WO2012002082A1 - 電気自動車 - Google Patents

電気自動車 Download PDF

Info

Publication number
WO2012002082A1
WO2012002082A1 PCT/JP2011/061997 JP2011061997W WO2012002082A1 WO 2012002082 A1 WO2012002082 A1 WO 2012002082A1 JP 2011061997 W JP2011061997 W JP 2011061997W WO 2012002082 A1 WO2012002082 A1 WO 2012002082A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
electric vehicle
voltage
state
Prior art date
Application number
PCT/JP2011/061997
Other languages
English (en)
French (fr)
Inventor
近藤一
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201180030892.4A priority Critical patent/CN102958745B/zh
Priority to JP2012522523A priority patent/JPWO2012002082A1/ja
Priority to DE112011102229T priority patent/DE112011102229T5/de
Priority to US13/807,266 priority patent/US9493092B2/en
Publication of WO2012002082A1 publication Critical patent/WO2012002082A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P31/00Arrangements for regulating or controlling electric motors not provided for in groups H02P1/00 - H02P5/00, H02P7/00 or H02P21/00 - H02P29/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electric vehicle including a primary side including a plurality of power supplies whose power supply voltages vary independently, and a secondary side including an inverter and a drive motor connected to the inverter.
  • JP 2005-237064A a battery having the lowest remaining capacity is selected from the plurality of batteries and charged (FIG. 4, paragraphs [0042] to [0050]).
  • the battery to be used is selected according to the power running and regeneration of the vehicle, but the method of selecting the battery is limited.
  • the present invention has been made in consideration of such problems, and an object of the present invention is to provide an electric vehicle which can expand the options for using the power supply.
  • An electric vehicle includes a primary side including N (N is an integer of 2 or more) power sources whose power supply voltages fluctuate independently, an inverter, and a drive motor connected to the inverter.
  • N is an integer of 2 or more
  • First to Nth power systems connecting the N power sources in parallel with one another, the primary side and the secondary side, and the first to Nth power systems
  • N control switches each of which is provided in each of the power systems, capable of separately blocking two-way current conduction in the power generation direction and the charge direction, and a control device for controlling the interruption by the N semiconductor switches,
  • the control device performs fixed control to fix energization or shutoff of the semiconductor switch at least one switching cycle, first shutoff control that shuts off both a power generation path and a charge path of one power system, and all power systems
  • N-1 power systems are performed to perform the first shutoff control Control the conduction or interruption of the semiconductor switch.
  • the semiconductor switch in the case of performing only the first shutoff control that shuts off both the power generation path and the charging path of one electric power system, energization of the semiconductor switch is performed such that N-1 electric power systems performing the first shutoff control. Or control the shutoff. Therefore, when only the first shutoff control is performed, the semiconductor switch is energized only for one power system. Therefore, it is possible to prevent the occurrence of a short circuit state in which current flows from one power source to another through parallel circuits.
  • the occurrence of the short circuit state in the case of performing either the first shutoff control or the second shutoff control, it is possible to prevent the occurrence of the short circuit state. Therefore, it is possible to prevent the generation of an excessive current (in particular, at the time of switching of the power supply) due to the voltage difference between the power supplies, and to prevent the power loss accompanying the equalization of the power supplies. .
  • the occurrence of the short circuit state can be reliably avoided even without the process using the level of the voltage between the power supplies.
  • An electric vehicle includes a primary side including N (N is an integer of 2 or more) power sources whose power supply voltages fluctuate independently, an inverter, and a drive motor connected to the inverter.
  • N is an integer of 2 or more
  • First to Nth power systems connecting the N power sources in parallel with one another, the primary side and the secondary side, and the first to Nth power systems
  • N control switches each of which is provided in each of the power systems, capable of separately blocking two-way current conduction in the power generation direction and the charge direction, and a control device for controlling the interruption by the N semiconductor switches,
  • the control device is performing fixed control to fix energization or cutoff of the semiconductor switch at least every one switching period, the voltage is lower than the highest voltage generation path with the highest voltage among the power generation paths to be energized.
  • the semiconductor switch may be switched on / off to be in a state.
  • the present invention when switching on or off of the semiconductor switch, at least one of the first blocking state and the second blocking state is obtained.
  • the first blocking state the charging path which is lower in voltage than the highest voltage power generation path with the highest voltage among the power generation paths to be energized is cut off. For this reason, a short circuit state in which current flows from the highest voltage generation path to any one of the charge paths through the parallel circuit does not occur.
  • the second blocking state the power generation path which is a voltage higher than the lowest voltage charging path with the lowest voltage among the charging paths to be energized is blocked. Therefore, a short circuit state in which current flows from the lowest voltage charge path to any of the power generation paths through the parallel circuit does not occur.
  • the semiconductor switch can be, for example, a bidirectional switch. This makes it possible to control bi-directional energization and interruption separately.
  • a dead time may be inserted in the drive signal of the semiconductor switch. Thereby, a short circuit between the power supplies can be prevented more reliably.
  • the control device may control the semiconductor switch to shift the bi-directional conduction state of one power source to the bi-directional conduction state of another power source.
  • power generation and charging can be performed while switching the power supply.
  • the control device may control the semiconductor switch to shift the bi-directional conduction state of a certain power source to the bi-directional conduction state of another power source when the electric vehicle is in an intermediate state between the power running state and the regeneration state. Good. As a result, it becomes possible to distinguish and use the power source for power generation and the power source for charging.
  • the control device may simultaneously turn on two or more power generation switching elements when the electric vehicle is in a power running state.
  • power can be supplied from the higher voltage power supply without comparing the voltage difference between the power supplies, so that power can be efficiently supplied at high load.
  • it is possible to prevent power generation from a power supply having a low voltage, that is, a low storage capacity.
  • the control device may simultaneously turn on two or more charge switching elements when the electric vehicle is in a regeneration state. This makes it possible to positively charge the low-voltage power supply automatically without comparing the voltage difference between the power supplies. That is, since the power source with a small storage capacity is positively charged, overdischarge of the storage device can be prevented.
  • the power running state and the regeneration state of the electric vehicle may be determined, and at least two power generation switching elements may be connected in the power running state, and at least two charge switching elements may be connected in the regeneration state.
  • power in the power running state, power can be supplied from the higher power source without comparing the voltage difference between the power sources, so that power can be efficiently supplied with high load.
  • it is possible to prevent power generation from a power supply having a low voltage, that is, a low storage capacity.
  • the low-voltage power supply can be positively charged automatically without comparing the voltage difference between the power supplies. That is, since the power source with a small storage capacity is positively charged, overdischarge of the storage device can be prevented. Therefore, appropriate control according to the state is possible.
  • the control device when the electric vehicle is in the intermediate state, the control device enables bi-directional energization of a certain power source to determine the other power source in both directions, by determining the intermediate state between the power running state and the regeneration state.
  • the semiconductor switch may be controlled to shut off.
  • the intermediate state may be determined based on at least one command value or actual measurement value of input power and input current of the inverter, and torque and load power of the drive motor.
  • the intermediate state may be defined by an estimated time until the actual power crosses zero.
  • the control device may switch on or off of the semiconductor switch while a three-phase short circuit condition occurs in the inverter. Thereby, a short circuit between the power supplies can be prevented more reliably.
  • the power source may include, for example, at least one of a power storage device, a fuel cell, and a generator.
  • First to Nth voltage sensors may be provided, and the magnitude of the voltage between the power supplies may be grasped based on the voltage sensors, and control may be performed based on the grasped voltages. Thereby, by performing control based on the grasped voltage, it becomes possible to reliably prevent a short circuit between the power supplies.
  • An electric vehicle is connected in series with a primary side including at least two power supplies of a first power supply and a second power supply whose power supply voltage fluctuates, and a three-phase AC brushless motor driving the vehicle.
  • a secondary side including an inverter in which a pair of upper arm elements and lower arm elements are connected in parallel in three phases, and a three-phase line of the motor is connected between the upper arm elements and lower arm elements;
  • a first power system and a second power system in which the first power source and the second power source are connected in parallel with each other on the secondary side and the secondary side, and the first power source and the second power source as power sources of the motor
  • the first power supply as the power supply of the motor and the second power supply are switched in a state where the three-phase short circuit state occurs in the inverter. For this reason, the voltage fluctuation accompanying switching between the first power supply and the second power supply is not transmitted to the motor. Therefore, it is possible to prevent an unintended torque fluctuation of the motor.
  • the control device controls on / off of the upper arm switching element and the lower arm switching element of each phase based on the comparison result of the voltage command value of each of the three phases and the carrier signal, and the carrier signal is obtained from the voltage command value of all three phases. It may be detected that the three-phase short circuit state is detected by detecting the case where the carrier signal becomes lower than the voltage command value of all the three phases or when the voltage becomes higher.
  • the switch can be switched while preventing unintended torque fluctuation of the motor.
  • the control device When the control device receives a switching request to switch between the first power supply and the second power supply, the control device outputs a drive signal to the upper arm switching element or the lower arm switching element of all three phases, forcibly forcing a three phase short circuit state May be generated. As a result, when it is necessary to switch between the first power supply and the second power supply, the switching can be performed at an appropriate timing.
  • FIG. 1st Embodiment of this invention It is a schematic block diagram of the electric vehicle concerning 1st Embodiment of this invention. It is a figure showing a part of circuit composition of the electric vehicle concerning a 1st embodiment. It is a figure which shows the 1st modification of the two way switch used with the electric vehicle concerning 1st Embodiment. It is a figure which shows the 2nd modification of the bidirectional switch used with the electric vehicle concerning 1st Embodiment. It is a figure which shows the 3rd modification of the bidirectional switch used with the electric vehicle which concerns on 1st Embodiment. It is a figure which shows the 4th modification of the bidirectional switch used with the electric vehicle which concerns on 1st Embodiment.
  • FIG. 34 is a functional block diagram of a bidirectional switch logic generation unit used in the power electronic control device of FIG. 33. It is a functional block diagram of the 2nd modification of the power electronic control unit of FIG. It is a functional block diagram of the 3rd modification of the power electronic control unit of FIG. It is a functional block diagram of the 4th modification of the power electronic control unit of FIG.
  • FIG. 1 is a schematic block diagram of an electric vehicle 10 according to a first embodiment of the present invention.
  • FIG. 2 is a view showing part of the circuit configuration of the electric vehicle 10. As shown in FIG.
  • the electric vehicle 10 has a motor 12 for traveling, a transmission 14, wheels 16, an integrated electronic control unit 18 (hereinafter referred to as “integrated ECU 18”), and a power system 20.
  • integrated ECU 18 integrated electronice control unit 18
  • the motor 12 is a three-phase alternating current brushless type, generates a driving force based on the electric power supplied from the power system 20, and rotates the wheel 16 through the transmission 14 by the driving force. In addition, the motor 12 outputs the power (regenerative power Preg) [W] generated by performing regeneration to the power system 20. Regenerative power Preg may be output to an accessory not shown.
  • JP2009-240125A Japanese Patent Laid-Open No. 2009-240125
  • the integrated ECU 18 controls the control system of the entire electric vehicle 10, and includes an input / output device, an arithmetic device, a storage device, and the like (not shown). In the first embodiment, the integrated ECU 18 selects at least one of the first battery 22a and the second battery 22b as the battery used for power generation and the battery used for charging, respectively (details will be described later).
  • the power system 20 supplies electric power to the motor 12 and also supplies regenerative electric power Preg from the motor 12.
  • the power system 20 includes, in addition to the first battery 22a and the second battery 22b, a first bidirectional switch 24a (hereinafter referred to as “first bidirectional SW 24a”) and a second bidirectional switch 24b (hereinafter referred to as “second bidirectional switch 24b”).
  • SW 24b the inverter 26, the voltage sensors 28, 30, 32, the current sensors 38, 40, 42, 44, 46, the resolver 48, and the electronic power control unit 50 (hereinafter referred to as the“ power ECU 50 ”). And.).
  • First battery 22a and second battery 22b Each of the first battery 22a and the second battery 22b is a power storage device (energy storage) capable of outputting a high voltage (several hundred volts in the first embodiment) including a plurality of battery cells, for example, a lithium ion secondary A battery or a capacitor can be used. In the first embodiment, a lithium ion secondary battery is used.
  • first battery voltage Vbat1 The output voltage (hereinafter referred to as “first battery voltage Vbat1”) [V] of the first battery 22a is detected by the voltage sensor 28, and the output current of the first battery 22a (hereinafter referred to as “first battery current Ibat1”). [A] is detected by the current sensor 38 and output to the power ECU 50, respectively.
  • second battery voltage Vbat2 the output voltage (hereinafter referred to as “second battery voltage Vbat2”) [V] of the second battery 22b is detected by the voltage sensor 30, and the output current of the second battery 22b (hereinafter referred to as “second battery current Ibat2”) [A] is detected by the current sensor 40 and output to the power ECU 50, respectively.
  • the positive electrode sides of the first battery 22a and the second battery 22b are connected at the connection point 52, and the negative electrode sides of the first battery 22a and the second battery 22b are connected at the connection point 54.
  • the positive side connection point 52 is connected to the connection point 56 of the inverter 26, and the negative side connection point 54 is connected to the connection point 58 of the inverter 26. Therefore, the power supply path including the first battery 22 a and the power supply path including the second battery 22 b are connected in parallel to the inverter 26 and the motor 12.
  • the first battery 22a and the second battery 22b (and the battery 154 in the third and subsequent embodiments are generically referred to as the battery 22), and the first battery 22a and the second battery 22b (and the third and subsequent embodiments)
  • the output voltage from the battery 154) is generically referred to as the battery voltage Vbat
  • the output current from the first battery 22a and the second battery 22b (as well as the battery 154 in the third embodiment and later) is generically referred to as the battery current Ibat.
  • First bidirectional switch 24a and second bidirectional switch 24b The first bidirectional SW 24 a and the second bidirectional SW 24 b can separately switch on and off (energize / shut off) the power generation direction and the charge direction of the first battery 22 a and the second battery 22 b according to a command from the power ECU 50. it can.
  • the first bidirectional SW 24 a and the second bidirectional SW 24 b of the first embodiment are bidirectional insulated gate bipolar transistors (IGBTs). That is, the first bidirectional SW 24 a switches between energization and cutoff in the power generation direction (direction from the power system 20 to the motor 12) (hereinafter referred to as “power generation SW element 60 a” or “SW element 60 a”). And a charge switching element 62a (hereinafter referred to as “charge SW element 62a” or “SW element 62a”) for switching between energization and cutoff in the charge direction (direction from the motor 12 to the power system 20).
  • IGBTs bidirectional insulated gate bipolar transistors
  • the second bidirectional SW 24b switches between energization and interruption in the charge direction with a power generation switching element 60b (hereinafter referred to as “power generation SW element 60b” or “SW element 60b”) that switches energization and interruption in the power generation direction.
  • a charging switching element 62b (hereinafter referred to as “charging SW element 62b” or “SW element 62b”) to be switched.
  • each SW element 60a, 60b, 62a, 62b is controlled by drive signals Sh1, Sh2, Sl1, Sl2 from the electric power ECU 50.
  • the reverse blocking IGBT 76 can also be used.
  • a first smoothing capacitor 78a is disposed between the first battery 22a and the first bidirectional SW 24a, and between the second battery 22b and the second bidirectional SW 24b.
  • a second smoothing capacitor 78b is disposed.
  • the first bidirectional switch 24a and the second bidirectional switch 24b (and the third bidirectional switch 24c described later in the fourth embodiment and later) will be collectively referred to as a bidirectional switch 24 or a bidirectional switch 24.
  • the power generation SW elements 60a and 60b (and the power generation switching element 60c described later in the fourth embodiment and later) are collectively referred to as a power generation switching element 60 or a SW element 60.
  • the charging SW elements 62a and 62b (and the charging switching element 62c described later in the fourth embodiment and later) are collectively referred to as the charging switching element 62 or the SW element 62.
  • the inverter 26 has a three-phase full-bridge configuration, performs DC / AC conversion, converts DC to three-phase AC and supplies it to the motor 12, and DC after AC / DC conversion associated with the regeneration operation. Is supplied to at least one of the first battery 22a and the second battery 22b.
  • the inverter 26 has three phase arms 82u, 82v, 82w.
  • the U-phase arm 82 u is referred to as an upper arm element 84 u having an upper arm switching element 86 u (hereinafter referred to as “upper arm SW element 86 u”) and a diode 88 u, and a lower arm switching element 92 u (hereinafter referred to as “lower arm SW element 92 u”). And a lower arm element 90u having a diode 94u.
  • V-phase arm 82v includes upper arm switching element 86v (hereinafter referred to as “upper arm SW element 86v”) and upper arm element 84v having diode 88v, and lower arm switching element 92v (hereinafter referred to as "lower arm SW element 92v And a lower arm element 90v having a diode 94v.
  • the W-phase arm 82w is referred to as an upper arm element 84w having an upper arm switching element 86w (hereinafter referred to as “upper arm SW element 86w”) and a diode 88w, and a lower arm switching element 92w (hereinafter referred to as “lower arm SW element 92w”).
  • a lower arm element 90w having a diode 94w.
  • a MOSFET or an IGBT is adopted for the upper arm SW elements 86 u, 86 v, 86 w and the lower arm SW elements 92 u, 92 v, 92 w.
  • each phase arm 82u, 82v, 82w is collectively referred to as a phase arm 82
  • each upper arm element 84u, 84v, 84w is collectively referred to as an upper arm element 84
  • each lower arm element 90u, 90v, 90w is lower.
  • the upper arm SW elements 86u, 86v, 86w are collectively referred to as an upper arm SW element 86
  • the lower arm SW elements 92u, 92v, 92w are collectively referred to as a lower arm SW element 92.
  • windings 98u, 98v, 98w are collectively referred to as a winding 98.
  • Each upper arm SW element 86 and each lower arm SW element 92 are driven by drive signals UH, VH, WH, UL, VL, and WL from the power ECU 50.
  • the voltage sensors 28, 30, 32 As described above, the voltage sensor 28 detects the first battery voltage Vbat1 of the first battery 22a and outputs it to the power ECU 50.
  • the voltage sensor 30 detects a second battery voltage Vbat2 of the second battery 22b and outputs the second battery voltage Vbat2 to the power ECU 50.
  • the voltage sensor 32 is connected between a path connecting the connection points 52 and 56 and a path connecting the connection points 54 and 58, detects an input voltage Vinv [V] of the inverter 26, and outputs the same to the power ECU 50.
  • the current sensor 38 detects the first battery current Ibat1 of the first battery 22a and outputs it to the power ECU 50.
  • the current sensor 40 detects a second battery current Ibat2 of the second battery 22b and outputs the second battery current Ibat2 to the power ECU 50.
  • the current sensor 42 detects the input current Iinv [A] of the inverter 26 on the path connecting the connection points 52 and 56, and outputs it to the power ECU 50.
  • the current sensor 44 detects a U-phase current (U-phase current Iu) in the winding 98 u of the motor 12 and outputs the current to the power ECU 50.
  • the current sensor 46 detects the W-phase current (W-phase current Iw) in the winding 98 w and outputs it to the power ECU 50.
  • the current sensors 44 and 46 may detect currents other than the combination of the U-phase and the W-phase as long as they detect two of the three phases of the motor 12.
  • Resolver 48 The resolver 48 (FIG. 1) detects an electrical angle ⁇ which is a rotation angle of an output shaft (not shown) of the motor 12 or the outer rotor (rotation angle in a coordinate system fixed to the stator (not shown) of the motor 12).
  • is a rotation angle of an output shaft (not shown) of the motor 12 or the outer rotor (rotation angle in a coordinate system fixed to the stator (not shown) of the motor 12).
  • the configuration of the resolver 48 for example, the one described in JP2009-240125A can be used.
  • Power ECU 50 (A) Overall Configuration
  • the power ECU 50 controls the entire power system 20, and includes an input / output device (not shown), an arithmetic device, a storage device, and the like.
  • the power ECU 50 in the first embodiment mainly controls the inverter 26 and the bidirectional SW 24.
  • the power ECU 50 includes a bidirectional switch logic generation unit 102 (hereinafter referred to as “bidirectional SW logic generation unit 102” or “logic generation unit 102”), an electrical angular velocity calculation unit 104, and three phases.
  • -Dq conversion unit 106 current command calculation unit 108, subtractors 110 and 112
  • current feedback control unit 114 hereinafter referred to as "current FB control unit 114"
  • dq-3 phase conversion unit 116 PWM And a generation unit 118.
  • each bidirectional switch 24 is controlled by the logic generation unit 102.
  • the logic generation unit 102 causes the inverter 26 to be in a 3-phase short circuit state (details will be described later).
  • Control of the inverter 26 is performed by the electric angular velocity calculation unit 104, the three-phase to dq conversion unit 106, the current command calculation unit 108, the subtractors 110 and 112, the current FB control unit 114, and the dq-3 phase conversion unit 116. And the PWM generator 118.
  • the logic generation unit 102 includes a bidirectional switch logic determination unit 122 (hereinafter referred to as “bidirectional switch logic determination unit 122” or “logic determination unit 122”), and a bidirectional switch logic update instruction unit. 124 (hereinafter referred to as “bidirectional SW logic update instruction unit 124” or “logic update instruction unit 124”), and bidirectional switch logic output unit 126 (hereinafter referred to as “bidirectional SW logic output unit 126” or “logic output unit 126 And a dead time generation unit 128 and a storage unit 130.
  • bidirectional switch logic determination unit 122 hereinafter referred to as “bidirectional switch logic determination unit 122” or “logic determination unit 122”
  • bidirectional switch logic update instruction unit 124 hereinafter referred to as “bidirectional SW logic update instruction unit 124” or “logic update instruction unit 124”
  • bidirectional switch logic output unit 126 hereinafter referred to as “bidirectional SW logic output unit 126” or “logic output unit 126 And a dead time
  • Logic determination unit 122 selects switching element selection signals Ss1 and Ss2 based on power supply designation signals Sd1, Sd2 and Sd3 from integrated ECU 18, input current Iinv of inverter 26, and current thresholds THi1 and THi2 from storage unit 130.
  • Ss3 and Ss4 (hereinafter referred to as "SW element selection signals Ss1, Ss2, Ss3 and Ss4") are generated and transmitted to the logic output unit 126.
  • the power supply designation signals Sd1, Sd2, and Sd3 designate power supplies (for the first embodiment, the first battery 22a and the second battery 22b) for power generation, power generation / charge switching, and charging. More specifically, power supply designation signal Sd1 designates a power supply for power generation, power designation signal Sd2 designates a power supply for power generation / charge switching, and power designation signal Sd3 is a charge Specify the power supply for the
  • the logic determination unit 122 uses the input current Iinv of the inverter 26 and the current thresholds THi1 and THi2 to drive the electric vehicle 10 in a powering state (during power generation of the battery 22), in a regenerative state (charging state of the battery 22), and between them.
  • the state (during power generation / charge switching of the battery 22) is determined, and the power supply designation signals Sd1, Sd2, and Sd3 to be used are selected (the details will be described later).
  • the SW element selection signals Ss1, Ss2, Ss3 and Ss4 select which one of the SW elements 60a, 60b, 62a and 62b of each bidirectional SW 24 is turned on and which is turned off. More specifically, the SW element selection signal Ss1 turns on the power generation SW element 60a, the SW element selection signal Ss2 turns on the power generation SW element 60b, and the SW element selection signal Ss3 charges The SW element 62a is turned on, and the SW element selection signal Ss4 is used to turn on the charging SW element 62b.
  • SW element selection signals of the number obtained by multiplying the number of power supplies by two are output.
  • the logic determination unit 122 notifies that effect (that is, the preparation for updating the logic is completed).
  • the update preparation completion signal Su is output to the logic update command unit 124.
  • the logic update instruction unit 124 is based on the update preparation completion signal Su from the logic determination unit 122 and the bidirectional switch logic switching permission signal Sal from the PWM generation unit 118 (hereinafter referred to as “switching permission signal Sal”).
  • the update execution signal Sc is generated and transmitted to the logic output unit 126.
  • the switching permission signal Sal is transmitted from the PWM generating unit 118 to the logic update instructing unit 124 when switching of the bidirectional SW 24 is permitted (the details will be described later).
  • the logic update instruction unit 124 prepares to update the logic of the SW element selection signals Ss1, Ss2, Ss3 and Ss4 in the logic determination unit 122, and when the bidirectional SW 24 can be switched, the logic update execution signal It outputs Sc to the logic output unit 126.
  • the logic output unit 126 is based on the SW element selection signals Ss1, Ss2, Ss3 and Ss4 from the logic determination unit 122 and the logic update execution signal Sc from the logic update command unit 124, to generate the respective SW elements 60a, 60b and 62a. , 62 b are generated and output to the dead time generation unit 128.
  • the logic output unit 126 receives the logic update signal from the logic determination unit 122. Even if the logic of the SW element selection signals Ss1, Ss2, Ss3 and Ss4 is changed (even if it is sought to switch on and off the SW elements 60a, 60b, 62a and 62b), the logic before the change is maintained,
  • the drive signals Sh1, Sh2, Sl1, and Sl2 are continuously output with the same logic without switching on and off of the switches 60a, 60b, 62a, and 62b. In this case, switching on and off the SW elements 60a, 60b, 62a and 62b may cause a problem such as a short circuit between the first battery 22a and the second battery 22b. .
  • the logic output unit 126 receives the logic update execution signal Sc from the logic update command unit 124 ⁇ when the logic update execution signal Sc is high (logic 1) ⁇ , the SW element from the logic determination unit 122
  • the drive signals Sh1, Sh2, Sl1, and Sl2 are output according to the logic corresponding to the selection signals Ss1, Ss2, Ss3, and Ss4. In this case, even if the on / off of the SW elements 60a, 60b, 62a, 62b is switched at that timing, there is no risk of the occurrence of the above-mentioned problems.
  • the dead time generation unit 128 inserts dead time dt into the drive signals Sh1, Sh2, Sl1, and Sl2 from the logic output unit 126, and outputs the dead time dt to each of the SW elements 60a, 60b, 62a, and 62b.
  • the dead time dt is inserted to prevent an unintended short circuit.
  • control of the inverter 26 is performed by the electric angular velocity calculation unit 104, the three-phase-dq conversion unit 106, the current command calculation unit 108, the subtractors 110 and 112, and the current This is performed using the FB control unit 114, the dq-3 phase conversion unit 116, and the PWM generation unit 118.
  • a control system of the inverter 26 basically, the one described in JP2009-240125A can be used, and the constituent elements omitted in the first embodiment can be additionally applied.
  • Three-phase to dq conversion unit 106 performs three-phase to dq conversion using U-phase current Iu from current sensor 44, W-phase current Iw from current sensor 46, and electrical angle ⁇ from resolver 48, The current of the d-axis armature as a current component in the d-axis direction (hereinafter referred to as "d-axis current Id") and the current of the q-axis armature as a current component in the q-axis direction (hereinafter referred to as "q-axis current Iq" ). Then, the 3-phase-dq conversion unit 106 outputs the d-axis current Id to the subtractor 110 and outputs the q-axis current Iq to the subtractor 112.
  • the current command calculation unit 108 calculates a d-axis current command value Id_c which is a command value of the d-axis current Id and a q-axis current command value Iq_c which is a command value of the q-axis current Iq. That is, torque command value T_c supplied from integrated ECU 18 and electric angular velocity ⁇ obtained by electric angular velocity calculation unit 104 are input to current command calculation unit 108. Then, the current command calculation unit 108 calculates the d-axis current command value Id_c and the q-axis current command value Iq_c from these input values on the basis of a preset map.
  • the d-axis current command value Id_c and the q-axis current command value Iq_c have meanings as feed-forward command values of the d-axis current and the q-axis current for generating the torque of the torque command value T_c on the output shaft of the motor 12 .
  • the torque command value T_c is determined according to, for example, the accelerator operation amount (depression amount of the accelerator pedal) and the traveling speed of the electric vehicle 10 mounted with the motor 12 as a propulsive force generation source. Further, the torque command value T_c includes a command value for powering torque and a command value for regenerative torque, and the command values have different positive and negative polarities.
  • the current FB control unit 114 controls the d-axis voltage which is a voltage command value (target value of d-axis voltage) of the d-axis armature according to the d-axis current deviation ⁇ Id and the q-axis current deviation ⁇ Iq from the subtractors 110 and 112.
  • a command value Vd_c and a q-axis voltage command value Vq_c which is a voltage command value (target value of q-axis voltage) of the q-axis armature, are calculated and output to the dq-3 phase conversion unit 116.
  • the current FB control unit 114 determines the d-axis voltage command value Vd_c by feedback control such as PI control (proportional / integral control) so that the d-axis current deviation ⁇ Id approaches 0 according to the d-axis current deviation ⁇ Id. Similarly, current FB control unit 114 determines q-axis voltage command value Vq_c by feedback control such as PI control so that q-axis current deviation ⁇ Iq approaches zero according to q-axis current deviation ⁇ Iq.
  • PI control proportional / integral control
  • the d-axis voltage command value Vd_c and the q-axis voltage command value Vq_c are determined, the d-axis voltage command value and the q-axis voltage command value determined by feedback control from the d-axis current deviation ⁇ Id and the q-axis current deviation ⁇ Iq, respectively.
  • the d-axis voltage command value Vd_c and the q-axis voltage command value Vq_c are determined by adding a non-interference component for canceling the influence of the speed electromotive force that interferes between the d-axis and the q-axis. .
  • the dq-3 phase conversion unit 116 performs dq-3 phase conversion using the d-axis voltage command value Vd_c and the q-axis voltage command value Vq_c from the current FB control unit 114 and the electrical angle ⁇ from the resolver 48.
  • the phase voltage command values Vu_c, Vv_c, and Vw_c of the U-phase, V-phase, and W-phase are calculated, and are output to the PWM generation unit 118.
  • a combination of the d-axis voltage command value Vd_c and the q-axis voltage command value Vq_c is converted by a conversion matrix according to the electrical angle ⁇ (more specifically, the rotation angle of the output shaft at the electrical angle). This is processing for converting into a set of voltage command values Vu_c, Vv_c, and Vw_c.
  • the PWM generation unit 118 applies current to the winding 98 of each phase of the motor 12 through the inverter 26 by pulse width modulation (PWM) control according to the phase voltage command values Vu_c, Vv_c, Vw_c.
  • PWM pulse width modulation
  • the PWM generation unit 118 controls the on / off of the SW elements 86 and 92 of the inverter 26 to energize the winding 98 of each phase.
  • the PWM generation unit 118 includes a duty value calculation unit 132 (hereinafter referred to as “DUT calculation unit 132”), a carrier signal generation unit 134, comparators 136u, 136v, 136w, and three-phase logic forcing.
  • DUT calculation unit 132 a duty value calculation unit 132
  • carrier signal generation unit 134 comparators 136u, 136v, 136w
  • three-phase logic forcing comparators 136u, 136v, 136w
  • a conversion unit 138, a three-phase logic determination unit 140, NOT circuits 142u, 142v, 142w, and a dead time generation unit 144 are included.
  • DUT operation unit 132 is a three-phase voltage command value THu defining duty value DUT1 [%] of each upper arm SW element 86 according to input voltage Vinv of inverter 26 and phase voltage command values Vu_c, Vv_c, Vw_c. , THv and THw are calculated and output to the comparators 136u, 136v and 136w. That is, voltage command value THu of U phase is output to comparator 136u, voltage command value THv of V phase is output to comparator 136v, and voltage command value THw of W phase is output to comparator 136w.
  • the carrier signal generation unit 134 generates a carrier signal Sca, and outputs the carrier signal Sca to the comparators 136u, 136v, and 136w.
  • Comparator 136u compares voltage command value THu with carrier signal Sca, and outputs logic 0 when carrier signal Sca is less than voltage command value THu, and outputs logic 0 when carrier signal Sca is greater than voltage command value THu. Output 1 The same is true for the comparators 136v and 136w.
  • the outputs from the comparators 136u, 136v, 136w are three-phase logic as they are It is output to the determination unit 140.
  • the forced short circuit request Rs from the integrated ECU 18 is received (when the signal line of the forced short circuit request Rs is logic 1), all three phases are forcibly forced regardless of the outputs from the comparators 136u, 136v, 136w.
  • a logic 0 is output to the three-phase logic determination unit 140.
  • logic 1 may be output for all three phases instead of logic 0.
  • Three-phase logic determination unit 140 determines whether all three phases are logic 0 or logic 1, and outputs switch enable signal Sal to logic generation unit 102 if all three phases are logic 0 or logic 1. . Also, the three-phase logic determination unit 140 outputs the logic from the three-phase logic forced conversion unit 138 to the NOT circuits 142 u, 142 v, 142 w and the dead time generation unit 144 as it is.
  • the NOT circuits 142 u, 142 v, 142 w calculate the duty value DUT2 [%] of each lower arm SW element 92, invert the logic notified from the three-phase logic determination unit 140 to the dead time generation unit 144. Output.
  • the sum of the duty value DUT1 of the upper arm SW element 86 and the duty value DUT2 of the lower arm SW element 92 is 100%.
  • the dead time generation unit 144 inserts the dead time dt into the three-phase logic signal notified from the three-phase logic determination unit 140 and outputs the drive signals UH, VH, and WH to the upper arm SW elements 86. Further, the dead time generation unit 144 inserts the dead time dt into the three-phase logic signals notified from the NOT circuits 142 u, 142 v, 142 w, and outputs the drive signals UL, VL, WL to the lower arm SW elements 92. .
  • the control system of the inverter 26 described above causes the combined voltage of the d-axis voltage and the q-axis voltage to be generated on the output shaft of the motor 12 while preventing the target value (the radius of the voltage circle) according to the power supply voltage D-axis voltage command value Vd_c and q-axis voltage so that the torque to be output (output torque of motor 12) follows torque command value T_c (d-axis current deviation .DELTA.Id and q-axis current deviation .DELTA.Iq converge to 0)
  • T_c d-axis current deviation .DELTA.Id and q-axis current deviation .DELTA.Iq converge to 0
  • a set of command values Vq_c is determined. Then, according to the d-axis voltage command value Vd_c and the q-axis voltage command value Vq_c, the conduction current of the winding 98 of each phase of the motor 12 is controlled.
  • the PWM generation unit 118 turns on all three-phase lower arm SW elements 92 (see FIG. 10) or turns on all three-phase upper arm SW elements 86 (see FIG. 11).
  • the inverter 26 is in a three-phase short circuit state, and power is not supplied to the inverter 26 from any of the first battery 22 a and the second battery 22 b.
  • the PWM generation unit 118 generates the above-described three-phase short circuit state based on the phase voltage command values Vu_c, Vv_c, and Vw_c from the dq-3 phase conversion unit 116. Alternatively, the PWM generation unit 118 forcibly generates the three-phase short circuit state based on the forced short circuit request Rs from the integrated ECU 18.
  • the PWM generation unit 118 generates drive signals UH, UL, VH, VL, WH, and WL to the phase arms 82 for each switching cycle.
  • the duty value DUT in one switching cycle is 100% as described above
  • the duty value DUT2 of the lower arm SW element 92 is the sum of 100% minus the duty value DUT1 for the upper arm SW element 86.
  • driving signals UH, UL, VH, and VL that are actually output with duty values DUT1 and DUT2 of upper arm SW element 86 and lower arm SW element 92 reflecting dead time dt are actually calculated. It becomes WH and WL.
  • the duty value DUT1 of the upper arm SW element 86 of each phase sets voltage command values THu, THv, THw in each phase, and the carrier signal Sca becomes equal to or higher than each voltage command value THu, THv, THw.
  • the drive signals UH, VH, WH are set to be output.
  • any upper arm SW element 86 is used. Also, the drive signals UH, VH, WH are not output ⁇ the drive signals UH, VH, WH are low (logic 0). ⁇ . Therefore, the drive signals UL, VL, and WL are output to all the lower arm SW elements 92 ⁇ the drive signals UL, VL, and WL become high (logic 1). ⁇ . In this case, since all the lower arm SW elements 92 are turned on, a short circuit condition as shown in FIG. 10 occurs.
  • carrier signal Sca is equal to or higher than voltage command value THu from time t2 to time t3
  • U-phase upper arm SW element 86u is turned on, but V-phase and W-phase upper arm SW elements 86 are turned off.
  • carrier signal Sca becomes equal to or higher than voltage command values THu and THv from time t3 to time t4
  • upper arm SW elements 86u and 86v of the U and V phases are turned on, but the upper arm of W phase
  • the SW element 86 w is off, and a three-phase short circuit does not occur.
  • the carrier signal Sca becomes equal to or higher than all voltage command values THu, THv, THw, and the upper arm SW element 86 of all phases is turned on, so a three-phase shorted state as shown in FIG. Occurs.
  • the PWM generation unit 118 turns on all of the drive signals UH, VH, and WH as shown in FIG. 13, for example. (The specific process will be described later.)
  • the integrated ECU 18 sets which battery 22 to use without comparing the first battery voltage Vbat1 of the first battery 22a and the second battery voltage Vbat2 of the second battery 22b.
  • the integrated ECU 18 appropriately switches and uses the mode shown in FIG. 14, for example. That is, in the first embodiment, the integrated ECU 18 performs “stop”, “one power generation”, “one power charging”, “one power utilization”, “high voltage battery generation” and “low voltage battery charging”. Select and use the mode.
  • Switching of these modes is not switching on / off (high / low) in one switching cycle like generation of drive signals UH, UL, VH, VL, WH, and WL for the inverter 26, and the need for switching arises.
  • control fixing control
  • to fix on / off of each SW element 60, 62 is used (the same applies to the second to fifth embodiments).
  • the “at rest” mode is a mode used when the electric vehicle 10 is stopped, and turns off any of the switching elements 60 and 62 of each bidirectional SW 24.
  • the “one power generation” mode is a mode in which one of the first battery 22 a and the second battery 22 b is used for power generation.
  • the “one power generation” mode is, for example, when it is known that one battery 22 is to be replaced immediately after and when the motor 12 is in a power running state, when one battery 22 has a failure, the user's will Is used when there is a battery 22 that you want to use.
  • the “one power charging” mode is a mode in which one of the first battery 22a and the second battery 22b is used for charging.
  • the “one power supply charging” mode for example, when it is known that one battery 22 is to be replaced immediately after and the motor 12 is in a regeneration state, when one battery 22 has a problem, the user's will Is used when there is a battery 22 that you want to use.
  • the battery 22 used for power generation and the battery 22 used for charge can be switched by combining the “one power generation” mode and the “one power charging” mode.
  • the "one power source utilization” mode is a mode in which one of the first battery 22a and the second battery 22b is used for power generation and charging, and the other is not used for either power generation or charging.
  • the “1 power source utilization” mode for example, when it is known that one battery 22 is to be replaced immediately thereafter, it is difficult to distinguish whether the motor 12 is in the power running state or the regeneration state (ie, intermediate state) When one battery 22 fails, it is used when there is a battery 22 that the user wishes to use.
  • the "high voltage battery power generation” mode is a mode in which the power generation SW elements 60a and 60b of the first battery 22a and the second battery 22b are turned on, and power is generated from the battery 22 having a relatively high voltage. That is, when the electric vehicle 10 is in the power running state, power is supplied to the motor 12 from at least one of the first battery 22a and the second battery 22b if both of the power generation SW elements 60a, 60b are on.
  • power when there is a voltage difference between the first battery 22a and the second battery 22b, power is supplied from the battery 22 having a higher voltage to the motor 12, and power is not supplied from the battery 22 having a lower voltage.
  • the high voltage battery 22 is a battery 22 having a high storage capacity (SOC). It is used when you want to output
  • the “low voltage battery charging” mode is a mode in which the charging SW elements 62a and 62b of the first battery 22a and the second battery 22b are turned on to charge the battery having a relatively low voltage. That is, when the electric vehicle 10 is in the regenerative state, if both of the charging SW elements 62a and 62b are on, the electric power is supplied from the motor 12 to at least one of the first battery 22a and the second battery 22b.
