WO2012002200A1 - ウェハの洗浄方法 - Google Patents

ウェハの洗浄方法 Download PDF

Info

Publication number
WO2012002200A1
WO2012002200A1 PCT/JP2011/064201 JP2011064201W WO2012002200A1 WO 2012002200 A1 WO2012002200 A1 WO 2012002200A1 JP 2011064201 W JP2011064201 W JP 2011064201W WO 2012002200 A1 WO2012002200 A1 WO 2012002200A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
protective film
water
cleaning
silicon
Prior art date
Application number
PCT/JP2011/064201
Other languages
English (en)
French (fr)
Inventor
真規 斎藤
忍 荒田
崇 齋尾
公文 創一
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011040113A external-priority patent/JP5678720B2/ja
Priority claimed from JP2011112478A external-priority patent/JP5830931B2/ja
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to KR1020127024857A priority Critical patent/KR101396271B1/ko
Publication of WO2012002200A1 publication Critical patent/WO2012002200A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning

Definitions

  • the present invention relates to a substrate (wafer) cleaning technique in semiconductor device manufacturing or the like.
  • the present invention relates to a cleaning method that is effective in preventing the concavo-convex pattern from collapsing when cleaning the wafer surface on which the concavo-convex pattern is formed.
  • Patent Documents 1 and 6 disclose a technique for replacing the cleaning liquid from water to 2-propanol before the gas-liquid interface passes through the concavo-convex pattern as a technique for suppressing pattern collapse.
  • the aspect ratio of the pattern that can be handled is 5 or less.
  • Patent Document 2 discloses a technique for resist patterns as a technique for suppressing pattern collapse. This technique is a technique for suppressing pattern collapse by reducing the capillary force to the limit. However, since the disclosed technique is intended for a resist pattern, it modifies the resist itself, and can be finally removed together with the resist. Therefore, it is necessary to assume a method for removing the treatment agent after drying. Is not applicable to this purpose.
  • Patent Document 3 discloses that a wafer surface on which a concavo-convex pattern is formed by a film containing silicon is surface-modified by oxidation or the like, and a water-repellent protective film is formed on the surface using a water-soluble surfactant or silane coupling agent.
  • a cleaning method is disclosed that reduces the capillary force and prevents the pattern from collapsing.
  • Patent Documents 4 and 5 disclose a technique for preventing pattern collapse by performing a hydrophobic treatment using a treatment liquid containing a silylating agent such as N, N-dimethylaminotrimethylsilane and a solvent. ing.
  • the present invention relates to a substrate (wafer) cleaning technique for the purpose of improving the manufacturing yield of a device having a circuit pattern that is fine and having a high aspect ratio, particularly in the manufacture of semiconductor devices. It is related with improving the washing
  • a wafer having a silicon element on the surface has been generally used as the wafer.
  • titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium are used.
  • Wafers having at least one metal-based substance selected from the group on the surface have begun to be used.
  • the wafer surface is a surface having an uneven pattern.
  • reaction activity such as hydroxyl groups present on the surface of the concavo-convex pattern or the wafer surface It is necessary to bond the point and the compound forming the protective film.
  • the water-repellent protective film (hereinafter also simply referred to as “protective film”) is formed by the reaction of a silicon compound such as a silane coupling agent with a hydroxyl group (OH group) or the like introduced on the wafer surface. .
  • a reactive site such as a hydroxyl group is formed on the surface of the concavo-convex pattern, and the compound that forms the protective film reacts with the reactive site.
  • the unit varies depending on the ease of formation of hydroxyl groups, etc., depending on the type of material constituting the concavo-convex pattern, and the conditions of surface treatment with water, etc. performed when forming hydroxyl groups, etc. Differences may occur in the amount of hydroxyl groups per area.
  • the present invention relates to a wafer having a concavo-convex pattern formed on a surface thereof, wherein at least a part of the concave surface of the concavo-convex pattern includes titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, ruthenium, and a silicon element.
  • a water repellent protective film (hereinafter sometimes simply referred to as “protective film”) is formed on the concave surface of a wafer containing at least one substance selected from the group consisting of the liquid retained in the concave portion and the concave portion It is an object of the present invention to provide a method for cleaning a wafer that improves a cleaning process that easily induces pattern collapse by reducing the interaction with the surface.
  • the present invention relates to a method for cleaning a wafer that is effective in preventing the collapse of the concavo-convex pattern, and not only a wafer in which hydroxyl groups are easily introduced into the surface of the concavo-convex pattern but also hydroxyl groups etc. are introduced into the surface of the concavo-convex pattern. It is an object of the present invention to provide a cleaning method capable of economically and efficiently cleaning even a difficult wafer.
  • the pattern collapse occurs when the gas-liquid interface passes through the pattern when the wafer is dried. This is said to be caused by a difference in residual liquid height between a portion where the aspect ratio of the pattern is high and a portion where the aspect ratio is low, thereby causing a difference in capillary force acting on the pattern. Note that the expression “falling” is sometimes referred to as “collapse”.
  • the magnitude of the capillary force is the absolute value of P obtained by the following formula. From this formula, it is expected that the capillary force can be reduced by reducing ⁇ or cos ⁇ .
  • a pretreatment method for the surface of the uneven pattern on which the water-repellent protective film is formed, and a material for the water-repellent protective film was paid to a pretreatment method for the surface of the uneven pattern on which the water-repellent protective film is formed, and a material for the water-repellent protective film. That is, after a pretreatment step (for example, a step of forming a reactive site by oxidation treatment) for modifying the wafer surface (specifically, for example, the concave surface of the concave-convex pattern), the hydrophobicity having strong hydrophobicity
  • a water-repellent protective film on the surface of the concave portion with a water-repellent protective film-forming agent having a group, the surface of the concave portion is imparted with water repellency.
  • the hydrophobic group in the present invention refers to an unsubstituted hydrocarbon group or a hydrocarbon group in which a part of the hydrogen element in the hydrocarbon group is substituted with a halogen element.
  • the hydrophobicity of the hydrophobic group increases as the number of carbon atoms in the hydrocarbon group increases. Furthermore, in the case of a hydrocarbon group in which a part of the hydrogen element in the hydrocarbon group is substituted with a halogen element, the hydrophobicity of the hydrophobic group may increase. In particular, if the halogen element to be substituted is a fluorine element, the hydrophobicity of the hydrophobic group becomes stronger. The greater the number of fluorine elements to be substituted, the stronger the hydrophobicity of the hydrophobic group.
  • the present inventors have conducted intensive studies and conducted pretreatment (for example, oxidation treatment) and surface treatment with a chemical solution for forming a water repellent protective film containing a silicon compound having a specific hydrophobic group as a water repellent protective film forming agent. It has been found that by combining them, a protective film capable of producing good water repellency is formed on the surface of the concave / convex pattern of the wafer, and cleaning can be performed efficiently.
  • At least a part of the concave surface of the concavo-convex pattern is titanium, titanium nitride, tungsten, aluminum, copper, tin, nitridation.
  • a chemical solution for forming a water-repellent protective film containing a water-repellent protective film-forming agent for forming a water-repellent protective film on the wafer surface that has been modified in a pretreatment step is modified at least on the wafer.
  • a wafer cleaning method (first method) is provided.
  • each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element; Independently, at least one group selected from the group consisting of a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and a halogen group And a is an integer of 1 to 3. Further, among the wafers that do not contain silicon element, the total number of carbon atoms contained in R 1 of the formula [1] is 6 or more. ]
  • the first method is a wafer in which a concavo-convex pattern is formed on a surface thereof, and a wafer in which at least a part of the concavo-convex pattern includes a silicon element (hereinafter referred to as “silicon wafer”).
  • a method for cleaning a wafer comprising at least In the pretreatment step, an uneven pattern is formed at a temperature of 40 ° C. or more and less than the boiling point of the pretreatment chemical solution using a pretreatment chemical solution containing acid in a molar concentration of 0.001 to 5 mol / L and having a pH of 3 or less. It may be a wafer cleaning method (second method) characterized by modifying the surface of the wafer.
  • the second method may be a wafer cleaning method (third method) in which the acid contained in the pretreatment chemical is an organic acid.
  • Any one of the first to third methods is a wafer cleaning method (fourth method), wherein at least a part of the uneven pattern is formed of silicon nitride and / or silicon. May be.
  • the first method is selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium, at least a part of the concave surface of the concave / convex pattern in the wafer having the concave / convex pattern formed on the surface.
  • a method for cleaning a wafer containing at least one substance hereinafter, sometimes referred to as “metal wafer” or simply “wafer”.
  • the wafer cleaning method may be characterized in that the water repellent protective film forming agent is a silicon compound represented by the following general formula [2].
  • R 1 3 SiX [In the formula [2], R 1 s are each independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element; The total number of carbon atoms contained in R 1 is 6 or more, X is a monovalent functional group in which the element bonded to the silicon element is nitrogen, and monovalent functional group in which the element bonded to the silicon element is oxygen Or a halogen group. ]
  • the water repellent protective film forming agent is a silicon compound represented by the following general formula [3] (Wafer cleaning method ( (6th method) may be sufficient.
  • R 2 (CH 3 ) 2 SiX [3] [In the formula [3], R 2 is an unsubstituted hydrocarbon group having 4 to 18 carbon atoms or a hydrogen group in which a hydrogen element is substituted with a halogen element, and X is a monovalent element in which the element bonded to the silicon element is nitrogen A monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group. ]
  • the fifth or sixth method may be a wafer cleaning method (seventh method), wherein the water repellent protective film forming agent is a silicon compound represented by the following general formula [4].
  • the water repellent protective film forming agent is a silicon compound represented by the following general formula [4].
  • R 3 (CH 3 ) 2 SiX [4] [In the formula [4], R 3 is a hydrocarbon group in which at least a part of hydrogen atoms having 4 to 18 carbon atoms is substituted with a fluorine element, and X is a monovalent element in which the element bonded to the silicon element is nitrogen. A monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group. ]
  • any one of the first method and the fifth to seventh methods is characterized in that the pretreatment step is to hold an oxidation treatment liquid on the wafer surface, and a wafer cleaning method (eighth method) ).
  • the oxidation treatment liquid used in the pretreatment step is at least one treatment liquid selected from the group consisting of a treatment liquid containing ozone, a treatment liquid containing hydrogen peroxide, and a treatment liquid containing acid.
  • the wafer cleaning method (the ninth method) characterized by the above.
  • the first method and the fifth to ninth methods are related to the first feature of the present invention, and the first to fourth methods are related to the second feature of the present invention.
  • the water-repellent protective film refers to a film that is formed on the wafer surface to lower the wettability of the wafer surface, that is, a film that imparts water repellency.
  • the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is.
  • the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.
  • a reactive site such as a hydroxyl group is formed on the surface of the concavo-convex pattern by the acid in the pretreatment chemical that is a liquid containing an acid and a solvent for dissolving the acid.
  • the chemical solution for forming a protective film used when forming a water-repellent protective film on the surface of the concavo-convex pattern includes a compound for forming the protective film such as a silane coupling agent and a solvent for dissolving the compound.
  • the molar concentration of acid in the pretreatment chemical (hereinafter also referred to as “acid concentration”) is 0.001 to 5 mol / L.
  • the molar concentration of the acid in the pretreatment chemical solution is less than 0.001 mol / L, the effect of modifying the surface of the uneven pattern, that is, the effect of forming reactive sites such as hydroxyl groups on the surface of the uneven pattern is sufficient. I can't get it.
  • the molar concentration of the acid in the pretreatment chemical solution is more than 5 mol / L, the acid concentration becomes too high. Therefore, before the pretreatment step, the metal impurities and the like are ion-exchanged from the pretreatment chemical solution in advance. This makes it difficult to remove and purify.
  • the pretreatment chemical solution has a pH of 3 or less. If the pH of the pretreatment chemical solution is more than 3, the acidity of the pretreatment chemical solution is weakened, so that the effect of modifying the surface of the concavo-convex pattern, that is, the formation of reactive sites such as hydroxyl groups on the surface of the concavo-convex pattern The effect is weakened.
  • the surface of the concavo-convex pattern when the temperature of the pretreatment chemical is increased, the surface of the concavo-convex pattern can be easily modified in a shorter time.
  • the surface of the concavo-convex pattern is modified at a temperature equal to or higher than the boiling point of the pretreatment chemical, the pattern collapses because the gas-liquid interface is close to passing through the pattern due to rapid evaporation of the pretreatment chemical.
  • Adverse effects such as described above, in the wafer cleaning method according to the second feature of the present invention, the surface of the concavo-convex pattern is modified at a temperature of 40 ° C. or higher and lower than the boiling point of the pretreatment chemical. Since excellent water repellency can be imparted to the concave surface, the surface modification of the wafer by the pretreatment chemical is preferably performed at a temperature of 65 ° C. or higher and lower than the boiling point of the pretreatment chemical.
  • the state in which the liquid is held on at least the concave surface of the concave / convex pattern is maintained until the protective film is formed on the surface of the concave / convex pattern. preferable.
  • the acid contained in the pretreatment chemical is preferably an organic acid.
  • the organic acid is mainly composed of a carbon element, a hydrogen element, and an oxygen element, and is preferable because it does not contain an element that is hated in a semiconductor manufacturing process.
  • an organic acid is preferable because it has characteristics such that it is easily dissolved in an organic solvent and hardly reacts with a metal as compared with an inorganic acid.
  • the uneven pattern is made of silicon nitride and / or silicon.
  • the concavo-convex pattern is formed from silicon nitride or silicon, if the surface of the concavo-convex pattern is not modified, the surface of the concavo-convex pattern has few reactive sites such as hydroxyl groups. Therefore, even if the protective film forming chemical is supplied to the concavo-convex pattern formed from silicon nitride or silicon, it is difficult to form a water-repellent protective film on the surface of the concavo-convex pattern.
  • the wafer cleaning method (first method) By using the wafer cleaning method (first method) according to the present invention, at least a part of the concave surface of the concave / convex pattern on the surface has a concave / convex pattern formed on titanium, titanium nitride, tungsten, aluminum, copper, tin.
  • the capillary force acting on the concavo-convex pattern is reduced, and the pattern collapse prevention effect is exhibited.
  • the cleaning step in the method for manufacturing a wafer having a concavo-convex pattern on the surface can be improved without lowering the throughput. Therefore, the method for producing a wafer having a concavo-convex pattern on the surface, which is performed using the cleaning method of the present invention, has high productivity.
  • the cleaning method of the present invention can cope with a concavo-convex pattern having an aspect ratio of, for example, 7 or more which is expected to become higher in the future, and can reduce the cost of production of higher-density semiconductor devices.
  • the conventional apparatus can be applied without significant change, and as a result, can be applied to the manufacture of various semiconductor devices.
  • the protective film formed on the surface of the concavo-convex pattern in the cleaning process can stably exhibit water repellency. Therefore, the wafer can be stably cleaned while preventing the concave / convex pattern from falling.
  • the wafer type may be different for each production lot.
  • cleaning conditions according to the production lot that is, conditions for forming an appropriate amount of hydroxyl groups on the surface of the concavo-convex pattern and forming a water-repellent protective film.
  • the second feature of the present invention it is possible to reduce changes in cleaning conditions for each wafer type.
  • FIG. 1 is a schematic plan view of a wafer 1 whose surface is a surface having an uneven pattern 2.
  • FIG. 2 shows a part of the a-a ′ cross section in FIG. 1.
  • the recessed part 4 has shown the schematic diagram of the state holding the chemical
  • the following pre-steps are generally performed before the wafer cleaning method (first method) of the present invention is performed.
  • the pre-cleaning step may be omitted in some cases.
  • the method is not limited as long as a fine pattern can be formed on the wafer surface.
  • a resist having a desired concavo-convex pattern is produced by etching away the exposed resist or the resist that has not been exposed.
  • corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist.
  • the wafer is etched. At this time, the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a fine uneven pattern is obtained.
  • the surface of a silicon wafer, a wafer composed of a plurality of components including silicon and / or silica (SiO 2 ), a silicon carbide wafer, a sapphire wafer, various compound semiconductor wafers, a plastic wafer, and the like is made of titanium, A titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium metal-based material and a layer of a material containing silicon element, or a multilayer film formed on a wafer, at least one of which is formed
  • the material layer include the above-described concavo-convex pattern forming step, which is performed in a layer including the material layer.
  • corrugated pattern becomes said substance is also contained. Furthermore, the thing which formed the uneven
  • the protective film can be formed on the surface of a material composed of a plurality of components including the material.
  • the wafer composed of the plurality of components includes those in which the substance is formed on the wafer surface, and wafers in which at least part of the concavo-convex pattern becomes the substance when a concavo-convex pattern is formed.
  • it is at least the surface of the said substance part in the said uneven
  • cleaning liquid used in the pre-cleaning step examples include water, an organic solvent, a mixed liquid of water and an organic solvent, and a mixed liquid in which at least one of hydrogen peroxide, ozone, acid, and alkali is mixed. At least one selected from the group consisting of:
  • cleaning may be performed by sequentially replacing a plurality of types of cleaning liquids among the above cleaning liquids.
  • FIG. 1 is a schematic plan view of a wafer 1 whose surface has a concavo-convex pattern 2.
  • FIG. 2 shows a part of the a-a 'cross section in FIG. As shown in FIG.
  • the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3
  • the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done. Pattern collapse in the cleaning process tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.
  • the first feature of the present invention (the first method and the fifth to ninth methods) will be described in detail.
  • the description of the first feature may be omitted for simplification.
  • the wafer cleaning method (first method) of the present invention comprises: A pretreatment process (for example, an oxidation process) for modifying the wafer surface.
  • a water repellent protective film forming chemical containing a water repellent protective film forming agent for forming a water repellent protective film on the wafer surface is held in at least the concave portion of the wafer, and the water repellent protective film is formed on the concave surface.
  • a water repellent protective film forming step for example, an oxidation process for modifying the wafer surface.
  • the wafer surface is oxidized.
  • at least a part of the concave surface of the concavo-convex pattern is made of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, ruthenium, and silicon element in the wafer having the concavo-convex pattern formed on the surface.
  • a wafer containing at least one kind of substance selected from the group consisting of containing substances is targeted, and at least a portion made of the substance on the wafer surface is oxidized.
  • a hydroxyl group is formed on the surface of the substance, and it becomes possible to react the hydroxyl group with a chemical solution for forming a water-repellent protective film used in a water-repellent protective film forming step which is a subsequent step.
  • the water repellent protective film forming step from the oxidation treatment step is performed in a state where liquid is always held in at least the concave portion of the wafer. It is preferable to carry out with. Further, when the pre-cleaning step is performed, it is preferable to perform the water-repellent protective film forming step from the pre-cleaning step in a state where the liquid is always held in at least the concave portion of the wafer.
  • the cleaning method of the wafer is not particularly limited as long as the oxidation treatment liquid, the chemical liquid, and other liquids can be held in at least the concave portions of the concave / convex pattern of the wafer.
  • a wafer cleaning method represented by spin cleaning in which a wafer is cleaned one by one by supplying liquid to the vicinity of the rotation center while rotating the wafer while holding the wafer substantially horizontal, or a plurality of cleaning methods in the cleaning tank.
  • a batch system in which a single wafer is immersed and washed.
  • the form of the chemical solution or cleaning liquid when supplying the oxidation treatment liquid, the chemical solution, or other liquid to at least the concave portion of the concave / convex pattern of the wafer is not particularly limited as long as it becomes liquid when held in the concave portion. For example, there are liquid, vapor and the like.
  • the oxidation of the wafer surface in the oxidation treatment step is not particularly limited as long as the wafer surface is oxidized, but it is preferable to use a method of holding an oxidation treatment liquid on the wafer surface.
  • the method of holding the oxidation treatment liquid on the wafer surface includes a method of supplying and pouring liquid around the rotation center while rotating the wafer in the case of a single wafer method, and in the oxidation treatment solution in the case of a batch method.
  • the method of immersing is mentioned.
  • at least one treatment liquid selected from the group consisting of a treatment liquid containing ozone, a treatment liquid containing hydrogen peroxide, and a treatment liquid containing acid is used as the oxidation treatment liquid, these oxidation treatment liquids are powerful.
  • the oxidation treatment step may be performed using a normal temperature oxidation treatment solution or an oxidation treatment solution heated to 30 to 200 ° C.
  • metals and nitrides tend to be oxidized at higher temperatures, and it is preferable to treat the oxidation treatment solution by heating to 30 to 200 ° C.
  • the treatment solution will boil if most of the treatment solution consists of water, so that the temperature cannot be raised at normal pressure. For this reason, when the treatment is performed using an oxidation treatment solution at 100 ° C. or higher, it is preferable to use a solvent different from water.
  • the transition from the oxidation treatment step to the water repellent protective film formation step is performed by replacing the oxidation treatment liquid held in at least the concave portion of the uneven pattern of the wafer in the oxidation treatment step with a chemical solution for forming the water repellent protective film.
  • a chemical solution for forming the water repellent protective film Done.
  • the replacement of the oxidation treatment liquid with the chemical solution for forming a water-repellent protective film it may be directly replaced or replaced with a different cleaning liquid A (hereinafter simply referred to as “cleaning liquid A”) one or more times. Later, it may be replaced with a chemical solution for forming a water-repellent protective film.
  • the cleaning liquid A include water, an organic solvent, a mixture of water and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant.
  • the organic solvent that is one of the preferred examples of the cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.
  • FIG. 3 is a schematic view showing a state in which the concave portion 4 holds the chemical solution 8 for forming the water repellent protective film.
  • the wafer shown in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1.
  • a chemical solution for forming the water repellent protective film is supplied to the wafer 1 on which the concave / convex pattern 2 is formed.
  • the water-repellent protective film-forming chemical solution is held in at least the concave portion 4 as shown in FIG. 3, and the surface of the concave portion 4 is water-repellent.
  • the protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but because it can impart better water repellency, More preferably, it is uniformly formed.
  • the chemical solution is preferably maintained at 10 to 160 ° C., more preferably 15 to 120 ° C.
  • the chemical solution contains a water repellent protective film forming agent represented by the following general formula [1]. This corresponds to the first method described above.
  • R 1 a SiX 4-a [1] [In the formula [1], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element.
  • the total number of carbon atoms contained in R 1 of the formula [1] is 6 or more
  • X is a monovalent functional group or silicon element whose element bonded to the silicon element is nitrogen independently of each other Is an at least one group selected from the group consisting of a monovalent functional group in which the element bonded to oxygen is oxygen and a halogen group, and a is an integer of 1 to 3.
  • the silicon oxide surface obtained by oxidizing the silicon surface has abundant hydroxyl groups as reaction active sites, but in general, titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride,
  • the above-described oxidation treatment is performed on the surface of ruthenium and ruthenium, and the amount of hydroxyl groups is less than that on the surface of silicon oxide even on the surfaces of titanium oxide, tungsten oxide, aluminum oxide, copper oxide, tin oxide, tantalum oxide, and ruthenium oxide. . Even if a conventional silane coupling agent is reacted with this small number of hydroxyl groups, it is difficult to impart sufficient water repellency to the surface.
  • the hydrophobic group is a group having stronger hydrophobicity, sufficient water repellency can be imparted.
  • R 1 is a hydrophobic group having a stronger hydrophobicity
  • R 1 is a part of or all of hydrogen elements substituted with halogen elements. It may be a hydrocarbon group.
  • a water-repellent protective film forming agent having a hydrophobic group with a strong hydrophobicity in which the total number of carbon atoms in R 1 is 6 or more can be sufficiently water-repellent even if there are few hydroxyl groups present on the wafer surface. Can be formed.
  • the total number of carbons contained in R 1 of the formula [1] is 6 or more means that the total number of all carbons of the hydrophobic group contained in the formula [1] as R 1 is 1 to 3 It shows that it is 6 or more.
  • the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is nitrogen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine, iodine, etc., any functional group may be used.
  • the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is oxygen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine, iodine, etc., as long as it is a functional group composed of, for example, —OCH 3 group, —OC 2 H 5 group, —OC 3 H 7 group, —OCOCH 3 group, —OCOCF 3 group, etc. Is mentioned.
  • examples of the halogen group represented by X in the general formula [1] include —F group, —Cl group, —Br group, and —I group.
