WO2012001177A1 - Matériau comprenant des nanotubes ou des nanofils greffés dans une matrice, procédé de préparation et utilisations - Google Patents

Matériau comprenant des nanotubes ou des nanofils greffés dans une matrice, procédé de préparation et utilisations Download PDF

Info

Publication number
WO2012001177A1
WO2012001177A1 PCT/EP2011/061239 EP2011061239W WO2012001177A1 WO 2012001177 A1 WO2012001177 A1 WO 2012001177A1 EP 2011061239 W EP2011061239 W EP 2011061239W WO 2012001177 A1 WO2012001177 A1 WO 2012001177A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanotubes
nanowires
matrix
function
grafting
Prior art date
Application number
PCT/EP2011/061239
Other languages
English (en)
Inventor
Pascal Boulanger
Alexandre Brouzes
Guy Claude Denis Deniau
Martine Mayne-L'hermite
Marion Mille
Mathieu Pinault
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to US13/807,180 priority Critical patent/US20130108865A1/en
Priority to JP2013517339A priority patent/JP6329368B2/ja
Priority to EP11733618.0A priority patent/EP2588220A1/fr
Publication of WO2012001177A1 publication Critical patent/WO2012001177A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02232Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/28Polymers of vinyl aromatic compounds
    • B01D71/281Polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/681Component parts, details or accessories; Auxiliary operations
    • B29C70/682Preformed parts characterised by their structure, e.g. form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/08Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/28Pore treatments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5236Zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]

