WO2012002092A1 - クラッチ操作装置 - Google Patents

クラッチ操作装置 Download PDF

Info

Publication number
WO2012002092A1
WO2012002092A1 PCT/JP2011/062514 JP2011062514W WO2012002092A1 WO 2012002092 A1 WO2012002092 A1 WO 2012002092A1 JP 2011062514 W JP2011062514 W JP 2011062514W WO 2012002092 A1 WO2012002092 A1 WO 2012002092A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
force
drive
pressing
link member
Prior art date
Application number
PCT/JP2011/062514
Other languages
English (en)
French (fr)
Inventor
康彦 江口
寛章 加藤
Original Assignee
株式会社エクセディ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクセディ filed Critical 株式会社エクセディ
Priority to CN201180029948.4A priority Critical patent/CN102959266B/zh
Priority to US13/806,951 priority patent/US8985292B2/en
Priority to DE112011102225T priority patent/DE112011102225T5/de
Publication of WO2012002092A1 publication Critical patent/WO2012002092A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D28/00Electrically-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D2023/123Clutch actuation by cams, ramps or ball-screw mechanisms

Definitions

  • the present invention relates to a clutch operating device for operating a clutch device.
  • a clutch device is provided between the engine and the transmission, and the shift lever of the driver's seat and the transmission are mechanically connected by a link mechanism such as a control rod.
  • a link mechanism such as a control rod.
  • the clutch device In the case of the normal open type, the clutch device is disconnected when no operating force is applied from the clutch operating device to the clutch device.
  • the pressure plate When connecting the clutch device, the pressure plate is pressed by the drive mechanism via the lever, and the clutch disk is sandwiched between the pressure plate and the flywheel. As a result, power is transmitted to the input shaft of the transmission via the clutch disk.
  • An object of the present invention is to provide a clutch operating device that can easily cope with various clutch devices while reducing a driving load.
  • the clutch operating device is a device for operating the clutch device, and includes a drive unit and an assist mechanism.
  • the driving unit generates a driving force and transmits the driving force to the clutch device.
  • the assist mechanism is a mechanism for assisting the drive unit, and includes a pressing unit and a toggle mechanism.
  • the pressing unit generates a pressing force.
  • the toggle mechanism converts the pressing force into an assist force that gradually increases from the power cutoff state to the power transmission state of the clutch device.
  • this clutch operating device since the toggle mechanism is adopted as the assist mechanism, it becomes easy to realize the driving force characteristic that matches the load characteristic of the clutch device. Furthermore, since the pressing portion and the toggle mechanism are combined, the assist force characteristic can be adjusted only by changing the specification of the pressing portion. That is, it is possible to easily realize a clutch operating device that can handle various clutch devices. Therefore, this clutch operating device can easily cope with various clutch devices while reducing the driving load.
  • the clutch device 9 is an example of a device for transmitting power from an engine (not shown) to a transmission (not shown), and is fixed to a flywheel 91 of the engine, for example. .
  • the flywheel 91 rotates about the rotation axis X.
  • the axial direction refers to a direction parallel to the rotation axis X.
  • the clutch device 9 is a so-called normal open type device. Therefore, in the state where the operating force is not applied to the clutch device 9 from the clutch operating device 1 (described later), power transmission from the engine to the transmission is interrupted. Details of the clutch operating device 1 will be described later.
  • the clutch device 9 includes a clutch cover 93, a pressure plate 92, a clutch disk 94, a pressing lever 96, an engagement bearing 97, and a clutch lever 98.
  • the clutch cover 93 is fixed to the flywheel 91.
  • the pressure plate 92 is supported by the clutch cover 93 so as to be integrally rotatable and movable in the axial direction.
  • the pressure plate 92 is coupled to the clutch cover 93 and a plurality of strap plates (not shown) so as to be integrally rotatable.
  • the pressure plate 92 is elastically connected to the clutch cover 93 in the axial direction by a strap plate.
  • the clutch disc 94 is disposed between the flywheel 91 and the pressure plate 92, and is sandwiched between the flywheel 91 and the pressure plate 92 in the axial direction when the clutch device 9 is connected.
  • the pressing lever 96 is a substantially annular plate, and is supported by a clutch cover 93 so as to be elastically deformable in the axial direction.
  • the elastic force of the pressing lever 96 is small, and the force required for elastic deformation is relatively small.
  • the inner peripheral portion of the pressing lever 96 can be pushed in the axial direction by a clutch lever 98.
  • the engagement bearing 97 absorbs the rotation difference between the pressing lever 96 and the clutch lever 98.
  • the engagement bearing 97 is disposed between the inner peripheral portion of the pressing lever 96 and the tip of the clutch lever 98.
  • the clutch lever 98 is supported by the housing 90 so as to be rotatable about the rotation axis A2.
  • the clutch lever 98 is driven to rotate about the rotation axis A2 by the clutch operating device 1.
  • the clutch lever 98 presses the pressure plate 92 in the axial direction via the engagement bearing 97 and the pressing lever 96, and the clutch device 9 enters a power transmission state when the clutch load that presses the pressure plate 92 exceeds a predetermined value.
  • the clutch operating device 1 is a device for operating the clutch device 9 and switches the clutch device 9 to one of a power transmission state and a power cutoff state based on an operation signal output from the transmission ECU 89, for example.
  • the power cut-off state means a state where power transmission through the clutch device 9 is completely cut off
  • the power transmission state means that power transmission is performed via the clutch device 9. It means that there is.
  • the rotational speeds of the flywheel 91 and the input shaft 99 of the transmission are the same.
  • the clutch operating device 1 can be applied to various clutch devices having different specifications.
  • the clutch operating device 1 will be described by taking the above-described clutch device 9 as an operation target of the clutch operating device 1 as an example.
  • the clutch operating device 1 includes a drive mechanism 2 (an example of a drive unit), an assist mechanism 3, and a control unit 8.
  • the drive mechanism 2 is a drive source for driving the clutch lever 98 of the clutch device 9, and directly transmits the drive force to the clutch lever 98.
  • the force input to the clutch lever 98 from the drive mechanism 2 is applied to the clutch lever 98 via the drive mechanism F1 (an example of the drive force of the drive unit) and from the assist mechanism 3 to the clutch lever 98.
  • the input force is defined as an assist force F2 (an example of an operation force of the clutch device), and a resultant force of the drive force F1 and the assist force F2 is defined as an operation force F3 for operating the clutch device 9.
  • the drive mechanism 2 generates a driving force F ⁇ b> 1 for driving the clutch device 9.
  • the drive mechanism 2 includes a drive motor 23, a speed reduction mechanism 28, a screw shaft 26, a ball screw 22 (an example of an output member), and a casing 29.
  • the casing 29 is fixed to the housing 90, for example.
  • the drive motor 23 is a brushless motor, for example, and has a drive shaft 21 for outputting a rotational driving force.
  • the drive shaft 21 rotates about the rotation axis C1.
  • the rotation axis C1 is arranged in parallel with the axial direction.
  • the drive motor 23 is fixed to the casing 29.
  • the reduction mechanism 28 is a mechanism for reducing the rotation of the drive motor 23, and includes a first gear 24 and a second gear 25.