  • the group represented by X in the general formula [1] reacts with a hydroxyl group on the wafer surface to form a bond between the silicon element in the silicon compound and the wafer surface, thereby forming a protective film. Can be formed.
  • Examples of the silicon compound represented by the general formula [1] include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, and C 7. H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) HSiCl, C 6 H 13 (CH 3 ) HSiCl
  • a may be an integer of 1 to 3, but when a is 1 or 2, when the chemical solution is stored for a long period of time, a polymerization reaction between the silicon compounds occurs due to water mixing. Tends to occur, and it tends to be difficult to stably form a water-repellent protective film on the wafer surface.
  • a compound of formula (1) where a is 3, that is, a silicon compound represented by formula (2) below is preferable. This corresponds to the fifth method described above.
  • R 1 3 SiX [2] [In the formula [2], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or an unsubstituted or substituted hydrogen element with a halogen element.
  • the total number of carbon atoms contained in R 1 is 6 or more (in the case of a metal wafer),
  • X is a monovalent functional group in which the element bonded to the silicon element is nitrogen, and the element bonded to the silicon element is oxygen It is a certain monovalent functional group or a halogen group.
  • one R 1 is an unsubstituted hydrocarbon group having 4 to 18 carbon atoms or a hydrocarbon group substituted with a halogen element, 2
  • a compound in which each R 1 is a methyl group, that is, a silicon compound represented by the following general formula [3] is preferable because it has high reactivity with a hydroxyl group on the wafer surface (corresponding to the sixth method). .
  • the steric hindrance due to the hydrophobic group greatly affects the reactivity in the reaction between the hydroxyl group on the wafer surface and the group represented by X of the silicon compound. This is because the remaining two except the longest one are preferably shorter.
  • R 2 (CH 3 ) 2 SiX [3]
  • R 2 is an unsubstituted hydrocarbon group having 4 to 18 carbon atoms or a hydrogen group in which a hydrogen element is substituted with a halogen element
  • X is a monovalent element in which the element bonded to the silicon element is nitrogen
  • a monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group.
  • one R 1 is a hydrocarbon group in which at least a part of hydrogen atoms having 4 to 18 carbon atoms is substituted with a fluorine element, It is preferable that all of R 1 are methyl groups, that is, a silicon compound represented by the following general formula [4], because excellent water repellency can be imparted to the wafer surface. Since the hydrocarbon group in which at least a part of the hydrogen element is substituted with the fluorine element as described above is a hydrophobic group having particularly strong hydrophobicity, as a result, excellent water repellency can be imparted to the resulting protective film. This corresponds to the seventh method described above.
  • R 3 (CH 3 ) 2 SiX [4]
  • R 3 is a hydrocarbon group in which at least a part of hydrogen atoms having 4 to 18 carbon atoms are substituted with fluorine elements
  • X is a monovalent element in which the element bonded to the silicon element is nitrogen.
  • a monovalent functional group in which the element bonded to the silicon element is oxygen, or a halogen group.
  • the water-repellent protective film-forming agent may be contained at least in the chemical solution for forming the water-repellent protective film, and can be diluted with various organic solvents.
  • the organic solvent only needs to dissolve the water-repellent protective film forming agent.
  • hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohols. And derivatives thereof, nitrogen-containing compound solvents and the like are preferably used.
  • the group represented by X of the silicon compound is hydrolyzed with water to form a silanol group (Si—OH), and the generated silanol group undergoes a condensation reaction, whereby the silicon
  • Si—OH silanol group
  • the silicon undergoes a condensation reaction, whereby the silicon
  • the dimer Since this dimer has low reactivity with the hydroxyl group on the wafer surface, the wafer surface cannot be made sufficiently water-repellent or the time required for water-repelling becomes longer, so it is preferable to use water as a solvent. Absent.
  • the silicon compound easily reacts with a protic solvent, it is particularly preferable to use an aprotic solvent as the organic solvent because water repellency is easily developed on the wafer surface in a short time.
  • the aprotic solvent is both an aprotic polar solvent and an aprotic apolar solvent.
  • examples of such aprotic solvents include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, polyhydric alcohol derivatives having no hydroxyl group, and nitrogen-containing compounds having no NH bond. Compound solvents are mentioned.
  • hydrocarbons examples include toluene, benzene, xylene, hexane, heptane, and octane.
  • esters examples include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether.
  • examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, and dioxane.
  • ketones examples include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone.
  • halogen solvent examples include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, 3, 3-pentafluorobutane, Hydrofluorocarbons such as Kutafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Nippon Zeon), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl perfluoroisobutyl ether, Asahi Hydrofluoroethers such as Clin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec7300, and Novec7600 (all manufactured by 3M
  • nitrogen-containing compound solvents having no N—H bond examples include monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, triethylamine, pyridine and the like.
  • the chemical solution for forming a water-repellent protective film becomes nonflammable, or the flash point becomes high, thereby reducing the risk of the chemical solution for forming the water-repellent protective film.
  • a nonflammable organic solvent is used, the chemical solution for forming a water-repellent protective film becomes nonflammable, or the flash point becomes high, thereby reducing the risk of the chemical solution for forming the water-repellent protective film.
  • Many halogen-containing solvents are nonflammable, and the nonflammable halogen-containing solvent can be suitably used as a nonflammable organic solvent.
  • the organic solvent may be present if it is a trace amount of water.
  • the silicon compound may be hydrolyzed by the moisture to reduce the reactivity.
  • the amount of water in the solvent is preferably less than 1 mole of the silicon compound and less than 0.5 mole when mixed with the silicon compound. It is particularly preferable to do this.
  • the water-repellent protective film-forming chemical is preferably contained in a total amount of 100% by mass of the chemical solution so that the water-repellent protective film-forming agent is contained in an amount of 0.1 to 50% by mass.
  • the content of the agent is 0.3 to 20% by mass with respect to 100% by mass of the total amount of the chemical solution. If the water-repellent protective film forming agent is less than 0.1% by mass, the effect of imparting water repellency tends to be insufficient, and if it exceeds 50% by mass, components derived from the water-repellent protective film forming agent are impurities on the wafer surface after cleaning. As such, there is a concern that it remains as such. Moreover, since the usage-amount of a water repellent protective film formation agent increases, it is unpreferable also from a cost viewpoint.
  • a catalyst may be added to the chemical solution in order to promote the reaction between the silicon compound and the hydroxyl group on the wafer surface.
  • Such catalysts include trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride-free acid, ammonia, etc.
  • Bases such as alkylamine, aprotic nitrogen-containing solvents such as pyridine and dimethylformamide, salts such as ammonium sulfide, potassium acetate and methylhydroxyamine hydrochloride, and metal complexes and metal salts such as tin, aluminum and titanium
  • acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, and hydrogen chloride are preferable, and the acid does not contain moisture. Is preferred.
  • the catalyst may form a part of the water-repellent protective film by reaction.
  • the general formula [1] carbon number of the hydrophobic group R 1 of the silicon compound represented increases, there is a case where reactivity of the silicon compound is reduced to the hydroxyl group of the wafer surface due to steric hindrance.
  • the reaction between the hydroxyl group on the wafer surface and the silicon compound is promoted to compensate for the decrease in reactivity due to the steric hindrance of the hydrophobic group as described above. There is a case.
  • the addition amount of the catalyst is preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the silicon compound. If the amount added is small, the catalytic effect is lowered, which is not preferable. Moreover, even if it adds excessively, a catalyst effect will not improve, but when it increases more than a silicon compound, a catalyst effect may fall conversely. Furthermore, there is a concern that the impurities may remain on the wafer surface as impurities. For this reason, the amount of the catalyst added is preferably 0.01 to 100% by mass, more preferably 0.1 to 50% by mass, and still more preferably 0.2 to 20% by mass.
  • FIG. 4 shows a schematic diagram in the case where the liquid 9 is held in the recess 4 that has been made water-repellent by the water-repellent protective film forming agent.
  • the wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG.
  • a water repellent protective film 10 is formed on the surface of the recess 4 by a water repellent protective film forming agent.
  • the liquid 9 held in the recess 4 may be the above-described chemical liquid or a liquid (cleaning liquid B) after the chemical liquid is replaced with a different cleaning liquid B (hereinafter sometimes simply referred to as “cleaning liquid B”).
  • a liquid in the middle of substitution (a mixed solution of a chemical solution and a cleaning solution) may be used.
  • the water repellent protective film 10 is held on the wafer surface even when the liquid 9 is removed from the recess 4.
  • Preferred examples of the cleaning liquid B include water, an organic solvent, a mixture of water and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant.
  • examples of the organic solvent that is one of the preferred examples of the cleaning liquid B include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.
  • the contact angle on the assumption that water is held on the surface is preferably 50 to 130 ° because pattern collapse hardly occurs.
  • the capillary force is 2.1 MN / m 2 or less because pattern collapse hardly occurs. Further, when the capillary force becomes small, pattern collapse hardly occurs.
  • the capillary force is particularly preferably 1.1 MN / m 2 or less. Furthermore, it is ideal to adjust the contact angle with the cleaning liquid to around 90 ° so that the capillary force is as close as possible to 0.0 MN / m 2 .
  • the liquid held in the recess is the chemical liquid, the cleaning liquid B, or a mixed liquid of the chemical liquid and the cleaning liquid.
  • known drying methods such as natural drying, air drying, N 2 gas drying, spin drying, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, hot air drying, vacuum drying, etc. It is preferable to carry out by. Further, in order to efficiently remove the liquid, the remaining liquid may be dried after the retained liquid is drained and removed.
  • wavelengths shorter than 340 nm and 240 nm which are energy equivalent to 83 kcal / mol and 116 kcal / mol, which are binding energies of C—C bonds and C—F bonds in the protective film. It is preferable to irradiate ultraviolet rays containing.
  • a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used.
  • the protective film when the protective film is removed by light irradiation, if the constituent components of the protective film are decomposed by ultraviolet rays and ozone is generated at the same time, and the constituent components of the protective film are oxidized and volatilized by the ozone, the processing time is shortened. Therefore, it is particularly preferable.
  • a low-pressure mercury lamp, an excimer lamp, or the like is preferably used. Further, the wafer may be heated while irradiating light.
  • the wafer When heating the wafer, the wafer is heated at 400 to 700 ° C., preferably 500 to 700 ° C.
  • the heating time is preferably 1 to 60 minutes, preferably 10 to 30 minutes.
  • ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.
  • the method of placing the wafer in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method that requires a short processing time and a high processing capacity.
  • ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or low-temperature discharge with a high voltage may be provided to the wafer surface.
  • the wafer may be irradiated with light while being exposed to ozone, or may be heated.
  • the protective film on the wafer surface can be efficiently removed by combining the light irradiation, heating, ozone exposure, plasma irradiation, and corona discharge.
  • the second feature of the present invention (the first to fourth methods described above) will be described in detail.
  • description of the second feature may be omitted for simplification.
  • a description overlapping the detailed description of the first feature may be omitted.
  • a preferred method for cleaning a wafer according to an embodiment of the second aspect of the present invention is: (Step 1) A surface having a concavo-convex pattern, at least a portion of the concavo-convex pattern is provided with a liquid on the surface of a wafer containing silicon element (hereinafter also referred to as “surface of the concavo-convex pattern”), and at least a concave portion of the concavo-convex pattern Holding the liquid on the surface; (Step 2) a step of replacing the liquid with a water-repellent protective film-forming chemical (hereinafter also referred to as “protective film-forming chemical”) and holding the chemical on at least the concave surface of the concavo-convex pattern; (Step 3) A step of removing liquid from the surface of the concavo-convex pattern, and (Step 4) A step of removing a water-repellent protective film (hereinafter also referred to as “protective film”), Have
  • At least a pretreatment chemical solution is used.
  • at least one of an aqueous cleaning liquid composed of an aqueous solution and a cleaning liquid A different from the pretreatment chemical liquid and the aqueous cleaning liquid may be used.
  • the pretreatment chemical solution may be used in combination with at least one of the aqueous cleaning solution and the cleaning solution A, or a mixed solution containing the pretreatment chemical solution and at least one of the aqueous cleaning solution and the cleaning solution A. May be used.
  • the pretreatment chemical solution may be used for cleaning the wafer surface and modifying the uneven pattern surface.
  • the aqueous cleaning liquid may be replaced with the cleaning liquid A, and the cleaning liquid A may be further replaced with the pretreatment chemical.
  • the aqueous cleaning solution may be replaced with the preprocessing chemical solution after the aqueous cleaning solution is held on at least the concave surface of the concavo-convex pattern.
  • the protective film forming chemical liquid held on at least the concave surface of the concavo-convex pattern is replaced with a cleaning liquid B different from the protective film forming chemical liquid, and then the process proceeds to (Step 3).
  • a cleaning liquid B different from the protective film forming chemical liquid
  • the process proceeds to (Step 3).
  • an aqueous cleaning liquid composed of an aqueous solution is held on at least the concave surface of the concave / convex pattern, and then the process may proceed to (Step 3).
  • the protective film forming chemical can be replaced with an aqueous cleaning liquid
  • the replacement with the cleaning liquid B may be omitted.
  • the form of the chemical liquid or cleaning liquid when the chemical liquid (pretreatment chemical liquid or protective film forming chemical liquid) or cleaning liquid is supplied to at least the concave surface of the concavo-convex pattern of the wafer is held on the concave surface.
  • the surface of the concavo-convex pattern is modified at a temperature lower than the boiling point using a pretreatment chemical solution. Therefore, in the pretreatment step, the form of the chemical liquid when supplying the chemical liquid for pretreatment to at least the concave surface of the concave / convex pattern of the wafer is a liquid.
  • the cleaning method of the wafer is not particularly limited as long as the chemical solution (pretreatment chemical solution or protective film forming chemical solution) or cleaning solution can be held on at least the concave surface of the concave / convex pattern of the wafer.
  • a wafer cleaning method a wafer cleaning method represented by spin cleaning in which a wafer is cleaned one by one by supplying liquid to the vicinity of the rotation center while rotating the wafer while holding the wafer substantially horizontal, or a plurality of cleaning methods in the cleaning tank.
  • a batch system in which a single wafer is immersed and washed.
  • the wafer type may be the same for each production lot, or the wafer type may be different for each production lot, but the present invention can be applied to either case. it can.
  • silicon or a film containing a silicon element such as silicon oxide or silicon nitride is formed on the wafer surface, or
  • silicon element such as silicon oxide or silicon nitride
  • Silicon includes polysilicon and amorphous silicon.
  • a wafer composed of a plurality of components containing a silicon element, a silicon carbide wafer, and a wafer in which various films containing a silicon element are formed on the wafer can be used as the wafer.
  • various films containing silicon elements may be formed on a wafer not containing silicon elements such as sapphire wafers, various compound semiconductor wafers, and plastic wafers.
  • the wafer having a concavo-convex pattern on the surface and at least a part of the concavo-convex pattern containing silicon element is a wafer composed of a plurality of components including at least one selected from silicon, silicon oxide, and silicon nitride. It may be.
  • the wafer composed of the plurality of components at least one selected from silicon, silicon oxide, and silicon nitride is formed on the wafer surface, or when a concavo-convex pattern is formed, at least one of the concavo-convex pattern is formed.
  • a part whose part is at least one selected from silicon, silicon oxide, and silicon nitride is also included.
  • Step 1 a step (Step 1) is performed in which a liquid is provided on the surface of the wafer having the concavo-convex pattern (the surface of the concavo-convex pattern), and the liquid is held at least on the surface of the concave / convex pattern.
  • Step 1 a step of modifying the surface of the concavo-convex pattern by supplying a pretreatment chemical to the surface of the concavo-convex pattern (hereinafter referred to as “pretreatment step”) is performed.
  • the concavo-convex pattern is formed at a temperature of 40 ° C. or more and less than the boiling point of the pretreatment chemical solution using a pretreatment chemical solution containing acid in a molar concentration of 0.001 to 5 mol / L and having a pH of 3 or less. Modify the surface. This corresponds to the second method described above.
  • a reactive site such as a hydroxyl group is formed on the surface of the concavo-convex pattern by the acid in the pretreatment chemical. If there are many reactive sites such as hydroxyl groups on the surface of the concavo-convex pattern, in the later-described (Step 2), the compound that forms the protective film contained in the protective film-forming chemical solution and the reactive sites easily react. As a result, a water-repellent protective film is easily formed on the surface of the uneven pattern.
  • Supplying the pretreatment chemical to the surface of the concave / convex pattern is particularly suitable when at least a part of the concave / convex pattern is formed of silicon nitride and / or silicon. This corresponds to the fourth method described above.
  • the concavo-convex pattern is formed from silicon nitride or silicon, if the surface of the concavo-convex pattern is not modified by the pretreatment chemical solution, the surface of the concavo-convex pattern has few reactive sites such as hydroxyl groups.
  • the protective film forming chemical is supplied to the concavo-convex pattern formed from silicon nitride or silicon, it is difficult to form a water-repellent protective film on the surface of the concavo-convex pattern.
  • a pretreatment chemical containing acid even if the concavo-convex pattern is formed from silicon nitride or silicon, a protective film having sufficient water repellency is formed. Can be formed on the surface.
  • the uneven pattern formed from silicon nitride or silicon can be formed by, for example, forming a silicon nitride or silicon film on the wafer surface and then etching the silicon nitride or silicon film.
  • the concavo-convex pattern formed from silicon nitride or silicon can also be formed by forming a concavo-convex pattern on the wafer surface and then forming a silicon nitride or silicon film on the concavo-convex pattern.
  • the surface of the concavo-convex pattern is modified at a temperature of 40 ° C. or higher and less than the boiling point of the pretreatment chemical solution.
  • a pretreatment chemical solution is used as a method for adjusting the temperature for modifying the surface of the concavo-convex pattern. Examples thereof include a method for heating and a method for heating a wafer.
  • the acid contained in the pretreatment chemical solution includes an organic acid (corresponding to the above third method) and an inorganic acid.
  • inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like.
  • organic acids include aliphatic monocarboxylic acids such as acetic acid and propionic acid, aliphatic polycarboxylic acids such as maleic acid and fumaric acid, aromatic monocarboxylic acids such as benzoic acid, aromatics such as phthalic acid and terephthalic acid.
  • Organic sulfonic acids such as aromatic polycarboxylic acid, methanesulfonic acid and benzenesulfonic acid.
  • the molar concentration of the acid in the pretreatment chemical solution is 0.001 to 5 mol / L. However, it is preferably 0.005 to 2 mol / L.
  • the pH of the pretreatment chemical solution is 3 or less.
  • the pH of the pretreatment chemical solution is preferably 0.1 or more. If the pH of the pretreatment chemical solution is less than 0.1, it becomes difficult to purify the pretreatment chemical solution in advance by the ion exchange method before performing the pretreatment step, which may increase the purification cost.
  • Log 10 is a logarithm with 10 as the base
  • [H + ] represents the proton concentration in the pretreatment chemical solution at 25 ° C.
  • the unit of the proton concentration is mol / L.
  • the pretreatment chemical solution is not limited to an aqueous solution, and even when only an organic solvent is used as a solvent for the pretreatment chemical solution or when water and an organic solvent are used in combination, the above formula Is the pH of the pretreatment chemical solution.
  • the pH of the pretreatment chemical solution is the pretreatment temperature set to 25 ° C.
  • the value obtained by measuring the chemical solution with a pH meter is used.
  • the pretreatment chemical solution is preferably a liquid containing an acid and a solvent for dissolving the acid.
  • the solvent include water and organic solvents.
  • the type of organic solvent is not particularly limited, but hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohols, polyhydric alcohol derivatives, nitrogen-containing compound solvents, etc. Is mentioned.
  • solvents, such as water and an organic solvent may be used independently and may use 2 or more types together. For example, water and an organic solvent may be used in combination, or a plurality of organic solvents may be used in combination.
  • hydrocarbons examples include toluene, benzene, xylene, hexane, heptane, and octane.
  • esters examples include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether.
  • Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane and the like, and examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, cyclohexanone, isophorone, and the like.
  • halogen-containing solvent examples include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1,1,1 Hydrofluorocarbons such as 3,3-pentafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Zeon Corporation), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether , Hydrofluoroethers such as ethyl perfluoroisobutyl ether, Asahiklin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec7300, and Novec7600 (all
  • Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of alcohols include methanol, ethanol, propanol, butanol.
  • Examples of the polyhydric alcohols include ethylene glycol and 1,3-propanediol.
  • polyhydric alcohol derivatives examples include diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol mono Butylue Ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl
  • nitrogen-containing compound solvents include ether, diethylene glycol diethyl ether, diethylene glycol diacetate, triethylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, and ethylene glycol dimethyl ether. , Formamide, N, N- dimethylformamide, N, N- dimethylacetamide, N- methyl-2
  • the temperature of the pretreatment process is higher. Therefore, it is preferable that the solvent has a high boiling point.
  • the organic solvent should have a boiling point exceeding 100 ° C. Is preferred. Considering these, it is preferable to use a polyhydric alcohol or a derivative of a polyhydric alcohol as a solvent.
  • the pretreatment chemical solution it is preferable that bubbles do not occur at a temperature lower than the boiling point of the pretreatment chemical solution.
  • the pretreatment chemical solution does not contain an oxidizing agent such as ozone (O 3 ) or hydrogen peroxide (H 2 O 2 ) as a solvent. This is because, when the pretreatment chemical liquid contains an oxidizing agent, the oxidizing agent is decomposed and oxygen is generated when the temperature of the pretreatment chemical liquid becomes high.
  • the solvent of the pretreatment chemical solution does not contain an oxidant and consists only of water, only an organic solvent, or only water and an organic solvent.
  • the method for preparing the pretreatment chemical solution it is preferable to purify at least one of the acid and the solution.
  • the purification includes adjustment of moisture concentration by adsorbent such as molecular sieve or distillation, removal of metal impurities of each element of Na, Mg, K, Ca, Mn, Fe and Cu by ion exchange resin or distillation, and This is performed using at least one removing means among removing contaminants such as particles by filter filtration.
  • adsorbent such as molecular sieve or distillation
  • metal impurities of each element of Na, Mg, K, Ca, Mn, Fe and Cu by ion exchange resin or distillation
  • the aqueous cleaning liquid is provided on the surface of the concave / convex pattern, the aqueous cleaning liquid is retained on at least the concave surface of the concave / convex pattern, and then the aqueous cleaning liquid is replaced with the cleaning liquid A.
  • the aqueous cleaning solution may be replaced with the preprocessing chemical solution after the aqueous cleaning solution is held on at least the concave surface of the concavo-convex pattern.
  • a cleaning solution different from the pretreatment chemical solution may be provided on the surface of the uneven pattern.
  • the cleaning liquid different from the pretreatment chemical liquid include an aqueous cleaning liquid and a cleaning liquid A.
  • the liquid is maintained in at least the surface of the concavo-convex pattern.
  • aqueous cleaning liquid examples include water or water mainly containing water mixed with at least one organic solvent, acid or alkali in water (for example, the water content is 50% by mass or more). It is done. Of these, water is preferred.
  • a protective film forming chemical solution As a preferred example of the cleaning liquid A, a protective film forming chemical solution, water, an organic solvent, or a mixture thereof described later, or at least one of an acid, an alkali, a surfactant, and an oxidizing agent is mixed therein. And the like.
  • organic solvent which is one of the preferred examples of the cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.
  • hydrocarbons examples include toluene, benzene, xylene, hexane, heptane, and octane.
  • esters examples include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether.
  • Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane and the like, and examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, cyclohexanone, and isophorone.
  • halogen-containing solvent examples include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1,1,1 Hydrofluorocarbons such as 3,3-pentafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Zeon Corporation), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether , Hydrofluoroethers such as ethyl perfluoroisobutyl ether, Asahiklin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec7300, and Novec7600 (all
  • Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of alcohols include methanol, ethanol, propanol, butanol. Ethylene glycol, 1,3-propanediol, etc.
  • Examples of the derivative of the polyhydric alcohol include diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether.
  • Ether propylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether , Diethylene glycol diacetate, triethylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, etc.
  • nitrogen-containing compound solvents examples include formamide, N, N-dimethylform Bromide, N, N- dimethylacetamide, N- methyl-2-pyrrolidone, diethylamine, triethylamine, pyridine and the like.
  • acids that may be mixed in the cleaning liquid A include inorganic acids and organic acids.
  • inorganic acids include hydrofluoric acid, buffered hydrofluoric acid, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, etc.
  • organic acids include methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid , Acetic acid, trifluoroacetic acid, pentafluoropropionic acid and the like.