Definitions

  • the present invention relates to the field of nanotechnology and, more particularly, the field of materials containing nano-objects such as nanowires or nanotubes.
  • the present invention relates to a new material consisting of a set of nanotubes (or nanowires) in particular aligned, in a matrix whose interface nanotubes / matrix (or nanowires / matrix) is controlled by the introduction of a sub- specific layer between the nanotubes (or nanowires) and the filler matrix.
  • the present invention relates not only to such a material but also to its method of preparation and its various uses.
  • Nano-objects are currently generating a particular craze because of their original and exacerbated properties compared to conventional materials. Indeed, nano-objects have many interests in terms of their structures and their physical properties as well as their potential applications, particularly in membranes or any other device. physical separation, electrodes, composite materials, thermal, optical or electronic devices, as well as catalyst supports and devices for storing or converting chemical, light, electrical, mechanical energy, etc.
  • the article by Hinds et al., 2004 describes the direct growth of a multi-walled carbon nanotube (CNT) carpet aligned by chemical vapor deposition or CVD (for "Chemical Vapor Deposition") by a catalyst consisting of nanocrystals Fe [2].
  • Such direct growth can also be obtained without pre-deposition of catalyst, especially using the DLI-CVD method (for "Direct Liquid Injection - Chemical Vapor Deposition”) [3].
  • the internal diameter of the nanotubes is on average 7 nm.
  • a more complicated process, based on a prepreg of a thin layer of catalyst, for example Fe, followed by a CVD synthesis makes it possible to obtain double nanotube mats. sheets also aligned, whose internal core diameter is of the order of 2 nm [4].
  • dispersed carbon nanotubes can be assembled either by specific functionalization of the tube heads and then impregnation in a polymer [5], or by self-assembly perpendicular to a surface, most often If [6] but also by Langmuir-Blodget techniques [7] or derived at the liquid interface [8] or by application of a magnetic field. Such methods are used to assemble other forms of nanotubes such as nanotubes of imogolites.
  • the impregnation of NTC mats is carried out with effectively aligned mats.
  • the carpets are impregnated with a matrix most often polymer with techniques:
  • centrifugal deposition known by the name “spin-coating” with polystyrene [2] or poly (methyl-methacrylate) (PMMA)
  • the impregnation can be either total or partial. For total impregnation, at least the entire thickness of the carpet and even more is impregnated. As part of a partial impregnation, the carpet may be only partially filled with at least one or more "slices" or “zones” of matrix which in part ensure the maintenance. These "slices” or “zones” can be superimposed or not, delimiting a gap between them in which a flow of material can pass perpendicularly to the axis of the nanotubes.
  • the matrix that fills the inter-nanotube space is treated in the same way whether it is a polymer matrix or a ceramic matrix.
  • the interface between the matrix, in particular the polymer, and the CNTs results only from weak and undergone interactions such as a physisorption of the polymer on the CNTs. Little information is given on the quality of this impregnation, its defects, its possible orientation, its impermeability with respect to the diffusion of liquids or gases and its mechanical adhesion to CNTs or nanowires.
  • WO 2008/028155 proposes a composite membrane comprising dispersed CNTs which are aligned so that they are parallel to the flux passing through the membrane [12]. This alignment is done via a filtration technique.
  • the aligned CNTs are impregnated with a polymer matrix, in particular by spin-coating. Even if it is envisaged to functionalize the CNTs, this functionalization which implements groups Simple chemical is used to modify the solubility of CNTs in specific solvents and / or to promote their alignment.
  • US Pat. No. 7,611,628 proposes a permeable membrane the manufacture of which involves the steps of CNT alignment and impregnation of the NTCs aligned by a polymer matrix [13]. At these stages, the etching of the membrane (i) is added so as to eliminate the excess matrix on the surface of the membrane and thus open the CNTs and create pores and (ii) so as to oxidize the end CNTs by creating carboxylate groups.
  • the carboxylate groups thus formed can react with functional units comprising an amino group and this, to alter the flow through the nanotubes themselves.
  • the nanotubes are not necessarily aligned or ordered in any way. On the contrary, they are often "scattered".
  • the composites are mainly prepared using pressure-assisted and / or temperature-assisted techniques.
  • Today, the most promising composites in terms of development are those with polymer matrix, interesting for applications with high added value especially in fields such as aerospace or energy, as well as for the plastics conductive industry.
  • NTCs generally generate an increase in electrical conduction by formation of a percolating network resulting from the high form factor of NTCs
  • the inventors have set themselves the goal of proposing a material comprising nanotubes but also nanowires and a matrix in which the interface between the nanotubes (or nanowires) and the matrix is better controlled and this, so as to improve the mechanical properties, electrical, thermal, optical, chemical or permeability of the material thus obtained.
  • the present invention makes it possible to solve the technical problems as previously defined and to achieve the goal that the inventors have set themselves.
  • the hook layer used in the context of the invention is a polymer coating which has the innovations described below, this coating being grafted covalently to the nanotubes.
  • this hook layer i.e. any technique for grafting an organic polymer on the nanotubes does not interfere with the alignment of the nanotubes.
  • this technique may consist of radical chemical grafting, electrografting or radiografting.
  • the fact that the hook layer is grafted covalently on the surface of the nanotubes strengthens the bond with the nanotubes and thus allows better adhesion of the so-called matrix "filling matrix" on the nanotubes. Indeed, during the impregnation step, the filling matrix strongly interacts with the previously grafted layer.
  • the interpenetrating network as well obtained improves the quality of the nanotube / matrix interface and strengthens the mechanical properties of the membrane.
  • this interpenetration can be accompanied by a physisorption but also a chemisorption rendering the interactions between the hook layer and the filling matrix stronger.
  • chemisorption there may exist ionic bonds or covalent bonds involving an atom of the hook layer and an atom of the material constituting the filling matrix.
  • the improvement of the nanotube / matrix interface also reduces the diffusion paths of liquids and / or gases in the material and allows both better impermeability of the inter-tube space when this is desired, and also better selectivity by avoiding that the species that one wishes to sort remixes via these secondary diffusion paths.
  • the use of a layer of hooked and adapted functionalization allows a better compatibility with the material of the matrix of filling and filling by this matrix of inter-nanotube space can be partial or total.
  • the partial filling of the inter-tube space can be used to change the hydrophobicity of the nanotubes and to control their wettability but also to create a layer of adsorption sites for transforming the nanotubes and in particular the carpet that they form into sensor, electrode or selective filter.
  • the present invention is remarkable because it applies not only to all types of nanotubes but also to nanowires. Thus, all that has previously been described for nanotubes also applies to nanowires.
  • the present invention relates to a material comprising:
  • the present invention relates to a material comprising:
  • nanotube is understood to mean a tubular and / or cylindrical structure whose internal diameter varies between 0.5 nm and 100 nm, in particular between 0.5 nm and 50 nm and, more specifically, for nanofiltration applications between 0.5 nm and 10 nm.
  • the nanotubes used in the context of the present invention may be inorganic nanotubes, organic nanotubes or a mixture of inorganic nanotubes and organic nanotubes.
  • the inorganic nanotubes may be chosen from the group consisting of imogolite nanotubes, boron nitride (BN) nanotubes, zinc oxide (ZnO) nanotubes, gallium nitride (GaN) nanotubes, and nanotubes. of silicon nitride (S13N 4 ), nanotubes of tungsten bisulfide (WS 2 ), molybdenum disulfide nanotubes (M0S 2 ), tungsten selenide nanotubes (WSe2), molybdenum selenide nanotubes (MoSe2) , titanium dioxide nanotubes (TiO 2 ) or molybdenum trioxide nanotubes (M0O3) or a mixture thereof.
  • silicon nitride S13N 4
  • the organic nanotubes may be chosen from the group consisting of carbon nanotubes, peptide nanotubes, cyclic peptide nanotubes, nanotubes of transmembrane molecules, crown ether nanotubes, porphyrin nanotubes and aquaporin nanotubes. , nanotubes of gramicidin, nanotubes of polymers, nanotubes formed by self-assembly of organic molecules or a mixture thereof.
  • a carbon nanotube is defined as a concentric winding of one or more layers of graphene (paving carbon hexagons).
  • graphene paving carbon hexagons.
  • SWNTs Single Wall NanoTube
  • Multi-layer nanotubes multi-wall nanotubes or MWNT (for "Multi Wall NanoTube") in the case of several layers of graphene.
  • the present invention applies to any type of carbon nanotubes and whatever their method of preparation.
  • the carbon nanotubes used in the context of the present invention may be graphene single-layer nanotubes (SWNT), graphene two-layer nanotubes (DWNT), graphene multi-layer nanotubes (MWNT). ) or a mixture thereof.
  • processes for preparing nanotubes as previously defined.
  • processes for preparing carbon nanotubes there may be mentioned physical processes based on carbon sublimation such as electric arc, laser ablation or solar furnace methods and processes.
  • chemical such as the CVD process or pyrolyzing carbon sources on metal catalysts.
  • nanowire is understood to mean a one-dimensional or substantially unidimensional structure having a thickness or a diameter ranging from 0.5 nm to 1000 nm, in particular from 1 nm to 500 nm and, in particular, between 2 nm and 50 nm.
  • the nanowires used in the context of the present invention may be inorganic nanowires, organic nanowires or a mixture of inorganic nanowires and organic nanowires.
  • the nanowires used in the context of the present invention are chosen in particular from the group consisting of gold nanowires (Au), silver nanowires (Ag), nickel nanowires (Ni), platinum nanowires (Pt), silicon nanowires (Si), gallium nitride nanowires (GaN), indium phosphide nanowires (InP), silicon dioxide nanowires (SiO 2 ), titanium dioxide nanowires (T1O2), zinc oxide nanowires (ZnO), 1,5-diaminoanthraquinone nanowires, DNA nanowires (for "deoxyribonucleic acid”), nanowires consisting of nanotubes as defined above or one of their mixtures.
  • Those skilled in the art know different processes for preparing such nanowires. These methods include etching a substrate of lithography and etching techniques, growing the nanowire by CVD methods from thin metal films such as gold, or assembling nanotubes.
  • the (two) nanowires can be used in the present invention combined with at least one nanotube as previously defined.
  • the present invention can implement a plurality of nanotubes; a plurality of nanowires; a plurality of nanotubes combined with at least one nanowire; a plurality of nanowires combined with at least one nanotube or a plurality of nanotubes combined with a plurality of nanowires.
  • Nanotubes and nanowires in the context of the present invention may have any chirality and any length.
  • the nanotubes and the nanowires, and in particular the plurality of nanotubes and the plurality of nanowires, used in the context of the present invention are nanotubes and the nanowires having a length of between 10 nm and 2 cm, in particular between 20 nm. and 1 mm, in particular between 50 nm and 100 ⁇ m and, more particularly, between 100 nm and 50 ⁇ m.
  • the nanotubes or nanowires may have, in relation to each other, an aligned, degraded or dispersed conformation.
  • degraded conformation means nanotubes or nanowires substantially straight but not necessarily aligned with each other.
  • nanotubes or nanowires are used aligned with each other in a vertical matrix for "vertical array". In this conformation, they are generally and substantially perpendicular to a support.
  • An aligned conformation can be obtained as soon as the nanotubes or nanowires are prepared, or once they have been prepared in particular by filtration techniques in the core of the nanotubes as described in the international application WO 2008/028155 [12] or techniques by a transverse flow to the axis of the tubes as described in the patent application US 2004/0173506 [18] and the international application WO 2009/141528 [19].
  • the density of nanotubes (or nanowires) in the material according to the present invention may be variable.
  • the latter is advantageously between 10 4 and 10 13 nanotubes (or nanowires) / cm 2 of material.
  • the method used to prepare the hooked layer does not disturb the alignment of the nanotubes or nanowires.
  • the misalignment maximum obtained, following the covalent grafting of organic polymers, for a dense carpet of nanotubes or nanowires is 10 degrees and the maximum tortuosity of 3%, and, in particular, a misalignment of 5% for a tortuosity of 1%.
  • the method used to prepare the tie layer does not disturb the tortuosity of nanotubes and nanowires that remain straight.
  • the maximum tortuosity obtained is 3% and in particular 1%.
  • Alignment and tortuosity of nanotubes or nanowires are parameters accessible by X-ray measurement and in particular as described in the article by Pichot et al., 2006 [20] and in the article by Pichot et al. , 2004 [31].
  • nanotubes and nanowires are grafted (or functionalized or derivatized) with at least one organic polymer.
  • at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% and at least 99% of nanotubes and nanowires are grafted (or functionalized or derivatized) with at least one organic polymer.
  • at least one organic polymer is grafted onto each nanotube (or each nanowire).
  • the graft polymers form the hook layer as previously defined.
  • organic polymer is meant a polymer whose main chain comprises mainly carbon atoms but may also include heteroatoms such as oxygen atoms and nitrogen atoms.
  • This organic polymer is advantageously grafted, covalently, on the lateral part of the nanowires and on the lateral outer part of the nanotubes. This grafting can be located on limited and defined areas of these surfaces.
  • Each nanotube and each grafted nanowire (or functionalized or derivatized) with at least one organic polymer may comprise at least two, at least five, at least ten, at least 20 or at least 100 grafted organic polymers, each organic polymer grafted onto the same nanotube or on the same nanowire may be able to have a sequence in identical units with or different from the other (or other) polymer (s) graft (s). Similarly, organic polymers grafted on different nanotubes or nanowires may have an identical unit sequence for all or different nanotubes or nanowires.
  • the organic polymer used in the context of the present invention comprises
  • the organic polymer used in the context of the present invention is advantageously constituted by repeating units corresponding to such units.
  • the bonding layer formed by the organic polymers grafted onto the nanotubes or the nanowires may contain another nanoscopic material, in particular such as metallic or platinum nanoparticles.
  • the organic polymer used in the context of the present invention is substituted by at least one reactive function.
  • reactive function is meant, in the context of the present invention, a function selected from a carboxyl function (capable of reacting with an amine function or alcohol), an aryl group (such as pyrene, naphthalene or polyaromatics ), a radical entity, a hydroxyl function or an alcohol function (capable of reacting with a carboxyl or isocyanate function), an amine function (capable of reacting with an ester function), an ester function (capable of reacting with an amine function) , an aldehyde function (capable of reacting with a hydrazide function), a hydrazide function (capable of reacting with an aldehyde function), a ketone function (capable of reacting with two alcohol functions with a view to acetalysis), an epoxy function ( susceptible to react with an amino function), an isocyanate function (cap
  • cleavable aryl salt means a cleavable aryl salt chosen from the group consisting of aryl diazonium salts, ammonium aryl salts, sodium salts and the like. aryl phosphonium, aryl iodonium salts and aryl sulfonium salts. In these salts, the aryl group is an aryl group which may be represented by R as defined below.
  • cleavable aryl salts are capable, under certain non-electrochemical or electrochemical conditions, of forming either radicals or ions, and particularly cations, and thus of participating in chemical reactions. Such chemical reactions may in particular be chemisorption and in particular chemical grafting or electrografting. Thus, such a cleavable aryl salt is capable, under non-electrochemical or electrochemical conditions, of chemisorbing on the surface of a nanowire or of a nanotube, in particular by radical reaction, and to present another reactive functional group. to another radical after this chemisorption.
  • the cleavable aryl salt can have a reactive function with respect to another reactive function capable of forming with the former a covalent bond or ionic, the two identical or different reactive functions being as previously defined.
  • the second reactive function can be carried either by the organic polymer to be grafted onto the nanotube or on the nanowire, or by the material constituting the filling matrix.
  • cleavable aryl salts can be termed polymerizable insofar as, by radical reaction, they can lead to the formation of relatively high molecular weight molecules whose structure is essentially formed of units with multiple repetitions derived, in fact or conceptually, from cleavable aryl salt molecules.
  • An organic polymer capable of being grafted onto the nanotubes or nanowires, in the context of the present invention, may therefore be a polymer consisting of repeating units corresponding to units derived from one or more salt (s). cleavable aryls.
  • aryl group is meant in the context of the present invention, and especially for the reactive functions and aryl groups, cleavable aryl salts, an aromatic or heteroaromatic carbon structure, optionally mono- or polysubstituted, consisting of a or more aromatic or heteroaromatic rings each having from 3 to 8 atoms, the heteroatom (s) possibly being N, O, P or S.
  • the substituent (s) may contain one or more heteroatoms, such as N, O, F, Cl, P , Si, Br or S as well as C 1 to C 6 alkyl groups or C 4 to C 12 thioalkyl groups in particular.
  • R is preferably chosen from aryl groups substituted by reactive functions as defined above and / or by electron-withdrawing groups such as NO 2 , ketones, CN, CO 2 H, Br and the esters.
  • A may especially be chosen from inorganic anions such as halides such as I ⁇ , Br " and Cl ⁇ , haloborates such as tetrafluoroborate, perchlorates and sulfonates and organic anions such as alcoholates and carboxylates.
  • inorganic anions such as halides such as I ⁇ , Br " and Cl ⁇
  • haloborates such as tetrafluoroborate, perchlorates and sulfonates
  • organic anions such as alcoholates and carboxylates.
  • monomer having at least one ethylenic type bond is advantageously meant a monomer having vinyl unsaturation, allyl unsaturation and / or acrylic unsaturation.
  • Such monomers are chosen from the following monomers of formula (II):
  • the groups R 1 to R 4 which may be identical or different, represent a non-metallic monovalent atom such as a halogen atom, a hydrogen atom or a saturated or unsaturated chemical group, such as an alkyl or aryl group; , a group
