구리(II)아세테이트/폴리아크릴로니트릴 고분자 용액을 전기방사기를 이용하여 전기방사하였다. 이하 전기방사조건은 상기 실험예 3과 동일하다.
분리된 구리(II)아세테이트/폴리아크릴로니트릴로 구성된 섬유웹을 230℃에서 공기분위기 하에서 5시간 동안 열처리시켰다. 이때 1℃/분씩 승온시키고, 230℃에서 5시간 동안 유지하였다.
열처리 공정을 거친 후, 800℃에서 1시간 동안 탄화 공정을 수행하였다.
상기 제조된 구리 함유 탄소나노섬유(CuxO-PAN-800℃)의 주사현미경사진을 도 17에 나타내었다. 또한, 상기 제조된 구리 함유 탄소나노섬유의 투과현미경사진을 도 18에 나타내었고, 구리 함유 탄소나노섬유의 결정화도를 도 19에 나타내었고, 도 20에 구리 함유 탄소나노섬유를 전극으로 사용한 경우 전극의 충방전 사이클 특성를 나타내었다. 또한, 도 21은 음극으로 사용하는 경우 사이클 특성을 나타내며, 도 22는 쿨롱효율을 나타내었다.
도 11(11a, 11b, 11c, 11d)에 나타낸 바와 같이, 섬유의 직경은 600℃에서는 200nm이고 온도가 증가함에 따라 섬유직경이 더 작아지는 것을 알 수 있었다. 본 발명의 방법에 의해 제조된 구리산화물 함유 탄소나노섬유의 평균직경은 약 150nm였고, 섬유직경의 범위는 100 내지 200nm로 나타났다. 이는 일반적인 섬유제조법인 용융방사로부터 만들어지는 섬유의 직경이 약 10㎛인데 반해 약 50배 이상 가늘 뿐만 아니라 폴리아크릴로니트릴 단독방사 한 활성탄소나노섬유에 비해 더 가는 극세사로 제조되었음을 알 수 있다. 또한 도 12(12a, 12b, 12c, 12d)에 나타낸 바로부터, 각 온도에 따른 탄소나노섬유 내부의 구리산화물의 크기 및 분산도가 달라짐을 알 수 있었다. 600℃에서는 탄소나노섬유 내부에 아직 구리산화물 구조가 잘 발달되지 않다가(도 12a), 700℃에서 구리산화물이 1nm 정도로 발달하였다(도 12b). 또한 800℃에서는 2 ~ 5nm 정도로 발달되었음을 알 수 있었고(도 12c), 900℃에서는 50nm이상으로 크게 뭉침을 알 수 있었다(도 12d). 따라서, 탄소섬유내에 구리산화물 입자를 적절하게 분산시키기 위해서는 적절한 온도를 가해야 함을 알 수 있었다.
이와 같이 온도에 따른 금속 혹은 금속산화물의 소결(sintering)현상에 대해서는 두 가지 이론이 주로 사용된다. 그중 하나는 전체 결정체(ctystallite)가 담체 표면 위를 이동하다가 충돌에 의해서 결정체들이 응집하는 것이고(결정체 이동기구), 또 다른 하나는 금속원자(또는 분자)들이 결정체에서 떨어져 나와서 결정체들에 충돌되어 포획되는 것이다(원자이동기구). 이러한 금속 혹은 금속산화물의 소결은 입자의 표면적을 줄이기 때문에 주로 표면반응을 하는 촉매 혹은 이차전지 전극물질의 경우 소결을 방지하는 것이 성능의 향상에 직접적으로 영향을 미친다. 물질의 제조과정에서 소결현상에 영향을 미치는 인자로는 온도, 시간, 금속함량(metal loading), 주위기체, 금속입자크기의 초기 분포, 담체 등이 있으며, 금속함량과 온도, 열처리 시간 등을 적절하게 조절하면 금속입자의 소결을 방지할 수 있다.
본 발명은 온도를 적절히 조절하여 구리산화물이 나노크기로 고르게 분산된 탄소나노섬유를 제조하고, 이를 리튬이차전지의 음극물질로 사용함으로써 구리산화물이 충방전과정이 진행되더라도 소결되는 현상을 억제하였다.
또한, 전기전도도가 우수한 탄소나노섬유를 구리산화물과 복합화시킴으로써 기존 리튬이차전지 음극물질로써 구리산화물 단독사용 시 발생되는 문제를 해결하였다.
도 13a는 구리산화물 함유 탄소나노섬유의 결정화도를 나타내며 도 13b는 미세구조를 나타낸다. 탄소나노섬유 내부에 분산된 구리산화물의 경우 수나노사이즈로 탄소나노섬유 내부에 분산되어 있기 때문에 엑스레이회절분석으로는 그 정확한 구조분석이 어렵다. 따라서 엑스레이회절분석과 함께 엑스선흡수분광법을 이용한 미세구조(Fine Structure)분석이 동시에 이루어져야 한다. 엑스레이회절분석 결과에서 온도가 증가함에 따라 구리산화물 결정성에 관한 피크의 위치 및 피크의 강도가 변화하는 것을 알 수 있다. 600℃에서 제조된 탄소나노섬유에서는 구리산화물에 관한 어떠한 피크도 검출되지 않았으며, 700℃의 경우는 CuO(구리(II)옥사이드)와 Cu2O(구리(I)옥사이드)에 관한 작은 피크가 검출되었다. 또한 800℃에서 제조된 탄소나노섬유의 경우 오직 Cu2O에 관한 피크가 검출되었으며, 900℃에서 제조된 시료의 경우 매우 큰 Cu2O 결정성 피크와 Cu2O의 분해에 따른 Cu와 CuO에 대한 작은 피크가 검출되었다. 미세구조 분석결과 600℃의 경우 무정형의 구리산화물가 형성되었으며, 700℃에서는 구리산화물가 불균일(disordered)형태의 CuO, 800℃에서는 불균일 형태의 CuO와 Cu2O 중간체적인 구조, 900℃에서는 Cu2O의 구조가 발달 되어있음을 확인하였다.