  • the regenerative power Preg from the motor 12 is easily supplied to the battery 22 with a lower voltage, and the battery 22 with a higher voltage is Is difficult to supply.
  • the lower voltage battery 22 is substantially preferentially charged.
  • a low voltage battery 22 is a low SOC battery 22 and therefore, it is desirable to preferentially charge a low SOC battery 22.
  • each SW element 60, 62 is controlled so that the other can not be charged.
  • the other SW elements 60 and 62 are controlled so that the other can not generate power.
  • ON is obliquely present in each mode (power generation SW element 60 a is ON and charge SW element 62 b is ON, or power generation SW element 60 b is ON and charge SW element 62 a is ON. Not to be Thereby, the occurrence of a short circuit between the first battery 22a and the second battery 22b can be prevented.
  • the first battery is selected by selecting on / off of each of the SW elements 60a, 60b, 62a, 62b such that at least one of the following first control law and second control law is satisfied. The occurrence of a short circuit between 22a and the second battery 22b is prevented.
  • N is an integer of 2 or more
  • N-1 bidirectional SW 24 in which both the power generation SW element 60 and the charging SW element 62 are turned off It exists.
  • N-1 power systems in which both the power generation path and the charge path are turned off.
  • only one of the power generation SW element 60 and the charging SW element 62 may be on for the bidirectional SW 24 of the remaining one power system, and both of the power generation SW element 60 and the charging SW element 62 It may be on.
  • the second control law is that all (N) power generation SW elements 60 or charging SW elements 62 of the bidirectional SW 24 are turned off. In other words, the power generation path or charge path of all the power systems is turned off. In this case, a charge path or a power generation path opposite to a power generation path or a charge path which is all on can be partially or entirely turned on.
  • the power ECU 50 includes the respective SW elements 60 and 62. Is simply switched to the state shown in FIG. Such switching does not cause a short circuit between the first battery 22a and the second battery 22b. However, at the time of switching, the dead time dt is inserted in the dead time generation unit 128.
  • the power ECU 50 turns on / off each SW element 60, 62. It switches to the state shown in FIG. 14 as it is. Such switching does not cause a short circuit between the first battery 22a and the second battery 22b. However, at the time of switching, the dead time dt is inserted in the dead time generation unit 128.
  • Stepwise Switching In the above simple switching, when a short circuit occurs between the first battery 22a and the second battery 22b, for example, the following control is used to prevent the short circuit. Can.
  • both of the power generation SW element 60a and the charge SW element 62a of the first bidirectional SW 24a are turned off. Thereafter, both the power generation SW element 60b and the charge SW element 62b of the second bidirectional SW 24b are turned on.
  • the input current Iinv of the inverter 26 is equal to or higher than the current threshold THi2 and equal to or lower than the current threshold THi1 (for convenience, this state is referred to as "power generation / charge switching state"), this on / off control is continued.
  • both the power generation SW element 60b and the charge SW element 62b of the second bidirectional SW 24b are turned off. Thereafter, both the power generation SW element 60a and the charge SW element 62b of the first bidirectional SW 24a are turned on.
  • the on / off control is continued.
  • both the power generation SW element 60a and the charging SW element 62a of the first bidirectional SW 24a are kept on.
  • both the power generation SW element 60b and the charge SW element 62b are kept off.
  • the control is performed by the input voltage Vinv of the inverter 26 or the power consumption (regenerative power) of the motor 12. It is also possible.
  • the switching time point between the power generation and the charging it is possible to switch on and off the SW elements 60 and 62 according to predetermined time points before and after the switching time point. As a case where the switching time point between the power generation and the charging can be determined, for example, there may be used a predicted time until the actual power crosses zero.
  • the case where the input current Iinv of the inverter 26 switches from positive to negative that is, the case where the electric vehicle 10 switches from the power running state to the regenerative state will be described.
  • the power generation SW elements 60a and 60b are turned on and the charge SW elements 62a and 62b are turned off.
  • the power from the second battery 22b having a higher voltage is supplied to the inverter 26, and the power is not supplied from the first battery 22a having a lower voltage.
  • the charging SW elements 62a and 62b are off, a short circuit does not occur between the first battery 22a and the second battery 22b, and power from the second battery 22b is supplied to the first battery 22a. There is nothing to do.
  • the power generation SW element 60b of the second bidirectional SW 24b is turned off. Thereafter, the charging SW element 62a of the first bidirectional SW 24a is turned on. As a result, the power generation SW elements 60a and 60b are turned off, and the charge SW elements 62a and 62b are turned on. In this case, the regenerative power Preg from the motor 12 is preferentially charged to the first battery 22a having a lower voltage. Further, since the power generation SW elements 60a and 60b are off, no short circuit occurs between the first battery 22a and the second battery 22b, and the power from the second battery 22b is supplied to the first battery 22a. There is nothing to do.
  • the case where the input current Iinv of the inverter 26 switches from negative to positive that is, the case where the electric vehicle 10 switches from the regenerative state to the power running state
  • the power generation SW elements 60a and 60b are turned off, and the charge SW elements 62a and 62b are turned on.
  • the regenerative power Preg from the motor 12 is preferentially charged to the first battery 22a having a lower voltage.
  • the power generation SW elements 60a and 60b are off, no short circuit occurs between the first battery 22a and the second battery 22b, and the power from the second battery 22b is supplied to the first battery 22a. There is nothing to do.
  • the charging SW element 62b of the second bidirectional SW 24b is turned off. Thereafter, the power generation SW element 60a of the first bidirectional SW 24a is turned on. As a result, the power generation SW elements 60a and 60b are turned on, and the charge SW elements 62a and 62b are turned off. In this case, the power from the second battery 22b having a higher voltage is supplied to the inverter 26, and the power is not supplied from the first battery 22a having a lower voltage. Further, since the charging SW elements 62a and 62b are off, a short circuit does not occur between the first battery 22a and the second battery 22b, and power from the second battery 22b is supplied to the first battery 22a. There is nothing to do.
  • the control is performed by the input voltage Vinv of the inverter 26 or the power consumption (regenerative power) of the motor 12. It is also possible.
  • the switching time point between the power generation and the charging it is possible to switch on and off the SW elements 60 and 62 according to predetermined time points before and after the switching time point. As a case where the switching time point between the power generation and the charging can be determined, for example, there may be used a predicted time until the actual power crosses zero.
  • the SW elements 60a and 62a are turned on. On, the SW elements 60b and 62b are off. Therefore, the input voltage Vinv of the inverter 26 is equal to the first battery voltage Vbat1 of the first battery 22a, and the input current Iinv of the inverter 26 is substantially equal to the first battery current Ibat1 of the first battery 22a.
  • the drive signals UH, VH, and WH are all set high (logic 1), and the inverter 26 is forced to generate a 3-phase short circuit state.
  • the input voltage Vinv of the inverter 26 is made zero once.
  • the drive signals Sh1 and S11 are switched to low (logic 0) and the drive signals Sh2 and S12 are switched to high (logic 1) to turn off the SW elements 60a and 62a and turn on the SW elements 60b and 62b.
  • the input voltage Vinv of the inverter 26 is equal to the second battery voltage Vbat2 of the second battery 22b, and the input current Iinv of the inverter 26 is equal to the second battery current Ibat2 of the second battery 22b.
  • the second control law (second cutoff control) is not used when the first battery voltage Vbat1 and the second battery voltage Vbat2 are not used.
  • the number of power systems performing the first shutoff control is N ⁇ 1. It controls the energization or cutoff of the SW 24 (see FIG. 14). Therefore, when only the first shutoff control is performed, the bidirectional SW 24 is energized only for one power system. Therefore, it is possible to prevent the occurrence of a short circuit state in which current flows from one battery 22 to the other battery 22 through the parallel circuit.
  • the bidirectional SW 24 is used as a semiconductor switch capable of separately blocking bidirectional energization. This makes it possible to control bi-directional energization and interruption separately.
  • each SW element 60, 62 when switching the on / off of each SW element 60, 62, for example, when switching between the power generation path of one of the first battery 22a and the second battery 22b and the other charging path, each SW element 60, 62.
  • the dead time dt is sandwiched between the drive signals Sh1, Sl1, Sh2, and Sl2.
  • the power ECU 50 when switching from the “one power source utilization (first battery)” mode to the “one power source utilization (second battery) mode” or vice versa, the power ECU 50 performs bidirectional control of one battery 22.
  • the SW elements 60 and 62 are controlled so as to shift from the energized state to the bidirectionally energized state of the other battery 22. This makes it possible to perform power generation and charging while switching the battery 22.
  • the switching from the “one power source utilization (first battery)” mode to the “one power source utilization (second battery) mode” or the reverse switching is performed between the power running state and the regeneration state of the electric vehicle 10 This is performed in the "power generation / charge switching state" (see FIGS. 15 and 16) as the state. Thereby, it becomes possible to distinguish and use battery 22 for electricity generation, and battery 22 for charge.
  • the power ECU 50 in the “high voltage battery power generation” mode, when the electric vehicle 10 is in the power running state, the power ECU 50 simultaneously turns on the power generation SW elements 60a and 60b (see FIG. 14). As a result, power can be supplied from the battery 22 having the higher voltage without comparing the first battery voltage Vbat1 and the second battery voltage Vbat2, so that power can be efficiently supplied at high load. Further, power generation from the battery 22 having a low voltage, that is, a low SOC can be prevented.
  • the power ECU 50 in the “low voltage battery charge” mode, when the electric vehicle 10 is in the regeneration state, the power ECU 50 simultaneously turns on the charge SW elements 62a and 62b (see FIG. 14). As a result, even if the first battery voltage Vbat1 and the second battery voltage Vbat2 are not compared, it is possible to positively charge the battery 22 with a low voltage automatically. That is, since the battery 22 having a small SOC is positively charged, overdischarge of the battery 22 can be prevented.
  • the “high voltage battery power generation” mode can be used in the power running state of the electric vehicle 10, and the “low voltage battery charge” mode can be used in the regenerative state. This enables appropriate control in accordance with the state.
  • the power running state (power generation state) of the electric vehicle 10 and“ regenerative state (charge state) ” are intermediate states
  • the bidirectional switching of the second battery 22b is enabled by turning on the SW elements 60b and 62b when in the power generation / charge switching state, and the SW elements 60a and 62a are turned off.
  • the first battery 22a can be shut off bidirectionally.
  • charging / discharging by the single battery 22 is performed.
  • the power ECU 50 and the battery 22 can operate stably, and a short circuit between the first battery 22a and the second battery 22b can be reliably prevented.
  • the power ECU 50 switches on and off of the SW elements 60 and 62 while the three-phase short circuit state occurs in the inverter 26. Thereby, a short circuit between the first battery 22a and the second battery 22b can be more reliably prevented.
  • switching of the switching elements 60 and 62 that is, switching of the battery 22 is performed in a state in which a three-phase short circuit state occurs in the inverter 26. For this reason, the voltage fluctuation accompanying the switching of the battery 22 is not transmitted to the motor 12. Therefore, it is possible to prevent an unintended torque fluctuation of the motor 12.
  • electric power ECU 50 controls on / off of upper arm SW element 86 and lower arm SW element 92 of each phase based on the comparison result of voltage command values THu, THv, THw of three phases and carrier signal Sca.
  • Voltage command value for all three phases Detects when carrier signal Sca is higher than voltage command values THu, THv, THw, or when carrier signal Sca is lower than voltage command values THu, THv, THw for all three phases It detects that it is a three phase short circuit state (refer FIG. 12).
  • the power ECU 50 when the electric power ECU 50 receives the forced short circuit request Rs for switching the battery 22, the power ECU 50 outputs the drive signals UH, VH, WH to the upper arm SW elements 86 of all three phases or the lower arm SW elements 92.
  • Drive signals UL, VL, and WL are output to forcibly generate a three-phase short circuit state.
  • the switching can be performed at an appropriate timing.
  • FIG. 19 is a schematic block diagram of an electric vehicle 10A according to a second embodiment of the present invention.
  • the electric vehicle 10A has a configuration similar to that of the electric vehicle 10 according to the first embodiment, but may input the detection values (first battery voltage Vbat1 and second battery voltage Vbat2) of the voltage sensors 28, 30 to the integrated ECU 18.
  • This embodiment differs from the first embodiment in the essential point and the selection of the battery 22 by the integrated ECU 18 and the like.
  • the integrated ECU 18 compares the first battery voltage Vbat1 of the first battery 22a with the second battery voltage Vbat2 of the second battery 22b to set which battery 22 to use.
  • the integrated ECU 18 appropriately switches and uses the mode shown in FIG. 20, for example. That is, in the second embodiment, as in the first embodiment, the integrated ECU 18 performs “stop”, “one power generation”, “one power charging”, “one power utilization”, “high voltage battery generation” Each mode of "low voltage battery charge” can be selected. In addition to this, the integrated ECU 18 selects and uses each mode of “one power generation and one power charging”, “high voltage battery generation and one power charging” and “one power generation and low voltage battery charging”.
  • each mode of “one power generation”, “one power charging” and “one power utilization” used in the second embodiment can be set according to the level of the voltage.
  • the "one power generation" mode is a mode in which one of the first battery 22a and the second battery 22b is used for power generation as in the first embodiment, but in the second embodiment, it is relatively used.
  • a mode using a high voltage battery (the first battery 22a in FIG. 20) and a mode using a relatively low voltage battery (the second battery 22b in FIG. 20) can be selected.
  • the “one power charging” mode is a mode in which one of the first battery 22a and the second battery 22b is used for charging as in the first embodiment, but in the second embodiment, a battery having a relatively high voltage ( In FIG. 20, it is possible to select the mode using the first battery 22a) and the mode using the battery having a relatively low voltage (the second battery 22b in FIG. 20).
  • one of the first battery 22a and the second battery 22b is used for power generation and charging, and the other is not used for either power generation or charging.
  • the second embodiment there is a mode using a battery with a relatively high voltage (the first battery 22a in FIG. 20) and a mode using a battery with a relatively low voltage (the second battery 22b in FIG. 20). You can choose
  • the level of the voltage is determined by the first battery voltage Vbat1 from the voltage sensor 28 and the second voltage from the voltage sensor 30.
  • the integrated ECU 18 makes the determination using the battery voltage Vbat2. The same applies to other modes requiring voltage determination.
  • the "one power generation and one power charging” mode performs the "one power generation” mode for the lower one of the first battery 22a and the second battery 22b, and the “one power charging” mode for the higher one. It is.
  • the “one power generation and one power charging” mode for example, when it is known that one battery 22 is to be replaced immediately after, it is in a state where it can not be determined whether the motor 12 is powering or regeneration. It can be used when output from the battery 22 is desired.
  • the method described in the first embodiment can be used to switch between the “one power generation” mode and the “one power charging” mode.
  • the “high voltage battery power generation and one power charging” mode performs the "high voltage battery power generation” mode when the electric vehicle 10 is in the power running state, and the first battery 22a and the second battery 22b when the electric vehicle 10 is in the regenerative state. In the mode in which the “one power charging” mode is performed for the higher one of the two.
  • the “high voltage battery power generation and one power supply charging” mode is, for example, a state where it is known that the motor 12 is in power running mode or regeneration mode when it is known that one battery 22 will be replaced immediately thereafter. It can be used when it is desired to output from the scheduled battery 22.
  • the method described in the first embodiment can be used to switch between the “high voltage battery power generation” mode and the “one power supply charge” mode.
  • the “one power generation and low voltage battery charging” mode performs the “one power generation” mode for the lower voltage of the first battery 22 a and the second battery 22 b when the electric vehicle 10 is in the power running state. Is a mode in which the "low voltage battery charging” mode is performed when the regeneration state is.
  • the "one power generation and low voltage battery charging” mode for example, it is determined that one of the batteries 22 is to be replaced immediately after, and it is not possible to determine whether the motor 12 is in power running or regeneration. It can be used when it is desired to charge the uncharged battery 22.
  • the method described in the first embodiment can be used to switch between the “one power generation” mode and the “low voltage battery charging” mode.
  • the SW elements 60 and 62 are controlled such that when one of the batteries 22 is generating power, the other can not be charged, and when one of the batteries 22 is charging, the other is power generation
  • the SW elements 60 and 62 are controlled so as not to be able to do so.
  • ON is obliquely present in each mode (power generation SW element 60 a is ON and charge SW element 62 b is ON, or power generation SW element 60 b is ON and charge SW element 62 a is ON. Not to be Thereby, the occurrence of a short circuit between the first battery 22a and the second battery 22b can be prevented.
  • the “one power generation and one power charging”, “high voltage battery generation and one power charging” and “one power generation and low voltage battery charging” modes added in the second embodiment have the above-described rules (ie, , And the first control law and the second control law in the first embodiment.
  • the occurrence of a short circuit is prevented using the following first control law and second control law using the first battery voltage Vbat1 and the second battery voltage Vbat2.
  • a battery having a battery voltage Vbat that is the highest among the batteries 22 in which the corresponding power generation SW element 60 is turned on (hereinafter referred to as “maximum voltage battery”) is lower.
  • the charging SW element 62 corresponding to the voltage battery 22 is turned off.
  • the charging path with a lower voltage than the power generation path with the highest voltage (hereinafter referred to as “maximum voltage power generation path”) among the power generation paths to be energized is shut off.
  • the corresponding charging SW element 62 may be turned on or off.
  • the charging path of the voltage higher than the highest voltage power generation path may be either on or off.
  • the charging SW element 62b corresponding to the second battery 22b is turned off. Ru.
  • the power from the first battery 22a is not supplied to the second battery 22b, and a short circuit between the two batteries 22 can be prevented.
  • the corresponding power generation SW element 60 is turned off.
  • the power generation path higher in voltage than the charge path with the lowest voltage (hereinafter referred to as “minimum voltage charge path”) among the charge paths to be energized is shut off.
  • the corresponding power generation SW element 60 may be turned on or off for the battery 22 having a voltage equal to or lower than the lowest voltage battery.
  • the power generation path with a voltage lower than the lowest voltage charge path may be either on or off.
  • the power generation SW element 60a corresponding to the first battery 22a is turned off. Ru.
  • the power from the first battery 22a is not supplied to the second battery 22b, and a short circuit between the two batteries 22 can be prevented.
  • a short circuit between the first battery 22a and the second battery 22b can be prevented by using the first control law and the second control law of the second embodiment as described above.
  • the SW elements 60 and 62 are controlled based on the first control law and the second control law in the case of using the first battery voltage Vbat1 and the second battery voltage Vbat2.
  • the first control law first shut-off state
  • the charge SW element 62 corresponding to the battery 22 having a voltage lower than the highest voltage battery is turned off.
  • the charge path which is lower in voltage than the highest voltage power generation path with the highest voltage among the power generation paths to be energized is cut off. Therefore, a short circuit state in which current flows from the highest voltage battery (highest voltage power generation path) to any one of the batteries 22 (charge path) through the parallel circuit does not occur.
  • voltage sensors 28, 30 for the first battery 22a and the second battery 22b are provided, the magnitude of the voltage between the batteries 22 is grasped based on the voltage sensors 28, 30, and control is performed based on the grasped voltage Do. Thereby, by performing control based on the grasped voltage, a short circuit between the batteries 22 can be reliably prevented.
  • FIG. 21 is a schematic configuration diagram of an electric vehicle 10B according to a third embodiment of the present invention.
  • FIG. 22 is a diagram showing a part of the circuit configuration of the electric vehicle 10B.
  • the electric vehicle 10B includes the motor 12 for traveling, the transmission 14, the wheels 16, the integrated ECU 18, and the power system 20b, as in the above embodiments.
  • the power system 20 b supplies electric power to the motor 12 and also supplies regenerative electric power Preg from the motor 12.
  • the power system 20 b includes a fuel cell 152 (hereinafter referred to as “FC 152”), a battery 154, a DC / DC converter 156, a first bidirectional SW 24 a, a second bidirectional SW 24 b, an inverter 26, and a voltage sensor 32. 158, 160, current sensors 42, 44, 46, 162, 164, a resolver 48, and a power ECU 50. Since the power system 20b includes the FC 152, the electric vehicle 10B is a fuel cell vehicle.
  • the FC 152 has, for example, a stack structure in which cells formed by sandwiching a solid polymer electrolyte membrane between an anode electrode and a cathode electrode from both sides are stacked.
  • a reaction gas supply unit (not shown) is connected to the FC 152 through a pipe.
  • the reaction gas supply unit includes a hydrogen tank storing hydrogen (fuel gas) which is one reaction gas, and a compressor which compresses air (an oxidant gas) which is the other reaction gas.
  • a generated current generated by an electrochemical reaction in the FC 152 of hydrogen and air supplied from the reaction gas supply unit to the FC 152 is supplied to the motor 12 and the battery 154.
  • the battery 154 is the same as the first battery 22a or the second battery 22b of the first embodiment.
  • the DC / DC converter 156 is a chopper type voltage conversion device in which one side (primary side) is connected to the battery 154 and the other side (primary side) is connected to the connection point 52 of the FC 152 and the inverter 26. .
  • the DC / DC converter 156 converts (boosts) the voltage on the primary side (hereinafter referred to as “primary voltage V1”) into the voltage on the secondary side (hereinafter referred to as “secondary voltage V2”). It is a step-up / step-down type voltage conversion device (V1 ⁇ V2) that performs voltage conversion (step-down conversion) of the secondary voltage V2 to the primary voltage V1.
  • the voltage sensor 158 detects the output voltage (hereinafter referred to as “FC voltage Vfc”) [V] of the FC 152.
  • Voltage sensor 160 detects an output voltage (hereinafter referred to as “battery voltage Vbat”) [V] of battery 154.
  • the current sensor 162 detects an output current of the FC 152 (hereinafter referred to as “FC current Ifc”) [A].
  • FC current Ifc an output current of the FC 152
  • DC current Icon an output current on the secondary side of the DC / DC converter 156
  • the FC 152 only generates power and can not be charged. Based on this point, the integrated ECU 18 controls each bi-directional switch 24 as follows.
  • the integrated ECU 18 appropriately switches and uses the mode shown in FIG. 23, for example. That is, in the third embodiment, as in the first embodiment, the integrated ECU 18 selects and uses each mode of “stop”, “one power generation”, “one power charging” and “one power utilization”. Among them, in the “1 power generation (FC)” mode, the power generation switching element 60b corresponding to the battery 154 is also turned on, but this boosts the battery voltage Vbat by the DC / DC converter 156 and outputs the FC 152 To adjust the In addition, the “one power charging” mode targets only the battery 154. Furthermore, as for FC 152, “1 power generation” and “1 power utilization” are substantially the same, so “1 power utilization (FC)” is not displayed in FIG. Furthermore, in the “one power generation and one power charging” mode, the FC 152 generates power and charges the battery 154.
  • the FC voltage Vfc and the battery voltage Vbat are not compared.
  • the power ECU 50 includes the respective SW elements 60 and 62. Is simply switched to the state shown in FIG. Such switching does not cause a short circuit between the FC 152 and the battery 154. However, at the time of switching, the dead time dt is inserted by the dead time generation unit 128 (FIG. 8).
  • the power ECU 50 turns on and off the respective SW elements 60 and 62 as shown in FIG. Switch. Such switching does not cause a short circuit between the FC 152 and the battery 154. However, at the time of switching, the dead time dt is inserted by the dead time generation unit 128.
  • Stepwise Switching In the simple switching as described above, when a short circuit occurs between the FC 152 and the battery 154, for example, in the power running state of the electric vehicle 10, the “one power generation (FC)” mode is executed.
  • the battery 152 When the battery 152 is generated by generating power from the FC 152 and executing the “one power source utilization (battery)” mode in the regenerative state to charge the battery 154, the following control can be used to prevent a short circuit.
  • the case where the input current Iinv of the inverter 26 switches from positive to negative that is, the case where the electric vehicle 10 switches from the power running state to the regenerative state will be described.
  • the power generation SW element 60a is turned on and the charge SW element 62a is turned off in the first bidirectional SW 24a.
  • the power generation SW element 60b of the second bidirectional SW 24b is turned on, and the charge SW element 62b is turned off.
  • both the power generation SW element 60a and the charging SW element 62a of the first bidirectional SW 24a are kept off.
  • both the power generation SW element 60b and the charge SW element 62b are kept on.
  • the power generation SW element of the first bidirectional SW 24a is also selected when the input current Iinv of the inverter 26 is equal to or higher than the current threshold THi2 and smaller than the current threshold THi1. Both 60a and the charge SW element 62a are kept off. On the other hand, both the power generation SW element 60b and the charge SW element 62b of the second bidirectional SW 24b are kept on.
  • both the power generation SW element 60b and the charge SW element 62b of the second bidirectional SW 24b are turned off. Thereafter, the power generation SW element 60a of the first bidirectional SW 24a is turned on.
  • the control is performed by the input voltage Vinv of the inverter 26 or the power consumption (regenerative power) of the motor 12. It is also possible.
  • the switching time point between the power generation and the charging it is possible to switch on and off the SW elements 60 and 62 according to predetermined time points before and after the switching time point. As a case where the switching time point between the power generation and the charging can be determined, for example, there may be used a predicted time until the actual power crosses zero.
  • the SW elements 60 and 62 can be appropriately controlled also in the power system 20 b having the FC 152. It becomes possible.
  • FIG. 24 is a schematic configuration diagram of an electric vehicle 10C according to a fourth embodiment of the present invention.
  • FIG. 25 is a diagram showing a part of the circuit configuration of the electric vehicle 10C.
  • the electric vehicle 10C has the traveling motor 12, the transmission 14, the wheels 16, the integrated ECU 18, and the power system 20c, as in the above embodiments.
  • the power system 20 c supplies electric power to the motor 12 and also supplies regenerative electric power Preg from the motor 12.
  • the power system 20c includes the FC 152, the first battery 22a, the second battery 22b, the first DC / DC converter 172, the second DC / DC converter 174, the first bidirectional SW 24a, and the second bidirectional SW 24b.
  • Third bidirectional switch 24c (hereinafter referred to as "third bidirectional SW 24c"), inverter 26, voltage sensors 28, 30, 32, 158, current sensors 38, 40, 42, 44, 46, 162, A resolver 48 and a power ECU 50 are provided. Since the power system 20c includes the FC 152, the electric vehicle 10C is a fuel cell vehicle.
  • the third bidirectional SW 24 c has the same configuration as the first bidirectional SW 24 a and the second bidirectional SW 24 b.
  • the first DC / DC converter 172 and the second DC / DC converter 174 are similar to the DC / DC converter 156 of the third embodiment. In FIG. 25, the first DC / DC converter 172 and the second DC / DC converter 174 are omitted.
  • an FC 152, a first battery 22a, and a second battery 22b exist as power supplies, and when selecting each power supply, voltages (FC voltage Vfc, first battery voltage Vbat1 and second battery voltage Vbat2) of each power supply are selected. Since it is not used, basically, the control of the first embodiment (FIG. 14) and the control of the third embodiment (FIG. 23) are used in combination.
  • the integrated ECU 18 appropriately switches and uses the mode shown in FIG. 26, for example. That is, in the fourth embodiment, the integrated ECU 18 performs each of “stop”, “one power generation”, “one power charging”, “one power utilization”, “high voltage battery generation” and “low voltage battery charging”. Select and use the mode.
  • the power ECU 50 includes the respective SW elements 60 and 62. Is simply switched to the state shown in FIG. Even by such switching, a short circuit does not occur between the FC 152, the first battery 22a, and the second battery 22b. However, at the time of switching, the dead time dt is inserted in the dead time generation unit 128 (FIG. 8).
  • Stepwise Switching In the simple switching as described above, when a short circuit occurs between the FC 152, the first battery 22a, and the second battery 22b, for example, during powering of the electric vehicle 10, “one power generation (FC, When the first battery 22) or the second battery 22b is charged in the “low battery charge” mode during the “first battery)” mode, the following control can be used to prevent a short circuit.
  • the case where the input current Iinv of the inverter 26 switches from positive to negative that is, the case where the electric vehicle 10 switches from the power running state to the regenerative state will be described.
  • the power generation SW element 60a of the first bidirectional SW 24a is turned on and the charging SW element 62a is turned off.
  • the second bidirectional SW 24 b the power generation SW element 60 b is turned on, and the charge SW element 62 b is turned off.
  • the third bidirectional SW 24 c both the power generation SW element 60 c and the charge SW element 62 c are turned off.
  • Such setting is made in advance that the power generation SW element 60b and the charging SW element 62b of the second bidirectional SW 24b are turned on instead of the power generation SW element 60c and the charging SW element 62c of the third bidirectional SW 24c. Because it was Alternatively, the power generation SW element 60c and the charge SW element 62c of the third bidirectional SW 24c may be turned on.
  • both the power generation SW element 60a and the charging SW element 62a of the first bidirectional SW 24a are kept off. Further, the power generation SW element 60b of the second bidirectional SW 24b is turned off. Thereafter, the charging SW element 62c of the third bidirectional SW 24c is turned on. As a result, the charging SW element 62b of the second bidirectional SW 24b and the charging SW element 62c of the third bidirectional SW 24c are turned on, and the other SW elements are turned off.
  • the regenerative electric power Preg from the motor 12 is preferentially charged to one of the first battery 22a and the second battery 22b which has a lower voltage. Further, since the power generation SW elements 60a, 60b, and 60c are off, no short circuit occurs between the FC 152, the first battery 22a, and the second battery 22b.
  • the charging SW element 62c of the third bidirectional SW 24c is turned off. Thereafter, the power generation SW element 60b of the second bidirectional SW 24b is turned on. As a result, the first battery 22a can be charged and discharged without a short circuit between the first battery 22a and the second battery 22b.
  • the on / off control is continued.
  • the charging SW element 62b of the second bidirectional SW 24b is turned off. Thereafter, the power generation SW element 60a of the first bidirectional SW 24a is turned on. The power generation SW element 60b of the second bidirectional SW 24b is kept on. Thereby, power generation by the FC 152 can be switched without a short circuit between the FC 152 and the first battery 22 a.
  • the control is performed by the input voltage Vinv of the inverter 26 or the power consumption (regenerative power) of the motor 12. It is also possible.
  • the switching time point between the power generation and the charging it is possible to switch on and off the SW elements 60 and 62 according to predetermined time points before and after the switching time point. As a case where the switching time point between the power generation and the charging can be determined, for example, there may be used a predicted time until the actual power crosses zero.
  • the SW elements 60 and 62 can be appropriately used without using the voltage value of each power supply. It becomes possible to control.
  • FIG. 27 is a schematic configuration diagram of an electric vehicle 10D according to a fifth embodiment of the present invention. Similar to the electric vehicle 10C of the fourth embodiment, the electric vehicle 10D has a motor 12 for traveling, a transmission 14, wheels 16, an integrated ECU 18, and a power system 20d. The configuration is the same as that of the electric vehicle 10C of the fourth embodiment, but the detection values (FC voltage Vfc, first battery voltage Vbat1 and second battery voltage Vbat2) of the voltage sensors 158, 28, 30 are input to the integrated ECU 18. The second embodiment differs from the fourth embodiment in that the integrated ECU 18 selects the FC 152 and the battery 22.
  • an FC 152, a first battery 22a and a second battery 22b exist as power supplies, and the output of the FC 152 is controlled using the output of the first battery 22a or the second battery 22b, and the voltage of each power supply
  • Each power source is selected using (FC voltage Vfc, first battery voltage Vbat1 and second battery voltage Vbat2). Therefore, basically, the control of the first embodiment (FIG. 14), the control of the second embodiment (FIG. 20), the control of the third embodiment (FIG. 23) and the control of the fourth embodiment (FIG. 26) In combination.
  • the integrated ECU 18 appropriately switches and uses the mode shown in FIG. That is, in the fifth embodiment, the integrated ECU 18 is “when stopped”, “one power generation”, “one power charging”, “one power utilization”, “high voltage battery generation”, “low voltage battery charging”, The modes of (1) power generation and (1) power charging, (1) “high voltage battery power generation and (1) power source charging” and “1 power generation and low voltage battery charging” can be selected and used.
  • the SW elements 60 and 62 are appropriately controlled using the voltage value of each power supply It is possible to
  • the power systems 20, 20a, 20b have two power supplies (a combination of the first battery 22a and the second battery 22b, and a combination of the FC 152 and the battery 154)
  • the power systems 20c and 20d have three power supplies (combination of the FC 152, the first battery 22a, and the second battery 22b), but the number of power supplies is not limited thereto, and four or more It may be
  • the first control law in the case where the power supply voltage is not used is that both of the power generation SW element 60 and the charging SW element 62 are turned off when there are N bidirectional SW 24 (N is an integer of 2 or more). There are N-1 pieces of SW24. In other words, there are N-1 power systems in which both the power generation path and the charge path are turned off. In this case, only one of the power generation SW element 60 and the charge SW element 62 may be on for the remaining one bidirectional SW 24, and both the power generation SW element 60 and the charge SW element 62 may be on. May be
  • the power generation SW element 60 power generation path of the fourth power source
  • the charge SW corresponding to the fourth power source The element 62 (charging path of the fourth power source) may be on or off, but the other charging paths need to be turned off.
  • all (N) power generation SW elements 60 or charge SW elements 62 of the bidirectional SW 24 are turned off.
  • the power generation path or charge path of all the power systems is turned off.
  • a charge path or a power generation path opposite to a power generation path or a charge path which is all on can be partially or entirely turned on.
  • each charge path may be on or off.
  • switching of each bidirectional SW 24 is switched using power supply voltages (first battery voltage Vbat1, second battery voltage Vbat2, FC voltage Vfc, battery voltage Vbat). went.
  • both of the first and second control laws are satisfied using the battery voltage without causing a short circuit between the power supplies if at least one of the following first control law and second control law is satisfied.
  • the on / off of the direction switch 24 can be selected.
  • the first control law in the case of using the power supply voltage is the power supply voltage lower than the highest power supply voltage (hereinafter referred to as “maximum voltage power supply”) among the power supplies for which the corresponding power generation SW element 60 is turned on.
  • the charging SW element 62 corresponding to the power supply of the is turned off.
  • the charging path with a lower voltage than the power generation path with the highest voltage (hereinafter referred to as “maximum voltage power generation path”) among the power generation paths to be energized is shut off.
  • the corresponding charging SW element 62 may be turned on or off for a power supply having a voltage equal to or higher than the highest voltage power supply.
  • the charging path of the voltage higher than the highest voltage power generation path may be either on or off.
  • the corresponding power generation SW element 60 (power generation path) is turned on and the voltage is highest at the fourth power source.
  • the charging paths of the fifth to nth power sources whose voltage is lower than that of the fourth power source may be off, and the charging paths of the first to fourth power sources may be on or off.
  • the second control law in the case of using a power supply voltage corresponds to a power supply of a voltage higher than that of the lowest power supply (hereinafter referred to as the “minimum voltage power supply”) among the power supplies for which the corresponding charging SW element 60 is turned on.
  • Power generation SW element 60 is turned off.
  • the power generation path higher in voltage than the charge path with the lowest voltage hereinafter referred to as “minimum voltage charge path” among the charge paths to be energized is shut off.
  • the corresponding power generation SW element 60 may be turned on or off for a power supply having a voltage equal to or lower than the lowest voltage power supply.
  • the power generation path with a voltage lower than the lowest voltage charge path may be either on or off.
  • the sixth power source among the first power source to the nth power source arranged in descending order of voltage, it is the sixth power source that the charging path is turned on and the voltage is the lowest.
  • the power generation paths of the first to fifth power sources whose voltage is higher than that of the sixth power source may be off, and the power generation paths of the sixth to nth power sources may be on or off.
  • the first battery 22a and the second battery 22b are used, and in the third embodiment, the FC 152 and the battery 154 are used.
  • the power ECU 50 having the configuration shown in FIG. 7 is used (see FIG. 1, FIG. 19, FIG. 21, FIG. 24, and FIG. 27), but the configuration of the power ECU 50 is not limited to this.
  • the following modification can be used.
  • the bidirectional switch logic determination unit 122a (hereinafter referred to as “bidirectional SW logic determination unit 122a" or “logic determination unit 122a") of the logic generation unit 102a is configured to receive the power supply designation signals Sd1, Sd2 and Sd3 from the integrated ECU 18, and the load.
  • SW element selection signals Ss1, Ss2, Ss3 and Ss4 are output based on the load power P1 from the power calculation unit 180 and the power thresholds THp1 and THp2 (THp1> THp2) from the storage unit 130a.
  • load power P1 is compared with power thresholds THp1 and THp2, and when load power P1 is greater than power threshold THp1, it is determined that the "power generation state", and load power P1 is power threshold THp2 or more, power threshold When the load power P1 is less than the power threshold THp2, it is determined that it is in the "charge state” (see FIGS. 15 and 16).
  • Second Modified Example A power electronic control device 50b (hereinafter referred to as "power ECU 50b") shown in FIG. 35 differs from the power ECU 50 of FIG. 7 in that it has a load power calculation unit 180a.
  • Logic generation unit 102b is the same as logic generation unit 102a in the first modification, and power supply designation signals Sd1, Sd2 and Sd3 from integrated ECU 18, load power P2 from load power calculation unit 180a, and storage unit SW element selection signals Ss1, Ss2, Ss3 and Ss4 are output based on the power thresholds THp1 and THp2 (THp1> THp2) from 130a.
  • load power P2 is compared with power thresholds THp1 and THp2, and when load power P2 is larger than power threshold THp1, it is determined as "power generation state", and load power P2 is power threshold THp2 or more, power threshold When the load power P2 is less than the power threshold THp2, it is determined that it is in the "charge state” (see FIGS. 15 and 16).
  • Power ECU 50c power electronic control device 50c (hereinafter referred to as "power ECU 50c") shown in FIG. 36 differs from the power ECU 50 of FIG. 7 in that it has a load power calculation unit 180b.
  • Logic generation unit 102c is the same as logic generation unit 102a in the first modification, and power supply designation signals Sd1, Sd2 and Sd3 from integrated ECU 18, load power P3 from load power calculation unit 180b, and storage unit SW element selection signals Ss1, Ss2, Ss3 and Ss4 are output based on the power thresholds THp1 and THp2 (THp1> THp2) from 130a.
  • load power P3 is compared with power threshold values THp1 and THp2, and when load power P3 is larger than power threshold THp1, it is determined that "power generation state", and load power P3 is power threshold THp2 or more, power threshold When the load power P3 is less than the power threshold THp2, it is determined that it is in the "charge state” (see FIGS. 15 and 16).
  • a power electronic control device 50d (hereinafter referred to as “power ECU 50d”) shown in FIG. 37 has a torque command value T_c that is a bidirectional switch logic generation unit 102d (hereinafter referred to as “bidirectional SW logic generation unit 102d” or “logic This is different from the electric power ECU 50 of FIG. 7 in that it is input to the generation unit 102 d.
  • the logic generation unit 102d performs SW based on the power supply designation signals Sd1, Sd2 and Sd3 from the integrated ECU 18, the torque command value T_c from the integrated ECU 18, and the torque thresholds THt1 and THt2 (THt1> THt2) from the storage unit 130a.
  • the element selection signals Ss1, Ss2, Ss3 and Ss4 are output.
  • torque command value T_c and torque threshold values THt1 and THt2 are compared, and when torque command value T_c is larger than torque threshold value THt1, it is determined that "power generation state", and torque command value T_c is equal to or greater than torque threshold value THt2. When the torque command value T_c is less than the torque threshold value THt2, it is determined that it is in the "charged state” (see FIGS. 15 and 16). .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Secondary Cells (AREA)

