WO2012001966A1 - 回転式圧縮機 - Google Patents

回転式圧縮機 Download PDF

Info

Publication number
WO2012001966A1
WO2012001966A1 PCT/JP2011/003717 JP2011003717W WO2012001966A1 WO 2012001966 A1 WO2012001966 A1 WO 2012001966A1 JP 2011003717 W JP2011003717 W JP 2011003717W WO 2012001966 A1 WO2012001966 A1 WO 2012001966A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
piston
peripheral surface
vane
eccentric portion
Prior art date
Application number
PCT/JP2011/003717
Other languages
English (en)
French (fr)
Inventor
健 苅野
大輔 船越
飯田 登
澤井 清
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/808,030 priority Critical patent/US9074600B2/en
Priority to EP11800436.5A priority patent/EP2589809B1/en
Priority to CN201180032823.7A priority patent/CN102971537B/zh
Publication of WO2012001966A1 publication Critical patent/WO2012001966A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/04Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/324Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts

Definitions

  • the present invention relates to a rotary compressor incorporated in a refrigerator, an air conditioner or the like.
  • the rotary compressor includes a sealed container 1, an electric motor part (not shown), and a compression mechanism part A connected to the electric motor part via the shaft 4. It is stored and the bottom of the sealed container is an oil reservoir.
  • the compression mechanism portion A is provided with a cylinder 5, a main bearing 7 and a sub-bearing 8 that are fastened to both end surfaces of the cylinder 5 to form a cylinder chamber 6, and an eccentric portion 41 between the main bearing 7 and the sub-bearing 8.
  • the tip portion 11A of the vane 11 is swingably fitted and connected to a fitting portion 9A formed on the piston 9, so that the suction chamber 12 and the compression chamber 13 partitioned by the vane 11 in the cylinder chamber 6 are connected. To form.
  • the volume of the suction chamber 12 and the compression chamber 13 is changed by the revolving motion of the piston 9 accompanying the rotation of the shaft 4 and the reciprocating motion of the vane 11, and the working refrigerant sucked into the suction chamber 12 from the suction port 17 by this volume change. It is compressed to a high temperature and high pressure, and is discharged from the compression chamber 13 through the discharge port 18 and the discharge muffler chamber 19 into the sealed container 1.
  • the oil in the oil reservoir is sucked by the oil pump provided at the lower end of the shaft 4 and passes through the hollow hole provided in the shaft 4, so that the sliding surface in the compression mechanism portion, for example, the eccentric portion 41 of the shaft 4. And between the outer peripheral surface of the piston 9 and the inner peripheral surface of the cylinder 5 for lubrication (see, for example, Patent Document 1).
  • the area of the sliding surface of the eccentric portion 41 of the shaft 4 and the inner peripheral surface 9B of the piston 9 is reduced.
  • the viscous force of the oil acting between the eccentric portion 41 of the shaft 4 and the inner peripheral surface 9B of the piston 9 is reduced. It is desirable to keep it to a minimum.
  • the piston 9 is inserted from the side of the auxiliary bearing 8 and fitted into the eccentric portion 41 of the shaft 4, so that the auxiliary shaft inserted into the auxiliary bearing 8 is inserted.
  • the shaft diameter of the portion 43 is made smaller than the shaft diameter of the main shaft portion 42 fitted into the main bearing 7, and the outer peripheral surface of the eccentric portion 41 of the shaft 4 on the side opposite to the eccentric shaft is fitted into the sub-bearing 8. It is made to be the same as the outer peripheral surface of, or radially outward.
  • the shaft diameter ⁇ D1 of the eccentric portion 41 of the shaft 4 is ⁇ D3 and the eccentric amount of the eccentric portion 41 is E
  • the shaft diameter of the auxiliary shaft portion 43 fitted into the auxiliary bearing 8 is ⁇ D1 ⁇ ⁇ D3 + 2 ⁇ E
  • the shaft diameter ⁇ D1 of the eccentric portion 41 must be set so as to satisfy the formula (1).
  • the shaft diameter ⁇ D2 of the main shaft portion 42 is larger than the shaft diameter of the sub shaft portion 43, the outer peripheral surface of the eccentric portion 41 on the side opposite to the eccentric shaft is recessed from the outer peripheral surface of the main shaft portion 42. .
  • the shaft diameter of the eccentric portion 41 is reduced to reduce the area of the sliding surface of the eccentric portion 41.
  • the shaft of the eccentric portion 41 is the same.
  • the shaft diameter of the sub-shaft portion 43 is further reduced. As a result, the strength required particularly for the sub-shaft portion 43 cannot be obtained, and the reliability is lowered.
  • the present invention solves the above-mentioned conventional problems, and by reducing the shaft diameter of the eccentric portion while ensuring the strength reliability of the shaft, the sliding loss caused by the reciprocating motion of the vane in the vane groove
  • An object of the present invention is to provide a rotary compressor with a reduced input loss.
  • a rotary compressor includes a cylinder, a main bearing and a sub-bearing that are fastened to both end surfaces of the cylinder to form a cylinder chamber, and a main bearing and a sub-bearing.
  • a shaft provided with an eccentric portion therebetween, a piston fitted to the eccentric portion of the shaft, a vane dividing the cylinder chamber into a suction chamber and a compression chamber, and a vane groove formed in the cylinder for reciprocating movement of the vane.
  • the outer peripheral surface of the eccentric portion of the shaft on the side of the eccentric shaft is recessed from the outer peripheral surface of the main shaft portion that is fitted into the main bearing and the outer peripheral surface of the sub shaft portion that is fitted into the sub bearing.
  • escape means for assembling the piston to the shaft is provided in the eccentric part of the peripheral surface and the shaft.
  • the shaft diameter of the eccentric portion can be reduced while ensuring the strength reliability of the shaft, the area of the sliding surface of the eccentric portion of the shaft and the inner peripheral surface of the piston can be reduced, and further the eccentric portion of the shaft Thus, the sliding speed of the inner peripheral surface of the piston can be reduced. That is, when the shaft rotates, it becomes possible to reduce the viscous force of oil acting between the eccentric part of the shaft and the inner peripheral surface of the piston, and this viscous force acts on the piston in the rotational direction of the shaft.
  • the rotation moment around the center of the eccentric part of the shaft can be reduced, and when the vane reciprocates in the vane groove, the vane acts on the two contacts as a reaction force of the force that supports the rotation moment at the tip of the vane.
  • the frictional resistance with the groove can be reduced. Therefore, it is possible to provide a rotary compressor in which the sliding loss generated by the reciprocating motion of the vane in the vane groove is reduced and the input loss is small.
  • FIG. 1 is a longitudinal sectional view of a rotary compressor according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view showing a compression mechanism of the rotary compressor of FIG. 3A to 3E are assembly process diagrams showing the assembly of the shaft and piston of the rotary compressor of FIG. 4 is an enlarged perspective view showing a piston of the rotary compressor of FIG.
  • FIG. 5 is a surface development view showing the inner peripheral surface of the piston of the rotary compressor of FIG.
  • FIGS. 6A to 6F are schematic diagrams for explaining the operation of the rotary compressor of FIG.
  • FIG. 7 is a longitudinal sectional view showing a conventional rotary compressor.
  • FIG. 8 is a cross-sectional view showing a compression mechanism of a conventional rotary compressor
  • FIG. 9 is a schematic diagram for explaining the operation of the main part of a conventional rotary compressor.