  • R5 represents a hydrogen atom or alkyl C 1 -C 1 2 and preferably C 1 -C 6, a nitrile, a carbonyl, an amine or an amide.
  • the compounds of formula (II) above are in particular chosen from the group consisting of vinyl acetate, acrylonitrile, methacrylonitrile, methyl methacrylate, ethyl methacrylate, butyl methacrylate and methacrylate.
  • the monomers exhibiting at least one ethylenic linkage used in the context of the present invention are substituted with at least one reactive function as defined above.
  • the matrix which is arranged between the nanotubes and / or the grafted nanowires ie the filling matrix may be selected from the group consisting of a ceramic matrix, a polymer matrix, a matrix derived from biomass or a matrix derived from cellulose derivatives and mixtures thereof.
  • ceramic matrix is meant more particularly a matrix whose constituent material is selected from the group consisting of silicon nitride, aluminum nitride, titanium nitrite, aluminum carbide, titanium carbide , silicon carbide, silicon oxide, silicon dioxide, magnesium oxide, cerium oxide, alumina, titanium oxide, bismuth oxide, beryllium oxide Hydroxyapatite or a mixture thereof.
  • the polymer matrix used in the context of the present invention may consist of one or more thermoplastic polymer (s), one or more thermosetting polymer (s), or one (or more) glassy polymer (s) or a mixture thereof.
  • polymer matrix is meant more particularly a matrix whose constituent material is selected from the group consisting of a polyamide, a polyimide, a parylene, a polycarbonate, a polydimethylsiloxane, a polyolefin, a polysulfone, a polyethersulfone, a polyetheretherketone (PEEK) and its derivatives, a polypropylene (PP), a polyvinylidene fluoride (PVDF), a polyvinyl pyrrolidone (PVP), a cellulose acetate, an acrylic resin, a polystyrene, a polymethylmethacrylate, a polymethacrylate, a resin epoxy, polyester, acetylnitrile-butad
  • the filler matrix is a polymer matrix
  • the monomers used to prepare it are identical to monomers used to prepare the organic polymer grafted to the nanotube or the nanowire.
  • the filling matrix and in particular when it is a polymer matrix, the material constituting it may be sup- substituted by at least one reactive function as defined above.
  • the filling matrix may be non-porous or porous. Indeed, a porous matrix, of the polyamide, polysulphone, polyestersulfone, PP, PVDF, PVP or cellulose acetate type, may be of particular interest when the material according to the invention is used for desalination applications of seawater or water. 'brackish water.
  • the present invention also relates to a method for preparing a material as defined above. This process comprises the successive steps of:
  • step (a) of the process according to the present invention any technique allowing the grafting of an organic polymer is usable.
  • the latter is advantageously chosen from a functionalization of nanotubes or nanowires followed by coupling with an organic polymer; a radical chemical grafting; electrografting; photo-grafting; grafting by atom transfer radical polymerization or ATRP (for "Atom Transfer Radical Polymerization”); nitroxide controlled radical polymerization or NMRP (for "Nitroxide Mediated Radical Polymerization”) grafting; fragmentation addition radical polymerization such as RAFT (for "Reversible Addition Fragmentation Chain Transfer”) or MADIX (for "MAcromolecular Design via Interchange of Xanthane”); a vapor phase grafting or grafting activated by microwaves.
  • ATRP for "Atom Transfer Radical Polymerization”
  • NMRP for "Nitroxide Mediated Radical Polymerization”
  • fragmentation addition radical polymerization such as RAFT (for "Reversible Addition Fragmentation Chain Transfer") or MADIX (for "MAcromolecular Design via Inter
  • the grafting implemented during step (a) of the process may consist of (a) functionalization of the nanotubes or nanowires followed (bi) by coupling with an organic polymer.
  • the functionalization of the nanotubes or nanowires consists in generating reactive functions as previously defined on the nanotubes or nanowires, subjecting them to conditions allowing the formation of such reactive functions.
  • the reactive function formed on the surface of a nanotube or a nanowire during this functionalization presents
  • oxidative treatment is meant, in the context of the present invention, a treatment (or pretreatment) aimed at oxidizing the surface of the nanotubes or nanowires used and / or preparing the surface for future oxidation by formation of radicals.
  • Such an oxidative treatment is based on two major types of surface modifications based on:
  • plasma treatment including oxygen treatment, UV treatment, treatment with X-rays or ⁇ , treatment with electron and heavy ion irradiation or
  • (or more) reactive function (s) as previously defined (s) can then react directly with one (or more) polymer (s) organic (s) as previously defined (s) and having the least another reactive function capable of reacting with that (s) grafted (s) on the nanotubes or nanowires during the functionalization step.
  • this variant can use an aryl diazonium salt bearing an amine function to functionalize the surface of the nanotubes or nanowires and a polyamide-type organic polymer which chemisorbs via this amine function.
  • the grafting step may consist of a radical chemical grafting.
  • radical chemical grafting refers in particular to the use of highly reactive, typically radical, molecular entities capable of forming covalent bond bonds with a surface of interest, said molecular entities being generated independently of the surface on which they are intended to be grafted.
  • the grafting reaction leads to the formation of covalent bonds between the surface area of the nanotube or nanowire on which the organic polymer must be grafted and the derivative of the cleavable aryl salt as previously defined.
  • this second variant comprises the steps of:
  • a 2 contacting the nanotubes or the nanowires with a solution S i comprising at least one cleavable aryl salt as defined above and optionally at least one monomer having at least one ethylenic type bond as previously defined;
  • the organic polymer obtained following the implementation of this second variant of step (a) can comprise either only units derived (or derived) from one (or more) cleavable aryl salt (s). or at least one unit derived (or derived) from a cleavable aryl salt and at least one other unit derived (or derived) from a monomer having at least one ethylenic type bond.
  • the first unit of the organic polymer (ie the unit directly bonded to the surface of the nanotube or nanowire) is derived from a cleavable aryl salt
  • the bond between the organic polymer and the surface of the nanotube or nanowire therefore involves an atom of a unit derived from a cleavable aryl salt and an atom of the surface of the nanotube or nanowire.
  • This second variant can be implemented with any type of nanotubes or nanowires ie they are insulators, semiconductors or conductors of electricity. This variant is based on the process described in international application WO 2008/078052
  • the solution Si comprises a cleavable aryl salt and a radically polymerizable monomer as defined above, it may also contain at least one surfactant and this, in particular to improve the solubility of this monomer.
  • surfactants that can be used in the context of the invention is given in the international application WO 2008/078052 [25] to which the person skilled in the art can refer. A single surfactant or a mixture of several surfactants can be used.
  • the cleavable aryl salt may either be introduced as it is in the Si solution such that previously defined, to be prepared in situ in the latter.
  • Such compounds are generally prepared from arylamine, which may comprise several amine substituents, by reaction with ⁇ 2 in acidic medium or with NOBF 4 in an organic medium.
  • arylamine which may comprise several amine substituents
  • NOBF 4 in an organic medium.
  • the grafting will then be carried out directly in the solution for preparing the cleavable aryl salt.
  • non-electrochemical conditions implemented in step (b 2 ) of the process according to the invention is meant in the context of the present invention in the absence of electrical voltage.
  • the non-electrochemical conditions implemented in step (b 2 ) of the process according to the invention are conditions which allow the formation of radical entities from the cleavable aryl salt, in the absence of application of any electrical voltage at the level of the nanotubes or nanowires on which the organic polymer is grafted and at the level of the solution S i. These conditions involve parameters such as, for example, the temperature, the nature of the solvent, the presence of a particular additive such as a chemical initiator, stirring, pressure while the electric current does not occur during the formation of radical entities.
  • the grafting implemented during step (a) of the method is electrografting.
  • electro-initiated and localized grafting of a cleavable aryl salt or of a monomer having at least one ethylenic type bond, on a surface electrically conductive nanotubes or nanowires and / or semiconductors, by contacting said cleavable or monomeric aryl salts having at least one ethylenic type bond with said surface.
  • the grafting is carried out electrochemically in a single step.
  • this third variant comprises the steps of:
  • step (a 3 ) polarizing said nanotubes or nanowires to an electric potential more cathodic than the reduction potential of the cleavable aryl salt or the monomer having at least one ethylenic type bond implemented in step (a 3 ).
  • solution Si namely the solvent, the amounts of cleavable aryl salts and monomers having ethylenic unsaturation, the preparation of the cleavable aryl salt in situ and optionally the presence of a surfactant also applies to solution S 2 .
  • the electric potential employed in step (b 3 ) of the process according to the present invention is close to the reduction potential of the salt of cleavable aryl implemented and reacts on the surface.
  • the value of the applied electric potential can be up to 50% higher than the reduction potential of the cleavable aryl salt, more typically it will not be greater than 30%.
  • This variant of the present invention can be implemented in an electrolysis cell comprising different electrodes: a working electrode constituted by nanotubes or nanowires and intended to receive the organic polymer, a counter-electrode electrode, as well as possibly a reference electrode.
  • the polarization of the nanotubes or nanowires may be carried out by any technique known to those skilled in the art and in particular under linear or cyclic voltammetric conditions, under potentiostatic, potentiodynamic, intensiostatic, galvanostatic, galvanodynamic or by simple or pulsed chronoamperometry conditions.
  • the process according to the present invention is carried out under conditions of static or pulsed chronoamperometry.
  • static mode the electrode is polarized for a duration generally less than 2 h, typically less than 1 h and for example less than 20 min.
  • pulsed mode the number of pulses will be included, preferably between 1 and 1000 and, even more preferably, between 1 and 100, their duration generally being between 100 ms and 5 s, typically 1 s.
  • the organic polymer obtained can be constituted
  • the grafting implemented during step (a) of the method is a photografting.
  • the photografting implemented can be self-initiated or implemented in the presence of initiators or photoinitiators such as a cleavable aryl salt such as previously defined, dimethoxy-2, 2-phenyl-2-acetophenone (DMPA) , methoxy-2-phenyl-2-acetophenone (MPA), benzoyl peroxide, azobisisobutyronitrile (AIBN), ethoxy-2-phenylacetophenone (EPA) or benzophenone (BP).
  • DMPA 2-phenyl-2-acetophenone
  • MPA methoxy-2-phenyl-2-acetophenone
  • AIBN azobisisobutyronitrile
  • EPA ethoxy-2-phenylacetophenone
  • BP benzophenone
  • Photopolymerization covalently graft polymer chains onto the outer surface of nanotubes or nanowires from a monomer / nanotube or nanowire mixture.
  • UV radiation excites monomer molecules such as the previously defined ethylenic linking monomers thus forming free radicals.
  • These radicals can in turn initiate the homopolymerization reaction of the monomer or they can pull a hydrogen atom on the surface of a nanotube or a nanowire and thus create radicals on the surface of the nanotubes or nanowires which can also initiate the polymerization, thus allowing to have organic polymers grafted on the surface of nanotubes or nanowires.
  • the polymerization reaction can therefore be done in the absence of photoinitiator.
  • the UV radiation used during photografting has an intensity of between 50 and 600 watts / cm 2 , in particular between 100 and 500 watts / cm 2 and, in particular, of the order of 400 watts / cm 2 (ie 400 watts). / cm 2 ⁇ 50 watt / cm 2 ).
  • the duration of the irradiation is between 5 and 36 h and in particular between 15 and 24 h.
  • the thickness of the organic polymer is easily controllable, whatever the variant of the process of the present invention implemented, as previously explained.
  • the man of the The business will be able to iteratively determine the optimum conditions for obtaining an organic polymer of given thickness.
  • Any technique known to those skilled in the art for disposing a matrix between the nanotubes or the nanowires thus grafted (or functionalized or derivatized) and in particular between the nanotubes or the nanowires aligned in the vertical matrix can be used as part of the step (b) the method according to the present invention.
  • This second step makes it possible to fill the residual inter-nanotube or inter-nanowire space with a matrix as defined previously.
  • the matrix forms an interpenetrating network with the hook layer previously grafted.
  • conventional impregnation techniques can be used.
  • this interpenetration can be improved by chemisorption involving ionic and / or covalent bonds between the organic polymer grafted onto the nanotubes or nanowires and the filling matrix.
  • This chemisorption particular involves graft polymers having at least one l ere reactive functional group as defined above and a filling matrix whose constituent material has a 2 nd reactive group as defined above, the two reactive functional groups being capable of reacting together to form an ionic or covalent bond.
  • this step may consist in grafting the filler matrix following the grafting of the organic polymer at the level of the nanotubes or nanowires.
  • This variant involves a polymer type filling matrix.
  • the covalent bond between the organic polymer and the filler matrix is obtained from the first unit of the polymer material constituting the filling matrix grafted onto the organic polymer.
  • this technique may be a chemical vapor deposition (CVD), an atomic layer deposition (ALD), a centrifugal deposition known by the name of "spin coating "; impregnation assisted or not by pressure; a photo-impregnation;
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • centrifugal deposition known by the name of "spin coating "; impregnation assisted or not by pressure; a photo-impregnation;
  • the covalent or ionic bond between the organic polymer and the filler matrix is produced once the filler matrix has been deposited in contact with the organic polymer.
  • the filling matrix may be disposed in the entire space between the nanotubes or the nanowires or on the contrary at certain parts of this space, leaving other parts of free space between the nanotubes or the nanowires.
  • the present invention also relates to the use of a material according to the present invention or a material capable of being prepared by a method according to the present invention in a separation membrane, in a catalyst support, in an electrode, in a composite material or in a storage or energy conversion compound.
  • the material according to the present invention or capable of being prepared by a method according to the present invention can be used in many applications for which the density and the alignment of the nanotubes or nanowires, the choice of the material constituting the matrix Filling and mechanical maintenance of the assembly are key elements of performance.
  • the present invention therefore relates to a membrane comprising a material according to the present invention or capable of being prepared by a method according to the present invention, said material comprising at least two graft nanotubes and a matrix disposed between the nanotubes.
  • a membrane may be a filtration membrane especially for the desalination and demineralization of liquids and especially water.
  • the function of the hooked underlayer of material according to the invention plays a dual role of maintaining the alignment which allows to introduce more easily and on a greater depth the catalytic elements in the nanotube lumen, while ensuring a greater mechanical maintenance.
  • the present invention thus relates to a catalyst support comprising a material according to the present invention or capable of being prepared by a method according to the present invention.
  • Such a catalyst support may be used in a laboratory reactor or in an industrial reactor, in particular for the decomposition of hydrazine, the synthesis of styrene, the oxidation of hydrogen sulphide to elemental sulfur or for conversion or recovery.
  • volatile organic compounds (VOCs) volatile organic compounds
  • the present invention relates to an electrode comprising a material according to the present invention or capable of being prepared by a method according to the present invention.
  • An electrode according to the invention can be used for all types of applications such as strong currents, electrical cables, electrical storage devices, energy, dissipation heaters, thermoelectric devices, energy conversion systems (photovoltaic systems), nanogenerators, cell growth, biochips or biotechnologies for which the straightness and alignment of the nanotubes is crucial for the flow of electric charges while ensuring through the matrix filling a reinforced mechanical support.
  • the present invention finally relates to a composite material called "1D" comprising a material according to the present invention or capable of being prepared via a process according to the present invention.
  • Such a material promotes a particular function in the direction of the axis of nanotubes or nanowires.
  • This function can be mechanical, electrical, thermal, optical or adhesive.
  • the density and alignment of the nanotubes or nanowires is the technical effect while ensuring the composite material better mechanical support, either to be inserted into larger composites or to be used as such.
  • FIG. 1 shows the graft modification of a thin layer of organic polymers from an aryl diazonium salt and a radically polymerizable monomer on a mat of aligned carbon nanotubes followed by impregnation with a matrix. polymer according to the process according to the present invention.
  • FIG. 2 shows the improvement of the polymer / nanotube interface of a membrane made from modified carbon nanotubes ie grafted with a tie layer consisting of organic polymers according to the present invention (FIG. 2B) compared to a membrane without underlayment ( Figure 2A).
  • This technique makes it possible to obtain a covalently grafted polystyrene layer on the external surface of the CNTs but also, by letting the styrene homopolymerization reaction proceed completely, to obtain a composite whose PS matrix is covalently bonded. NTC aligned.
  • the CCVD CCVD aerosol mat from a toluene / ferrocene mixture is placed in previously degassed styrene (the monomer covers the carpet).
  • the CNT formulation is again placed under reduced pressure between -90 and -100 kPa for about 20 min and cold i.e. between -10 and -30 ° C.
  • the mixture is transferred to a closed test tube and placed under an inert atmosphere.
  • the formulation is then irradiated under UV (400 W overall power of the ampoule) for 15 to 24h.
  • the carpet After irradiation, the carpet is recovered, then rinsed in THF under vacuum and at a temperature of about 60.degree.
  • the modified carpet is added to the previous formulation.
  • the whole is degassed under the same conditions for 30 min.
  • the solution and the carpet are transferred into a cylindrical Teflon mold and placed in a thermostatically controlled oven at 60 ° C for 20 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

