WO2012002419A1 - 残留放射性スラッジ液吸引装置 - Google Patents

残留放射性スラッジ液吸引装置 Download PDF

Info

Publication number
WO2012002419A1
WO2012002419A1 PCT/JP2011/064889 JP2011064889W WO2012002419A1 WO 2012002419 A1 WO2012002419 A1 WO 2012002419A1 JP 2011064889 W JP2011064889 W JP 2011064889W WO 2012002419 A1 WO2012002419 A1 WO 2012002419A1
Authority
WO
WIPO (PCT)
Prior art keywords
residual
sludge liquid
suction device
sludge
air
Prior art date
Application number
PCT/JP2011/064889
Other languages
English (en)
French (fr)
Inventor
政浩 相澤
紀 小形
Original Assignee
太平電業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010150758A external-priority patent/JP5411812B2/ja
Priority claimed from JP2010175377A external-priority patent/JP5394337B2/ja
Application filed by 太平電業株式会社 filed Critical 太平電業株式会社
Priority to US13/807,835 priority Critical patent/US9347617B2/en
Publication of WO2012002419A1 publication Critical patent/WO2012002419A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/14Conveying liquids or viscous products by pumping
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • G21F9/22Disposal of liquid waste by storage in a tank or other container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86083Vacuum pump