  • the first gear 24 is fixed to the drive shaft 21.
  • the second gear 25 meshes with the first gear 24 and is fixed to the screw shaft 26.
  • the first gear 24 and the second gear 25 are disposed in the casing 29.
  • the screw shaft 26 is rotatably supported by the casing 29 and has a screw portion 26a.
  • the screw shaft 26 rotates about the rotation axis C2.
  • the rotation axis C2 is arranged in parallel with the rotation axis C1 and the axial direction.
  • the ball screw 22 is supported by the casing 29 so as to be movable in the axial direction (left and right direction in FIGS. 1 and 2), and is in contact with the clutch lever 98.
  • the ball screw 22 has a screw hole 22a.
  • the screw portion 26a of the screw shaft 26 is screwed into the screw hole 22a.
  • the screw shaft 26 rotates, the ball screw 22 moves in the axial direction.
  • the rotational movement of the screw shaft 26 is converted into a linear movement by the ball screw 22, and the rotational driving force generated by the drive motor 23 is converted into the axial driving force F1.
  • the rotational drive force generated by the drive motor 23 is amplified by the speed reduction mechanism 28 and converted into the axial drive force F 1 by the screw shaft 26 and the ball screw 22.
  • the driving force F1 is transmitted to the clutch lever 98 through the ball screw 22.
  • the speed reduction ratio of the speed reduction mechanism 28 is constant regardless of the stroke S of the drive mechanism 2.
  • Assist mechanism 3 assists drive mechanism 2 in order to reduce the drive load (motor torque) of drive motor 23.
  • the assist mechanism 3 applies assist force F ⁇ b> 2 to the clutch lever 98.
  • the assist mechanism 3 does not directly transmit the assist force F2 to the clutch lever 98, but transmits the assist force F2 to the clutch lever 98 via the ball screw 22 of the drive mechanism 2.
  • the assist mechanism 3 may transmit the assist force F2 directly to the clutch lever 98.
  • the assist mechanism 3 includes a toggle mechanism 39 and a pressing mechanism 37 (an example of a pressing member).
  • the toggle mechanism 39 includes a plate-like first link member 31 and a plate-like second link member 32.
  • the first link member 31 and the second link member 32 Have the same shape.
  • the first link member 31 has a first end 31a and a second end 31b.
  • the first end portion 31a is rotatably connected to the casing 29 of the drive mechanism 2 via a pin 38a.
  • the second end 31b is rotatably connected to the second link member 32 through a pin 38b.
  • the second link member 32 has a first end 32a and a second end 32b.
  • the first end portion 32a is rotatably connected to the second end portion 31b of the first link member 31 via a pin 38b.
  • the second end portion 32b is rotatably connected to the ball screw 22 via a pin 38c.
  • the center of the pin 38a and the center of the pin 38c are arranged on the rotation axis C2.
  • the first link member 31 is arranged in an inclined state with respect to the axial direction (an example of the first direction) in which the ball screw 22 moves, and the second link member 32 is arranged in an inclined state with respect to the axial direction.
  • the second link member 32 is arranged in an inclined state with respect to the axial direction.
  • a line connecting the center of the pin 38a and the center of the pin 38b is a line B1
  • a line connecting the center of the pin 38b and the center of the pin 38c is a line B2
  • the line B1 and The line B2 is inclined with respect to the rotation axis C2.
  • the angle ⁇ 1 between the line B1 and the line B2 in the power cut-off state is smaller than 90 degrees, and the angle ⁇ 1 gradually increases from the power cut-off state to the power transmission state.
  • the ratio also increases gradually.
  • the pressing mechanism 37 constantly applies a pressing force F4 to the first link member 31 and the second link member 32.
  • the pressing mechanism 37 includes a first pressing member 34, a second pressing member 35, and a coil spring 36.
  • the 1st press member 34 has the 1st connection part 34a and the 1st cylindrical part 34b.
  • the first connecting portion 34a is rotatably connected to the casing 29 of the drive mechanism 2 via a pin 38d.
  • the 1st cylindrical part 34b is a cylindrical part, and protrudes from the 1st connection part 34a.
  • the 2nd press member 35 has the 2nd connection part 35a and the 2nd cylindrical part 35b.
  • the second connecting portion 35a is rotatably connected to the first link member 31 and the second link member 32 via a pin 38b.
  • the 2nd cylindrical part 35b is a cylindrical part, and protrudes from the 2nd connection part 5a.
  • the center line of the first cylindrical portion 34b substantially coincides with the center line of the second cylindrical portion 35b.
  • the center line of the first cylindrical portion 34b and the center line of the second cylindrical portion 35b are indicated by a line B3.
  • the second pressing member 35 is slidably arranged with the first pressing member 34. Specifically, the first cylindrical portion 37d is inserted into the second cylindrical portion 37e. The second cylindrical portion 37e guides the first cylindrical portion 37d in the direction along the line B3.
  • the coil spring 36 is disposed in a compressed state between the first connecting portion 34a and the second connecting portion 5a.
  • a second cylindrical portion 37 e is inserted into the coil spring 36.
  • the coil spring 36 is supported by the second cylindrical portion 37e so as to be elastically deformable in a direction along the line B3 (an example of the second direction).
  • the pressing mechanism 37 is arranged to be extendable and contractable in the direction along the line B3.
  • the pressing force F4 of the pressing mechanism 37 acts in a direction parallel to the line B3. In FIG. 2, when the angle between the line B3 and the axial direction is an angle ⁇ 2, the angle ⁇ 2 is an acute angle in the power cut-off state. The angle ⁇ 2 gradually increases from the power cutoff state to the power transmission state.
  • the pressing mechanism 37 applies the pressing force F4 to the connecting portion L between the first link member 31 and the second link member 32. Due to the action of the toggle mechanism 39, the pressing force F4 gradually increases from the power cutoff state to the power transmission state.
  • the assist mechanism 3 has the toggle mechanism 39, as shown in FIG. 3, it is possible to realize an assist characteristic in which the assist force F2 gradually increases as the stroke S increases. Thereby, the driving force F1 of the drive mechanism 2 can be reduced, and the motor torque of the drive motor 23 can be reduced.
  • the control unit 8 includes a control device 83, a first rotation sensor 81, a second rotation sensor 84, and a stroke sensor 82.
  • the control device 83 controls the drive motor 23 according to the state of the vehicle. Specifically, control device 83 controls drive motor 23 based on an operation signal output from transmission ECU 89 (FIG. 1).
  • the first rotation sensor 81 detects the rotation speed of the flywheel 91.
  • the second rotation sensor 84 detects the rotational speed of the input shaft 99 that rotates integrally with the clutch disk 94.
  • the stroke sensor 82 detects the stroke of the clutch lever 98 (that is, the stroke S of the drive mechanism 2). In the present embodiment, the stroke S is the same as the movement amount of the ball screw 22 of the drive mechanism 2.
  • the control device 83 is electrically connected to the first rotation sensor 81, the second rotation sensor 84, and the stroke sensor 82. Detection signals from the first rotation sensor 81, the second rotation sensor 84, and the stroke sensor 82 are input to the control device 83 at a predetermined cycle. The control device 83 controls the operation of the drive motor 23 using each detection signal.
  • the control device 83 controls the drive of the drive motor 23 so that the clutch lever 98 rotates to a predetermined release position. Based on the detection signal of the stroke sensor 82, the control device 83 determines whether or not the clutch lever 98 is in a predetermined position.