La présente invention concerne un matériau comprenant (i) des nanotubes ou des nanofils alignés les uns par rapport aux autres dans une matrice verticale et (ii) une matrice disposée entre les nanotubes ou les nanofils, au moins un polymère organique étant greffé, de façon covalente, à au moins deux desdits nanotubes ou à au moins deux desdits nanofils. La présente invention concerne également un procédé de préparation d'un tel matériau ou ses utilisations.

Description

MATÉRIAU COMPRENANT DES NANOTUBES OU DES NANOFILS GREFFÉS DANS UNE MATRICE, PROCÉDÉ DE PRÉPARATION ET
UTILISATIONS
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne le domaine des nanotechnologies et, plus particulièrement, le domaine des matériaux contenant des nano-objets tels que des nanofils ou des nanotubes.
Ainsi, la présente invention concerne un nouveau matériau composé d'un ensemble de nanotubes (ou nanofils) notamment alignés, dans une matrice dont l'interface nanotubes/matrice (ou nanofils/matrice) est maîtrisée par l'introduction d'une sous-couche spécifique entre les nanotubes (ou les nanofils) et la matrice de remplissage.
La présente invention porte non seulement sur un tel matériau mais aussi sur son procédé de préparation et ses différentes utilisations.
ETAT DE LA TECHNIQUE ANTERIEURE
Les nano-objets suscitent actuellement un engouement particulier du fait de leurs propriétés originales et exacerbées par rapport aux matériaux classiques. En effet, les nano-objets présentent de nombreux intérêts aussi bien au niveau de leurs structures et de leurs propriétés physiques qu'au niveau de leurs applications potentielles notamment dans les membranes ou tout autre dispositif de séparation physique, les électrodes, les matériaux composites, les dispositifs thermiques, optiques ou électroniques, ainsi que les supports de catalyseurs et les dispositifs de stockage ou de conversion d'énergie chimique, lumineuse, électrique, mécanique, etc ....
Dans le domaine des applications membranaires , il a été prévu par simulation et démontré expérimentalement que, selon certaines conditions, la vitesse d'écoulement de l'eau dans le cœur de nanotubes de carbone pouvait être jusqu'à 1000 fois plus rapide que la vitesse prédite par les lois classiques de diffusion [1] . C'est aussi le cas mais à des degrés moindres pour les liquides neutres ou ioniques et les gaz. La réalisation de membranes à base de nanotubes alignés a été démontrée expérimentalement et ce, par plusieurs méthodes.
Ainsi, l'article de Hinds et al., 2004 décrit la croissance directe d'un tapis de nanotubes de carbone (NTC) multi-parois alignés par dépôt chimique en phase vapeur ou CVD (pour « Chemical Vapor Déposition ») en mettant en œuvre un catalyseur constitué de nanocristaux Fe [2] . Une telle croissance directe peut également être obtenue sans pré-dépôt de catalyseur et ce, notamment en utilisant le procédé DLI-CVD (pour « Direct Liquid Injection - Chemical Vapor Déposition ») [3] . Le diamètre interne des nanotubes est en moyenne de 7 nm. Un procédé plus compliqué, basé sur un prédépot d'une couche fine de catalyseur, par exemple, du Fe, suivi d'une synthèse CVD permet d'obtenir des tapis de nanotubes double- feuillets eux-aussi alignés, dont le diamètre de cœur interne est de l'ordre de 2 nm [4] .
De même, des nanotubes de carbone dispersés, souvent des nanotubes simple-parois, peuvent être assemblés soit par fonctionnalisation spécifique des têtes de tubes puis imprégnation dans un polymère [5] , soit par auto-assemblage perpendiculaire à une surface, le plus souvent du Si [6] mais également par des techniques de Langmuir-Blodget [7] ou dérivées à l'interface de liquides [8] ou par application d'un champ magnétique. De tels procédés sont utilisés pour assembler d'autres formes de nanotubes comme des nanotubes d' imogolites .
L'imprégnation de tapis de NTC est réalisée avec des tapis effectivement alignés. Les tapis sont imprégnés par une matrice le plus souvent polymère avec des techniques :
(1) de dépôt par centrifugation connu sous l'appellation anglaise « spin-coating » avec du polystyrène [2] ou du poly (méthyl-méthacrylate) (PMMA)
[10] ;
(2) de dépôt CVD avec du parylène [11] ou avec du nitrure de silicium (S13N4) [6] , ou
(3) d'imprégnation sous pression réduite en une seule étape.
L'imprégnation peut être soit totale, soit partielle. Pour une imprégnation totale, au moins toute l'épaisseur du tapis et voire plus est imprégnée. Dans le cadre d'une imprégnation partielle, le tapis peut n'être que partiellement rempli avec au moins une ou plusieurs « tranches » ou « zones » de matrice qui en assurent le maintien. Ces « tranches » ou « zones » peuvent être superposées ou non, délimitant ainsi un espace vide entre elles dans lequel un flux de matière peut transiter perpendiculairement à l'axe des nanotubes. La matrice qui remplit l'espace inter- nanotubes est traitée de la même façon qu'il s'agisse d'une matrice polymère ou d'une matrice céramique. Il convient de souligner que l'interface entre la matrice notamment polymère et les NTC ne résulte que d'interactions faibles et subies telles qu'une physisorption du polymère sur les NTC. Peu d'information n'est donnée sur la qualité de cette imprégnation, ses défauts, son orientation possible, son imperméabilité par rapport à la diffusion de liquides ou de gaz et son adhérence mécanique aux NTC ou aux nanofils.
La demande internationale WO 2007/025104 décrit des membranes et un procédé pour préparer de telles membranes comprenant la fabrication de NTC verticalement alignés notamment par CVD puis le remplissage des espaces vides entre les NTC par une matrice [9] .
De plus, la demande internationale
WO 2008/028155 propose une membrane composite comprenant des NTC dispersés qui sont alignés de façon à ce qu' ils soient parallèles au flux traversant la membrane [12] . Cet alignement se fait via une technique de filtration. Les NTC alignés sont imprégnés par une matrice polymère notamment par spin-coating . Même s'il est envisagé de fonctionnaliser les NTC, cette fonctionnalisation qui met en œuvre des groupements chimiques simples sert à modifier la solubilité des NTC dans des solvants spécifiques et/ou à favoriser leur alignement .
Le brevet US 7,611,628 propose une membrane perméable dont la fabrication implique les étapes d'alignement de NTC et d'imprégnation des NTC alignés par une matrice polymère [13]. A ces étapes, s'ajoutent la gravure de la membrane (i) de façon à éliminer l'excès de matrice à la surface de la membrane et ainsi ouvrir les NTC et créer des pores et (ii) de façon à oxyder l'extrémité des NTC en créant des groupes carboxylate. Les groupes carboxylate ainsi formés peuvent réagir avec des unités fonctionnelles comprenant un groupe aminé et ce, pour altérer le flux à travers les nanotubes eux-mêmes.
Dans les autres domaines et en particulier dans le domaine des électrodes et des matériaux composites, les nanotubes ne sont pas nécessairement alignés, ni ordonnés d'une quelconque façon. Au contraire, ils sont souvent « dispersés ». Les composites sont majoritairement préparés grâce à des techniques assistées en pression et/ou par température. Aujourd'hui, les composites les plus prometteurs en terme de développement sont ceux à matrice polymère, intéressants pour des applications à haute valeur ajoutée notamment dans des domaines comme l'aérospatial ou l'énergie, ainsi que pour l'industrie des plastiques conducteurs .
La littérature fait état d'un nombre important d'études sur ce sujet, montrant une augmentation des propriétés électriques, thermiques et mécaniques, qui néanmoins ne s'avère pas systématique [14]. Alors que les NTC engendrent généralement une augmentation de la conduction électrique par formation d'un réseau percolant résultant du facteur de forme élevé des NTC
[15] , ils ne sont pas aussi efficaces en termes de propriétés mécaniques et thermiques [16] . Ceci résulte essentiellement de la mauvaise dispersion des NTC dans la matrice et de la mauvaise qualité de l'interface NTC/matrice en terme de compatibilité chimique. Plus spécifiquement, dans le cas des membranes à base de NTC, leur fragilité mécanique est souvent relatée et impose de tester ces membranes sur des supports solides et perméables.
II s'avère donc extrêmement important de contrôler parfaitement la dispersion et la répartition des NTC dans la matrice et la nature de l'interface. Des travaux, menés en ce sens, montrent des améliorations des propriétés mécaniques, thermiques et même électriques. Des recherches montrent aussi des imprégnations conformes sur des NTC [17] mais là aussi l'imprégnation n'est pas covalente.
Les inventeurs se sont fixés pour but de proposer un matériau comprenant des nanotubes mais aussi des nanofils et une matrice dans lequel l'interface entre les nanotubes (ou nanofils) et la matrice est mieux contrôlée et ce, de façon à améliorer les propriétés mécaniques, électriques, thermiques, optiques, chimiques ou de perméabilité du matériau ainsi obtenu. EXPOSÉ DE L' INVENTION
La présente invention permet de résoudre les problèmes techniques tels que précédemment définis et d'atteindre le but que se sont fixés les inventeurs.
En effet, les travaux des inventeurs ont permis de montrer qu'ajouter une couche d'accroché liée de façon covalente aux nanotubes, notamment alignés, préalablement à leur imprégnation par (ou leur incorporation dans) une matrice, notamment une matrice polymère permet d'améliorer l'interface entre nanotubes et matrice.
La couche d'accroché mise en œuvre dans le cadre de l'invention constitue un revêtement polymère qui présente les innovations décrites ci-après, ce revêtement étant greffé de façon covalente aux nanotubes .
Tout d'abord, la méthode utilisée pour préparer cette couche d'accroché i.e. toute technique permettant de greffer un polymère organique sur les nanotubes ne perturbe pas l'alignement des nanotubes. A titre d'exemples illustratifs et non limitatifs, cette technique peut consister en un greffage chimique radicalaire, un électrogreffage ou un radiogreffâge .
De plus, le fait que la couche d'accroché soit greffée de manière covalente sur la surface des nanotubes renforce la liaison avec les nanotubes et permet donc une meilleure adhérence de la matrice dite « matrice de remplissage » sur les nanotubes. En effet, lors de l'étape d'imprégnation, la matrice de remplissage interagit fortement avec la couche précédemment greffée. Le réseau interpénétré ainsi obtenu améliore la qualité de l'interface nanotubes/matrice et renforce les propriétés mécaniques de la membrane.
De plus, cette interpénétration peut s'accompagner d'une physisorption mais aussi d'une chimisorption rendant les interactions entre la couche d'accroché et la matrice de remplissage plus fortes. Dans le cadre de la chimisorption, peuvent exister des liaisons ioniques ou des liaisons covalentes impliquant un atome de la couche d'accroché et un atome du matériau constituant la matrice de remplissage.
Ainsi, une meilleure interface entre la sous- couche et la matrice se traduit par une meilleure tenue mécanique et une meilleure imperméabilité de l'espace inter-nanotubes (ou espace inter-tubes) . Dans le cas des matrices de remplissage de type polymère, l'interpénétration plus forte des chaînes de polymères de la sous-couche avec les chaînes du matériau constituant la matrice de remplissage favorise une continuité entre ces chaînes.
L'amélioration de l'interface nanotubes/matrice réduit également les chemins de diffusion des liquides et/ou des gaz dans le matériau et permet à la fois une meilleure imperméabilité de l'espace inter-tube quand cela est recherché, et aussi une meilleure sélectivité en évitant que les espèces que l'on souhaite trier ne se remélangent via ces chemins de diffusion secondaires .
L'emploi d'une couche d'accroché et de fonctionnalisation adaptée permet une meilleure compatibilité avec le matériau de la matrice de remplissage et le remplissage par cette matrice de l'espace inter-nanotubes peut être partiel ou total. Ainsi, le remplissage partiel de l'espace inter-tubes peut être utilisé pour changer 1 ' hydrophobicité des nanotubes et contrôler leur mouillabilité mais aussi pour créer une couche de sites d' adsorption pour transformer les nanotubes et notamment le tapis qu'ils forment en capteur, en électrode ou en filtre sélectif.
Enfin, la présente invention est remarquable car elle s'applique non seulement à tout type de nanotubes mais également aux nanofils. Ainsi, tout ce qui a été précédemment décrit pour les nanotubes s'applique également aux nanofils. La présente invention concerne un matériau comprenant :
au moins deux nanotubes ou au moins deux nanofils sur lesquels est greffé de façon covalente au moins un polymère organique et
- une matrice disposée entre les nanotubes ou les nanofils.
Plus particulièrement, la présente invention concerne un matériau comprenant :
- des nanotubes ou des nanofils alignés les uns par rapport aux autres dans une matrice verticale et
- une matrice disposée entre les nanotubes ou les nanofils,
au moins un polymère organique étant greffé, de façon covalente, à au moins deux desdits nanotubes ou à au moins deux desdits nanofils. Dans le cadre de la présente invention, on entend par « nanotube » une structure tubulaire et/ou cylindrique dont le diamètre interne varie entre 0,5 nm et 100 nm, notamment entre 0,5 nm et 50 nm et, plus spécifiquement, pour des applications de nanofiltration entre 0,5 nm et 10 nm.
Les nanotubes mis en œuvre dans le cadre de la présente invention peuvent être des nanotubes inorganiques, des nanotubes organiques ou un mélange de nanotubes inorganiques et de nanotubes organiques.
Les nanotubes inorganiques peuvent être choisis dans le groupe constitué par des nanotubes d' imogolite, des nanotubes de nitrure de bore (BN) , des nanotubes d'oxyde de zinc (ZnO) , des nanotubes de nitrure de gallium (GaN) , des nanotubes de nitrure de silicium (S13N4) , des nanotubes du bisulfure de tungstène (WS2) , des nanotubes de bisulfure de molybdène (M0S2) , des nanotubes de séléniure de tungstène (WSe2) , des nanotubes de séléniure de molybdène (MoSe2) , des nanotubes de dioxyde de titane (Ti02) ou des nanotubes de trioxyde de molybdène (M0O3) ou un de leurs mélanges .
Les nanotubes organiques peuvent être choisis dans le groupe constitué par des nanotubes de carbone, des nanotubes de peptides, des nanotubes de peptides cycliques, des nanotubes de molécules transmembranaires , des nanotubes d' éther couronnes, des nanotubes de porphyrines, des nanotubes d' aquaporine, des nanotubes de gramicidine, des nanotubes de polymères, des nanotubes formés par autoassemblage de molécules organiques ou un de leurs mélanges.
Un nanotube de carbone est défini comme un enroulement concentrique d'une ou de plusieurs couches de graphène (pavage d'hexagones de carbone) . On parle de nanotubes mono-feuillet, de nanotubes simple-parois ou de SWNT (pour « Single Wall NanoTube ») lorsqu'il s'agit d'une seule couche de graphène ;
- de nanotubes double-feuillets, de nanotubes double-parois ou de DWNT (pour « Double Wall NanoTube ») dans le cas de deux couches de graphène ;
de nanotubes multi-feuillets , de nanotubes multi-parois ou de MWNT (pour « Multi Wall NanoTube ») dans le cas de plusieurs couches de graphène.
La présente invention s'applique à tout type de nanotubes de carbone et ce quel que soit leur procédé de préparation. Ainsi, les nanotubes de carbone mis en œuvre dans le cadre de la présente invention peuvent être des nanotubes à une seule couche de graphène (SWNT) , des nanotubes à deux couches de graphène (DWNT) , des nanotubes à plusieurs couches de graphène (MWNT) ou un de leurs mélanges.
L'homme du métier connaît différents procédés permettant de préparer des nanotubes tels que précédemment définis. A titre d'exemples plus particuliers de procédés permettant de préparer des nanotubes de carbone, on peut citer les procédés physiques basés sur la sublimation du carbone tels que des méthodes d'arc électrique, d'ablation laser ou utilisant un four solaire et les procédés chimiques tels que le procédé CVD ou consistant à pyrolyser des sources carbonées sur des catalyseurs métalliques.
Il convient de noter que le greffage covalent d'un polymère organique sur des SWNT modifie leurs propriétés électriques, donc potentiellement la charge de surface et, par conséquent, l'écoulement de l'eau.