  • a first invention includes a cylinder, a main bearing and a sub-bearing that are fastened to both end surfaces of the cylinder to form a cylinder chamber, a shaft having an eccentric portion between the main bearing and the sub-bearing, and an eccentric portion of the shaft And a vane that divides the cylinder chamber into a suction chamber and a compression chamber, and a vane groove formed in the cylinder for reciprocating movement of the vane.
  • a rotary compressor configured to be connected, wherein an outer peripheral surface of the eccentric portion of the shaft on the side opposite to the eccentric shaft is inserted into a main shaft portion and a sub shaft portion inserted into a sub bearing.
  • escape means for assembling the piston to the shaft are provided on the inner peripheral surface of the piston and the eccentric portion of the shaft.
  • the shaft diameter of the eccentric portion can be reduced while ensuring the strength reliability of the shaft, so that the area of the sliding surface between the eccentric portion of the shaft and the inner peripheral surface of the piston can be reduced, and further the eccentric portion of the shaft and the piston It becomes possible to reduce the sliding speed of the inner peripheral surface. That is, when the shaft rotates, it is possible to reduce the viscous force of the oil acting on the eccentric part of the shaft and the inner peripheral surface of the piston, and this viscous force acts on the piston in the direction of rotation of the shaft.
  • the rotational moment around the center of the eccentric portion can be reduced, and when the vane reciprocates in the vane groove, the vane groove acting on the two contacts as a reaction force of the force that the tip of the vane supports this rotational moment Can reduce the frictional resistance.
  • the thrust load acting on the shaft is supported by the end face of either the main bearing or the sub-bearing by sliding with the end face of the eccentric portion of the shaft. It is comprised so that it may do.
  • either one of the end face of the main bearing or the sub-bearing is used as a reference plane for the revolving motion of the piston, and the outer peripheral surface of the piston and the cylinder that revolves while swinging in the cylinder chamber while minimizing the shaft swing. Since the gap formed between the inner circumferential surface and the inner circumferential surface of the refrigerant can be reduced, leakage of the refrigerant gas from the compression chamber to the suction chamber can be reduced, and the effect of the first invention can be obtained without reducing the volumetric efficiency. it can.
  • the escape means is a suction surface of the cylinder chamber on the sliding surface facing the eccentric portion of the shaft, of the inner peripheral surface of the piston. It is formed in a mode in which the side is excised.
  • the cut portion formed on the inner peripheral surface of the piston is configured on the suction chamber side of the cylinder chamber on the light load side, so that there is an influence such as seizure on the sliding surface facing the eccentric portion of the shaft. There is little, and reliability does not fall.
  • the vane in the rotary compressor of the third aspect of the invention, is stored in the vane groove most on the sliding surface facing the eccentric part of the shaft among the inner peripheral surface of the piston.
  • the side closer to the vane is used as a base point, and is formed in a form cut away from a position of 30 degrees in the rotation direction of the shaft.
  • the start position of the excised part formed on the inner peripheral surface of the piston is shifted by 30 degrees from the base point of the light load part, so even if a load acts near the base point of the light load part during discharge operation, it is sufficient Durability can be secured.
  • the piston is arranged so as to swing in a horizontal plane, and is opposed to the eccentric portion of the shaft on the inner peripheral surface of the piston. The upper portion of the sliding surface is cut away.
  • the working refrigerant comprises a refrigerant having a base component of a hydrofluoroolefin having a double bond between carbon and carbon.
  • a single refrigerant or a mixed refrigerant containing this refrigerant is used, and when such a refrigerant is used, it is more effective because the lubricity deteriorates with a decrease in chemical stability especially at high temperatures.
  • the sliding loss caused by the reciprocating motion of the vane in the vane groove can be reduced.
  • FIG. 1 is a longitudinal sectional view of a rotary compressor provided with one compression mechanism 101 as an embodiment of the rotary compressor of the present invention
  • FIG. 2 is a transverse sectional view of the compression mechanism.
  • the rotary compressor shown in FIG. 1 is disposed in a cylindrical sealed container 1, a motor unit 102 disposed on the upper side inside the sealed container 1, and a lower side of the motor unit 102, and is driven by the motor unit 102. And the bottom of the sealed container 1 is used as an oil reservoir.
  • the electric motor unit 102 includes a stator 2 that is annularly attached along the inner peripheral surface of the upper side of the hermetic container 1, and a rotor 3 that is inserted with a slight gap inside the stator 2. Is fixed to the shaft 4 in the vertical direction at the center.
  • the compression mechanism 101 includes a cylinder 5, a main bearing 7 and a sub-bearing 8 that are fastened to both end surfaces of the cylinder 5 to form a cylinder chamber 6, and a main bearing 7 and a sub-bearing. 8, a shaft 4 provided with an eccentric portion 41, a piston 9 fitted to the eccentric portion 41 of the shaft 4, and a vane 11 that reciprocates in a vane groove 10 formed in the cylinder 5 in a radial direction.
  • the tip end portion 11A of the vane 11 has an arc shape, and is fitted and connected to a fitting portion 9A formed on the piston 9 so as to be swingable.
  • the suction chamber 12 partitioned by the vane 11 in the cylinder chamber 6 A compression chamber 13 is formed. Further, the main bearing 7 is fastened to the upper end surface of the cylinder 5 and the sub-bearing 8 is fastened to the lower end surface of the cylinder 5 with bolts, and the main bearing 7 is welded to the hermetic container 1 so that the compression mechanism 101 is sealed. 1 is fixed.
  • the shaft 4 is generally constituted by a main shaft portion 42 fitted into the main bearing 7, an eccentric portion 41 fitted into the piston 9, and a sub shaft portion 43 fitted into the sub bearing 8. Is done.
  • the shaft diameter ⁇ D3 of the subshaft portion 43 fitted into the subbearing 8 is smaller than the shaft diameter ⁇ D2 of the main shaft portion 42 fitted into the main bearing 7.
  • the required strength may be smaller than the strength required by the main shaft portion 42, and the required strength is ensured for the entire shaft 4.
  • the shaft diameter of the eccentric portion 41 is ⁇ D1, and the outer peripheral surface of the eccentric portion 41 on the side opposite to the eccentric shaft is recessed from the outer peripheral surface of the main shaft portion 42 and the outer peripheral surface of the sub shaft portion 43.
  • the amount of dent from the outer peripheral surface is the dimension ⁇ .
  • the side of the eccentric part 41 on the auxiliary bearing 8 side is cut away from the outer peripheral surface of the eccentric part 41 radially inward by a height L1 concentric with the auxiliary shaft part 43 to form a relief part 301.
  • Relief means for assembling the piston 9 to the shaft 4 is configured, and the end surface of the eccentric portion 41 slides with the end surface of the sub-bearing 8 to support the thrust load acting on the shaft 4.
  • the main bearing 7 side of the eccentric portion 41 is also cut in an arc shape concentric with the main shaft portion 42 radially inward from the outer peripheral surface of the eccentric portion 41, and the cut-out space communicates with the hollow hole provided in the shaft 4. A hole is provided.
  • the connecting portion between the eccentric portion 41 and the main shaft portion 42 and the sub shaft portion 43 is made smaller in diameter than the respective shaft diameters of the main shaft portion 42 and the sub shaft portion 43 in consideration of the manufacturing process of the shaft 4.