  • the control device 83 controls the drive of the drive motor 23 so that the clutch lever 98 rotates to the engage position.
  • the determination of the engagement position of the clutch lever 98 is performed based on whether or not the rotational speeds of the flywheel 91 and the input shaft 99 are comparable.
  • the rotational speeds of the flywheel 91 and the input shaft 99 are determined based on detection signals from the first rotation sensor 81 and the second rotation sensor 84.
  • the drive motor 23 drives the clutch lever 98 based on the control signal of the control device 83. Specifically, the drive shaft 21 of the drive motor 23 starts to rotate, and the rotation of the drive shaft 21 is transmitted to the screw shaft 26 via the speed reduction mechanism 28. When the screw shaft 26 rotates, the ball screw 22 moves in the axial direction. As a result, the clutch lever 98 is pushed by the ball screw 22, and the clutch lever 98 rotates about the rotation axis A2.
  • an assist force F2 is applied from the assist mechanism 3 to the ball screw 22.
  • the pressing mechanism 37 applies a pressing force F4 to the connecting portion L, the pressing force F4 is transmitted to the ball screw 22 via the toggle mechanism 39.
  • the magnitude of the assist force F2 changes according to the stroke S of the drive mechanism 2 by the amplification action of the toggle mechanism 39.
  • the assist force F2 gradually increases as the stroke S increases. Since the reduction ratio of the toggle mechanism 39 increases rapidly near the end of the stroke S, the assist force F2 also increases rapidly near the end of the stroke S. Since this assist characteristic is relatively close to the clutch load characteristic, even if the driving force F1 generated by the driving mechanism 2 is small, the operation force F3 necessary for maintaining the clutch device 9 in the power transmission state can be obtained. . Since the driving force F1 can be reduced, as shown in FIG. 4, the motor torque T1 of the driving motor 23 can be reduced compared to the motor torque T2 when the assist mechanism 3 is not provided.
  • the assist mechanism 3 since the assist mechanism 3 has the toggle mechanism 39, the driving load of the driving mechanism 2 can be reduced with a simple configuration. Furthermore, the assist characteristic of the assist mechanism 3 can be easily changed by replacing the coil spring 36 with a coil spring having different characteristics. Therefore, this clutch operating device 1 can easily cope with various clutch devices while reducing the driving load.
  • the assist mechanism 3 is used in combination with the drive mechanism 2 having a constant reduction ratio.
  • the drive mechanism 2 uses a terminal speed reduction mechanism such as a toggle mechanism. May be.
  • the same reference numerals are used for configurations having substantially the same functions as those of the first embodiment, and detailed descriptions thereof are omitted.
  • the clutch operating device 101 includes a drive mechanism 102 and an assist mechanism 3.
  • the drive mechanism 102 includes a drive motor 123, a speed reduction mechanism 113, and a control unit 8.
  • the drive motor 123 has a drive shaft 121 for outputting a drive force and a drive gear 124.
  • the drive gear 124 is fixed to the end of the drive shaft 121 and meshes with the worm wheel 131 of the speed reduction mechanism 113.
  • the speed reduction mechanism 113 has a function of converting the rotational motion generated by the drive motor 123 into a straight motion and a function of amplifying the drive force generated by the drive motor 123. Specifically, as shown in FIG. 5, the speed reduction mechanism 113 includes a worm wheel 131 and a toggle mechanism 140.
  • the worm wheel 131 is a gear that reduces the rotation of the drive gear 124 and meshes with the drive gear 124.
  • the worm wheel 131 is rotatably supported by a housing (not shown), for example.
  • the toggle mechanism 140 is a so-called terminal reduction mechanism, and the reduction ratio changes according to the output drive amount (more specifically, the stroke S of the clutch lever 98). As shown in FIG. 7, the reduction ratio of the toggle mechanism 140 gradually increases as the stroke S increases. That is, the reduction gear ratio of the toggle mechanism 140 gradually increases from the power cutoff state of the clutch device 9 to the power transmission state.
  • the toggle mechanism 140 includes a first link member 132, a second link member 133, and a third link member 134.
  • the first end 132 a of the first link member 132 is rotatably connected to the outer periphery of the worm wheel 131.
  • the second end 132b of the first link member 132 is rotatably connected to the second link member 133 and the third link member 134.
  • the first end portion 133a of the second link member 133 is rotatably connected to a casing (not shown) via a pin 136, for example.
  • the second end 133 b of the second link member 133 is rotatably connected to the first end 134 a of the third link member 134.
  • the second end portion 134 b of the third link member 134 is in contact with the clutch lever 98.
  • the first end 31a of the first link member 31 is rotatably connected to the second end 134b of the third link member 134. Accordingly, the assist force F2 of the assist mechanism 3 is transmitted to the clutch lever 98 via the third link member 134.
  • the connecting portion of the second link member 133 and the third link member 134 is pulled by the first link member 132.
  • the second link member 133 and the third link member 134 are stretched between the pin 136 and the clutch lever 98, and the right driving force F1 acts on the clutch lever 98.
  • the reduction ratio of the drive mechanism 102 gradually increases as the stroke S increases, and rapidly increases near the end of the stroke S.
  • the driving load of the driving mechanism 102 can be further reduced by combining the assist mechanism 3 using the terminal deceleration mechanism with the driving mechanism 102 using the terminal deceleration mechanism.
  • the clutch device is described by taking the clutch device 9 as an example, but the configuration of the clutch device is not limited to the above-described embodiment.
  • the above-described technology can be applied to a normally open type clutch device.
  • a twin clutch using two clutch disks may be considered as a clutch device.
  • the drive unit is described by taking the drive mechanism 2 as an example, but the configuration of the drive unit that generates the driving force is not limited to the drive motor 23 and the ball screw 22.
  • another actuator such as a hydraulic cylinder may be employed as the drive unit.
  • the configuration of the assist mechanism 3 is not limited to the above-described embodiment.
  • the toggle mechanism may have other configurations as long as it has a function of converting the pressing force of the pressing portion into an assist force that gradually increases from the power cutoff state of the clutch device to the power transmission state. .
  • the pressing mechanism 37 applies a pressing force F4 to the first link member 31 and the second link member 32 of the toggle mechanism 39, but the pressing mechanism 37 presses at least one of the first link member 31 and the second link member 32. What is necessary is just to provide the pressure F4.
  • the assist mechanism 3 applies the assist force F2 to the clutch lever 98 via a part of the drive mechanism 2 (ball screw 22), but the assist mechanism 3 directly applies the assist force F2 to the clutch lever 98. Also good.
  • the clutch lever 98 may be omitted. In this case, a configuration in which the ball screw 22 directly presses the pressing lever 96 is conceivable. Conversely, another mechanism may be provided between the clutch lever 98 and the drive mechanism 2 (or the drive mechanism 102). For example, a slave cylinder and a master cylinder may be provided between the clutch lever 98 and the drive mechanism 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Operated Clutches (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