도 14(14a, 14b, 14c, 14d) 및 도 15는 각 온도에서 제조된 구리산화물 함유 탄소나노섬유를 이차전지의 음극으로 사용한 경우 충방전 결과 및 사이클 특성을 나타낸다. 충방전 결과에서 알 수 있는 바와 같이 800℃에서 제조된 구리산화물 함유 탄소나노섬유가 충방전 100 사이클 동안 비가역용량이 가장 작은 것으로 나타났다. 이는 구리산화물의 입자 분포가 작고, 또한 리튬(Li)이온이 구리산화물에 삽입되어 만들어지는 Li2O의 생성에도 불구하고 탄소나노섬유의 높은 전기전도도로 인해Li2O의 분해를 촉진하고 또한 부피팽창을 방지하여 가장 좋은 사이클 특성을 나타내는 것으로 보인다.
도 16은 쿨롱효율을 나타내는데, 쿨롱효율 역시 첫 사이클에 있어서 800℃에서 제조된 구리산화물 함유 탄소나노섬유가 가장 좋은 특성을 나타내었고, 이는 상기 설명한 바와 같다.
도 17은 실험예 4에서와 같이 구리(II)아세테이트/폴리아크릴로니트릴 용액을 전기방사하여 열처리한 후, 800℃에서 탄화한 구리 함유 탄소나노섬유(CuxO-PAN-800℃)의 주사현미경사진을 나타낸다.
도 18에서 폴리아크릴로니트릴 단독으로 방사한 탄소섬유의 직경은 250nm로 폴리비닐피롤리돈을 첨가하여 방사한 시료에 비해 직경이 큼을 알 수 있었다. 또한 도 18의 투과현미경 사진으로부터 매우 큰 입자가 탄소나노섬유의 내부가 아닌 외부에 존재하는 것을 알 수 있었다. 이는 실험예 3에서와 같이 폴리비닐피롤리돈을 첨가하여 제조한 시료와는 구별되는 결과로, 본 발명에 따른 구리산화물 함유 탄소나노섬유는 폴리비닐피롤리돈이 탄소나노섬유 내부에 구리산화물 입자를 보다 고루게 분산시키는 역할을 한다는 것을 알 수 있다.
도 19는 구리(II)아세테이트와 폴리아크릴로니트릴을 혼합하여 제조한 구리 함유 탄소나노섬유의 결정화도를 나타낸 그래프로서 구리가 금속상태로 존재하며 결정성이 매우 발달되어있음을 확인할 수 있다.
도 20은 구리(II)아세테이트와 폴리아크릴로니트릴을 혼합하여 제조한 구리 함유 탄소나노섬유의 충방전 사이클 특성을 나타낸다. 도 20 및 도 21에서 알 수 있는 바와 같이, 폴리아크릴로니트릴만 혼합하여 제조한 탄소나노섬유는 내부에 구리금속이 형성되기 때문에 음극으로 사용하는 경우 사이클 진행될수록 용량이 감소하는 것을 알 수 있다.
또한 도 22에서 쿨롱효율 역시 구리(II)아세테이트와 폴리아크릴로니트릴을 혼합하여 제조한 구리 함유 탄소나노섬유의 경우 본 발명의 폴리비닐피롤리돈을 첨가 탄소나노섬유에 비해 그 값이 낮음을 알 수 있다. 이는 상기에서 설명한 바와 같이 폴리비닐피롤리돈을 첨가할 경우 구리산화물이 고 분산됨으로써 전기화학적 활성사이트가 증가하고, 또한 충방전 과정 중에 생성되는 Li2O에도 불구하고 탄소나노섬유가 전기전도도를 유지시키며 구리산화물 입자의 뭉침 현상을 완충해 줌으로써 이와 같이 전기화학적 특성이 매우 우수한 것으로 사료된다.
따라서, 상기 실시예의 일양태로 폴리비닐피롤리돈과 같은 공여 원자로서 산소원자를 갖는 화합물의 첨가여부, 전기방사 시 탄소 전구체 물질 및 상기 과 폴리비닐피롤리돈의 함량 및 구리 전구체의 함량을 조절한다면, 리튬이차전지의 음극으로써 기존 그라파이트를 대체할 정도의 전기화학적으로 우수한 특성을 가진 구리산화물 탄소나노섬유를 제조할 수 있다.
<금속간화합물 함유 탄소나노섬유의 제조 및 특성 분석>
[실험예 5]
폴리아크릴로니트릴 수지(중량평균분자량 150,000) 0.4g 및 폴리피롤리돈 수지(분자량 1,700,000) 0.4g을 9g의 디메틸포름아미드(N,N-dimethylforamide) 용매에 가한 후 120℃에서 5시간 동안 용해하여 고분자용액(A)를 제조하였다. 실온에서 주석(II) 아세테이트(분자량 236.78), 구리(II) 아세테이트(분자량 181.64), 안티몬(III) 아세테이트(분자량 298.84), 니켈(II) 아세테이트(분자량 248.84)를 하기 [표 1]과 같이 Ni3Sn2(3:2mol), SnSb(1:1mol), Cu6Sn5(6:5) 몰비로 혼합하여 상기 고분자용액(A)에 첨가한 후 다시 120℃에서 5시간 동안 교반하였다.
표 1