  • the piston 9 is arranged so as to revolve while swinging in a horizontal plane, and has a dimension H in the height direction as shown in FIGS.
  • the side surface of the secondary bearing 8 is cut into a circular shape concentric with the inner peripheral surface 9B of the piston 9 by a height L2 to form a relief portion 302, and the main bearing of the sliding surface facing the eccentric portion 41 of the shaft 4 is further formed. 7 is cut off by a height L3 in the shape of an arc around a position shifted by a necessary amount from the center of the inner peripheral surface 9B of the piston 9 to the eccentric shaft side, thereby forming the escape portion 303.
  • the escape means when assembling to 4 is configured.
  • a concave portion 304 is formed by cutting the same or slightly smaller circular shape by a height L.
  • the excision height L1 of the escape portion 301, the excision height L2 of the escape portion 302, and the excision height L3 of the escape portion 303 are set so as to satisfy the following expression (2).
  • FIG. 5 is based on the point closer to the vane 11 out of the intersection of the inner peripheral surface 9B of the piston 9 and the center line in the thickness direction of the vane 11 when the vane 11 is most housed in the vane groove 10. It is a surface development view in which the inner peripheral surface 9B is developed in the rotation direction of the shaft 4, and a sliding surface that is sandwiched between two two-dot chain lines in the figure and that faces the eccentric portion 41 of the shaft 4 is an escape portion 303.
  • the narrow portion 9D having a small width in the height direction and the large portion 9C having a relatively large width, which are excised by the above, are particularly located on the suction chamber 12 side of the cylinder chamber 6.
  • the direction closer to the vane 11 is the base point, and 30 in the rotational direction of the shaft 4
  • the height direction of the piston 9 from the position of degrees It is formed in a manner to ablate side.
  • FIG. 6 shows the positional relationship between the piston 9 and the vane 11 when the piston 9 is revolved by 60 degrees in the order of (a), (b), (c), (d), (e), (f). ing. 3 (a), (b), (c), (d), (e), and (f), the working refrigerant is sucked into the suction chamber 12 from the suction port 17 in the order shown in FIG.
  • the volume of the suction chamber 12 and the compression chamber 13 is changed by the swinging motion and the reciprocating motion of the vane 11, and due to this volume change, the working refrigerant is gradually compressed to high temperature and high pressure, and the compression chamber is processed at the timing shown in FIG.
  • the shaft diameter of the auxiliary shaft portion 43 is made smaller than the shaft diameter of the main shaft portion 42, and the outer peripheral surface of the eccentric portion 41 on the side opposite to the eccentric shaft is the outer peripheral surface of the main shaft portion 42 and the auxiliary shaft portion 43.
  • the sub-bearing 8 side of the eccentric portion 41 is concentric with the sub-shaft portion 43 radially inward from the outer peripheral surface of the eccentric portion 41 so that the shaft 4 and the piston 9 can be assembled while being recessed from the outer peripheral surface.
  • the relief portion 301 is formed by cutting away the height L1 in a circular arc shape, and the auxiliary bearing 8 side is formed on the inner peripheral surface 9B of the piston 9 in a circular shape concentric with the inner peripheral surface 9B of the piston 9 by the height L2.
  • a position where the escape portion 302 is formed by cutting, and the main bearing 7 side of the sliding surface facing the eccentric portion 41 of the shaft 4 is shifted from the center of the inner peripheral surface 9B of the piston 9 to the eccentric shaft side by a necessary amount. Since the escape portion 303 is formed by cutting away the height L3 in an arc shape around the center, While ensuring the strength reliability of Yafuto 4, it is possible to reduce the shaft diameter of the eccentric portion 41.
  • the area of the sliding surface of the eccentric part 41 of the shaft 4 and the inner peripheral surface 9B of the piston 9 can be reduced, and the sliding speed of the eccentric part 41 of the shaft 4 and the inner peripheral surface 9B of the piston 9 can be reduced. It becomes possible. That is, when the shaft 4 rotates, the viscous force of oil acting between the eccentric portion 41 of the shaft 4 and the inner peripheral surface 9B of the piston 9 can be reduced, and the rotational direction of the shaft 4 is reduced by this viscous force. The rotational moment around the center of the eccentric portion 41 of the shaft 4 acting on the piston 9 can be reduced, so that when the vane 11 reciprocates in the vane groove 10, the tip portion 11A of the vane 11 has this rotational moment. It is possible to reduce the frictional resistance force with the vane groove 10 acting on the two contact points as a reaction force of the force for supporting the.
  • the end surface of the eccentric portion 41 of the shaft 4 slides with the end surface of the sub-bearing 8 and supports the thrust load acting on the shaft 4, the end surface of the sub-bearing 8 is used as a reference surface for the revolving motion of the piston 9.
  • the gap formed between the outer peripheral surface of the piston 9 and the inner peripheral surface of the cylinder 5 that revolves while swinging in the cylinder chamber 6 while minimizing the swing of the shaft 4 can be reduced. Therefore, leakage of the refrigerant gas from the compression chamber 13 to the suction chamber 12 is reduced, and volume efficiency is not reduced.
  • the narrow portion 9D of the sliding surface facing the eccentric portion 41 of the shaft 4 is located on the suction chamber 12 side of the cylinder chamber 6 serving as a light load portion, so seizure occurs.
  • the viscous force of oil acting between the eccentric portion 41 of the shaft 4 and the inner peripheral surface 9B of the piston 9 can be reduced.
  • the sliding surface on the 12th side is a light load portion, and the load is very light.
  • the sliding surface on the suction chamber 12 side facing the eccentric portion 41 of the shaft 4 in the inner peripheral surface 9B of the piston 9 is a light load portion.
  • the start angle of the narrow portion 9D is set to the time when the vane 11 is stored most in the vane groove 10 so that sufficient durability can be secured even if a load is applied in the vicinity of the base point of the lightly loaded portion during the discharge operation.
  • the intersecting points of the inner peripheral surface 9B of the piston 9 and the center line in the thickness direction of the vane 11 it is shifted by 30 degrees from the base point O which is closer to the vane 11, so that the reliability is not lowered.
  • the narrow portion 9D is formed in such a manner that the upper side in the height direction of 9 is cut, and the cut portion formed on the sliding surface facing the eccentric portion 41 of the shaft 4 functions as an oil reservoir, so that the oil is insufficient. Lubrication can be prevented and reliability is improved.
  • a single refrigerant composed of a refrigerant composed of carbon and a hydrofluoroolefin having a double bond between carbons as a base component or a mixed refrigerant containing this refrigerant is used.
  • the lubricity deteriorates with a decrease in chemical stability at a high temperature, the sliding loss caused by the reciprocating motion of the vane in the vane groove is more effectively reduced. be able to.
  • the rotary compressor according to the present invention can reduce input loss, it can be applied to a hot water compressor and air compression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 ベーンロータリー型回転式圧縮機において、シャフト4の偏心部41における反偏心軸側の外周面を主軸受け7に嵌入される主軸部42の外周面及び副軸受け8に嵌入される副軸部43の外周面よりへこませると共に、ピストン9の内周面とシャフト4の偏心部41に、ピストン9をシャフト4に組み付ける際の逃げ手段を設けて、偏心部41の軸径を小さくすることにより、シャフト4の偏心部41とピストン9の内周面で作用するオイルの粘性力を低減して、シャフト4の回転方向にピストン9に作用する、シャフト4の偏心部41中心回りの回転モーメントを小さくすることができ、ベーン11がベーン溝10内を往復運動することによって発生する摺動損失を低減することができる。