Definitions

  • the present invention provides a device for sucking residual radioactive sludge liquid, and in particular, safely and reliably without the risk of exposure when transferring a small amount of radioactive sludge liquid remaining in a sludge storage tank and contaminated with radioactive substances to another tank.
  • the present invention relates to a residual radioactive sludge liquid suction device capable of sucking radioactive sludge liquid in a sludge storage tank.
  • Radioactive sludge contaminated with radioactive materials (hereinafter simply referred to as sludge), which consists of ion exchange resins and filter aids generated during the operation of nuclear power plants, is clarified for a certain period of time due to radioactive attenuation. It is stored together with water in a sludge storage tank, and then extracted from the sludge storage tank and transferred to a processing step for processing.
  • Supernatant water is generated for the following reasons.
  • the sludge is transferred to the sludge storage tank, since it is impossible to transfer the sludge alone, it is necessary to form a sludge liquid having fluidity by mixing with water or the like and transfer it.
  • the sludge liquid formed in this way is transferred to the sludge storage tank, supernatant water is generated on the sludge as the sludge settles in the sludge storage tank.
  • Patent Document 1 Japanese Patent No. 4356728.
  • this radioactive sludge transfer device is referred to as a conventional transfer device and will be described with reference to the drawings.
  • FIG. 14 is a schematic configuration diagram showing a conventional transfer device.
  • T1 is a sludge storage tank in which the sludge 41 is stored
  • T2 is a transfer tank to which the sludge 41 stored in the sludge storage tank T1 is transferred
  • 42 is the supernatant water of the sludge 41
  • 43 is air It is a blowing device, and includes an air supply source 44, an air pipe 45 and an air nozzle 46.
  • the air blowing device 43 blows air into the supernatant water 42 of the sludge 41 stored in the sludge storage tank T1, and locally agitate the supernatant water 42, thereby forming a fluid sludge liquid 47.
  • P1 is a sludge transfer pump placed in the sludge storage tank T1
  • P2 is a supernatant water return pump placed in the transfer tank T2
  • 48 is a sludge that is connected to the sludge transfer pump P1 and reaches the transfer tank T2.
  • a liquid transfer path 49 is a supernatant water transfer path connected to the supernatant water return pump P ⁇ b> 2
  • 50 is a supernatant water jetting apparatus connected to the supernatant water transfer path 49.
  • the supernatant water ejection device 50 converts the supernatant water 42 from the supernatant water transfer path 49 as a high-pressure water jet from the supernatant water ejection nozzle 52 attached to the supernatant water pipe 51 toward the sludge 41 stored in the sludge storage tank T1. Spray.
  • the air pipe 45, the sludge liquid transfer path 48, the supernatant water transfer path 49, and the supernatant water pipe 51 are all inserted into the sludge storage tank T1 or the transfer tank T2 from the inspection hole 53 shielded by the radiation shielding means 54. Yes.
  • a control device 57 is a valve B1 attached to the air blowing device 43, the supernatant water jetting device 50, the sludge liquid transfer path 48, and the supernatant water transfer path 49 based on the video information from the monitoring cameras 55, 56 and the like.
  • a series of operations for transferring the sludge 41 are controlled by operating B4 and the like.
  • the sludge 41 stored in the sludge storage tank T1 is transferred into the transfer tank T2 as follows.
  • the sludge liquid 47 When the sludge liquid 47 is thus formed in the sludge storage tank T1, the sludge liquid 47 is sucked by the sludge transfer pump P1 and transferred to the transfer tank T2 through the sludge liquid transfer path 48. The sludge liquid 47 transferred to the transfer tank T2 is separated into the sludge 41 and the supernatant water 42 over time.
  • the supernatant water 42 is accumulated in the transfer tank T2
  • the supernatant water 42 is sucked by the supernatant water return pump P2 and transferred to the supernatant water jetting device 50 through the supernatant water transfer path 49.
  • the supernatant water ejection device 50 sprays the supernatant water 42 from the supernatant water ejection nozzle 52 through the supernatant water pipe 51 to the sludge 41 stored in the sludge storage tank T1.
  • the sludge 41 is crushed to form a sludge liquid 47.
  • the sludge liquid 47 in the sludge storage tank T1 is again sucked by the sludge transfer pump P1 and transferred to the transfer tank T2 through the sludge liquid transfer path 48. Then, the supernatant water 42 in the transfer tank T2 is sprayed onto the sludge 41 stored in the sludge storage tank T1.
  • the sludge 41 stored in the sludge storage tank T1 can be transferred to the transfer tank T2.
  • the conventional transfer apparatus provides the following advantages. (1) Since the control device 57 performs a series of operations for transferring the sludge 41 by remote control based on video information from the monitoring cameras 55 and 56, etc., it is possible to minimize exposure of workers due to radiation. it can. (2) When the sludge 41 is pulverized by the high-pressure water jet, the sludge 41 can be reliably pulverized. The initial pulverization of the sludge 41 is performed by blowing air. (3) Since the supernatant water 42 originally stored in the sludge storage tank T1 is used as the high-pressure water used for pulverizing the sludge 41, the amount of radioactive waste does not increase. When water from the outside is used, the amount of radioactive waste increases accordingly.
  • the conventional transfer device has the following problems.
  • the sludge storage tank T1 can be transferred to the transfer tank T2 as described above.
  • the sludge storage tank is unavoidable. A small amount of sludge liquid 47 remains at T1.
  • an object of the present invention is to provide a sludge storage tank that can be safely and reliably exposed to a remote operation without fear of exposure when transferring a small amount of sludge liquid remaining in the sludge storage tank to another tank. It is an object of the present invention to provide a residual radioactive sludge liquid suction device that can suck residual sludge liquid.
  • the present invention has been made to achieve the above object, and is characterized by the following.
  • a residual radioactive sludge liquid suction device for sucking the residual sludge liquid when transferring the residual sludge liquid in one tank to the other tank, the suction device main body and the suction device main body A plurality of attached hover skirts; a suction head attached to the suction device main body for sucking the residual sludge liquid; an air injection nozzle attached to the hover skirt; the hover skirt and the air injection nozzle An air supply source for supplying air to the hover skirt, and the air from the air supply source floats on the surface of the residual sludge liquid by supplying air from the air supply source to the hover skirt. It is possible to move on the surface of the residual sludge liquid by injecting air from the supply source from the air injection nozzle. And it has a feature.
  • the hover skirt is characterized in that it can tilt toward the suction head side.
  • the suction head is characterized in that it can move up and down.
  • the hover skirt is composed of at least three hover skirts arranged at the apex of a polygon,
  • the suction head is characterized in that it is surrounded by at least three hover skirts.
  • a residual radioactive sludge liquid suction device for sucking the residual sludge liquid when transferring the residual sludge liquid in one tank to the other tank, the suction device main body and the suction device main body A plurality of attached buoyancy bodies, a suction head attached to the suction device main body for sucking the residual sludge liquid, an air injection nozzle attached to the buoyancy body, and supplying air to the air injection nozzle
  • the suction device body floats on the liquid surface of the residual sludge liquid by the buoyancy of the buoyancy body and causes the air from the air supply nozzle to be jetted from the air jet nozzle.
  • the buoyancy body includes a ring-shaped air tube and a buoyancy member provided in a space surrounded by the air tube. It has a feature in being.
  • the buoyancy member is characterized in that it is made of foamed polystyrene.
  • the suction head is characterized in that it can move up and down.
  • the buoyancy body includes at least three buoyancy bodies arranged at the vertices of a polygon, The suction head is characterized by being surrounded by at least three buoyancy bodies.
  • the radioactive sludge liquid in the sludge storage tank can be sucked safely and securely without fear of exposure.
  • FIG. 1 is a schematic view showing the state of suction of sludge liquid by the residual radioactive sludge liquid suction device of the present invention
  • FIG. 2 is a plan view showing the residual radioactive sludge liquid suction device of the present invention
  • FIG. 4 is an explanatory view showing the function of the hover skirt of the residual radioactive sludge liquid suction device of the present invention.
  • T1 is a sludge storage tank as one tank.
  • a small amount of sludge liquid remains after the sludge is transferred by, for example, the conventional transfer device from the sludge storage tank T1 to a transfer tank (not shown) as the other tank.
  • the remaining sludge liquid is referred to as residual sludge liquid (L).
  • the residual sludge liquid (L) includes only the case of residual supernatant water (see FIG. 14) on the sludge.
  • the hover skirt 2 is composed of three hover skirts arranged at the vertices of a triangle, but is not limited to three.
  • the hover skirt 2 includes a ring-shaped rubber tube 3 and a flat plate 4 that closes the upper portion of the rubber tube 3 as shown in FIG.
  • a plug 5 to which an air tube 6 is connected is attached to the flat plate 4.
  • Air is supplied to an inner space (S) formed by the rubber tube 3 and the flat plate 4 through an air tube 6 from an air supply source (not shown) installed outside the sludge storage tank T1.
  • an air supply source not shown
  • the suction device main body 1 slightly floats from the surface of the residual sludge liquid (L) according to the hovercraft principle, as indicated by arrows in FIG.