  • alkali that may be mixed in the cleaning liquid A include ammonia and choline.
  • the oxidizing agent that may be mixed with the cleaning liquid A include ozone and hydrogen peroxide.
  • the cleaning liquid A is an organic solvent because the chemical liquid for forming a protective film can be provided to the recess without being brought into contact with water.
  • the cleaning liquid A contains an acid aqueous solution because a protective film can be formed in a short time in (Step 2) described later.
  • cleaning liquid A a plurality of cleaning liquids may be used.
  • two types of cleaning liquid containing the acid aqueous solution and the organic solvent cleaning liquid can be used.
  • Step 2 a step (Step 2) is performed in which the liquid is replaced with a chemical solution for forming a protective film and the chemical solution is held on at least the concave surface of the concave / convex pattern.
  • a process of forming a water-repellent protective film on the surface of the concavo-convex pattern by supplying a chemical solution for forming a protective film onto the surface of the modified concavo-convex pattern hereinafter referred to as “protective film formation process”) To do).
  • the protective film is formed by reacting a compound that forms the protective film contained in the chemical liquid for forming the protective film with a reactive site such as a hydroxyl group formed on the surface of the concavo-convex pattern.
  • the compound to be formed is formed by chemically bonding with the Si element of the wafer.
  • the liquid held in the concave portion before the step (step 2) is replaced with a protective film forming chemical solution, and the protective film forming chemical solution is held on at least the concave surface of the concave / convex pattern.
  • the protective film is formed on at least the concave surface of the concave / convex pattern.
  • the protective film does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but because it can impart better water repellency, continuously, Further, it is more preferably formed uniformly.
  • the temperature at which a homogeneous protective film is easily formed is preferably 10 ° C. to less than the boiling point of the protective film forming chemical solution, and is preferably maintained at a temperature that is 15 ° C. to 10 ° C. lower than the boiling point of the protective film forming chemical solution. It is preferable that the temperature of the protective film-forming chemical is maintained at the temperature even when the temperature is held on at least the concave surface of the concave-convex pattern.
  • cleaning liquids may be held at a temperature of 10 ° C. or higher and lower than the boiling point of the cleaning liquid.
  • the cleaning liquid A contains an acid aqueous solution, particularly preferably a solution containing an acid aqueous solution and an organic solvent having a boiling point of 100 ° C. or higher
  • the protective film can be shortened for a short time if the temperature of the cleaning liquid is raised near the boiling point of the cleaning liquid. It is preferable because it is easy to form.
  • the protective film forming chemical contains a water repellent protective film forming agent represented by the following general formula [1] (hereinafter also referred to as “compound A”). This corresponds to the first method described above.
  • R 1 a SiX 4-a [1] [In the formula [1], each R 1 is independently of each other hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, or a hydrocarbon group in which a hydrogen element is substituted with a halogen element, and X is each Independently of each other, at least one selected from the group consisting of a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and a halogen group A is an integer of 1 to 3; ]
  • Examples of compound A include hexamethyldisilazane (HMDS), trimethylsilyldiethylamine (TMSDEA), tetramethyldisilazane, trimethylsilyldimethylamine, octyldimethylsilyldimethylamine, trimethylsilylimidazole, trimethylchlorosilane, propyldimethylchlorosilane, octyldimethylchlorosilane, Examples include silane coupling agents such as dimethyldichlorosilane, methyltrichlorosilane, trimethylmethoxysilane, and trimethylethoxysilane.
  • HMDS hexamethyldisilazane
  • TMSDEA trimethylsilyldiethylamine
  • tetramethyldisilazane trimethylsilyldimethylamine
  • octyldimethylsilyldimethylamine trimethylsilylimidazole
  • the chemical solution for forming a protective film may contain acid A as a catalyst.
  • the acid A in the protective film forming chemical is effective in promoting the reaction between the compound A and the Si element of the wafer.
  • the acid A contains water, it leads to an increase in the water contained in the protective film-forming chemical solution, making it difficult to form the protective film. Therefore, the acid A is preferably as the water content is low, and the preferable water content is 35% by mass or less, particularly preferably 10% by mass or less, and more preferably 5% by mass or less. Ideally, it is close to 0% by mass.
  • the concentration of acid A is preferably 0.01 to 20% by mass with respect to 100% by mass of the total amount of compound A. If the addition amount is small, the catalytic effect of the acid is lowered, which is not preferable. Even if it is excessively added, the catalytic effect is not improved. On the contrary, there is a concern that the wafer surface may be eroded or remain as impurities on the wafer. Therefore, the concentration of the acid A is particularly preferably 0.05 to 10% by mass with respect to 100% by mass of the total amount of the compound A.
  • the acid A includes inorganic acids and organic acids.
  • inorganic acids with a low water content include hydrogen halides, sulfuric acid, perchloric acid, phosphoric acid, etc.
  • organic acids include some or all of the hydrogen elements substituted with fluorine elements, etc.
  • alkane sulfonic acid carboxylic acid, benzene sulfonic acid, p-toluene sulfonic acid, etc.
  • Lewis acid can also be used as acid A.
  • the definition of Lewis acid is described in, for example, “Physical and Chemical Dictionary (Fifth Edition)”.
  • Examples of Lewis acids include acid anhydrides, boron compounds, and silicon compounds.
  • Examples of acid anhydrides include alkanesulfonic anhydrides such as trifluoromethanesulfonic anhydride, and carboxylic anhydrides such as acetic anhydride, trifluoroacetic anhydride, and pentafluoropropionic anhydride.
  • some or all of the hydrogen elements may be substituted with fluorine elements or the like.
  • Examples of the boron compound include alkyl borate ester, aryl borate ester, tris (trifluoroacetoxy) boron, trialkoxyboroxine, trifluoroboron and the like.
  • Examples of silicon compounds include chlorosilane, alkylsilylalkylsulfonates in which some or all of the hydrogen elements may be substituted with fluorine elements, etc., and some or all of the hydrogen elements may be substituted with fluorine elements, etc. Examples thereof include alkylsilyl esters.
  • at least one part of the said protective film may be formed with this silicon compound.
  • the compound A and the acid A may be diluted with a solvent.
  • a protective film is uniformly formed on at least the concave surface of the concave / convex pattern. Since it becomes easy to do, it is preferable. If it is less than 0.01% by mass, the effect of preventing the uneven pattern from falling tends to be insufficient. More preferably, it is 0.05 to 50% by mass.
  • Examples of the solvent that may be used for dilution in the chemical solution for forming a protective film include, for example, hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, and the like.
  • An organic solvent such as a nitrogen compound solvent is preferably used.
  • hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, and polyhydric alcohol derivatives that do not have an OH group can be used to shorten the protective film on the surface of the concavo-convex pattern. It is more preferable because it can be formed in time.
  • hydrocarbons examples include toluene, benzene, xylene, hexane, heptane, and octane.
  • esters examples include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether.
  • Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane and the like, and examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, cyclohexanone, isophorone, and the like.
  • halogen-containing solvent examples include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1,1,1 Hydrofluorocarbons such as 3,3-pentafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Zeon Corporation), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether , Hydrofluoroethers such as ethyl perfluoroisobutyl ether, Asahiklin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec7300, and Novec7600 (all
  • Examples of the sulfoxide solvents include dimethyl sulfoxide and the like, examples of derivatives of the polyhydric alcohols that do not have an OH group Diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene group Examples include recall dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol diacetate, diethylene glycol diacetate, triethylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, and ethylene glycol dimethyl ether.
  • nonflammable organic solvent it is preferable to use a nonflammable organic solvent because the chemical solution for forming the protective film becomes nonflammable or the flash point becomes high, thereby reducing the risk of the chemical solution.
  • Many halogen-containing solvents are nonflammable, and the nonflammable halogen-containing solvent can be suitably used as a nonflammable organic solvent.
  • the protective film forming chemical solution when supplied to the wafer while rotating the wafer, if the boiling point of the organic solvent is too low, the chemical solution tends to dry before the protective film forming chemical solution wets and spreads over the entire surface of the wafer. Absent. Moreover, when the boiling point is too high, the viscosity of the chemical solution tends to be too high, which is not preferable. For this reason, it is preferable to use an organic solvent having a boiling point of 70 to 220 ° C.
  • diethylene glycol monoethyl ether acetate diethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl Methyl ether, ethylene glycol dimethyl ether, diethylene glycol diacetate, ethylene glycol diacetate, cyclohexanone and the like are preferable.
  • the water content in the protective film forming chemical is preferably 5000 ppm by mass or less with respect to the total amount of the chemical.
  • the amount of water exceeds 5000 ppm by mass, the activities of the compound A and the acid A are reduced, and it is difficult to form the protective film in a short time. Therefore, it is preferable that the compound A, the acid A contained in the protective film-forming chemical solution, and the solvent that may be contained in the protective film-forming chemical solution do not contain much water.
  • 10 mass ppm or more may be sufficient as the moisture content in the chemical
  • the number of particles larger than 0.5 ⁇ m in the liquid measurement in the liquid phase in the protective film forming chemical solution is 100 or less per 1 mL of the chemical solution in the particle measurement by the light scattering type submerged particle detector. If the number of particles larger than 0.5 ⁇ m exceeds 100 per 1 mL of the chemical solution, pattern damage due to the particles may be induced, which causes a decrease in device yield and reliability. Further, it is preferable that the number of particles larger than 0.5 ⁇ m is 100 or less per mL of the chemical solution because washing with a solvent or water after forming the protective film can be omitted or reduced.
  • the number of particles larger than 0.5 ⁇ m in the protective film forming chemical solution per 1 mL of the chemical solution is smaller, but the number of particles larger than 0.5 ⁇ m is 1 or more per 1 mL of the chemical solution. Also good.
  • the particle measurement in the liquid phase in the protective film forming chemical solution is performed using a commercially available measuring device in a light scattering liquid particle measurement method using a laser as a light source. Means a light scattering equivalent diameter based on PSL (polystyrene latex) standard particles.
  • the metal impurity content of each element of Na, Mg, K, Ca, Mn, Fe, and Cu in the chemical solution for forming the protective film is 100 mass ppb or less with respect to the total amount of the chemical solution.
  • the metal impurities of each element described above are all those that exist in the chemical solution in the form of metal fine particles, ions, colloids, complexes, oxides and nitrides, whether dissolved or undissolved. If the metal impurity content is more than 100 mass ppb with respect to the total amount of the chemical solution, the junction leakage current of the device may be increased, which causes a decrease in device yield and reliability.
  • the metal impurity content is 100 mass ppb or less with respect to the total amount of the chemical solution because washing with a solvent or water after forming the protective film can be omitted or reduced.
  • 0.01 mass ppb or more of each said metal impurity content may be sufficient with respect to this chemical
  • the method for preparing a protective film-forming chemical solution containing a mixture of compound A and acid A it is preferable to purify at least one of compound A before mixing, acid A, and mixed solution after mixing.
  • the protective film-forming chemical solution contains a solvent
  • the compound A and the acid A before mixing may be in a solution state containing a solvent.
  • the purification is performed before the compound is mixed.
  • the target may be at least one of A or a solution thereof, acid A or a solution thereof, and a mixed solution after mixing.
  • the purification includes removal of water molecules by adsorbent such as molecular sieve or distillation, removal of metal impurities of each element of Na, Mg, K, Ca, Mn, Fe and Cu by ion exchange resin or distillation, and This is performed using at least one removing means among removing contaminants such as particles by filter filtration.
  • adsorbent such as molecular sieve or distillation
  • metal impurities of each element of Na, Mg, K, Ca, Mn, Fe and Cu by ion exchange resin or distillation
  • the protective film-forming chemical liquid held on at least the concave surface of the concavo-convex pattern may be replaced with a cleaning liquid B different from the chemical liquid, and then transferred to (Step 3).
  • the cleaning liquid B include an aqueous cleaning liquid composed of an aqueous solution, or an organic solvent, or a mixture of the aqueous cleaning liquid and an organic solvent, a mixture of at least one of an acid, an alkali, and a surfactant.
  • the compound A contained in the chemical solution for forming a protective film and the acid A added so that the concentration thereof is lower than that of the chemical solution may be used.
  • organic solvent which is one of the preferable examples of the cleaning liquid B include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.
  • hydrocarbons examples include toluene, benzene, xylene, hexane, heptane, and octane.
  • esters examples include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether.
  • Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane and the like, and examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, cyclohexanone, isophorone, and the like.
  • halogen-containing solvent examples include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1,1,1 Hydrofluorocarbons such as 3,3-pentafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Zeon Corporation), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether , Hydrofluoroethers such as ethyl perfluoroisobutyl ether, Asahiklin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec7300, and Novec7600 (all
  • Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of alcohols include methanol, ethanol, propanol, butanol. Ethylene glycol, 1,3-propanediol, etc.
  • Examples of the derivative of the polyhydric alcohol include diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether.
  • Ether propylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether , Diethylene glycol diacetate, triethylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, etc.
  • nitrogen-containing compound solvents examples include formamide, N, N-dimethylform Bromide, N, N- dimethylacetamide, N- methyl-2-pyrrolidone, diethylamine, triethylamine, pyridine and the like.
  • an aqueous cleaning liquid composed of an aqueous solution is retained on at least the concave surface of the concave / convex pattern, and then the process may proceed to (Step 3).
  • a plurality of cleaning liquids may be used as the cleaning liquid B.
  • the aqueous cleaning liquid examples include water or water mainly containing water mixed with at least one organic solvent, acid or alkali in water (for example, the water content is 50% by mass or more). It is done.
  • water when water is used as the aqueous cleaning liquid, the contact angle ⁇ with the liquid on at least the concave surface of the concave / convex pattern made water-repellent by the chemical solution for forming a protective film increases, and the capillary force P on the concave surface decreases. Further, it is preferable because dirt is hardly left on the wafer surface after drying.
  • the liquid retained on the surface may be a protective film forming chemical, cleaning solution B, aqueous cleaning solution, and a mixture thereof.
  • the liquid mixture containing the chemical liquid may be a liquid in the middle of replacing the chemical liquid with the cleaning liquid B, or may be a liquid mixture obtained by previously mixing the chemical liquid with a cleaning liquid different from the chemical liquid.
  • the uneven pattern surface is held with at least one selected from the cleaning liquid B, the aqueous cleaning liquid, and a mixture thereof, and then dried. Also good.
  • the contact angle when assuming that water is held on the surface is 60 ° to 120 °. This is preferable because it is difficult for collapse to occur. Further, the closer the contact angle is to 90 °, the smaller the capillary force on the surface of the concave portion, and the pattern collapse is less likely to occur, so 70 to 110 ° is particularly preferable.
  • the capillary force is preferably 2.1 MN / m 2 or less. It is preferable that the capillary force is 2.1 MN / m 2 or less because pattern collapse hardly occurs.
  • capillary force is particularly preferably 1.6MN / m 2 or less, more preferably 1.1 MN / m 2 or less. Furthermore, it is ideal to adjust the contact angle with the liquid to around 90 ° so that the capillary force is as close as possible to 0.0 MN / m 2 .
  • step 3 the detailed description regarding the step of removing the liquid from the uneven pattern surface (step 3) and the step of removing the protective film (step 4) are the same as those in the first feature. Omitted.
  • the pattern collapse greatly depends on the contact angle of the cleaning liquid to the wafer surface, that is, the contact angle of the droplets and the surface tension of the cleaning liquid.
  • the contact angle of the droplet and the capillary force acting on the concave portion which may be considered equivalent to the pattern collapse, have a correlation.
  • Capillary force may be derived from the evaluation of the contact angle of the drop.
  • water was used as the cleaning liquid. From the above equation, as the contact angle is closer to 90 °, the capillary force acting on the concave portion becomes smaller and pattern collapse is less likely to occur. Therefore, the contact angle when assuming that water is retained on the surface of the protective film is 60 ⁇ 120 ° is preferable, and 70 to 110 ° is particularly preferable.
  • water droplet contact angle is evaluated by dropping several ⁇ l of water droplets onto the sample (base material) surface, Made by measurement.
  • the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases.
  • the chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer 1 on which the uneven pattern 2 is formed.
  • the film 10 was considered and various evaluations were performed.
  • a wafer having a titanium nitride film having a titanium nitride layer on a silicon wafer having a smooth surface hereinafter referred to as “TiN wafer” as a wafer having a smooth surface. Used).
  • a smooth surface silicon wafer having a thermal oxide film (SiO 2 film) layer or a silicon nitride film (SiN film) layer on the surface as a smooth surface wafer was used.
  • evaluation method of wafer cleaned by cleaning method of the present invention As evaluation methods for wafers cleaned by the cleaning method of the present invention, the following evaluations (1) to (3) were performed.
  • S 0 is an area when the measurement surface is ideally flat, and has a value of (X R ⁇ X L ) ⁇ (Y B ⁇ Y T ).
  • F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
  • the Ra value of the wafer surface before forming the protective film and the Ra value of the wafer surface after removing the protective film are measured. If the difference ( ⁇ Ra) is within ⁇ 1 nm, the wafer surface is eroded by cleaning. No, and the residue of the protective film was not present on the wafer surface, and the result was accepted.
  • the Ra value of the wafer after removing the protective film is 1 nm or less, the wafer surface is not eroded by the cleaning, and the residue of the protective film is not on the wafer surface. And passed.
  • Example 1 (1) Preparation of chemical solution for forming water-repellent protective film
  • Nonafluorohexyldimethylchlorosilane [C 4 F 9 (CH 2 ) 2 (CH 3 ) 2 SiCl]; 10 g, hydrofluoroether as organic solvent (3M HFE-7100): 90 g was mixed and stirred for about 5 minutes, and the concentration of the protective film forming agent relative to the total amount of the protective film forming chemical (hereinafter referred to as “protective film forming agent concentration”) was 10 mass. % Protective film-forming chemical solution was obtained.
  • a wafer with a smooth titanium nitride film (a silicon wafer having a titanium nitride layer with a thickness of 50 nm on the surface) was immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 minutes, and then purified. Immerse in water for 1 minute.
  • Oxidation treatment of TiN wafer Hydrochloric acid is mixed in a solvent in which water / ethylene glycol (hereinafter referred to as “EG”) is mixed at a mass ratio of 20/80 so that the concentration is 0.1 mol / L. Then, an oxidation treatment solution was prepared. The TiN wafer after the “(2) Pre-cleaning of TiN wafer” was immersed for 1 minute in the oxidation treatment liquid maintained at 130 ° C. for oxidation treatment.
  • EG ethylene glycol
  • the initial contact angle before forming the water-repellent protective film was less than 10 °.
  • the contact angle after the formation of the protective film was 96 °, indicating an excellent water repellency imparting effect.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
  • the ⁇ Ra value of the wafer by UV irradiation was within ⁇ 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • the TiN wafer subjected to “(2) TiN wafer pre-cleaning” and “(3) TiN wafer oxidation treatment” as in Example 1 was immersed in iPA for 1 minute, and then immersed in PGMEA for 1 minute. Then, as a water-repellent protective film forming step, the protective film-forming chemical solution prepared above was immersed at 45 ° C. for 1 hour. Thereafter, the TiN wafer was immersed in iPA for 1 minute, and then immersed in pure water for 1 minute. The processing after the pre-cleaning was performed in a state where the liquid was always held on the TiN wafer surface. Finally, the TiN wafer was taken out from the pure water and air was blown to remove the pure water on the surface of the TiN wafer.
  • the initial contact angle before forming the water-repellent protective film was less than 10 °.
  • the contact angle after the formation of the protective film was 71 °, indicating an excellent water repellency imparting effect.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
  • the ⁇ Ra value of the wafer by UV irradiation was within ⁇ 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • the protective film-forming chemical solution prepared above was immersed at 20 ° C. for 1 hour. Thereafter, the TiN wafer was immersed in iPA for 1 minute, and then immersed in pure water for 1 minute. The processing after the pre-cleaning was performed in a state where the liquid was always held on the TiN wafer surface. Finally, the TiN wafer was taken out from the pure water and air was blown to remove the pure water on the surface of the TiN wafer.
  • the initial contact angle before forming the water-repellent protective film was less than 10 °.
  • the contact angle after forming the protective film was also 23 °, and sufficient water repellency could not be imparted.
  • the TiN wafer After being immersed for 1 minute, as a water-repellent protective film forming step, it was immersed for 1 hour at 20 ° C. in the protective film-forming chemical solution prepared above. Thereafter, the TiN wafer was immersed in iPA for 1 minute, and then immersed in pure water for 1 minute. The processing after the pre-cleaning was performed in a state where the liquid was always held on the TiN wafer surface. Finally, the TiN wafer was taken out from the pure water and air was blown to remove the pure water on the surface of the TiN wafer.
  • the initial contact angle before forming the water-repellent protective film was less than 10 °.
  • the contact angle after forming the protective film was 18 °, and sufficient water repellency could not be imparted.
  • Example 1 (1) Preparation of chemical solution for forming protective film Hexamethyldisilazane (HMDS) as compound A: 3 g, trifluoroacetic acid (TFA) as acid A: 0.1 g, propylene glycol monomethyl ether acetate (PGMEA) as solvent: 96. 9 g was mixed and stirred for about 5 minutes to obtain a protective film-forming chemical.
  • HMDS Hexamethyldisilazane
  • TFA trifluoroacetic acid
  • PMEA propylene glycol monomethyl ether acetate
  • a silicon wafer with a smooth SiO 2 film (a silicon wafer having a thermal oxide film layer with a thickness of 1 ⁇ m on the surface, which may be simply referred to as “SiO 2 film” hereinafter) is 1% by weight It was immersed in an acid aqueous solution for 2 minutes, then immersed in pure water for 1 minute and in 2-propanol for 1 minute. Further, a silicon wafer with a smooth SiN film manufactured by LP-CVD (a silicon wafer having a silicon nitride film with a thickness of 50 nm on the surface, which may be simply referred to as “SiN film” hereinafter) is 1 mass% hydrofluoric acid.
  • a 1 mol / L hydrochloric acid (described as HCl in Table 1) aqueous solution (measured pH is 0.1) previously purified by an ion exchange method and filter filtration. It was used and heated with a hot plate so that the liquid temperature was 60 ° C. Thereafter, the cleaned silicon wafer with the SiO 2 film and the silicon wafer with the SiN film were each pretreated by being immersed in a pretreatment chemical solution for 1 minute. Thereafter, each wafer was immersed in pure water for 1 minute. The pH of the pretreatment chemical solution was measured using a pH meter (manufactured by ASONE, Lacom Tester pH meter pH1100) after leaving the pretreatment chemical solution in a thermostatic bath at 25 ° C. for 1 hour.
  • a pH meter manufactured by ASONE, Lacom Tester pH meter pH1100
  • SiO 2 film when referring to the silicon wafer with SiO 2 film, it is simply referred to as “SiO 2 film”, and when referring to the silicon wafer with SiN film, it is simply referred to as “SiN film”.
  • SiO 2 film had an initial contact angle of less than 10 ° before the surface treatment, but the contact angle after the surface treatment was 88 °, indicating a water repellency imparting effect.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
  • the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 69 °, which showed the effect of imparting water repellency.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
  • the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • Example 2 to 18 The surface treatment of the wafer is carried out by appropriately changing the conditions such as the acid, acid concentration, solvent, pH, temperature of the pretreatment chemical used in Example 1 and the temperature and time of the surface treatment of the protective film forming chemical. Further evaluation was performed. The results are shown in Table 1.
  • HNO 3 means nitric acid
  • CH 3 COOH means acetic acid
  • HOOCCHCHCOOH means maleic acid
  • HMDS / TFA / PGMEA forms a protective film having the same composition ratio as in Example 1.
  • Example 1 All were the same as Example 1 except that no pretreatment was performed.
  • the evaluation results are shown in Table 1.
  • the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 91 °, indicating a water repellency imparting effect.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
  • the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 47 °, and the water repellency imparting effect was not sufficient.
  • Example 2 All were the same as Example 1 except that 0.0005 mol / L hydrochloric acid aqueous solution (measured pH was 3.5) was used as the pretreatment chemical solution.
  • the evaluation results are shown in Table 1.
  • the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 88 °, indicating the effect of imparting water repellency.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
  • the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 59 °, and the water repellency imparting effect was not sufficient.
  • Example 3 All were the same as in Example 1 except that 0.01 mol / L acetic acid aqueous solution (measured pH was 3.6) was used as the pretreatment chemical solution.
  • the evaluation results are shown in Table 1.
  • the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 89 °, indicating the effect of imparting water repellency.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
  • the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 58 °, and the water repellency imparting effect was not sufficient.
  • Example 6 All the pretreatment chemicals were the same as in Example 1 except that they were used at 30 ° C. The evaluation results are shown in Table 1. In the case of the SiO 2 film, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 87 °, indicating a water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 51 °, and the water repellency imparting effect was not sufficient.
  • a silicon wafer with a SiN film was used as a wafer with few hydroxyl groups on the wafer surface.
  • a silicon wafer with a silicon film such as polysilicon it is assumed that the same result as that when a silicon wafer with a SiN film is used is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