Description

回転式圧縮機
 本発明は、冷蔵庫、空気調和装置等に組み込まれる回転式圧縮機に関するものである。
 従来技術の回転式圧縮機は、図7及び図8で示したように、密閉容器1に、電動機部(図示せず)と、シャフト4を介して電動機部に連結される圧縮機構部Aが収納されており、密閉容器の底部をオイル溜りとしている。圧縮機構部Aは、シリンダー5と、シリンダー5の両端面に締結されてシリンダー室6を形成する主軸受け7及び副軸受け8と、主軸受け7と副軸受け8との間に偏心部41を設けたシャフト4と、シャフト4の偏心部41に嵌合されるピストン9と、シリンダー5の半径方向に形成されるベーン溝10内を往復運動するベーン11とで構成されている。そして、前記ベーン11の先端部11Aをピストン9に形成された嵌合部9Aに揺動自在に嵌合接続することにより、シリンダー室6内にベーン11によって仕切られた吸入室12と圧縮室13を形成するようにしている。
 シャフト4の回転に伴うピストン9の公転運動とベーン11の往復運動によって吸入室12と圧縮室13の容積が変化し、この容積変化により、吸入ポート17から吸入室12に吸入された作動冷媒が圧縮されて高温高圧となり、圧縮室13より吐出ポート18、吐出マフラー室19を経て、密閉容器1内に吐出される。また同時に、シャフト4の下端に設けられたオイルポンプによりオイル溜り内のオイルが吸引されてシャフト4に設けられた中空孔を通り、圧縮機構部内の摺動面、例えば、シャフト4の偏心部41とピストン9の内周面9Bの間、ピストン9の外周面とシリンダー5の内周面の間に給油されて潤滑するようにしている(例えば、特許文献1参照)。
 そして、この従来技術では、図9に示すように、シャフト4の偏心部41とピストン9の内周面9Bの間に作用するオイルの粘性力によって、ピストン9にはシャフト4の回転方向に、シャフト4の偏心部41中心回りの回転モーメントが作用し、この回転モーメントをベーン11の先端部11Aで支持するように構成している。従って、この支持力の反力としてベーン11とベーン溝10の接点201および接点202にベーン溝10との摩擦抵抗力が働き、ベーン11がベーン溝10内を往復運動することにより発生する摺動損失が増加する。よって、この種の回転式圧縮機において、摺動損失を低減し、入力ロスを小さくするためには、シャフト4の偏心部41とピストン9の内周面9Bの摺動面の面積を小さくする、もしくはシャフト4の偏心部41とピストン9の内周面9Bの摺動速度を小さくすることにより、シャフト4の偏心部41とピストン9の内周面9Bの間で作用するオイルの粘性力を最小限に抑えることが望ましい。
特開2008-180178号公報
 しかしながら、この従来技術では、シャフト4の偏心部41を形成した後に、ピストン9を副軸受け8側から挿入してシャフト4の偏心部41に嵌合するので、副軸受け8に嵌入される副軸部43の軸径を主軸受け7に嵌入される主軸部42の軸径よりも小さくし、シャフト4の偏心部41における反偏心軸側の外周面を副軸受け8に嵌入される副軸部43の外周面と同一、もしくは径方向外方になるようにしている。従って、シャフト4の偏心部41の軸径φD1は、副軸受け8に嵌入される副軸部43の軸径をφD3、偏心部41の偏心量をEとしたとき、
 φD1 ≧  φD3 + 2×E         ・・・(1)
で表され、偏心部41の軸径φD1は式(1)を満足するように設定しなければならない。また、この時、主軸部42の軸径φD2は副軸部43の軸径よりも大きくしているので、偏心部41における反偏心軸側の外周面は主軸部42の外周面よりへこんでいる。
 例えば、この従来技術において、偏心部41の軸径を小さくして偏心部41の摺動面の面積を小さくすることが考えられるが、偏心部41の偏心量が同じ場合、偏心部41の軸径を小さくするに伴って副軸部43の軸径が更に小さくなり、その結果、特に副軸部43に必要な強度が得られなくなり、信頼性が低下するという課題があった。
 また、主軸部42を含むシャフト4全体の軸径を小さくすることが考えられるが、上記同様、シャフト4全体に必要な強度が得られなくなり、信頼性が低下するという課題があった。
 本発明は前記従来の課題を解決するもので、シャフトの強度信頼性を確保しつつ、偏心部の軸径を小さくすることにより、ベーンがベーン溝内を往復運動することにより発生する摺動損失を低減し、入力ロスの小さい回転式圧縮機を提供することを目的とする。
 前記従来技術の課題を解決するために、本発明の回転式圧縮機は、シリンダーと、シリンダーの両端面に締結されてシリンダー室を形成する主軸受け及び副軸受けと、主軸受けと副軸受けとの間に偏心部を設けたシャフトと、シャフトの偏心部に嵌合されるピストンと、シリンダー室内を吸入室と圧縮室に仕切るベーンと、シリンダーに形成され、前記ベーンが往復運動するベーン溝を有し、かつ、前記シャフトの偏心部における偏心軸側の外周面を主軸受けに嵌入される主軸部の外周面及び副軸受けに嵌入される副軸部の外周面よりへこませると共に、ピストンの内周面とシャフトの偏心部に、ピストンをシャフトに組み付ける際の逃げ手段を設けたことを特徴としたものである。
 上記によれば、シャフトの強度信頼性を確保しつつ、偏心部の軸径を小さくできるので、シャフトの偏心部とピストンの内周面の摺動面の面積を小さくでき、更にシャフトの偏心部とピストンの内周面の摺動速度を小さくすることが可能となる。すなわち、シャフトが回転する際に、シャフトの偏心部とピストンの内周面の間で作用するオイルの粘性力を低減することが可能となり、この粘性力によってシャフトの回転方向にピストンに作用する、シャフトの偏心部中心回りの回転モーメントを小さくすることができ、ベーンがベーン溝内を往復運動する際に、ベーンの先端部がこの回転モーメントを支持する力の反力として前記両接点に働くベーン溝との摩擦抵抗力を軽減できる。従って、ベーンがベーン溝内を往復運動することによって発生する摺動損失を低減し、入力ロスが小さい回転式圧縮機を提供することが可能となる。
図1は本発明の実施の形態1における回転式圧縮機の縦断面図 図2は図1の回転式圧縮機の圧縮機構部を示す横断面図 図3(A)~(E)は図1の回転式圧縮機のシャフトとピストンの組立てを示す組立工程図 図4は図1の回転式圧縮機のピストンを示す拡大斜視図 図5は図1の回転式圧縮機のピストンの内周面を示す表面展開図 図6(a)~(f)は図1の回転式圧縮機の動作を説明するための模式図 図7は従来の回転式圧縮機を示す縦断面図 図8は従来の回転式圧縮機の圧縮機構部を示す横断面図 図9は従来の回転式圧縮機の要部の動作を説明するための模式図
 第1の発明は、シリンダーと、シリンダーの両端面に締結されてシリンダー室を形成する主軸受け及び副軸受けと、主軸受けと副軸受けとの間に偏心部を設けたシャフトと、シャフトの偏心部に嵌合されるピストンと、シリンダー室内を吸入室と圧縮室に仕切るベーンと、シリンダーに形成され、ベーンが往復運動するベーン溝を有し、ベーンの先端部をピストンと揺動自在に嵌合接続して構成される回転式圧縮機であって、前記シャフトの偏心部における反偏心軸側の外周面を主軸受けに嵌入される主軸部の外周面及び副軸受けに嵌入される副軸部の外周面よりへこませると共に、ピストンの内周面とシャフトの偏心部に、ピストンをシャフトに組み付ける際の逃げ手段を設けたものである。