Dans le cadre de la présente invention, on entend par « nanofil » une structure unidimensionnelle ou sensiblement unidimensionnelle présentant une épaisseur ou un diamètre variant de 0,5 nm à 1000 nm, notamment, de 1 nm à 500 nm et, en particulier, entre 2 nm et 50 nm.
Les nanofils mis en œuvre dans le cadre de la présente invention peuvent être des nanofils inorganiques, des nanofils organiques ou un mélange de nanofils inorganiques et de nanofils organiques.
Les nanofils mis en œuvre dans le cadre de la présente invention sont notamment choisis dans le groupe constitué par des nanofils d'or (Au), des nanofils d'argent (Ag) , des nanofils de nickel (Ni), de nanofils de platine (Pt), de nanofils de silicium (Si), des nanofils de nitrure de gallium (GaN) , des nanofils de phosphure d' indium (InP), des nanofils de dioxyde de silicium (Si02) , des nanofils de dioxyde de titane (T1O2) , des nanofils d'oxyde de zinc (ZnO) , des nanofils de 1 , 5-diaminoanthraquinone, des nanofils d'ADN (pour « Acide DésoxyriboNucléique ») , des nanofils constitués de nanotubes tels que précédemment définis ou un de leurs mélanges. L'homme du métier connaît différents procédés permettant de préparer de tels nanofils. Ces procédés consistent à graver un substrat des techniques de lithographie et de gravure, à faire croître le nanofil par des méthodes de CVD à partir de films minces métalliques tels que l'or ou à assembler des nanotubes.
Les (deux) nanofils peuvent être utilisés dans la présente invention combinés à au moins un nanotube tel que précédemment défini.
Plus particulièrement, la présente invention peut mettre en œuvre une pluralité de nanotubes ; une pluralité de nanofils ; une pluralité de nanotubes combinée à au moins un nanofil ; une pluralité de nanofils combinée à au moins un nanotube ou encore une pluralité de nanotubes combinée à une pluralité de nanofils .
Les nanotubes et les nanofils dans le cadre de la présente invention peuvent présenter une quelconque chiralité et une quelconque longueur. Avantageusement, les nanotubes et les nanofils et notamment la pluralité de nanotubes et la pluralité de nanofils, mis en œuvre dans le cadre de la présente invention sont des nanotubes et les nanofils présentant une longueur comprise entre 10 nm et 2 cm, notamment entre 20 nm et 1 mm, en particulier entre 50 nm et 100 ym et, tout particulièrement, entre 100 nm et 50 ym.
Dans le matériau selon la présente invention, les nanotubes ou les nanofils peuvent présenter, les uns par rapport aux autres, une conformation alignée, dégradée ou dispersée. Par « conformation dégradée », on entend des nanotubes ou des nanofils sensiblement droits mais pas forcément alignés les uns par rapport aux autres.
Au contraire, dans le cas d'une conformation alignée, les nanotubes ou les nanofils sont utilisés alignés les uns par rapport aux autres dans une matrice verticale pour « vertical array ». Dans cette conformation, ils sont généralement et substantiellement perpendiculaires à un support. On parle de « tapis », de « forêts » ou de « réseaux » de nanotubes ou de nanofils. Une conformation alignée peut être obtenue dès la préparation des nanotubes ou des nanofils ou une fois ces derniers préparés notamment par des techniques de filtration dans le cœur des nanotubes telles que décrites dans la demande internationale WO 2008/028155 [12] ou des techniques par un flux transverse à l'axe des tubes telles que décrites dans la demande de brevet US 2004/0173506 [18] et la demande internationale WO 2009/141528 [19] .
La densité de nanotubes (ou de nanofils) dans le matériau selon la présente invention peut être variable. Cette dernière est avantageusement comprise entre 104 et 1013 nanotubes (ou nanofils ) /cm2 de matériau. Comme précédemment expliqué, la méthode utilisée pour préparer la couche d'accroché ne perturbe pas l'alignement des nanotubes ou des nanofils. Aussi, il est possible d'avoir un matériau présentant un tapis dense de nanotubes ou de nanofils alignés, avec de l'ordre de 109 à 1013 nanotubes (ou nanofils ) /cm2 et notamment de l'ordre de 109 à 1011 nanotubes (ou nanofils ) /cm2. Avantageusement, le désalignement maximum obtenu, suite au greffage covalent des polymères organiques, pour un tapis dense de nanotubes ou de nanofils est de 10 degrés et la tortuosité maximale de 3%, et, en particulier, un désalignement de 5 % pour une tortuosité de 1%.
De même, pour des nanotubes ou des nanofils droits mais non alignés entre eux, la méthode utilisée pour préparer la couche d' accroche ne perturbe pas la tortuosité des nanotubes et des nanofils qui restent droits. Dans ce cas, la tortuosité maximale obtenue est de 3% et notamment de 1%.
Alignement et tortuosité des nanotubes ou des nanofils sont des paramètres accessibles par mesure aux rayons X et notamment comme décrit dans l'article de Pichot et al., 2006 [20] et dans l'article de Pichot et al. , 2004 [31] .
Dans le cadre de la présente invention, les nanotubes et les nanofils sont greffés (ou fonctionnalisés ou dérivatisés) avec au moins un polymère organique. Plus particulièrement, au moins 50%, au moins 60%, au moins 70%, au moins 80%, au moins 90%, au moins 95%, au moins 96%, au moins 97%, au moins 98% et au moins 99% des nanotubes et des nanofils sont greffés (ou fonctionnalisés ou dérivatisés) avec au moins un polymère organique. Avantageusement, au moins un polymère organique est greffé sur chaque nanotube (ou chaque nanofil) . Les polymères greffés forment la couche d'accroché telle que précédemment définie.
Par « polymère organique », on entend un polymère dont la chaîne principale comprend principalement des atomes de carbone mais peut aussi comprendre des hétéroatomes tels que des atomes d'oxygène et des atomes d'azote.
Ce polymère organique est avantageusement greffé, de façon covalente, sur la partie latérale des nanofils et sur la partie externe latérale des nanotubes . Ce greffage peut être localisé sur des zones limitées et définies de ces surfaces.
Chaque nanotube et chaque nanofil greffé (ou fonctionnalisé ou dérivatisé) avec au moins un polymère organique peut comprendre au moins deux, au moins cinq, au moins dix, au moins 20 ou au moins 100 polymères organiques greffés, chaque polymère organique greffé sur un même nanotube ou sur un même nanofil pouvant pouvant présenter une séquence en unités identique avec, ou différent de l'autre (ou des autres) polymère (s) greffé (s). De même, les polymères organiques greffés sur des nanotubes ou des nanofils différents peuvent présenter une séquence en unités identique pour tous les nanotubes ou tous les nanofils ou différente.
Le polymère organique mis en œuvre dans le cadre de la présente invention comprend
- au moins une unité dérivée d'un sel d' aryle clivable, et/ou
au moins une unité dérivée d'un monomère présentant au moins une liaison de type éthylénique, et/ou
au moins une unité dérivée d'un monomère présentant au moins deux fonctions carboxylique, et/ou au moins une unité dérivée d'un monomère présentant aux moins deux fonctions aminé et/ou
au moins une unité dérivée d'un monomère présentant une fonction carboxylique et une fonction aminé. Le polymère organique mis en œuvre dans le cadre de la présente invention est avantageusement constituée de motifs répétitifs correspondant à de telles unités.
La couche d' accroche que forment les polymères organiques greffés sur les nanotubes ou les nanofils peut contenir un autre matériau nanoscopique, notamment tel que des nanoparticules métalliques ou de platine.
Avantageusement, le polymère organique mis en œuvre dans le cadre de la présente invention est substitué par au moins une fonction réactive. Par « fonction réactive », on entend, dans le cadre de la présente invention, une fonction choisie parmi une fonction carboxyle (susceptible de réagir avec une fonction aminé ou alcool) , un groupe aryle (tel que le pyrène, le naphtalène ou les polyaromatiques ) , une entité radicalaire, une fonction hydroxyle ou une fonction alcool (susceptible de réagir avec une fonction carboxyle ou isocyanate) , une fonction aminé (susceptible de réagir avec une fonction ester) , une fonction ester (susceptible de réagir avec une fonction aminé) , une fonction aldéhyde (susceptible de réagir avec une fonction hydrazide) , une fonction hydrazide (susceptible de réagir avec une fonction aldéhyde) , une fonction cétone (susceptible de réagir avec deux fonctions alcool en vue d'une acétalysation) , une fonction époxy (susceptible de réagir avec une fonction aminé) , une fonction isocyanate (susceptible de réagir avec une fonction hydroxyle) , une fonction maléimide (susceptible de réagir avec une fonction thiol, une fonction aminé ou une fonction diène) , une fonction diène (susceptible de réagir avec une fonction maléimide) et une fonction thiol (susceptible de réagir avec une fonction maléimide ou une autre fonction thiol) .
Par « sel d' aryle clivable », on entend dans le cadre de la présente invention un sel d' aryle clivable choisi dans le groupe constitué par les sels d' aryle diazonium, les sels d' aryle d'ammonium, les sels d' aryle phosphonium, les sels d' aryle iodonium et les sels d' aryle sulfonium. Dans ces sels, le groupe aryle est un groupe aryle qui peut être représenté par R tel que défini ci-après.
Ces sels d' aryle clivables sont capables, sous certaines conditions non-électrochimiques ou électrochimiques, de former soit des radicaux, soit des ions, et particulièrement des cations, et ainsi de participer à des réactions chimiques. De telles réactions chimiques pourront notamment être une chimisorption et en particulier un greffage chimique ou un électrogreffage. Ainsi, un tel sel d' aryle clivable est capable, sous des conditions non-électrochimiques ou électrochimiques, de se chimisorber sur la surface d'un nanofil ou d'un nanotube, notamment par réaction radicalaire, et de présenter une autre fonction réactive vis-à-vis d'un autre radical après cette chimisorption. En variante, une fois que le sel d' aryle clivable est chimisorbé à la surface des nanotubes ou des nanofils, il peut présenter une fonction réactive vis-à-vis d'une autre fonction réactive apte à former avec la première une liaison covalente ou ionique, les deux fonctions réactives identiques ou différentes étant telles que précédemment définies. La seconde fonction réactive peut être portée soit par le polymère organique à greffer sur le nanotube ou sur le nanofil, soit par le matériau constituant la matrice de remplissage .
Il convient de remarquer que les sels d' aryle clivables peuvent être qualifiés de polymérisables dans la mesure où, par réaction radicalaire, ils peuvent conduire à la formation de molécules de masse moléculaire relativement élevée dont la structure est formée essentiellement d'unités à multiples répétitions dérivées, de fait ou d'un point de vue conceptuel, de molécules de sels d' aryle clivables. Un polymère organique susceptible d'être greffé sur les nanotubes ou les nanofils, dans le cadre de la présente invention, peut donc être un polymère constitué de motifs répétitifs correspondant à des unités dérivées d'un (ou plusieurs) sel (s) d' aryle clivable (s).
Parmi les sels d' aryle clivables, on peut en particulier citer les composés de formule (I) suivante :
R-N2 +, A" (I)
dans laquelle :
- A représente un anion monovalent et
- R représente un groupe aryle. Par « groupe aryle », on entend dans le cadre de la présente invention, et notamment pour les fonctions réactives et les groupes aryle des sels d' aryle clivables, une structure carbonée aromatique ou hétéroaromatique, éventuellement mono- ou polysubstituée, constituée d'un ou plusieurs cycles aromatiques ou hétéroaromatiques comportant chacun de 3 à 8 atomes, le ou les hétéroatomes pouvant être N, 0, P ou S. Le ou les substituants peuvent contenir un ou plusieurs hétéroatomes, tels que N, 0, F, Cl, P, Si, Br ou S ainsi que des groupes alkyles en Ci à C6 ou des groupes thioalkyles en C4 à C12 notamment.
Au sein des sels d' aryle clivables et notamment des composés de formule (I) ci-dessus, R est de préférence choisi parmi les groupes aryles substitués par des fonctions réactives telles que précédemment définies et/ou par des groupements attracteurs d'électrons tels que NO2, les cétones, CN, CO2H, Br et les esters.
Au sein des composés de formule (I) ci-dessus,
A peut notamment être choisi parmi les anions inorganiques tels que les halogénures comme I~, Br" et Cl~, les halogénoborates tels que le tétrafluoroborate, les perchlorates et les sulfonates et les anions organiques tels que les alcoolates et les carboxylates.
A titre de composés de formule (I), il est particulièrement avantageux d'utiliser un composé choisi dans le groupe constitué par le tétrafluoroborate de 4-nitrobenzènediazonium, le tétrafluoroborate de tridécylfluorooctylsulfamylbenzène diazonium, le tétrafluoroborate de phényldiazonium, le tétrafluoroborate de 4-nitrophényldiazonium, le tétrafluoroborate de 4-bromophényldiazonium, le chlorure de 4-aminophényldiazonium, le chlorure de 2-méthyl-4-chlorophényldiazonium, le tétrafluoroborate de 4-benzoylbenzènediazonium, le tétrafluoroborate de 4-cyanophényldiazonium, le tétrafluoroborate du 4-carboxyphényldiazonium, le tétrafluoroborate de 4-acétamidophényldiazonium, le tétrafluoroborate de l'acide 4-phénylacétique diazonium, le sulfate de 2-méthyl-4- [ (2-méthylphényl) diazényl] benzènediazonium, le chlorure de 9, 10-dioxo-9, 10-dihydro-l- anthracènediazonium, le tétrafluoroborate de
4-nitronaphtalènediazonium et le tétrafluoroborate de naphtalènediazonium.
Par « monomère présentant au moins une liaison de type éthylénique », on entend avantageusement un monomère présentant une insaturation vinylique, une insaturation allylique et/ou une insaturation acrylique.
De tels monomères sont choisis parmi les monomères de formule (II) suivante :
Figure imgf000022_0001
dans laquel e es groupes R-i à R4, identiques ou différents, représentent un atome monovalent non métallique tel qu'un atome d'halogène, un atome d'hydrogène, un groupe chimique saturé ou insaturé, tel qu'un groupe alkyle, aryle, un groupe
-COOR5 dans lequel R5 représente un atome d'hydrogène ou un groupe alkyle en C1-C12 et de préférence en C1-C6, un nitrile, un carbonyle, une aminé ou un amide.
Les composés de formule (II) ci-dessus sont en particulier choisis dans le groupe constitué par l'acétate de vinyle, 1 ' acrylonitrile, le méthacrylonitrile, le méthacrylate de méthyle, le méthacrylate d'éthyle, le méthacrylate de butyle, le méthacrylate de propyle, le méthacrylate d' hydroxyéthyle, le méthacrylate d' hydroxypropyle, le méthacrylate de glycidyle et leurs dérivés ; les acrylamides et notamment les méthacrylamides d' amino- éthyle, propyle, butyle, pentyle et hexyle, les cyanoacrylates , les di-acrylates et di-méthacrylates , les tri-acrylates et tri-méthacrylates , les tétra- acrylates et tétra-méthacrylates (tels que le pentaérythritol tetraméthacrylate) , le styrène et ses dérivés, le parachloro-styrène, le pentafluoro-styrène, la N-vinyl pyrrolidone, la 4-vinyl pyridine, la 2-vinyl pyridine, les halogénures de vinyle, d' acryloyle ou de méthacryloyle, le di-vinylbenzène (DVB) , et plus généralement les agents réticulants vinyliques ou à base d'acrylate, de méthacrylate, et de leurs dérivés.
Avantageusement, les monomères présentant au moins une liaison éthylénique mis en œuvre dans le cadre de la présente invention sont substitués par au moins une fonction réactive telle que précédemment définie .
Dans le matériau selon la présente invention, la matrice qui est disposée entre les nanotubes et/ou les nanofils greffés i.e. la matrice de remplissage peut être choisie dans le groupe constitué par une matrice céramique, une matrice polymère, une matrice issue de la biomasse ou une matrice issue de dérivés cellulosiques et leurs mélanges.
Par « matrice céramique », on entend plus particulièrement une matrice dont le matériau la constituant est choisi dans le groupe constitué par le nitrure de silicium, le nitrure d'aluminium, le nitrirure de titane, le carbure d'aluminium, le carbure de titane, le carbure de silicium, l'oxyde de silicium, le dioxyde de silicium, l'oxyde de magnésium, l'oxyde de cérium, l'alumine, l'oxyde de titane, l'oxyde de bismuth, l'oxyde de béryllium, 1 ' hydroxyapatite ou un de leurs mélanges.