금속간화합물 중량 (g) 혼합중량
주석아세테이트 니켈아세테이트 구리아세테이트 안티몬아세테이트
Ni3Sn2 0.0629 0.0991 0.162
Cu6Sn5 0.0832 0.0766 0.159
SnSb 0.0541 0.068 0.122
상기 균질화된 주석(II) 아세테이트, 구리(II) 아세테이트, 안티몬(III) 아세테이트, 니켈(II) 아세테이트를 폴리아크릴로니트릴/폴리비닐피롤리돈 용액에 첨가한 후 균질화하고 균질화된 용액을 전기방사기를 이용하여 전기방사하였다. 이때 방사조건은 0.5mm의 주사바늘이 부착된 10㎖ 실린지에 상기 섬유전구체 용액을 넣고 20kV의 전압을 가하여 전기방사 하였다. 이때 주사바늘과 집전체간의 거리는 17cm로 유지하고 섬유전구체 용액의 용출속도는 1㎖/h로 하며, 집전체에서 섬유가 집적되면 부직포를 떼어내어 분리하였다.
분리된 주석(II) 아세테이트/구리(II) 아세테이트, 주석(II) 아세테이트/안티몬(III) 아세테이트, 주석(II) 아세테이트/니켈(II) 아세테이트 및 폴리아크릴로니트릴/폴리비닐피롤리돈으로 구성된 섬유웹을 280℃에서 공기분위기하에 5시간 동안 산화안정화시켰다. 이때 1℃/분씩 승온시키고, 280℃에서 5시간 동안 유지하였다.
충분히 산화안정화를 거친 후, 600℃, 700℃, 800℃에서 각각 1시간 동안 탄화공정을 수행하였다.
상기와 같이 온도별로 제조된 Ni3Sn2 함유 탄소나노섬유의 주사현미경사진을 도 23(23a, 23b, 23c)에 나타내었다. 또한, 각각 온도에서 제조된 Ni3Sn2 함유 탄소나노섬유의 결정화도는 도 24에 나타내었고, 도 25(25a, 25b, 25c)에 Ni3Sn2 함유 탄소나노섬유를 전극으로 사용한 경우 전극의 충방전 결과를 나타내었다. 또한 도 26은 음극으로 사용하는 경우 사이클 특성을 나타내며, 도 27은 쿨롱효율을 나타낸다.
도 23(23a, 23b, 23c)에 나타낸 바와 같이, 섬유의 직경은 600℃, 700℃, 800℃에서 약 200nm 정도이며, 온도가 증가함에 따라 확연히 입자들이 뭉침을 알 수 있다. 이는 일반적인 섬유제조법인 용융방사, 용액방사, 겔 상태 방사로부터 만들어지는 섬유의 직경이 약 10㎛ 인데 반해 약 50배 이상 가늘 뿐만 아니라 폴리아크릴로니트릴 단독방사한 활성탄소나노섬유에 비해 더 가는 극세사로 제조되었음을 알 수 있다. 이러한 금속 또는 금속간화합물의 온도에 따른 입자의 뭉침, 즉 소결은 입자의 표면적을 줄이기 때문에 주로 표면반응을 하는 촉매 또는 이차전지 전극물질의 경우 소결을 방지하는 것이 성능의 향상에 직접적으로 영향을 미친다. 따라서 적절한 금속함량과 온도, 열처리 시간 등을 조절하여 금속간화합물의 소결을 방지하는 것이 좋다. 이때 본 발명에 따른 금속간화합물 함유 탄소나노섬유는 온도가 올라가더라고 금속간화합물 단독 제조시에 비해 소결되는 현상을 방지하는 것으로 판단된다. 또한 적절한 온도 조절에 의해 금속간화합물이 나노크기로 고르게 분산된 탄소나노섬유를 리튬이차전지의 음극물질로써 사용하는 경우 충방전 과정이 진행되더라도 소결되는 현상을 억제하는 것으로 보인다.
도 24에서 보이는 바와 같이, 온도에 따라 결정화도에 차이가 나며 온도가 증가함에 따라 결정화도가 증가함을 알 수 있다. 이는 적절한 온도조건은 금속간화합물의 결정화도에 영향을 미침을 의미하다. 또한 800℃에서는 금속간화합물 및 일부 소량의 주석산화물 피크가 검출되는 것으로 보아 온도조건에 따라 금속간화합물 및 주석산화물의 함량을 적절하게 제조할 수 있음을 알 수 있다.
도 24의 결과에서 주석산화물이 생성되었다는 것은 전구체를 일정 몰비로 혼합하여 Ni3Sn2만 단일상으로 제조하고자 하였으나 폴리비닐피롤리돈을 첨가하였음에도 불구하고 폴리머 용액내에서 Ni3Sn2 단일상이 형성이 되지 않음을 의미한다. 보통 Ni3Sn2의 단일상은 Ni 및 Sn 전구체를 일정용매에 첨가하여 200℃ 이상의 온도에서 6시간 이상 교반을 하여야 잘 형성이 되는 것으로 보고되고 있다. 그러나, 본 발명에 따른 금속간화합물 함유 탄소나노섬유 제조시 폴리아크릴로니트릴/폴리비닐피롤리돈 혼합 고분자 용액안에 금속 전구체를 첨가하여 200℃ 이상으로 가열시 용매인 DMF의 증발이 일어나며, 고분자의 분해가 일어나기 때문에 Ni3Sn2의 단일상의 제조는 어려웠다. 이에 탄소나노섬유 내부에 Ni3Sn2, Ni, Sn, NiO, SnO2 등이 존재할 것으로 보인다. 이하 다른 금속간화합물도 이와 같다.