 これにより、シャフトの強度信頼性を確保しつつ、偏心部の軸径を小さくできるので、シャフトの偏心部とピストンの内周面の摺動面の面積を小さくでき、更にシャフトの偏心部とピストンの内周面の摺動速度を小さくすることが可能となる。すなわち、シャフトが回転する際に、シャフトの偏心部とピストンの内周面で作用するオイルの粘性力を低減することが可能となり、この粘性力によってシャフトの回転方向にピストンに作用する、シャフトの偏心部中心回りの回転モーメントを小さくすることができ、ベーンがベーン溝内を往復運動する際に、ベーンの先端部がこの回転モーメントを支持する力の反力として前記両接点に働くベーン溝との摩擦抵抗力を軽減できる。
 第2の発明は、特に第1の発明の回転式圧縮機において、シャフトの偏心部の端面と摺動して、主軸受けと副軸受けのいずれか一方の端面でシャフトに作用するスラスト荷重を支持するように構成したものである。
 これにより、主軸受けと副軸受けのいずれか一方の端面をピストンの公転運動の基準面とし、シャフトの振れ回りを最小限に抑えてシリンダー室内を揺動しながら公転運動するピストンの外周面とシリンダーの内周面との間に構成される隙間を小さくできるので、圧縮室から吸入室への冷媒ガスの漏れを小さくし、体積効率を低下させることなく、第1の発明の効果を得ることができる。
 第3の発明は、特に第1または第2の発明の回転式圧縮機において、逃げ手段は、ピストンの内周面のうち、シャフトの偏心部と対向する摺動面において、シリンダー室の吸入室側を切除した態様で形成したものである。
 これにより、ピストンの内周面に形成された切除部分は、軽負荷側となるシリンダー室の吸入室側に構成されるので、シャフトの偏心部と対向する摺動面において焼付き等の影響が少なく、信頼性が低下することはない。
 第4の発明は、特に第3の発明の回転式圧縮機において、逃げ手段は、ピストンの内周面のうち、シャフトの偏心部と対向する摺動面において、ベーンがベーン溝に最も収納された時点のピストンの内周面とベーンの厚み方向中心線の交点のうち、ベーンに近い方を基点とし、シャフトの回転方向に30度の位置から切除した態様で形成したものである。
 これにより、ピストンの内周面に形成された切除部分の開始位置を軽負荷部分の基点から30度ずらせてあるので、吐出動作時に軽負荷部分の基点の近傍に荷重が作用しても、十分な耐久性を確保できる。
 第5の発明は、特に第3または第4の発明の回転式圧縮機において、ピストンが水平面内を揺動運動するように配置し、ピストンの内周面のうち、シャフトの偏心部と対向する摺動面の上側部分を切除した態様で形成しているものである。
 これにより、シャフトの偏心部と対向する摺動面に形成された切除部分はオイル溜りとして機能するので、オイル不足による潤滑不良を防止でき、信頼性は向上する。
 第6の発明は、特に第1から第5のいずれか1つの発明の回転式圧縮機において、作動冷媒として、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒またはこの冷媒を含む混合冷媒を用いたもので、このような冷媒を用いた場合に、特に高温において化学的安定性が低下することに伴い、潤滑性が悪化するので、より効果的にベーンがベーン溝内を往復運動することによって発生する摺動損失を低減することができる。
 以下、本発明の実施形態について図面に従って説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は本発明の回転式圧縮機の実施例として、一つの圧縮機構部101を備えた回転式圧縮機の縦断面図、図2は圧縮機構部の横断面図を示している。
 図1に示した回転式圧縮機は、円筒状の密閉容器1と、密閉容器1の内部上側に配置された電動機部102、及び電動機部102の下側に配置され、電動機部102によって駆動される圧縮機構部101とによって構成されており、密閉容器1の底部をオイル溜りとしている。
 電動機部102は、密閉容器1の内部上側の内周面に沿って環状に取り付けられたステータ2と、ステータ2の内側に若干の隙間を設けて挿入されるロータ3からなっており、ロータ3は中心部で鉛直方向にシャフト4に固定されている。
 図1及び図2に示すように、圧縮機構部101は、シリンダー5と、シリンダー5の両端面に締結されてシリンダー室6を形成する主軸受け7及び副軸受け8と、主軸受け7と副軸受け8との間に偏心部41を設けたシャフト4と、シャフト4の偏心部41に嵌合されるピストン9と、シリンダー5に半径方向に形成されたベーン溝10内を往復運動するベーン11を有している。そして、ベーン11の先端部11Aを円弧形状として、ピストン9に形成された嵌合部9Aに揺動自在に嵌合接続することにより、シリンダー室6内にベーン11によって仕切られた吸入室12と圧縮室13を形成する。また、主軸受け7はシリンダー5の上側端面に、副軸受け8はシリンダー5の下側端面にボルトで締結され、主軸受け7が密閉容器1に溶接されることにより、圧縮機構部101が密閉容器1に固定される構成となる。
 次に、シャフト4とピストン9の構成について、図面を参照しつつ、詳細に説明する。
 シャフト4は、圧縮機構部101において、大略的に主軸受け7に嵌入される主軸部42と、ピストン9に嵌合される偏心部41と、副軸受け8に嵌入される副軸部43によって構成される。図3に示すように、副軸受け8に嵌入される副軸部43の軸径φD3を主軸受け7に嵌入される主軸部42の軸径φD2よりも小さくしているが、副軸部43に必要な強度は主軸部42が必要とする強度より小さくてよく、シャフト4全体で必要な強度を確保している。また、偏心部41の軸径はφD1で、偏心部41における反偏心軸側の外周面を主軸部42の外周面及び副軸部43の外周面よりへこませていて、副軸部43の外周面からのへこみ量は寸法αである。そして、偏心部41の副軸受け8側を、偏心部41の外周面から径方向内方に副軸部43と同心の円弧状に高さL1だけ切除して逃げ部301を形成することにより、ピストン9をシャフト4に組み付ける際の逃げ手段が構成され、偏心部41の端面が副軸受け8の端面と摺動して、シャフト4に作用するスラスト荷重を支持するようにしている。偏心部41の主軸受け7側も、偏心部41の外周面から径方向内方に主軸部42と同心の円弧状に切除して、切除された空間とシャフト4に設けられた中空孔を連通させる孔を設けている。なお、偏心部41と主軸部42及び副軸部43の連結部は、シャフト4の製造工程を考慮して、主軸部42及び副軸部43のそれぞれの軸径より小径にしている。
 また、ピストン9は、水平面内を揺動しながら公転運動するように配置され、図3及び図4に示すように、高さ方向に寸法Hを持っていて、ピストン9の内周面9Bには、副軸受け8側をピストン9の内周面9Bと同心の円形状に高さL2だけ切除して逃げ部302を形成し、更にシャフト4の偏心部41と対向する摺動面の主軸受け7側を、ピストン9の内周面9Bの中心より偏心軸側に必要量だけずらした位置を中心に円弧状に高さL3だけ切除して逃げ部303を形成することにより、ピストン9をシャフト4に組み付ける際の逃げ手段が構成される。
 つまり、図3(B)に示すように、ピストン9は副軸受け8側から挿入して副軸部43を通して、図3(C)に示すように、偏心軸側へ寸法αだけ移動した後、図3(D)に示すように、主軸部42側に移動して偏心部41に嵌合し、図3(E)に示すように、シャフト4の偏心部41と対向する摺動面に設けた逃げ部303がシリンダー室6の吸入室12側に位置するよう、回転させる。本実施例ではピストン9の上下端面に作用する圧力が均一になるように、ピストン9の内周面9Bの主軸受け7側を、ピストン9の内周面9Bと同心に逃げ部302の径と同一、もしくはやや小さい円形状に高さLだけ切除して凹部304を形成している。この場合、逃げ部301の切除高さL1、逃げ部302の切除高さL2、逃げ部303の切除高さL3は以下の式(2)を満足するように設定される。
 L1 > H - L - L2 -L3      ・・・(2)