Abstract

 電気自動車(10)の制御装置(50)は、少なくとも1スイッチング周期毎に半導体スイッチ(24a、24b)の通電又は遮断を固定する固定制御を行うとき、1電力系統の発電経路と充電経路の両方を遮断する第1遮断制御と、全電力系統の発電経路又は充電経路全てを遮断する第2遮断制御との少なくともどちらか一方を行うと共に、前記第1遮断制御のみを行う場合、前記第1遮断制御を行う電力系統がN-1個{Nは電源(22a、22b)及び半導体スイッチ(24a、24b)の数を示す2以上の整数}となるように半導体スイッチ(24a、24b)の通電又は遮断を制御する。

Description

電気自動車
 この発明は、それぞれ独立して電源電圧が変動する複数の電源を含む1次側と、インバータと該インバータに接続される駆動モータとを含む2次側とを備える電気自動車に関する。
 燃料電池車両やハイブリッド車両を含む電気自動車の開発が盛んである。電気自動車の中には、複数の電源からの電力を駆動モータに選択的に供給すると共に前記駆動モータからの回生電力を前記複数の電源に選択的に充電可能なものがある{特開2005-237064号公報(以下「JP2005-237064A」という。)}。JP2005-237064Aでは、車両の力行時には、複数のバッテリ(14)の中から一定電圧以上のものを選別し、さらにその中から最も電圧の低いものを選んで用いる(図2、段落[0031]~[0041]参照)。また、車両の回生時には、複数のバッテリの中から残容量が最も低いものを選択して充電する(図4、段落[0042]~[0050])。
 上記のように、JP2005-237064Aでは、車両の力行及び回生に応じて使用するバッテリを選択するが、バッテリの選択方法が限られている。
 この発明は、このような課題を考慮してなされたものであり、電源の使用方法の選択肢を拡げることが可能な電気自動車を提供することを目的とする。
 この発明に係る電気自動車は、それぞれ独立して電源電圧が変動するN個(Nは2以上の整数)の電源を含む1次側と、インバータと該インバータに接続される駆動モータとを含む2次側と、前記1次側と前記2次側を前記N個の電源が互いに並列になるように接続する第1番目から第N番目までの電力系統と、前記第1番目から第N番目までの電力系統それぞれに設けられ、発電方向及び充電方向からなる双方向の通電を別々に遮断可能なN個の半導体スイッチと、前記N個の半導体スイッチによる遮断を制御する制御装置とを含み、前記制御装置は、少なくとも1スイッチング周期毎に前記半導体スイッチの通電又は遮断を固定する固定制御を行うとき、1電力系統の発電経路と充電経路の両方を遮断する第1遮断制御と、全電力系統の発電経路又は充電経路全てを遮断する第2遮断制御との少なくともいずれか一方を行うと共に、前記第1遮断制御のみを行う場合、前記第1遮断制御を行う電力系統がN-1個となるように前記半導体スイッチの通電又は遮断を制御することを特徴とする。
 この発明によれば、1電力系統の発電経路と充電経路の両方を遮断する第1遮断制御のみを行う場合、第1遮断制御を行う電力系統がN-1個となるように半導体スイッチの通電又は遮断を制御する。このため、第1遮断制御のみを行う場合、半導体スイッチを通電させるのは1電力系統のみとなる。従って、並列回路を通じてある電源から別の電源に電流が流れ込む短絡状態の発生を防止することが可能となる。
 また、全電力系統の発電経路又は充電経路全てを遮断する第2遮断制御のみを行う場合、発電時には全ての充電経路が遮断され、充電時には全ての発電経路が遮断されることとなる。このため、第2遮断制御のみを行う場合も、上記短絡状態の発生を防止することが可能となる。
 よって、第1遮断制御及び第2遮断制御のいずれを行う場合も、上記短絡状態の発生を防止することが可能となる。このため、電源間の電圧差に起因する過大な電流(特に、電源の切替え時におけるもの)の発生を防止することが可能となると共に、電源同士の均等化に伴う電力損失を防ぐことができる。また、第1遮断制御及び第2遮断制御の少なくとも一方を用いる場合、電源間の電圧の高低を用いた処理を伴わなくても確実に短絡状態の発生を回避することができる。
 以上より、上記のような効果を伴って、電源の使用方法の選択肢を拡げることが可能となる。
 この発明に係る電気自動車は、それぞれ独立して電源電圧が変動するN個(Nは2以上の整数)の電源を含む1次側と、インバータと該インバータに接続される駆動モータとを含む2次側と、前記1次側と前記2次側を前記N個の電源が互いに並列になるように接続する第1番目から第N番目までの電力系統と、前記第1番目から第N番目までの電力系統それぞれに設けられ、発電方向及び充電方向からなる双方向の通電を別々に遮断可能なN個の半導体スイッチと、前記N個の半導体スイッチによる遮断を制御する制御装置とを含み、前記制御装置は、少なくとも1スイッチング周期毎に前記半導体スイッチの通電又は遮断を固定する固定制御を行っているとき、通電する発電経路の中で最も電圧の高い最高電圧発電経路より低い電圧である充電経路が遮断となる第1遮断状態、又は、通電する充電経路の中で最も電圧の低い最低電圧充電経路より高い電圧である発電経路が遮断となる第2遮断状態の少なくともいずれか一方の状態になるように前記半導体スイッチの通電又は遮断を切り替えることを特徴とする。
 この発明によれば、半導体スイッチの通電又は遮断を切り替える際、第1遮断状態又は第2遮断状態の少なくとも一方の状態となる。第1遮断状態では、通電する発電経路の中で最も電圧の高い最高電圧発電経路より低い電圧である充電経路が遮断となる。このため、並列回路を通じて最高電圧発電経路からいずれかの充電経路に電流が流れ込む短絡状態が発生しない。また、第2遮断状態では、通電する充電経路の中で最も電圧の低い最低電圧充電経路より高い電圧である発電経路が遮断となる。このため、並列回路を通じて最低電圧充電経路からいずれかの発電経路に電流が流れ込む短絡状態が発生しない。
 従って、第1遮断状態又は第2遮断状態のいずれの状態であっても、上記短絡状態の発生を防止することが可能となる。このため、電源間の電圧差に起因する過大な電流(特に、電源の切替え時におけるもの)の発生を防止することが可能になると共に、電源同士の均等化に伴う電力損失を防ぐことができる。
 以上より、上記のような効果を伴って、電源の使用方法の選択肢を拡げることが可能となる。
 前記半導体スイッチは、例えば、双方向スイッチとすることができる。これにより、双方向の通電及び遮断を別々に制御することが可能となる。
 ある電源の発電経路と他の電源の充電経路とを切り替える際、前記半導体スイッチの駆動信号にデッドタイムを挟んでもよい。これにより、より確実に電源間の短絡を防止することができる。
 前記制御装置は、ある電源の双方向通電状態から他の電源の双方向通電状態に移行させるように前記半導体スイッチを制御してもよい。これにより、電源を切り替えながら発電及び充電を行うことが可能となる。
 前記制御装置は、前記電気自動車が力行状態及び回生状態の中間状態にあるとき、ある電源の双方向通電状態から他の電源の双方向通電状態に移行させるように前記半導体スイッチを制御してもよい。これにより、発電用の電源と充電用の電源を区別して利用することが可能となる。
 前記制御装置は、前記電気自動車が力行状態であるとき、2つ以上の発電スイッチング素子を同時にオンさせてもよい。これにより、電源間の電圧差を比較しなくても電圧の高い方の電源から電力が供給されるため、高負荷で効率よく電力供給することが可能となる。また、電圧が低い、すなわち、蓄電容量が低い電源からの発電を防止することができる。
 前記制御装置は、前記電気自動車が回生状態であるとき、2つ以上の充電スイッチング素子を同時にオンさせてもよい。これにより、電源間の電圧差を比較しなくても自動的に電圧の低い電源に積極的に充電することが可能となる。すなわち、蓄電容量の少ない電源に積極的に充電することとなるため、蓄電装置の過放電防止が可能となる。
 前記電気自動車の力行状態と回生状態を判断し、力行状態のときに少なくとも2つ以上の発電スイッチング素子を接続し、回生状態のときに少なくとも2つ以上の充電スイッチング素子を接続してもよい。これにより、力行状態のとき、電源間の電圧差を比較しなくても電圧の高い方の電源から電力が供給されるため、高負荷で効率よく電力供給することが可能となる。また、電圧が低い、すなわち、蓄電容量が低い電源からの発電を防止することができる。加えて、回生状態のとき、電源間の電圧差を比較しなくても自動的に電圧の低い電源に積極的に充電することが可能となる。すなわち、蓄電容量の少ない電源に積極的に充電することとなるため、蓄電装置の過放電防止が可能となる。従って、状態に合わせた適切な制御が可能となる。
 さらに、前記力行状態と前記回生状態の中間状態を判定し、前記電気自動車が前記中間状態にあるとき、前記制御装置は、ある電源の双方向の通電を可能とし、他の電源を双方向に遮断するように前記半導体スイッチを制御してもよい。これにより、電気自動車が中間状態にあるとき、単一の電源による充放電を行うこととなる。このため、中間状態においても電源や制御装置は安定して動作することが可能となると共に、電源間の短絡を確実に防止することができる。
 前記中間状態は、前記インバータの入力電力及び入力電流並びに前記駆動モータのトルク及び負荷電力の少なくとも1つの指令値又は実測値に基づいて判定してもよい。
 前記中間状態は実電力がゼロを跨ぐまでの予測時間によって定めてもよい。
 前記制御装置は、前記インバータにおいて3相短絡状態が発生している間に前記半導体スイッチの通電又は遮断の切替えを行ってもよい。これにより、より確実に電源間の短絡を防止することができる。
 前記電源は、例えば、蓄電装置、燃料電池及び発電機の少なくとも1つを含んでもよい。
 第1番目から第N番目までの電圧センサを備え、前記電圧センサに基づき前記電源間の電圧の大小を把握し、把握した電圧に基づき制御を行ってもよい。これにより、把握した電圧に基づく制御を行うことで、確実に電源間の短絡を防止することが可能となる。
 この発明に係る電気自動車は、電源電圧が変動する第1電源及び第2電源の少なくとも2つの電源を含む1次側と、車両を駆動する3相交流ブラシレス式のモータと、直列に接続された一対の上アーム素子と下アーム素子が3相並列に接続され、前記上アーム素子と下アーム素子の中間に前記モータの3相線がそれぞれ接続されたインバータとを含む2次側と、前記1次側と前記2次側を前記第1電源と前記第2電源が互いに並列になるように接続する第1電力系統及び第2電力系統と、前記モータの電源として前記第1電源と前記第2電源のいずれを使用するかを切り替えるスイッチと、前記インバータの上アーム素子が全てオンであり且つ下アーム素子が全てオフである、又は前記上アーム素子が全てオフであり且つ前記下アーム素子が全てオンである3相短絡状態において、前記スイッチを切り替える制御装置とを有する。
 この発明によれば、インバータに3相短絡状態が発生した状態で、モータの電源としての第1電源と第2電源とを切り替える。このため、第1電源と第2電源の切替えに伴う電圧変動がモータに伝達しない。従って、モータの意図しないトルク変動を防止することができる。
 前記制御装置は、3相それぞれの電圧指令値とキャリア信号の比較結果に基づき各相の上アームスイッチング素子及び下アームスイッチング素子のオンオフを制御し、3相全ての前記電圧指令値よりキャリア信号が高くなった場合、又は3相全ての前記電圧指令値よりキャリア信号が低くなった場合を検知して3相短絡状態であると検知してもよい。
 これにより、インバータの通常制御中、3相全ての上アームスイッチング素子又は下アームスイッチング素子がオンになったときを3相短絡状態であると判定し、当該3相短絡状態においてスイッチを切り替えることが可能となる。従って、インバータの通常制御中、モータの意図しないトルク変動を防止しつつ、スイッチを切り替えることができる。
 前記制御装置は、前記第1電源と前記第2電源とを切り替える切替え要求を受けると、3相全ての上アームスイッチング素子又は下アームスイッチング素子に駆動信号を出力し、強制的に3相短絡状態を発生させてもよい。これにより、第1電源と第2電源の切替えが必要なとき、適切なタイミングで当該切替えを行うことが可能となる。
この発明の第1実施形態に係る電気自動車の概略構成図である。 第1実施形態に係る電気自動車の回路構成の一部を示す図である。 第1実施形態に係る電気自動車で用いられる双方向スイッチの第1変形例を示す図である。 第1実施形態に係る電気自動車で用いられる双方向スイッチの第2変形例を示す図である。 第1実施形態に係る電気自動車で用いられる双方向スイッチの第3変形例を示す図である。 第1実施形態に係る電気自動車で用いられる双方向スイッチの第4変形例を示す図である。 第1実施形態に係る電力電子制御装置の機能的なブロック図である。 第1実施形態に係る双方向スイッチ論理生成部の機能的なブロック図である。 第1実施形態に係るPWM生成部の機能的なブロック図である。 インバータにおいて3相の下アーム素子が短絡している状態を示す図である。 インバータにおいて3相の上アーム素子が短絡している状態を示す図である。 キャリア信号と電圧指令値と駆動信号との関係の一例を示す図である。 強制短絡を行う際の駆動信号の波形の例を示す図である。 第1実施形態において用いる各モードと各スイッチング素子のオンオフの関係を示す図である。 インバータの入力電流が正から負に切り替わる様子と各スイッチング素子の制御との関係を示す図である。 インバータの入力電流が負から正に切り替わる様子と各スイッチング素子の制御との関係を示す図である。 第1実施形態の電気自動車における各種信号の出力波形の一例を示す図である。 図17の一部を拡大して示す図である。 この発明の第2実施形態に係る電気自動車の概略構成図である。 第2実施形態において用いる各モードと各スイッチング素子のオンオフの関係を示す図である。 この発明の第3実施形態に係る電気自動車の概略構成図である。 第3実施形態に係る電気自動車の回路構成の一部を示す図である。 第3実施形態において用いる各モードと各スイッチング素子のオンオフの関係を示す図である。 この発明の第4実施形態に係る電気自動車の概略構成図である。 第4実施形態に係る電気自動車の回路構成の一部を示す図である。 第4実施形態において用いる各モードと各スイッチング素子のオンオフの関係を示す図である。 この発明の第5実施形態に係る電気自動車の概略構成図である。 第5実施形態において用いる各モードと各スイッチング素子のオンオフの関係を示す図である。 電源電圧を用いない場合の第1制御法則の説明図である。 電源電圧を用いない場合の第2制御法則の説明図である。 電源電圧を用いる場合の第1制御法則の説明図である。 電源電圧を用いる場合の第2制御法則の説明図である。 図7の電力電子制御装置の第1変形例の機能的なブロック図である。 図33の電力電子制御装置で用いる双方向スイッチ論理生成部の機能的なブロック図である。 図7の電力電子制御装置の第2変形例の機能的なブロック図である。 図7の電力電子制御装置の第3変形例の機能的なブロック図である。 図7の電力電子制御装置の第4変形例の機能的なブロック図である。
I.第1実施形態
A.構成の説明
1.電気自動車10全体
 図1は、この発明の第1実施形態に係る電気自動車10の概略構成図である。図2は、電気自動車10の回路構成の一部を示す図である。電気自動車10は、走行用のモータ12と、トランスミッション14と、車輪16と、統合電子制御装置18(以下「統合ECU18」という。)と、電力系20とを有する。
2.モータ12
 モータ12は、3相交流ブラシレス式であり、電力系20から供給される電力に基づいて駆動力を生成し、当該駆動力によりトランスミッション14を通じて車輪16を回転する。また、モータ12は、回生を行うことで生成した電力(回生電力Preg)[W]を電力系20に出力する。回生電力Pregは、図示しない補機に対して出力してもよい。
 モータ12の具体的な構成としては、例えば、{特開2009-240125号公報(以下「JP2009-240125A」という。)}に記載の構成を用いることができる。
3.統合ECU18
 統合ECU18は、電気自動車10全体の制御系を制御するものであり、図示しない入出力装置、演算装置、記憶装置等を有する。第1実施形態において、統合ECU18は、発電に使用するバッテリ及び充電に使用するバッテリそれぞれとして第1バッテリ22a及び第2バッテリ22bの少なくとも一方を選択する(詳細は後述する。)。
4.電力系20
(1)電力系20の全体構成
 電力系20は、モータ12に電力を供給すると共に、モータ12からの回生電力Pregが供給されるものである。電力系20は、第1バッテリ22a及び第2バッテリ22bに加え、第1双方向スイッチ24a(以下「第1双方向SW24a」という。)と、第2双方向スイッチ24b(以下「第2双方向SW24b」という。)と、インバータ26と、電圧センサ28、30、32と、電流センサ38、40、42、44、46と、レゾルバ48と、電力電子制御装置50(以下「電力ECU50」と称する。)とを有する。
(2)第1バッテリ22a及び第2バッテリ22b
 第1バッテリ22a及び第2バッテリ22bのそれぞれは、複数のバッテリセルを含み、高電圧(第1実施形態では数百ボルト)を出力可能な蓄電装置(エネルギストレージ)であり、例えばリチウムイオン2次電池又はキャパシタ等を利用することができる。第1実施形態ではリチウムイオン2次電池を利用している。
 第1バッテリ22aの出力電圧(以下「第1バッテリ電圧Vbat1」という。)[V]は、電圧センサ28により検出され、第1バッテリ22aの出力電流(以下「第1バッテリ電流Ibat1」という。)[A]は、電流センサ38により検出され、それぞれ電力ECU50に出力される。
 同様に、第2バッテリ22bの出力電圧(以下「第2バッテリ電圧Vbat2」という。)[V]は、電圧センサ30により検出され、第2バッテリ22bの出力電流(以下「第2バッテリ電流Ibat2」という。)[A]は、電流センサ40により検出され、それぞれ電力ECU50に出力される。
 第1バッテリ22a及び第2バッテリ22bの正極側は接続点52において連結し、第1バッテリ22a及び第2バッテリ22bの負極側は接続点54において連結する。正極側の接続点52は、インバータ26の接続点56に接続し、負極側の接続点54は、インバータ26の接続点58に接続する。従って、第1バッテリ22aを含む電源経路及び第2バッテリ22bを含む電源経路は、インバータ26及びモータ12に対して並列に接続されている。
 なお、以下では、第1バッテリ22a及び第2バッテリ22b(並びに第3実施形態以降についてはバッテリ154)をバッテリ22と総称し、第1バッテリ22a及び第2バッテリ22b(並びに第3実施形態以降についてはバッテリ154)からの出力電圧をバッテリ電圧Vbatと総称し、第1バッテリ22a及び第2バッテリ22b(並びに第3実施形態以降についてはバッテリ154)からの出力電流をバッテリ電流Ibatと総称する。
(3)第1双方向SW24a及び第2双方向SW24b
 第1双方向SW24a及び第2双方向SW24bは、電力ECU50からの指令に応じて、第1バッテリ22a及び第2バッテリ22bの発電方向と充電方向のオンオフ(通電/遮断)を別々に切り替えることができる。
 第1実施形態の第1双方向SW24a及び第2双方向SW24bは、双方向型の絶縁ゲートバイポーラトランジスタ(IGBT)である。すなわち、第1双方向SW24aは、発電方向(電力系20からモータ12への方向)への通電及び遮断を切り替える発電スイッチング素子60a(以下「発電SW素子60a」又は「SW素子60a」という。)と、充電方向(モータ12から電力系20への方向)への通電及び遮断を切り替える充電スイッチング素子62a(以下「充電SW素子62a」又は「SW素子62a」という。)とを有する。
 同様に、第2双方向SW24bは、発電方向への通電及び遮断を切り替える発電スイッチング素子60b(以下「発電SW素子60b」又は「SW素子60b」という。)と、充電方向への通電及び遮断を切り替える充電スイッチング素子62b(以下「充電SW素子62b」又は「SW素子62b」という。)とを有する。
 各SW素子60a、60b、62a、62bは、電力ECU50からの駆動信号Sh1、Sh2、Sl1、Sl2によりオンオフが制御される。
 なお、双方向型のIGBTである第1双方向SW24a及び第2双方向SW24bの代わりに、図3に示すダイオードブリッジ70、図4及び図5に示す逆導通IGBT72、74、又は図6に示す逆阻止IGBT76を用いることもできる。
 また、図2に示すように、第1バッテリ22aと第1双方向SW24aとの間には、第1平滑コンデンサ78aが配置され、第2バッテリ22bと第2双方向SW24bとの間には、第2平滑コンデンサ78bが配置される。
 なお、以下では、第1双方向SW24a及び第2双方向SW24b(並びに第4実施形態以降では後述する第3双方向スイッチ24c)を双方向スイッチ24又は双方向SW24と総称する。また、発電SW素子60a、60b(及び第4実施形態以降では後述する発電スイッチング素子60c)を発電スイッチング素子60又はSW素子60と総称する。充電SW素子62a、62b(及び第4実施形態以降では後述する充電スイッチング素子62c)を充電スイッチング素子62又はSW素子62と総称する。
(4)インバータ26
 インバータ26は、3相フルブリッジ型の構成とされて、直流/交流変換を行い、直流を3相の交流に変換してモータ12に供給する一方、回生動作に伴う交流/直流変換後の直流を第1バッテリ22a及び第2バッテリ22bの少なくとも一方に供給する。
 図2に示すように、インバータ26は、3相の相アーム82u、82v、82wを有する。
 U相アーム82uは、上アームスイッチング素子86u(以下「上アームSW素子86u」という。)及びダイオード88uを有する上アーム素子84uと、下アームスイッチング素子92u(以下「下アームSW素子92u」という。)及びダイオード94uとを有する下アーム素子90uとで構成される。
 同様に、V相アーム82vは、上アームスイッチング素子86v(以下「上アームSW素子86v」という。)及びダイオード88vを有する上アーム素子84vと、下アームスイッチング素子92v(以下「下アームSW素子92v」という。)及びダイオード94vを有する下アーム素子90vとで構成される。W相アーム82wは、上アームスイッチング素子86w(以下「上アームSW素子86w」という。)とダイオード88wを有する上アーム素子84wと、下アームスイッチング素子92w(以下「下アームSW素子92w」という。)とダイオード94wを有する下アーム素子90wとで構成される。
 上アームSW素子86u、86v、86wと下アームSW素子92u、92v、92wには、例えば、MOSFET又はIGBT等が採用される。
 なお、以下では、各相アーム82u、82v、82wを相アーム82と総称し、各上アーム素子84u、84v、84wを上アーム素子84と総称し、各下アーム素子90u、90v、90wを下アーム素子90と総称し、各上アームSW素子86u、86v、86wを上アームSW素子86と総称し、各下アームSW素子92u、92v、92wを下アームSW素子92と総称する。
 各相アーム82において、上アーム素子84と下アーム素子90の中点96u、96v、96wは、モータ12の巻線98u、98v、98wに連結されている。以下では、巻線98u、98v、98wを巻線98と総称する。
 各上アームSW素子86及び各下アームSW素子92は、電力ECU50からの駆動信号UH、VH、WH、UL、VL、WLにより駆動される。
(5)電圧センサ28、30、32
 上述のように、電圧センサ28は、第1バッテリ22aの第1バッテリ電圧Vbat1を検出し、電力ECU50に出力する。電圧センサ30は、第2バッテリ22bの第2バッテリ電圧Vbat2を検出し、電力ECU50に出力する。
 電圧センサ32は、接続点52、56を結ぶ経路と接続点54、58を結ぶ経路との間に接続され、インバータ26の入力電圧Vinv[V]を検出し、電力ECU50に出力する。
(6)電流センサ38、40、42、44、46
 上述のように、電流センサ38は、第1バッテリ22aの第1バッテリ電流Ibat1を検出し、電力ECU50に出力する。電流センサ40は、第2バッテリ22bの第2バッテリ電流Ibat2を検出し、電力ECU50に出力する。
 電流センサ42は、接続点52、56を結ぶ経路上においてインバータ26の入力電流Iinv[A]を検出し、電力ECU50に出力する。
 電流センサ44は、モータ12の巻線98uにおけるU相の電流(U相電流Iu)を検出し、電力ECU50に出力する。同様に、電流センサ46は、巻線98wにおけるW相の電流(W相電流Iw)を検出し、電力ECU50に出力する。
 なお、電流センサ44、46は、モータ12の3相のうちの2つの相を検出するものであれば、U相とW相の組合せ以外の電流を検出するものであってもよい。
(7)レゾルバ48
 レゾルバ48(図1)は、モータ12の図示しない出力軸又は外ロータの回転角度(モータ12の図示しないステータに対して固定された座標系での回転角度)である電気角θを検出する。レゾルバ48の構成としては、例えば、JP2009-240125Aに記載のものを用いることができる。
(8)電力ECU50
(a)全体構成
 電力ECU50は、電力系20全体を制御するものであり、図示しない入出力装置、演算装置、記憶装置等を有する。第1実施形態における電力ECU50は、主として、インバータ26の制御と双方向SW24の制御とを行う。
 図7には、電力ECU50の機能的なブロック図が示されている。図7に示すように、電力ECU50は、双方向スイッチ論理生成部102(以下「双方向SW論理生成部102」又は「論理生成部102」という。)と、電気角速度算出部104と、3相-dq変換部106と、電流指令算出部108と、減算器110、112と、電流フィードバック制御部114(以下「電流FB制御部114」という。)と、dq-3相変換部116と、PWM生成部118とを有する。
 各双方向SW24のオンオフは、論理生成部102により制御される。各双方向SW24のオンオフを切り替える際は、論理生成部102によりインバータ26が3相短絡状態にされる(詳細は後述する。)。
 インバータ26の制御は、電気角速度算出部104と、3相-dq変換部106と、電流指令算出部108と、減算器110、112と、電流FB制御部114と、dq-3相変換部116と、PWM生成部118とを用いて行われる。
(b)SW24のオンオフの制御系
 上記のように、各双方向SW24のオンオフは、論理生成部102により制御される。
 図8には、双方向SW論理生成部102の機能的なブロック図が示されている。図8に示すように、論理生成部102は、双方向スイッチ論理決定部122(以下「双方向SW論理決定部122」又は「論理決定部122」という。)と、双方向スイッチ論理更新指令部124(以下「双方向SW論理更新指令部124」又は「論理更新指令部124」という。)と、双方向スイッチ論理出力部126(以下「双方向SW論理出力部126」又は「論理出力部126」という。)と、デッドタイム生成部128と、記憶部130とを有する。
 論理決定部122は、統合ECU18からの電源指定信号Sd1、Sd2、Sd3と、インバータ26の入力電流Iinvと、記憶部130からの電流閾値THi1、THi2とに基づいて、スイッチング素子選択信号Ss1、Ss2、Ss3、Ss4(以下「SW素子選択信号Ss1、Ss2、Ss3、Ss4」という。)を生成し、論理出力部126に送信する。
 電源指定信号Sd1、Sd2、Sd3は、発電用、発電/充電切替え用、充電用の電源(第1実施形態では、第1バッテリ22a及び第2バッテリ22b)を指定するものである。より具体的には、電源指定信号Sd1は、発電用の電源を指定するものであり、電源指定信号Sd2は、発電/充電切替え用の電源を指定するものであり、電源指定信号Sd3は、充電用の電源を指定するものである。
 論理決定部122は、インバータ26の入力電流Iinvと電流閾値THi1、THi2とを用いて、電気自動車10の力行状態(バッテリ22の発電時)、回生状態(バッテリ22の充電状態)及びこれらの中間状態(バッテリ22の発電/充電切替え時)を判定し、利用する電源指定信号Sd1、Sd2、Sd3を選択する(詳細は後述する。)。