開示されているのは、金属系ウェハ又はシリコンウェハ(1)の洗浄方法であって、ウェハ表面を改質する前処理工程と、改質された前記ウェハ表面に撥水性保護膜(10)を形成するための撥水性保護膜形成剤を含有する撥水性保護膜形成用薬液を、前記ウェハ(1)の少なくとも凹部(4)に保持し、該凹部表面に撥水性保護膜(10)を形成する、撥水性保護膜形成工程を含み、前記撥水性保護膜形成剤が、R1 aSiX4-aで表されるケイ素化合物であることを特徴とする、ウェハの洗浄方法である。この方法によって、パターン倒れを誘発しやすい洗浄工程を改善できる。

Description

ウェハの洗浄方法
 本発明は、半導体デバイス製造などにおける基板(ウェハ)の洗浄技術に関する。特に、凹凸パターンが形成されたウェハ表面を、洗浄するときに、凹凸パターンの倒れを防止することに奏功する洗浄方法に関する。
発明の背景
 半導体チップの製造では、成膜、リソグラフィやエッチングなどを経てシリコンウェハ表面に微細な凹凸パターンが形成され、その後、ウェハ表面を清浄なものとするために、水(純水)や有機溶媒を用いて洗浄がなされる。素子は微細化される方向にあり、凹凸パターンの間隔は益々狭くなってきている。このため、水(純水)を用いて洗浄し、水をウェハ表面から乾燥させる際、気液界面がパターンを通過するときに毛細管現象により、凹凸パターンが倒れるという問題が生じやすくなってきている。この問題は、特に凹凸のパターン間隔がより狭くなった、例えばラインアンドスペース形状のパターンのウェハの場合、線幅(凹部の幅)が20nm台、10nm台世代の半導体チップにおいてより顕著になってきている。
 特許文献1、特許文献6には、パターン倒れを抑制する手法として気液界面が凹凸パターンを通過する前に洗浄液を水から2-プロパノールへ置換する技術が開示されている。しかし、対応できるパターンのアスペクト比が5以下である等、限界があると言われている。
 また、特許文献2には、パターン倒れを抑制する手法として、レジストパターンを対象とする技術が開示されている。この手法は毛細管力を極限まで下げることによって、パターン倒れを抑制する手法である。しかし、この開示された技術はレジストパターンを対象としており、レジスト自体を改質するものであり、さらに最終的にレジストと共に除去が可能であるため、乾燥後の処理剤の除去方法を想定する必要がなく、本目的には適用できない。
 また、特許文献3には、シリコンを含む膜により凹凸形状パターンを形成したウェハ表面を酸化等により表面改質し、該表面に水溶性界面活性剤またはシランカップリング剤を用いて撥水性保護膜を形成し、毛細管力を低減し、パターンの倒壊を防止する洗浄方法が開示されている。
 また、特許文献4、5には、N,N-ジメチルアミノトリメチルシランを始めとするシリル化剤及び溶剤を含む処理液を用いて疎水化処理を行うことにより、パターン倒れを防ぐ技術が開示されている。
特開2008-198958号公報 特開平5-299336号公報 特許第4403202号 特開2010-129932 国際公開第10/47196号パンフレット 特開2003-45843号公報
 本発明は、半導体デバイス製造などにおいて、特に微細でアスペクト比の高い回路パターン化されたデバイスの製造歩留まりの向上を目的とした基板(ウェハ)の洗浄技術に関するものであり、特に、表面に凹凸パターンを有するウェハの凹凸パターン倒れを誘発しやすい洗浄工程を改善することに関するものである。
これまで、前記ウェハとしては表面にシリコン元素を有するウェハが一般的に用いられてきたが、パターンの多様化に伴ってチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の金属系の物質を表面に有するウェハが用いられ始めている。
半導体チップの製造時には、ウェハ表面は、凹凸パターンを有する面とされる。凹凸パターンの表面を撥水化することでパターン倒れを防止しようとする場合において、凹凸パターン表面に撥水性保護膜を形成するためには、凹凸パターン表面やウェハ表面に存在する水酸基などの反応活性点と、保護膜を形成する化合物とを結合させる必要がある。
表面に凹凸パターンを有し、該凹凸パターンの少なくとも一部がシリコン元素を含むウェハ(以降、単に「ウェハ」と記載する場合がある)の洗浄時において、ウェハの凹凸パターン部の毛細管力を低減させる撥水性の保護膜(以降、単に「保護膜」とも記載する)は、シランカップリング剤などのケイ素化合物が、ウェハ表面に導入された水酸基(OH基)などと反応することにより形成される。
 このように、シリコン元素を含む凹凸パターンに保護膜を形成するためには、凹凸パターンの表面に水酸基などの反応活性点を形成し、保護膜を形成する化合物とその反応活性点とを反応させる必要がある。シリコン元素を含む凹凸パターンにおいては、凹凸パターンを構成する材料の種類に応じて水酸基などの形成しやすさが異なることや、水酸基などを形成する際に行う水などによる表面処理の条件により、単位面積あたりの水酸基などの量に違いが生じることがある。
また、前記金属系の物質を表面に有するウェハのように、表面に反応活性点、例えばシラノール基が十分に存在しない物質を含むウェハの場合、特許文献3乃至5に記載のいずれの処理液及び処理方法を用いてもパターンの倒壊を防止する撥水性保護膜を形成できないため、パターンの倒壊を防止できないという問題がある。
 本発明は、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、ルテニウム、及びシリコン元素を含む物質からなる群から選ばれる少なくとも1種の物質を含むウェハの凹部表面に撥水性保護膜(以降、単に「保護膜」と記載する場合がある)を形成し、該凹部に保持された液体と該凹部表面との相互作用を低減せしめることによって、パターン倒れを誘発しやすい洗浄工程を改善する前記ウェハの洗浄方法を提供することを課題とする。
 さらに、本発明は、凹凸パターンの倒れを防止することに奏功するウェハの洗浄方法に関し、凹凸パターンの表面に水酸基などが導入されやすいウェハはもちろんのこと、凹凸パターンの表面に水酸基などが導入されにくいウェハであっても、経済的かつ効率的にウェハを洗浄することが可能な洗浄方法を提供することを課題とする。
 パターン倒れは、ウェハの乾燥時に気液界面がパターンを通過するときに生じる。これは、パターンのアスペクト比が高い部分と低い部分との間において、残液高さの差ができ、それによってパターンに作用する毛細管力に差が生じることが原因と言われている。尚、「倒れ」という表記は、以降「倒壊」ということがある。
 このため、毛細管力を小さくすれば、残液高さの違いによる毛細管力の差が低減し、パターン倒れが解消すると期待できる。毛細管力の大きさは、以下に示される式で求められるPの絶対値であり、この式からγ、もしくは、cosθを小さくすれば、毛細管力を低減できると期待される。
           P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
 本発明では、上記課題を克服するために、撥水性保護膜が形成される凹凸パターンの表面の前処理方法、及び撥水性保護膜の材料に着目した。すなわち、前記ウェハ表面(具体的には、例えば、凹凸パターンの凹部表面)を改質する前処理工程(例えば、酸化処理することにより反応活性点を形成する工程)の後、疎水性の強い疎水基をもつ撥水性保護膜形成剤によって該凹部表面に撥水性保護膜を形成することにより、凹部表面に撥水性を付与するものである。
 本発明における疎水基とは、無置換の炭化水素基、或いは炭化水素基中の水素元素の一部がハロゲン元素により置換された炭化水素基を示している。疎水基の疎水性は、前記炭化水素基中の炭素数が多いほど強くなる。さらには、炭化水素基中の水素元素の一部がハロゲン元素により置換された炭化水素基の場合、疎水基の疎水性が強くなる場合がある。特に、置換するハロゲン元素がフッ素元素であれば、疎水基の疎水性が強くなり、置換するフッ素元素数が多いほど、疎水基の疎水性が強くなる。
 本発明者らは鋭意検討を行い、前処理(例えば、酸化処理)、及び、撥水性保護膜形成剤として特定の疎水基を有するケイ素化合物を含有する撥水性保護膜形成用薬液による表面処理を組み合わせることで、当該ウェハの凹凸パターン表面上に良好な撥水性を生じせしめる保護膜を形成し、効率的に洗浄が行えることを見出した。
 さらに、本発明では、シリコン元素を含む凹凸パターンが形成されたウェハを洗浄する経済的かつ効率的な方法について検討を重ねた結果、凹凸パターン表面に適量の水酸基などを形成しやすい方法を検討するという着想に至った。なぜなら、凹凸パターン表面に適量の水酸基などを形成しやすい方法を提供することができれば、撥水性の保護膜を形成する化合物種は、凹凸パターン表面に結合されやすくなり、撥水性の保護膜を安定的に得やすくなるからである。
 本発明の第1及び第2の特徴に依れば、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、ルテニウム、及びシリコン元素を含む物質からなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄方法であって、
前記ウェハ表面を改質する、前処理工程
改質された前記ウェハ表面に撥水性保護膜を形成するための撥水性保護膜形成剤を含有する撥水性保護膜形成用薬液を、前記ウェハの少なくとも凹部に保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程
を含み、前記撥水性保護膜形成剤が、下記一般式[1]で表されるケイ素化合物であることを特徴とする、ウェハの洗浄方法(第1方法)が提供される。
           R1 aSiX4-a   [1]
[式[1]中、R1は、それぞれ互いに独立して、水素、又は炭素数が1~18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、Xはそれぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基からなる群から選ばれる少なくとも1つの基であり、aは1~3の整数である。また、前記ウェハの内、シリコン元素を含まないものは、式[1]のR1中に含まれる炭素数の合計が6以上である。]
 本発明の第2の特徴に依れば、第1方法は、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がシリコン元素を含むウェハ(以降、「シリコンウェハ」又は単に「ウェハ」と記載する場合がある)の洗浄方法であって、
前処理用薬液を供給することにより、凹凸パターンの表面を改質する、前処理工程、
改質された凹凸パターンの表面に撥水性保護膜形成用薬液を供給することにより、凹凸パターンの表面に撥水性保護膜を形成する、撥水性保護膜形成工程、
を少なくとも含むウェハの洗浄方法であって、
前記前処理工程では、酸をモル濃度で0.001~5mol/L含み、pHが3以下である前処理用薬液を用いて、40℃以上、前処理用薬液の沸点未満の温度で凹凸パターンの表面を改質することを特徴とする、ウェハの洗浄方法(第2方法)であってもよい。
 第2方法は、前記前処理用薬液中に含まれる酸が、有機酸であることを特徴とする、ウェハの洗浄方法(第3方法)であってもよい。
 第1乃至第3方法のいずれか1つは、前記凹凸パターンの少なくとも一部が、窒化ケイ素および/またはシリコンから形成されていることを特徴とする、ウェハの洗浄方法(第4方法)であってもよい。
 第1方法は、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハ(以降、「金属系ウェハ」または単に「ウェハ」と記載する場合がある)の洗浄方法であって、
前記撥水性保護膜形成剤が、下記一般式[2]で表されるケイ素化合物であることを特徴とする、ウェハの洗浄方法(第5方法)であってもよい。
            R1 3SiX   [2]
[式[2]中、R1は、それぞれ互いに独立して、水素、又は炭素数が1~18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、式[2]のR1中に含まれる炭素数の合計が6以上であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
 本発明の第1の特徴によれば、第5方法は、前記撥水性保護膜形成剤が、下記一般式[3]で表されるケイ素化合物であることを特徴とする、ウェハの洗浄方法(第6方法)であってもよい。
         R2(CH32SiX   [3]
[式[3]中、R2は炭素数が4~18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
 第5又は第6方法は、前記撥水性保護膜形成剤が、下記一般式[4]で表されるケイ素化合物であることを特徴とする、ウェハの洗浄方法(第7方法)であってもよい。
         R3(CH32SiX   [4]
[式[4]中、R3は炭素数が4~18の少なくとも一部の水素元素がフッ素元素により置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
 第1方法、第5乃至第7方法のいずれか1つは、前記前処理工程が、前記ウェハ表面に酸化処理液を保持することであることを特徴とする、ウェハの洗浄方法(第8方法)であってもよい。
 第8方法は、前記前処理工程において用いる酸化処理液が、オゾンを含む処理液、過酸化水素を含む処理液、及び酸を含む処理液からなる群から選ばれる少なくとも1つの処理液であることを特徴とするウェハの洗浄方法(第9方法)であってもよい。
 上記の第1方法、及び第5乃至第9方法は本発明の第1の特徴に関係し、上記の第1乃至第4方法は本発明の第2の特徴に関係する。
 本発明において、撥水性保護膜とは、ウェハ表面に形成されることにより、該ウェハ表面の濡れ性を低くする膜、すなわち撥水性を付与する膜のことである。本発明において撥水性とは、物品表面の表面エネルギーを低減させて、水やその他の液体と該物品表面との間(界面)で相互作用、例えば、水素結合、分子間力などを低減させる意味である。特に水に対して相互作用を低減させる効果が大きいが、水と水以外の液体の混合液や、水以外の液体に対しても相互作用を低減させる効果を有する。該相互作用の低減により、物品表面に対する液体の接触角を大きくすることができる。
 以下に、本発明の第2の特徴について述べる。簡略化のために、第2の特徴と記載することを省略することもある。本発明のウェハの洗浄方法においては、酸と該酸を溶解するための溶媒を含む液体である前処理用薬液中の前記酸によって、凹凸パターンの表面に水酸基などの反応活性点を形成することができる。凹凸パターンの表面に撥水性の保護膜を形成する際に用いる保護膜形成用薬液には、シランカップリング剤等の保護膜を形成する化合物と該化合物を溶解するための溶媒が含まれる。前記前処理により凹凸パターンの表面に水酸基などの反応活性点が多く存在するようになると、保護膜形成用薬液に含まれる保護膜を形成する化合物と、反応活性点とが反応しやすくなる。その結果、凹凸パターンの表面に撥水性の保護膜を安定的に形成することができる。
 本発明の第2の特徴によるウェハの洗浄方法においては、前処理用薬液中の酸のモル濃度(以下、「酸濃度」とも記載する)は、0.001~5mol/Lである。前処理用薬液中の酸のモル濃度が0.001mol/L未満であると、凹凸パターンの表面を改質する効果、すなわち、凹凸パターンの表面に水酸基などの反応活性点を形成する効果が充分に得られない。また、前処理用薬液中の酸のモル濃度が5mol/L超であると、酸の濃度が高くなりすぎるため、前処理工程を行う前に予め前処理用薬液から金属不純物等をイオン交換法により除去し、精製することが困難となる。
 本発明の第2の特徴によるウェハの洗浄方法において、前記前処理用薬液のpHは、3以下である。前処理用薬液のpHが3超であると、前処理用薬液の酸性が弱くなるため、凹凸パターンの表面を改質する効果、すなわち、凹凸パターンの表面に水酸基などの反応活性点を形成する効果が弱くなる。
 本発明の第2の特徴において、前処理用薬液は、温度を高くすると、より短時間で凹凸パターンの表面を改質しやすくなる。一方、前処理用薬液の沸点以上の温度で凹凸パターンの表面を改質すると、前処理用薬液の急激な蒸発に伴って気液界面がパターンを通過するのに近い状態となってパターンが倒壊するなどの悪影響が生じる可能性がある。以上より、本発明の第2の特徴によるウェハの洗浄方法においては、40℃以上、前処理用薬液の沸点未満の温度で凹凸パターンの表面を改質する。前記凹部表面により優れた撥水性を付与することができるので、前記前処理用薬液によるウェハの表面改質は、65℃以上、前処理用薬液の沸点未満の温度で行われることが好ましい。
 尚、本発明の第2の特徴によるウェハの洗浄方法において、凹凸パターンの表面に保護膜が形成されるまでは、凹凸パターンの少なくとも凹部表面に液体が保持された状態が維持されていることが好ましい。
 本発明の第2の特徴によるウェハの洗浄方法において、前記前処理用薬液中に含まれる酸は、有機酸であることは好ましい。有機酸は、主に炭素元素、水素元素および酸素元素からなり、半導体の製造工程で嫌われる元素を含んでいないため好ましい。また、有機酸は、無機酸に比べて、有機溶媒に溶けやすい、金属と反応しにくいといった特性を有しているため好ましい。
 本発明の第2の特徴によるウェハの洗浄方法において、前記凹凸パターンの少なくとも一部は、窒化ケイ素および/またはシリコンから形成されていることが好ましい。凹凸パターンが窒化ケイ素やシリコンから形成されている場合、凹凸パターンの表面が改質されていないと、凹凸パターンの表面に水酸基などの反応活性点が少ない。そのため、窒化ケイ素やシリコンから形成された凹凸パターンに保護膜形成用薬液を供給しても、凹凸パターンの表面に撥水性の保護膜が形成されにくくなる。しかし、酸を含む前処理用薬液によって凹凸パターンの表面を改質することにより、凹凸パターンが窒化ケイ素やシリコンから形成されている場合であっても、充分な撥水性を有する保護膜を凹凸パターンの表面に形成することができる。
 本発明のウェハの洗浄方法(第1方法)を用いることで、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、ルテニウム、及びシリコン元素を含む物質からなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄過程において、凹凸パターンに働く毛細管力を低下させ、ひいてはパターン倒れ防止効果を示す。該洗浄方法を用いると、表面に凹凸パターンを有するウェハの製造方法中の洗浄工程が、スループットが低下することなく改善される。従って、本発明の洗浄方法を用いて行われる表面に凹凸パターンを有するウェハの製造方法は、生産性が高いものとなる。
 本発明の洗浄方法は、今後益々高くなると予想される例えば7以上のアスペクト比を有する凹凸パターンにも対応可能であり、より高密度化された半導体デバイス生産のコストダウンを可能とする。しかも従来の装置から大きな変更がなく対応でき、その結果、各種の半導体デバイスの製造に適用可能なものとなる。
 本発明のウェハの洗浄方法(第2方法)では、洗浄過程において凹凸パターンの表面に形成される保護膜が、安定して撥水性を示すことができる。そのため、凹凸パターンの倒れを防止しながら、ウェハを安定的に洗浄することができる。
 また、工業的にウェハを洗浄する場合、生産ロット毎にウェハ種が異なる場合がある。この場合、生産ロットに応じた洗浄条件、すなわち、凹凸パターン表面に適量の水酸基などを形成し、撥水性保護膜を形成する条件を適用させる必要が生じる。しかし、本発明の第2の特徴を適用することにより、ウェハ種毎での洗浄条件の変更を少なくすることに奏功する。
表面が凹凸パターン2を有する面とされたウェハ1の概略平面図である。 図1中のa-a’断面の一部を示したものである。 凹部4が保護膜形成用薬液8を保持した状態の模式図を示している。 保護膜が形成された凹部4に液体が保持された状態の模式図を示す図である。
詳細な説明
本発明のウェハの洗浄方法(第1方法)を実施する前に、一般的には次に挙げる前工程を経ることが多い。
ウェハ表面を微細な凹凸パターンを有する面とする、パターン形成工程、
前処理洗浄液を用いてウェハ表面を洗浄する、前洗浄工程
なお、前洗浄工程は、場合によっては省略されることもある。
 前記パターン形成工程において、ウェハ表面に微細なパターンを形成できるのであればその方法は限定されないが、一般的方法としては、該ウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、または、露光されなかったレジストをエッチング除去することによって所望の凹凸パターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、凹凸パターンを有するレジストを得ることができる。次に、ウェハをエッチングする。このとき、レジストパターンの凹の部分が選択的にエッチングされる。最後に、レジストを剥離すると、微細な凹凸パターンを有するウェハが得られる。
 なお、前記ウェハとしては、シリコンウェハ、シリコンおよび/またはシリカ(SiO2)を含む複数の成分から構成されたウェハ、シリコンカーバイドウェハ、サファイアウェハ、各種化合物半導体ウェハ、プラスチックウェハなどの表面をチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムの金属系の物質及びシリコン元素を含む物質の層で被覆したもの、またはウェハ上に多層膜を形成し、そのうちの少なくとも1層が前記物質の層であるもの等が挙げられ、上記の凹凸パターン形成工程は、該物質の層を含む層において行われる。また、上記凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部が前記物質となるものも含まれる。さらには、ウェハ上に凹凸パターンを形成し、その凹凸パターンの表面に前記物質の層を形成したものも含む。
 また、前記物質を含む複数の成分から構成されたウェハに対しても、該物質の表面に前記保護膜を形成することができる。該複数の成分から構成されたウェハとしては、前記物質がウェハ表面に形成したもの、あるいは、凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部が前記物質となるものも含まれる。なお、本発明の薬液で保護膜を形成できるのは前記凹凸パターン中の少なくとも前記物質部分の表面である。
 前記前洗浄工程において用いる洗浄液の例としては、水、有機溶媒、水と有機溶媒の混合液、及びそれらに過酸化水素、オゾン、酸、アルカリのうち少なくとも1種が混合された混合液、からなる群から選ばれる少なくとも1つが挙げられる。また、上記の洗浄液のうち、複数種類の洗浄液を順次置換して洗浄を行っても良い。
 前記前洗浄工程において、レジストを除去し、ウェハ表面のパーティクル等を除去した後に、乾燥等により前記洗浄液を除去する際に、凹部の幅が小さく、凸部のアスペクト比が大きいと、パターン倒れが生じやすくなる。該凹凸パターンは、図1及び図2に記すように定義される。図1は、表面が凹凸パターン2を有する面とされたウェハ1の概略平面図を示し、図2は図1中のa-a’断面の一部を示したものである。凹部の幅5は、図2に示すように凸部3と凸部3の間隔で示され、凸部のアスペクト比は、凸部の高さ6を凸部の幅7で割ったもので表される。洗浄工程でのパターン倒れは、凹部の幅が70nm以下、特には45nm以下、アスペクト比が4以上、特には6以上のときに生じやすくなる。
 以下に、本発明の第1の特徴(上記の第1方法、及び第5乃至第9方法)を詳細に説明する。以下の記載において、簡略化のために、第1の特徴と記載することを省略することもある。
 本発明のウェハの洗浄方法(第1方法)は、
ウェハ表面を改質する、前処理工程(例えば、酸化処理工程)
前記ウェハ表面に撥水性保護膜を形成するための撥水性保護膜形成剤を含有する撥水性保護膜形成用薬液を、前記ウェハの少なくとも凹部に保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程を有する。
 酸化処理工程では、ウェハ表面を酸化させる。本発明の洗浄方法では、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、ルテニウム、及びシリコン元素を含む物質からなる群から選ばれる少なくとも1種の物質を含むウェハを対象としており、該ウェハ表面のうち少なくとも前記物質からなる部分を酸化させることになる。この酸化により、前記物質表面に水酸基が形成され、後の工程である撥水性保護膜形成工程において使用する撥水性保護膜形成用薬液と該水酸基を反応させることが可能となる。
 本発明のウェハの洗浄方法において、パターン倒れを発生させずに効率的に洗浄するためには、前記酸化処理工程から撥水性保護膜形成工程を、ウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。また、前記前洗浄工程を実施する場合は、前洗浄工程から撥水性保護膜形成工程を、ウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。また、撥水性保護膜形成工程の後で、ウェハの凹部に保持された撥水性保護膜形成用薬液をその他の液体に置換する場合も、上記と同様にウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。なお、本発明において、ウェハの凹凸パターンの少なくとも凹部に前記酸化処理液、前記薬液やその他の液体を保持できるのであれば、該ウェハの洗浄方式は特に限定されない。ウェハの洗浄方式としては、ウェハをほぼ水平に保持して回転させながら回転中心付近に液体を供給してウェハを1枚ずつ洗浄するスピン洗浄に代表される枚葉方式や、洗浄槽内で複数枚のウェハを浸漬し洗浄するバッチ方式が挙げられる。なお、ウェハの凹凸パターンの少なくとも凹部に前記酸化処理液、前記薬液やその他の液体を供給するときの該薬液や洗浄液の形態としては、該凹部に保持された時に液体になるものであれば特に限定されず、たとえば、液体、蒸気などがある。
 前記酸化処理工程におけるウェハ表面の酸化は、ウェハ表面を酸化するならば、特に限定されないが、ウェハ表面に酸化処理液を保持する方法によることが好ましい。ウェハ表面に酸化処理液を保持する方法は、枚葉方式であればウェハを回転させながら回転中心付近に液体を供給して掛け流す方法などが挙げられ、バッチ方式であれば酸化処理液中に浸漬する方法などが挙げられる。また、前記酸化処理液として、オゾンを含む処理液、過酸化水素を含む処理液、及び酸を含む処理液からなる群から選ばれる少なくとも1つの処理液を用いると、これらの酸化処理液は強力な酸化剤であるため、ウェハの表面のチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、ルテニウム、及びシリコン元素を含む物質からなる群から選ばれる少なくとも1種の物質を好適に酸化させることが可能である。
 前記酸化処理工程は、常温の酸化処理液を用いて行っても良いし、30~200℃に加温された酸化処理液を用いて行っても良い。一般的に金属や窒化物はより高温で酸化しやすい傾向があり、酸化処理液を30~200℃に加温して処理することが好ましい。100℃以上の酸化処理液を用いて処理を行う場合、大部分が水からなる酸化処理液であると該処理液が沸騰するため、常圧では温度を上げることが出来なくなる。そのため、100℃以上の酸化処理液を用いて処理を行う場合は、水と異なる溶媒を用いることが好ましい。
 次に、撥水性保護膜形成工程について説明する。前記酸化処理工程から撥水性保護膜形成工程への移行は、酸化処理工程においてウェハの凹凸パターンの少なくとも凹部に保持されていた酸化処理液から、撥水性保護膜形成用薬液に置換されることで行われる。この酸化処理液から撥水性保護膜形成用薬液への置換においては、直接置換されても良いし、異なる洗浄液A(以降、単に「洗浄液A」と記載する場合がある)に一度以上置換された後に、撥水性保護膜形成用薬液に置換されても良い。前記洗浄液Aの好ましい例としては、水、有機溶媒、水と有機溶媒の混合物、または、それらに酸、アルカリ、界面活性剤のうち少なくとも1種以上が混合されたもの等が挙げられる。また、前記洗浄液Aの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。
 前記撥水性保護膜形成工程における撥水性保護膜の形成は、ウェハの凹凸パターンの少なくとも凹部に撥水性保護膜形成用薬液を保持することにより行われる。図3は、凹部4が撥水性保護膜形成用薬液8を保持した状態の模式図を示している。図3の模式図のウェハは、図1のa-a’断面の一部を示すものである。この撥水性保護膜形成工程の際に、撥水性保護膜形成用薬液が、凹凸パターン2が形成されたウェハ1に供される。この際、撥水性保護膜形成用薬液は図3に示したように少なくとも凹部4に保持された状態となり、凹部4の表面が撥水化される。なお、本発明の保護膜は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。
 また、撥水性保護膜形成工程では、薬液の温度を高くすると、より短時間で前記保護膜を形成しやすいが、撥水性保護膜形成用薬液の沸騰や蒸発などにより該薬液の安定性が損なわれる恐れがあるため、前記薬液は10~160℃で保持されることが好ましく、特には15~120℃が好ましい。
 続いて、撥水性保護膜形成工程において用いる撥水性保護膜形成用薬液について説明する。該薬液は、下記一般式[1]で表される撥水性保護膜形成剤を含有する。これは上記の第1方法に対応する。
           R1 aSiX4-a   [1]
[式[1]中、R1は、それぞれ互いに独立して、水素、又は炭素数が1~18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、金属系ウェハの場合、式[1]のR1中に含まれる炭素数の合計が6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基からなる群から選ばれる少なくとも1つの基であり、aは整数1~3である。]
 例えば、ケイ素表面を酸化処理して得られる酸化ケイ素表面には、反応活性点である水酸基が豊富に存在するが、一般的に、チタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウム表面に対して、上記酸化処理を行い、それぞれ酸化チタン、酸化タングステン、酸化アルミニウム、酸化銅、酸化スズ、酸化タンタル、及び酸化ルテニウム表面にしても、酸化ケイ素表面に比べると水酸基量が少ない。この少ない水酸基に対して従来のシランカップリング剤を反応させても表面に充分な撥水性を付与することは困難である。しかし、疎水性基がより強い疎水性を有する基であれば、充分な撥水性を付与することが可能である。R1の合計炭素数が多ければ、すなわちR1はより強い疎水性を有する疎水性基であることを意味しており、また、R1は水素元素の一部、又は全部がハロゲン元素に置換された炭化水素基であっても良い。特に、R1の合計炭素数が6以上になる、疎水性の強い疎水性基を有する撥水性保護膜形成剤であれば、前記ウェハ表面に存在する水酸基が少なくても、十分に撥水性能を発現する保護膜を形成することができる。なお、式[1]のR1中に含まれる炭素数の合計が6以上とは、式[1]にR1として1個~3個含まれる疎水性基の全ての炭素の数の合計が6以上であるということを示している。