 また、図5はベーン11がベーン溝10に最も収納された時点のピストン9の内周面9Bとベーン11の厚み方向中心線の交点のうち、ベーン11に近い方を基点とし、ピストン9の内周面9Bをシャフト4の回転方向に展開した表面展開図であり、図中の2本の二点鎖線で挟まれた、シャフト4の偏心部41が対向する摺動面は、逃げ部303によって切除された、高さ方向に幅の小さい狭小部9Dと、比較的幅の大きい幅大部9Cで構成されており、特に、狭小部9Dは、シリンダー室6の吸入室12側に位置し、ベーン11がベーン溝10に最も収納された時点のピストン9の内周面9Bとベーン11の厚み方向中心線の交点のうち、ベーン11に近い方を基点とし、シャフト4の回転方向に30度の位置からピストン9の高さ方向上側を切除する態様にて形成されている。
 上述のように構成された回転式圧縮機の動作を図6に基づき説明する。
 図6はピストン9を60度ずつ公転させた時のピストン9とベーン11との位置関係を(a)、(b)、(c)、(d)、(e)、(f)の順に示している。図3(a)、(b)、(c)、(d)、(e)、(f)の順に吸入ポート17から吸入室12に作動冷媒が吸入され、シャフト4の回転に伴うピストン9の揺動運動とベーン11の往復運動により吸入室12と圧縮室13の容積が変化し、この容積変化により、作動冷媒が徐々に圧縮されて高温高圧となり、図6(f)のタイミングで圧縮室13より図示しない吐出ポート、吐出マフラー室19を経て、密閉容器1内に吐出される。また同時に、シャフト4の下端に設けられたオイルポンプによりオイル溜り内のオイルが吸引されてシャフト4に設けられた中空孔を通り、圧縮機構部内の摺動面に給油されて潤滑するようにしている。
 上述した本実施例では、副軸部43の軸径を主軸部42の軸径よりも小さくし、偏心部41における反偏心軸側の外周面を主軸部42の外周面及び副軸部43の外周面よりへこませると共に、シャフト4とピストン9の組立が可能となるように、偏心部41の副軸受け8側を、偏心部41の外周面から径方向内方に副軸部43と同心の円弧状に高さL1だけ切除して逃げ部301を形成し、ピストン9の内周面9Bには、副軸受け8側をピストン9の内周面9Bと同心の円形状に高さL2だけ切除して逃げ部302を形成し、更にシャフト4の偏心部41と対向する摺動面の主軸受け7側を、ピストン9の内周面9Bの中心より偏心軸側に必要量だけずらした位置を中心に円弧状に高さL3だけ切除して逃げ部303を形成しているので、シャフト4の強度信頼性を確保しつつ、偏心部41の軸径を小さくできる。よって、シャフト4の偏心部41とピストン9の内周面9Bの摺動面の面積を小さくでき、更にシャフト4の偏心部41とピストン9の内周面9Bの摺動速度を小さくすることが可能となる。すなわち、シャフト4が回転する際に、シャフト4の偏心部41とピストン9の内周面9Bの間で作用するオイルの粘性力を低減することが可能となり、この粘性力によってシャフト4の回転方向にピストン9に作用する、シャフト4の偏心部41中心回りの回転モーメントを小さくすることができるので、ベーン11がベーン溝10内を往復運動する際に、ベーン11の先端部11Aがこの回転モーメントを支持する力の反力として前記両接点に働くベーン溝10との摩擦抵抗力を軽減できる。
 また、シャフト4の偏心部41の端面が副軸受け8の端面と摺動して、シャフト4に作用するスラスト荷重を支持しているので、副軸受け8の端面をピストン9の公転運動の基準面とし、シャフト4の振れ回りを最小限に抑えてシリンダー室6内を揺動しながら公転運動するピストン9の外周面とシリンダー5の内周面との間に構成される隙間を小さくできる。よって、圧縮室13から吸入室12への冷媒ガスの漏れを小さくし、体積効率を低下させることがない。更に、ピストン9の内周面9Bのうち、シャフト4の偏心部41が対向する摺動面の狭小部9Dは、軽負荷部分となるシリンダー室6の吸入室12側に位置するので、焼付き等の影響が少なく、シャフト4の偏心部41とピストン9の内周面9Bの間に作用するオイルの粘性力を低減することができる。
 つまり、図6(a)の状態から図6(d)の状態に至るまでのピストン9の公転運動中は、ピストン9の内周面9Bのうち、シャフト4の偏心部41と対向する吸入室12側の摺動面は、軽負荷部分となり、負荷は非常に軽微である。また、図6(d)の状態から図6(a)の状態に至るまでのピストン9の公転運動中は、ピストン9の内周面9Bのうち、シャフト4の偏心部41と対向する圧縮室13側の摺動面に負荷は作用するが、吸入室12側の摺動面に作用する負荷は非常に軽微である。従って、ピストン9の内周面9Bのうち、シャフト4の偏心部41に対向する吸入室12側の摺動面は軽負荷部分となる。また、吐出動作時に軽負荷部分の基点の近傍に荷重が作用しても、十分な耐久性を確保できるように、狭小部9Dの開始角度を、ベーン11がベーン溝10に最も収納された時点のピストン9の内周面9Bとベーン11の厚み方向中心線の交点のうち、ベーン11に近い方である基点Oから30度ずらせてあるので、信頼性が低下することはなく、更に、ピストン9の高さ方向上側を切除する態様にて狭小部9Dを形成しており、シャフト4の偏心部41と対向する摺動面に形成された切除部分はオイル溜りとして機能するので、オイル不足による潤滑不良を防止でき、信頼性は向上する。
 以上の構成により、シャフトの強度信頼性を確保しつつ、かつ、シャフトの偏心部とピストンの内周面との摺動において信頼性を低下させることなく、偏心部の軸径を小さくできるので、シャフトの偏心部とピストンの内周面の摺動面の面積を小さくでき、更にシャフトの偏心部とピストンの内周面の摺動速度を小さくすることが可能となる。すなわち、シャフトが回転する際に、シャフトの偏心部とピストンの内周面の間で作用するオイルの粘性力を低減することが可能となり、この粘性力によってシャフトの回転方向にピストンに作用する、シャフトの偏心部中心回りの回転モーメントを小さくすることができるので、ベーンがベーン溝内を往復運動する際に、ベーンの先端部がこの回転モーメントを支持する力の反力として前記両接点に働くベーン溝との摩擦抵抗力を軽減できる。従って、ベーンがベーン溝内を往復運動することによって発生する摺動損失を低減し、入力ロスが小さい回転式圧縮機を提供することが可能となる。
 また、本実施の形態の回転式圧縮機において、作動冷媒として、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒またはこの冷媒を含む混合冷媒を用いた場合には、特に、高温において化学的安定性が低下することに伴い、潤滑性が悪化するので、より効果的にベーンがベーン溝内を往復運動することによって発生する摺動損失を低減することができる。
 以上のように、本発明にかかる回転式圧縮機は、入力ロスを小さくすることができるため、給湯器用圧縮機、空気圧縮の用途にも適用できる。
  1   密閉容器
  2   ステータ
  3   ロータ
  4   シャフト
  5   シリンダー
  6   シリンダー室
  7   主軸受け
  8   副軸受け
  9   ピストン
  9A  嵌合部
  9B  内周面
  9C  幅大部
  9D  狭小部
  10  ベーン溝
  11  ベーン
  11A 先端部
  12  吸入室
  13  圧縮室
  17  吸入ポート
  18  吐出ポート
  19  吐出マフラー室
  41  偏心部
  42  主軸部
  43  副軸部
  101 圧縮機構部
  102 電動機部
  201 接点
  202 接点
  301 逃げ部
  302 逃げ部
  303 逃げ部
  304 凹部