 クラッチ操作装置(1)は駆動機構(2)とアシスト機構(3)とを備えている。駆動機構(2)は、駆動力を生成し、クラッチ装置(9)に駆動力を伝達する。アシスト機構(3)は、駆動機構(2)をアシストするための機構であって、押圧機構(37)と、トグル機構(39)と、を有している。押圧機構(37)は押圧力(F4)を生成する。トグル機構(39)は、押圧機構(37)の押圧力(F4)をクラッチ装置(9)の動力遮断状態から動力伝達状態にかけて徐々に大きくなるアシスト力(F2)に変換する。

Description

クラッチ操作装置
 本発明は、クラッチ装置を操作するためのクラッチ操作装置に関する。
 従来の手動変速機では、エンジンと変速機との間にクラッチ装置が設けられ、またコントロールロッド等のリンク機構により運転席のシフトレバーと変速機とが機械的に連結されている。変速時にクラッチペダルを踏むと、エンジンと変速機との間で行われる動力伝達がクラッチ装置により遮断され、シフトレバーを操作する。このため、頻繁に変速が要求される場合には、一連の操作がドライバーにとって大きな負担になる。
 そこで、シフト操作に関するドライバーの負担を軽減するために、クラッチ装置を自動的に断接するクラッチアクチュエータを設けて、クラッチペダルを踏むことなく変速操作を行える自動変速機が提案されている。
英国特許出願公開第2313885号明細書
 上記の自動変速機用のクラッチ装置としては、通常、ノーマルクローズタイプが用いられているが、近年では、ノーマルオープンタイプのクラッチ装置を用いた自動変速機も開発されている。
 ノーマルオープンタイプの場合、クラッチ操作装置からクラッチ装置に操作力が付与されていない状態では、クラッチ装置の連結は解除されている。クラッチ装置を連結する際には、レバーを介して駆動機構によりプレッシャプレートが押圧され、プレッシャプレートとフライホイールとの間にクラッチディスクが挟み込まれる。この結果、クラッチディスクを介して変速機の入力シャフトに動力が伝達される。
 このような構成を備えているので、ノーマルクローズタイプとは異なり、ノーマルオープンタイプのクラッチ装置では、クラッチディスクに作用する押付力(クラッチ荷重)がクラッチ操作装置から伝達される操作力により決まる。したがって、クラッチ連結状態では大きな操作力が必要とされ、この結果、アクチュエータの負荷が大きくなってしまう。
 そこで、アクチュエータの負荷を低減するために、操作力をアシストするアシスト機構が提案されている(例えば、特許文献1を参照)。特許文献1に記載のアシスト機構では、カムを用いてアシスト力を発生させている。
 しかし、カムを用いると、製品の仕様に応じてその製品に合わせてカムを設計する必要があるので、様々なクラッチ装置に対応させることが難しい。
 本発明の課題は、駆動負荷を低減しつつ様々なクラッチ装置に容易に対応可能なクラッチ操作装置を提供することにある。
 本発明に係るクラッチ操作装置は、クラッチ装置を操作するための装置であって、駆動部とアシスト機構とを備えている。駆動部は、駆動力を生成し、クラッチ装置に駆動力を伝達する。アシスト機構は、駆動部をアシストするための機構であって、押圧部と、トグル機構と、を有している。押圧部は押圧力を生成する。トグル機構は、押圧力をクラッチ装置の動力遮断状態から動力伝達状態にかけて徐々に大きくなるアシスト力に変換する。
 このクラッチ操作装置では、アシスト機構にトグル機構を採用しているので、クラッチ装置の荷重特性に合った駆動力の特性を実現しやすくなる。さらに、押圧部とトグル機構とを組み合わせているので、押圧部の仕様を変更するだけでアシスト力の特性を調整することができる。つまり、様々なクラッチ装置に対応可能なクラッチ操作装置を容易に実現できる。したがって、このクラッチ操作装置であれば、駆動負荷を低減しつつ様々なクラッチ装置に容易に対応することができる。
クラッチ装置およびクラッチ操作装置の概略構成図(第1実施形態) アシスト機構の構成図(第1実施形態) クラッチ装置およびクラッチ操作装置の荷重特性線図(第1実施形態) 駆動機構のモータトルクの比較図(第1実施形態) クラッチ装置およびクラッチ操作装置の概略構成図(第2実施形態) 駆動機構の構成図(第2実施形態) 駆動機構の減速比特性(第2実施形態) 駆動機構のモータトルクの比較図(第2実施形態)
 〔第1実施形態〕
 <クラッチ装置の構成>
 図1に示すように、クラッチ装置9は、エンジン(図示せず)からトランスミッション(図示せず)への動力伝達を行うための装置の一例であり、例えばエンジンのフライホイール91に固定されている。フライホイール91は回転軸Xを中心に回転する。以下、軸方向とは回転軸Xに平行な方向をいう。
 クラッチ装置9はいわゆるノーマルオープンタイプの装置である。したがって、クラッチ操作装置1(後述)から操作力がクラッチ装置9に付与されていない状態では、エンジンからトランスミッションへの動力伝達が遮断されている。クラッチ操作装置1の詳細については後述する。
 図1に示すように、クラッチ装置9は、クラッチカバー93と、プレッシャプレート92と、クラッチディスク94と、押圧レバー96と、エンゲージベアリング97と、クラッチレバー98と、を有している。
 クラッチカバー93はフライホイール91に固定されている。プレッシャプレート92はクラッチカバー93により一体回転可能かつ軸方向に移動可能に支持されている。プレッシャプレート92はクラッチカバー93と複数のストラッププレート(図示せず)により一体回転可能に連結されている。また、プレッシャプレート92はストラッププレートによりクラッチカバー93に軸方向に弾性的に連結されている。
 クラッチディスク94は、フライホイール91とプレッシャプレート92との間に配置されており、クラッチ装置9の連結時にはフライホイール91とプレッシャプレート92との軸方向間に挟み込まれる。押圧レバー96は、概ね環状のプレートであり、軸方向に弾性変形可能にクラッチカバー93により支持されている。押圧レバー96の弾性力は小さく、弾性変形させるために必要な力は比較的小さい。押圧レバー96の内周部はクラッチレバー98により軸方向に押し込み可能となっている。
 エンゲージベアリング97は押圧レバー96とクラッチレバー98との回転差を吸収する。エンゲージベアリング97は押圧レバー96の内周部とクラッチレバー98の先端との間に配置されている。