 SW素子選択信号Ss1、Ss2、Ss3、Ss4は、各双方向SW24の各SW素子60a、60b、62a、62bのうち、いずれをオンとし、いずれをオフとするかを選択するものである。より具体的には、SW素子選択信号Ss1は、発電SW素子60aをオンさせるものであり、SW素子選択信号Ss2は、発電SW素子60bをオンさせるものであり、SW素子選択信号Ss3は、充電SW素子62aをオンさせるものであり、SW素子選択信号Ss4は、充電SW素子62bをオンさせるものである。換言すると、各SW素子選択信号Ss1、Ss2、Ss3、Ss4がハイのとき、これに対応するSW素子60a、60b、62a、62bをオンとし、SW素子選択信号Ss1、Ss2、Ss3、Ss4がローのとき、これに対応するSW素子60a、60b、62a、62bをオフとする。
 なお、後述する第4実施形態及び第5実施形態のように、電源が3つ以上ある場合、電源の数に2を乗じた数のSW素子選択信号が出力される。
 また、論理決定部122は、SW素子選択信号Ss1、Ss2、Ss3、Ss4の論理(ハイ又はロー)を変更したときは、その旨(すなわち、論理の更新の準備が完了した旨)を通知する更新準備完了信号Suを論理更新指令部124に出力する。
 論理更新指令部124は、論理決定部122からの更新準備完了信号Suと、PWM生成部118からの双方向スイッチ論理切替許可信号Sal(以下「切替許可信号Sal」という。)とに基づいて論理更新実行信号Scを生成し、論理出力部126に送信する。
 切替許可信号Salは、双方向SW24の切替えが許可される際に、PWM生成部118から論理更新指令部124に対して送信されるものである(詳細は後述する。)。
 論理更新指令部124は、論理決定部122においてSW素子選択信号Ss1、Ss2、Ss3、Ss4の論理の更新の準備が完了し、且つ双方向SW24の切替えが可能となったときに論理更新実行信号Scを論理出力部126に出力する。
 論理出力部126は、論理決定部122からのSW素子選択信号Ss1、Ss2、Ss3、Ss4と、論理更新指令部124からの論理更新実行信号Scとに基づいて、各SW素子60a、60b、62a、62bへの駆動信号Sh1、Sh2、Sl1、Sl2を生成し、デッドタイム生成部128に出力する。
 より具体的には、論理更新指令部124から論理更新実行信号Scを受信しないとき{論理更新実行信号Scがロー(論理0)であるとき}、論理出力部126は、論理決定部122からのSW素子選択信号Ss1、Ss2、Ss3、Ss4の論理が変更されていても(SW素子60a、60b、62a、62bのオンオフの切替えを求めていても)、変更前の論理を維持し、SW素子60a、60b、62a、62bのオンオフを切り替えることなく、駆動信号Sh1、Sh2、Sl1、Sl2を同じ論理で出力し続ける。この場合、SW素子60a、60b、62a、62bのオンオフを切り替えてしまうと、第1バッテリ22aと第2バッテリ22bとの間で短絡が生じてしまう等の不具合が発生するおそれがあるためである。
 一方、論理出力部126は、論理更新指令部124から論理更新実行信号Scを受信しているとき{論理更新実行信号Scがハイ(論理1)であるとき}、論理決定部122からのSW素子選択信号Ss1、Ss2、Ss3、Ss4に応じた論理で駆動信号Sh1、Sh2、Sl1、Sl2を出力する。この場合、そのタイミングでSW素子60a、60b、62a、62bのオンオフを切り替えても、上記不具合が発生するおそれがないためである。
 デッドタイム生成部128は、論理出力部126からの駆動信号Sh1、Sh2、Sl1、Sl2にデッドタイムdtを挿入して各SW素子60a、60b、62a、62bに出力する。デッドタイムdtを挿入するのは、意図しない短絡を防止するためである。
(c)インバータ26の制御系
 上記のように、インバータ26の制御は、電気角速度算出部104と、3相-dq変換部106と、電流指令算出部108と、減算器110、112と、電流FB制御部114と、dq-3相変換部116と、PWM生成部118とを用いて行われる。なお、インバータ26の制御系としては、基本的に、JP2009-240125Aに記載のものを用いることが可能であり、第1実施形態において省略されている構成要素についても付加的に適用可能である。
 図7の電気角速度算出部104は、レゾルバ48からの電気角θを微分することで、モータ12の出力軸の回転速度(=外ロータの回転速度)の検出値(観測値)としての電気角速度ωを算出し、電流指令算出部108に出力する。
 3相-dq変換部106は、電流センサ44からのU相電流Iuと、電流センサ46からのW相電流Iwと、レゾルバ48からの電気角θとを用いて3相-dq変換を行い、d軸方向の電流成分としてのd軸電機子の電流(以下「d軸電流Id」という。)と、q軸方向の電流成分としてのq軸電機子の電流(以下「q軸電流Iq」という。)を算出する。そして、3相-dq変換部106は、d軸電流Idを減算器110に出力し、q軸電流Iqを減算器112に出力する。
 なお、3相-dq変換は、U相電流Iuと、W相電流Iwと、これらから求められるV相電流Iw(=-Iu-Iw)との組を、電気角θ(より詳しくは電気角θでの出力軸の回転角度)に応じた変換行列によりd軸電流Idとq軸電流Iqとの組に変換する処理である。
 電流指令算出部108は、d軸電流Idの指令値であるd軸電流指令値Id_cとq軸電流Iqの指令値であるq軸電流指令値Iq_cとを算出する。すなわち、電流指令算出部108には、統合ECU18から与えられるトルク指令値T_cと、電気角速度算出部104で求められた電気角速度ωとが入力される。そして、電流指令算出部108は、これらの入力値から、予め設定されたマップに基づいて、d軸電流指令値Id_c及びq軸電流指令値Iq_cを算出する。このd軸電流指令値Id_c及びq軸電流指令値Iq_cは、トルク指令値T_cのトルクをモータ12の出力軸に発生させるためのd軸電流及びq軸電流のフィードフォワード指令値としての意味を持つ。
 なお、トルク指令値T_cは、例えばモータ12を推進力発生源として搭載した電気自動車10のアクセル操作量(アクセルペダルの踏込み量)や走行速度に応じて決定される。また、トルク指令値T_cには、力行トルクの指令値と回生トルクの指令値とがあり、それらの指令値は、正負の極性が異なるものとされる。
 減算器110は、d軸電流指令値Id_cとd軸電流Idとの偏差(=Id_c-Id)(以下「d軸電流偏差ΔId」という。)を演算し、電流FB制御部114に出力する。減算器112は、q軸電流指令値Iq_cとq軸電流Iqとの偏差(=Iq_c-Iq)(以下「q軸電流偏差ΔIq」という。)を演算し、電流FB制御部114に出力する。
 電流FB制御部114は、減算器110、112からのd軸電流偏差ΔId及びq軸電流偏差ΔIqに応じて、d軸電機子の電圧指令値(d軸電圧の目標値)であるd軸電圧指令値Vd_cと、q軸電機子の電圧指令値(q軸電圧の目標値)であるq軸電圧指令値Vq_cとを演算し、dq-3相変換部116に出力する。
 電流FB制御部114は、d軸電流偏差ΔIdに応じて、d軸電流偏差ΔIdを0に近づけるようにPI制御(比例・積分制御)等のフィードバック制御によりd軸電圧指令値Vd_cを決定する。同様に、電流FB制御部114は、q軸電流偏差ΔIqに応じて、q軸電流偏差ΔIqを0に近づけるようにPI制御などのフィードバック制御によりq軸電圧指令値Vq_cを決定する。
 なお、d軸電圧指令値Vd_cとq軸電圧指令値Vq_cとを決定するとき、d軸電流偏差ΔId、q軸電流偏差ΔIqからフィードバック制御によりそれぞれ求められるd軸電圧指令値、q軸電圧指令値に、d軸とq軸との間で干渉し合う速度起電力の影響を打ち消すための非干渉成分を付加することで、d軸電圧指令値Vd_cとq軸電圧指令値Vq_cを求めることが好ましい。
 dq-3相変換部116は、電流FB制御部114からのd軸電圧指令値Vd_c及びq軸電圧指令値Vq_cと、レゾルバ48からの電気角θとを用いてdq-3相変換を行い、U相、V相、W相の各相の相電圧指令値Vu_c、Vv_c、Vw_cを算出し、PWM生成部118に出力する。なお、dq-3相変換は、d軸電圧指令値Vd_cおよびq軸電圧指令値Vq_cの組を、電気角θ(より詳しくは電気角での出力軸の回転角度)に応じた変換行列により相電圧指令値Vu_c、Vv_c、Vw_cの組に変換する処理である。
 PWM生成部118は、これらの相電圧指令値Vu_c、Vv_c、Vw_cに応じて、モータ12の各相の巻線98にパルス幅変調(PWM)制御によりインバータ26を介して通電する。PWM生成部118は、インバータ26の各SW素子86、92のオンオフを制御することで、各相の巻線98に通電する。
 図9には、PWM生成部118の機能的なブロック図が示されている。図9に示すように、PWM生成部118は、デューティ値演算部132(以下「DUT演算部132」という。)と、キャリア信号生成部134と、コンパレータ136u、136v、136wと、3相論理強制変換部138と、3相論理判定部140と、NOT回路142u、142v、142wと、デッドタイム生成部144とを有する。
 DUT演算部132は、インバータ26の入力電圧Vinvと、相電圧指令値Vu_c、Vv_c、Vw_cとに応じて各上アームSW素子86のディーティ値DUT1[%]を規定する3相の電圧指令値THu、THv、THwを演算し、コンパレータ136u、136v、136wに出力する。すなわち、U相の電圧指令値THuはコンパレータ136uに、V相の電圧指令値THvはコンパレータ136vに、W相の電圧指令値THwはコンパレータ136wに出力される。
 キャリア信号生成部134は、キャリア信号Scaを生成し、各コンパレータ136u、136v、136wに出力する。
 コンパレータ136uは、電圧指令値THuとキャリア信号Scaとを比較し、キャリア信号Scaが電圧指令値THu未満であるとき、論理0を出力し、キャリア信号Scaが電圧指令値THu以上であるとき、論理1を出力する。コンパレータ136v、136wも同様である。
 3相論理強制変換部138は、統合ECU18からの強制短絡要求Rsを受信しないとき(強制短絡要求Rsの信号線が論理0のとき)、コンパレータ136u、136v、136wからの出力をそのまま3相論理判定部140に出力する。一方、統合ECU18からの強制短絡要求Rsを受信したとき(強制短絡要求Rsの信号線が論理1のとき)は、コンパレータ136u、136v、136wからの出力にかかわらず、3相全てについて強制的に論理0を3相論理判定部140に出力する。或いは、論理0にする代わりに3相全てについて論理1を出力してもよい。
 3相論理判定部140は、3相全てについて論理0又は論理1であるかどうかを判定し、3相全てについて論理0又は論理1である場合、切替許可信号Salを論理生成部102に出力する。また、3相論理判定部140は、3相論理強制変換部138からの論理をそのままNOT回路142u、142v、142w及びデッドタイム生成部144に出力する。
 NOT回路142u、142v、142wは、各下アームSW素子92のデューティ値DUT2[%]を演算するものであり、3相論理判定部140から通知された論理を反転させてデッドタイム生成部144に出力する。なお、上アームSW素子86のデューティ値DUT1と下アームSW素子92のデューティ値DUT2の和は、100%となる。
 デッドタイム生成部144は、3相論理判定部140から通知された3相の論理信号にデッドタイムdtを挿入して各上アームSW素子86に駆動信号UH、VH、WHを出力する。また、デッドタイム生成部144は、NOT回路142u、142v、142wから通知された3相の論理信号にデッドタイムdtを挿入して各下アームSW素子92に駆動信号UL、VL、WLを出力する。
 以上説明したインバータ26の制御系によって、d軸電圧とq軸電圧との合成電圧が、電源電圧に応じた目標値(電圧円の半径)を超えないようにしつつ、モータ12の出力軸に発生するトルク(モータ12の出力トルク)をトルク指令値T_cに従わせるように(d軸電流偏差ΔId及びq軸電流偏差ΔIqが0に収束するように)、d軸電圧指令値Vd_c及びq軸電圧指令値Vq_cの組が決定される。そして、このd軸電圧指令値Vd_c及びq軸電圧指令値Vq_cに応じて、モータ12の各相の巻線98の通電電流が制御される。
B.各種制御
1.インバータ26の短絡制御
 上記のように、各双方向SW24のオンオフの際は、PWM生成部118によりインバータ26が3相短絡状態にされる。
 具体的には、PWM生成部118は、3相の下アームSW素子92を全てオンにする(図10参照)、又は3相の上アームSW素子86を全てオンにする(図11参照)。これにより、インバータ26は3相短絡状態となり、インバータ26には、第1バッテリ22a及び第2バッテリ22bのいずれからも電力が供給されなくなる。
 PWM生成部118は、dq-3相変換部116からの相電圧指令値Vu_c、Vv_c、Vw_cに基づいて上記3相短絡状態を発生させる。或いは、PWM生成部118は、統合ECU18からの強制短絡要求Rsに基づいて上記3相短絡状態を強制的に発生させる。
 dq-3相変換部116からの相電圧指令値Vu_c、Vv_c、Vw_cに基づいて上記短絡状態を発生させる場合、次のような処理がなされる。
 まず前提として、第1実施形態において、PWM生成部118は、スイッチング周期毎に各相アーム82への駆動信号UH、UL、VH、VL、WH、WLを生成する。ここで、上記のように、1スイッチング周期全体におけるデューティ値DUTを100%とすると、下アームSW素子92のデューティ値DUT2は、100%から上アームSW素子86へのデューティ値DUT1を引いたものとして演算され、さらに、上アームSW素子86及び下アームSW素子92それぞれのデューティ値DUT1、DUT2にデッドタイムdtを反映させたものが、実際に出力される駆動信号UH、UL、VH、VL、WH、WLとなる。
 また、各相の上アームSW素子86のデューティ値DUT1は、各相で電圧指令値THu、THv、THwを設定しておき、キャリア信号Scaが各電圧指令値THu、THv、THw以上となったときに、駆動信号UH、VH、WHが出力されるように設定される。
 このため、図12に示す例の場合、時点t1以前及び時点t1から時点t2の間は、キャリア信号Scaは、各電圧指令値THu、THv、THw未満であるため、いずれの上アームSW素子86にも駆動信号UH、VH、WHは出力されない{駆動信号UH、VH、WHはロー(論理0)である。}。従って、各下アームSW素子92の全てに駆動信号UL、VL、WLが出力される{駆動信号UL、VL、WLがハイ(論理1)になる。}。この場合、全ての下アームSW素子92がオンとなるため、図10に示すような短絡状態が発生する。
 また、時点t2から時点t3まではキャリア信号Scaは、電圧指令値THu以上となるため、U相の上アームSW素子86uはオンとなるが、V相及びW相の上アームSW素子86はオフであり、3相短絡状態は発生しない。同様に、時点t3から時点t4まではキャリア信号Scaは、電圧指令値THu、THv以上となるため、U相及びV相の上アームSW素子86u、86vはオンとなるが、W相の上アームSW素子86wはオフであり、3相短絡状態は発生しない。
 時点t4から時点t5まではキャリア信号Scaは、全ての電圧指令値THu、THv、THw以上となり、全ての相の上アームSW素子86がオンとなるため、図11に示すような3相短絡状態が発生する。
 統合ECU18からの強制短絡要求Rsに基づいて3相短絡状態を強制的に発生させる場合、PWM生成部118は、例えば、図13に示すように、駆動信号UH、VH、WHの全てをオンとする(具体的な処理については後述する。)。
2.双方向SW24のオンオフ制御
 次に、各双方向SW24のオンオフ制御について説明する。
 第1実施形態では、統合ECU18は、第1バッテリ22aの第1バッテリ電圧Vbat1と第2バッテリ22bの第2バッテリ電圧Vbat2を比較することなしに、いずれのバッテリ22を用いるかを設定する。
 統合ECU18は、例えば、図14に示すモードを適宜切り替えて用いる。すなわち、第1実施形態では、統合ECU18は、「停止時」、「1電源発電」、「1電源充電」、「1電源利用」、「高電圧バッテリ発電」及び「低電圧バッテリ充電」の各モードを選択して用いる。
 これらのモードの切替えは、インバータ26に対する駆動信号UH、UL、VH、VL、WH、WLの生成のように、1スイッチング周期においてオンオフ(ハイ/ロー)を切り替えるものではなく、切替えの必要が生じたときに適宜行うものである。換言すると、1スイッチング周期では、各SW素子60、62のオンオフを固定する制御(固定制御)を用いる(第2~第5実施形態においても同様である。)。
 「停止時」モードは、電気自動車10の停止時に用いるモードであり、各双方向SW24のいずれのスイッチング素子60、62もオフにする。
 「1電源発電」モードは、第1バッテリ22a及び第2バッテリ22bの一方を発電用として用いるモードである。「1電源発電」モードは、例えば、一方のバッテリ22が直ぐ後に交換されることがわかっている場合でモータ12が力行状態であるとき、一方のバッテリ22に不具合が生じたとき、ユーザの意志により使用したいバッテリ22があるときに用いられる。
 「1電源充電」モードは、第1バッテリ22a及び第2バッテリ22bの一方を充電用として用いるモードである。「1電源充電」モードは、例えば、一方のバッテリ22が直ぐ後に交換されることがわかっている場合でモータ12が回生状態であるとき、一方のバッテリ22に不具合が生じたとき、ユーザの意志により使用したいバッテリ22があるときに用いられる。
 なお、「1電源発電」モードと「1電源充電」モードを組み合わせることにより、発電に用いるバッテリ22と充電に用いるバッテリ22とを切り替えることができる。
 「1電源利用」モードは、第1バッテリ22a及び第2バッテリ22bの一方を発電用及び充電用に用い、他方を発電用及び充電用のいずれにも用いないモードである。「1電源利用」モードは、例えば、一方のバッテリ22が直ぐ後に交換されることがわかっている場合でモータ12が力行状態か回生状態かの区別が難しい状態(すなわち、中間状態)であるとき、一方のバッテリ22に不具合が生じたとき、ユーザの意志により使用したいバッテリ22があるときに用いられる。
 「高電圧バッテリ発電」モードは、第1バッテリ22a及び第2バッテリ22bの発電SW素子60a、60bのそれぞれをオンとし、相対的に電圧が高いバッテリ22から発電を行うモードである。すなわち、電気自動車10が力行状態にある場合、発電SW素子60a、60bの両方がオンであれば、第1バッテリ22a及び第2バッテリ22bの少なくとも一方からモータ12に電力が供給される。ここで、第1バッテリ22aと第2バッテリ22bとの間に電圧差がある場合、より電圧の高いバッテリ22からモータ12に電力が供給され、より電圧の低いバッテリ22からは電力が供給されない。従って、発電SW素子60a、60bの両方をオンにしているにもかかわらず、実質的に、より電圧の高いバッテリ22のみを選択して電力供給させることとなる。「高電圧バッテリ発電」モードは、例えば、電圧の高いバッテリ22でモータ12を駆動したい場合、電圧の高いバッテリ22は蓄電容量(SOC)が高いバッテリ22であるため、余裕のあるバッテリ22から優先的に出力したいときに用いられる。
 「低電圧バッテリ充電」モードは、第1バッテリ22a及び第2バッテリ22bの充電SW素子62a、62bのそれぞれをオンとし、相対的に電圧が低いバッテリに充電を行うモードである。すなわち、電気自動車10が回生状態にある場合、充電SW素子62a、62bの両方がオンであれば、モータ12から第1バッテリ22a及び第2バッテリ22bの少なくとも一方に電力が供給される。ここで、第1バッテリ22aと第2バッテリ22bとの間に電圧差がある場合、モータ12からの回生電力Pregは、より電圧の低いバッテリ22に供給され易くなり、より電圧の高いバッテリ22には供給され難くなる。従って、充電SW素子62a、62bの両方をオンにしているにもかかわらず、実質的に、より電圧の低いバッテリ22を優先的に充電させることとなる。「低電圧バッテリ充電」モードは、例えば、電圧の低いバッテリ22を充電したいとき、電圧の低いバッテリ22はSOCが低いバッテリ22であるため、SOCの低下しているバッテリ22に優先的に充電したいときに用いられる。
 図14からもわかるように、第1実施形態では、第1バッテリ22a及び第2バッテリ22bの一方が発電しているときは他方は充電できないように各SW素子60、62を制御する。同様に、第1バッテリ22a及び第2バッテリ22bの一方が充電しているときは他方は発電できないように各SW素子60、62を制御する。言い換えると、図14では、各モードにおいてオンが斜めに存在すること(発電SW素子60aがオン且つ充電SW素子62bがオンとなること、又は発電SW素子60bがオン且つ充電SW素子62aがオンとなること)がないようにしている。これにより、第1バッテリ22a及び第2バッテリ22bの間で短絡が発生することを防止することができる。
 さらに換言すると、第1実施形態では、次の第1制御法則と第2制御法則の少なくとも一方が成立するように各SW素子60a、60b、62a、62bのオンオフを選択することで、第1バッテリ22aと第2バッテリ22bの間における短絡の発生を防止する。
 すなわち、第1制御法則とは、双方向SW24がN個(Nは、2以上の整数)ある場合、発電SW素子60と充電SW素子62がいずれもオフとなる双方向SW24がN-1個存在するものである。換言すると、発電経路と充電経路の両方がオフとなる電力系統がN-1個存在する。この場合、残りの1つの電力系統の双方向SW24については、発電SW素子60と充電SW素子62の一方のみがオンであってもよく、また、発電SW素子60と充電SW素子62の両方がオンであってもよい。
 第2制御法則とは、全て(N個)の双方向SW24の発電SW素子60又は充電SW素子62全てがオフとなるものである。換言すると、全ての電力系統の発電経路又は充電経路がオフとなる。この場合、全てがオンとなる発電経路又は充電経路とは逆の充電経路又は発電経路は、一部又は全てをオンとすることができる。
 上記の第1制御法則及び第2制御法則を用いることにより、第1バッテリ22aと第2バッテリ22bとの間における短絡を防止することができる。
3.双方向SW24の切替え時の制御
 次に、各モードを切り替える際の各SW素子60、62の制御について説明する。上記のように、各モードを切り替える際は、インバータ26では、各下アームSW素子92の3相短絡状態(図10)又は各上アームSW素子86の3相短絡状態(図11)を発生させる。
(1)単純な切替え
 「停止時」モードとその他のモードとを切り替える場合(例えば、「停止時」から「1電源発電」への切替え又はその逆)、電力ECU50は、各SW素子60、62のオンオフを図14に示した状態に単純に切り替える。このような切替えによっても、第1バッテリ22aと第2バッテリ22bとの間で短絡は発生しない。但し、切替え時にはデッドタイム生成部128においてデッドタイムdtを挿入する。
 同様に、「1電源発電(第1バッテリ)」から「1電源発電(第2バッテリ)」に切り替える場合、その逆の場合、「1電源充電(第1バッテリ)」から「1電源充電(第2バッテリ)」に切り替える場合、その逆の場合、「1電源発電(第1バッテリ)」若しくは「1電源発電(第2バッテリ)」から「高電圧バッテリ発電」に切り替える場合、その逆の場合、「1電源充電(第1バッテリ)」若しくは「1電源充電(第2バッテリ)」から「低電圧バッテリ充電」に切り替える場合、その逆の場合、電力ECU50は、各SW素子60、62のオンオフを図14に示した状態にそのまま切り替える。このような切替えによっても、第1バッテリ22aと第2バッテリ22bとの間で短絡は発生しない。但し、切替え時にはデッドタイム生成部128においてデッドタイムdtを挿入する。
(2)段階的な切替え
 上記のような単純な切替えでは、第1バッテリ22aと第2バッテリ22bとの間で短絡が発生する場合、例えば、次のような制御を用いて短絡を防止することができる。
(a)電気自動車10の力行時には一方のバッテリ22について「1電源利用」モードを実行し、回生時には他方のバッテリ22について「1電源利用」モードを実行する場合
 例えば、電気自動車10の力行状態では「1電源利用(第1バッテリ)」モードを実行して第1バッテリ22aから発電し、回生状態では「1電源利用(第2バッテリ)」モードを実行して第2バッテリ22bに充電する場合、次のように、各SW素子60、62を切り替える。
 図15に示すように、インバータ26の入力電流Iinvが正から負に切り替わる場合、すなわち、電気自動車10が力行状態から回生状態に切り替わる場合について説明する。まず、インバータ26の入力電流Iinvが電流閾値THi1を超える場合(便宜的に、この状態を「発電状態」という。)、第1双方向SW24aの発電SW素子60a及び充電SW素子62aの両方をオンにする。一方、第2双方向SW24bの発電SW素子60b及び充電SW素子62bの両方をオフにする。
 時点t11において、インバータ26の入力電流Iinvが電流閾値THi1以下になった場合、第1双方向SW24aの発電SW素子60a及び充電SW素子62aの両方をオフにする。その後、第2双方向SW24bの発電SW素子60b及び充電SW素子62bの両方をオンにする。インバータ26の入力電流Iinvが電流閾値THi2以上、電流閾値THi1以下である場合(便宜的に、この状態を「発電/充電切替え状態」という。)、このオンオフ制御を継続する。
 時点t12において、インバータ26の入力電流Iinvが閾値THi2未満になった場合(便宜的に、この状態を「充電状態」という。)、第1双方向SW24aの発電SW素子60a及び充電SW素子62aの両方はオフのまま保持する。一方、第2双方向SW24bでは、発電SW素子60b及び充電SW素子62bの両方をオンのまま維持する。
 次に、図16に示すように、インバータ26の入力電流Iinvが負から正に切り替わる場合、すなわち、電気自動車10が回生状態から力行状態に切り替わる場合について説明する。まず、インバータ26の入力電流Iinvが電流閾値THi2未満である場合、第1双方向SW24aの発電SW素子60a及び充電SW素子62aの両方をオフにする。一方、第2双方向SW24bの発電SW素子60b及び充電SW素子62bの両方をオンにする。
 時点t21において、インバータ26の入力電流Iinvが電流閾値THi2以上になった場合、第2双方向SW24bの発電SW素子60b及び充電SW素子62bの両方をオフにする。その後、第1双方向SW24aの発電SW素子60a及び充電SW素子62bの両方をオンにする。インバータ26の入力電流Iinvが電流閾値THi2以上、電流閾値THi1以下である場合、このオンオフ制御を継続する。
 時点t22において、インバータ26の入力電流Iinvが電流閾値THi1以上になった場合、第1双方向SW24aの発電SW素子60a及び充電SW素子62aの両方はオンのまま保持する。一方、第2双方向SW24bでは、発電SW素子60b及び充電SW素子62bの両方をオフのまま維持する。
 なお、上記では、インバータ26の入力電流Iinvに基づいて第1双方向SW24aと第2双方向SW24bのオンオフを制御したが、インバータ26の入力電圧Vinv又はモータ12の消費電力(回生電力)によって制御することも可能である。或いは、発電と充電との切り替わり時点が判別可能である場合、当該切り替わり時点の前後の所定時点によってSW素子60、62のオンオフ切替えをすることも可能である。発電と充電との切り替わり時点が判別可能である場合としては、例えば、実電力がゼロを跨ぐまでの予測時間を用いる場合がある。
(b)「高電圧バッテリ発電」モードと「低電圧バッテリ充電」モードを組み合わせて用いる場合
 「高電圧バッテリ発電」モードと「低電圧バッテリ充電」モードを組み合わせて用いる場合、次のように、各SW素子60、62を切り替える。なお、以下では、第1バッテリ電圧Vbat1よりも第2バッテリ電圧Vbat2の方が高いものとする(Vbat1<Vbat2)。