  • the hover skirt 2 can be tilted toward the suction head described later by the cylinder 7 as shown by a two-dot chain line in FIG.
  • the cylinder 7 is remotely operated by air supplied from the air supply source.
  • the reason why the hover skirt 2 can be tilted is as follows. When air is supplied to the inner space (S) of the hover skirt 2 with the hover skirt 2 tilted toward the suction head side, the residual sludge liquid (L) with the water level further lowered is collected toward the suction head side. Thus, the remaining residual sludge liquid (L) can be reliably sucked.
  • the suction head 8 is a suction head for sucking the residual sludge liquid (L), and is attached to the suction device main body 1 so as to be surrounded by three hover skirts 2 arranged at the apex of the triangle.
  • the suction head 8 is connected to a suction pump 9 suspended in the sludge storage tank T1 via a suction pipe 10 (see FIG. 1).
  • the residual sludge liquid (L) sucked by the suction pump 9 is transferred to the transfer tank described above via the transfer pipe 11.
  • the suction head 8 can be moved up and down with respect to the suction device body 1 by a cylinder 12 in order to adjust the suction height.
  • the cylinder 12 is remotely operated by air supplied from the air supply source.
  • hover skirt 2 is not limited to three pieces, but may be one in which three or more pieces are arranged at the vertexes of a polygon.
  • Numeral 13 is an air injection nozzle attached to the hover skirt 2.
  • the air injection nozzles 13 are each independently connected to the air supply source via an air tube 14.
  • the suction device body 1 freely moves on the residual sludge liquid (L).
  • L residual sludge liquid
  • FIG. 2 when air is supplied to the air injection nozzles 13 attached to the two hover skirts 2 (lower part in FIG. 2) and the air is injected in the direction A in the figure, the suction device The main body 1 moves forward in the direction B in the drawing.
  • the supply of air to the air injection nozzle 13 is remotely controlled.
  • the residual sludge liquid (L) in the sludge storage tank T1 is sucked and transferred to a transfer tank (not shown) as follows. Transported in.
  • the suction pump 9 is suspended in the sludge storage tank T1, and the residual radioactive sludge liquid suction device of the present invention is lowered onto the level of the residual sludge liquid (L).
  • the suction head 8 and the suction pump 9 are connected by a suction pipe 10, and the suction pump 9 and the transfer tank are connected by a transfer pipe 11.
  • the suction pump 9 is operated in a state where the residual radioactive sludge liquid suction device is floated on the residual sludge liquid (L) by the hover skirt 2. Thereby, residual sludge liquid (L) is sucked. The sucked residual sludge liquid (L) is transferred to the transfer tank through the transfer pipe 11.
  • the suction pump 9 After moving the residual radioactive sludge liquid suction device to a desired location, the suction pump 9 is operated to suck the residual sludge liquid (L) in the same manner as described above.
  • the cylinder 12 is operated as shown in FIG.
  • the suction head 8 is lowered. Even when the liquid level is high, the suction head 8 is lowered when the residual sludge liquid (L) below the liquid level is selectively sucked.
  • the cylinder 7 is operated to move the hover skirt 2 to the suction head 8 as shown in FIG. In this state, air is supplied to the inner space (S) of the hover skirt 2. Thereby, the residual sludge liquid (L) whose liquid level has been lowered is gathered to the suction head 8 side, so that the remaining residual sludge liquid (L) can be reliably sucked.
  • the sludge that has settled at the bottom of the sludge storage tank T1 can be agitated, so that the residual sludge liquid (L) is sucked more effectively. can do. Even in this case, when the settled sludge is not stirred, a water discharge nozzle (not shown) is inserted into the sludge storage tank T1, and water is sprayed from the water discharge nozzle toward the sludge to stir the sludge. Also good.
  • the residual radioactive sludge liquid suction device is moved by air injection from the air injection nozzle 13 as it is, or after floating on the liquid surface once.
  • the residual sludge liquid (L) in the sludge storage tank T1 is sucked as described above, and it is safe without exposure to the transfer tank (not shown). And reliably transferred.
  • FIG. 8 is a schematic view showing the state of suction of sludge liquid by another residual radioactive sludge liquid suction device of the present invention
  • FIG. 9 is a plan view showing another residual radioactive sludge liquid suction device of the present invention
  • FIG. 11 is a front view showing another residual radioactive sludge liquid suction device according to the present invention
  • FIG. 11 is an explanatory view showing the function of a buoyancy body of another residual radioactive sludge liquid suction device according to the present invention.
  • T1 is a sludge storage tank as one tank.
  • a small amount of sludge liquid remains after the sludge is transferred by, for example, the conventional transfer device from the sludge storage tank T1 to a transfer tank (not shown) as the other tank.
  • the remaining sludge liquid is referred to as residual sludge liquid (L).
  • the residual sludge liquid (L) includes only the case of residual supernatant water (see FIG. 14) on the sludge.
  • buoyancy body 21 is a suction device body
  • 22 is a plurality of buoyancy bodies attached horizontally to the suction device body 21.
  • one buoyancy body 22 is arranged at each vertex of the triangle, but it may be arranged at each vertex of a polygon other than the triangle.
  • the buoyancy body 22 is formed by a ring-shaped rubber tube 23 into which air has been injected, a closing plate 24 that closes the upper opening of the rubber tube 23, and the rubber tube 23 and the closing plate 24.
  • a plug 25 to which an air tube 26 is connected is attached to the closing plate 24.
  • the buoyancy member 27 is made of styrene foam or the like placed in the space (S). Air is supplied to the space (S) from an air supply source (not shown) installed outside the sludge storage tank T ⁇ b> 1 via the air tube 26. The air supplied to the space (S) passes through the gap between the rubber tube 23 and the buoyancy member 27 and is released as an air bubble from the lower part of the buoyancy body 22, thereby adjusting the balance of the suction device main body 21. Can be done.
  • the suction head 28 is a suction head for sucking the residual sludge liquid (L), and is attached to the suction device main body 21 so as to be surrounded by three buoyant bodies 22 arranged at the apex of the triangle.
  • the suction head 28 is connected via a suction pipe 30 to a suction pump 29 suspended in the sludge storage tank T1.
  • the residual sludge liquid (L) sucked by the suction pump 29 is transferred to the transfer tank described above via the transfer pipe 31.
  • the suction head 28 can be moved up and down with respect to the suction device main body 21 by a cylinder 32 in order to adjust the suction height.
  • the cylinder 32 is remotely operated by air supplied from the air supply source. If the suction head 28 is lowered by the cylinder 32 until it comes into contact with the bottom of the sludge storage tank T1, the suction position by the suction device body 21 can be fixed.
  • the air injection nozzle 33 is an air injection nozzle attached to the buoyancy body 2.
  • the air injection nozzles 33 are each independently connected to the air supply source via an air tube 34.
  • the suction device main body 21 freely moves on the residual sludge liquid (L).
  • L residual sludge liquid
  • FIG. 9 when air is supplied to the air injection nozzles 33 attached to the two buoyancy bodies 22 (lower part in the figure) and the air is injected in the direction A in the figure, the suction device main body 21 Advances in the direction B in the figure.
  • the supply of air to the air injection nozzle 33 is remotely operated.
  • the residual sludge liquid (L) in the sludge storage tank T1 is sucked and transferred to a transfer tank (not shown) as follows. )).
  • the suction pump 29 is suspended in the sludge storage tank T1, and another residual radioactive sludge liquid suction device of the present invention is lowered onto the level of the residual sludge liquid (L).
  • the suction head 28 and the suction pump 29 are connected by a suction pipe 30, and the suction pump 29 and the transfer tank are connected by a transfer pipe 31.
  • the suction pump 29 is operated in a state where the residual radioactive sludge liquid suction device is floated on the residual sludge liquid (L) by the buoyancy body 22. Thereby, residual sludge liquid (L) is sucked. The sucked residual sludge liquid (L) is transferred to the transfer tank through the transfer pipe 31.
  • the residual radioactive sludge liquid suction device When changing the suction location of the residual sludge liquid (L), air is jetted from a desired air jet nozzle 33. Thereby, the residual radioactive sludge liquid suction device can be moved to an arbitrary place.
  • the reason why the residual radioactive sludge liquid suction device needs to be moved is that the concentration is high and suction of all the residual sludge liquid (L) may not be smoothly performed by suction at only one place.
  • the suction pump 29 After moving the residual radioactive sludge liquid suction device to a desired location, the suction pump 29 is operated to suck the residual sludge liquid (L) in the same manner as described above.
  • the residual sludge liquid (L) in the sludge storage tank T1 is sucked as described above, and there is a risk of exposure to the transfer tank (not shown). It is transported safely and reliably.
  • T1 Sludge storage tank T2: Transfer tank L: Residual sludge liquid S: Internal space 1: Suction device body 2: Hover skirt 3: Rubber tube 4: Flat plate 5: Plug 6: Air tube 7: Cylinder 8: Suction head 9: Suction pump 10: Suction pipe 11: Transfer pipe 12: Cylinder 13: Air injection nozzle 14: Air tube 21: Suction device body 22: Buoyant body 23: Rubber tube 24: Blocking plate 25: Plug 26: Air tube 27: Buoyancy member 28: Suction head 29: Suction pump 30: Suction pipe 31: Transfer pipe 32: Cylinder 33: Air injection nozzle 34: Air tube 41: Sludge 42: Supernatant water 43: Air blowing device 44: Air supply source 45: Air pipe 46 : Air nozzle 47: Sludge liquid 48: Sludge liquid transfer path 49 The supernatant water transfer path 50: supernatant water ejecting device 51: supernatant water pipe 52: supernatant water ejecting nozzle 53: inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Sludge (AREA)