La matrice polymère mise en œuvre dans le cadre de la présente invention peut être constituée d'un (ou plusieurs) polymère (s) thermoplastique ( s ) , d'un (ou plusieurs) polymère (s) thermodurcissable ( s ) , d'un (ou plusieurs) polymère (s) vitreux ou d'un de leurs mélanges. Par « matrice polymère », on entend plus particulièrement une matrice dont le matériau la constituant est choisi dans le groupe constitué par un polyamide, un polyimide, un parylène, un polycarbonate, un polydiméthylsiloxane, une polyoléfine, une polysulfone, un polyéthersulfone, un polyétheréthercétone (PEEK) et ses dérivés, un polypropylène (PP) , un polyfluorure de vinylidène (PVDF) , un polyvinyl pyrrolidone (PVP) , un acétate de cellulose, une résine acrylique, un polystyrène, un polyméthylméthacrylate, un polyméthacrylate, une résine époxy, un polyester, un acétylnitrile-butadiène-styrène ou un de leurs mélanges.
Lorsque la matrice de remplissage est une matrice polymère, il est possible que des monomères utilisés pour la préparer soient identiques à des monomères utilisés pour préparer le polymère organique greffé au nanotube ou au nanofil.
De plus, la matrice de remplissage et notamment lorsqu'il s'agit d'une matrice polymère, le matériau la constituant peut être susbtitué par au moins une fonction réactive telle que précédemment définie.
La matrice de remplissage peut être non poreuse ou poreuse. En effet, une matrice poreuse, du type polyamide, polysulfone, polyestersulfone, PP, PVDF, PVP ou acétate de cellulose, peut être particulièrement intéressante lorsque le matériau selon l'invention est utilisé pour des applications de dessalement d'eau de mer ou d'eau saumatre. La présente invention concerne également un procédé de préparation d'un matériau tel que précédemment défini. Ce procédé comprend les étapes successives consistant à :
a) greffer, sur au moins deux nanotubes parmi des nanotubes alignés les uns par rapport aux autres dans une matrice verticale ou sur au moins deux nanofils parmi des nanofils alignés les uns par rapport aux autres dans une matrice verticale, un polymère organique, identique ou différent, b) disposer entre les nanotubes ou les nanofils obtenus suite à l'étape (a) une matrice telle que précédemment définie. Lors de l'étape (a) du procédé selon la présente invention, toute technique permettant le greffage d'un polymère organique est utilisable. Cette dernière est avantageusement choisie parmi une fonctionnalisation des nanotubes ou des nanofils suivie d'un couplage avec un polymère organique ; un greffage chimique radicalaire ; un électrogreffage ; un photogreffage ; un greffage par polymérisation radicalaire par transfert d'atomes ou ATRP (pour « Atom Transfer Radical Polymerization ») ; un greffage par polymérisation radicalaire contrôlée par le nitroxyde ou NMRP (pour « Nitroxide Mediated Radical Polymerization ») ; un greffage par polymérisation radicalaire par addition fragmentation tels que les procédés RAFT (pour « Réversible Addition Fragmentation chain Transfer ») ou MADIX (pour « MAcromolecular Design via Interchange of Xanthane ») ; un greffage en phase vapeur ou un greffage activé par les micro-ondes.
Dans une première variante de la présente invention, le greffage mis en œuvre lors de l'étape (a) du procédé peut consister en (ai) une fonctionnalisation des nanotubes ou des nanofils suivie (bi) d'un couplage avec un polymère organique.
La fonctionnalisation des nanotubes ou des nanofils consiste à générer des fonctions réactives telles que précédemment définies sur les nanotubes ou les nanofils, en les soumettant à des conditions permettant la formation de telles fonctions réactives. Avantageusement, la fonction réactive formée à la surface d'un nanotube ou d'un nanofil lors de cette fonctionnalisation présente
un groupement choisi parmi une fonction carboxyle, un groupe aryle de type aryle polyaromatique, une entité radicalaire, une fonction hydroxyle, une fonction alcool, une fonction aminé, une fonction ester, une fonction aldéhyde, une fonction hydrazide, une fonction cétone, une fonction époxy, une fonction isocyanate, une fonction maléimide, une fonction diène et une fonction thiol ou
un groupe alkyle substitué par un tel groupement.
Il existe des revues dans la littérature sur la fonctionnalisation covalente des nanotubes et notamment des nanotubes de carbone [21] .
On relève ici quelques exemples de méthodes susceptibles d'être mises en œuvre lors de cette fonctionnalisation car générant des fonctions réactives à la surface de nanotubes ou de nanofils et permettant de greffer des polymères organiques par la suite :
- un traitement oxydant des nanotubes ou des nanofils ;
l'arylation des nanotubes et notamment des nanotubes de carbone ou des nanofils par du diazonium
[22] ;
la fonctionnalisation des nanotubes ou des nanofils par cycloaddition 13-dipolaire [23] ; la fonctionnalisation des nanotubes ou des nanofils par cycloaddition [2+1] [24].
Par « traitement oxydant », on entend, dans le cadre de la présente invention, un traitement (ou pré- traitement) visant à oxyder la surface des nanotubes ou des nanofils mis en œuvre et/ou à préparer la surface à une future oxydation par formation de radicaux. Une oxydation modifie la surface des nanotubes ou des nanofils notamment en fixant et/ou en introduisant, sur les extrémités ou défauts des nanotubes ou des nanofils, des groupements riches en oxygène tels que des groupements de type carboxylique (-COOH) , hydroxyle (-OH) , alcoxyle (-OX avec X représentant un groupe alkyle, un groupe acyle ou un groupe aroyle) , carbonyle (-C=0) , percarbonique (-C-0-OH) et parfois amide (-CONH) .
Un tel traitement oxydant repose sur deux grands types de modifications de surface fondés sur :
des traitements physiques tels qu'un traitement par plasma notamment d'oxygène, un traitement aux UV, un traitement aux rayons X ou γ, un traitement par irradiation aux électrons et aux ions lourds ou
des traitements chimiques tels qu'un traitement à la potasse alcoolique, un traitement par un acide fort (HC1, H2SO4, HNO3, HCIO4) , un traitement à la soude, un traitement par un oxydant fort (KMnC^, ]¾(¾07, KCIO3 ou Cr03 dans l'acide chlorhydrique, l'acide sulfurique ou dans l'acide nitrique) et un traitement à l'ozone. Il convient de remarquer qu'un pré-traitement oxydant tel que précédemment défini peut être mis en œuvre et ce quelle que soit la technique de greffage utilisée par la suite.
Ces nanotubes et ces nanofils, porteurs d'une
(ou plusieurs) fonction (s) réactive (s) telle (s) que précédemment définie (s) peuvent ensuite réagir directement avec un (ou plusieurs) polymère (s) organique (s) tels que précédemment défini (s) et présentant au moins une autre fonction réactive apte à réagir avec celle (s) greffée (s) sur les nanotubes ou les nanofils lors de l'étape de fonctionnalisation .
A titre d'exemple illustratif et non limitatif, cette variante peut utiliser un sel d' aryle diazonium portant une fonction aminé pour fonctionnaliser la surface des nanotubes ou des nanofils et un polymère organique de type polyamide qui se chimisorbe via cette fonction aminé. Dans une seconde variante, l'étape de greffage peut consister en un greffage chimique radicalaire.
Le terme « greffage chimique radicalaire » se réfère notamment à l'utilisation d'entités moléculaires extrêmement réactives typiquement radicalaires , capables de former des liaisons de type liaison covalente avec une surface d'intérêt, lesdites entités moléculaires étant générées indépendamment de la surface sur laquelle elles sont destinées à être greffées. Ainsi, la réaction de greffage conduit à la formation de liaisons covalentes entre la zone de la surface du nanotube ou du nanofil sur laquelle le polymère organique doit être greffé et le dérivé du sel d' aryle clivable tel que précédemment défini.
Avantageusement, cette seconde variante comprend les étapes consistant à :
a2) mettre en contact les nanotubes ou les nanofils avec une solution S i comprenant au moins un sel d' aryle clivable tel que précédemment défini et éventuellement au moins un monomère présentant au moins une liaison de type éthylénique tel que précédemment défini ;
b2) soumettre ladite solution S i à des conditions non-électrochimiques permettant la formation d'entités radicalaires à partir dudit sel d' aryle clivable .
Le polymère organique obtenu suite à la mise en œuvre de cette seconde variante de l'étape (a) peut comprendre soit uniquement des unités dérivées (ou issues) d'un (ou plusieurs) sel (s) d' aryle clivable (s), soit au moins une unité dérivée (ou issue) d'un sel d' aryle clivable et au moins une autre unité dérivée (ou issue) d'un monomère présentant au moins une liaison de type éthylénique. Dans ce dernier cas, la première unité du polymère organique (i.e. l'unité directement liée à la surface du nanotube ou du nanofil) est dérivée d'un sel d' aryle clivable, la liaison entre le polymère organique et la surface du nanotube ou du nanofil implique donc un atome d'une unité dérivée d'un sel d' aryle clivable et un atome de la surface du nanotube ou du nanofil.
Cette seconde variante peut être mise en œuvre avec tout type de nanotubes ou de nanofils i.e. qu'ils soient isolants, semi-conducteurs ou conducteurs de l'électricité. Cette variante se base sur le procédé décrit dans la demande internationale WO 2008/078052
[25] et dans l'article de Mévellec et al. 2007 [26] . La demande internationale WO 2008/078052 propose que le support solide soit un nano-objet tel qu'un nanotube et envisage de fonctionnaliser le film organique greffé sur le support solide avec un nano-objet tel qu'un nanotube. Toutefois, rien dans cette demande ne décrit ni les effets techniques, ni les avantages obtenus en utilisant le film organique greffé comme une couche d' accroche .
Lorsque la solution Si comprend un sel d' aryle clivable et un monomère polymérisable par voie radicalaire tels que précédemment définis, elle peut en outre contenir au moins un tensioactif et ce, notamment pour améliorer la solubilité de ce monomère. Une description précise des tensioactifs utilisables dans le cadre de l'invention est donnée dans la demande internationale WO 2008/078052 [25] à laquelle l'homme du métier pourra se référer. Un seul tensioactif ou un mélange de plusieurs tensioactifs peut être utilisé.
L'homme du métier saura déterminer sur la base de l'enseignement de la demande internationale WO 2008/078052 [25], les conditions opératoires à utiliser telles que la concentration en sel d' aryle clivable ou en monomère polymérisable par voie radicalaire dans la solution Si ou le pH de cette dernière .
De plus, le sel d' aryle clivable peut, soit être introduit en l'état dans la solution Si telle que définie précédemment, soit être préparé in situ dans cette dernière. De tels composés sont généralement préparés à partir d'arylamine, pouvant comporter plusieurs substituants aminé, par réaction avec du a 02 en milieu acide ou avec du NOBF4 en milieu organique. Pour un exposé détaillé des modes expérimentaux utilisables pour une telle préparation in situ, l'homme du métier pourra se reporter à l'article de Lyskawa et Bélanger, 2006 [27]. De préférence, le greffage sera alors réalisé directement dans la solution de préparation du sel d' aryle clivable.
Par « conditions non-électrochimiques » mises en œuvre à l'étape (b2) du procédé selon l'invention, on entend dans le cadre de la présente invention en absence de tension électrique. Ainsi, les conditions non-électrochimiques mises en œuvre à l'étape (b2) du procédé selon l'invention sont des conditions qui permettent la formation d'entités radicalaires à partir du sel d' aryle clivable, en l'absence de l'application d'une quelconque tension électrique au niveau des nanotubes ou des nanofils sur lesquels le polymère organique est greffé et au niveau de la solution S i . Ces conditions impliquent des paramètres tels que, par exemple, la température, la nature du solvant, la présence d'un additif particulier tel qu'un amorceur chimique, l'agitation, la pression alors que le courant électrique n' intervient pas lors de la formation des entités radicalaires. Les conditions non- électrochimiques permettant la formation d'entités radicalaires sont nombreuses et ce type de réaction est connu et étudié en détail dans l'art antérieur. L'homme du métier saura déterminer sur la base de l'enseignement de la demande internationale WO 2008/078052 [25] les conditions non-électrochimiques à mettre en œuvre.
Dans une troisième variante de la présente invention, le greffage mis en œuvre lors de l'étape (a) du procédé est un électrogreffage.
Par « électrogreffage », on entend, dans le cadre de la présente invention, un procédé de greffage électro-initié et localisé d'un sel d' aryle clivable ou d'un monomère présentant au moins une liaison de type éthylénique, sur une surface de nanotubes ou de nanofils conducteurs et/ou semi-conducteurs de l'électricité, par mise en contact desdits sels d' aryle clivables ou monomères présentant au moins une liaison de type éthylénique avec ladite surface. Dans ce procédé, le greffage est réalisé électrochimiquement en une seule étape. Lesdits nanotubes ou nanofils sont portés à un potentiel supérieur ou égal à un potentiel électrique seuil déterminé par rapport à une électrode de référence, ledit potentiel électrique seuil étant le potentiel au-delà duquel se produit le greffage desdits sels d' aryle clivables ou desdits monomères présentant au moins une liaison de type éthylénique. Une fois lesdits sels d' aryle clivables greffés ou lesdits monomères présentant au moins une liaison de type éthylénique greffés, ils présentent une autre fonction réactive vis-à-vis d'un autre radical et apte à enclencher une polymérisation radicalaire qui ne dépend d'aucun potentiel électrique. Avantageusement, cette troisième variante comprend les étapes consistant à :
a3) mettre en contact les nanotubes ou les nanofils avec une solution S2 comprenant au moins un sel d' aryle clivable et/ou au moins un monomère présentant au moins une liaison de type éthylénique ;
b3) polariser lesdits nanotubes ou lesdits nanofils à un potentiel électrique plus cathodique que le potentiel de réduction du sel d' aryle clivable ou du monomère présentant au moins une liaison de type éthylénique mis en œuvre à l'étape (a3) .
Tout ce qui a été précédemment décrit pour la solution Si à savoir le solvant, les quantités de sels d' aryle clivables et de monomères présentant une insaturation éthylénique, la préparation du sel d' aryle clivable in situ et éventuellement la présence d'un tensioactif s'applique également à la solution S2.
Selon l'invention, il est préférable, lorsque la solution S2 comprend un sel d' aryle clivable, que le potentiel électrique employé à l'étape (b3) du procédé selon la présente invention soit proche du potentiel de réduction du sel d' aryle clivable mis en œuvre et qui réagit en surface. Ainsi la valeur du potentiel électrique appliqué peut être jusqu'à 50% plus élevée que le potentiel de réduction du sel d' aryle clivable, plus typiquement elle ne sera pas supérieure à 30%.
Cette variante de la présente invention peut être mise en œuvre dans une cellule d' électrolyse comportant différentes électrodes : une électrode de travail constituée par les nanotubes ou les nanofils et destinée à recevoir le polymère organique, une contre- électrode, ainsi qu'éventuellement une électrode de référence .
La polarisation des nanotubes ou des nanofils peut être effectuée par toute technique connue de l'homme du métier et notamment en conditions de voltampérométrie linéaire ou cyclique, en conditions potentiostatiques , potentiodynamiques , intensiostatiques , galvanostatiques , galvanodynamiques ou par chronoampérométrie simple ou puisée. Avantageusement, le procédé selon la présente invention est réalisé en conditions de chronoampérométrie statique ou puisée. En mode statique, l'électrode est polarisée pour une durée généralement inférieure à 2 h, typiquement inférieure à 1 h et par exemple moins de 20 min. En mode puisé, le nombre de pulsations sera compris, de manière préférentielle, entre 1 et 1000 et, encore plus préférentiellement , entre 1 et 100, leur durée étant généralement comprise entre 100 ms et 5 s, typiquement 1 s .
Dans cette troisième variante, le polymère organique obtenu peut être constitué
- uniquement d'unités dérivées (ou issues) d'un (ou plusieurs) sel (s) d' aryle clivable(s),
- uniquement d'unités dérivées (ou issues) d'un (ou plusieurs) monomère (s) présentant au moins une liaison de type éthylénique,