 図15に示すように、インバータ26の入力電流Iinvが正から負に切り替わる場合、すなわち、電気自動車10が力行状態から回生状態に切り替わる場合について説明する。まず、インバータ26の入力電流Iinvが電流閾値THi1を超える場合、各発電SW素子60a、60bをオンにし、各充電SW素子62a、62bをオフにする。この場合、より電圧が高い第2バッテリ22bからの電力がインバータ26に供給され、より電圧が低い第1バッテリ22aからは電力が供給されない。また、各充電SW素子62a、62bはオフであるため、第1バッテリ22aと第2バッテリ22bとの間で短絡は発生せず、第2バッテリ22bからの電力が第1バッテリ22aに供給されることはない。
 時点t11において、インバータ26の入力電流Iinvが電流閾値THi1以下になった場合、第1双方向SW24aの発電SW素子60aをオフにする。その後、第2双方向SW24bの充電SW素子62bをオンにする。その結果、第1双方向SW24aの発電SW素子60a及び充電SW素子62aはオフとなり、第2双方向SW24bの発電SW素子60b及び充電SW素子62bはオンになる。インバータ26の入力電流Iinvが電流閾値THi2以上、電流閾値THi1以下である場合、このオンオフ状態を継続する。
 時点t12において、インバータ26の入力電流Iinvが電流閾値THi2未満になった場合、第2双方向SW24bの発電SW素子60bをオフにする。その後、第1双方向SW24aの充電SW素子62aをオンにする。その結果、各発電SW素子60a、60bはオフとなり、各充電SW素子62a、62bはオンになる。この場合、モータ12からの回生電力Pregは、より電圧が低い第1バッテリ22aに優先的に充電される。また、各発電SW素子60a、60bはオフであるため、第1バッテリ22aと第2バッテリ22bとの間で短絡は発生せず、第2バッテリ22bからの電力が第1バッテリ22aに供給されることはない。
 次に、図16に示すように、インバータ26の入力電流Iinvが負から正に切り替わる場合、すなわち、電気自動車10が回生状態から力行状態に切り替わる場合について説明する。まず、インバータ26の入力電流Iinvが電流閾値THi2未満である場合、各発電SW素子60a、60bをオフにし、各充電SW素子62a、62bをオンにする。この場合、モータ12からの回生電力Pregは、より電圧が低い第1バッテリ22aに優先的に充電される。また、各発電SW素子60a、60bはオフであるため、第1バッテリ22aと第2バッテリ22bとの間で短絡は発生せず、第2バッテリ22bからの電力が第1バッテリ22aに供給されることはない。
 時点t21において、インバータ26の入力電流Iinvが電流閾値THi2以上になった場合、第1双方向SW24aの充電SW素子62aをオフにする。その後、第2双方向SW24bの発電SW素子60bをオンにする。その結果、第1双方向SW24aの発電SW素子60a及び充電SW素子62aはオフとなり、第2双方向SW24bの発電SW素子60b及び充電SW素子62bはオンになる。インバータ26の入力電流Iinvが電流閾値THi2以上、電流閾値THi1以下である場合、このオンオフ制御を継続する。
 時点t22において、インバータ26の入力電流Iinvが電流閾値THi1以上になった場合、第2双方向SW24bの充電SW素子62bをオフにする。その後、第1双方向SW24aの発電SW素子60aをオンにする。その結果、各発電SW素子60a、60bはオンとなり、各充電SW素子62a、62bはオフになる。この場合、より電圧が高い第2バッテリ22bからの電力がインバータ26に供給され、より電圧が低い第1バッテリ22aからは電力が供給されない。また、各充電SW素子62a、62bはオフであるため、第1バッテリ22aと第2バッテリ22bとの間で短絡は発生せず、第2バッテリ22bからの電力が第1バッテリ22aに供給されることはない。
 なお、上記では、インバータ26の入力電流Iinvに基づいて第1双方向SW24aと第2双方向SW24bのオンオフを制御したが、インバータ26の入力電圧Vinv又はモータ12の消費電力(回生電力)によって制御することも可能である。或いは、発電と充電との切り替わり時点が判別可能である場合、当該切り替わり時点の前後の所定時点によってSW素子60、62のオンオフ切替えをすることも可能である。発電と充電との切り替わり時点が判別可能である場合としては、例えば、実電力がゼロを跨ぐまでの予測時間を用いる場合がある。
C.出力波形の例
 図17には、第1実施形態の電気自動車10における強制短絡要求Rs、各SW素子60a、60b、62a、62bへの駆動信号Sh1、Sh2、Sl1、Sl2、第1バッテリ電圧Vbat1、第2バッテリ電圧Vbat2、インバータ26の出力電圧Vinv、第1バッテリ電流Ibat1、第2バッテリ電流Ibat2、インバータ26の出力電流Iinv、U相電流Iu、V相電流Iv、W相電流Iwの出力波形の一例が示されている。図18には、図17の時点t31周辺を拡大した出力波形が示されている。
 図17及び図18に示されるように、時点t31より前は、駆動信号Sh1、Sl1がハイ(論理1)、駆動信号Sh2、Sl2がロー(論理0)であるため、SW素子60a、62aがオン、SW素子60b、62bがオフである。このため、インバータ26の入力電圧Vinvは、第1バッテリ22aの第1バッテリ電圧Vbat1と等しく、インバータ26の入力電流Iinvは、第1バッテリ22aの第1バッテリ電流Ibat1と略等しい。
 時点t31において強制短絡要求Rsがなされると(論理が1になると)、例えば、駆動信号UH、VH、WHを全てハイ(論理1)とし、インバータ26で3相短絡状態を強制的に発生させ、インバータ26の入力電圧Vinvを一旦ゼロにさせる。ここで、駆動信号Sh1、Sl1をロー(論理0)に、駆動信号Sh2、Sl2をハイ(論理1)に切り替え、SW素子60a、62aをオフに、SW素子60b、62bをオンにする。そして、3相短絡が終了すると、インバータ26の入力電圧Vinvは、第2バッテリ22bの第2バッテリ電圧Vbat2と等しく、インバータ26の入力電流Iinvは、第2バッテリ22bの第2バッテリ電流Ibat2と等しくなる。
D.第1実施形態の効果
 以上のように、第1実施形態によれば、第1バッテリ電圧Vbat1及び第2バッテリ電圧Vbat2を用いない場合の第2制御法則(第2遮断制御)を用いず、第1制御法則のみを用いる場合、すなわち、1電力系統の発電経路と充電経路が遮断する第1遮断制御のみを行う場合、第1遮断制御を行う電力系統がN-1個となるように双方向SW24の通電又は遮断を制御する(図14参照)。このため、第1遮断制御のみを行う場合、双方向SW24を通電させるのは、1電力系統のみである。従って、並列回路を通じて一方のバッテリ22から他方のバッテリ22に電流が流れ込む短絡状態の発生を防止することが可能となる。
 また、第2制御法則のみを用いる場合、発電時には全ての充電SW素子62がオフとされ(充電経路が遮断され)、充電時には全ての発電SW素子60がオフとされる(発電経路が遮断される)こととなる。このため、第2制御法則のみを用いる場合も、バッテリ22間の短絡状態の発生を防止することが可能となる。
 よって、第1制御法則及び第2制御法則のいずれを用いる場合も、バッテリ22間の短絡状態の発生を防止することが可能となる。このため、バッテリ22間の電圧差に起因する過大な電流(特に、バッテリ22の切替え時におけるもの)の発生を防止することが可能となると共に、バッテリ22同士の均等化に伴う電力損失を防ぐことができる。また、第1制御法則及び第2制御法則の少なくとも一方を用いる場合、バッテリ22間の電圧の高低を用いた処理を伴わなくても確実に短絡状態の発生を回避することができる。
 以上より、上記のような効果を伴って、バッテリ22の使用方法の選択肢を拡げることが可能となる。
 第1実施形態では、双方向の通電を別々に遮断可能な半導体スイッチとして、双方向SW24を用いる。これにより、双方向の通電及び遮断を別々に制御することが可能となる。
 第1実施形態では、各SW素子60、62のオンオフを切り替える際、例えば、第1バッテリ22a及び第2バッテリ22bの一方の発電経路と他方の充電経路とを切り替える際、各SW素子60、62の駆動信号Sh1、Sl1、Sh2、Sl2にデッドタイムdtを挟む。これにより、より確実に第1バッテリ22aと第2バッテリ22bとの間の短絡を防止することができる。
 第1実施形態では、「1電源利用(第1バッテリ)」モードから「1電源利用(第2バッテリ)」モードに切り替わる場合、又はその逆の場合、電力ECU50は、一方のバッテリ22の双方向通電状態から他方のバッテリ22の双方向通電状態に移行するように各SW素子60、62を制御する。これにより、バッテリ22を切り替えながら発電及び充電を行うことが可能となる。
 第1実施形態では、「1電源利用(第1バッテリ)」モードから「1電源利用(第2バッテリ)」モードへの切替え又はその逆の切替えは、電気自動車10の力行状態及び回生状態の中間状態としての「発電/充電切替え状態」(図15及び図16参照)において行う。これにより、発電用のバッテリ22と充電用のバッテリ22を区別して利用することが可能となる。
 第1実施形態では、「高電圧バッテリ発電」モードの際、電気自動車10が力行状態であるとき、電力ECU50は、発電SW素子60a、60bを同時にオンさせる(図14参照)。これにより、第1バッテリ電圧Vbat1及び第2バッテリ電圧Vbat2を比較しなくても電圧の高い方のバッテリ22から電力供給がなされるため、高負荷で効率よく電力供給することが可能となる。また、電圧が低い、すなわち、SOCが低いバッテリ22からの発電を防止することができる。
 第1実施形態では、「低電圧バッテリ充電」モードの際、電気自動車10が回生状態であるとき、電力ECU50は、充電SW素子62a、62bを同時にオンさせる(図14参照)。これにより、第1バッテリ電圧Vbat1及び第2バッテリ電圧Vbat2を比較しなくても自動的に電圧の低いバッテリ22に積極的に充電することが可能となる。すなわち、SOCの少ないバッテリ22に積極的に充電することとなるため、バッテリ22の過放電防止が可能となる。
 第1実施形態では、電気自動車10の力行状態において「高電圧バッテリ発電」モードを用い、回生状態において「低電圧バッテリ充電」モードを用いることができる。これにより、状態に合わせた適切な制御が可能となる。
 第1実施形態では、「高電圧バッテリ発電」モードと「低電圧バッテリ充電」モードを組み合わせて用いる際、電気自動車10の力行状態(発電状態)と回生状態(充電状態)の中間状態としての「発電/充電切替え状態」を判断し、発電/充電切替え状態にあるとき、SW素子60b、62bをオンとすることで第2バッテリ22bの双方向の通電を可能とし、SW素子60a、62aをオフとすることで第1バッテリ22aを双方向に遮断することができる。これにより、発電/充電切替え状態にあるとき、単一のバッテリ22による充放電を行うこととなる。このため、発電/充電切替え状態においても、電力ECU50及びバッテリ22は安定して動作することが可能となると共に、第1バッテリ22aと第2バッテリ22bとの間の短絡を確実に防止できる。
 第1実施形態では、電力ECU50は、インバータ26において3相短絡状態が発生している間に各SW素子60、62のオンオフの切替えを行う。これにより、第1バッテリ22aと第2バッテリ22bとの間の短絡をより確実に防止することができる。
 第1実施形態によれば、インバータ26に3相短絡状態が発生した状態で、各スイッチング素子60、62のオンオフの切替え、すなわち、バッテリ22の切替えを行う。このため、バッテリ22の切替えに伴う電圧変動がモータ12に伝達しない。従って、モータ12の意図しないトルク変動を防止することができる。
 第1実施形態では、電力ECU50は、3相それぞれの電圧指令値THu、THv、THwとキャリア信号Scaの比較結果に基づき各相の上アームSW素子86及び下アームSW素子92のオンオフを制御し、3相全ての電圧指令値電圧指令値THu、THv、THwよりキャリア信号Scaが高くなった場合、又は3相全ての電圧指令値THu、THv、THwよりキャリア信号Scaが低くなった場合を検知して3相短絡状態であると検知する(図12参照)。
 これにより、インバータ26の通常制御中、3相全ての上アームSW素子86又は下アームSW素子92がオンになったときを3相短絡状態であると判定し、当該3相短絡状態において各SW素子60、62を切り替えることが可能となる。従って、インバータ26の通常制御中、モータ12の意図しないトルク変動を防止しつつ、各SW素子60、62を切り替えることができる。
 第1実施形態では、電力ECU50は、バッテリ22を切り替えるための強制短絡要求Rsを受けると、3相全ての上アームSW素子86に駆動信号UH、VH、WHを出力し又は下アームSW素子92に駆動信号UL、VL、WLを出力し、強制的に3相短絡状態を発生させる。これにより、バッテリ22の切替えが必要なとき、適切なタイミングで当該切替えを行うことが可能となる。
II.第2実施形態
A.構成の説明(第1実施形態との相違)
 図19は、この発明の第2実施形態に係る電気自動車10Aの概略構成図である。電気自動車10Aは、第1実施形態の電気自動車10と同様の構成を有するが、電圧センサ28、30の検出値(第1バッテリ電圧Vbat1及び第2バッテリ電圧Vbat2)を統合ECU18に入力することが必須である点や統合ECU18によるバッテリ22の選択等で、第1実施形態と異なる。
 以下では、第1実施形態と同じ構成要素については同一の参照符号を付してその説明を省略する。
B.双方向SW24のオンオフ制御
 次に、各双方向SW24のオンオフ制御について説明する。
 第2実施形態では、統合ECU18は、第1バッテリ22aの第1バッテリ電圧Vbat1と第2バッテリ22bの第2バッテリ電圧Vbat2を比較して、いずれのバッテリ22を用いるかを設定する。
 統合ECU18は、例えば、図20に示すモードを適宜切り替えて用いる。すなわち、第2実施形態では、統合ECU18は、第1実施形態と同様、「停止時」、「1電源発電」、「1電源充電」、「1電源利用」、「高電圧バッテリ発電」及び「低電圧バッテリ充電」の各モードを選択可能である。これに加え、統合ECU18は、「1電源発電及び1電源充電」、「高電圧バッテリ発電及び1電源充電」及び「1電源発電及び低電圧バッテリ充電」の各モードを選択して用いる。
 但し、第1実施形態と異なり、第2実施形態で用いる「1電源発電」、「1電源充電」及び「1電源利用」の各モードは、電圧の高低に応じて設定可能である。
 具体的には、「1電源発電」モードは、第1実施形態と同様、第1バッテリ22a及び第2バッテリ22bの一方を発電用として用いるモードであるが、第2実施形態では、相対的に電圧が高いバッテリ(図20では第1バッテリ22a)を用いるモードと、相対的に電圧が低いバッテリ(図20では第2バッテリ22b)を用いるモードとを選択できる。
 「1電源充電」モードは、第1実施形態と同様、第1バッテリ22a及び第2バッテリ22bの一方を充電用として用いるモードであるが、第2実施形態では、相対的に電圧が高いバッテリ(図20では第1バッテリ22a)を用いるモードと、相対的に電圧が低いバッテリ(図20では第2バッテリ22b)を用いるモードとを選択できる。
 「1電源利用」モードは、第1実施形態と同様、第1バッテリ22a及び第2バッテリ22bの一方を発電用及び充電用に用い、他方を発電用及び充電用のいずれにも用いないモードであるが、第2実施形態では、相対的に電圧が高いバッテリ(図20では第1バッテリ22a)を用いるモードと、相対的に電圧が低いバッテリ(図20では第2バッテリ22b)を用いるモードとを選択できる。
 なお、「1電源発電」、「1電源充電」及び「1電源停止」のいずれのモードにおいても、電圧の高低は、電圧センサ28からの第1バッテリ電圧Vbat1と、電圧センサ30からの第2バッテリ電圧Vbat2とを用いて統合ECU18が判定する。電圧判定を要するその他のモードについても同様である。
 また、第1実施形態で用いた「1電源発電」、「1電源充電」及び「1電源停止」モード(バッテリ電圧の判定なしに選択可能なもの)を併せて用いることもできる。
 次に、第2実施形態で加わった「1電源発電及び1電源充電」、「高電圧バッテリ発電及び1電源充電」及び「1電源発電及び低電圧バッテリ充電」モードについて説明する。
 「1電源発電及び1電源充電」モードは、第1バッテリ22aと第2バッテリ22bのうち電圧の低い方について「1電源発電」モードを、電圧の高い方について「1電源充電」モードを行うモードである。「1電源発電及び1電源充電」モードは、例えば、一方のバッテリ22が直ぐ後に交換されることがわかっている場合でモータ12が力行か回生かの判断がつかない状態であり、交換予定のバッテリ22から出力したい場合に用いることができる。「1電源発電」モードと「1電源充電」モードとの切替えは、第1実施形態で説明した方法を用いることができる。
 「高電圧バッテリ発電及び1電源充電」モードは、電気自動車10が力行状態のとき、「高電圧バッテリ発電」モードを行い、電気自動車10が回生状態のとき、第1バッテリ22aと第2バッテリ22bのうち電圧の高い方について「1電源充電」モードを行うモードである。「高電圧バッテリ発電及び1電源充電」モードは、例えば、一方のバッテリ22が直ぐ後に交換されることがわかっている場合でモータ12が力行か回生かの判断がつかない状態であり、できるだけ交換予定のバッテリ22から出力したい場合に用いることができる。「高電圧バッテリ発電」モードと「1電源充電」モードとの切替えは、第1実施形態で説明した方法を用いることができる。
 「1電源発電及び低電圧バッテリ充電」モードは、電気自動車10が力行状態のとき、第1バッテリ22aと第2バッテリ22bのうち電圧の低い方について「1電源発電」モードを行い、電気自動車10が回生状態のとき、「低電圧バッテリ充電」モードを行うモードである。「1電源発電及び低電圧バッテリ充電」モードは、例えば、一方のバッテリ22が直ぐ後に交換されることがわかっている場合でモータ12が力行か回生かの判断がつかない状態であり、できるだけ交換しないバッテリ22に充電したい場合に用いることができる。「1電源発電」モードと「低電圧バッテリ充電」モードとの切替えは、第1実施形態で説明した方法を用いることができる。
 上述の通り、第1実施形態では、バッテリ22の一方が発電しているときは他方は充電できないようにSW素子60、62を制御し、バッテリ22の一方が充電しているときは他方は発電できないようにSW素子60、62を制御する。言い換えると、図14では、各モードにおいてオンが斜めに存在すること(発電SW素子60aがオン且つ充電SW素子62bがオンとなること、又は発電SW素子60bがオン且つ充電SW素子62aがオンとなること)がないようにしている。これにより、第1バッテリ22a及び第2バッテリ22bの間で短絡が発生することを防止することができる。
 これに対し、第2実施形態で加わった「1電源発電及び1電源充電」、「高電圧バッテリ発電及び1電源充電」及び「1電源発電及び低電圧バッテリ充電」モードは、上記の規則(すなわち、第1実施形態における第1制御法則及び第2制御法則)に反するものである。
 しかし、第2実施形態では、第1バッテリ電圧Vbat1及び第2バッテリ電圧Vbat2を用いた次の第1制御法則及び第2制御法則を用いて、短絡の発生を防止している。
 すなわち、第2実施形態の第1制御法則とは、対応する発電SW素子60がオンとされるバッテリ22のうち最もバッテリ電圧Vbatが高いもの(以下「最高電圧バッテリ」という。)よりも低いバッテリ電圧のバッテリ22に対応する充電SW素子62をオフにする。換言すると、通電する発電経路の中で最も電圧の高い発電経路(以下「最高電圧発電経路」という。)より低い電圧の充電経路を遮断する。この場合、最高電圧バッテリ以上の電圧のバッテリ22については、対応する充電SW素子62をオンオフいずれにしてもよい。換言すると、最高電圧発電経路以上の電圧の充電経路についてはオンオフいずれにしてもよい。
 例えば、図20の「1電源発電及び1電源充電」モードでは、第1バッテリ電圧Vbat1の方が第2バッテリ電圧Vbat2よりも高いため、第2バッテリ22bに対応する充電SW素子62bがオフにされる。これにより、第1バッテリ22aからの電力が第2バッテリ22bに供給されることがなくなり、両バッテリ22間の短絡を防止することができる。
 第2実施形態の第2制御法則とは、対応する充電SW素子62がオンとされるバッテリ22のうち最も電圧が低いもの(以下「最低電圧バッテリ」という。)よりも高い電圧のバッテリ22に対応する発電SW素子60をオフにする。換言すると、通電する充電経路の中で最も電圧の低い充電経路(以下「最低電圧充電経路」という。)よりも高い電圧の発電経路を遮断する。この場合、最低電圧バッテリ以下の電圧のバッテリ22については、対応する発電SW素子60をオンオフいずれにしてもよい。換言すると、最低電圧充電経路以下の電圧の発電経路についてはオンオフいずれにしてもよい。
 例えば、図20の「1電源発電及び1電源充電」モードでは、第1バッテリ電圧Vbat1の方が第2バッテリ電圧Vbat2よりも高いため、第1バッテリ22aに対応する発電SW素子60aがオフにされる。これにより、第1バッテリ22aからの電力が第2バッテリ22bに供給されることがなくなり、両バッテリ22間の短絡を防止することができる。
 上記のような第2実施形態の第1制御法則及び第2制御法則を用いることにより、第1バッテリ22aと第2バッテリ22bとの間における短絡を防止することができる。
C.第2実施形態の効果
 以上のように、第2実施形態によれば、第1実施形態の効果に加え、下記の効果を奏することができる。
 すなわち、第2実施形態によれば、第1バッテリ電圧Vbat1及び第2バッテリ電圧Vbat2を用いる場合の第1制御法則及び第2制御法則に基づいて各SW素子60、62を制御する。第1制御法則(第1遮断状態)では、対応する発電SW素子60がオンになるバッテリ22の中でも最も電圧の高い最高電圧バッテリより低い電圧であるバッテリ22に対応する充電SW素子62がオフとなる。換言すると、通電する発電経路の中で最も電圧の高い最高電圧発電経路より低い電圧である充電経路が遮断となる。このため、並列回路を通じて最高電圧バッテリ(最高電圧発電経路)からいずれかのバッテリ22(充電経路)に電流が流れ込む短絡状態が発生しない。
 また、第2制御法則(第2遮断状態)では、対応する充電SW素子62がオンになるバッテリ22の中でも最も電圧の低い最低電圧バッテリより高い電圧であるバッテリ22に対応する発電SW素子60がオフとなる。換言すると、通電する充電経路の中で最も電圧の低い最低電圧充電経路より高い電圧である発電経路が遮断となる。このため、並列回路を通じて最低電圧バッテリ(最低電圧充電経路)からいずれかのバッテリ22(発電経路)に電流が流れ込む短絡状態が発生しない。
 従って、第1制御法則又は第2制御法則のいずれを用いる場合であっても、バッテリ22間での短絡状態の発生を防止することが可能となる。このため、バッテリ22間の電圧差に起因する過大な電流(特に、バッテリ22の切替え時におけるもの)の発生を防止することが可能になると共に、バッテリ22同士の均等化に伴う電力損失を防ぐことができる。
 以上より、上記のような効果を伴って、バッテリ22の使用方法の選択肢を拡げることが可能となる。
 第2実施形態では、第1バッテリ22a及び第2バッテリ22bそれぞれの電圧センサ28、30を備え、電圧センサ28、30に基づきバッテリ22間の電圧の大小を把握し、把握した電圧に基づき制御を行う。これにより、把握した電圧に基づく制御を行うことで、確実にバッテリ22間の短絡を防止できる。
III.第3実施形態
A.構成の説明(上記各実施形態との相違)
 図21は、この発明の第3実施形態に係る電気自動車10Bの概略構成図である。図22は、電気自動車10Bの回路構成の一部を示す図である。電気自動車10Bは、上記各実施形態と同様、走行用のモータ12と、トランスミッション14と、車輪16と、統合ECU18と、電力系20bとを有する。
 以下では、上記各実施形態と同じ構成要素については同一の参照符号を付してその説明を省略する。
 電力系20bは、モータ12に電力を供給すると共に、モータ12からの回生電力Pregが供給されるものである。電力系20bは、燃料電池152(以下「FC152」という。)と、バッテリ154と、DC/DCコンバータ156と、第1双方向SW24aと、第2双方向SW24bと、インバータ26と、電圧センサ32、158、160と、電流センサ42、44、46、162、164と、レゾルバ48と、電力ECU50とを有する。電力系20bはFC152を有するため、電気自動車10Bは燃料電池車両である。
 FC152は、例えば、固体高分子電解質膜をアノード電極とカソード電極とで両側から挟み込んで形成されたセルを積層したスタック構造にされている。FC152には、図示しない反応ガス供給部が配管を通じて接続されている。反応ガス供給部は、一方の反応ガスである水素(燃料ガス)を貯留する水素タンクと、他方の反応ガスである空気(酸化剤ガス)を圧縮するコンプレッサを備えている。反応ガス供給部からFC152に供給された水素と空気のFC152内での電気化学反応により生成された発電電流がモータ12とバッテリ154に供給される。
 バッテリ154は、第1実施形態の第1バッテリ22a又は第2バッテリ22bと同様のものである。
 DC/DCコンバータ156は、一方側(1次側)がバッテリ154に接続され、他方側(1次側)がFC152とインバータ26との接続点52に接続されたチョッパ型の電圧変換装置である。DC/DCコンバータ156は、1次側の電圧(以下「1次電圧V1」という。)を2次側の電圧(以下「2次電圧V2」という。)に電圧変換(昇圧変換)するとともに、2次電圧V2を1次電圧V1に電圧変換(降圧変換)する昇降圧型の電圧変換装置である(V1≦V2)。
 DC/DCコンバータ156により2次電圧V2を制御することにより、FC152の出力を制御することが可能である。当該制御としては、例えば、米国特許出願公開第2009/0243386号公報に記載のものを用いることができる。
 電圧センサ158は、FC152の出力電圧(以下「FC電圧Vfc」という。)[V]を検出する。電圧センサ160は、バッテリ154の出力電圧(以下「バッテリ電圧Vbat」という。)[V]を検出する。
 電流センサ162は、FC152の出力電流(以下「FC電流Ifc」という。)[A]を検出する。電流センサ164は、DC/DCコンバータ156の2次側の出力電流(以下「コンバータ出力電流Icon」という。)[A]を検出する。
B.各種制御
1.双方向SW24のオンオフ制御
 次に、各双方向SW24のオンオフ制御について説明する。
 第3実施形態では、FC152は発電を行うのみで充電することができない。この点を踏まえ、統合ECU18は、以下のように各双方向SW24を制御する。
 統合ECU18は、例えば、図23に示すモードを適宜切り替えて用いる。すなわち、第3実施形態では、統合ECU18は、第1実施形態と同様、「停止時」、「1電源発電」、「1電源充電」及び「1電源利用」の各モードを選択して用いる。このうち、「1電源発電(FC)」モードでは、バッテリ154に対応する発電スイッチング素子60bもオンとなっているが、これは、バッテリ電圧VbatをDC/DCコンバータ156により昇圧してFC152の出力を調整するためである。また、「1電源充電」モードは、バッテリ154のみを対象とする。さらに、FC152については、「1電源発電」と「1電源利用」が実質的に同じであるため、図23では「1電源利用(FC)」は表示していない。さらにまた、「1電源発電及び1電源充電」モードでは、FC152で発電し、バッテリ154に充電する。
 第3実施形態では、第1実施形態と同様、FC電圧Vfcとバッテリ電圧Vbatとを比較していない。
2.双方向SW24の切替え時の制御
 次に、各モードを切り替える際の各SW素子60、62の制御について説明する。上記のように、各モードを切り替える際は、インバータ26では、各上アームSW素子86の3相短絡状態又は各下アームSW素子92の3相短絡状態を発生させる。また、第1双方向SW24aの充電SW素子62aは常にオフのままである。このため、第1双方向SW24aの代わりに、発電SW素子60aのみを設けてもよい。