Claims (6)

  1. シリンダーと、該シリンダーの両端面に締結されてシリンダー室を形成する主軸受け及び副軸受けと、前記主軸受けと前記副軸受けとの間に偏心部を設けたシャフトと、前記シャフトの偏心部に嵌合されるピストンと、前記シリンダー室内を吸入室と圧縮室に仕切るベーンと、前記シリンダーに形成され、前記ベーンが往復運動するベーン溝を有し、前記ベーンの先端部を前記ピストンと揺動自在に嵌合接続して構成される回転式圧縮機であって、前記シャフトの偏心部における反偏心軸側の外周面を前記主軸受けに嵌入される主軸部の外周面及び前記副軸受けに嵌入される副軸部の外周面よりへこませると共に、前記ピストンの内周面と前記シャフトの偏心部に、前記ピストンを前記シャフトに組み付ける際の逃げ手段を設けたことを特徴とする回転式圧縮機。
  2. 前記シャフトの偏心部の端面と摺動して、前記主軸受けと前記副軸受けのいずれか一方の端面で前記シャフトに作用するスラスト荷重を支持することを特徴とする請求項1に記載の回転式圧縮機。
  3. 前記逃げ手段は、前記ピストンの内周面のうち、前記シャフトの偏心部と対向する摺動面において、前記シリンダー室の吸入室側を切除した態様で形成されていることを特徴とする請求項1または請求項2に記載の回転式圧縮機。
  4. 前記逃げ手段は、前記ピストンの内周面のうち、前記シャフトの偏心部と対向する摺動面において、前記ベーンが前記ベーン溝に最も収納された時点の前記ピストンの内周面と前記ベーンの厚み方向中心線の交点のうち、前記ベーンに近い方を基点とし、前記シャフトの回転方向に30度の位置から切除した態様で形成されていることを特徴とする請求項3に記載の回転式圧縮機。
  5. 前記ピストンが水平面内を揺動しながら公転運動するように配置し、前記ピストンの内周面のうち、前記シャフトの偏心部と対向する摺動面の上側部分を切除した態様で形成されていることを特徴とする請求項3または請求項4に記載の回転式圧縮機。
  6. 作動冷媒として、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を用いたことを特徴とする請求項1から5のいずれか1項に記載の回転式圧縮機。
PCT/JP2011/003717 2010-07-02 2011-06-29 回転式圧縮機 WO2012001966A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/808,030 US9074600B2 (en) 2010-07-02 2011-06-29 Rotary compressor
EP11800436.5A EP2589809B1 (en) 2010-07-02 2011-06-29 Rotary compressor
CN201180032823.7A CN102971537B (zh) 2010-07-02 2011-06-29 旋转式压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-151805 2010-07-02
JP2010151805A JP5556450B2 (ja) 2010-07-02 2010-07-02 回転式圧縮機