도 26 및 도 27은 각 온도에서 제조된 Ni3Sn2 함유 탄소나노섬유를 이차전지의 음극으로 사용했을 때의 충방전 결과 및 사이클 특성을 나타낸다. 충방전 결과에서 알 수 있듯이 700℃에서 제조한 금속간화합물 함유 탄소나노섬유는 충방전 100 사이클 동안 비가역용량이 가장 작은 것으로 나타났다. 이는 700℃에서 Ni3Sn2 입자 분포가 작고 전기전도도가 우수하며 또한 Li 이온의 Ni3Sn2에 삽입되는 경우 만들어지는 LiO2의 생성에도 불구하고 가장 좋은 사이클 특성을 보이는 것으로 생각된다. 그러나 800℃ 이상에서는 오히려 사이클 특성이 나쁜 것은 입자가 뭉쳐있어 Li 이온의 충방전이 원활하지 않기 때문으로 생각된다. 도 27은 쿨롱효율을 나타내며, 쿨롱효율 역시 첫 사이클에서 700℃에서 제조한 Ni3Sn2 함유 탄소나노섬유가 가장 좋은 특성을 나타냈으며 이는 상기 설명한 바와 같다.
이에 폴리비닐피롤리돈과 금속 양이온의 상호작용, 폴리비닐피롤리돈을 사용한 금속환원, 폴리비닐피롤리돈을 이용한 전기방사, 폴리아크릴로니트릴과 금속 전구체를 혼합하는 등 여러 가지 논문 및 특허는 발행되었으나, 금속 전구체들을 일정 몰비로 혼합하여 폴리아크릴로니트릴과 폴리비닐피롤리돈이 혼합된 고분자 용액에 첨가하여 제조된 금속간화합물 함유 탄소나노섬유에 대한 연구는 시행된 바 없다. 또한 금속간화합물과 탄소나노섬유를 이차전지음극으로 사용한 예가 없다.
도 28은 실험예 5에 따라 제조한 Cu6Sn5 함유 탄소나노섬유의 온도에 따른 주사현미경사진을 나타낸다. 도 28에서 700℃에서 제조된 Cu6Sn5 함유 탄소나노섬유의 섬유직경은 약 200nm 였으며, 온도가 800℃, 900℃로 올라감에 따라 섬유직경이 점점 작아져서 900℃에서 제조된 탄소나노섬유는 100nm의 직경을 가짐을 확인할 수 있다.
도 29는 각 온도에서 제조된 Cu6Sn5 함유 탄소나노섬유의 결정화도를 나타내며, 900℃에서 열처리하더라도 결정화가 진행되지 않았음을 알 수 있다. 이는 주석 양이온과 구리 양이온간의 이온반경의 차이로 인해 금속간의 화합물의 생성이 용이하지 않아서 온도가 증가하여도 결정화도가 증가하지 않기 때문이다.
도 31은 Cu6Sn5 함유 탄소나노섬유의 충방전 그래프를 나타내며, 700℃에서 제조된 Cu6Sn5 함유 탄소나노섬유의 충방전 특성이 가장 우수함을 알 수 있다.
도 31 및 도 32는 각각 사이클 특성과 쿨롱효율을 나타내며, 700℃에서 제조된 Cu6Sn5 함유 탄소나노섬유의 사이클 특성과 쿨롱효율이 가장 우수함을 알 수 있다. 따라서, Cu6Sn5 함유 탄소나노섬유의 제조시 적절한 온도조건은 리튬이차전지 음극으로 사용했을 때 사이클안정성과 충방전 성능, 쿨롱효율에 영향이 미침을 알 수 있다.
또한, 도 33은 각 온도에서 제조된 SnSb 함유 탄소나노섬유의 주사현미경사진을 나타낸다. 도 34는 각 온도에서 제조된 SnSb 함유 탄소나노섬유의 결정화도를 나타낸다. 도 35는 SnSb 함유 탄소나노섬유를 전극으로 사용하는 경우의 전극의 충방전 결과를 나타낸다. 또한, 도 36은 음극으로 사용하는 경우 사이클 특성을 나타내며, 도 37은 쿨롱효율을 나타낸다.
도 33에서 볼 수 있듯이 800℃가 되었음에도 불구하고 입자의 뭉침현상이 감소됨을 알 수 있고, 섬유의 직경은 약 200nm 이하로 비드 없이 잘 제조되었음을 알 수 있다. 도 34에서 보이는 것과 같이 결정화도 역시 잘 발달하지 않았으며, 도 35에서 리튬음극으로 사용했을 때 충방전 특성이 매우 우수함을 알 수 있다. 이는 기존 SnSb 화합물의 결과와는 비교할 수 없을 정도로 매우 우수한 결과로써 기존 그라파이트를 대체할 가능성이 높다. 도 36은 SnSb 함유 탄소나노섬유의 사이클 특성을 나타내며 780mAh/g 이상의 높은 충방전 사이클 특성을 보임을 알 수 있다. 또한, 도 37은 SnSb 함유 탄소나노섬유의 쿨롱효율을 나타내는 그래프로써 첫 번째 쿨롱효율이 60 이상으로 기존 SnSb 화합물에 비해 우수함을 알 수 있다.
따라서, 상기 결과로부터 설명한 바와 같이, 금속간화합물 함유 탄소나노섬유는 금속간화합물의 고분산을 가능케하고 이렇게 고분산된 금속간화합물은 전기화학적 활성사이트가 증가하고 금속간화합물의 불활성 금속이 충방전 과정이 진행되어도 입자의 뭉침 현상을 완충해 줌으로써 리튬이차전지 음극물질로써 매우 우수한 특성을 보이는 것으로 판단된다.
그러므로, 본 발명에 따른 방법에 의해 제조된 금속간화합물 함유 탄소나노섬유는 리튬이차전지의 음극으로써 기존 그라파이트를 대체할 정도의 전기화학적으로 우수한 특성을 나타낸다.