(1)単純な切替え
 「停止時」モードとその他のモードとを切り替える場合(例えば、「停止時」から「1電源発電」への切替え又はその逆)、電力ECU50は、各SW素子60、62のオンオフを図23に示した状態に単純に切り替える。このような切替えによっても、FC152とバッテリ154との間で短絡は発生しない。但し、切替え時にはデッドタイム生成部128(図8)によりデッドタイムdtを挿入する。
 同様に、「1電源発電(FC)」から「1電源発電(バッテリ)」に切り替える場合、その逆の場合、電力ECU50は、各SW素子60、62のオンオフを図23に示した状態にそのまま切り替える。このような切替えによっても、FC152とバッテリ154との間で短絡は発生しない。但し、切替え時にはデッドタイム生成部128によりデッドタイムdtを挿入する。
(2)段階的な切替え
 上記のような単純切替えでは、FC152とバッテリ154との間で短絡が発生する場合、例えば、電気自動車10の力行状態では「1電源発電(FC)」モードを実行してFC152から発電し、回生状態では「1電源利用(バッテリ)」モードを実行してバッテリ154を充電する場合、次のような制御を用いて短絡を防止することができる。
 図15に示すように、インバータ26の入力電流Iinvが正から負に切り替わる場合、すなわち、電気自動車10が力行状態から回生状態に切り替わる場合について説明する。まず、インバータ26の入力電流Iinvが電流閾値THi1を超える場合、第1双方向SW24aにおいて、発電SW素子60aをオンにし、充電SW素子62aをオフにする。また、第2双方向SW24bの発電SW素子60bをオンにし、充電SW素子62bをオフにする。
 時点t11において、インバータ26の入力電流Iinvが電流閾値THi1以下になった場合、第1双方向SW24aの発電SW素子60aをオフにする。その後、第2双方向SW24bの発電SW素子60b及び充電SW素子62bの両方をオンにする。これにより、FC152からの電力が充電SW素子62bを介してバッテリ154に供給される短絡状態を防ぐことができる(但し、意図的にこのような短絡状態を発生させ、バッテリ154を充電することも可能である。)。インバータ26の入力電流Iinvが電流閾値THi2以上、電流閾値THi1以下である場合、このオンオフ制御を継続する。
 時点t12において、インバータ26の入力電流Iinvが電流閾値THi2未満になった場合、第1双方向SW24aの発電SW素子60a及び充電SW素子62aの両方はオフのまま保持する。一方、第2双方向SW24bでは、発電SW素子60b及び充電SW素子62bの両方をオンのまま維持する。
 次に、図16に示すように、インバータ26の入力電流Iinvが負から正に切り替わる場合、すなわち、電気自動車10が回生状態から力行状態に切り替わる場合について説明する。まず、インバータ26の入力電流Iinvが電流閾値THi2未満である場合、第1双方向SW24aの発電SW素子60a及び充電SW素子62aの両方をオフにする。一方、第2双方向SW24bの発電SW素子60b及び充電SW素子62bの両方をオンにする。
 時点t21において、インバータ26の入力電流Iinvが電流閾値THi2以上になった後、インバータ26の入力電流Iinvが電流閾値THi2以上、電流閾値THi1未満である場合も、第1双方向SW24aの発電SW素子60a及び充電SW素子62aの両方をオフのまま維持する。一方、第2双方向SW24bの発電SW素子60b及び充電SW素子62bの両方をオンのまま維持する。
 時点t22において、インバータ26の入力電流Iinvが電流閾値THi1以上になった場合、第2双方向SW24bの発電SW素子60b及び充電SW素子62bの両方をオフにする。その後、第1双方向SW24aの発電SW素子60aをオンにする。
 なお、上記では、インバータ26の入力電流Iinvに基づいて第1双方向SW24aと第2双方向SW24bのオンオフを制御したが、インバータ26の入力電圧Vinv又はモータ12の消費電力(回生電力)によって制御することも可能である。或いは、発電と充電との切り替わり時点が判別可能である場合、当該切り替わり時点の前後の所定時点によってSW素子60、62のオンオフ切替えをすることも可能である。発電と充電との切り替わり時点が判別可能である場合としては、例えば、実電力がゼロを跨ぐまでの予測時間を用いる場合がある。
C.第3実施形態の効果
 以上のように、第3実施形態によれば、上記各実施形態の効果に加え、FC152を有する電力系20bにおいても、各SW素子60、62を適切に制御することが可能となる。
IV.第4実施形態
A.構成の説明(上記各実施形態との相違)
 図24は、この発明の第4実施形態に係る電気自動車10Cの概略構成図である。図25は、電気自動車10Cの回路構成の一部を示す図である。電気自動車10Cは、上記各実施形態と同様、走行用のモータ12と、トランスミッション14と、車輪16と、統合ECU18と、電力系20cとを有する。
 以下では、上記各実施形態と同じ構成要素については同一の参照符号を付してその説明を省略する。
 電力系20cは、モータ12に電力を供給すると共に、モータ12からの回生電力Pregが供給されるものである。電力系20cは、FC152と、第1バッテリ22aと、第2バッテリ22bと、第1DC/DCコンバータ172と、第2DC/DCコンバータ174と、第1双方向SW24aと、第2双方向SW24bと、第3双方向スイッチ24c(以下「第3双方向SW24c」という。)と、インバータ26と、電圧センサ28、30、32、158と、電流センサ38、40、42、44、46、162と、レゾルバ48と、電力ECU50とを有する。電力系20cはFC152を有するため、電気自動車10Cは燃料電池車両である。
 第3双方向SW24cは、第1双方向SW24a及び第2双方向SW24bと同様の構成を有する。
 第1DC/DCコンバータ172と第2DC/DCコンバータ174は、第3実施形態のDC/DCコンバータ156と同様のものである。図25において、第1DC/DCコンバータ172と第2DC/DCコンバータ174は、省略されている。
B.各種制御
1.双方向SW24のオンオフ制御
 次に、各双方向SW24のオンオフ制御について説明する。
 第4実施形態では、電源としてFC152、第1バッテリ22a及び第2バッテリ22bが存在し、各電源の選択に各電源の電圧(FC電圧Vfc、第1バッテリ電圧Vbat1及び第2バッテリ電圧Vbat2)を用いないため、基本的に、第1実施形態の制御(図14)と第3実施形態の制御(図23)を組み合わせて用いる。
 統合ECU18は、例えば、図26に示すモードを適宜切り替えて用いる。すなわち、第4実施形態では、統合ECU18は、「停止時」、「1電源発電」、「1電源充電」、「1電源利用」、「高電圧バッテリ発電」及び「低電圧バッテリ充電」の各モードを選択して用いる。
 FC152による発電を行う場合、上記の通り、FC152の出力制御にはバッテリ22の出力を用いる。このため、FC152を用いる「1電源発電」には、第1バッテリ22aにより出力制御する「1電源発電(FC、第1バッテリ)」と、第2バッテリ22bにより出力制御する「1電源発電(FC、第2バッテリ)」とがある。「高電圧バッテリ発電」及び「低電圧バッテリ充電」モードでは、FC152を休止する点を除き、第1実施形態と同じである。
2.双方向SW24の切替え時の制御
 次に、各モードを切り替える際の各SW素子60、62の制御について説明する。上記のように、各モードを切り替える際は、インバータ26では、各上アームSW素子86の3相短絡状態又は各下アームSW素子92の3相短絡状態を発生させる。また、第1双方向SW24aの充電SW素子62aは常にオフのままである。このため、第1双方向SW24aの代わりに、発電SW素子60aのみを設けてもよい。
(1)単純な切替え
 「停止時」モードとその他のモードとを切り替える場合(例えば、「停止時」から「1電源発電」への切替え又はその逆)、電力ECU50は、各SW素子60、62のオンオフを図26に示した状態に単純に切り替える。このような切替えによっても、FC152、第1バッテリ22a及び第2バッテリ22bの間で短絡は発生しない。但し、切替え時にはデッドタイム生成部128(図8)においてデッドタイムdtを挿入する。
 同様に、「1電源発電(FC、第1バッテリ)」から「1電源発電(第1バッテリ)」に切り替える場合、その逆の場合、「1電源発電(FC、第2バッテリ)」から「1電源発電(第2バッテリ)」に切り替える場合、その逆の場合、「1電源発電(FC、第1バッテリ)」から「1電源発電(第2バッテリ)」に切り替える場合、その逆の場合、「1電源発電(FC、第2バッテリ)」から「1電源発電(第1バッテリ)」に切り替える場合、その逆の場合、「1電源発電(第1バッテリ)」から「1電源発電(第2バッテリ)」に切り替える場合、その逆の場合、「1電源充電(第1バッテリ)」から「1電源充電(第2バッテリ)」に切り替える場合、その逆の場合、「1電源発電(FC、第1バッテリ)」若しくは「第1電源発電(FC、第2バッテリ)」若しくは「1電源発電(第1バッテリ)」若しくは「1電源発電(第2バッテリ)」から「高電圧バッテリ発電」に切り替える場合、その逆の場合、「1電源充電(第1バッテリ)」若しくは「1電源充電(第2バッテリ)」から「低電圧バッテリ充電」に切り替える場合、その逆の場合、電力ECU50は、各SW素子60、62のオンオフを図26に示した状態にそのまま切り替える。このような切替えによっても、FC152、第1バッテリ22a及び第2バッテリ22bの間で短絡は発生しない。但し、切替え時にはデッドタイム生成部128(図8)においてデッドタイムdtを挿入する。
(2)段階的な切替え
 上記のような単純切替えでは、FC152、第1バッテリ22a及び第2バッテリ22bの間で短絡が発生する場合、例えば、電気自動車10の力行時には「1電源発電(FC、第1バッテリ)」モードを実行し、回生時には「低電圧バッテリ充電」モードで第1バッテリ22a又は第2バッテリ22bを充電する場合、次のような制御を用いて短絡を防止することができる。
 図15に示すように、インバータ26の入力電流Iinvが正から負に切り替わる場合、すなわち、電気自動車10が力行状態から回生状態に切り替わる場合について説明する。まず、インバータ26の入力電流Iinvが電流閾値THi1を超える場合、第1双方向SW24aの発電SW素子60aをオンにし、充電SW素子62aをオフにする。また、第2双方向SW24bにおいて、発電SW素子60bをオンにし、充電SW素子62bをオフにする。一方、第3双方向SW24cにおいて、発電SW素子60c及び充電SW素子62cの両方をオフにする。
 時点t11において、インバータ26の入力電流Iinvが電流閾値THi1以下になった場合、第1双方向SW24aの発電SW素子60aをオフにする。その後、第2双方向SW24bの発電SW素子60b及び充電SW素子62bの両方をオンにする。これにより、FC152からの電力が充電SW素子62bを介して第1バッテリ22aに供給される短絡状態を防ぐことができる(但し、意図的にこのような短絡状態を発生させ、第1バッテリ22aを充電することも可能である。)。第3双方向SW24cでは、発電SW素子60c及び充電SW素子62cの両方をオフのまま維持する。インバータ26の入力電流Iinvが電流閾値THi2以上、電流閾値THi1以下である場合、このオンオフ制御を継続する。
 なお、第3双方向SW24cの発電SW素子60c及び充電SW素子62cではなく、第2双方向SW24bの発電SW素子60b及び充電SW素子62bをオンにしたのは、事前にそのような設定をしていたためである。代わりに、第3双方向SW24cの発電SW素子60c及び充電SW素子62cをオンにしてもよい。
 時点t12において、インバータ26の入力電流Iinvが電流閾値THi2未満になった場合、第1双方向SW24aの発電SW素子60a及び充電SW素子62aの両方はオフのまま保持する。また、第2双方向SW24bの発電SW素子60bをオフにする。その後、第3双方向SW24cの充電SW素子62cをオンにする。これにより、第2双方向SW24bの充電SW素子62b及び第3双方向SW24cの充電SW素子62cがオンとなり、その他のSW素子はオフとなる。この場合、モータ12からの回生電力Pregは、第1バッテリ22a及び第2バッテリ22bのうち電圧が低い方に優先的に充電される。また、各発電SW素子60a、60b、60cはオフであるため、FC152、第1バッテリ22a及び第2バッテリ22bの間で短絡は発生しない。
 次に、図16に示すように、インバータ26の入力電流Iinvが負から正に切り替わる場合、すなわち、電気自動車10が回生状態から力行状態に切り替わる場合について説明する。まず、インバータ26の入力電流Iinvが電流閾値THi2未満である場合、第2双方向SW24bの充電SW素子62b及び第3双方向SW24cの充電SW素子62cをオンにし、その他のSW素子をオフにする。
 時点t21において、インバータ26の入力電流Iinvが電流閾値THi2以上になった場合、第3双方向SW24cの充電SW素子62cをオフにする。その後、第2双方向SW24bの発電SW素子60bをオンにする。これにより、第1バッテリ22aと第2バッテリ22bとの間の短絡なしに、第1バッテリ22aによる充放電をすることが可能となる。インバータ26の入力電流Iinvが電流閾値THi2以上、電流閾値THi1以下である場合、このオンオフ制御を継続する。
 時点t22において、インバータ26の入力電流Iinvが電流閾値THi1以上になった場合、第2双方向SW24bの充電SW素子62bをオフにする。その後、第1双方向SW24aの発電SW素子60aをオンにする。第2双方向SW24bの発電SW素子60bはオンのままとする。これにより、FC152と第1バッテリ22aとの間の短絡なしにFC152による発電に切り替えることができる。
 なお、上記では、インバータ26の入力電流Iinvに基づいて第1双方向SW24aと第2双方向SW24bのオンオフを制御したが、インバータ26の入力電圧Vinv又はモータ12の消費電力(回生電力)によって制御することも可能である。或いは、発電と充電との切り替わり時点が判別可能である場合、当該切り替わり時点の前後の所定時点によってSW素子60、62のオンオフ切替えをすることも可能である。発電と充電との切り替わり時点が判別可能である場合としては、例えば、実電力がゼロを跨ぐまでの予測時間を用いる場合がある。
C.第4実施形態の効果
 以上のように、第4実施形態によれば、上記各実施形態の効果に加え、次の効果を奏することが可能となる。
 すなわち、第4実施形態では、3つの電源(FC152、第1バッテリ22a及び第2バッテリ22b)を用いた電力系20cにおいて、各電源の電圧値を用いずに、SW素子60、62を適切に制御することが可能となる。
V.第5実施形態
A.構成の説明(第4実施形態との相違)
 図27は、この発明の第5実施形態に係る電気自動車10Dの概略構成図である。電気自動車10Dは、第4実施形態の電気自動車10Cと同様、走行用のモータ12と、トランスミッション14と、車輪16と、統合ECU18と、電力系20dとを有する。第4実施形態の電気自動車10Cと同様の構成を有するが、電圧センサ158、28、30の検出値(FC電圧Vfc、第1バッテリ電圧Vbat1及び第2バッテリ電圧Vbat2)を統合ECU18に入力することが必須である点や統合ECU18によるFC152及びバッテリ22の選択等で、第4実施形態と異なる。
 以下では、上記各実施形態と同じ構成要素については同一の参照符号を付してその説明を省略する。
B.双方向SW24のオンオフ制御
 次に、各双方向SW24のオンオフ制御について説明する。
 第5実施形態では、電源としてFC152、第1バッテリ22a及び第2バッテリ22bが存在し、FC152の出力は、第1バッテリ22a又は第2バッテリ22bの出力を用いて制御すると共に、各電源の電圧(FC電圧Vfc、第1バッテリ電圧Vbat1及び第2バッテリ電圧Vbat2)を用いて各電源の選択をする。このため、基本的に、第1実施形態の制御(図14)、第2実施形態の制御(図20)、第3実施形態の制御(図23)及び第4実施形態の制御(図26)を組み合わせて用いる。
 例えば、統合ECU18は、図28に示すモードを適宜切り替えて用いる。すなわち、第5実施形態では、統合ECU18は、「停止時」、「1電源発電」、「1電源充電」、「1電源利用」、「高電圧バッテリ発電」、「低電圧バッテリ充電」、「1電源発電及び1電源充電」、「高電圧バッテリ発電及び1電源充電」及び「1電源発電及び低電圧バッテリ充電」の各モードを選択して用いることができる。
 なお、「1電源発電」モードについては、FC152による発電を行う際、第1バッテリ22a及び第2バッテリ22bのいずれを用いてFC152の出力を制御するのかを両バッテリ22の電圧の高低に基づいて設定することができる。
C.第5実施形態の効果
 以上のように、第5実施形態によれば、上記各実施形態の効果に加え、次の効果を奏することが可能となる。
 すなわち、第5実施形態では、3つの電源(FC152、第1バッテリ22a及び第2バッテリ22b)を用いた電力系20dにおいて、各電源の電圧値を用いて、SW素子60、62を適切に制御することが可能となる。
VI.変形例
 なお、この発明は、上記各実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
A.電源の数
 第1~第3実施形態では、電力系20、20a、20bは、2つの電源(第1バッテリ22aと第2バッテリ22bの組合せ、及びFC152とバッテリ154の組合せ)を有し、第4及び第5実施形態では、電力系20c、20dは、3つの電源(FC152と第1バッテリ22aと第2バッテリ22bの組合せ)を有したが、電源の数はこれに限らず、4つ以上であってもよい。
B.電源の数が4つ以上である場合の双方向SW24のオンオフ制御
1.電源電圧を用いない場合
 第1、第3及び第5実施形態では、電源電圧(第1バッテリ電圧Vbat1、第2バッテリ電圧Vbat2、FC電圧Vfc、バッテリ電圧Vbat)が不明であっても、各双方向SW24のオンオフの切替えを行った。同様に、電源が4つ以上である場合、電源電圧を用いなくても、第1実施形態で述べたような第1制御法則及び第2制御法則の少なくとも一方が成立すれば、短絡を発生させることなしに、双方向SW24のオンオフを選択することができる。
 すなわち、電源電圧を用いない場合の第1制御法則とは、双方向SW24がN個(Nは、2以上の整数)ある場合、発電SW素子60と充電SW素子62がいずれもオフとなる双方向SW24がN-1個存在する。換言すると、発電経路と充電経路の両方がオフとなる電力系統がN-1個存在する。この場合、残りの1つの双方向SW24については、発電SW素子60と充電SW素子62の一方のみがオンであってもよく、また、発電SW素子60と充電SW素子62の両方がオンであってもよい。
 例えば、図29に示すように、第4電源に対応する発電SW素子60(第4電源の発電経路)がオンであり、その他の発電経路がオフである場合、第4電源に対応する充電SW素子62(第4電源の充電経路)はオンオフいずれでも構わないが、その他の充電経路はオフにする必要がある。
 電源電圧を用いない場合の第2制御法則とは、全て(N個)の双方向SW24の発電SW素子60又は充電SW素子62がオフとなる。換言すると、全ての電力系統の発電経路又は充電経路がオフとなる。この場合、全てがオンとなる発電経路又は充電経路とは逆の充電経路又は発電経路は、一部又は全てをオンとすることができる。
 例えば、図30に示すように、全ての電源の発電経路がオフである場合、各充電経路はオンオフいずれでも構わない。
 上記の第1制御法則及び第2制御法則を用いることにより、電源の数が増えていっても、電源間における短絡を防止することができる。
2.電源電圧を用いる場合
 第2及び第4実施形態では、電源電圧(第1バッテリ電圧Vbat1、第2バッテリ電圧Vbat2、FC電圧Vfc、バッテリ電圧Vbat)を用いて、各双方向SW24のオンオフの切替えを行った。同様に、電源が4つ以上である場合、バッテリの電圧を用いて、次の第1制御法則及び第2制御法則の少なくとも一方が成立すれば、電源間に短絡を発生させることなしに、双方向SW24のオンオフを選択することができる。
 すなわち、電源電圧を用いる場合の第1制御法則とは、対応する発電SW素子60がオンとされる電源のうち最も電源電圧が高いもの(以下「最高電圧電源」という。)よりも低い電源電圧の電源に対応する充電SW素子62をオフにする。換言すると、通電する発電経路の中で最も電圧の高い発電経路(以下「最高電圧発電経路」という。)より低い電圧の充電経路を遮断する。この場合、最高電圧電源以上の電圧の電源については、対応する充電SW素子62をオンオフいずれにしてもよい。換言すると、最高電圧発電経路以上の電圧の充電経路についてはオンオフいずれにしてもよい。
 図31の例では、電圧の高い順に並べた第1電源から第n電源のうち対応する発電SW素子60(発電経路)がオンとなり且つ最も電圧が高いのは、第4電源である。この場合、第4電源よりも電圧が低い第5~第n電源の充電経路はオフとし、第1~第4電源の充電経路はオンオフいずれでも構わない。
 電源電圧を用いる場合の第2制御法則とは、対応する充電SW素子60がオンとされる電源のうち最も電圧が低いもの(以下「最低電圧電源」という。)よりも高い電圧の電源に対応する発電SW素子60をオフにする。換言すると、通電する充電経路の中で最も電圧の低い充電経路(以下「最低電圧充電経路」という。)よりも高い電圧の発電経路を遮断する。この場合、最低電圧電源以下の電圧の電源については、対応する発電SW素子60をオンオフいずれにしてもよい。換言すると、最低電圧充電経路以下の電圧の発電経路についてはオンオフいずれにしてもよい。
 図32の例では、電圧の高い順に並べた第1電源から第n電源のうち充電経路がオンとなり且つ最も電圧が低いのは、第6電源である。この場合、第6電源よりも電圧が高い第1~第5電源の発電経路はオフとし、第6~第n電源の発電経路はオンオフいずれでも構わない。
 上記の第1制御法則及び第2制御法則を用いることにより、電源の数が増えていっても、電源間における短絡を防止することができる。
C.電源の種類
 上記各第1実施形態及び第2実施形態では、第1バッテリ22a及び第2バッテリ22bを用い、第3実施形態では、FC152及びバッテリ154を用い、第4実施形態及び第5実施形態では、FC152、第1バッテリ22a及び第2バッテリ22bを用いたが、利用可能な電源は、これに限らない。例えば、エンジンとオルタネータを組み合わせたものを電源とすることもできる。
D.モードの切替え
 上記各実施形態では、双方向SW24の切替え時の制御として、いくつかの単純な切替えやいくつかの段階的な切替えについて言及したが、モード切替え時の制御はこれに限らない。例えば、モードを切り替える際、一旦、全てのスイッチング素子60、62をオフにした後、新たなモードに切り替えることもできる。
E.電力ECU50
 上記各実施形態では、図7に示す構成の電力ECU50を用いたが(図1、図19、図21、図24及び図27参照)、電力ECU50の構成はこれに限らない。例えば、以下に示す変形例を用いることができる。
1.第1変形例
 図33に示す電力電子制御装置50a(以下「電力ECU50a」という。)は、負荷電力演算部180を有する点等で、図7の電力ECU50と異なる。負荷電力演算部180は、インバータ26の入力電圧Vinvと入力電流Iinvを乗算して負荷電力P1を演算し、双方向スイッチ論理生成部102a(以下「双方向SW論理生成部102a」又は「論理生成部102a」という。)に出力する(P1=Vinv*Iinv)。
 図34には、論理生成部102aの機能的なブロック図が示されている。論理生成部102aの双方向スイッチ論理決定部122a(以下「双方向SW論理決定部122a」又は「論理決定部122a」という。)は、統合ECU18からの電源指定信号Sd1、Sd2、Sd3と、負荷電力演算部180からの負荷電力P1と、記憶部130aからの電力閾値THp1、THp2(THp1>THp2)とに基づいてSW素子選択信号Ss1、Ss2、Ss3、Ss4を出力する。
 より具体的には、負荷電力P1と電力閾値THp1、THp2を比較し、負荷電力P1が電力閾値THp1より大きいとき「発電状態」であると判定し、負荷電力P1が電力閾値THp2以上、電力閾値THp1以下であるとき「発電/充電切替え状態」であると判定し、負荷電力P1が電力閾値THp2未満であるとき「充電状態」であると判定する(図15及び図16参照)。
2.第2変形例
 図35に示す電力電子制御装置50b(以下「電力ECU50b」という。)は、負荷電力演算部180aを有する点で、図7の電力ECU50と異なる。負荷電力演算部180aは、電気角速度ωとトルク指令値T_cを乗算したものをモータ12の極対数で除算して負荷電力P2を演算し、双方向スイッチ論理生成部102b(以下「双方向SW論理生成部102b」又は「論理生成部102b」という。)に出力する(P2=ω*T/極対数)。
 論理生成部102bは、第1変形例における論理生成部102aと同様のものであり、統合ECU18からの電源指定信号Sd1、Sd2、Sd3と、負荷電力演算部180aからの負荷電力P2と、記憶部130aからの電力閾値THp1、THp2(THp1>THp2)とに基づいてSW素子選択信号Ss1、Ss2、Ss3、Ss4を出力する。
 より具体的には、負荷電力P2と電力閾値THp1、THp2を比較し、負荷電力P2が電力閾値THp1より大きいとき「発電状態」であると判定し、負荷電力P2が電力閾値THp2以上、電力閾値THp1以下であるとき「発電/充電切替え状態」であると判定し、負荷電力P2が電力閾値THp2未満であるとき「充電状態」であると判定する(図15及び図16参照)。
3.第3変形例
 図36に示す電力電子制御装置50c(以下「電力ECU50c」という。)は、負荷電力演算部180bを有する点で、図7の電力ECU50と異なる。負荷電力演算部180bは、d軸電圧指令値Vd_cとd軸電流Idの積とq軸電圧指令値Vq_cとq軸電流Iqの積とを加算して負荷電力P3を演算し、双方向スイッチ論理生成部102c(以下「双方向SW論理生成部102c」又は「論理生成部102c」という。)に出力する(P3=Vd_c*Id+Vq_c*Iq)。
 論理生成部102cは、第1変形例における論理生成部102aと同様のものであり、統合ECU18からの電源指定信号Sd1、Sd2、Sd3と、負荷電力演算部180bからの負荷電力P3と、記憶部130aからの電力閾値THp1、THp2(THp1>THp2)とに基づいてSW素子選択信号Ss1、Ss2、Ss3、Ss4を出力する。
 より具体的には、負荷電力P3と電力閾値THp1、THp2を比較し、負荷電力P3が電力閾値THp1より大きいとき「発電状態」であると判定し、負荷電力P3が電力閾値THp2以上、電力閾値THp1以下であるとき「発電/充電切替え状態」であると判定し、負荷電力P3が電力閾値THp2未満であるとき「充電状態」であると判定する(図15及び図16参照)。
4.第4変形例
 図37に示す電力電子制御装置50d(以下「電力ECU50d」という。)は、トルク指令値T_cが双方向スイッチ論理生成部102d(以下「双方向SW論理生成部102d」又は「論理生成部102d」という。)に入力される点で、図7の電力ECU50と異なる。
 論理生成部102dは、統合ECU18からの電源指定信号Sd1、Sd2、Sd3と、統合ECU18からのトルク指令値T_cと、記憶部130aからのトルク閾値THt1、THt2(THt1>THt2)とに基づいてSW素子選択信号Ss1、Ss2、Ss3、Ss4を出力する。
 より具体的には、トルク指令値T_cとトルク閾値THt1、THt2を比較し、トルク指令値T_cがトルク閾値THt1より大きいとき「発電状態」であると判定し、トルク指令値T_cがトルク閾値THt2以上、トルク閾値THt1以下であるとき「発電/充電切替え状態」であると判定し、トルク指令値T_cがトルク閾値THt2未満であるとき「充電状態」であると判定する(図15及び図16参照)。