Abstract

 スラッジ貯蔵タンクに残留する少量のスラッジ液を別のタンクに移送する際に、被ばくのおそれなく安全かつ確実にスラッジ貯蔵タンク内の放射性スラッジ液を吸引することができる残留放射性スラッジ液吸引装置を提供する。 吸引装置本体1と、吸引装置本体1に取り付けられた3個のホバースカート2と、吸引装置本体1に取り付けられた、残留スラッジ液Lを吸引する吸引ヘッド8と、ホバースカート2に取り付けられた空気噴射ノズル13と、ホバースカート2と空気噴射ノズル13とに空気を供給する空気供給源とを備え、吸引装置本体1は、ホバースカート2に空気供給源から空気を供給することによって、残留スラッジ液Lの液面上に浮上すると共に、空気噴射ノズル13に前記空気供給源から空気を供給することによって、残留スラッジ液Lの液面上を移動可能である。

Description

残留放射性スラッジ液吸引装置
 この発明は、残留放射性スラッジ液吸引装置、特に、スラッジ貯蔵タンクに残留する、放射性物質により汚染された少量の放射性スラッジ液を別のタンクに移送する際に、被ばくのおそれがなく安全かつ確実にスラッジ貯蔵タンク内の放射性スラッジ液を吸引することができる残留放射性スラッジ液吸引装置に関するものである。
 原子力発電所の運転に伴って発生するイオン交換樹脂やろ過助材等からなる、放射性物質により汚染された放射性スラッジ(以下、単に、スラッジという。)は、放射能減衰のために一定期間、上澄み水と共にスラッジ貯蔵タンクに貯蔵され、この後、このスラッジ貯蔵タンクから抜き出し、処理工程に移送して処理される。
 なお、上澄み水は、次の理由により発生する。スラッジをスラッジ貯蔵タンクに移送する場合、スラッジ単独での移送が不可能なために、水等と混合することにより流動性を持ったスラッジ液に形成して移送する必要がある。このようにして形成されたスラッジ液をスラッジ貯蔵タンクに移送すると、スラッジ貯蔵タンク内において、スラッジが沈降することによりスラッジ上に上澄み水が発生する。
 このようなスラッジ貯蔵タンクには、高い信頼性が要求されるために、定期的に点検を行い、必要に応じて補修を行う必要がある。タンクの点検等を行うためには、スラッジ貯蔵タンクを空にする必要がある。このためには、スラッジ貯蔵タンクに貯蔵されたスラッジを別のタンクに移送する必要があるが、この移送作業は、作業者の放射線による被ばくを最小限に抑えて行うことが不可欠である。
 この問題を解決すべく提案された放射性スラッジ移送装置の一例が特許文献1(特許第4356728号公報)に開示されている。以下、この放射性スラッジ移送装置を従来移送装置といい、図面を参照しながら説明する。
 図14は、従来移送装置を示す概略構成図である。
 図14において、T1は、スラッジ41が貯蔵されたスラッジ貯蔵タンク、T2は、スラッジ貯蔵タンクT1に貯蔵されたスラッジ41が移送される移送タンク、42は、スラッジ41の上澄み水、43は、空気吹き込み装置であり、空気供給源44、空気パイプ45および空気ノズル46からなっている。空気吹き込み装置43は、スラッジ貯蔵タンクT1に貯蔵されたスラッジ41の上澄み水42に空気を吹き込んで、上澄み水42を局部的に攪拌し、これにより流動性を有するスラッジ液47を形成する。
 P1は、スラッジ貯蔵タンクT1内に入れられたスラッジ移送ポンプ、P2は、移送タンクT2内に入れられた上澄み水返還ポンプ、48は、スラッジ移送ポンプP1に接続され、移送タンクT2内に至るスラッジ液移送経路、49は、上澄み水返還ポンプP2に接続された上澄み水移送経路、50は、上澄み水移送経路49に接続された上澄み水噴出装置である。上澄み水噴出装置50は、上澄み水移送経路49からの上澄み水42を、スラッジ貯蔵タンクT1に貯蔵されたスラッジ41に向けて上澄み水パイプ51に取り付けられた上澄み水噴出ノズル52から高圧水ジェットとして吹き付ける。
 上記空気パイプ45、スラッジ液移送経路48、上澄み水移送経路49および上澄み水パイプ51は、何れも、放射線遮蔽手段54により遮蔽された点検孔53からスラッジ貯蔵タンクT1あるいは移送タンクT2に挿入されている。
 55は、スラッジ貯蔵タンクT1に設置された監視カメラであり、スラッジ貯蔵タンクT1内のスラッジ液47の形成状態等を監視する。56は、移送タンクT2内に設置された監視カメラであり、移送タンクT2内の上澄み水42の形成状態等を監視する。57は、制御装置であり、監視カメラ55、56からの映像情報等に基づいて、空気吹き込み装置43、上澄み水噴出装置50、スラッジ液移送経路48および上澄み水移送経路49に取り付けられたバルブB1からB4等を操作して、スラッジ41の移送の一連の作業を制御する。
 このように構成されている従来移送装置によれば、以下のようにして、スラッジ貯蔵タンクT1に貯蔵されたスラッジ41が移送タンクT2内に移送される。
 先ず、空気吹き込み装置43によって空気をスラッジ貯蔵タンクT1内の上澄み水に吹き込んで上澄み水を局部的に攪拌する。これにより、スラッジ貯蔵タンクT1に貯蔵されたスラッジ41が粉砕されて、スラッジ41上に流動性を有するスラッジ液47が形成される。
 このようにして、スラッジ貯蔵タンクT1内にスラッジ液47が形成されたら、このスラッジ液47をスラッジ移送ポンプP1により吸引してスラッジ液移送経路48を通して移送タンクT2に移送する。移送タンクT2に移送されたスラッジ液47は、時間の経過に伴ってスラッジ41と上澄み水42とに分離する。
 このようにして、移送タンクT2内に上澄み水42が溜まったら、この上澄み水42を上澄み水返還ポンプP2により吸引して、上澄み水移送経路49を通して上澄み水噴出装置50に移送する。上澄み水噴出装置50は、上澄み水42を上澄み水パイプ51を通して上澄み水噴出ノズル52からスラッジ貯蔵タンクT1に貯蔵されたスラッジ41に吹き付ける。これによりスラッジ41が粉砕されてスラッジ液47が形成される。
 この後、再度、スラッジ貯蔵タンクT1内のスラッジ液47をスラッジ移送ポンプP1により吸引して、スラッジ液移送経路48を通して移送タンクT2に移送する。そして、移送タンクT2内の上澄み水42をスラッジ貯蔵タンクT1に貯蔵されたスラッジ41に吹き付ける。
 以上の操作を繰り返し行うことによって、スラッジ貯蔵タンクT1に貯蔵されたスラッジ41を移送タンクT2に移送することができる。
特許第4356728号公報
 上述のように、従来移送装置によれば、以下のような利点がもたらされる。
(1)スラッジ41の移送の一連の作業は、監視カメラ55、56からの映像情報等に基づいて、制御装置57が遠隔操作により行うので、作業者の放射線による被ばくを最小限に抑えることができる。
(2)高圧水ジェットによりスラッジ41を粉砕する場合には、スラッジ41を確実に粉砕することができる。なお、スラッジ41の最初の粉砕は、空気の吹き付けにより行う。
(3)スラッジ41の粉砕に用いる高圧水として、もともとスラッジ貯蔵タンクT1に溜まっていた上澄み水42を使用するので、放射性廃棄物の量が増加することはない。外部からの水を用いると、その分だけ、放射性廃棄物の量が増加する。
 しかしながら、従来移送装置は、以下のような問題があった。
 従来移送装置によれば、上述のようにして、スラッジ貯蔵タンクT1に貯蔵されたスラッジ41の大部分を移送タンクT2に移送することができるが、スラッジ移送ポンプP1の性能上、どうしてもスラッジ貯蔵タンクT1に少量のスラッジ液47が残留する。
 従来、この残留スラッジ液の移送は、人手により行っていたので、被ばくのおそれがあった。
 従って、この発明の目的は、スラッジ移送ポンプの性能上、スラッジ貯蔵タンクに残留する少量のスラッジ液を別のタンクに移送する際に、遠隔操作により被ばくのおそれなく安全かつ確実にスラッジ貯蔵タンクの残留スラッジ液を吸引することができる残留放射性スラッジ液吸引装置を提供することにある。
 この発明は、上記目的を達成するためになされたものであって、下記を特徴とするものである。
 [1]  一方のタンク内の残留スラッジ液を他方のタンクに移送する際に、前記残留スラッジ液を吸引するための残留放射性スラッジ液吸引装置であって、吸引装置本体と、前記吸引装置本体に取り付けられた複数個のホバースカートと、前記吸引装置本体に取り付けられた、前記残留スラッジ液を吸引する吸引ヘッドと、前記ホバースカートに取り付けられた空気噴射ノズルと、前記ホバースカートと前記空気噴射ノズルとに空気を供給する空気供給源とを備え、前記吸引装置本体は、前記ホバースカートに前記空気供給源から空気を供給することによって、前記残留スラッジ液の液面上に浮上すると共に、前記空気供給源からの空気を前記空気噴射ノズルから噴射させることによって、前記残留スラッジ液の液面上を移動可能であることに特徴を有するものである。