 クラッチレバー98はハウジング90により回転軸A2を中心に回転可能に支持されている。クラッチ装置9の連結時において、クラッチレバー98はクラッチ操作装置1により回転軸A2を中心に回転駆動される。この結果、クラッチレバー98はエンゲージベアリング97および押圧レバー96を介してプレッシャプレート92を軸方向に押圧し、プレッシャプレート92を押し付けるクラッチ荷重が所定値以上になるとクラッチ装置9が動力伝達状態となる。
 <クラッチ操作装置の構成>
 クラッチ操作装置1は、クラッチ装置9を操作するための装置であり、例えばトランスミッションECU89から出力される操作信号に基づいて、クラッチ装置9を動力伝達状態および動力遮断状態のうち一方に切り替える。ここで、動力遮断状態とは、クラッチ装置9を介しての動力伝達が完全に遮断されている状態を意味しており、動力伝達状態とは、クラッチ装置9を介して動力伝達が行われている状態を意味している。動力伝達状態では、フライホイール91とトランスミッションの入力シャフト99との回転速度が同じである。
 クラッチ操作装置1は、仕様の異なる様々なクラッチ装置に適用可能であるが、ここでは、クラッチ操作装置1の操作対象として前述のクラッチ装置9を例にクラッチ操作装置1について説明する。
 図1に示すように、クラッチ操作装置1は、駆動機構2(駆動部の一例)と、アシスト機構3と、制御ユニット8と、を備えている。
 駆動機構2は、クラッチ装置9のクラッチレバー98を駆動するための駆動源であり、クラッチレバー98に直接駆動力を伝達する。ここで、図2に示すように、駆動機構2からクラッチレバー98に入力される力を駆動力F1(駆動部の駆動力の一例)、アシスト機構3から駆動機構2を介してクラッチレバー98に入力される力をアシスト力F2(クラッチ装置の操作力の一例)、駆動力F1およびアシスト力F2の合力を、クラッチ装置9を操作するための操作力F3と定義する。
 図2に示すように、駆動機構2はクラッチ装置9を駆動するための駆動力F1を生成する。具体的には、駆動機構2は、駆動モータ23と、減速機構28と、スクリューシャフト26と、ボールネジ22(出力部材の一例)と、ケーシング29と、を有している。ケーシング29は例えばハウジング90に固定されている。
 駆動モータ23は、例えばブラシレスモータであり、回転駆動力を出力するための駆動シャフト21を有している。駆動シャフト21は回転軸C1を中心に回転する。本実施形態では回転軸C1は軸方向と平行に配置されている。駆動モータ23はケーシング29に固定されている。減速機構28は、駆動モータ23の回転を減速するための機構であり、第1ギヤ24および第2ギヤ25を有している。第1ギヤ24は駆動シャフト21に固定されている。第2ギヤ25は、第1ギヤ24と噛み合っており、スクリューシャフト26に固定されている。第1ギヤ24および第2ギヤ25はケーシング29内に配置されている。
 スクリューシャフト26は、ケーシング29により回転可能に支持されており、ネジ部26aを有している。スクリューシャフト26は回転軸C2を中心に回転する。回転軸C2は回転軸C1および軸方向と平行に配置されている。ボールネジ22は、ケーシング29により軸方向(図1および図2の左右方向)に移動可能に支持されており、クラッチレバー98と当接している。ボールネジ22はネジ穴22aを有している。ネジ穴22aにスクリューシャフト26のネジ部26aがねじ込まれている。スクリューシャフト26が回転するとボールネジ22が軸方向に移動する。このように、ボールネジ22によりスクリューシャフト26の回転運動が直線運動に変換され、駆動モータ23で生成された回転駆動力が軸方向の駆動力F1に変換される。
 この駆動機構2では、駆動モータ23で生成された回転駆動力が、減速機構28で増幅され、スクリューシャフト26およびボールネジ22により軸方向の駆動力F1に変換される。駆動力F1はボールネジ22を介してクラッチレバー98に伝達される。なお、減速機構28の減速比は駆動機構2のストロークSに関係なく一定である。
 アシスト機構3は駆動モータ23の駆動負荷(モータトルク)を低減するために駆動機構2をアシストする。具体的には、アシスト機構3はアシスト力F2をクラッチレバー98に付与する。本実施形態では、アシスト機構3は、クラッチレバー98に直接アシスト力F2を伝達しているわけではなく、駆動機構2のボールネジ22を介してクラッチレバー98にアシスト力F2を伝達している。なお、アシスト機構3がクラッチレバー98に直接アシスト力F2を伝達してもよい。
 図2に示すように、アシスト機構3は、トグル機構39と、押圧機構37(押圧部材の一例)と、を有している。
 トグル機構39は、プレート状の第1リンク部材31と、プレート状の第2リンク部材32と、を有している。本実施形態では、第1リンク部材31および第2リンク部材32
は同じ形状を有している。
 第1リンク部材31は第1端部31aおよび第2端部31bを有している。第1端部31aはピン38aを介して駆動機構2のケーシング29に回転可能に連結されている。第2端部31bはピン38bを介して第2リンク部材32に回転可能に連結されている。
 第2リンク部材32は第1端部32aおよび第2端部32bを有している。第1端部32aは第1リンク部材31の第2端部31bにピン38bを介して回転可能に連結されている。第2端部32bはボールネジ22にピン38cを介して回転可能に連結されている。本実施形態では、図2において、ピン38aの中心およびピン38cの中心は回転軸C2上に配置されている。
 第1リンク部材31はボールネジ22の移動する軸方向(第1方向の一例)に対して傾斜した状態で配置されており、第2リンク部材32は軸方向に対して傾斜した状態で配置されている。具体的には、図2上では、ピン38aの中心とピン38bの中心とを結ぶラインをラインB1とし、ピン38bの中心とピン38cの中心とを結ぶラインをラインB2とすると、ラインB1およびラインB2は回転軸C2に対して傾斜している。本実施形態では、動力遮断状態においてラインB1とラインB2との間の角度θ1は90度よりも小さく、動力遮断状態から動力伝達状態にかけて角度θ1が徐々に大きくなり、それに伴いトグル機構39の減速比も徐々に大きくなる。
 押圧機構37は第1リンク部材31および第2リンク部材32に押圧力F4を常時付与している。押圧機構37は、第1押圧部材34と、第2押圧部材35と、コイルスプリング36と、を有している。第1押圧部材34は、第1連結部34aと、第1筒状部34bと、を有している。第1連結部34aはピン38dを介して駆動機構2のケーシング29に回転可能に連結されている。第1筒状部34bは、筒状の部分であり、第1連結部34aから突出している。第2押圧部材35は、第2連結部35aと、第2筒状部35bと、を有している。第2連結部35aはピン38bを介して第1リンク部材31および第2リンク部材32に回転可能に連結されている。第2筒状部35bは、筒状の部分であり、第2連結部5aから突出している。第1筒状部34bの中心線は第2筒状部35bの中心線と概ね一致している。ここでは、第1筒状部34bの中心線および第2筒状部35bの中心線をラインB3で示す。