Claims (15)

  1. 탄소섬유 전구체 물질에 주석 전구체 또는 구리 전구체를 첨가하여 섬유전구체 조성물을 제조하는 단계;
    상기 섬유전구체 조성물을 방사하여 섬유를 제조하는 단계; 및
    상기 섬유를 열처리시키는 단계;를 포함하는 금속산화물 함유 탄소나노섬유의 제조방법.
  2. 탄소섬유 전구체 물질에 2 이상의 금속 전구체를 첨가하여 섬유전구체 조성물을 제조하는 단계;
    상기 섬유전구체 조성물을 방사하여 섬유를 제조하는 단계; 및
    상기 섬유를 열처리시키는 단계;를 포함하는 금속간화합물 함유 탄소나노섬유의 제조방법.
  3. 제1항 또는 제2항에 있어서,
    상기 열처리된 섬유를 탄화시키는 단계 및 탄화된 섬유를 활성화하는 단계를 더 포함하는 제조방법.
  4. 제1항 또는 제2항에 있어서,
    상기 섬유전구체 조성물은 폴리비닐피롤리돈 수지를 더 포함하는 제조방법.
  5. 제1항 또는 제2항에 있어서,
    상기 섬유전구체 조성물은 공여 원자로서 산소원자를 갖는 화합물을 더 포함하는 제조방법.
  6. 제5항에 있어서,
    상기 공여 원자로서 산소원자를 갖는 화합물은 -RO, -C=O-, -CO-, -SO-, -O-R-CO-, -O-R-O-, -OC-R-CO-, -NH-R-CO- 및 -NH-R-O- (이때, R은 C1~C20의 알킬기, C6~C20의 아릴기 또는 치환된 아릴기이다.) 중에서 선택되는 어느 하나 또는 둘 이상의 기능기를 포함하는 것을 특징으로 하는 제조방법.
  7. 제1항 또는 제2항에 있어서,
    상기 탄소섬유 전구체 물질은 폴리아크릴로니트릴, 폴리퍼퓨릴 알콜, 셀룰로오스, 글루코오스, 폴리비닐클로라이드, 폴리아크릴산, 폴리락트산, 폴리에틸렌옥사이드, 폴리피롤, 폴리이미드, 폴리이미드, 폴리아미드이미드, 폴리아라미드, 폴리벤질이미다졸, 폴리아닐린, 페놀수지 및 피치류로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 제조방법.
  8. 제1항 또는 제2항에 있어서,
    상기 섬유를 열처리시키는 단계는 공기분위기 하, 상온에서 220 ~ 300℃까지 0.1~10℃/분으로 승온시킨 후, 최종온도에서 0.5 ~ 5시간 동안 실시하는 것을 특징으로 하는 제조방법.
  9. 제1항 또는 제2항에 있어서,
    상기 섬유전구체 조성물은 고형분 함량이 5 ~ 50 중량%인 것을 특징으로 하는 제조방법.
  10. 제1항에 있어서,
    상기 주석 전구체는 주석 질산염, 주석 염화염, 주석 아세트산염, 주석 알콕시화물 또는 이들의 혼합물로부터 하나 이상 선택되는 것을 특징으로 하는 제조방법.
  11. 제1항에 있어서,
    상기 구리 전구체는 구리 질산염, 구리 염화염, 구리 아세트산염, 구리 알콕시화물 또는 이들의 혼합물로부터 하나 이상 선택되는 것을 특징으로 하는 제조방법.
  12. 제2항에 있어서,
    상기 금속 전구체는 주석(Sn), 구리(Cu), 안티몬(Sb), 니켈(Ni), 철(Fe), 코발트(Co), 티타늄(Ti), 마그네슘(Mg), 망간(Mn), 칼슘(Ca), 아연(Zn), 인듐(In), 몰리브데늄(Mo) 텅스텐(W), 알루미늄(Al) 및 실리콘(Si) 이온을 함유하는 금속 전구체로 이루어진 군에서 2 이상 선택되는 것을 특징으로 하는 제조방법.
  13. 제1항 또는 제2항에 있어서,
    상기 용매는 상기 수지가 용해될 수 있는 N,N-디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 테트라하이드로퓨란(THF), 디메틸설폭사이드(DMSO), 감마부티로락톤, N-메틸피롤리돈, 클로로포름, 톨루엔 및 아세톤으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 제조방법.
  14. 제1항 내지 제13항 중 어느 한 항에 따른 제조방법으로 제조된 탄소나노섬유.
  15. 제1항 내지 제13항 중 어느 한 항에 따른 제조방법으로 제조된 탄소나노섬유로 이루어진 복합 섬유웹을 이용한 리튬이차전지 전극물질.
PCT/KR2011/005041 2010-07-08 2011-07-08 금속산화물 또는 금속간화합물 함유 탄소나노섬유, 그 제조방법 및 이를 이용한 리튬이차전지 WO2012005556A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/809,155 US20130126794A1 (en) 2010-07-08 2011-07-08 Carbon nanofiber containing metal oxide or intermetallic compound, preparation method thereof, and lithium secondary battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0065660 2010-07-08
KR20100065660 2010-07-08