Publications (1)

Publication Number Publication Date
WO2012001966A1 true WO2012001966A1 (ja) 2012-01-05

Family

ID=45401706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003717 WO2012001966A1 (ja) 2010-07-02 2011-06-29 回転式圧縮機

Country Status (5)

Country Link
US (1) US9074600B2 (ja)
EP (1) EP2589809B1 (ja)
JP (1) JP5556450B2 (ja)
CN (1) CN102971537B (ja)
WO (1) WO2012001966A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6194465B2 (ja) * 2013-03-12 2017-09-13 パナソニックIpマネジメント株式会社 密閉型ロータリー圧縮機
KR102249115B1 (ko) * 2014-09-19 2021-05-07 엘지전자 주식회사 압축기
JP7002033B2 (ja) * 2016-02-26 2022-01-20 パナソニックIpマネジメント株式会社 2シリンダ型密閉圧縮機
JP6489173B2 (ja) 2017-08-09 2019-03-27 ダイキン工業株式会社 ロータリ圧縮機
KR102163622B1 (ko) 2018-11-06 2020-10-08 엘지전자 주식회사 마찰 손실을 저감한 로터리 압축기
KR102310348B1 (ko) * 2019-07-24 2021-10-07 엘지전자 주식회사 로터리 압축기
JP6881558B1 (ja) * 2019-12-17 2021-06-02 ダイキン工業株式会社 圧縮機
JP6930576B2 (ja) * 2019-12-17 2021-09-01 ダイキン工業株式会社 圧縮機
MX2021013733A (es) * 2020-05-12 2021-12-10 Energy Exploration Tech Inc Sistemas y metodos para recuperar litio de salmueras.
KR102372174B1 (ko) * 2020-06-05 2022-03-08 엘지전자 주식회사 로터리 압축기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108887A (ja) * 1984-11-01 1986-05-27 Matsushita Refrig Co ロ−タリ圧縮機
JPS62171682U (ja) * 1986-04-21 1987-10-30
JPS643290A (en) * 1987-06-23 1989-01-09 Sanyo Electric Co Closed type compressor
JP2008180178A (ja) 2007-01-25 2008-08-07 Toshiba Carrier Corp 回転式圧縮機および冷凍サイクル装置
JP2010101169A (ja) * 2008-10-21 2010-05-06 Mitsubishi Electric Corp 2気筒回転圧縮機
WO2010073426A1 (ja) * 2008-12-26 2010-07-01 パナソニック株式会社 回転式圧縮機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE355665C (de) * 1922-06-29 Max Guettner Elastische Lagerung des Kolbens auf der Treibwelle bei Verdichtern mit durch Exzenter
US2800274A (en) * 1954-06-07 1957-07-23 Vadim S Makaroff Compressors
US2929550A (en) * 1955-03-04 1960-03-22 N G N Electrical Ltd Rotary pumps and valves therefor
JPS6153489A (ja) * 1984-08-22 1986-03-17 Mitsubishi Electric Corp ロ−タリ−圧縮機
US4722900A (en) 1986-01-17 1988-02-02 Miles Laboratories, Inc. Method for increasing the milk clotting activity of thermolabile rhizomucor pusillus rennet
JP3473066B2 (ja) * 1993-12-06 2003-12-02 ダイキン工業株式会社 揺動型ロータリー圧縮機
SG53012A1 (en) * 1996-07-10 1998-09-28 Matsushita Electric Ind Co Ltd Rotary compressor
JP2000027772A (ja) * 1998-07-08 2000-01-25 Matsushita Electric Ind Co Ltd 密閉型圧縮機
JP2005002832A (ja) * 2003-06-10 2005-01-06 Daikin Ind Ltd ロータリー流体機械
KR20050018199A (ko) * 2003-08-14 2005-02-23 삼성전자주식회사 용량가변 회전압축기
JP3731127B2 (ja) * 2004-01-22 2006-01-05 ダイキン工業株式会社 スイング圧縮機
WO2009028633A1 (ja) * 2007-08-28 2009-03-05 Toshiba Carrier Corporation 多気筒回転式圧縮機及び冷凍サイクル装置
JP2009180203A (ja) * 2008-02-01 2009-08-13 Hitachi Appliances Inc 2シリンダロータリ圧縮機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108887A (ja) * 1984-11-01 1986-05-27 Matsushita Refrig Co ロ−タリ圧縮機
JPS62171682U (ja) * 1986-04-21 1987-10-30
JPS643290A (en) * 1987-06-23 1989-01-09 Sanyo Electric Co Closed type compressor
JP2008180178A (ja) 2007-01-25 2008-08-07 Toshiba Carrier Corp 回転式圧縮機および冷凍サイクル装置
JP2010101169A (ja) * 2008-10-21 2010-05-06 Mitsubishi Electric Corp 2気筒回転圧縮機
WO2010073426A1 (ja) * 2008-12-26 2010-07-01 パナソニック株式会社 回転式圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2589809A4

Also Published As

Publication number Publication date
EP2589809A4 (en) 2016-03-23
JP5556450B2 (ja) 2014-07-23
CN102971537B (zh) 2015-09-09
US20130101454A1 (en) 2013-04-25
EP2589809A1 (en) 2013-05-08
US9074600B2 (en) 2015-07-07
JP2012013034A (ja) 2012-01-19
EP2589809B1 (en) 2017-01-04
CN102971537A (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5556450B2 (ja) 回転式圧縮機
KR20070010082A (ko) 회전식 유체기계
JP2008240667A (ja) ロータリ圧縮機
JP5657144B2 (ja) ベーン型圧縮機
KR101523435B1 (ko) 로터리 압축기
JP2005299496A (ja) スクロール圧縮機
JP5263139B2 (ja) 回転式圧縮機
JP2012154235A (ja) 回転式圧縮機
KR20110128674A (ko) 밀폐형 압축기
JP2008121481A (ja) スクロール流体機械
JP6104396B2 (ja) スクロール圧縮機
JP2007146705A (ja) スクロール圧縮機
JP4016625B2 (ja) 密閉型回転式圧縮機
JP6071787B2 (ja) ロータリ圧縮機
JP6017023B2 (ja) ベーン型圧縮機
WO2023045968A1 (zh) 压缩机的止推结构和压缩机
WO2022003934A1 (ja) ロータリ圧縮機及びローリングピストンの製造方法
WO2016151769A1 (ja) 回転式密閉型圧縮機
JP2010037973A (ja) ロータリ圧縮機
JP4609520B2 (ja) ロータリ式流体機械
JP2006170213A5 (ja)
JP2024045884A (ja) 回転式圧縮機および冷凍サイクル装置
JP2018017125A (ja) 圧縮機
JPWO2020148857A1 (ja) スクロール圧縮機
JPH10122172A (ja) ロータリー圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032823.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13808030

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011800436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011800436

Country of ref document: EP