Claims (34)

  1.  それぞれ独立して電源電圧が変動するN個(Nは2以上の整数)の電源(22a、22b、152、154)を含む1次側と、
     インバータ(26)と該インバータ(26)に接続される駆動モータ(12)とを含む2次側と、
     前記1次側と前記2次側を前記N個の電源(22a、22b、152、154)が互いに並列になるように接続する第1番目から第N番目までの電力系統と、
     前記第1番目から第N番目までの電力系統それぞれに設けられ、発電方向及び充電方向からなる双方向の通電を別々に遮断可能なN個の半導体スイッチ(24a~24c、70、72、74、76)と、
     前記N個の半導体スイッチ(24a~24c、70、72、74、76)による遮断を制御する制御装置(50、50a~50d)と
     を含み、
     前記制御装置(50、50a~50d)は、
     少なくとも1スイッチング周期毎に前記半導体スイッチ(24a~24c、70、72、74、76)の通電又は遮断を固定する固定制御を行うとき、1電力系統の発電経路と充電経路の両方を遮断する第1遮断制御と、全電力系統の発電経路又は充電経路全てを遮断する第2遮断制御との少なくともいずれか一方を行うと共に、
     前記第1遮断制御のみを行う場合、前記第1遮断制御を行う電力系統がN-1個となるように前記半導体スイッチ(24a~24c、70、72、74、76)の通電又は遮断を制御する
     ことを特徴とする電気自動車(10、10A~10D)。
  2.  請求項1記載の電気自動車(10、10A~10D)において、
     前記半導体スイッチは、双方向スイッチ(24a~24c、72、74、76)である
     ことを特徴とする電気自動車(10、10A~10D)。
  3.  請求項1記載の電気自動車(10、10A~10D)において、
     ある電源(22a、22b、152、154)の発電経路と他の電源(22a、22b、152、154)の充電経路とを切り替える際、前記半導体スイッチ(24a~24c、70、72、74、76)の駆動信号にデッドタイムを挟む
     ことを特徴とする電気自動車(10、10A~10D)。
  4.  請求項1記載の電気自動車(10、10A、10C、10D)において、
     前記制御装置(50、50a~50d)は、ある電源(22a、22b、154)の双方向通電状態から他の電源(22a、22b、154)の双方向通電状態に移行させるように前記半導体スイッチ(24a~24c、70、72、74、76)を制御する
     ことを特徴とする電気自動車(10、10A、10C、10D)。
  5.  請求項1記載の電気自動車(10、10A、10C、10D)において、
     前記制御装置(50、50a~50d)は、前記電気自動車(10、10A、10C、10D)が力行状態及び回生状態の中間状態にあるとき、ある電源(22a、22b、154)の双方向通電状態から他の電源(22a、22b、154)の双方向通電状態に移行させるように前記半導体スイッチ(24a~24c、70、72、74、76)を制御する
     ことを特徴とする電気自動車(10、10A、10C、10D)。
  6.  請求項1記載の電気自動車(10、10A~10D)において、
     前記制御装置(50、50a~50d)は、前記電気自動車(10、10A~10D)が力行状態であるとき、2つ以上の発電スイッチング素子(60a~60c)を同時にオンさせる
     ことを特徴とする電気自動車(10、10A~10D)。
  7.  請求項1記載の電気自動車(10、10A、10C、10D)において、
     前記制御装置(50、50a~50d)は、前記電気自動車(10、10A~10D)が回生状態であるとき、2つ以上の充電スイッチング素子(62a~62c)を同時にオンさせる
     ことを特徴とする電気自動車(10、10A、10C、10D)。
  8.  請求項1記載の電気自動車(10、10A、10C、10D)において、
     前記電気自動車(10、10A、10C、10D)の力行状態と回生状態を判断し、
     力行状態のときに少なくとも2つ以上の発電スイッチング素子(60a~60c)を接続し、
     回生状態のときに少なくとも2つ以上の充電スイッチング素子(62a~62c)を接続する
     ことを特徴とする電気自動車(10、10A、10C、10D)。
  9.  請求項8記載の電気自動車(10、10A~10D)において、
     さらに、前記力行状態と前記回生状態の中間状態を判定し、
     前記電気自動車(10、10A~10D)が前記中間状態にあるとき、前記制御装置(50、50a~50d)は、ある電源(22a、22b、154)の双方向の通電を可能とし、他の電源(22a、22b、152、154)を双方向に遮断するように前記半導体スイッチ(24a~24c、70、72、74、76)を制御する
     ことを特徴とする電気自動車(10、10A~10D)。
  10.  請求項5又は9記載の電気自動車(10、10A~10D)において、
     前記中間状態は、前記インバータ(26)の入力電力及び入力電流並びに前記駆動モータ(12)のトルク及び負荷電力の少なくとも1つの指令値又は実測値に基づいて判定される
     ことを特徴とする電気自動車(10、10A~10D)。
  11.  請求項5又は9記載の電気自動車(10、10A~10D)において、
     前記中間状態は実電力がゼロを跨ぐまでの予測時間によって定められる
     ことを特徴とする電気自動車(10、10A~10D)。
  12.  請求項1記載の電気自動車(10、10A~10D)において、
     前記制御装置(50、50a~50d)は、前記インバータ(26)において3相短絡状態が発生している間に前記半導体スイッチ(24a~24c、70、72、74、76)の通電又は遮断の切替えを行う
     ことを特徴とする電気自動車(10、10A~10D)。
  13.  請求項1記載の電気自動車(10、10A~10D)において、
     前記電源は、蓄電装置(22a、22b、154)を含む
     ことを特徴とする電気自動車(10、10A~10D)。
  14.  請求項1記載の電気自動車(10B~10D)において、
     前記電源は、燃料電池(152)及び蓄電装置(22a、22b、154)を含む
     ことを特徴とする電気自動車(10B~10D)。
  15.  請求項1記載の電気自動車(10、10A~10D)において、
     前記電源は、発電機及び蓄電装置(22a、22b、154)を含む
     ことを特徴とする電気自動車(10、10A~10D)。
  16.  それぞれ独立して電源電圧が変動するN個(Nは2以上の整数)の電源(22a、22b、152、154)を含む1次側と、
     インバータ(26)と該インバータ(26)に接続される駆動モータ(12)とを含む2次側と、
     前記1次側と前記2次側を前記N個の電源(22a、22b、152、154)が互いに並列になるように接続する第1番目から第N番目までの電力系統と、
     前記第1番目から第N番目までの電力系統それぞれに設けられ、発電方向及び充電方向からなる双方向の通電を別々に遮断可能なN個の半導体スイッチ(24a~24c、70、72、74、76)と、
     前記N個の半導体スイッチ(24a~24c、70、72、74、76)による遮断を制御する制御装置(50、50a~50d)と
     を含み、
     前記制御装置(50、50a~50d)は、少なくとも1スイッチング周期毎に前記半導体スイッチ(24a~24c、70、72、74、76)の通電又は遮断を固定する固定制御を行っているとき、通電する発電経路の中で最も電圧の高い最高電圧発電経路より低い電圧である充電経路が遮断となる第1遮断状態、又は、通電する充電経路の中で最も電圧の低い最低電圧充電経路より高い電圧である発電経路が遮断となる第2遮断状態の少なくともいずれか一方の状態になるように前記半導体スイッチ(24a~24c、70、72、74、76)の通電又は遮断を切り替える
     ことを特徴とする電気自動車(10、10A~10D)。
  17.  請求項16記載の電気自動車(10、10A~10D)において、
     前記半導体スイッチは、双方向スイッチ(24a~24c、72、74、76)である
     ことを特徴とする電気自動車(10、10A~10D)。
  18.  請求項16記載の電気自動車(10A、10D)において、
     第1番目から第N番目までの電圧センサ(28、30、158、160)を備え、前記電圧センサ(28、30、158、160)に基づき前記電源(22a、22b、152、154)間の電圧の大小を把握し、把握した電圧に基づき制御を行う
     ことを特徴とする電気自動車(10A、10D)。
  19.  請求項16記載の電気自動車(10、10A~10D)において、
     ある電源(22a、22b、152、154)の発電経路と他の電源(22a、22b、152、154)の充電経路とを切り替える際、前記半導体スイッチ(24a~24c、70、72、74、76)の駆動信号にデッドタイムを挟む
     ことを特徴とする電気自動車(10、10A~10D)。
  20.  請求項16記載の電気自動車(10、10A、10C、10D)において、
     前記制御装置(50、50a~50d)は、ある電源(22a、22b、154)の双方向通電状態から他の電源(22a、22b、154)の双方向通電状態に移行させるように前記半導体スイッチ(24a~24c、70、72、74、76)を制御する
     ことを特徴とする電気自動車(10、10A、10C、10D)。
  21.  請求項16記載の電気自動車(10、10A、10C、10D)において、
     前記制御装置(50、50a~50d)は、前記電気自動車(10、10A、10C、10D)が力行状態及び回生状態の中間状態にあるとき、ある電源(22a、22b、154)の双方向通電状態から他の電源(22a、22b、154)の双方向通電状態に移行させるように前記半導体スイッチ(24a~24c、70、72、74、76)を制御する
     ことを特徴とする電気自動車(10、10A、10C、10D)。
  22.  請求項16記載の電気自動車(10、10A~10D)において、
     前記制御装置(50、50a~50d)は、前記電気自動車(10、10A~10D)が力行状態であるとき、2つ以上の発電スイッチング素子(60a~60c)を同時にオンさせる
     ことを特徴とする電気自動車(10、10A~10D)。
  23.  請求項16記載の電気自動車(10、10A~10D)において、
     前記制御装置(50、50a~50d)は、前記電気自動車(10、10A~10D)が回生状態であるとき、2つ以上の充電スイッチング素子(62a~62c)を同時にオンさせる
     ことを特徴とする電気自動車(10、10A~10D)。
  24.  請求項16記載の電気自動車(10、10A~10D)において、
     前記電気自動車(10、10A~10D)の力行状態と回生状態を判断し、
     力行状態のときに少なくとも2つ以上の発電スイッチング素子(60a~60c)を接続し、
     回生状態のときに少なくとも2つ以上の充電スイッチング素子(62a~62c)を接続する
     ことを特徴とする電気自動車(10、10A~10D)。
  25.  請求項24記載の電気自動車(10、10A、10C、10D)において、
     さらに、前記力行状態と前記回生状態の中間状態を判定し、
     前記電気自動車(10、10A、10C、10D)が前記中間状態にあるとき、前記制御装置(50、50a~50d)は、ある電源(22a、22b、154)の双方向の通電を可能とし、他の電源(22a、22b、152、154)を双方向に遮断するように前記半導体スイッチ(24a~24c、70、72、74、76)を制御する
     ことを特徴とする電気自動車(10、10A、10C、10D)。
  26.  請求項21又は25記載の電気自動車(10、10A~10D)において、
     前記中間状態は、前記インバータ(26)の入力電力及び入力電流並びに前記駆動モータ(12)のトルク及び負荷電力の少なくとも1つの指令値又は実測値に基づいて判定される
     ことを特徴とする電気自動車(10、10A~10D)。
  27.  請求項21又は25記載の電気自動車(10、10A~10D)において、
     前記中間状態は実電力がゼロを跨ぐまでの予測時間によって定められる
     ことを特徴とする電気自動車(10、10A~10D)。
  28.  請求項16記載の電気自動車(10、10A~10D)において、
     前記制御装置(50、50a~50d)は、前記インバータ(26)において3相短絡状態が発生している間に前記半導体スイッチ(24a~24c、70、72、74、76)の通電又は遮断の切替えを行う
     ことを特徴とする電気自動車(10、10A~10D)。
  29.  請求項16記載の電気自動車(10、10A~10D)において、
     前記電源は、蓄電装置(22a、22b、154)を含む
     ことを特徴とする電気自動車(10、10A~10D)。
  30.  請求項16記載の電気自動車(10B~10D)において、
     前記電源は、燃料電池(152)及び蓄電装置(22a、22b、154)を含む
     ことを特徴とする電気自動車(10B~10D)。
  31.  請求項16記載の電気自動車(10、10A~10D)において、
     前記電源は、発電機及び蓄電装置(22a、22b、154)を含む
     ことを特徴とする電気自動車(10、10A~10D)。
  32.  電源電圧が変動する第1電源及び第2電源の少なくとも2つの電源(22a、22b、152、154)を含む1次側と、
     車両を駆動する3相交流ブラシレス式のモータ(12)と、直列に接続された一対の上アーム素子(84u、84v、84w)と下アーム素子(90u、90v、90w)が3相並列に接続され、前記上アーム素子(84u、84v、84w)と下アーム素子(90u、90v、90w)の中間に前記モータ(12)の3相線がそれぞれ接続されたインバータ(26)とを含む2次側と、
     前記1次側と前記2次側を前記第1電源と前記第2電源が互いに並列になるように接続する第1電力系統及び第2電力系統と、
     前記モータ(12)の電源として前記第1電源と前記第2電源のいずれを使用するかを切り替えるスイッチ(24a~24c、70、72、74、76)と、
     前記インバータ(26)の上アーム素子(84u、84v、84w)が全てオンであり且つ下アーム素子(90u、90v、90w)が全てオフである、又は前記上アーム素子(84u、84v、84w)が全てオフであり且つ前記下アーム素子(90u、90v、90w)が全てオンである3相短絡状態において、前記スイッチ(24a~24c、70、72、74、76)を切り替える制御装置(50、50a~50d)と
     を有する電気自動車(10、10A~10D)。
  33.  請求項32記載の電気自動車(10、10A~10D)において、
     前記制御装置(50、50a~50d)は、
     3相それぞれの電圧指令値とキャリア信号の比較結果に基づき各相の上アームスイッチング素子(86u、86v、86w)及び下アームスイッチング素子(92u、92v、92w)のオンオフを制御し、
     3相全ての前記電圧指令値よりキャリア信号が高くなった場合、又は3相全ての前記電圧指令値よりキャリア信号が低くなった場合を検知して3相短絡状態であると検知する
     ことを特徴とする電気自動車(10、10A~10D)。
  34.  請求項32記載の電気自動車(10、10A~10D)において、
     前記制御装置(50、50a~50d)は、前記第1電源と前記第2電源とを切り替える切替え要求を受けると、3相全ての上アームスイッチング素子(86u、86v、86w)又は下アームスイッチング素子(92u、92v、92w)に駆動信号を出力し、強制的に3相短絡状態を発生させる
     ことを特徴とする電気自動車(10、10A~10D)。
PCT/JP2011/061997 2010-06-29 2011-05-25 電気自動車 WO2012002082A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180030892.4A CN102958745B (zh) 2010-06-29 2011-05-25 电动汽车
JP2012522523A JPWO2012002082A1 (ja) 2010-06-29 2011-05-25 電気自動車
DE112011102229T DE112011102229T5 (de) 2010-06-29 2011-05-25 Elektrisches Automobil
US13/807,266 US9493092B2 (en) 2010-06-29 2011-05-25 Electric automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-148244 2010-06-29
JP2010148244 2010-06-29