 [2]  [1]に記載された残留放射性スラッジ液吸引装置において、前記ホバースカートは、前記吸引ヘッド側に向けて傾動可能であることに特徴を有するものである。
 [3]  [1]または[2]に記載された残留放射性スラッジ液吸引装置において、前記吸引ヘッドは、上下動可能であることに特徴を有するものである。
 [4]  [1]から[3]の何れか1つに記載された残留放射性スラッジ液吸引装置において、前記ホバースカートは、多角形の頂点に配された少なくとも3個のホバースカートからなり、前記吸引ヘッドは、少なくとも3個の前記ホバースカートによって囲まれていることに特徴を有するものである。
 [5]  一方のタンク内の残留スラッジ液を他方のタンクに移送する際に、前記残留スラッジ液を吸引するための残留放射性スラッジ液吸引装置であって、吸引装置本体と、前記吸引装置本体に取り付けられた複数個の浮力体と、前記吸引装置本体に取り付けられた、前記残留スラッジ液を吸引する吸引ヘッドと、前記浮力体に取り付けられた空気噴射ノズルと、前記空気噴射ノズルに空気を供給する空気供給源とを備え、前記吸引装置本体は、前記浮力体の浮力によって、前記残留スラッジ液の液面上に浮上すると共に、前記空気供給源からの空気を前記空気噴射ノズルから噴射させることによって、前記残留スラッジ液の液面上を移動可能であることに特徴を有するものである。
 [6]  [5]に記載された残留放射性スラッジ液吸引装置において、前記浮力体は、リング状の空気チューブと、前記空気チューブによって囲まれた空間内に設けられた浮力部材とから構成されていることに特徴を有するものである。
 [7]  [5]または[6]に記載された残留放射性スラッジ液吸引装置において、前記浮力部材は、発泡スチロールからなっていることに特徴を有するものである。
 [8]  [5]から[7]の何れか1つに記載された残留放射性スラッジ液吸引装置において、前記吸引ヘッドは、上下動可能であることに特徴を有するものである。
 [9]  [5]から[8]の何れか1つに記載された残留放射性スラッジ液吸引装置において、前記浮力体は、多角形の頂点に配された少なくとも3個の浮力体からなり、前記吸引ヘッドは、少なくとも3個の前記浮力体によって囲まれていることに特徴を有するものである。
 この発明によれば、スラッジ貯蔵タンクに残留する少量のスラッジ液を別のタンクに移送する際に、被ばくのおそれなく安全かつ確実にスラッジ貯蔵タンク内の放射性スラッジ液を吸引することができる。
この発明の残留放射性スラッジ液吸引装置によるスラッジ液の吸引状態を示す概略図である。 この発明の残留放射性スラッジ液吸引装置を示す平面図である。 この発明の残留放射性スラッジ液吸引装置を示す正面図である。 この発明の残留放射性スラッジ液吸引装置のホバースカートの機能を示す説明図である。 この発明の残留放射性スラッジ液吸引装置の吸引ヘッドをスラッジ液の液面上に上昇させてスラッジ液を吸引している状態を示す正面図である。 この発明の残留放射性スラッジ液吸引装置の吸引ヘッドをスラッジ液内に下降させてスラッジ液を吸引している状態を示す正面図である。 この発明の残留放射性スラッジ液吸引装置のホバースカートを吸引ヘッド側に傾動させてスラッジ液を吸引している状態を示す正面図である。 この発明の他の残留放射性スラッジ液吸引装置によるスラッジ液の吸引状態を示す概略図である。 この発明の他の残留放射性スラッジ液吸引装置を示す平面図である。 この発明の他の残留放射性スラッジ液吸引装置を示す正面図である。 この発明の他の残留放射性スラッジ液吸引装置の浮力体の機能を示す説明図である。 この発明の他の残留放射性スラッジ液吸引装置の吸引ヘッドをスラッジ液の液面上に上昇させてスラッジ液を吸引している状態を示す正面図である。 この発明の他の残留放射性スラッジ液吸引装置の吸引ヘッドをスラッジ貯蔵タンクの底部まで下降させてスラッジ液を吸引している状態を示す正面図である。 従来移送装置を示す概略構成図である。
 この発明の残留放射性スラッジ液吸引装置の一実施態様を、図面を参照しながら説明する。
 図1は、この発明の残留放射性スラッジ液吸引装置によるスラッジ液の吸引状態を示す概略図、図2は、この発明の残留放射性スラッジ液吸引装置を示す平面図、図3は、この発明の残留放射性スラッジ液吸引装置を示す正面図、図4は、この発明の残留放射性スラッジ液吸引装置のホバースカートの機能を示す説明図である。
 図1から図4において、T1は、一方のタンクとしてのスラッジ貯蔵タンクである。スラッジ貯蔵タンクT1内には、スラッジ貯蔵タンクT1から他方のタンクとしての移送タンク(図示せず)に、例えば、上記従来移送装置によりスラッジを移送した後のスラッジ液が少量、残留している。以下、残留したスラッジ液を残留スラッジ液(L)という。残留スラッジ液(L)は、スラッジ上の残留上澄み水(図14参照)のみの場合も含まれる。
 1は、吸引装置本体、2は、吸引装置本体1に水平に取り付けられた複数個のホバースカートである。ホバースカート2は、この例では、三角形の頂点に配された3個のホバースカートからなっているが、3個に限定されない。
 ホバースカート2は、図4に示すように、リング状のゴムチューブ3とゴムチューブ3の上部を閉鎖する平板4とからなっている。平板4には、空気チューブ6が接続されるプラグ5が取り付けられている。ゴムチューブ3と平板4とにより形成された内側空間(S)には、空気チューブ6を介してスラッジ貯蔵タンクT1外に設置された空気供給源(図示せず)から空気が供給される。ゴムチューブ3の内側空間(S)に空気が供給されると、図4中、矢印で示すように、ホバークラフトの原理で吸引装置本体1が残留スラッジ液(L)の液面から若干浮上する。
 ホバースカート2は、図3の二点鎖線で示すように、シリンダ7により後述する吸引ヘッド側に向けて傾動可能である。シリンダ7は、前記空気供給源から供給される空気により遠隔操作される。ホバースカート2を傾動可能とした理由は、次の通りである。ホバースカート2を吸引ヘッド側に向けて傾動させた状態で、ホバースカート2の内側空間(S)に空気を供給すると、水位がさらに下がった残留スラッジ液(L)が吸引ヘッド側に寄せ集められ、残り少ない残留スラッジ液(L)を確実に吸引することが可能となる。
 8は、残留スラッジ液(L)を吸引する吸引ヘッドであり、三角形の頂点に配された3個のホバースカート2に囲まれるように吸引装置本体1に取り付けられている。吸引ヘッド8は、スラッジ貯蔵タンクT1内に吊り下げられた吸引ポンプ9に吸引パイプ10を介して接続されている(図1参照)。吸引ポンプ9により吸引された残留スラッジ液(L)は、移送パイプ11を介して上述した移送タンクに移送される。吸引ヘッド8は、吸引高さを調整するために、シリンダ12により吸引装置本体1に対して上下動可能である。シリンダ12は、前記空気供給源から供給される空気により遠隔操作される。
 なお、ホバースカート2は、3個に限定されず、3個以上を多角形の頂点に配したものであっても良い。
 13は、ホバースカート2に取り付けられた空気噴射ノズルである。空気噴射ノズル13は、それぞれ独立して空気チューブ14を介して前記空気供給源に接続されている。吸引装置本体1が浮上した状態で空気噴射ノズル13に空気を供給することによって、吸引装置本体1は、自在に残留スラッジ液(L)上を移動する。例えば、図2に示すように、2個のホバースカート2(図2中、下部)に取り付けられた空気噴射ノズル13に空気を供給して、図中A方向に空気を噴射させると、吸引装置本体1は、図中B方向に前進する。空気噴射ノズル13への空気の供給は、遠隔操作される。
 このように構成されている、この発明の残留放射性スラッジ液吸引装置によれば、以下のようにして、スラッジ貯蔵タンクT1内の残留スラッジ液(L)が吸引され、移送タンク(図示せず)内に移送される。
 図1に示すように、吸引ポンプ9をスラッジ貯蔵タンクT1内に吊り下げると共に、この発明の残留放射性スラッジ液吸引装置を残留スラッジ液(L)の液面上に下ろす。吸引ヘッド8と吸引ポンプ9とは、吸引パイプ10により接続され、吸引ポンプ9と移送タンクとは移送パイプ11により接続されている。
 図5に示すように、ホバースカート2により残留放射性スラッジ液吸引装置が残留スラッジ液(L)の液面上に浮いた状態で吸引ポンプ9を作動させる。これにより、残留スラッジ液(L)が吸引される。吸引された残留スラッジ液(L)は、移送パイプ11を通って移送タンクに移送される。
 残留スラッジ液(L)の吸引場所を変える場合には、ホバースカート2の内側空間(S)に空気を供給して、残留放射性スラッジ液吸引装置を残留スラッジ液(L)の液面から浮上させ、この状態で、空気噴射ノズル13に空気を供給する。これによって、残留放射性スラッジ液吸引装置を任意の場所に移動させることができる。残留放射性スラッジ液吸引装置を移動させる必要があるのは、残留スラッジ液(L)の濃度が高く、一箇所のみでの吸引では、全ての残留スラッジ液(L)の吸引が円滑に行えない場合があるからである。