 また、一般式[1]のXで表される、ケイ素元素と結合する元素が窒素である1価の官能基は、炭素、水素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などから、構成される官能基であれば良く、例えば、-NSi(CH33基、-NSi(CH3249基、-NSi(CH32817基、-N(CH32基、-N(C252基、-N(C372基、-N(CH3)(C25)基、-NH(C25)基、-NCO基、イミダゾール基、アセトアミド基などが挙げられる。
 さらに、一般式[1]のXで表される、ケイ素元素と結合する元素が酸素である1価の官能基は、炭素、水素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などから、構成される官能基であれば良く、例えば、-OCH3基、-OC25基、-OC37基、-OCOCH3基、-OCOCF3基などが挙げられる。
 また、一般式[1]のXで表される、ハロゲン基としては-F基、-Cl基、-Br基、-I基などが挙げられる。
 前記一般式[1]のXで表される基は、前記ウェハ表面の水酸基と反応して、該ケイ素化合物中のケイ素元素と該ウェハ表面との間に結合を形成することにより、保護膜を形成することができる。
 一般式[1]で示されるケイ素化合物としては、例えば、C49(CH32SiCl、C511(CH32SiCl、C613(CH32SiCl、C715(CH32SiCl、C817(CH32SiCl、C919(CH32SiCl、C1021(CH32SiCl、C1123(CH32SiCl、C1225(CH32SiCl、C1327(CH32SiCl、C1429(CH32SiCl、C1531(CH32SiCl、C1633(CH32SiCl、C1735(CH32SiCl、C1837(CH32SiCl、C511(CH3)HSiCl、C613(CH3)HSiCl、C715(CH3)HSiCl、C817(CH3)HSiCl、C919(CH3)HSiCl、C1021(CH3)HSiCl、C1123(CH3)HSiCl、C1225(CH3)HSiCl、C1327(CH3)HSiCl、C1429(CH3)HSiCl、C1531(CH3)HSiCl、C1633(CH3)HSiCl、C1735(CH3)HSiCl、C1837(CH3)HSiCl、C2524(CH32SiCl、C3724(CH32SiCl、C4924(CH32SiCl、C51124(CH32SiCl、C61324(CH32SiCl、C71524(CH32SiCl、C81724(CH32SiCl、(C253SiCl、C37(C252SiCl、C49(C252SiCl、C511(C252SiCl、C613(C252SiCl、C715(C252SiCl、C817(C252SiCl、C919(C252SiCl、C1021(C252SiCl、C1123(C252SiCl、C1225(C252SiCl、C1327(C252SiCl、C1429(C252SiCl、C1531(C252SiCl、C1633(C252SiCl、C1735(C252SiCl、C1837(C252SiCl、(C493SiCl、C511(C492SiCl、C613(C492SiCl、C715(C492SiCl、C817(C492SiCl、C919(C492SiCl、C1021(C492SiCl、C1123(C492SiCl、C1225(C492SiCl、C1327(C492SiCl、C1429(C492SiCl、C1531(C492SiCl、C1633(C492SiCl、C1735(C492SiCl、C1837(C492SiCl、CF324(C492SiCl、C2524(C492SiCl、C3724(C492SiCl、C4924(C492SiCl、C51124(C492SiCl、C61324(C492SiCl、C71524(C492SiCl、C81724(C492SiCl、C511(CH3)SiCl2、C613(CH3)SiCl2、C715(CH3)SiCl2、C817(CH3)SiCl2、C919(CH3)SiCl2、C1021(CH3)SiCl2、C1123(CH3)SiCl2、C1225(CH3)SiCl2、C1327(CH3)SiCl2、C1429(CH3)SiCl2、C1531(CH3)SiCl2、C1633(CH3)SiCl2、C1735(CH3)SiCl2、C1837(CH3)SiCl2、C3724(CH3)SiCl2、C4924(CH3)SiCl2、C51124(CH3)SiCl2、C61324(CH3)SiCl2、C71524(CH3)SiCl2、C81724(CH3)SiCl2、C613SiCl3、C715SiCl3、C817SiCl3、C919SiCl3、C1021SiCl3、C1123SiCl3、C1225SiCl3、C1327SiCl3、C1429SiCl3、C1531SiCl3、C1633SiCl3、C1735SiCl3、C1837SiCl3、C4924SiCl3、C51124SiCl3、C61324SiCl3、C71524SiCl3、C81724SiCl3などのクロロシラン系化合物が挙げられる。
 また、例えば、C49(CH32SiOCH3、C511(CH32SiOCH3、C613(CH32SiOCH3、C715(CH32SiOCH3、C817(CH32SiOCH3、C919(CH32SiOCH3、C1021(CH32SiOCH3、C1123(CH32SiOCH3、C1225(CH32SiOCH3、C1327(CH32SiOCH3、C1429(CH32SiOCH3、C1531(CH32SiOCH3、C1633(CH32SiOCH3、C1735(CH32SiOCH3、C1837(CH32SiOCH3、C511(CH3)HSiOCH3、C613(CH3)HSiOCH3、C715(CH3)HSiOCH3、C817(CH3)HSiOCH3、C919(CH3)HSiOCH3、C1021(CH3)HSiOCH3、C1123(CH3)HSiOCH3、C1225(CH3)HSiOCH3、C1327(CH3)HSiOCH3、C1429(CH3)HSiOCH3、C1531(CH3)HSiOCH3、C1633(CH3)HSiOCH3、C1735(CH3)HSiOCH3、C1837(CH3)HSiOCH3、C2524(CH32SiOCH3、C3724(CH32SiOCH3、C4924(CH32SiOCH3、C51124(CH32SiOCH3、C61324(CH32SiOCH3、C71524(CH32SiOCH3、C81724(CH32SiOCH3、(C253SiOCH3、C37(C252SiOCH3、C49(C252SiOCH3、C511(C252SiOCH3、C613(C252SiOCH3、C715(C252SiOCH3、C817(C252SiOCH3、C919(C252SiOCH3、C1021(C252SiOCH3、C1123(C252SiOCH3、C1225(C252SiOCH3、C1327(C252SiOCH3、C1429(C252SiOCH3、C1531(C252SiOCH3、C1633(C252SiOCH3、C1735(C252SiOCH3、C1837(C252SiOCH3、(C493SiOCH3、C511(C492SiOCH3、C613(C492SiOCH3、C715(C492SiOCH3、C817(C492SiOCH3、C919(C492SiOCH3、C1021(C492SiOCH3、C1123(C492SiOCH3、C1225(C492SiOCH3、C1327(C492SiOCH3、C1429(C492SiOCH3、C1531(C492SiOCH3、C1633(C492SiOCH3、C1735(C492SiOCH3、C1837(C492SiOCH3、C511(CH3)Si(OCH32、C613(CH3)Si(OCH32、C715(CH3)Si(OCH32、C817(CH3)Si(OCH32、C919(CH3)Si(OCH32、C1021(CH3)Si(OCH32、C1123(CH3)Si(OCH32、C1225(CH3)Si(OCH32、C1327(CH3)Si(OCH32、C1429(CH3)Si(OCH32、C1531(CH3)Si(OCH32、C1633(CH3)Si(OCH32、C1735(CH3)Si(OCH32、C1837(CH3)Si(OCH32、C3724(CH3)Si(OCH32、C4924(CH3)Si(OCH32、C51124(CH3)Si(OCH32、C61324(CH3)Si(OCH32、C71524(CH3)Si(OCH32、C81724(CH3)Si(OCH32、C613Si(OCH33、C715Si(OCH33、C817Si(OCH33、C919Si(OCH33、C1021Si(OCH33、C1123Si(OCH33、C1225Si(OCH33、C1327Si(OCH33、C1429Si(OCH33、C1531Si(OCH33、C1633Si(OCH33、C1735Si(OCH33、C1837Si(OCH33、C4924Si(OCH33、C51124Si(OCH33、C61324Si(OCH33、C71524Si(OCH33、C81724Si(OCH33、C49(CH32SiOC25、C511(CH32SiOC25、C613(CH32SiOC25、C715(CH32SiOC25、C817(CH32SiOC25、C919(CH32SiOC25、C1021(CH32SiOC25、C11
23(CH32SiOC25、C1225(CH32SiOC25、C1327(CH32SiOC25、C1429(CH32SiOC25、C1531(CH32SiOC25、C1633(CH32SiOC25、C1735(CH32SiOC25、C1837(CH32SiOC25、C2524(CH32SiOC25、C3724(CH32SiOC25、C4924(CH32SiOC25、C51124(CH32SiOC25、C61324(CH32SiOC25、C71524(CH32SiOC25、C81724(CH32SiOC25、(C253SiOC25、C37(C252SiOC25、C49(C252SiOC25、C511(C252SiOC25、C613(C252SiOC25、C715(C252SiOC25、C817(C252SiOC25、C919(C252SiOC25、C1021(C252SiOC25、C1123(C252SiOC25、C1225(C252SiOC25、C1327(C252SiOC25、C1429(C252SiOC25、C1531(C252SiOC25、C1633(C252SiOC25、C1735(C252SiOC25、C1837(C252SiOC25、(C493SiOC25、C511(C492SiOC25、C613(C492SiOC25、C715(C492SiOC25、C817(C492SiOC25、C919(C492SiOC25、C1021(C492SiOC25、C1123(C492SiOC25、C1225(C492SiOC25、C1327(C492SiOC25、C1429(C492SiOC25、C1531(C492SiOC25、C1633(C492SiOC25、C1735(C492SiOC25、C1837(C492SiOC25、C511(CH3)Si(OC252、C613(CH3)Si(OC252、C715(CH3)Si(OC252、C817(CH3)Si(OC252、C919(CH3)Si(OC252、C1021(CH3)Si(OC252、C1123(CH3)Si(OC252、C1225(CH3)Si(OC252、C1327(CH3)Si(OC252、C1429(CH3)Si(OC252、C1531(CH3)Si(OC252、C1633(CH3)Si(OC252、C1735(CH3)Si(OC252、C1837(CH3)Si(OC252、C3724(CH3)Si(OC252、C4924(CH3)Si(OC252、C51124(CH3)Si(OC252、C61324(CH3)Si(OC252、C71524(CH3)Si(OC252、C81724(CH3)Si(OC252、C613Si(OC253、C715Si(OC253、C817Si(OC253、C919Si(OC253、C1021Si(OC253、C1123Si(OC253、C1225Si(OC253、C1327Si(OC253、C1429Si(OC253、C1531Si(OC253、C1633Si(OC253、C1735Si(OC253、C1837Si(OC253、C4924Si(OC253、C51124Si(OC253、C61324Si(OC253、C71524Si(OC253、C81724Si(OC253などのアルコキシシラン系化合物が挙げられる。
 また、例えば、C49(CH32SiNCO、C511(CH32SiNCO、C613(CH32SiNCO、C715(CH32SiNCO、C817(CH32SiNCO、C919(CH32SiNCO、C1021(CH32SiNCO、C1123(CH32SiNCO、C1225(CH32SiNCO、C1327(CH32SiNCO、C1429(CH32SiNCO、C1531(CH32SiNCO、C1633(CH32SiNCO、C1735(CH32SiNCO、C1837(CH32SiNCO、C2524(CH32SiNCO、C3724(CH32SiNCO、C4924(CH32SiNCO、C51124(CH32SiNCO、C61324(CH32SiNCO、C71524(CH32SiNCO、C81724(CH32SiNCO、(C253SiNCO、C37(C252SiNCO、C49(C252SiNCO、C511(C252SiNCO、C613(C252SiNCO、C715(C252SiNCO、C817(C252SiNCO、C919(C252SiNCO、C1021(C252SiNCO、C1123(C252SiNCO、C1225(C252SiNCO、C1327(C252SiNCO、C1429(C252SiNCO、C1531(C252SiNCO、C1633(C252SiNCO、C1735(C252SiNCO、C1837(C252SiNCO、(C493SiNCO、C511(C492SiNCO、C613(C492SiNCO、C715(C492SiNCO、C817(C492SiNCO、C919(C492SiNCO、C1021(C492SiNCO、C1123(C492SiNCO、C1225(C492SiNCO、C1327(C492SiNCO、C1429(C492SiNCO、C1531(C492SiNCO、C1633(C492SiNCO、C1735(C492SiNCO、C1837(C492SiNCO、C511(CH3)Si(NCO)2、C613(CH3)Si(NCO)2、C715(CH3)Si(NCO)2、C817(CH3)Si(NCO)2、C919(CH3)Si(NCO)2、C1021(CH3)Si(NCO)2、C1123(CH3)Si(NCO)2、C1225(CH3)Si(NCO)2、C1327(CH3)Si(NCO)2、C1429(CH3)Si(NCO)2、C1531(CH3)Si(NCO)2、C1633(CH3)Si(NCO)2、C1735(CH3)Si(NCO)2、C1837(CH3)Si(NCO)2、C3724(CH3)Si(NCO)2、C4924(CH3)Si(NCO)2、C51124(CH3)Si(NCO)2、C61324(CH3)Si(NCO)2、C71524(CH3)Si(NCO)2、C81724(CH3)Si(NCO)2、C613Si(NCO)3、C715Si(NCO)3、C817Si(NCO)3、C919Si(NCO)3、C1021Si(NCO)3、C1123Si(NCO)3、C1225Si(NCO)3、C1327Si(NCO)3、C1429Si(NCO)3、C1531Si(NCO)3、C1633Si(NCO)3、C1735Si(NCO)3、C1837Si(NCO)3、C4924Si(NCO)3、C51124Si(NCO)3、C61324Si(NCO)3、C71524Si(NCO)3、C81724Si(NCO)3などのイソシアネートシラン系化合物が挙げられる。
 また、例えば、C49(CH32SiNH2、C511(CH32SiNH2、C613(CH32SiNH2、C715(CH32SiNH2、C817(CH32SiNH2、C919(CH32SiNH2、C1021(CH32SiNH2、C1123(CH32SiNH2、C1225(CH32SiNH2、C1327(CH32SiNH2、C1429(CH32SiNH2、C1531(CH32SiNH2、C1633(CH32SiNH2、C1735(CH32SiNH2、C1837(CH32SiNH2、C2524(CH32SiNH2、C3724(CH32SiNH2、C4924(CH32SiNH2、C51124(CH32SiNH2、C61324(CH32SiNH2、C71524(CH32SiNH2、C81724(CH32SiNH2、[C49(CH32Si]2NH、[C511(CH32Si]2NH、[C613(CH32Si]2NH、[C715(CH32Si]2NH、[C817(CH32Si]2NH、[C919(CH32Si]2NH、[C1021(CH32Si]2NH、[C1123(CH32Si]2NH、[C1225(CH32Si]2NH、[C1327(CH32Si]2NH、[C1429(CH32Si]2NH、[C1531(CH32Si]2NH、[C1633(CH32Si]2NH、[C1735(CH32Si]2NH、[C1837(CH32Si]2NH、[C2524(CH32Si]2NH、[C3724(CH32Si]2NH、[C4924(CH32Si]2NH、[C51124(CH32Si]2NH、[C61324(CH32Si]2NH、[C71524(CH32Si]2NH、[C81724(CH32Si]2NH、[(C253Si]2NH、[C37(C252Si]2NH、[C49(C252Si]2NH、[C511(C252Si]2NH、[C613(C252Si]2NH、[C715(C252Si]2NH、[C817(C252Si]2NH、[C919(C252Si]2NH、[C1021(C252Si]2NH、[C1123(C252Si]2NH、[C1225(C252Si]2NH、[C1327(C252Si]2NH、[C1429(C252Si]2NH、[C1531(C252Si]2NH、[C1633(C252Si]2NH、[C1735(C252Si]2NH、[C1837(C252Si]2NH、[C49(CH32Si]3N、[C511(CH32Si]3N、[C613(CH32Si]3N、[C715(CH32Si]3N、[C817(CH32Si]3N、[C919(CH32Si]3N、[C1021(CH32Si]3N、[C1123(CH32Si]3N、[C1225(CH32Si]3N、[C1327(CH32Si]3N、[C1429(CH32Si]3N、[C1531(CH32Si]3N、[C1633(CH32Si]3N、[C1735(CH32Si]3N、[C1837(CH32Si]3N、[C2524(CH32Si]3N、[C3724(CH32Si]3N、[C4924(CH32Si]3N、[C51124(CH32Si]3N、[C61324(CH32Si]3N、[C71524(CH32Si]3N、[C81724(CH32Si]3N、C49(CH32SiN(CH32、C511(CH32SiN(CH32、C613(CH32SiN(CH32、C715(CH32SiN(CH32、C817(CH32SiN(CH32、C919(CH32SiN(CH32、C1021(CH32SiN(CH32、C1123(CH32SiN(CH32、C1225(CH32SiN(CH32、C1327(CH32SiN(CH32、C1429(CH32SiN(CH32、C1531(CH32SiN(CH32、C1633(CH32SiN(CH32、C1735(CH32SiN(CH32、C1837(CH32SiN(CH32、C511(CH3)HSiN(CH32、C613(CH3)HSiN(CH32、C715(CH3)HSiN(CH32、C817(CH3)HSiN(CH32、C919(CH3)HSiN(CH32、C1021(CH3)HSiN(CH32、C1123(CH3)HSiN(CH32、C1225(CH3)HSiN(CH32、C1327(CH3)HSiN(CH32、C
1429(CH3)HSiN(CH32、C1531(CH3)HSiN(CH32、C1633(CH3)HSiN(CH32、C1735(CH3)HSiN(CH32、C1837(CH3)HSiN(CH32、C2524(CH32SiN(CH32、C3724(CH32SiN(CH32、C4924(CH32SiN(CH32、C51124(CH32SiN(CH32、C61324(CH32SiN(CH32、C71524(CH32SiN(CH32、C81724(CH32SiN(CH32、(C253SiN(CH32、C37(C252SiN(CH32、C49(C252SiN(CH32、C511(C252SiN(CH32、C613(C252SiN(CH32、C715(C252SiN(CH32、C817(C252SiN(CH32、C919(C252SiN(CH32、C1021(C252SiN(CH32、C1123(C252SiN(CH32、C1225(C252SiN(CH32、C1327(C252SiN(CH32、C1429(C252SiN(CH32、C1531(C252SiN(CH32、C1633(C252SiN(CH32、C1735(C252SiN(CH32、C1837(C252SiN(CH32、(C493SiN(CH32、C511(C492SiN(CH32、C613(C492SiN(CH32、C715(C492SiN(CH32、C817(C492SiN(CH32、C919(C492SiN(CH32、C1021(C492SiN(CH32、C1123(C492SiN(CH32、C1225(C492SiN(CH32、C1327(C492SiN(CH32、C1429(C492SiN(CH32、C1531(C492SiN(CH32、C1633(C492SiN(CH32、C1735(C492SiN(CH32、C1837(C492SiN(CH32、C511(CH3)Si[N(CH322、C613(CH3)Si[N(CH322、C715(CH3)Si[N(CH322、C817(CH3)Si[N(CH322、C919(CH3)Si[N(CH322、C1021(CH3)Si[N(CH322、C1123(CH3)Si[N(CH322、C1225(CH3)Si[N(CH322、C1327(CH3)Si[N(CH322、C1429(CH3)Si[N(CH322、C1531(CH3)Si[N(CH322、C1633(CH3)Si[N(CH322、C1735(CH3)Si[N(CH322、C1837(CH3)Si[N(CH322、C3724(CH3)Si[N(CH322、C4924(CH3)Si[N(CH322、C51124(CH3)Si[N(CH322、C61324(CH3)Si[N(CH322、C71524(CH3)Si[N(CH322、C81724(CH3)Si[N(CH322、C613Si[N(CH323、C715Si[N(CH323、C817Si[N(CH323、C919Si[N(CH323、C1021Si[N(CH323、C1123Si[N(CH323、C1225Si[N(CH323、C1327Si[N(CH323、C1429Si[N(CH323、C1531Si[N(CH323、C1633Si[N(CH323、C1735Si[N(CH323、C1837Si[N(CH323、C4924Si[N(CH323、C51124Si[N(CH323、C61324Si[N(CH323、C71524Si[N(CH323、C81724Si[N(CH323、C49(CH32SiN(C252、C511(CH32SiN(C252、C613(CH32SiN(C252、C715(CH32SiN(C252、C817(CH32SiN(C252、C919(CH32SiN(C252、C1021(CH32SiN(C252、C1123(CH32SiN(C252、C1225(CH32SiN(C252、C1327(CH32SiN(C252、C1429(CH32SiN(C252、C1531(CH32SiN(C252
1633(CH32SiN(C252、C1735(CH32SiN(C252、C1837(CH32SiN(C252、C2524(CH32SiN(C252、C3724(CH32SiN(C252、C4924(CH32SiN(C252、C51124(CH32SiN(C252、C61324(CH32SiN(C252、C71524(CH32SiN(C252、C81724(CH32SiN(C252、(C253SiN(C252、C37(C252SiN(C252、C49(C252SiN(C252、C511(C252SiN(C252、C613(C252SiN(C252、C715(C252SiN(C252、C817(C252SiN(C252、C919(C252SiN(C252、C1021(C252SiN(C252、C1123(C252SiN(C252、C1225(C252SiN(C252、C1327(C252SiN(C252、C1429(C252SiN(C252、C1531(C252SiN(C252、C1633(C252SiN(C252、C1735(C252SiN(C252、C1837(C252SiN(C252、(C493SiN(C252、C511(C492SiN(C252、C613(C492SiN(C252、C715(C492SiN(C252、C817(C492SiN(C252、C919(C492SiN(C252、C1021(C492SiN(C252、C1123(C492SiN(C252、C1225(C492SiN(C252、C1327(C492SiN(C252、C1429(C492SiN(C252、C1531(C492SiN(C252、C1633(C492SiN(C252、C1735(C492SiN(C252、C1837(C492SiN(C252などのアミノシラン系化合物が挙げられる。
 また、一般式[1]のaは1~3の整数であればよいが、aが1又は2である場合、前記薬液を長期保存すると、水分の混入などにより、前記ケイ素化合物同士の重合反応が起こりやすく、前記ウェハ表面に撥水性保護膜を安定的に形成し難い傾向がある。これを考慮すると、一般式[1]のaが3のもの、すなわち、下記一般式[2]で表されるケイ素化合物が好ましい。これは上記の第5方法に対応する。
            R1 3SiX   [2]
[式[2]中、R1は、それぞれ互いに独立して、水素、又は炭素数が1~18の無置換もしくは水素元素がハロゲン元素に置換された炭化水素基であり、式[2]のR1中に含まれる炭素数の合計が6以上であり(金属系ウェハの場合)、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
 さらに、前記の一般式[1]のaが3のケイ素化合物のうち、1個のR1が炭素数が4~18の無置換炭化水素基もしくはハロゲン元素が置換した炭化水素基であり、2個のR1がいずれもメチル基からなるもの、すなわち下記一般式[3]で表されるケイ素化合物は、ウェハ表面の水酸基との反応性が高いので好ましい(上記の第6方法に対応する)。これは、ウェハ表面の水酸基と前記ケイ素化合物のXで表される基との反応において、疎水性基による立体障害が反応性に大きな影響を与えるためであり、ケイ素元素に結合するアルキル鎖のうち、最も長い一つを除く残り二つは短い方が好ましいからである。 
         R2(CH32SiX   [3]
[式[3]中、R2は炭素数が4~18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
 また、一般式[1]で表されるケイ素化合物のうち、1個のR1が炭素数が4~18の少なくとも一部の水素元素がフッ素元素により置換した炭化水素基であり、2個のR1がいずれもメチル基からなるもの、すなわち下記一般式[4]で表されるケイ素化合物であると、ウェハ表面により優れた撥水性を付与できるため好ましい。前記のような、少なくとも一部の水素元素がフッ素元素により置換した炭化水素基は、特に疎水性が強い疎水基であるため、その結果、得られる保護膜により優れた撥水性を付与できる。これは上記の第7方法に対応する。
         R3(CH32SiX   [4]
[式[4]中、R3は炭素数が4~18の少なくとも一部の水素元素がフッ素元素に置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
 撥水性保護膜形成剤は、撥水性保護膜形成用薬液に少なくとも含有されていればよく、各種有機溶媒などを用いて希釈することができる。該有機溶媒は、前記撥水性保護膜形成剤を溶解するものであれば良く、例えば、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒などが好適に使用される。希釈する溶媒として水を用いた場合、水により前記ケイ素化合物のXで表される基が加水分解してシラノール基(Si-OH)となり、発生したシラノール基同士が縮合反応することにより、前記ケイ素化合物同士が結合して2量体が生成する。この2量体は、ウェハ表面の水酸基との反応性が低いため、ウェハ表面を十分に撥水化できない、または撥水化に要する時間が長くなることから、水を溶媒として使用することは好ましくない。
 さらに、前記ケイ素化合物は、プロトン性溶媒と反応しやすいため、前記有機溶媒として、非プロトン性溶媒を用いると、短時間でウェハ表面に撥水性を発現しやすくなるので特に好ましい。なお、非プロトン性溶媒は、非プロトン性極性溶媒と非プロトン性非極性溶媒の両方のことである。このような非プロトン性溶媒としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、水酸基を持たない多価アルコールの誘導体、N-H結合を持たない含窒素化合物溶媒が挙げられる。前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1、1、1、3、3-ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3-ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE-3000(旭硝子製)、Novec HFE-7100、Novec HFE-7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1-クロロ-3,3,3-トリフルオロプロペン、1,2-ジクロロ-3,3,3-トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、前記水酸基を持たない多価アルコール誘導体の例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどがあり、N-H結合を持たない含窒素化合物溶媒の例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、トリエチルアミン、ピリジンなどがある。
 さらにまた、前記有機溶媒に不燃性のものを使うと、撥水性保護膜形成用薬液が不燃性になる、あるいは、引火点が高くなって、該撥水性保護膜形成用薬液の危険性が低下するので好ましい。含ハロゲン溶媒は不燃性のものが多く、不燃性含ハロゲン溶媒は不燃性有機溶媒として好適に使用できる。
 また、有機溶媒には、微量の水分であれば存在してもよい。ただし、この水分が溶媒に大量に含まれると、ケイ素化合物は該水分によって加水分解して反応性が低下することがある。このため、溶媒中の水分量は低くすることが好ましく、該水分量は、前記ケイ素化合物と混合したときに、該ケイ素化合物の1モル倍未満とすることが好ましく、0.5モル倍未満にすることが特に好ましい。