Publications (2)

Publication Number Publication Date
WO2012005556A2 true WO2012005556A2 (ko) 2012-01-12
WO2012005556A3 WO2012005556A3 (ko) 2012-05-03

Family

ID=45441687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005041 WO2012005556A2 (ko) 2010-07-08 2011-07-08 금속산화물 또는 금속간화합물 함유 탄소나노섬유, 그 제조방법 및 이를 이용한 리튬이차전지

Country Status (3)

Country Link
US (1) US20130126794A1 (ko)
KR (1) KR101308740B1 (ko)
WO (1) WO2012005556A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266854A1 (en) * 2012-04-04 2013-10-10 Gwangju Institute Of Science And Technology ELECTRODE FOR Li SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME AND Li SECONDARY BATTERY
WO2014142381A1 (ko) * 2013-03-12 2014-09-18 계명대학교 산학협력단 내오염성 나노섬유 분리막 제조방법 및 이에 의해 제조된 내오염성 나노섬유 분리막
CN107904699A (zh) * 2017-12-21 2018-04-13 中冶焦耐(大连)工程技术有限公司 一种煤沥青基碳纤维的制备方法及应用
KR20190065172A (ko) * 2017-12-01 2019-06-11 주식회사 엘지화학 음극 및 이를 포함하는 이차전지
CN110034286A (zh) * 2019-03-25 2019-07-19 天津大学 制备三氧化二铁-铋金属碳纤维复合材料及方法
CN113839046A (zh) * 2021-08-04 2021-12-24 西北工业大学 一种用于柔性钠金属电池的复合基底及制备方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2509143A4 (en) * 2009-12-04 2015-09-02 Route Jj Co Ltd ACTIVE ANODE MATERIAL PRECURSOR AND ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM BATTERY COMPRISING HOLLOW NANOFIBROUS CARBON AND PRODUCTION METHOD THEREOF
KR101407236B1 (ko) * 2012-05-23 2014-06-13 전남대학교산학협력단 그래핀 함유 흑연나노섬유 및 그 제조방법, 이를 포함하는 리튬이차전지의 전극물질
KR101438065B1 (ko) * 2012-12-14 2014-09-15 전남대학교산학협력단 하이브리드나노복합체, 상기 복합체 제조방법 및 상기 하이브리드나노복합체를 포함하는 슈퍼캐패시터용 전극
WO2015103548A1 (en) * 2014-01-03 2015-07-09 Quantumscape Corporation Thermal management system for vehicles with an electric powertrain
KR101468018B1 (ko) * 2013-05-21 2014-12-02 한국생산기술연구원 전기방사에 의해 제조된 탄소 복합 섬유를 포함하는 전자파 차폐 시트 및 이의 제조방법
CN103422192B (zh) * 2013-08-05 2015-10-07 江苏科技大学 Fe-Co合金/C复合纳米纤维微波吸收剂、制备方法及其应用
WO2015061443A1 (en) 2013-10-25 2015-04-30 Quantumscape Corporation Thermal and electrical management of battery packs
US9771669B2 (en) 2013-11-08 2017-09-26 Georgia Tech Research Corporation Use, stabilization and carbonization of polyacrylonitrile/carbon composite fibers
ES2567647B1 (es) * 2014-09-23 2017-01-31 Acondicionamiento Tarrasense Procedimiento para la preparación de skutteruditas nanoestructuradas del tipo cosb3
JP2017531104A (ja) 2014-10-08 2017-10-19 ジョージア テック リサーチ コーポレイション 高強度かつ高弾性率の炭素繊維