 残留放射性スラッジ液吸引装置を所望の場所に移動させた後は、上述したと同様にして、吸引ポンプ9を作動させて残留スラッジ液(L)を吸引する。
 このようにして、残留スラッジ液(L)を吸引していくと、残留スラッジ液(L)の液面が下がるが、液面の低下に伴って図6に示すように、シリンダ12を作動させて吸引ヘッド8を下降させる。液面が高い場合であっても、液面より下方の残留スラッジ液(L)を選択的に吸引する場合には、吸引ヘッド8を下降させる。
 残留スラッジ液(L)を吸引していくに従って液面が下がり、次第に吸引しづらくなるが、このようになったら、図7に示すように、シリンダ7を作動させてホバースカート2を吸引ヘッド8側に傾斜させ、この状態でホバースカート2の内側空間(S)に空気を供給する。これにより、液面が下がった残留スラッジ液(L)が吸引ヘッド8側に寄せ集められるので、残り少ない残留スラッジ液(L)を確実に吸引することができる。
 なお、ホバースカート2の内側空間(S)に空気を供給することによって、スラッジ貯蔵タンクT1の底部に沈降したスラッジを攪拌することができるので、さらに、効果的に残留スラッジ液(L)を吸引することができる。このようにしても、沈降したスラッジが攪拌されない場合には、スラッジ貯蔵タンクT1内に放水ノズル(図示せず)を挿入し、放水ノズルから水をスラッジに向けて噴射してスラッジを攪拌しても良い。
 また、残留スラッジ液(L)がある程度溜まっている場合、残留放射性スラッジ液吸引装置が液面に浮いた状態からホバースカート2を傾斜させてホバースカート2内の空気を抜けば、吸引装置は、浮力がなくなり潜水する。この結果、吸引ヘッド8がスラッジ貯蔵タンクT1の底に接近するので、残留スラッジ液(L)を確実に吸引することが可能となる。
 この場合の残留放射性スラッジ液吸引装置の移動は、そのままの状態で空気噴射ノズル13からの空気噴射により行うか、一旦、液面上に浮上させてから行う。
 以上の操作は、全て、遠隔操作により行われる。
 この発明の残留放射性スラッジ液吸引装置によれば、以上のようにして、スラッジ貯蔵タンクT1内の残留スラッジ液(L)が吸引され、移送タンク(図示せず)内に、被ばくのおそれなく安全かつ確実に移送される。
 次に、この発明の他の残留放射性スラッジ液吸引装置の一実施態様を、図面を参照しながら説明する。
 図8は、この発明の他の残留放射性スラッジ液吸引装置によるスラッジ液の吸引状態を示す概略図、図9は、この発明の他の残留放射性スラッジ液吸引装置を示す平面図、図10は、この発明の他の残留放射性スラッジ液吸引装置を示す正面図、図11は、この発明の他の残留放射性スラッジ液吸引装置の浮力体の機能を示す説明図である。
 図8から図11において、T1は、一方のタンクとしてのスラッジ貯蔵タンクである。スラッジ貯蔵タンクT1内には、スラッジ貯蔵タンクT1から他方のタンクとしての移送タンク(図示せず)に、例えば、上記従来移送装置によりスラッジを移送した後のスラッジ液が少量、残留している。以下、残留したスラッジ液を残留スラッジ液(L)という。残留スラッジ液(L)は、スラッジ上の残留上澄み水(図14参照)のみの場合も含まれる。
 21は、吸引装置本体、22は、吸引装置本体21に水平に取り付けられた複数個の浮力体である。浮力体22は、この例では、三角形の各頂点に1個づつ配されているが、三角形以外の多角形の各頂点に配しても良い。
 浮力体22は、図11に示すように、空気が注入されたリング状のゴムチューブ23と、ゴムチューブ23の上部開口を閉塞する閉塞板24と、ゴムチューブ23と閉塞板24とにより形成された空間(S)内に入れられた発泡スチロール等からなる浮力部材27とからなり、閉塞板24には、空気チューブ26が接続されるプラグ25が取り付けられている。空間(S)には、空気チューブ26を介してスラッジ貯蔵タンクT1外に設置された空気供給源(図示せず)から空気が供給されるようになっている。空間(S)に供給された空気は、ゴムチューブ23と浮力部材27との間の隙間を通って浮力体22の下部から空気バブルとなって放出され、これによって、吸引装置本体21のバランス調整が行えるようになっている。
 28は、残留スラッジ液(L)を吸引する吸引ヘッドであり、三角形の頂点に配された3個の浮力体22に囲まれるように吸引装置本体21に取り付けられている。吸引ヘッド28は、スラッジ貯蔵タンクT1内に吊り下げられた吸引ポンプ29に吸引パイプ30を介して接続されている。吸引ポンプ29により吸引された残留スラッジ液(L)は、移送パイプ31を介して上述した移送タンクに移送される。吸引ヘッド28は、吸引高さを調整するために、シリンダ32により吸引装置本体21に対して上下動可能である。シリンダ32は、前記空気供給源から供給される空気により遠隔操作される。シリンダ32によって吸引ヘッド28をこれがスラッジ貯蔵タンクT1の底部に接するまで下降させれば、吸引装置本体21による吸引位置を固定することができる。
 33は、浮力体2に取り付けられた空気噴射ノズルである。空気噴射ノズル33は、それぞれ独立して空気チューブ34を介して前記空気供給源に接続されている。吸引装置本体21が浮上した状態で空気噴射ノズル33に空気を供給することによって、吸引装置本体21は、自在に残留スラッジ液(L)上を移動する。例えば、図9に示すように、2個の浮力体22(図中下部)に取り付けられた空気噴射ノズル33に空気を供給して、図中A方向に空気を噴射させると、吸引装置本体21は、図中B方向に前進する。空気噴射ノズル33への空気の供給は、遠隔操作される。
 このように構成されている、この発明の他の残留放射性スラッジ液吸引装置によれば、以下のようにして、スラッジ貯蔵タンクT1内の残留スラッジ液(L)が吸引され、移送タンク(図示せず)内に移送される。
 図8に示すように、吸引ポンプ29をスラッジ貯蔵タンクT1内に吊り下げると共に、この発明の他の残留放射性スラッジ液吸引装置を残留スラッジ液(L)の液面上に下ろす。吸引ヘッド28と吸引ポンプ29とは、吸引パイプ30により接続され、吸引ポンプ29と移送タンクとは移送パイプ31により接続されている。
 図12に示すように、浮力体22により残留放射性スラッジ液吸引装置が残留スラッジ液(L)の液面上に浮いた状態で吸引ポンプ29を作動させる。これにより、残留スラッジ液(L)が吸引される。吸引された残留スラッジ液(L)は、移送パイプ31を通って移送タンクに移送される。
 残留スラッジ液(L)の吸引場所を変える場合には、所望の空気噴射ノズル33から空気を噴射させる。これによって、残留放射性スラッジ液吸引装置を任意の場所に移動させることができる。残留放射性スラッジ液吸引装置を移動させる必要があるのは、濃度が高く、一箇所のみでの吸引では、全ての残留スラッジ液(L)の吸引が円滑に行えない場合があるからである。
 残留放射性スラッジ液吸引装置を所望の場所に移動させた後は、上述したと同様にして、吸引ポンプ29を作動させて残留スラッジ液(L)を吸引する。
 残留スラッジ液(L)の液面が下がった状態で、定位置で残留スラッジ液(L)を吸引する場合には、図13に示すように、シリンダ32を作動させて吸引ヘッド28をこれがスラッジ貯蔵タンクT1の底部に当るまで下降させる。これにより吸引装置本体21の位置が固定されるので、定位置での残留スラッジ液(L)の吸引が可能となる。
 以上の操作は、全て、遠隔操作により行われる。
 この発明の他の残留放射性スラッジ液吸引装置によれば、以上のようにして、スラッジ貯蔵タンクT1内の残留スラッジ液(L)が吸引され、移送タンク(図示せず)内に、被ばくのおそれなく安全かつ確実に移送される。
T1:スラッジ貯蔵タンク
T2:移送タンク
 L:残留スラッジ液
 S:内部空間
 1:吸引装置本体
 2:ホバースカート
 3:ゴムチューブ
 4:平板
 5:プラグ
 6:空気チューブ
 7:シリンダ
 8:吸引ヘッド
 9:吸引ポンプ
 10:吸引パイプ
 11:移送パイプ
 12:シリンダ
 13:空気噴射ノズル
 14:空気チューブ
 21:吸引装置本体
 22:浮力体
 23:ゴムチューブ
 24:閉塞板
 25:プラグ
 26:空気チューブ
 27:浮力部材
 28:吸引ヘッド
 29:吸引ポンプ
 30:吸引パイプ
 31:移送パイプ
 32:シリンダ
 33:空気噴射ノズル
 34:空気チューブ
 41:スラッジ
 42:上澄み水
 43:空気吹き込み装置
 44:空気供給源
 45:空気パイプ
 46:空気ノズル
 47:スラッジ液
 48:スラッジ液移送経路
 49:上澄み水移送経路
 50:上澄み水噴出装置
 51:上澄み水パイプ
 52:上澄み水噴出ノズル
 53:点検孔
 54:放射線遮蔽手段
 55:監視カメラ
 56:監視カメラ
 57:制御装置