Publications (1)

Publication Number Publication Date
WO2012002082A1 true WO2012002082A1 (ja) 2012-01-05

Family

ID=45401814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061997 WO2012002082A1 (ja) 2010-06-29 2011-05-25 電気自動車

Country Status (5)

Country Link
US (1) US9493092B2 (ja)
JP (1) JPWO2012002082A1 (ja)
CN (1) CN102958745B (ja)
DE (1) DE112011102229T5 (ja)
WO (1) WO2012002082A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154585A (ja) * 2016-03-01 2017-09-07 株式会社Subaru 車両制御装置
US10003273B2 (en) 2013-05-30 2018-06-19 Fuji Electric Co., Ltd. Power conversion device
JP2022023622A (ja) * 2020-07-27 2022-02-08 本田技研工業株式会社 給電制御システムおよび給電制御方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012002082A1 (ja) * 2010-06-29 2013-08-22 本田技研工業株式会社 電気自動車
EP2919382A4 (en) * 2012-11-09 2016-09-14 Honda Motor Co Ltd POWER SOURCE DEVICE
DE102013204507A1 (de) * 2013-03-15 2014-10-02 Robert Bosch Gmbh Elektrisch eigensicheres Batteriemodul mit umpolbarer Ausgangsspannung und Verfahren zur Überwachung eines Batteriemoduls
KR101946502B1 (ko) 2014-03-17 2019-02-11 엘에스산전 주식회사 전기 자동차의 구동 모터 과열 방지 방법
JP6245075B2 (ja) * 2014-05-28 2017-12-13 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
CN105634370B (zh) * 2014-11-07 2019-04-05 乐金电子研发中心(上海)有限公司 一种用于电机驱动的双电源供电及能量互馈系统
JP2017022872A (ja) * 2015-07-10 2017-01-26 トヨタ自動車株式会社 電源システム
WO2017127557A1 (en) * 2016-01-19 2017-07-27 Core Innovation, Llc Electronic transmission system
CA3038291A1 (en) * 2016-09-26 2018-03-29 Electric Power Systems, LLC High reliability hybrid energy storage system
JP6705357B2 (ja) * 2016-10-14 2020-06-03 株式会社オートネットワーク技術研究所 車載用のバックアップ装置
CN108092371B (zh) * 2016-11-15 2020-04-03 华为技术有限公司 充放电装置
JP6610586B2 (ja) * 2017-03-13 2019-11-27 トヨタ自動車株式会社 駆動装置
JP6790980B2 (ja) * 2017-04-12 2020-11-25 トヨタ自動車株式会社 ハイブリッド車両及びその制御方法
US10432130B2 (en) * 2017-11-28 2019-10-01 GM Global Technology Operations LLC Electric powertrain and a method of operating the same
US10369896B2 (en) 2017-11-28 2019-08-06 GM Global Technology Operations LLC Apparatus and method for flexible DC fast charging of an electrified vehicle
JP6904283B2 (ja) * 2018-03-12 2021-07-14 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
WO2020121339A1 (en) * 2018-12-15 2020-06-18 Log 9 Materials Scientific Private Limited Dynamic multiplex switching system for charging and discharging of electric vehicles
CN109742820A (zh) * 2019-01-03 2019-05-10 宁波绿光能源集团有限公司 一种不同容量及新旧电池可叠加的电池装置
CN110077283B (zh) * 2019-03-28 2020-07-07 清华大学 电动汽车控制方法
US11772504B2 (en) * 2019-08-22 2023-10-03 Ioan Sasu Fast rechargeable battery assembly and recharging equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271209A (ja) * 1991-02-25 1992-09-28 Hino Motors Ltd 車両用電源調整回路
JP2000278806A (ja) * 1999-03-19 2000-10-06 Nissan Diesel Motor Co Ltd 電気自動車の電源システム
WO2009136483A1 (ja) * 2008-05-09 2009-11-12 日立化成工業株式会社 電源装置及び車両用電源装置
JP2010004611A (ja) * 2008-06-18 2010-01-07 Toyota Motor Corp 駆動装置およびその制御方法並びにハイブリッド車

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819262A (ja) 1994-06-30 1996-01-19 Meidensha Corp 多重pwmインバータ
JPH08251714A (ja) 1995-03-10 1996-09-27 Mitsubishi Motors Corp 電気自動車の電源装置
JP3262257B2 (ja) 1996-04-26 2002-03-04 株式会社日立製作所 電気車用制御装置及び制御方法
DE19724356C2 (de) * 1997-06-10 2002-04-18 Daimler Chrysler Ag Energieversorgungsschaltung für ein Kraftfahrzeugbordnetz mit drei Spannungsebenen
JP3950263B2 (ja) * 1999-06-09 2007-07-25 中国電力株式会社 モータ駆動用電力変換装置
JP2001211698A (ja) 2000-01-20 2001-08-03 Hitachi Ltd 同期モータ制御装置
JP2005237064A (ja) 2004-02-18 2005-09-02 Autech Japan Inc 車両コントローラ
TWI342659B (en) * 2004-03-05 2011-05-21 Rohm Co Ltd Dc-ac converter, controller ic thereof, and electronic device using such dc-ac converter
EP1615325B1 (en) * 2004-07-07 2015-04-22 Nissan Motor Co., Ltd. Power conversion and vehicle
JP2006054976A (ja) * 2004-08-16 2006-02-23 Hitachi Ltd 燃料電池搭載機器
US7626353B2 (en) * 2004-10-19 2009-12-01 Hitachi, Ltd. Mobile type information terminal and self diagnosis method and operation method thereof
EP1653602B1 (en) 2004-10-29 2019-07-03 Nissan Motor Co., Ltd. Motor drive system and process
JP4725709B2 (ja) 2004-10-29 2011-07-13 日産自動車株式会社 モータ駆動システムの制御装置
US7154237B2 (en) * 2005-01-26 2006-12-26 General Motors Corporation Unified power control method of double-ended inverter drive systems for hybrid vehicles
JP4752736B2 (ja) 2005-12-26 2011-08-17 日産自動車株式会社 電力変換装置
JP4760465B2 (ja) * 2006-03-17 2011-08-31 日産自動車株式会社 電力変換装置
JP4461120B2 (ja) * 2006-06-26 2010-05-12 日立オートモティブシステムズ株式会社 インバータ駆動回転機システム及びそれを用いる電動車両
JP2008017560A (ja) 2006-07-03 2008-01-24 Toyota Motor Corp 電源装置およびそれを備えた車両ならびに電源装置の制御方法
US8039987B2 (en) * 2006-09-29 2011-10-18 Toyota Jidosha Kabushiki Kaisha Power source device and vehicle with power source device
JP4902323B2 (ja) * 2006-11-20 2012-03-21 パナソニック株式会社 半導体スイッチ回路
JP2008154431A (ja) 2006-12-20 2008-07-03 Toshiba Corp モータ制御装置
JP4538057B2 (ja) 2008-03-25 2010-09-08 本田技研工業株式会社 Dc/dcコンバータ装置
JP4819071B2 (ja) * 2008-02-06 2011-11-16 本田技研工業株式会社 電気車両及び車両用dc/dcコンバータの冷却方法
JP5172418B2 (ja) 2008-03-28 2013-03-27 本田技研工業株式会社 電動機システムの制御装置
JP5320850B2 (ja) 2008-06-23 2013-10-23 日産自動車株式会社 電力変換装置及び自動車システム
JP4525809B2 (ja) * 2008-07-28 2010-08-18 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
JP4988665B2 (ja) * 2008-08-06 2012-08-01 日立オートモティブシステムズ株式会社 半導体装置および半導体装置を用いた電力変換装置
JP5419406B2 (ja) * 2008-09-18 2014-02-19 三菱重工業株式会社 インバータ装置
CN102448765B (zh) * 2009-05-28 2014-09-10 丰田自动车株式会社 充电系统、车辆以及充电系统的控制方法
JP5018966B2 (ja) * 2009-06-11 2012-09-05 トヨタ自動車株式会社 コンバータ制御装置
JP5471128B2 (ja) * 2009-07-31 2014-04-16 富士電機株式会社 電力変換装置
JP4764499B2 (ja) * 2009-08-05 2011-09-07 本田技研工業株式会社 Dc/dcコンバータ及びそのdc/dcコンバータを備えた電力供給システム
JPWO2012002082A1 (ja) * 2010-06-29 2013-08-22 本田技研工業株式会社 電気自動車
US8994349B2 (en) * 2010-12-03 2015-03-31 The Boeing Company Synchronous rectifier bi-directional converter
JP5456721B2 (ja) * 2011-05-12 2014-04-02 本田技研工業株式会社 燃料電池システム
JP5750341B2 (ja) * 2011-05-12 2015-07-22 本田技研工業株式会社 燃料電池システム
JP5427832B2 (ja) * 2011-05-18 2014-02-26 本田技研工業株式会社 燃料電池車両
JP5456723B2 (ja) * 2011-06-20 2014-04-02 本田技研工業株式会社 燃料電池システム及び該システム搭載車両
JP5335047B2 (ja) * 2011-09-09 2013-11-06 本田技研工業株式会社 燃料電池システム
JP5622693B2 (ja) * 2011-09-09 2014-11-12 本田技研工業株式会社 燃料電池車両
JP5474898B2 (ja) * 2011-09-14 2014-04-16 本田技研工業株式会社 燃料電池車両
US9018865B2 (en) * 2012-04-30 2015-04-28 GM Global Technology Operations LLC Passive high-voltage DC bus discharge circuit for a vehicle
TWI509940B (zh) * 2012-05-22 2015-11-21 Green Solution Tech Co Ltd 電池電壓平衡電路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271209A (ja) * 1991-02-25 1992-09-28 Hino Motors Ltd 車両用電源調整回路
JP2000278806A (ja) * 1999-03-19 2000-10-06 Nissan Diesel Motor Co Ltd 電気自動車の電源システム
WO2009136483A1 (ja) * 2008-05-09 2009-11-12 日立化成工業株式会社 電源装置及び車両用電源装置
JP2010004611A (ja) * 2008-06-18 2010-01-07 Toyota Motor Corp 駆動装置およびその制御方法並びにハイブリッド車

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10003273B2 (en) 2013-05-30 2018-06-19 Fuji Electric Co., Ltd. Power conversion device
JP2017154585A (ja) * 2016-03-01 2017-09-07 株式会社Subaru 車両制御装置
JP2022023622A (ja) * 2020-07-27 2022-02-08 本田技研工業株式会社 給電制御システムおよび給電制御方法
JP7042309B2 (ja) 2020-07-27 2022-03-25 本田技研工業株式会社 給電制御システムおよび給電制御方法

Also Published As

Publication number Publication date
CN102958745A (zh) 2013-03-06
DE112011102229T5 (de) 2013-06-06
CN102958745B (zh) 2015-07-08
US20130110337A1 (en) 2013-05-02
JPWO2012002082A1 (ja) 2013-08-22
US9493092B2 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
WO2012002082A1 (ja) 電気自動車
US10081255B2 (en) Vehicle including electronic control unit configured to control inverter
US8053921B2 (en) Driving force generation system, vehicle using the system, and method for controlling the system
US8598734B2 (en) Power supply system and vehicle equipped with the same
US8297391B2 (en) Power supply system, vehicle provided with the same, power supply system control method and computer-readable recording medium bearing program for causing computer to control the power supply system
JP5058024B2 (ja) Dc/dcコンバータの故障検出方法
US9236736B2 (en) Power supply system and method for controlling the same
US10958091B2 (en) Power supply device
US7969039B2 (en) Method of controlling fuel cell vehicle and method of controlling DC/DC converter apparatus
US10737681B2 (en) Drive unit, vehicle, and control method for drive unit
US7923861B2 (en) Method of controlling hybrid DC power supply system
US20170047603A1 (en) Method of controlling fuel cell system, method of controlling fuel cell automobile, and fuel cell automobile
JP5887077B2 (ja) 電源システム及び燃料電池車両
JP4905204B2 (ja) 負荷駆動装置
JP5474681B2 (ja) 電気自動車
US7843713B2 (en) Method of driving DC/DC converter, and DC/DC converter
JP5430506B2 (ja) 電気自動車
JP5621633B2 (ja) 電源装置
JP4104940B2 (ja) ハイブリッド車両の駆動制御装置
JP2015050895A (ja) 給電車両及び給電システム
JP2012210085A (ja) 電源制御装置およびそれを備えたモータ駆動システムならびに電動制御装置の制御方法
KR101113646B1 (ko) 하이브리드 차량의 림프홈 운전 방법
EP2080662B1 (en) Fuel cell vehicle and DC/DC converter apparatus
US20230286389A1 (en) Motor generator control system and hybrid vehicle
JP2020124066A (ja) 駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030892.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800551

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012522523

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13807266

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011102229

Country of ref document: DE

Ref document number: 1120111022298

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800551

Country of ref document: EP

Kind code of ref document: A1