 前記撥水性保護膜形成用薬液は、該薬液の総量100質量%中に、前記撥水性保護膜形成剤が0.1~50質量%含有されていれば好ましく、より好適な撥水性保護膜形成剤の含有量は前記薬液の総量100質量%に対して0.3~20質量%である。撥水性保護膜形成剤が0.1質量%未満では撥水性付与効果が不十分となる傾向があり、50質量%より多い場合、洗浄後に撥水性保護膜形成剤由来の成分がウェハ表面に不純物として残留する懸念があることから好ましくない。また撥水性保護膜形成剤の使用量が増すため、コスト的な観点から見ても好ましくない。
 また、前記薬液には、前記ケイ素化合物と、ウェハ表面の水酸基との反応を促進させるために、触媒が添加されても良い。このような触媒として、トリフルオロ酢酸、無水トリフルオロ酢酸、ペンタフルオロプロピオン酸、無水ペンタフルオロプロピオン酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸、硫酸、塩化水素などの水を含まない酸、アンモニア、アルキルアミンなどの塩基、ピリジン、ジメチルホルムアミドなどの非プロトン性含窒素溶媒、硫化アンモニウム、酢酸カリウム、メチルヒドロキシアミン塩酸塩などの塩、および、スズ、アルミニウム、チタンなどの金属錯体や金属塩が好適に用いられる。特に、触媒効果を考慮すると、トリフルオロ酢酸、トリフルオロ酢酸無水物、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸無水物、硫酸、塩化水素などの酸が好ましく、当該の酸は水分を含んでいないことが好ましい。また、上記触媒は反応により撥水性保護膜の一部を形成するものであってもよい。
 特に、一般式[1]表されるケイ素化合物の疎水性基R1の炭素数が大きくなると、立体障害のためにウェハ表面の水酸基に対する該ケイ素化合物の反応性が低下する場合がある。この場合は、水を含まない酸を触媒として添加することで、ウェハ表面の水酸基と前記ケイ素化合物との反応が促進され、前記のような疎水性基の立体障害による反応性の低下を補ってくれる場合がある。
 前記触媒の添加量は、前記ケイ素化合物の総量100質量%に対して、0.01~100質量%が好ましい。添加量が少なくなると触媒効果が低下するので好ましくない。また、過剰に添加しても触媒効果は向上せず、ケイ素化合物よりも多くすると、逆に触媒効果が低下する場合もある。さらに、不純物としてウェハ表面に残留する懸念もある。このため、前記触媒添加量は、0.01~100質量%が好ましく、より好ましくは0.1~50質量%、さらに好ましくは0.2~20質量%である。
 撥水性保護膜形成剤により撥水化された凹部4に液体9が保持された場合の模式図を図4に示す。図4の模式図のウェハは、図1のa-a’断面の一部を示すものである。凹部4の表面には撥水性保護膜形成剤により撥水性保護膜10が形成されている。このとき凹部4に保持されている液体9は、前記薬液、該薬液から異なる洗浄液B(以降、単に「洗浄液B」と記載する場合がある)に置換した後の液体(洗浄液B)でもよいし、置換途中の液体(薬液と洗浄液の混合液)であってもよい。前記撥水性保護膜10は、液体9が凹部4から除去されるときもウェハ表面に保持されている。
 前記洗浄液Bの好ましい例としては、水、有機溶媒、水と有機溶媒の混合物、または、それらに酸、アルカリ、界面活性剤のうち少なくとも1種以上が混合されたもの等が挙げられる。また、前記洗浄液Bの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。
 前記凹凸パターンを有するウェハの凹部に液体が保持されると、該凹部に毛細管力が働く。この毛細管力の大きさは、前述したように以下に示される式で求められるPの絶対値である。
           P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
図4の凹部4のように凹部表面に撥水性保護膜が存在すると、θが増大され、Pの絶対値が低減される。パターン倒れの抑制の観点から、Pの絶対値は小さいほど好ましく、除去される液体との接触角を90°付近に調整して毛細管力を限りなく0.0MN/m2に近づけることが理想的である。
 図4のように、凹部表面に保護膜10が形成されたとき、該表面に水が保持されたと仮定したときの接触角は50~130°であると、パターン倒れが発生し難いため好ましい。接触角は90°に近いほど該凹部に働く毛細管力が小さくなり、パターン倒れが更に発生し難くなるため、70~110°が特に好ましい。また、例えば、線幅(凹部の幅)が45nmのラインアンドスペース形状のパターンのウェハの場合、毛細管力が2.1MN/m2以下であれば、パターン倒れが発生し難いため好ましい。また、該毛細管力が小さくなると、パターン倒れは更に発生し難くなるため、該毛細管力は1.1MN/m2以下が特に好ましい。さらに、洗浄液との接触角を90°付近に調整して毛細管力を限りなく0.0MN/m2に近づけることが理想的である。
 続いて、本発明のウェハの洗浄方法(第1方法)で洗浄された後の該ウェハの凹部に保持された液体の除去方法を説明する。この説明は、本発明の第1及び第2の特徴に共通するものである。なお、凹部に保持されている液体は、前記薬液、洗浄液B、または、薬液と洗浄液の混合液である。前記液体を除去する方法として、自然乾燥、エアー乾燥、N2ガス乾燥、スピン乾燥法、IPA(2-プロパノール)蒸気乾燥、マランゴニ乾燥、加熱乾燥、温風乾燥、真空乾燥などの周知の乾燥方法によって行うことが好ましい。また、前記液体を効率よく除去するために、保持された液体を排液して除去した後に、残った液体を乾燥させても良い。
 最後に、前記の液体を除去した後のウェハ表面から撥水性保護膜を除去する方法を説明する。この説明も本発明の第1及び第2の特徴に共通するものである。前記撥水性保護膜を除去する場合、該保護膜中のC-C結合、C-F結合を切断することが有効である。その方法としては、前記結合を切断できるものであれば特に限定されないが、例えば、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハをオゾン曝露すること、ウェハ表面にプラズマ照射すること、ウェハ表面にコロナ放電すること等が挙げられる。
 光照射で前記保護膜を除去する場合、該保護膜中のC-C結合、C-F結合の結合エネルギーである83kcal/mol、116kcal/molに相当するエネルギーである340nm、240nmよりも短い波長を含む紫外線を照射することが好ましい。この光源としては、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、エキシマランプ、カーボンアークなどが用いられる。
 また、光照射で前記保護膜を除去する場合、紫外線で前記保護膜の構成成分を分解すると同時にオゾンを発生させ、該オゾンによって前記保護膜の構成成分を酸化揮発させると、処理時間が短くなるので特に好ましい。この光源として、低圧水銀ランプやエキシマランプなどが好適に用いられる。また、光照射しながらウェハを加熱してもよい。
 ウェハを加熱する場合、400~700℃、好ましくは、500~700℃でウェハの加熱を行う。この加熱時間は、1~60分間、好ましくは10~30分間の保持で行うことが好ましい。また、当該工程では、オゾン曝露、プラズマ照射、コロナ放電などを併用してもよい。また、ウェハを加熱しながら光照射を行ってもよい。
 加熱により前記保護膜を除去する方法は、ウェハを熱源に接触させる方法、熱処理炉などの加熱された雰囲気にウェハを置く方法などがある。なお、加熱された雰囲気にウェハを置く方法は、複数枚のウェハを処理する場合であっても、ウェハ表面に前記保護膜を除去するためのエネルギーを均質に付与しやすいことから、操作が簡便で処理が短時間で済み処理能力が高いという工業的に有利な方法である。
 ウェハをオゾン曝露する場合、低圧水銀灯などによる紫外線照射や高電圧による低温放電等で発生させたオゾンをウェハ表面に供しても良い。ウェハをオゾン曝露しながら光照射してもよいし、加熱してもよい。
 前記の光照射、加熱、オゾン曝露、プラズマ照射、コロナ放電を組み合わせることによって、効率的にウェハ表面の保護膜を除去することができる。
 以下に、本発明の第2の特徴(上記の第1乃至第4方法)を詳細に説明する。以下の記載において、簡略化のために、第2の特徴と記載することを省略することもある。さらに、第1の特徴に関する詳細な説明と重複する説明に関しては、省略することもある。
 本発明の第2の特徴の実施形態に係るウェハの好適な洗浄方法は、
(工程1)表面に凹凸パターンを有し、該凹凸パターンの少なくとも一部がシリコン元素を含むウェハの表面(以下、「凹凸パターンの表面」とも記載する)に液体を供し、凹凸パターンの少なくとも凹部表面に液体を保持する工程、
(工程2)前記液体を撥水性保護膜形成用薬液(以下、「保護膜形成用薬液」とも記載する)で置換し、該薬液を凹凸パターンの少なくとも凹部表面に保持する工程、
(工程3)凹凸パターンの表面から液体を除去する工程、および、
(工程4)撥水性保護膜(以下、「保護膜」とも記載する)を除去する工程、
を有する。
 (工程1)における液体としては、少なくとも前処理用薬液を用いる。前処理用薬液の他に、水系溶液からなる水系洗浄液、ならびに、前処理用薬液および水系洗浄液とは異なる洗浄液Aの少なくとも1つを用いてもよい。複数の液体を用いる場合、前処理用薬液と、水系洗浄液および洗浄液Aの少なくとも1つとを組み合わせて用いてもよいし、前処理用薬液と、水系洗浄液および洗浄液Aの少なくとも1つとを含む混合液を用いてもよい。(工程1)では、例えば、ウェハ表面の洗浄と凹凸パターン表面の改質を兼ねて、前処理用薬液のみを用いてもよい。また、凹凸パターンの少なくとも凹部表面に水系洗浄液を保持した後に、水系洗浄液を洗浄液Aで置換し、さらに、洗浄液Aを前処理用薬液で置換してもよい。また、前処理用薬液が水系洗浄液と置換可能である場合には、凹凸パターンの少なくとも凹部表面に水系洗浄液を保持した後に、水系洗浄液を前処理用薬液で置換してもよい。
 さらに、(工程2)の後で、凹凸パターンの少なくとも凹部表面に保持された保護膜形成用薬液を該保護膜形成用薬液とは異なる洗浄液Bに置換した後に、(工程3)に移ってもよい。また、前記洗浄液Bへの置換を経て、該凹凸パターンの少なくとも凹部表面に水系溶液からなる水系洗浄液を保持した後に、(工程3)に移ってもよい。また、前記保護膜形成用薬液が水系洗浄液と置換可能である場合には、前記洗浄液Bによる置換を省略しても構わない。
 本発明において、ウェハの凹凸パターンの少なくとも凹部表面に前記薬液(前処理用薬液または保護膜形成用薬液)や洗浄液を供給するときの該薬液や洗浄液の形態としては、該凹部表面に保持された時に液体になるものであれば特に限定されず、例えば、液体、蒸気などがある。なお、後述するように、前処理工程では、前処理用薬液を用いて、沸点未満の温度で凹凸パターンの表面を改質する。そのため、前処理工程において、ウェハの凹凸パターンの少なくとも凹部表面に前処理用薬液を供給するときの該薬液の形態は、液体である。
 本発明において、ウェハの凹凸パターンの少なくとも凹部表面に前記薬液(前処理用薬液または保護膜形成用薬液)や洗浄液を保持できるのであれば、該ウェハの洗浄方式は特に限定されない。ウェハの洗浄方式としては、ウェハをほぼ水平に保持して回転させながら回転中心付近に液体を供給してウェハを1枚ずつ洗浄するスピン洗浄に代表される枚葉方式や、洗浄槽内で複数枚のウェハを浸漬し洗浄するバッチ方式が挙げられる。
 工業的にウェハを洗浄する場合、生産ロット毎にウェハ種が同じである場合もあるし、生産ロット毎にウェハ種が異なる場合もあるが、本発明は、いずれの場合にも適用することができる。
 表面に凹凸パターンを有し、該凹凸パターンの少なくとも一部がシリコン元素を含むウェハとしては、ウェハ表面にシリコン、または、酸化ケイ素、窒化ケイ素などシリコン元素を含む膜が形成されたもの、あるいは、上記凹凸パターンを形成したときに、該凹凸パターンの表面の少なくとも一部がシリコン、または、酸化ケイ素、窒化ケイ素などシリコン元素を含むものが含まれる。なお、シリコンとしては、ポリシリコン、アモルファスシリコンが含まれる。また、シリコン元素を含む複数の成分から構成されたウェハ、シリコンカーバイドウェハ、及び、当該ウェハ上にシリコン元素を含む各種膜が形成されたものもウェハとして用いることができる。さらには、サファイアウェハ、各種化合物半導体ウェハ、プラスチックウェハなどシリコン元素を含まないウェハ上に、シリコン元素を含む各種膜が形成されたものであっても良い。
 また、表面に凹凸パターンを有し、該凹凸パターンの少なくとも一部がシリコン元素を含むウェハは、シリコン、酸化ケイ素、および、窒化ケイ素から選ばれる少なくとも1つを含む複数の成分から構成されたウェハであってもよい。該複数の成分から構成されたウェハとしては、シリコン、酸化ケイ素、および、窒化ケイ素から選ばれる少なくとも1つがウェハ表面に形成したもの、あるいは、凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部がシリコン、酸化ケイ素、および、窒化ケイ素から選ばれる少なくとも1つとなるものも含まれる。
 以下、各工程について説明する。まず、凹凸パターンを有するウェハ表面(凹凸パターンの表面)に液体を供し、凹凸パターンの少なくとも凹部表面に液体を保持する工程(工程1)を行う。
 ここでは、液体として前処理用薬液を用いる場合を説明する。この場合、(工程1)では、凹凸パターンの表面に前処理用薬液を供給することにより、凹凸パターンの表面を改質する工程(以下、「前処理工程」と記載する)を行う。前処理工程では、酸をモル濃度で0.001~5mol/L含み、pHが3以下である前処理用薬液を用いて、40℃以上、前処理用薬液の沸点未満の温度で凹凸パターンの表面を改質する。これは上記の第2方法に対応する。
 凹凸パターンの表面に前処理用薬液を供給すると、前処理用薬液中の酸によって、凹凸パターンの表面に水酸基などの反応活性点が形成される。凹凸パターンの表面に水酸基などの反応活性点が多く存在すると、後述する(工程2)において、保護膜形成用薬液に含まれる保護膜を形成する化合物と、反応活性点とが反応しやすくなる。その結果、凹凸パターンの表面に撥水性の保護膜が形成されやすくなる。
 凹凸パターンの表面に前処理用薬液を供給することは、特に、凹凸パターンの少なくとも一部が、窒化ケイ素および/またはシリコンから形成されている場合に適している。これは上記の第4方法に対応する。凹凸パターンが窒化ケイ素やシリコンから形成されている場合、前処理用薬液により凹凸パターンの表面が改質されていないと、凹凸パターンの表面に水酸基などの反応活性点が少ない。そのため、窒化ケイ素やシリコンから形成された凹凸パターンに保護膜形成用薬液を供給しても、凹凸パターンの表面に撥水性の保護膜が形成されにくくなる。しかし、酸を含む前処理用薬液によって凹凸パターンの表面を改質することにより、凹凸パターンが窒化ケイ素やシリコンから形成されている場合であっても、充分な撥水性を有する保護膜を凹凸パターンの表面に形成することができる。
 なお、窒化ケイ素またはシリコンから形成される凹凸パターンは、たとえば、ウェハ表面に窒化ケイ素またはシリコンの膜を成膜した後、該窒化ケイ素またはシリコンの膜をエッチングすることにより形成することができる。また、窒化ケイ素またはシリコンから形成される凹凸パターンは、ウェハ表面に凹凸パターンを形成した後、該凹凸パターンに窒化ケイ素またはシリコンの膜を成膜することによっても形成することができる。
 前処理工程では、40℃以上、前処理用薬液の沸点未満の温度で凹凸パターンの表面を改質するが、凹凸パターンの表面を改質する温度を調節する方法としては、前処理用薬液を加熱する方法、ウェハを加熱する方法などが挙げられる。
 前処理用薬液に含まれる酸としては、有機酸(上記の第3方法に対応する)や無機酸がある。無機酸の例としては、塩酸、硝酸、硫酸、リン酸などが挙げられる。有機酸の例としては、酢酸およびプロピオン酸などの脂肪族モノカルボン酸、マレイン酸およびフマル酸などの脂肪族ポリカルボン酸、安息香酸などの芳香族モノカルボン酸、フタル酸およびテレフタル酸などの芳香族ポリカルボン酸、メタンスルホン酸およびベンゼンスルホン酸などの有機スルホン酸などが挙げられる。
 凹凸パターンの表面を改質する効果(凹凸パターンの表面に水酸基などの反応活性点を形成する効果)を奏するために、前処理用薬液中の酸のモル濃度は、0.001~5mol/Lであることが必要であるが、0.005~2mol/Lであることが好ましい。
 凹凸パターンの表面を改質する効果(凹凸パターンの表面に水酸基などの反応活性点を形成する効果)を奏するために、前処理用薬液のpHは、3以下である。また、前処理用薬液のpHは、0.1以上であることが好ましい。前処理用薬液のpHが0.1未満であると、前処理工程を行う前に予め前処理用薬液をイオン交換法により精製しにくくなり、精製コストが上昇する恐れが生じる。
 前処理用薬液のpHは、前処理用薬液中のプロトン濃度を用いて、以下の式から求められる。
  pH=-Log10[H+
式中、Log10は10を底とする対数、[H+]は25℃の前処理用薬液中のプロトン濃度を表しており、プロトン濃度の単位はmol/Lである。なお、前処理用薬液は、水溶液に限定されず、前処理用薬液の溶媒として有機溶媒のみが用いられている場合や、水と有機溶媒とが併用されている場合であっても、上記式によって求められる値を前処理用薬液のpHとする。特に、本明細書においては、前処理用薬液の溶媒が水のみの場合、または、水と有機溶媒とが混合されてなる場合、前処理用薬液のpHとは、25℃にした前処理用薬液をpHメーターにより測定した値をいうこととする。
 前処理用薬液は、酸と該酸を溶解するための溶媒を含む液体であることが好ましい。溶媒としては、水および有機溶媒などが挙げられる。有機溶媒の種類は特に限定されないが、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。また、水および有機溶媒などの溶媒は、単独で用いてもよいし、2種以上を併用してもよい。例えば、水と有機溶媒とを組み合わせて用いてもよいし、複数の有機溶媒を組み合わせて用いてもよい。
 前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノン、イソホロンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1,1,1,3,3-ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3-ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE-3000(旭硝子製)、Novec HFE-7100、Novec HFE-7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1-クロロ-3,3,3-トリフルオロプロペン、1,2-ジクロロ-3,3,3-トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、アルコール類の例としては、メタノール、エタノール、プロパノール、ブタノールなどがあり、多価アルコール類の例としては、エチレングリコール、1,3-プロパンジオールなどがあり、前記多価アルコールの誘導体の例としては、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジアセテート、トリエチレングリコールジメチルエーテル、エチレングリコールジアセテート、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、含窒素化合物溶媒の例としては、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジエチルアミン、トリエチルアミン、ピリジンなどがある。
 前処理用薬液による改質効果を考慮すると、前処理工程の温度は高い方が好ましい。そのため、溶媒の沸点は高い方が好ましく、前処理用薬液の溶媒として水と有機溶媒の混合溶媒を用いる場合、或いは、有機溶媒を用いる場合、有機溶媒の沸点は100℃を超えるものを用いることが好ましい。これらを考慮すると、溶媒として多価アルコール類や多価アルコール類の誘導体を用いることが好ましい。
 前処理用薬液では、該前処理用薬液の沸点未満の温度において、気泡が発生しないことが好ましい。前処理用薬液に気泡が発生すると、前処理用薬液の取り扱い性が困難になるという問題が生じる。これらを考慮すると、前処理用薬液は、溶媒として、オゾン(O3)、過酸化水素(H22)などの酸化剤を含まないことが好ましい。前処理用薬液に酸化剤が含まれている場合、前処理用薬液の温度が高くなると、酸化剤が分解して酸素が発生するからである。
 以上を考慮すると、前処理用薬液の溶媒は、酸化剤を含まず、水のみ、有機溶媒のみ、または、水と有機溶媒のみからなることが好ましい。また、前処理用薬液の溶媒が、水と有機溶媒のみからなる場合、水と有機溶媒との比(水/有機溶媒)は、質量比で、水/有機溶媒=10/90~90/10であることが好ましく、20/80~60/40であることがより好ましい。
 前処理用薬液の調製方法において、酸およびその溶液のうち少なくとも1つを精製することが好ましい。
 前記精製は、モレキュラーシーブ等の吸着剤や蒸留等による水分濃度の調整、イオン交換樹脂や蒸留等によるNa、Mg、K、Ca、Mn、Fe及びCuの各元素の金属不純物の除去、及び、フィルターろ過によるパーティクル等の汚染物質の除去のうち少なくとも1つの除去手段を用いて行われるものである。前処理用薬液の活性やウェハの清浄度を考慮して、水分濃度を調整し、かつ、金属不純物を除去し、かつ、汚染物質を除去することが好ましく、除去する順番は問わない。
 上述したように、(工程1)においては、凹凸パターン表面に水系洗浄液を供し、凹凸パターンの少なくとも凹部表面に水系洗浄液を保持した後に、水系洗浄液を洗浄液Aで置換し、さらに、洗浄液Aを前処理用薬液で置換してもよい。また、前処理用薬液が水系洗浄液と置換可能である場合には、凹凸パターンの少なくとも凹部表面に水系洗浄液を保持した後に、水系洗浄液を前処理用薬液で置換してもよい。
 水系洗浄液または洗浄液Aを前処理用薬液に置換する場合、凹凸パターンの少なくとも凹部表面に水系洗浄液または洗浄液Aが保持された状態で、該洗浄液を該前処理用薬液に置換していくことが好ましい。
 また、(工程1)の後、(工程2)の前に、前処理用薬液とは異なる洗浄液を凹凸パターン表面に供してもよい。前処理用薬液とは異なる洗浄液としては水系洗浄液や洗浄液Aが挙げられる。この場合、凹凸パターンの表面に保護膜が形成されるまでは、凹凸パターンの少なくとも凹部表面に液体が保持された状態が維持されていることが好ましい。
 水系洗浄液の例としては、水、あるいは、水に有機溶媒、酸、アルカリのうち少なくとも1種が混合された水を主成分(例えば、水の含有率が50質量%以上)とするものが挙げられる。これらの中では、水が好ましい。
 洗浄液Aの好ましい例としては、後述する保護膜形成用薬液、水、有機溶媒、あるいは、それらの混合物、あるいは、それらに酸、アルカリ、界面活性剤、酸化剤のうち少なくとも1種が混合されたもの等が挙げられる。
 また、該洗浄液Aの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。
 前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノン、イソホロンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1,1,1,3,3-ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3-ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE-3000(旭硝子製)、Novec HFE-7100、Novec HFE-7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1-クロロ-3,3,3-トリフルオロプロペン、1,2-ジクロロ-3,3,3-トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、アルコール類の例としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、1,3-プロパンジオールなどがあり、前記多価アルコールの誘導体の例としては、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジアセテート、トリエチレングリコールジメチルエーテル、エチレングリコールジアセテート、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、含窒素化合物溶媒の例としては、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジエチルアミン、トリエチルアミン、ピリジンなどがある。
 また、該洗浄液Aに混合されることのある酸としては、無機酸や有機酸がある。無機酸の例としては、フッ酸、バッファードフッ酸、硫酸、硝酸、塩酸、リン酸など、有機酸の例としては、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸などが挙げられる。該洗浄液Aに混合されることのあるアルカリとしては、アンモニア、コリンなどが挙げられる。該洗浄液Aに混合されることのある酸化剤としては、オゾン、過酸化水素などが挙げられる。
 なお、該洗浄液Aが有機溶媒であれば、前記保護膜形成用薬液を水と接触させることなく凹部に供すことができるので好ましい。また、該洗浄液Aが酸水溶液を含んでいれば、後述する(工程2)において保護膜が短時間で形成できるので好ましい。
 また、前記洗浄液Aとして、複数の洗浄液を用いても良い。例えば、前記酸水溶液を含む洗浄液と前記有機溶媒の洗浄液の2種類を用いることができる。
 次に、前記液体を保護膜形成用薬液で置換し、該薬液を凹凸パターンの少なくとも凹部表面に保持する工程(工程2)を行う。具体的には、改質された凹凸パターンの表面に保護膜形成用薬液を供給することにより、凹凸パターンの表面に撥水性の保護膜を形成する工程(以下、「保護膜形成工程」と記載する)を行う。
 保護膜形成工程において、保護膜は、保護膜形成用薬液に含まれる保護膜を形成する化合物と、凹凸パターンの表面に形成された水酸基などの反応活性点とが反応することにより、保護膜を形成する化合物がウェハのSi元素と化学的に結合することによって形成される。保護膜形成工程において、ウェハの凹部表面に撥水性の保護膜が形成されるので、後述する(工程3)において、ウェハの凹部から液体が除去されるとき、すなわち、ウェハが乾燥されるとき、該凹部の毛細管力が小さくなり、パターン倒れが生じにくくなる。
 保護膜形成工程では、該工程(工程2)の前に凹部に保持されている液体を保護膜形成用薬液に置換し、凹凸パターンの少なくとも凹部表面に該保護膜形成用薬液が保持されている間に、該凹凸パターンの少なくとも凹部表面に前記保護膜が形成される。保護膜形成工程において、保護膜は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。
 保護膜形成用薬液は、温度を高くすると、より短時間で撥水性の保護膜を形成しやすくなる。均質な保護膜を形成しやすい温度は、10℃~保護膜形成用薬液の沸点未満であり、特には15℃~保護膜形成用薬液の沸点より10℃低い温度で保持されることが好ましい。保護膜形成用薬液の温度は、凹凸パターンの少なくとも凹部表面に保持されているときも当該温度に保持されることが好ましい。
 なお、他の洗浄液についても、10℃以上、洗浄液の沸点未満の温度で保持しても良い。例えば、洗浄液Aが酸水溶液を含む、特に好ましくは酸水溶液と沸点が100℃以上の有機溶媒を含む溶液を用いる場合、洗浄液の温度を該洗浄液の沸点付近に高くすると、前記保護膜が短時間で形成しやすくなるので好ましい。
前記保護膜形成用薬液は、下記一般式[1]で表される撥水性保護膜形成剤(以下、「化合物A」とも記載する)を含有する。これは上記の第1方法に対応する。
1 aSiX4-a   [1]
[式[1]中、R1は、それぞれ互いに独立して、水素、又は炭素数が1~18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基からなる群から選ばれる少なくとも1つの基であり、aは整数1~3である。]
 化合物Aの例としては、ヘキサメチルジシラザン(HMDS)、トリメチルシリルジエチルアミン(TMSDEA)、テトラメチルジシラザン、トリメチルシリルジメチルアミン、オクチルジメチルシリルジメチルアミン、トリメチルシリルイミダゾール、トリメチルクロロシラン、プロピルジメチルクロロシラン、オクチルジメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシランなどのシランカップリング剤が挙げられる。
 保護膜形成用薬液は、触媒として酸Aを含んでもよい。保護膜形成用薬液中の酸Aは、前記化合物AとウェハのSi元素との反応を促進することに奏功する。該酸Aは、水を含有するものであると、保護膜形成用薬液中に含まれる水の増加につながり、前記保護膜が形成されにくくなる。このため、該酸Aは、水の含有量が少ないものほど好ましく、好ましい水の含有率は、35質量%以下であり、特に好ましくは10質量%以下、さらに好ましくは5質量%以下であり、限りなく0質量%に近いことが理想的である。
 保護膜形成用薬液において、酸Aの濃度は、前記化合物Aの総量100質量%に対して0.01~20質量%であることが好ましい。添加量が少ないと酸の触媒効果が低下するので好ましくなく、過剰に多くしても触媒効果は向上せず、逆に、ウェハ表面を浸食したり、不純物としてウェハに残留する懸念もある。このため、前記酸Aの濃度は、前記化合物Aの総量100質量%に対して0.05~10質量%であることが特に好ましい。
 前記酸Aとしては、無機酸や有機酸がある。水の含有量が少ない無機酸の例としては、ハロゲン化水素、硫酸、過塩素酸、リン酸などがあり、有機酸の例としては、一部または全ての水素元素がフッ素元素等で置換されていても良いアルカンスルホン酸やカルボン酸、ベンゼンスルホン酸、p-トルエンスルホン酸などがある。
 また、酸Aとしてはルイス酸も用いることができる。ルイス酸の定義については、例えば「理化学辞典(第五版)」に記載されている。ルイス酸としては、酸無水物、ホウ素化合物、ケイ素化合物がある。酸無水物の例としては、無水トリフルオロメタンスルホン酸などの無水アルカンスルホン酸、ならびに、無水酢酸、無水トリフルオロ酢酸、および、無水ペンタフルオロプロピオン酸などの無水カルボン酸などが挙げられる。酸無水物においては、一部または全ての水素元素がフッ素元素等で置換されていても良い。ホウ素化合物の例としては、アルキルホウ酸エステル、アリールホウ酸エステル、トリス(トリフルオロアセトキシ)ホウ素、トリアルコキシボロキシン、トリフルオロホウ素などが挙げられる。ケイ素化合物の例としては、クロロシラン、一部または全ての水素元素がフッ素元素等で置換されていても良いアルキルシリルアルキルスルホネート、一部または全ての水素元素がフッ素元素等で置換されていても良いアルキルシリルエステルなどが挙げられる。なお、前記ケイ素化合物が用いられた場合、該ケイ素化合物で前記保護膜の少なくとも一部が形成されても良い。