CN104332638B (zh) * 2014-10-20 2016-10-05 中国科学院金属研究所 全钒液流电池用钨基催化剂/纳米碳纤维复合电极的制备方法
US10682698B2 (en) 2015-07-28 2020-06-16 Seoul National University R&Db Foundation Metal-carbon nanofiber and production method thereof
KR101795146B1 (ko) 2015-09-16 2017-11-07 현대자동차주식회사 나노튜브 형태의 리튬공기전지 양극용 금속간 화합물 촉매 및 이의 제조방법
CN109155430A (zh) * 2016-06-01 2019-01-04 通用汽车环球科技运作有限责任公司 锂离子电池组和电容器在材料和电极水平上的杂合
US10319994B2 (en) * 2016-06-01 2019-06-11 Board Of Regents Of The University Of Texas System Method and use of ceramic/carbon composite nanofibers as an anode for lithium-ion and sodium-ion batteries
US11915871B2 (en) * 2017-03-30 2024-02-27 The University Of North Carolina At Greensboro Separator-free energy storage devices and methods
CN109232008A (zh) * 2018-11-12 2019-01-18 武汉科技大学 一种碳纳米纤维改性的含碳耐火浇注料及其制备方法
KR102178734B1 (ko) * 2019-03-28 2020-11-13 서울대학교 산학협력단 탄소나노섬유 복합체의 제조방법 및 이에 따라 제조된 탄소나노섬유 복합체
KR102136367B1 (ko) * 2019-04-04 2020-07-21 서울대학교산학협력단 NiP2-탄소나노섬유 복합체의 제조방법 및 이에 따라 제조된 NiP2-탄소나노섬유 복합체
WO2020249441A1 (de) 2019-06-13 2020-12-17 Forschungszentrum Jülich GmbH Herstellungsverfahren für kohlenstofffasermaterial zur abtrennung von co2 oder nh3 aus gasgemischen, kohlenstofffasermaterial und dessen verwendung
CN110380023A (zh) * 2019-06-26 2019-10-25 广东工业大学 一种cnf-tmo锂离子电池负极材料及其制备方法和应用
CN111659439B (zh) * 2020-06-02 2023-04-07 南京师范大学 一种负载NiS/NiO异质结的氮掺杂碳纳米复合材料及其制备方法和用途
CN112899820B (zh) * 2021-01-19 2022-07-26 大连民族大学 一种Cu-Ni-Co-O固溶体纳米纤维材料及制备方法和应用
CN113213588B (zh) * 2021-04-13 2023-03-21 华南理工大学 一种基于中空碳纳米纤维的电极材料及其制备方法和应用
CN113322583A (zh) * 2021-05-26 2021-08-31 北京化工大学 一种单原子金属掺杂碳纳米纤维膜及其制备方法
CN113363083B (zh) * 2021-06-01 2022-04-12 安徽科技学院 一种三维分级结构的碳纳米纤维复合材料及其制备方法
WO2023087129A1 (zh) * 2021-11-16 2023-05-25 宁波杉杉新材料科技有限公司 炭电极材料的制备方法及炭电极材料
CN114744370A (zh) * 2022-04-20 2022-07-12 苏州大学 碳纳米纤维负载的金属单原子催化剂及其制备方法与应用
CN115602822B (zh) * 2022-11-28 2023-03-21 武汉理工大学三亚科教创新园 一种锡量子点嵌入氮掺杂碳纳米纤维负极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675923B1 (ko) * 2005-12-01 2007-01-30 전남대학교산학협력단 금속산화물 복합 나노 활성탄소섬유와 이를 이용한전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법
KR100701627B1 (ko) * 2005-12-22 2007-03-29 한국생산기술연구원 금속산화물 함유 나노활성탄소섬유의 제조방법 및 그로부터수득되는 나노활성탄소섬유를 이용한 슈퍼 캐패시터용전극
KR20090041135A (ko) * 2007-10-23 2009-04-28 주식회사 에이엠오 백금족 금속 입자가 분산된 탄소 또는 흑연화 나노섬유 및그의 제조방법
KR20090050872A (ko) * 2007-11-16 2009-05-20 한양대학교 산학협력단 금속 섬유의 제조방법 및 이를 이용하여 제조된 금속 섬유