- d'au moins une unité dérivée (ou issue) d'un sel d' aryle clivable et d'au moins une autre unité dérivée (ou issue) d'un monomère présentant au moins une liaison de type éthylénique. Des informations complémentaires sur 1 ' électrogreffage mis en œuvre sur des nanotubes notamment des nanotubes de carbone peuvent être obtenues dans l'article de Tessier et al., 2008 [28].
Dans une quatrième variante de la présente invention, le greffage mis en œuvre lors de l'étape (a) du procédé est un photogreffage. Le photogreffage mis en œuvre peut être auto-amorcé ou mis en œuvre en présence d' amorceurs ou photoinitiateurs tels qu'un sel d' aryle clivable tel que précédemment défini, la diméthoxy-2 , 2-phényl-2-acétophénone (DMPA) , la méthoxy- 2-phényl-2-acétophénone (MPA) , le peroxyde de benzoyle, 1 ' azobisisobutyronitrile (AIBN) , l'éthoxy-2- phénylacétophénone (EPA) ou la benzophénone (BP) . Lorsque le photogreffage est réalisé en présence de photoinitiateurs, ces derniers peuvent être immobilisés à la surface des nanotubes ou des nanofils ou mis en solution avec les monomères qui donneront le polymère organique.
En variante, la technique de photogreffage auto-amorcé et de photopolymérisation ou SIPGP (pour « Self-Initiated PhotoGrafting and
Photopolymerization ») permet de greffer de manière covalente des chaînes de polymère sur la surface externe de nanotubes ou de nanofils, à partir d'un mélange monomères / nanotubes ou nanofils.
Le rayonnement UV excite les molécules de monomères telles que les monomères présentant une liaison éthylénique précédemment définis formant ainsi des radicaux libres. Ces radicaux peuvent à leur tour amorcer la réaction d' homopolymérisation du monomère ou ils peuvent arracher un atome hydrogène à la surface d'un nanotube ou d'un nanofil et ainsi créer des radicaux à la surface des nanotubes ou des nanofils qui peuvent eux aussi amorcer la polymérisation, permettant ainsi d'avoir des polymères organiques greffés à la surface des nanotubes ou des nanofils. La réaction de polymérisation peut donc se faire en l'absence de photoinitiateur .
Le rayonnement UV mis en œuvre lors du photogreffage présente une intensité comprise entre 50 et 600 watts/cm2, notamment entre 100 et 500 watts/cm2 et, en particulier, de l'ordre de 400 watt/cm2 (i.e. 400 watt/cm2 ± 50 watt/cm2) . La durée de l'irradiation est comprise entre 5 et 36 h et notamment entre 15 et 24 h.
De plus amples informations sur les autres techniques de greffage susceptibles d'être utilisées lors de l'étape (a) du procédé peuvent être obtenues dans l'article de Fan et al., 2007 [29] et dans les articles cités dans ce dernier ainsi que dans l'article de Menzel et al. 2009 [29] pour le greffage d'un polymère organique activé par les micro-ondes.
L'épaisseur du polymère organique est aisément contrôlable et ce, quelle que soit la variante du procédé de la présente invention mise en œuvre, comme précédemment expliqué. Pour chacun des paramètres tel que la durée notamment des étapes (bi) ou (b2) et en fonction des réactifs qu'il emploiera, l'homme du métier sera à même de déterminer par itération les conditions optimales pour obtenir un polymère organique d'épaisseur donnée. Toute technique connue de l'homme du métier pour disposer une matrice entre les nanotubes ou les nanofils ainsi greffés (ou fonctionnalisés ou dérivatisés) et en particulier entre les nanotubes ou les nanofils alignés dans la matrice verticale est utilisable dans le cadre de l'étape (b) du procédé selon la présente invention. Cette seconde étape permet de combler l'espace inter-nanotubes ou inter-nanofils résiduel avec une matrice telle que précédemment définie .
La matrice forme un réseau interpénétré avec la couche d'accroché précédemment greffée. Pour cela, les techniques classiques d' imprégnation pourront être utilisées. Comme précédemment expliqué, cette interpénétration peut être améliorée par une chimisorption impliquant des liaisons ioniques et/ou covalentes entre le polymère organique greffé sur les nanotubes ou les nanofils et la matrice de remplissage. Cette chimisorption implique notamment des polymères greffés présentant au moins une lere fonction réactive telle que précédemment définie et une matrice de remplissage dont le matériau la constituant présente une 2nde fonction réactive telle que précédemment définie, les deux fonctions réactives étant capables de réagir ensemble pour former une liaison ionique ou covalente. Dans une première variante de l'étape (b) du procédé, cette étape peut consister à greffer la matrice de remplissage suite au greffage du polymère organique au niveau des nanotubes ou des nanofils. Cette variante implique une matrice de remplissage de type polymère. Dans ce cas, la liaison covalente entre le polymère organique et la matrice de remplissage est obtenue dès la première unité du matériau polymère constituant la matrice de remplissage greffée sur le polymère organique.
Dans une seconde variante de l'étape (b) du procédé, cette technique peut être un dépôt chimique en phase vapeur (CVD) , un dépôt de couche atomique (ALD) , un dépôt par centrifugation connu sous l'appellation anglaise de « spin coating » ; une imprégnation assistée ou non par pression ; une photo-imprégnation ; etc .... La liaison covalente ou ionique entre le polymère organique et la matrice de remplissage est réalisée une fois la matrice de remplissage déposée au contact du polymère organique.
De même, la matrice de remplissage peut être disposée dans tout l'espace entre les nanotubes ou les nanofils ou au contraire au niveau de certaines parties de cet espace, laissant d'autres parties d'espace libre entre les nanotubes ou les nanofils. Ces deux variantes et leur intérêt ont été explicités dans la partie « Etat de la technique antérieure ».
La présente invention concerne également l'utilisation d'un matériau selon la présente invention ou un matériau susceptible d'être préparé par un procédé selon la présente invention dans une membrane de séparation, dans un support de catalyseur, dans une électrode, dans un matériau composite ou dans un composé de stockage ou de conversion d'énergie.
En effet, le matériau selon la présente invention ou susceptible d'être préparé par un procédé selon la présente invention peut être utilisé dans de nombreuses applications pour lesquelles la densité et l'alignement des nanotubes ou des nanofils, le choix du matériau constituant la matrice de remplissage et le maintien mécanique de l'ensemble sont des éléments clés de performances.
Ainsi, dans les applications membranaires pour lesquelles le matériau selon l'invention permet de réaliser des membranes nanoporeuses ultraperméables notamment du fait de l'alignement des nanotubes qui favorise l'écoulement des liquides et/ou des gaz, permettant une large gamme de matrice de remplissage et résistantes à la pression (par rapport aux membranes sans sous-couches plus fragiles mécaniquement) . La présente invention concerne donc une membrane comprenant un matériau selon la présente invention ou susceptible d'être préparé par un procédé selon la présente invention, ledit matériau comprenant au moins deux nanotubes greffés et une matrice disposée entre les nanotubes. Une telle membrane peut être une membrane de filtration notamment pour la désalinisation et la déminéralisation des liquides et notamment de 1 ' eau .
Dans une application comme support de catalyseur, la fonction de la sous-couche d'accroché du matériau selon l'invention joue un double rôle de maintien de l'alignement ce qui permet d'introduire plus facilement et sur une plus grande profondeur les éléments catalytiques dans la lumière des nanotubes, tout en assurant un maintien mécanique plus important. La présente invention concerne donc un support de catalyseur comprenant un matériau selon la présente invention ou susceptible d'être préparé par un procédé selon la présente invention. Un tel support de catalyseur peut être utilisé dans un réacteur de laboratoire ou dans un réacteur industriel notamment pour la décomposition de l'hydrazine, la synthèse du styrène, l'oxydation du sulfure d'hydrogène en soufre élémentaire ou pour la conversion ou la récupération des composés organiques volatils (COV) .
La présente invention concerne une électrode comprenant un matériau selon la présente invention ou susceptible d'être préparé par un procédé selon la présente invention. Une électrode selon l'invention peut être utilisée pour tous types d'applications telles que courants forts, câbles électriques, dispositifs de stockage électrique, énergie, radiateurs de dissipation, dispositifs thermoélectriques, systèmes de conversion d'énergie (systèmes photovoltaïques) , nanogénérateurs , croissance de cellules, biopuces ou biotechnologies pour lesquelles la rectitude et l'alignement des nanotubes est crucial pour l'écoulement des charges électriques tout en en assurant par l'intermédiaire de la matrice de remplissage un maintien mécanique renforcé. La présente invention concerne enfin un matériau composite dit « 1D » comprenant un matériau selon la présente invention ou susceptible d'être préparé via un procédé selon la présente invention. Un tel matériau favorise une fonction particulière dans le sens de l'axe des nanotubes ou des nanofils. Cette fonction peut être mécanique, électrique, thermique, optique ou d'adhésif. De plus, la densité et l'alignement des nanotubes ou des nanofils constitue l'effet technique tout en assurant au matériau composite un meilleur maintien mécanique, soit pour être inséré dans des composites de plus grande taille soit pour être utilisé tel quel.
BRÈVE DESCRIPTION DES DESSINS
La Figure 1 présente la modification par greffage d'une fine couche de polymères organiques à partir d'un sel d' aryle diazonium et d'un monomère polymérisable par voie radicalaire sur un tapis de nanotubes de carbone alignés puis l'imprégnation par une matrice polymère conformément au procédé selon la présente invention.
La Figure 2 présente l'amélioration de l'interface polymère/nanotubes d'une membrane réalisée à partir de nanotubes de carbone modifiés i.e. greffés par une couche d' accroche constituée de polymères organiques conformément à la présente invention (Figure 2B) comparée à une membrane sans sous-couche (Figure 2A) . EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
I . Photogreffage de polystyrène (PS) sur des nanotubes de carbone (NTC) .
Cette technique permet d' obtenir une couche de polystyrène greffée de manière covalente sur la surface externe des NTC mais également, en laissant la réaction d' homopolymérisation du styrène se poursuivre complètement, d'obtenir un composite dont la matrice PS est liée de manière covalente aux NTC alignés.
Le tapis de NTC préparé par CCVD d'aérosol à partir d'un mélange toluène/ferrocène est placé dans du styrène préalablement dégazé (le monomère recouvre le tapis) . La formulation avec les NTC est à nouveau placée sous pression réduite entre -90 et -100 kPa pendant environ 20 min et à froid i.e. entre -10 et -30°C. Le mélange est transféré dans un tube à essai fermé et placé sous atmosphère inerte. La formulation est ensuite irradiée sous UV (400 W puissance globale de l'ampoule) pendant 15 à 24h.
Après irradiation, le tapis est récupéré, puis rincé dans du THF sous vide et à chaud de l'ordre de 60°C.
II . Préparation de la matrice de remplissage. Une solution styrène / peroxyde de benzoyle (1% en masse) est placée dans un ballon puis dégazéesous pression réduite entre -90 et -100 kPa pendant 45 min.
Le tapis modifié est rajouté à la formulation précédente. L'ensemble est dégazé dans les mêmes conditions pendant 30 min. La solution et le tapis sont transférés dans un moule cylindrique en téflon puis placés dans une étuve thermostatée à 60 °C pendant 20 heures.
RÉFÉRENCES
[1] Hummer et al., 2001, « Water conduction through the hydrophobic channel of a carbon nanotube », Nature, vol. 414, pages 188-190.
[2] Hinds et al., 2004, « Aligned multiwalled carbon nanotube membranes », Science, vol. 303, pages 62-65.
[3] Pinault et al., 2005, « Evidence for sequential lift in growth of aligned multiwalled carbon nanotubes multilayers », Nano letters, vol. 5, pages 2394-2398.
[4] Holt et al., 2006, « Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes », Science, vol. 312, pages 1034-1037.
[5] Kim et al., 2007, « Scalable Fabrication of Carbon Nanotube/Polymer Nanocomposite Membranes for High Flux Gas Transport », Nano letters, vol. 7, pages 2806-2811.
[6] Poh et al., 2009, « Fabrication and electrochemical behavior of vertically-aligned carbon nanotube électrodes covalently attached to p-type silicon via a thioester linkage », Materials Letters, vol. 63, pages 757-760.
[7] Oh et al., 2006, « Préparation of Aligned
Carbon Nanotube Films Using the Langmuir-Blodgett Technique », Int Conf Nanotech 2006.
[8] Demande internationale WO 2010/002805 déposée au nom de Nanoasis Technologies et publiée le 7 janvier 2010. [9] Demande internationale WO 2007/025104 déposée au nom de The régents of the University of California et publiée le 1er mars 2007.
[10] Wanliang Mi et al., 2007, « Vertically aligned carbon nanotube membranes on macroporous alumina supports », Journal of Membrane Science, vol. 304, pages 1-7.
[11] Park et al., 2008, « A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon Nanotubes », Int Conf Nanotech 2008.
[12] Demande internationale WO 2008/028155 déposée au nom de Virginia Tech Intellectual Properties et publiée le 6 mars 2008.
[13] Brevet US 7,611,628 déposé au nom de University of Kentucky Research Foundation et délivré le 3 novembre 2009.
[14] Khare et Bose, 2005, « Carbon Nanotube Based Composites- A Review », Journal of Minerais Materials Characterization Engineering, vol. 4, pages 31-46.
[15] Mierczynska et al., 2007, « Electrical and mechanical properties of carbon nanotube/ultrahigh- molecular-weight polyethylene composites prepared by a filler prelocalization method », Journal of Applied Polymer Science, vol. 105, pages 158-168.
[16] Nan et al., 2003, « A simple model for thermal conductivity of carbon nanotube-based composites », Chemical Physics Letters, vol. 375, pages 666-669.
[17] Garcia et al., 2008, « Fabrication and multifunctional properties of a hybrid laminate with alignée! carbon nanotubes grown in situ », Composites Science and Technology, vol. 68, 2034-2041.
[18] Demande de brevet US 2004/0173506 déposée au nom de Doktyez et al. et publiée le 9 septembre 2004.
[19] Demande internationale WO 2009/141528 déposée au nom du Commissariat à l'Energie Atomique et publiée le 26 novembre 2009.
[20] Pichot et al., 2006, « Structural and mechanical properties of single-wall carbon nanotube fibers », Phys Rev. B, vol. 74, pages 245416-245423.
[21] Bahr et al., 2002, « Covalent chemistry of single-wall carbon nanotubes », J. Mater. Chem., vol. 12, pages 1952-1958.
[22] Marcoux et al., 2004, « Electrochemical functionalization of nanotube films : growth of aryl chain on single-walled carbon nanotubes », New J. Chem., vol. 28, pages 302-307.
[23] Wang et al., 2005, « Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes », Carbon, vol. 43, pages 1015-1020.
[24] Hu et al., 2003, « Sidewall functionalisation of single-walled carbon nanotubes by addition of dichlorocarbene », J Am. Chem. Soc, vol. 125, pages 14893-14900.
[25] Demande internationale WO 2008/078052 déposée au nom du Commissariat à l'Energie Atomique et publiée le 3 juillet 2008.
[26] Mévellec et al., 2007, « Grafting polymers on surfaces : a new powerful and versatile diazoniumsalt-based one-step process in aqueous media », Chem. Mater., vol. 19, pages 6323-6330.
[27] Lyskawa et Bélanger, 2006, « Direct Modification of a Gold Electrode with Aminophenyl Groups by Electrochemical Réduction of in Situ Generated Aminophenyl Monodiazonium Cations », Chem. Mater., vol. 18, pages 4755-4763.
[28] Tessier et al., 2008, « Grafting organic polymer films on surfaces of carbon nano-tubes by Surface Electroinitiated Emulsion Polymerization », Physica Status Solidi A, vol. 205, pages 1412-1418.
[29] Fan et al., 2007, « Synthesis of polymer grafted carbon nanotubes by nitroxide mediated radical polymerization in the présence of spin*-labeled carbon nanotubes », Macromolecular Nanotechnology, vol. 43, pages 26-34.
[30] Menzel et al., 2009, « Inverse Gas Chromatography of As-Received and Modified Carbon Nanotubes », Langmuir, vol. 25(14), pages 8340-8348.
[31] Pichot et al., 2004, « Evidence of strong nanotube alignment and for iron preferential growth axis in multiwalled carbon nanotube carpets », Applied Physics Letters, vol. 85, pages 473-475.