 また、保護膜形成用薬液において、前記化合物A及び酸Aは、溶媒によって希釈されてもよい。保護膜形成用薬液の総量100質量%に対して、化合物Aと酸Aの添加量の総和を、0.01~100質量%とすると、前記凹凸パターンの少なくとも凹部表面に均一に保護膜を形成しやすくなるため好ましい。0.01質量%未満では、凹凸パターンの倒れ防止効果が不十分となる傾向がある。さらに好ましくは0.05~50質量%である。
 保護膜形成用薬液において希釈に用いられることのある溶媒としては、例えば、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒などの有機溶媒が好適に使用される。この中でも、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、多価アルコールの誘導体のうちOH基を持たないものを用いると、前記凹凸パターン表面に保護膜を短時間に形成できるためより好ましい。
 前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノン、イソホロンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1,1,1,3,3-ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3-ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE-3000(旭硝子製)、Novec HFE-7100、Novec HFE-7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1-クロロ-3,3,3-トリフルオロプロペン、1,2-ジクロロ-3,3,3-トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、前記多価アルコールの誘導体でOH基を持たないものの例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールジアセテート、ジエチレングリコールジアセテート、トリエチレングリコールジメチルエーテル、エチレングリコールジアセテート、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがある。
 また、前記有機溶媒に不燃性のものを使うと、保護膜形成用薬液が不燃性になる、あるいは、引火点が高くなって、該薬液の危険性が低下するので好ましい。含ハロゲン溶媒は不燃性のものが多く、不燃性含ハロゲン溶媒は不燃性有機溶媒として好適に使用できる。
 また、ウェハを回転させながら保護膜形成用薬液をウェハに供する場合、前記有機溶媒の沸点が低すぎると、前記保護膜形成用薬液がウェハ全面に濡れ広がる前に該薬液が乾燥しやすくなり好ましくない。また、沸点が高すぎると、前記薬液の粘性が高くなりすぎる傾向があり好ましくない。このため、前記有機溶媒は沸点が70~220℃のものを用いるのが好ましい。このような溶媒としては、コストや他の洗浄液との溶解性(置換のしやすさ)を考慮すると、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジアセテート、エチレングリコールジアセテート、シクロヘキサノンなどが好ましい。
 また、保護膜形成用薬液中の水分量は、該薬液総量に対し5000質量ppm以下であることが好ましい。水分量が5000質量ppm超の場合、前記化合物A及び酸Aの活性が低下し、前記保護膜を短時間で形成しにくくなる。従って、保護膜形成用薬液に含まれる化合物A、酸Aや、保護膜形成用薬液に含まれることのある溶媒は水を多く含まないものであることが好ましい。なお、保護膜形成用薬液中の水分量は、10質量ppm以上であってもよい。
 また、保護膜形成用薬液中の液相での光散乱式液中粒子検出器によるパーティクル測定における0.5μmより大きい粒子の数が該薬液1mL当たり100個以下であることが好ましい。前記0.5μmより大きい粒子の数が該薬液1mL当たり100個超であると、パーティクルによるパターンダメージを誘発する恐れがありデバイスの歩留まり低下及び信頼性の低下を引き起こす原因となるため好ましくない。また、0.5μmより大きい粒子の数が該薬液1mL当たり100個以下であれば、前記保護膜を形成した後の、溶媒や水による洗浄を省略または低減できるため好ましい。このため、保護膜形成用薬液中の0.5μmより大きい粒子の該薬液1mL当たりの個数は少ないほど好ましいが、前記0.5μmより大きい粒子の数は、該薬液1mL当たり1個以上であってもよい。なお、保護膜形成用薬液中の液相でのパーティクル測定は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して測定するものであり、パーティクルの粒径とは、PSL(ポリスチレン製ラテックス)標準粒子基準の光散乱相当径を意味する。
 また、保護膜形成用薬液中のNa、Mg、K、Ca、Mn、Fe及びCuの各元素の金属不純物含有量が、該薬液総量に対し各100質量ppb以下であることが好ましい。前記の各元素の金属不純物としては、金属微粒子、イオン、コロイド、錯体、酸化物や窒化物といった形で、溶解、未溶解に係らず薬液中に存在するもの全てが対象となる。前記金属不純物含有量が、該薬液総量に対し100質量ppb超であると、デバイスの接合リーク電流が増大する恐れがありデバイスの歩留まりの低下及び信頼性の低下を引き起こす原因となるため好ましくない。また、前記金属不純物含有量が、該薬液総量に対し各100質量ppb以下であると、前記保護膜を形成した後の、溶媒や水による洗浄を省略または低減できるため好ましい。なお、前記金属不純物含有量は、該薬液総量に対し各0.01質量ppb以上であってもよい。
 前記化合物Aと酸Aを混合して含有させる保護膜形成用薬液の調製方法において、混合前の化合物A、酸A、及び、混合後の混合液のうち少なくとも1つを精製することが好ましい。また、保護膜形成用薬液が溶媒を含有する場合は、前記の混合前の化合物A及び酸Aは、溶媒を含んだ溶液状態であってもよく、この場合、前記精製は、混合前の化合物Aまたはその溶液、酸Aまたはその溶液、及び、混合後の混合液のうち少なくとも1つを対象とするものであってもよい。
 前記精製は、モレキュラーシーブ等の吸着剤や蒸留等による水分子の除去、イオン交換樹脂や蒸留等によるNa、Mg、K、Ca、Mn、Fe及びCuの各元素の金属不純物の除去、及び、フィルターろ過によるパーティクル等の汚染物質の除去のうち少なくとも1つの除去手段を用いて行われるものである。保護膜形成用薬液の活性やウェハの清浄度を考慮して、水分子を除去し、かつ、金属不純物を除去し、かつ、汚染物質を除去することが好ましく、除去する順番は問わない。
 上述したように、(工程2)の後で、凹凸パターンの少なくとも凹部表面に保持された保護膜形成用薬液を該薬液とは異なる洗浄液Bに置換した後に、(工程3)に移ってもよい。洗浄液Bの例としては、水系溶液からなる水系洗浄液、または、有機溶媒、または、前記水系洗浄液と有機溶媒の混合物、それらに酸、アルカリ、界面活性剤のうち少なくとも1種が混合されたもの、またはそれらに保護膜形成用薬液に含まれる化合物A、及び、酸Aが該薬液よりも低濃度になるように添加されたもの等が挙げられる。
 また、該洗浄液Bの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。
 前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノン、イソホロンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1,1,1,3,3-ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3-ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE-3000(旭硝子製)、Novec HFE-7100、Novec HFE-7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1-クロロ-3,3,3-トリフルオロプロペン、1,2-ジクロロ-3,3,3-トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、アルコール類の例としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、1,3-プロパンジオールなどがあり、前記多価アルコールの誘導体の例としては、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジアセテート、トリエチレングリコールジメチルエーテル、エチレングリコールジアセテート、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、含窒素化合物溶媒の例としては、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジエチルアミン、トリエチルアミン、ピリジンなどがある。
 また、前記洗浄液Bへの置換を経て、該凹凸パターンの少なくとも凹部表面に水系溶液からなる水系洗浄液を保持した後に、(工程3)に移ってもよい。
 また、前記洗浄液Bとして、複数の洗浄液を用いても良い。
 水系洗浄液の例としては、水、あるいは、水に有機溶媒、酸、アルカリのうち少なくとも1種が混合された水を主成分(例えば、水の含有率が50質量%以上)とするものが挙げられる。特に、水系洗浄液に水を用いると、保護膜形成用薬液によって撥水化された凹凸パターンの少なくとも凹部表面の該液との接触角θが大きくなって該凹部表面の毛細管力Pが小さくなり、さらに乾燥後にウェハ表面に汚れが残りにくくなるので好ましい。
 前記凹凸パターン表面から液体が除去されるときに、該表面に保持されている液体は、保護膜形成用薬液、洗浄液B、水系洗浄液、及びそれらの混合液でもよい。なお、前記薬液を含む混合液は、前記薬液を洗浄液Bに置換する途中の状態の液でもよいし、あらかじめ前記薬液を該薬液とは異なる洗浄液に混合して得た混合液でもよい。また、前記凹凸パターン表面から液体が一旦除去された後で、前記凹凸パターン表面に、洗浄液B、水系洗浄液、および、それらの混合液から選ばれる少なくとも1つを保持させて、その後、乾燥しても良い。
 ウェハの凹凸パターンの少なくとも凹部表面に、保護膜形成用薬液により前記保護膜10が形成されたとき、該表面に水が保持されたと仮定したときの接触角は60~120°であると、パターン倒れが発生し難いため好ましい。また、接触角は90°に近いほど該凹部表面の毛細管力が小さくなり、パターン倒れが更に発生し難くなるため、70~110°が特に好ましい。また、毛細管力は2.1MN/m2以下であることが好ましい。該毛細管力が2.1MN/m2以下であれば、パターン倒れが発生し難いため好ましい。また、該毛細管力が小さくなると、パターン倒れは更に発生し難くなるため、該毛細管力は1.6MN/m2以下が特に好ましく、1.1MN/m2以下がさらに好ましい。さらに、液体との接触角を90°付近に調整して毛細管力を限りなく0.0MN/m2に近づけることが理想的である。
 本発明の第2の特徴における、凹凸パターン表面から液体を除去する工程(工程3)及び保護膜を除去する工程(工程4)に関する詳細な説明は、第1の特徴におけるものと同じであるので、省略する。
 本発明の第1及び第2の特徴を例証する実施例及びそれらと対照をなす比較例における評価を以下のとおりに行った。
ウェハの表面を凹凸パターンを有する面とすること、凹凸パターンの少なくとも凹部に保持された洗浄液を他の洗浄液で置換することは、他の文献等にて種々の検討がなされ、既に確立された技術であるので、本発明では、前記保護膜形成用薬液の評価を中心に行った。また、下記の式
           P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
から明らかなようにパターン倒れは、洗浄液のウェハ表面への接触角、すなわち液滴の接触角と、洗浄液の表面張力に大きく依存する。凹凸パターンの凹部に保持された洗浄液の場合、液滴の接触角と、パターン倒れと等価なものとして考えてよい該凹部に働く毛細管力とは相関性があるので、前記式と保護膜の液滴の接触角の評価から毛細管力を導き出してもよい。なお、実施例において、前記洗浄液として水を用いた。上記の式より、接触角が90°に近いほど該凹部に働く毛細管力が小さくなり、パターン倒れが発生し難くなるため、前記保護膜表面に水が保持されたと仮定したときの接触角は60~120°が好ましく、70~110°が特に好ましい。
 しかしながら、表面に微細な凹凸パターンを有するウェハの場合、該凹凸パターン表面に形成された前記保護膜10自体の接触角を正確に評価できない。
 水滴の接触角評価は、JIS R 3257「基板ガラス表面のぬれ性試験方法」にもあるように、サンプル(基材)表面に数μlの水滴を滴下し、水滴と基材表面のなす角度の測定によりなされる。しかし、パターンを有するウェハの場合、接触角が非常に大きくなる。これは、Wenzel効果やCassie効果が生じるからで、接触角が基材の表面形状(ラフネス)に影響され、見かけ上の水滴の接触角が増大するためである。
 そこで、本実施例では前記薬液を表面が平滑なウェハに供して、ウェハ表面に保護膜を形成して、該保護膜を表面に凹凸パターン2が形成されたウェハ1の表面に形成された保護膜10とみなし、種々評価を行った。なお、本発明の第1の特徴を例証する実施例では、表面が平滑なウェハとして、表面が平滑なシリコンウェハ上に窒化チタン層を有する窒化チタン膜付きウェハ(以降、「TiNウェハ」と記載することがある)を用いた。本発明の第2の特徴を例証する実施例では、表面が平滑なウェハとして、表面に熱酸化膜(SiO2膜)層または窒化ケイ素膜(SiN膜)層を有する、表面が平滑なシリコンウェハを用いた。
 詳細を下記に述べる。以下では、本発明の洗浄方法で洗浄されたウェハの評価方法、保護膜形成用薬液の調製、そして、本発明の洗浄方法で洗浄されたウェハの評価結果が述べられる。
〔本発明の洗浄方法で洗浄されたウェハの評価方法〕
 本発明の洗浄方法で洗浄されたウェハの評価方法として、以下の(1)~(3)の評価を行った。
(1)ウェハ表面に形成された保護膜の接触角評価
 保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角(接触角)を接触角計(協和界面科学製:CA-X型)で測定した。ここでは、第1の特徴の実施例の場合、保護膜の接触角が50~130°の範囲であったものを合格とし、第2の特徴の実施例の場合、それが60~120°の範囲であったものを合格とした。
(2)保護膜の除去性
 以下の条件で低圧水銀灯のUV光をサンプルに1分間照射した。照射後に水滴の接触角が10°以下となったものを、前記保護膜が除去されたと判断して、合格とした。
  ・ランプ:セン特殊光源製PL2003N-10
  ・照度:15mW/cm2(光源からサンプルまでの距離は10mm)
(3)保護膜除去後のウェハの表面平滑性評価
 原子間力電子顕微鏡(セイコ-電子製:SPI3700、2.5μm四方スキャン)によって表面観察し、第1の特徴の実施例の場合、ウェハ洗浄前後の表面の中心線平均面粗さ:Ra(nm)の差ΔRa(nm)を求めた。なお、Raは、JIS B 0601で定義されている中心線平均粗さを測定面に対し適用して三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均した値」として次式で算出した。
Figure JPOXMLDOC01-appb-M000001
ここで、XL、XR、YB、YTは、それぞれ、X座標、Y座標の測定範囲を示す。S0は、測定面が理想的にフラットであるとした時の面積であり、(XR-XL)×(YB-YT)の値とした。また、F(X,Y)は、測定点(X,Y)における高さ、Z0は、測定面内の平均高さを表す。
 保護膜形成前のウェハ表面のRa値、及び保護膜を除去した後のウェハ表面のRa値を測定し、両者の差(ΔRa)が±1nm以内であれば、洗浄によってウェハ表面が浸食されていない、および、前記保護膜の残渣がウェハ表面にないとし、合格とした。
第2の特徴の実施例の場合、保護膜を除去した後のウェハのRa値が1nm以下であれば、洗浄によってウェハ表面が浸食されていない、および、前記保護膜の残渣がウェハ表面にないとし、合格とした。
 以下の実施例1と2は、本発明の第1の特徴を例証するものであり、以下の比較例1と2はそれらと対照をなすものである。
 [実施例1]
(1)撥水性保護膜形成用薬液の調製
 撥水性保護膜形成剤としてノナフルオロヘキシルジメチルクロロシラン〔C49(CH22(CH32SiCl〕;10g、有機溶媒としてハイドロフルオロエーテル(3M製HFE-7100);90gを混合し、約5分間撹拌して、保護膜形成用薬液の総量に対する保護膜形成剤の濃度(以降「保護膜形成剤濃度」と記載する)が10質量%の保護膜形成用薬液を得た。
(2)TiNウェハの前洗浄
 前洗浄として、平滑な窒化チタン膜付きウェハ(表面に厚さ50nmの窒化チタン層を有するシリコンウェハ)を1質量%のフッ酸水溶液に2分間浸漬し、次いで純水に1分間浸漬した。
(3)TiNウェハの酸化処理
 水/エチレングリコール(以降、「EG」と記載する)が質量比で20/80で混合された溶媒に、濃度が0.1mol/Lとなるように塩酸を混合し、酸化処理液を調製した。液温を130℃に保持した該酸化処理液中に、前記「(2)TiNウェハの前洗浄」後のTiNウェハを1分間浸漬して、酸化処理を行った。
(4)ウェハ表面への撥水性保護膜形成用薬液による表面処理
 「(3)TiNウェハの酸化処理」後のTiNウェハを、2-プロパノール(以降、「iPA」と記載することがある)に1分間浸漬し、次いで、プロピレングリコールモノメチルエーテルアセテート(以降、「PGMEA」と記載することがある)に1分間浸漬した。その後、撥水性保護膜形成工程として、該TiNウェハを、上記「(1)保護膜形成用薬液の調製」で調製した保護膜形成用薬液に20℃で1分間浸漬させた。その後、該TiNウェハをiPAに1分間浸漬し、次いで、純水に1分間浸漬した。なお、前記前洗浄以降の処理は、TiNウェハ表面に常に液体が保持された状態で行った。最後に、該TiNウェハを純水から取出し、エアーを吹き付けて、TiNウェハ表面の純水を除去した。
 得られたTiNウェハを上記「本発明の洗浄方法で洗浄されたウェハの評価方法」に記載した要領で評価したところ、撥水性保護膜形成前の初期接触角が10°未満であったものが、保護膜形成後の接触角は96°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射によるウェハのΔRa値は±0.5nm以内であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。
 [実施例2]
 撥水性保護膜形成剤としてオクチルジメチルジメチルアミノシラン〔C817(CH32SiN(CH32〕;5g、有機溶媒としてPGMEA;94.82g、触媒として無水トリフルオロ酢酸〔(CF3CO)2O〕;0.18gを混合し、約5分間撹拌して、保護膜形成剤濃度が5質量%の保護膜形成用薬液を得た。
 実施例1と同様に「(2)TiNウェハの前洗浄」、及び「(3)TiNウェハの酸化処理」を行ったTiNウェハを、iPAに1分間浸漬し、次いで、PGMEAに1分間浸漬した後、撥水性保護膜形成工程として、上記で調整した保護膜形成用薬液に45℃で1時間浸漬させた。その後、該TiNウェハをiPAに1分間浸漬し、次いで、純水に1分間浸漬した。なお、前記前洗浄以降の処理は、TiNウェハ表面に常に液体が保持された状態で行った。最後に、該TiNウェハを純水から取出し、エアーを吹き付けて、該TiNウェハ表面の純水を除去した。
 得られたTiNウェハを上記「本発明の洗浄方法で洗浄されたウェハの評価方法」に記載した要領で評価したところ、撥水性保護膜形成前の初期接触角が10°未満であったものが、保護膜形成後の接触角は71°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射によるウェハのΔRa値は±0.5nm以内であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。
 [比較例1]
 撥水性保護膜形成剤としてN,N-ジメチルアミノトリメチルシラン〔(CH33SiN(CH32〕;5g、有機溶媒としてPGMEA;95gを混合し、約5分間撹拌して、保護膜形成剤濃度が5質量%の保護膜形成用薬液を得た。実施例1と同様に「(2)TiNウェハの前洗浄」、及び「(3)TiNウェハの酸化処理」を行ったTiNウェハを、iPAに1分間浸漬し、次いで、PGMEAに1分間浸漬した後、撥水性保護膜形成工程として、上記で調整した保護膜形成用薬液に20℃で1時間浸漬させた。その後、該TiNウェハをiPAに1分間浸漬し、次いで、純水に1分間浸漬した。なお、前記前洗浄以降の処理は、TiNウェハ表面に常に液体が保持された状態で行った。最後に、該TiNウェハを純水から取出し、エアーを吹き付けて、該TiNウェハ表面の純水を除去した。
 得られたTiNウェハを上記「本発明の洗浄方法で洗浄されたウェハの評価方法」に記載した要領で評価したところ、撥水性保護膜形成前の初期接触角が10°未満であったものが、保護膜形成後の接触角でも23°であり、充分な撥水性を付与することが出来なかった。
 [比較例2]
 撥水性保護膜形成剤としてN,N-ジメチルアミノトリメチルシラン〔(CH33SiN(CH32〕;5g、有機溶媒としてPGMEA;95gを混合し、約5分間撹拌して、保護膜形成剤濃度が5質量%の保護膜形成用薬液を得た。実施例1と同様に「(2)TiNウェハの前洗浄」を行った後、「(3)TiNウェハの酸化処理」を行わずに、TiNウェハをiPAに1分間浸漬し、次いで、PGMEAに1分間浸漬した後、撥水性保護膜形成工程として、上記で調整した保護膜形成用薬液に20℃で1時間浸漬させた。その後、該TiNウェハをiPAに1分間浸漬し、次いで、純水に1分間浸漬した。なお、前記前洗浄以降の処理は、TiNウェハ表面に常に液体が保持された状態で行った。最後に、該TiNウェハを純水から取出し、エアーを吹き付けて、該TiNウェハ表面の純水を除去した。
 得られたTiNウェハを上記「本発明の洗浄方法で洗浄されたウェハの評価方法」に記載した要領で評価したところ、撥水性保護膜形成前の初期接触角が10°未満であったものが、保護膜形成後の接触角でも18°であり、充分な撥水性を付与することが出来なかった。
 以下の実施例1~18は、本発明の第2の特徴を例証するものであり、以下の比較例1~6はそれらと対照をなすものである。
 [実施例1]
(1)保護膜形成用薬液の調製
 化合物Aとしてヘキサメチルジシラザン(HMDS);3g、酸Aとしてトリフルオロ酢酸(TFA);0.1g、溶媒としてプロピレングリコールモノメチルエーテルアセテート(PGMEA);96.9gを混合し、約5分撹拌して保護膜形成用薬液を得た。
(2)ウェハの洗浄
 平滑なSiO2膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するシリコンウェハ、以下単に「SiO2膜」と記載する場合がある)を1質量%のフッ酸水溶液に2分浸漬し、次いで純水に1分、2-プロパノールに1分浸漬した。また、LP-CVDで作製した平滑なSiN膜付きシリコンウェハ(表面に厚さ50nmの窒化ケイ素膜を有するシリコンウェハ、以下単に「SiN膜」と記載する場合がある)を1質量%のフッ酸水溶液に2分浸漬し、次いで純水に1分、28質量%アンモニア水:30質量%過酸化水素水:水を1:1:5の体積比で混合した洗浄液に1分、純水に1分浸漬した。
(3)前処理
 前処理用薬液として、1mol/L塩酸(表1中、HClと記載)水溶液(実測pHは、0.1)を、予めイオン交換法、及び、フィルターろ過で精製したものを用い、ホットプレートで液温が60℃となるように加熱した。その後、前記洗浄を行ったSiO2膜付きシリコンウェハおよびSiN膜付きシリコンウェハを、それぞれ前処理用薬液に1分浸漬して前処理を行った。その後、各ウェハを純水に1分浸漬した。なお、前処理用薬液のpHは、前処理用薬液を25℃恒温槽に1時間放置した後、pHメーター(アズワン社製、ラコムテスターpH計 pH1100)を用いて測定した。
(4)ウェハ表面への保護膜形成用薬液による表面処理
 前処理を行ったSiO2膜付きシリコンウェハおよびSiN膜付きシリコンウェハを、それぞれ2-プロパノールに1分浸漬した後、上記「(1)保護膜形成用薬液の調製」で調製した保護膜形成用薬液に20℃で1分浸漬させた。その後、各ウェハを2-プロパノールに1分浸漬し、次いで、純水に1分浸漬した。最後に、各ウェハを純水から取出し、エアーを吹き付けて、表面の純水を除去した。
 得られた各ウェハを上記「ウェハの評価方法」に記載した要領で評価した。以下、SiO2膜付きシリコンウェハについて言及する場合は、単に「SiO2膜」と記載し、SiN膜付きシリコンウェハについて言及する場合は、単に「SiN膜」と記載する。評価結果は表1に示すとおり、SiO2膜では、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は88°となり、撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。
 また、SiN膜では、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は69°となり、撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。
 このように、60℃に加熱した1mol/L塩酸水溶液により前処理を行うと、ウェハ表面に水酸基の多いSiO2膜付きシリコンウェハ、ウェハ表面に水酸基の少ないSiN膜付きシリコンウェハのどちらに対しても良好な撥水性付与効果が得られ、効率的に洗浄が行えることが確認できた。
Figure JPOXMLDOC01-appb-T000002
 [実施例2~18]
 実施例1で用いた前処理用薬液の酸、酸濃度、溶媒、pH、温度や、保護膜形成用薬液の表面処理の温度、時間などの条件を適宜変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表1に示す。
 なお、表1中で、HNO3は硝酸、CH3COOHは酢酸、HOOCCHCHCOOHはマレイン酸を意味し、水/EG=60/40は水/エチレングリコールが60/40の質量比で混合された溶媒を意味し、水/EG=20/80は水/エチレングリコールが20/80の質量比で混合された溶媒を意味し、HMDS/TFA/PGMEAは実施例1と同様の組成比の保護膜形成用薬液を意味する。
 [比較例1]
 前処理を行わなかった以外はすべて実施例1と同じとした。評価結果を表1に示す。SiO2膜では、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は91°となり、撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。
 一方、SiN膜では、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は47°となり、撥水性付与効果が充分では無かった。
 比較例1の評価結果より、前処理を行わない場合、表面に存在する水酸基などの反応活性点の量がほとんど変化しないため、元来ウェハ表面に水酸基の少ないSiN膜付きシリコンウェハでは、撥水性の保護膜が充分に形成されないと考えられる。
 [比較例2]
 前処理用薬液として、0.0005mol/L塩酸水溶液(実測pHは、3.5)を用いた以外はすべて実施例1と同じとした。評価結果を表1に示す。SiO2膜では、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は88°となり、撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。
 一方、SiN膜では、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は59°となり、撥水性付与効果が充分では無かった。
 [比較例3]
 前処理用薬液として、0.01mol/L酢酸水溶液(実測pHは、3.6)を用いた以外はすべて実施例1と同じとした。評価結果を表1に示す。SiO2膜では、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は89°となり、撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。
 一方、SiN膜では、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は58°となり、撥水性付与効果が充分では無かった。
 比較例2および3の評価結果より、前処理用薬液中の酸濃度が低すぎる場合、または、前処理用薬液のpHの値が大きすぎる場合、ウェハ表面を改質する効果が弱くなるため、元来ウェハ表面に水酸基の少ないSiN膜付きシリコンウェハでは、撥水性の保護膜が充分に形成されないと考えられる。
 [比較例4]
 前処理用薬液として、7mol/L塩酸水溶液(実測pHは、0.0)を用いた。しかし、前処理用薬液の酸濃度が高過ぎるため、イオン交換法による該前処理用薬液の精製を行うことが出来なかった。
 [比較例5]
 1mol/L塩酸水溶液;90g、30%過酸化水素(以下、H22と記載)水溶液;10gを混合し、5分撹拌して、前処理用薬液(実測pHは、0.0)とした。前処理用薬液中の塩酸濃度は0.9mol/L、溶媒の組成は水/H22=97/3(質量比)である。前処理用薬液をホットプレートで液温が90℃となるように加熱したところ、気泡が発生した。これは、過酸化水素が分解して酸素が発生したものと考えられる。上記気泡の発生により、前処理を行うことができなかった。
 [比較例6]
 前処理用薬液を、30℃で用いた以外はすべて実施例1と同じとした。評価結果を表1に示す。SiO2膜では、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は87°となり、撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。
 一方、SiN膜では、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は51°となり、撥水性付与効果が充分では無かった。
 比較例2の評価結果より、前処理用薬液の温度が低すぎる場合、ウェハ表面を改質する効果が弱くなるため、元来ウェハ表面に水酸基の少ないSiN膜付きシリコンウェハでは、撥水性の保護膜が充分に形成されないと考えられる。
 本実施例では、ウェハ表面に水酸基の少ないウェハとして、SiN膜付きシリコンウェハを用いた。しかし、ポリシリコンなどのシリコン膜付きシリコンウェハを用いた場合においても、SiN膜付きシリコンウェハを用いた場合と同様の結果が得られると想定される。
1  ウェハ
2  ウェハ表面の凹凸パターン
3  パターンの凸部
4  パターンの凹部
5  凹部の幅
6  凸部の高さ
7  凸部の幅
8  凹部4に保持された撥水性保護膜形成用薬液
9  凹部4に保持された液体
10 撥水性保護膜