Claims (9)

  1.  一方のタンク内の残留スラッジ液を他方のタンクに移送する際に、前記残留スラッジ液を吸引するための残留放射性スラッジ液吸引装置であって、
     吸引装置本体と、前記吸引装置本体に取り付けられた複数個のホバースカートと、前記吸引装置本体に取り付けられた、前記残留スラッジ液を吸引する吸引ヘッドと、前記ホバースカートに取り付けられた空気噴射ノズルと、前記ホバースカートと前記空気噴射ノズルとに空気を供給する空気供給源とを備え、前記吸引装置本体は、前記ホバースカートに前記空気供給源から空気を供給することによって、前記残留スラッジ液の液面上に浮上すると共に、前記空気供給源からの空気を前記空気噴射ノズルから噴射させることによって、前記残留スラッジ液の液面上を移動可能であることを特徴とする残留放射性スラッジ液吸引装置。
  2.  前記ホバースカートは、前記吸引ヘッド側に向けて傾動可能であることを特徴とする、請求項1に記載された残留放射性スラッジ液吸引装置。
  3.  前記吸引ヘッドは、上下動可能であることを特徴とする、請求項1または2に記載された残留放射性スラッジ液吸引装置。
  4.  前記ホバースカートは、多角形の頂点に配された少なくとも3個のホバースカートからなり、前記吸引ヘッドは、少なくとも3個の前記ホバースカートによって囲まれていることを特徴とする、請求項1から3の何れか1つに記載された残留放射性スラッジ液吸引装置。
  5.  一方のタンク内の残留スラッジ液を他方のタンクに移送する際に、前記残留スラッジ液を吸引するための残留放射性スラッジ液吸引装置であって、
     吸引装置本体と、前記吸引装置本体に取り付けられた複数個の浮力体と、前記吸引装置本体に取り付けられた、前記残留スラッジ液を吸引する吸引ヘッドと、前記浮力体に取り付けられた空気噴射ノズルと、前記空気噴射ノズルに空気を供給する空気供給源とを備え、前記吸引装置本体は、前記浮力体の浮力によって、前記残留スラッジ液の液面上に浮上すると共に、前記空気供給源からの空気を前記空気噴射ノズルから噴射させることによって、前記残留スラッジ液の液面上を移動可能であることを特徴とする残留放射性スラッジ液吸引装置。
  6.  前記浮力体は、リング状の空気チューブと、前記空気チューブによって囲まれた空間内に設けられた浮力部材とから構成されていることを特徴とする、請求項5に記載された残留放射性スラッジ液吸引装置。
  7.  前記浮力部材は、発泡スチロールからなっていることを特徴とする、請求項5または6に記載された残留放射性スラッジ液吸引装置。
  8.  前記吸引ヘッドは、上下動可能であることを特徴とする、請求項5から7の何れか1つに記載された残留放射性スラッジ液吸引装置。
  9.  前記浮力体は、多角形の頂点に配された少なくとも3個の浮力体からなり、前記吸引ヘッドは、少なくとも3個の前記浮力体によって囲まれていることを特徴とする、請求項5から8の何れか1つに記載された残留放射性スラッジ液吸引装置。
PCT/JP2011/064889 2010-07-01 2011-06-29 残留放射性スラッジ液吸引装置 WO2012002419A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/807,835 US9347617B2 (en) 2010-07-01 2011-06-29 Residual radioactive sludge liquid suction apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-150758 2010-07-01
JP2010150758A JP5411812B2 (ja) 2010-07-01 2010-07-01 残留放射性スラッジ液吸引装置
JP2010-175377 2010-08-04
JP2010175377A JP5394337B2 (ja) 2010-08-04 2010-08-04 残留放射性スラッジ液吸引装置