 第2押圧部材35は第1押圧部材34とスライド可能に配置されている。具体的には、第1筒状部37dは第2筒状部37e内に挿入されている。第2筒状部37eは第1筒状部37dをラインB3に沿った方向に案内する。
 コイルスプリング36は第1連結部34aと第2連結部5aとの間に圧縮された状態で配置されている。コイルスプリング36には第2筒状部37eが挿入されている。第2筒状部37eによりコイルスプリング36はラインB3に沿った方向(第2方向の一例)に弾性変形可能に支持されている。押圧機構37はラインB3に沿った方向に伸縮可能に配置されている。押圧機構37の押圧力F4はラインB3に平行な方向に作用する。図2においてラインB3と軸方向とのなす角度を角度θ2とすると、動力遮断状態において、角度θ2は鋭角である。動力遮断状態から動力伝達状態にかけて角度θ2は徐々に大きくなる。
 以上の構成により、押圧機構37が第1リンク部材31と第2リンク部材32との連結部分Lに押圧力F4を付与している。トグル機構39の作用により押圧力F4は動力遮断状態から動力伝達状態にかけて徐々に大きくなる。
 アシスト機構3はトグル機構39を有しているので、図3に示すように、ストロークSが大きくなるにつれて徐々にアシスト力F2が大きくなるアシスト特性を実現できる。これにより、駆動機構2の駆動力F1を低減することができ、駆動モータ23のモータトルクを低減できる。
 制御ユニット8は、制御装置83と、第1回転センサ81と、第2回転センサ84と、ストロークセンサ82と、を有している。制御装置83は車両の状態に応じて駆動モータ23を制御する。具体的には、トランスミッションECU89(図1)から出力される操作信号に基づいて制御装置83は駆動モータ23を制御する。
 第1回転センサ81はフライホイール91の回転速度を検出する。第2回転センサ84はクラッチディスク94と一体で回転する入力シャフト99の回転速度を検出する。ストロークセンサ82はクラッチレバー98のストローク(つまり、駆動機構2のストロークS)を検出する。本実施形態では、ストロークSは駆動機構2のボールネジ22の移動量と同じである。
 制御装置83は第1回転センサ81、第2回転センサ84およびストロークセンサ82と電気的に接続されている。制御装置83には第1回転センサ81、第2回転センサ84およびストロークセンサ82の検出信号が所定の周期で入力される。制御装置83は各検出信号を用いて駆動モータ23の動作を制御する。
 例えば、クラッチレリーズ時には、トランスミッションECU89から出力される操作信号を制御装置83が受信すると、クラッチレバー98が所定のレリーズ位置まで回転するように制御装置83は駆動モータ23の駆動を制御する。ストロークセンサ82の検出信号に基づいてクラッチレバー98が所定の位置にあるか否かが制御装置83により判定される。
 また、クラッチ連結時には、クラッチレバー98がエンゲージ位置まで回転するように制御装置83は駆動モータ23の駆動を制御する。本実施形態では、クラッチレバー98のエンゲージ位置の判定は、フライホイール91および入力シャフト99の回転速度が同程度であるか否かに基づいて行われる。本実施形態では、第1回転センサ81および第2回転センサ84の検出信号に基づいてフライホイール91および入力シャフト99の回転速度の判定が行われる。
 <クラッチ操作装置の動作>
 以上に説明したクラッチ操作装置1の動作を説明する。
 図1に示すように、動力遮断状態では、クラッチ操作装置1で生成される駆動力F1はクラッチレバー98に伝達されていないので、プレッシャプレート92はストラッププレートの弾性力によりクラッチディスク94から離れた位置で保持されている。この状態では、フライホイール91の回転がクラッチディスク94には伝達されないので、トランスミッションでの変速動作が可能となる。
 動力遮断状態から動力伝達状態にクラッチ装置9を切り替える際、制御装置83の制御信号に基づいて駆動モータ23がクラッチレバー98を駆動する。具体的には、駆動モータ23の駆動シャフト21が回転を開始し、減速機構28を介して駆動シャフト21の回転がスクリューシャフト26に伝達される。スクリューシャフト26が回転すると、ボールネジ22が軸方向に移動する。この結果、ボールネジ22によりクラッチレバー98が押され、クラッチレバー98が回転軸A2を中心に回転する。
 クラッチレバー98が回転軸A2を中心に回転すると、クラッチレバー98により押圧レバー96がフライホイール91側へ押され、押圧レバー96を介してプレッシャプレート92がフライホイール91側へ押される。この結果、プレッシャプレート92によりクラッチディスク94がフライホイール91に押し付けられ、プレッシャプレート92とフライホイール91との間にクラッチディスク94が挟み込まれる。クラッチディスク94を介してエンジンからトランスミッションへの動力伝達が行われる。
 駆動機構2によりクラッチレバー98が駆動される際、ボールネジ22を介してクラッチレバー98に駆動力F1が伝達される。
 それに加えて、アシスト機構3からボールネジ22にアシスト力F2が付与されている。具体的には、押圧機構37が連結部分Lに押圧力F4を付与しているので、この押圧力F4がトグル機構39を介してボールネジ22に伝達される。このとき、トグル機構39の増幅作用により駆動機構2のストロークSに応じてアシスト力F2の大きさが変化する。
 具体的には図3に示すように、ストロークSが大きくなるにしたがってアシスト力F2が徐々に大きくなる。トグル機構39の減速比はストロークSの末端付近で急激に大きくなるので、アシスト力F2もストロークSの末端付近で急激に大きくなる。このアシスト特性はクラッチ荷重特性に比較的近いので、駆動機構2で生成される駆動力F1が小さくても、クラッチ装置9を動力伝達状態で維持するために必要な操作力F3を得ることができる。駆動力F1を低減できるので、図4に示すように、アシスト機構3がない場合のモータトルクT2に比べて、駆動モータ23のモータトルクT1を低減することができる。