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429778A (en) * 1989-07-07 1995-07-04 Alliedsignal Inc. Process for preparation of metal carbide fibers
DE69102405T2 (de) * 1990-12-13 1994-09-29 Mitsubishi Gas Chemical Co Aktivkohlesubstanz, Herstellungsverfahren und Anwendung.
KR101169622B1 (ko) * 2004-06-23 2012-07-30 데이진 가부시키가이샤 무기계 섬유, 섬유 구조체 및 그 제조 방법
WO2006125177A2 (en) * 2005-05-19 2006-11-23 Massachusetts Institute Of Technology Electrode and catalytic materials
DK1867762T3 (da) * 2006-06-13 2008-12-08 Univ Sabanci Carbonnanofibre indeholdende katalysatorvirksomme nanopartikler
KR100939938B1 (ko) * 2007-11-20 2010-02-04 재단법인대구경북과학기술원 아나타제 결정상을 갖는 이산화티탄이 함유된 탄소나노섬유 제조방법
KR101142854B1 (ko) * 2009-12-23 2012-05-08 한국과학기술연구원 나노섬유 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675923B1 (ko) * 2005-12-01 2007-01-30 전남대학교산학협력단 금속산화물 복합 나노 활성탄소섬유와 이를 이용한전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법
KR100701627B1 (ko) * 2005-12-22 2007-03-29 한국생산기술연구원 금속산화물 함유 나노활성탄소섬유의 제조방법 및 그로부터수득되는 나노활성탄소섬유를 이용한 슈퍼 캐패시터용전극
KR20090041135A (ko) * 2007-10-23 2009-04-28 주식회사 에이엠오 백금족 금속 입자가 분산된 탄소 또는 흑연화 나노섬유 및그의 제조방법
KR20090050872A (ko) * 2007-11-16 2009-05-20 한양대학교 산학협력단 금속 섬유의 제조방법 및 이를 이용하여 제조된 금속 섬유

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266854A1 (en) * 2012-04-04 2013-10-10 Gwangju Institute Of Science And Technology ELECTRODE FOR Li SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME AND Li SECONDARY BATTERY
WO2014142381A1 (ko) * 2013-03-12 2014-09-18 계명대학교 산학협력단 내오염성 나노섬유 분리막 제조방법 및 이에 의해 제조된 내오염성 나노섬유 분리막
KR20190065172A (ko) * 2017-12-01 2019-06-11 주식회사 엘지화학 음극 및 이를 포함하는 이차전지
KR102336719B1 (ko) 2017-12-01 2021-12-08 주식회사 엘지에너지솔루션 음극 및 이를 포함하는 이차전지
CN107904699A (zh) * 2017-12-21 2018-04-13 中冶焦耐(大连)工程技术有限公司 一种煤沥青基碳纤维的制备方法及应用
CN110034286A (zh) * 2019-03-25 2019-07-19 天津大学 制备三氧化二铁-铋金属碳纤维复合材料及方法
CN113839046A (zh) * 2021-08-04 2021-12-24 西北工业大学 一种用于柔性钠金属电池的复合基底及制备方法

Also Published As

Publication number Publication date
US20130126794A1 (en) 2013-05-23
WO2012005556A3 (ko) 2012-05-03
KR101308740B1 (ko) 2013-09-16
KR20120005403A (ko) 2012-01-16

Similar Documents

Publication Publication Date Title
WO2012005556A2 (ko) 금속산화물 또는 금속간화합물 함유 탄소나노섬유, 그 제조방법 및 이를 이용한 리튬이차전지
WO2018030616A1 (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2015156446A1 (ko) 그래핀-금속나노입자복합체, 상기 복합체를 포함하는 탄소나노섬유복합체 및 상기 탄소나노입자복합체를 포함하는 이차전지
WO2011068389A2 (ko) 다성분계 나노 복합산화물 분말과 그 제조방법, 이를 이용한 전극의 제조방법과 이를 이용한 박막 전지 및 그 제조방법
WO2020045854A1 (ko) 이황화몰리브덴을 포함하는 탄소나노구조체의 제조방법, 이로부터 제조된 이황화몰리브덴을 포함하는 탄소나노구조체를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2015065047A1 (ko) 음극 활물질 및 이의 제조 방법
WO2020040446A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021066584A1 (ko) 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
WO2020080831A1 (ko) 삼차원 구조 전극 및 이를 포함하는 전기화학소자
WO2020197344A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2019177355A1 (ko) 세리아-탄소-황 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬-황 전지
WO2019054811A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR101308736B1 (ko) 주석 산화물 함유 탄소나노섬유, 그의 제조방법 및 이를 이용한 리튬이차전지
KR101308739B1 (ko) 구리옥사이드 함유 탄소나노섬유, 그의 제조방법 및 이를 이용한 리튬이차전지
WO2017209383A1 (ko) 탄소계 섬유 시트 및 이를 포함하는 리튬-황 전지
WO2022191639A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2022019605A1 (ko) 다공성 복합체, 이를 포함하는 음극과 리튬전지, 및 그 제조방법
WO2022131695A1 (ko) 리튬 이온 이차전지용 음극재, 이의 제조방법 및 이를 포함하는 리튬 이온 이차전지
WO2022050664A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2020226321A1 (ko) 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
WO2021141460A1 (ko) 인조흑연, 인조흑연의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
WO2022164090A1 (ko) 건식 전극용 프리 스탠딩 필름, 이의 제조방법, 및 이를 포함하는 건식 전극, 및 이차전지
WO2020060084A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019013467A2 (ko) 구조체의 제조방법
WO2023018289A1 (ko) 리튬 이차 전지용 양극 첨가제를 포함하는 양극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803842

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13809155

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11803842

Country of ref document: EP

Kind code of ref document: A2