Publications (1)

Publication Number Publication Date
WO2012002419A1 true WO2012002419A1 (ja) 2012-01-05

Family

ID=45402124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064889 WO2012002419A1 (ja) 2010-07-01 2011-06-29 残留放射性スラッジ液吸引装置

Country Status (2)

Country Link
US (1) US9347617B2 (ja)
WO (1) WO2012002419A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606931B2 (ja) * 2011-01-11 2014-10-15 太平電業株式会社 放射性スラッジ移送装置
JP6367700B2 (ja) * 2014-12-18 2018-08-01 株式会社神戸製鋼所 汚染水貯留タンクの除染処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317610A (ja) * 1992-05-21 1993-12-03 Toyo Eng Corp スラッジの吸い上げ装置及びそれを用いたシステム
JP2000065980A (ja) * 1998-08-25 2000-03-03 Toden Kogyo Co Ltd 遠隔操作により過酷な環境下で動作するハンドリングユニット、及びその構成ユニット並びにそれに吊り下げられる切断機ユニット
JP2008096116A (ja) * 2006-10-05 2008-04-24 Nuclear Services Co 放射性物質で汚染されたスラッジを移送する方法および装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170276A (en) * 1962-06-18 1965-02-23 Russell V Hall Air supported lawn mower
US3353621A (en) * 1965-12-09 1967-11-21 Gen Electric Air cushion appliance supporting device
US3619445A (en) * 1968-08-02 1971-11-09 Mobil Oil Corp Method for producing biaxially oriented polystyrene heavy gauge sheet
US4041965A (en) * 1975-10-16 1977-08-16 Rosenberg Jeffrey P Pool cleaning device
SE7901767L (sv) * 1978-03-13 1979-09-14 Flymo Sa Gresklippare
NZ209805A (en) * 1983-10-22 1986-11-12 Philip Dudley Gardner Machine for removing liquid from ground surface;fan blows liquid into tray inside machine
US5048275A (en) * 1990-09-07 1991-09-17 Fassauer Arthur L Air-floated apparatus having structural channel member and pressure seal
US5117619A (en) * 1990-09-25 1992-06-02 Fassauer Arthur L Air-floated apparatus with centrifuge raceway
US5311727A (en) * 1992-07-20 1994-05-17 Fassauer Arthur L Floatation cutting apparatus with support surface sealant and centrifuge chamber
DE4233888A1 (de) * 1992-10-10 1994-04-14 Reinhard Dipl Ing Hoersch Verfahren und Vorrichtung zur Reinigung und/oder Pflege von Bodenbelägen aller Art
US5833521A (en) * 1996-12-27 1998-11-10 Ltc Americas, Inc. Air cushioned vacuum blast head
US6520449B2 (en) * 1999-05-21 2003-02-18 Vortex Holding Company Lifting platform with positive horizontal stability
US6588956B1 (en) * 2002-10-03 2003-07-08 Frankie J. Gennuso, Jr. Cleaning apparatus
US7032698B2 (en) * 2003-11-12 2006-04-25 Mattel, Inc. Hovercraft
CA2738701A1 (en) * 2007-09-25 2009-04-02 Roger Vanderlinden Pick-up head having housed gutter brooms for a mobile sweeping vehicle
JP5411812B2 (ja) 2010-07-01 2014-02-12 太平電業株式会社 残留放射性スラッジ液吸引装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317610A (ja) * 1992-05-21 1993-12-03 Toyo Eng Corp スラッジの吸い上げ装置及びそれを用いたシステム
JP2000065980A (ja) * 1998-08-25 2000-03-03 Toden Kogyo Co Ltd 遠隔操作により過酷な環境下で動作するハンドリングユニット、及びその構成ユニット並びにそれに吊り下げられる切断機ユニット
JP2008096116A (ja) * 2006-10-05 2008-04-24 Nuclear Services Co 放射性物質で汚染されたスラッジを移送する方法および装置

Also Published As

Publication number Publication date
US20130098483A1 (en) 2013-04-25
US9347617B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
US9117557B2 (en) Radioactive sludge transfer apparatus
TWI640418B (zh) 積層製造加工槽及其積層製造設備
WO2012002419A1 (ja) 残留放射性スラッジ液吸引装置
JP4356728B2 (ja) 放射性物質で汚染されたスラッジを移送する方法および装置
JP5411812B2 (ja) 残留放射性スラッジ液吸引装置
JP5394337B2 (ja) 残留放射性スラッジ液吸引装置
JP2008161766A (ja) 汚染土壌の洗浄装置及び洗浄方法
KR100835723B1 (ko) 계면활성제거품을 이용한 토양오염물질 제거장치 및제거방법
JP5501852B2 (ja) 放射性スラッジ移送装置
CN114242297A (zh) 核废料封存容器制备系统
JP3514879B2 (ja) 廃樹脂取出し用の樹脂吸込み具
KR101773604B1 (ko) 해저 케이블을 보호하도록 시멘트를 타설하는 수중체
JP6199705B2 (ja) 除染方法
JPH1082890A (ja) 放射性物質付着表面の除染方法及びその装置
JP4832551B2 (ja) くらげ放流システム及びくらげ放流方法
KR20180105789A (ko) 에어블로윙 기능 및 유체분사 기능이 구비된 컷팅 처리 장치
KR101276127B1 (ko) 해양구조물 용 기름 제거 장치
KR101029400B1 (ko) 워터 젯을 이용한 차선 제거 장치 및 그 방법
JP4574397B2 (ja) 粉体塗装装置
JP3036257U (ja) 容器の洗浄装置
KR101545046B1 (ko) 노즐형 수중보
JP2022147082A (ja) 水中沈殿物回収ロボット
CN206458497U (zh) 运煤巷道内除尘喷雾系统
KR20170000629A (ko) 항공기 연료탱크 세정장치
KR101029423B1 (ko) 워터 젯을 이용한 차선 제거 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800881

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13807835

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800881

Country of ref document: EP

Kind code of ref document: A1