 以上に説明したように、このクラッチ操作装置1では、アシスト機構3がトグル機構39を有しているので、簡素な構成により駆動機構2の駆動負荷を低減することができる。さらに、異なる特性を有するコイルスプリングにコイルスプリング36を交換することで、アシスト機構3のアシスト特性を容易に変更することができる。したがって、このクラッチ操作装置1であれば、駆動負荷を低減しつつ様々なクラッチ装置に容易に対応することができる。
 〔第2実施形態〕
 前述の第1実施形態では、アシスト機構3を一定の減速比を有する駆動機構2と組み合わせて使用しているが、アシスト機構3だけでなく駆動機構2にもトグル機構などの末端減速機構を用いてもよい。なお、以降の説明では、第1実施形態の構成と実質的に同じ機能を有する構成については、同じ符号を使用し、その詳細な説明は省略する。
 図5に示すように、第2実施形態に係るクラッチ操作装置101は、駆動機構102と、アシスト機構3と、を備えている。
 駆動機構102は、駆動モータ123と、減速機構113と、制御ユニット8と、を備えている。駆動モータ123は、駆動力を出力するための駆動シャフト121と、駆動ギヤ124と、を有している。駆動ギヤ124は、駆動シャフト121の端部に固定されており、減速機構113のウォームホイール131と噛み合っている。
 減速機構113は、駆動モータ123で生成された回転運動を直進運動に変換する機能と、駆動モータ123で生成された駆動力を増幅する機能と、を有している。具体的には図5に示すように、減速機構113は、ウォームホイール131と、トグル機構140と、を有している。
 ウォームホイール131は、駆動ギヤ124の回転を減速するギヤであり、駆動ギヤ124と噛み合っている。ウォームホイール131は、例えばハウジング(図示せず)により回転可能に支持されている。
 トグル機構140は、いわゆる末端減速機構であり、出力駆動量(より詳細には、クラッチレバー98のストロークS)に応じて減速比が変化する。図7に示すように、トグル機構140の減速比は、ストロークSが大きくなるにしたがって徐々に大きくなる。つまり、トグル機構140の減速比は、クラッチ装置9の動力遮断状態から動力伝達状態にかけて徐々に大きくなる。
 トグル機構140の構成をより詳細に説明すると、図6に示すように、トグル機構140は、第1リンク部材132と、第2リンク部材133と、第3リンク部材134と、を有している。第1リンク部材132の第1端部132aは、ウォームホイール131の外周部に回転可能に連結されている。第1リンク部材132の第2端部132bは、第2リンク部材133および第3リンク部材134に回転可能に連結されている。
 第2リンク部材133の第1端部133aは、例えばピン136を介してケーシング(図示せず)に回転可能に連結されている。第2リンク部材133の第2端部133bは、第3リンク部材134の第1端部134aに回転可能に連結されている。第3リンク部材134の第2端部134bはクラッチレバー98と当接している。また、第3リンク部材134の第2端部134bには第1リンク部材31の第1端部31aが回転可能に連結されている。したがって、アシスト機構3のアシスト力F2は第3リンク部材134を介してクラッチレバー98に伝達される。
 例えば、ウォームホイール131がR2方向に回転すると、第1リンク部材132により第2リンク部材133および第3リンク部材134の連結部が引っ張られる。この結果、ピン136およびクラッチレバー98の間で第2リンク部材133および第3リンク部材134が突っ張るようになり、クラッチレバー98に右方向の駆動力F1が作用する。図7に示すように、駆動機構102の減速比は、ストロークSが大きくなるにしたがって徐々に大きくなり、ストロークSの末端付近で急激に増大する。
 このクラッチ操作装置101では、アシスト機構3に加えて、駆動機構102にトグル機構140を用いているので、図8に示すように、前述の第1実施形態に比べて、駆動モータ123のモータトルクをさらに低減できる(モータトルクT11)。
 以上のように、クラッチ操作装置101では、末端減速機構を用いたアシスト機構3に末端減速機構を用いた駆動機構102を組み合わせることで、駆動機構102の駆動負荷をさらに低減できる。
 〔他の実施形態〕
 本発明の具体的な構成は、前述の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更および修正が可能である。
 (A)前述の実施形態では、クラッチ装置9を例にクラッチ装置を説明しているが、クラッチ装置の構成は前述の実施形態に限定されない。ノーマルオープンタイプのクラッチ装置であれば、前述の技術は適用可能である。例えば、クラッチ装置として、2つのクラッチディスクを用いたツインクラッチなども考えられる。
 (B)前述の実施形態では、駆動機構2を例に駆動部を説明しているが、駆動力を生成する駆動部の構成は、駆動モータ23およびボールネジ22に限定されない。例えば、油圧シリンダなどの他のアクチュエータを駆動部として採用してもよい。
 (C)アシスト機構3の構成は前述の実施形態に限定されない。例えば、トグル機構は、押圧部の押圧力をクラッチ装置の動力遮断状態から動力伝達状態にかけて徐々に大きくなるアシスト力に変換する機能を有していれば、他の構成を有していてもよい。
 また、押圧機構37は、トグル機構39の第1リンク部材31および第2リンク部材32に押圧力F4を付与しているが、第1リンク部材31および第2リンク部材32のうち少なくとも一方に押圧力F4を付与していればよい。
 (D)アシスト機構3は駆動機構2の一部(ボールネジ22)を介してクラッチレバー98にアシスト力F2を付与しているが、アシスト機構3がクラッチレバー98に直接アシスト力F2を付与してもよい。
 (E)クラッチレバー98が省略されてもよい。この場合、ボールネジ22が押圧レバー96を直接押圧する構成が考えられる。逆に、クラッチレバー98と駆動機構2(あるいは駆動機構102)との間に他の機構が設けられていてもよい。例えば、クラッチレバー98と駆動機構2との間にスレーブシリンダおよびマスターシリンダが設けられていてもよい。
 1 クラッチ操作装置
 2 駆動機構(駆動部の一例)
22 ボールネジ
23 駆動モータ
 3 アシスト機構
31 第1リンク部材
31a 第1端部
31b 第2端部
32 第2リンク部材
34 第1押圧部材
35 第2押圧部材
36 コイルスプリング
37 押圧機構(押圧部の一例)
39 トグル機構
 9 クラッチ装置
F1 駆動力
F2 アシスト力
F3 操作力
F4 押圧力