Claims (9)

  1. 表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、ルテニウム、及びシリコン元素を含む物質からなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄方法であって、
    前記ウェハ表面を改質する、前処理工程
    改質された前記ウェハ表面に撥水性保護膜を形成するための撥水性保護膜形成剤を含有する撥水性保護膜形成用薬液を、前記ウェハの少なくとも凹部に保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程
    を含み、前記撥水性保護膜形成剤が、下記一般式[1]で表されるケイ素化合物であることを特徴とする、ウェハの洗浄方法。
               R1 aSiX4-a   [1]
    [式[1]中、R1は、それぞれ互いに独立して、水素、又は炭素数が1~18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基からなる群から選ばれる少なくとも1つの基であり、aは1~3の整数である。また、前記ウェハの内、シリコン元素を含まないものは、式[1]のR1中に含まれる炭素数の合計が6以上である。]
  2. 表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がシリコン元素を含むウェハの洗浄方法であって、
    前処理用薬液を供給することにより、凹凸パターンの表面を改質する、前処理工程、
    改質された凹凸パターンの表面に撥水性保護膜形成用薬液を供給することにより、凹凸パターンの表面に撥水性保護膜を形成する、撥水性保護膜形成工程、
    を少なくとも含むウェハの洗浄方法であって、
    前記前処理工程では、酸をモル濃度で0.001~5mol/L含み、pHが3以下である前処理用薬液を用いて、40℃以上、前処理用薬液の沸点未満の温度で凹凸パターンの表面を改質することを特徴とする、請求項1に記載のウェハの洗浄方法。
  3. 前記前処理用薬液中に含まれる酸が、有機酸であることを特徴とする、請求項2に記載のウェハの洗浄方法。
  4. 前記凹凸パターンの少なくとも一部が、窒化ケイ素および/またはシリコンから形成されていることを特徴とする、請求項1乃至請求項3のいずれか1つに記載のウェハの洗浄方法。
  5. 表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄方法であって、
    前記撥水性保護膜形成剤が、下記一般式[2]で表されるケイ素化合物であることを特徴とする、請求項1に記載のウェハの洗浄方法。
                R1 3SiX   [2]
    [式[2]中、R1は、それぞれ互いに独立して、水素、又は炭素数が1~18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、式[2]のR1中に含まれる炭素数の合計が6以上であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
  6. 前記撥水性保護膜形成剤が、下記一般式[3]で表されるケイ素化合物であることを特徴とする、請求項5に記載のウェハの洗浄方法。
             R2(CH32SiX   [3]
    [式[3]中、R2は炭素数が4~18の無置換、もしくは水素元素がハロゲン元素に置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
  7. 前記撥水性保護膜形成剤が、下記一般式[4]で表されるケイ素化合物であることを特徴とする、請求項5または請求項6に記載のウェハの洗浄方法。
             R3(CH32SiX   [4]
    [式[4]中、R3は炭素数が4~18の少なくとも一部の水素元素がフッ素元素により置換された炭化水素基であり、Xはケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、または、ハロゲン基である。]
  8. 前記前処理工程が、前記ウェハ表面に酸化処理液を保持することであることを特徴とする、請求項1、請求項5乃至請求項7のいずれか1つに記載のウェハの洗浄方法。
  9. 前記前処理工程において用いる酸化処理液が、オゾンを含む処理液、過酸化水素を含む処理液、及び酸を含む処理液からなる群から選ばれる少なくとも1つの処理液であることを特徴とする、請求項8に記載のウェハの洗浄方法。
PCT/JP2011/064201 2010-06-30 2011-06-22 ウェハの洗浄方法 WO2012002200A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020127024857A KR101396271B1 (ko) 2010-06-30 2011-06-22 웨이퍼의 세정방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010150535 2010-06-30
JP2010-150535 2010-06-30
JP2011-040113 2011-02-25
JP2011040113A JP5678720B2 (ja) 2011-02-25 2011-02-25 ウェハの洗浄方法
JP2011-112478 2011-05-19
JP2011112478A JP5830931B2 (ja) 2010-06-30 2011-05-19 ウェハの洗浄方法

Publications (1)

Publication Number Publication Date
WO2012002200A1 true WO2012002200A1 (ja) 2012-01-05

Family

ID=45401920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064201 WO2012002200A1 (ja) 2010-06-30 2011-06-22 ウェハの洗浄方法

Country Status (1)

Country Link
WO (1) WO2012002200A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130092468A (ko) * 2012-02-10 2013-08-20 도오꾜오까고오교 가부시끼가이샤 표면 처리제 및 표면 처리 방법
CN111630633A (zh) * 2018-01-15 2020-09-04 中央硝子株式会社 拒水性保护膜形成用化学溶液和晶片的表面处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244203A (ja) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd 半導体装置及びテレビジョン装置、並びにそれらの作製方法
JP2008277748A (ja) * 2007-03-30 2008-11-13 Renesas Technology Corp レジストパターンの形成方法とその方法により製造した半導体デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244203A (ja) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd 半導体装置及びテレビジョン装置、並びにそれらの作製方法
JP2008277748A (ja) * 2007-03-30 2008-11-13 Renesas Technology Corp レジストパターンの形成方法とその方法により製造した半導体デバイス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130092468A (ko) * 2012-02-10 2013-08-20 도오꾜오까고오교 가부시끼가이샤 표면 처리제 및 표면 처리 방법
JP2013177537A (ja) * 2012-02-10 2013-09-09 Tokyo Ohka Kogyo Co Ltd 表面処理剤及び表面処理方法
TWI565794B (zh) * 2012-02-10 2017-01-11 Tokyo Ohka Kogyo Co Ltd Surface treatment agent and surface treatment methods
KR102111803B1 (ko) * 2012-02-10 2020-05-15 도오꾜오까고오교 가부시끼가이샤 표면 처리제 및 표면 처리 방법
CN111630633A (zh) * 2018-01-15 2020-09-04 中央硝子株式会社 拒水性保护膜形成用化学溶液和晶片的表面处理方法
CN111630633B (zh) * 2018-01-15 2023-09-19 中央硝子株式会社 拒水性保护膜形成用化学溶液和晶片的表面处理方法

Similar Documents

Publication Publication Date Title
JP6032338B2 (ja) 保護膜形成用薬液
WO2012090779A1 (ja) ウェハの洗浄方法
JP5708191B2 (ja) 保護膜形成用薬液
US9748092B2 (en) Liquid chemical for forming protecting film
JP5482192B2 (ja) シリコンウェハ用洗浄剤
JP5533178B2 (ja) シリコンウェハ用洗浄剤
JP5446848B2 (ja) シリコンウェハ用洗浄剤
KR101425543B1 (ko) 발수성 보호막 형성용 약액 및 이를 사용하는 웨이퍼의 세정 방법
JP2012015335A (ja) 保護膜形成用薬液、および、ウェハ表面の洗浄方法
KR101396271B1 (ko) 웨이퍼의 세정방법
JP5716527B2 (ja) 撥水性保護膜形成用薬液と該薬液を用いたウェハの洗浄方法
KR101572583B1 (ko) 발수성 보호막 형성제, 발수성 보호막 형성용 약액과 당해 약액을 이용한 웨이퍼의 세정 방법
WO2012002200A1 (ja) ウェハの洗浄方法
KR101680438B1 (ko) 웨이퍼의 표면 처리방법 및 표면 처리액, 질화규소 함유 웨이퍼용 표면 처리제, 표면 처리액 및 표면 처리방법
JP5678720B2 (ja) ウェハの洗浄方法
WO2012002243A1 (ja) 撥水性保護膜形成剤、撥水性保護膜形成用薬液と該薬液を用いたウェハの洗浄方法
JP5830931B2 (ja) ウェハの洗浄方法
JP6098741B2 (ja) ウェハの洗浄方法
JP5953707B2 (ja) 窒化ケイ素含有ウェハ用の表面処理剤、表面処理液、及び表面処理方法
JP5712670B2 (ja) 撥水性保護膜形成薬液
WO2010084826A1 (ja) シリコンウェハ用洗浄剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024857

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800665

Country of ref document: EP

Kind code of ref document: A1