Claims (7)

  1.  クラッチ装置を操作するためのクラッチ操作装置であって、
     駆動力を生成し前記クラッチ装置に前記駆動力を伝達する駆動部と、
     前記駆動部をアシストするための機構であって、押圧力を生成する押圧部と、前記押圧力を前記クラッチ装置の動力遮断状態から動力伝達状態にかけて徐々に大きくなるアシスト力に変換するトグル機構と、を有するアシスト機構と、
    を備えたクラッチ操作装置。
  2.  前記駆動部は、前記駆動力を出力する出力部材を有しており、
     前記アシスト機構は、前記アシスト力を前記クラッチ装置に直接伝達するか、あるいは、前記出力部材を介して前記アシスト力を前記クラッチ装置に伝達する、
    請求項1に記載のクラッチ操作装置。
  3.  前記トグル機構は、第1端部および第2端部を有し前記駆動部に対して前記第1端部を中心に回転可能に配置された第1リンク部材と、前記第1リンク部材の前記第2端部を前記クラッチ装置または前記出力部材に連結する第2リンク部材と、を有している、
    請求項2に記載のクラッチ操作装置。
  4.  前記押圧部は、前記第1リンク部材および前記第2リンク部材のうち少なくとも一方に押圧力を付与する、
    請求項3に記載のクラッチ操作装置。
  5.  前記押圧部は、前記クラッチ装置の方に前記第1リンク部材と前記第2リンク部材との連結部分を押圧している、
    請求項3または4に記載のクラッチ操作装置。
  6.  前記駆動部は、前記動力遮断状態から前記動力伝達状態にかけて徐々に大きくなる前記駆動力を生成する、
    請求項1から5のいずれかに記載のクラッチ操作装置。
  7.  前記駆動部は、前記動力遮断状態から前記動力伝達状態にかけて徐々に大きくなる減速比を有するトグル機構を有している、
    請求項6に記載のクラッチ操作装置。
PCT/JP2011/062514 2010-06-30 2011-05-31 クラッチ操作装置 WO2012002092A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180029948.4A CN102959266B (zh) 2010-06-30 2011-05-31 离合器操纵装置
US13/806,951 US8985292B2 (en) 2010-06-30 2011-05-31 Clutch operating device
DE112011102225T DE112011102225T5 (de) 2010-06-30 2011-05-31 Kupplungsbetätigungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-150220 2010-06-30
JP2010150220A JP4921576B2 (ja) 2010-06-30 2010-06-30 クラッチ操作装置

Publications (1)

Publication Number Publication Date
WO2012002092A1 true WO2012002092A1 (ja) 2012-01-05

Family

ID=45401823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062514 WO2012002092A1 (ja) 2010-06-30 2011-05-31 クラッチ操作装置

Country Status (5)

Country Link
US (1) US8985292B2 (ja)
JP (1) JP4921576B2 (ja)
CN (1) CN102959266B (ja)
DE (1) DE112011102225T5 (ja)
WO (1) WO2012002092A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10154937B2 (en) 2013-03-13 2018-12-18 Ekso Bionics, Inc. Gait orthotic device and method for protecting gait orthotic device and user from damage

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470102B1 (ko) * 2012-12-21 2014-12-05 현대자동차주식회사 전기자동차의 2단 변속기용 액추에이터
FR3011599B1 (fr) * 2013-10-09 2017-12-22 Valeo Embrayages Actionneur pour systeme de transmission
EP3071854A1 (de) * 2013-11-18 2016-09-28 Schaeffler Technologies AG & Co. KG Drehmomentabstützung eines aktors an einem kupplungsgehäuse/getriebegehäuse
CN110892610B (zh) 2017-06-14 2022-06-14 株式会社牧田 电动工具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102429U (ja) * 1979-01-11 1980-07-17
JPH0953650A (ja) * 1995-08-15 1997-02-25 Sankyo Seiki Mfg Co Ltd 歯車クラッチ機構
JP2010090949A (ja) * 2008-10-06 2010-04-22 Toyota Motor Corp クラッチペダルの操作力軽減装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1540247A (en) * 1922-11-08 1925-06-02 Charles L Bowman Clutch-shifting device
US2080079A (en) * 1933-11-04 1937-05-11 Warren Macclatchie J Supercharger
US2280357A (en) * 1941-08-21 1942-04-21 W C Lipe Inc Heavy-duty clutch
JPS55102429A (en) * 1979-02-01 1980-08-05 Sumitomo Metal Ind Ltd Generating method for minute bubble in liquid
DE3309427A1 (de) * 1982-03-18 1983-10-06 Valeo Betaetigungsvorrichtung fuer eine kupplung, ein regelgetriebe, eine bremse, oder aehnliches
GB2313885B (en) 1996-06-05 2001-02-14 Luk Getriebe Systeme Gmbh Operating device
GB9617930D0 (en) * 1996-08-28 1996-10-09 Eaton Corp Actuator system for vehicular automated clutches with electric motor actuator and pressurized override
CN2567399Y (zh) * 2002-08-16 2003-08-20 湖南长丰汽车制造股份有限公司研发中心 汽车自动离合器电动驱动装置
DE102004009832A1 (de) * 2003-03-03 2004-09-16 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Ausrücksysteme
CN100494724C (zh) * 2007-09-29 2009-06-03 重庆大学 重型车辆离合器自动控制系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102429U (ja) * 1979-01-11 1980-07-17
JPH0953650A (ja) * 1995-08-15 1997-02-25 Sankyo Seiki Mfg Co Ltd 歯車クラッチ機構
JP2010090949A (ja) * 2008-10-06 2010-04-22 Toyota Motor Corp クラッチペダルの操作力軽減装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10154937B2 (en) 2013-03-13 2018-12-18 Ekso Bionics, Inc. Gait orthotic device and method for protecting gait orthotic device and user from damage

Also Published As

Publication number Publication date
CN102959266B (zh) 2015-08-26
US8985292B2 (en) 2015-03-24
DE112011102225T5 (de) 2013-04-04
JP4921576B2 (ja) 2012-04-25
JP2012013150A (ja) 2012-01-19
US20130098734A1 (en) 2013-04-25
CN102959266A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
JP4962997B2 (ja) クラッチ操作装置
JP4921576B2 (ja) クラッチ操作装置
JP4975873B1 (ja) クラッチ操作装置
WO2011027687A1 (ja) クラッチ操作装置
US20190337586A1 (en) Bicycle transmission device
US8657091B2 (en) Clutch device
WO2018197526A1 (en) Method for diagnosing clutch stuck and apparatus thereof
WO2011027693A1 (ja) クラッチ操作装置
JP4975723B2 (ja) モータサイクル用クラッチ装置
CN101117117B (zh) 自动离合机构、跨乘式车辆的自动离合机构和跨乘式车辆
KR101060036B1 (ko) 트랜스퍼 케이스
JP5600556B2 (ja) クラッチ作動装置
JPH11247894A (ja) 車両用オートクラッチ装置
JP2009174618A (ja) クラッチ装置
US11933374B2 (en) Saddle-ride type vehicle comprising a clutch assembly and a control device for said clutch assembly
KR101953029B1 (ko) 클러치 액츄에이터
US11162549B2 (en) Method for diagnosing clutch stuck and apparatus thereof
JP2003278808A (ja) 自動変速装置
JPS635295B2 (ja)
JP2017115951A (ja) クラッチ機構の制御装置、クラッチ機構の制御方法および電気自動車
JP2012092930A (ja) クラッチ操作用アクチュエータ
JP2003013997A (ja) クラッチ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029948.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13806951

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111022255

Country of ref document: DE

Ref document number: 112011102225

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800560

Country of ref document: EP

Kind code of ref document: A1