Claims

REVENDICATIONS
1. Matériau comprenant :
- des nanotubes ou des nanofils alignés les uns par rapport aux autres dans une matrice verticale et
- une matrice disposée entre les nanotubes ou les nanofils,
au moins un polymère organique étant greffé, de façon covalente, à au moins deux desdits nanotubes ou à au moins deux desdits nanofils.
2. Matériau selon la revendication 1, caractérisé en ce que lesdits nanotubes sont des nanotubes inorganiques, notamment choisis dans le groupe constitué par des nanotubes d'imogolite, des nanotubes de nitrure de bore (BN) , des nanotubes d'oxyde de zinc (ZnO) , des nanotubes de nitrure de gallium (GaN) , des nanotubes de nitrure de silicium (S13N4) , des nanotubes du bisulfure de tungstène ( WS 2 ) , des nanotubes de bisulfure de molybdène ( M0 S 2 ) , des nanotubes de séléniure de tungstène ( WS e2 ) , des nanotubes de séléniure de molybdène ( Mo S e2 ) , des nanotubes de dioxyde de titane (Ti02) ou des nanotubes de trioxyde de molybdène ( M0O3 ) ou un de leurs mélanges.
3. Matériau selon la revendication 1, caractérisé en ce que lesdits nanotubes sont des nanotubes organiques, notamment choisis dans le groupe constitué par des nanotubes de carbone, des nanotubes de peptides, des nanotubes de peptides cycliques, des nanotubes de molécules transmembranaires , des nanotubes d' éther couronnes, des nanotubes de porphyrines, des nanotubes d' aquaporine, des nanotubes de gramicidine, des nanotubes de polymères, des nanotubes formés par autoassemblage de molécules organiques ou un de leurs mélanges .
4. Matériau selon la revendication 1, caractérisé en ce que les nanofils sont choisis dans le groupe constitué par des nanofils d'or (Au), des nanofils d'argent (Ag) , des nanofils de nickel (Ni), de nanofils de platine (Pt) , de nanofils de silicium (Si) , des nanofils de nitrure de gallium (GaN) , des nanofils de phosphure d' indium (InP), des nanofils de dioxyde de silicium (Si02) , des nanofils de dioxyde de titane (T1O2) , des nanofils d'oxyde de zinc (ZnO) , des nanofils de 1 , 5-diaminoanthraquinone, des nanofils d'ADN (pour « Acide DésoxyriboNucléique ») , des nanofils constitués de nanotubes ou un de leurs mélanges.
5. Matériau selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il présente une densité comprise entre 104 à 1013 nanotubes (ou nanofils ) /cm2.
6. Matériau selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit polymère organique comprend :
- au moins une unité dérivée d'un sel d' aryle clivable, et/ou au moins une unité dérivée d'un monomère présentant au moins une liaison de type éthylénique, et/ou
au moins une unité dérivée d'un monomère présentant au moins deux fonctions carboxylique, et/ou au moins une unité dérivée d'un monomère présentant aux moins deux fonctions aminé, et/ou
au moins une unité dérivée d'un monomère présentant une fonction carboxylique et une fonction aminé.
7. Matériau selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit polymère organique est substitué par au moins une fonction réactive choisie parmi une fonction carboxyle, un groupe aryle, une entité radicalaire, une fonction hydroxyle, une fonction alcool, une fonction aminé, une fonction ester, une fonction aldéhyde, une fonction hydrazide, une fonction cétone, une fonction époxy, une fonction isocyanate, une fonction maléimide, une fonction diène et une fonction thiol.
8. Matériau selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite matrice est choisie dans le groupe constitué par une matrice céramique, une matrice polymère, une matrice issue de la biomasse ou une matrice issue de dérivés cellulosiques et leurs mélanges.
9. Matériau selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau constituant la matrice est susbtitué par au moins une fonction réactive telle que définie à la revendication 7.
10. Procédé de préparation d'un matériau selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ledit procédé comprend les étapes successives consistant à :
a) greffer, sur au moins deux nanotubes parmi des nanotubes alignés les uns par rapport aux autres dans une matrice verticale ou sur au moins deux nanofils parmi des nanofils alignés les uns par rapport aux autres dans une matrice verticale, un polymère organique, identique ou différent, tel que défini à l'une quelconque des revendications 1, 6 ou 7,
b) disposer entre les nanotubes ou les nanofils obtenus suite à l'étape (a) une matrice telle que définie à l'une quelconque des revendications 1, 8 ou 9.
11. Procédé selon la revendication 10, caractérisé en ce que le greffage mis en œuvre lors de ladite étape (a) est choisi parmi une fonctionnalisation des nanotubes ou des nanofils suivie d'un couplage avec un polymère organique ; un greffage chimique radicalaire ; un électrogreffage ; un photogreffage ; un greffage par polymérisation radicalaire par transfert d'atomes ; un greffage par polymérisation radicalaire contrôlée par le nitroxyde ; un greffage par polymérisation radicalaire par addition fragmentation ; un greffage en phase vapeur ou un greffage activé par les micro-ondes.
12. Utilisation d'un matériau selon l'une quelconque des revendications 1 à 9 ou d'un matériau susceptible d'être préparé par un procédé selon la revendication 10 ou 11 dans une membrane de séparation, dans un support de catalyseur, dans une électrode, dans un matériau composite ou dans un composé de stockage ou de conversion d'énergie.
PCT/EP2011/061239 2010-07-02 2011-07-04 Matériau comprenant des nanotubes ou des nanofils greffés dans une matrice, procédé de préparation et utilisations WO2012001177A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/807,180 US20130108865A1 (en) 2010-07-02 2011-07-04 Material including nanotubes or nanowires grafted in a matrix, method for preparing same and uses thereof
JP2013517339A JP6329368B2 (ja) 2010-07-02 2011-07-04 マトリックス中にグラフト化ナノチューブ又はナノワイヤーを含む材料、その調製方法及びその用途
EP11733618.0A EP2588220A1 (fr) 2010-07-02 2011-07-04 Matériau comprenant des nanotubes ou des nanofils greffés dans une matrice, procédé de préparation et utilisations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055404 2010-07-02
FR1055404A FR2962052B1 (fr) 2010-07-02 2010-07-02 Materiau comprenant des nanotubes ou des nanofils greffes dans une matrice, procede de preparation et utilisations

Publications (1)

Publication Number Publication Date
WO2012001177A1 true WO2012001177A1 (fr) 2012-01-05

Family

ID=43087982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/061239 WO2012001177A1 (fr) 2010-07-02 2011-07-04 Matériau comprenant des nanotubes ou des nanofils greffés dans une matrice, procédé de préparation et utilisations

Country Status (5)

Country Link
US (1) US20130108865A1 (fr)
EP (1) EP2588220A1 (fr)
JP (1) JP6329368B2 (fr)
FR (1) FR2962052B1 (fr)
WO (1) WO2012001177A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177408A1 (fr) * 2013-05-01 2014-11-06 Koninklijke Philips N.V. Procédé de fabrication d'un film de cristal bidimensionnel partiellement autonome et dispositif comprenant un tel film
CN105854429A (zh) * 2016-03-24 2016-08-17 浙江叁益科技股份有限公司 基于bang-bang控制的过滤吸收器
JPWO2014061598A1 (ja) * 2012-10-19 2016-09-05 積水化学工業株式会社 薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法
CN113828322A (zh) * 2020-06-24 2021-12-24 中国石油化工股份有限公司 一种氧化钼、其制备方法及其应用

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962450B1 (fr) 2010-07-07 2014-10-31 Commissariat Energie Atomique Procede de preparation d'un materiau composite, materiau ainsi obtenu et ses utilisations
FR2969021B1 (fr) 2010-12-16 2014-04-11 Commissariat Energie Atomique Dispositif de decoupe de structure comprenant des nano-objets filaires et procede associe
FR2980982B1 (fr) 2011-10-07 2014-10-24 Commissariat Energie Atomique Dispositif comprenant un materiau composite presentant des nanotubes soumis a un champ electrique et ses utilisations
WO2015167636A1 (fr) * 2014-02-05 2015-11-05 University Of Houston System Polymérisation par greffage amorcée sur des nanomatériaux graphitiques et formation de nanocomposites
FR3018046A1 (fr) 2014-02-28 2015-09-04 Commissariat Energie Atomique Procede de preparation d'une suspension contenant des nanotubes de carbone et suspension stable ainsi obtenue
EP3051273A1 (fr) * 2015-02-02 2016-08-03 Nokia Technologies OY Capteur de déformation mécanique à base de nanoparticules plasmoniques
JP2018521845A (ja) * 2015-07-13 2018-08-09 東京エレクトロン株式会社 多孔質材料をコーティングまたは充填する方法
US11213791B2 (en) * 2015-10-23 2022-01-04 Hewlett-Packard Development Company, L.P. Nano wire microporous structure
KR102059087B1 (ko) * 2017-05-19 2019-12-24 성균관대학교산학협력단 에너지 변환 소재
KR102150836B1 (ko) * 2018-02-28 2020-09-02 인천대학교 산학협력단 몰리브덴 산화막 나노 구조체 및 그 제조 방법
WO2020056414A1 (fr) * 2018-09-14 2020-03-19 Ohio State Innovation Foundation Membrane de séparation de gaz
CN110272525B (zh) * 2019-05-07 2021-09-24 安徽大学 一种二氧化硅纳米线复合材料及其制备方法和应用
CN111068519B (zh) * 2019-12-17 2022-04-15 深圳大学 一种正渗透膜及其制备方法
CN111530312B (zh) * 2020-05-12 2022-04-05 福建师范大学 一种侧基键合卟啉基团的单片型聚砜双极膜制备方法
CN112158831A (zh) * 2020-09-28 2021-01-01 胥彩虹 一种具有光活性改性石墨烯及其制备方法和应用
CN112316567B (zh) * 2020-10-19 2022-07-22 江苏大学 一种纳米纤维过滤薄膜及其制备方法和装置
US11454097B2 (en) 2021-01-04 2022-09-27 Saudi Arabian Oil Company Artificial rain to enhance hydrocarbon recovery
US11414986B1 (en) 2021-03-02 2022-08-16 Saudi Arabian Oil Company Detecting carbon dioxide leakage in the field
US11840921B2 (en) 2021-03-02 2023-12-12 Saudi Arabian Oil Company Detecting carbon dioxide leakage in the field
US11421148B1 (en) 2021-05-04 2022-08-23 Saudi Arabian Oil Company Injection of tailored water chemistry to mitigate foaming agents retention on reservoir formation surface
KR102633721B1 (ko) * 2021-12-08 2024-02-02 가천대학교 산학협력단 스티렌 기반 모이어티를 포함하는 다공성 실리콘 복합체, 그를 포함하는 전극 및 그의 제조방법
US11993746B2 (en) 2022-09-29 2024-05-28 Saudi Arabian Oil Company Method of waterflooding using injection solutions containing dihydrogen phosphate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060812A2 (fr) * 2001-01-29 2002-08-08 William Marsh Rice University Processus de derivatisation de nanotubes de carbone avec des especes chimiques diazonium et compositions de celles-ci
US20040173506A1 (en) 2003-03-06 2004-09-09 Doktycz Mitchel J. Nanoengineered membranes for controlled transport
WO2007025104A2 (fr) 2005-08-24 2007-03-01 The Regents Of The University Of California Membranes pour transport rapide de masse a l'echelle nanometrique
US7250147B2 (en) * 2001-01-29 2007-07-31 Tour James M Process for derivatizing carbon nanotubes with diazonium species
WO2008028155A2 (fr) 2006-08-31 2008-03-06 Virginia Tech Intellectual Properties, Inc. Procede de fabrication de membranes nanocomposites nanotubes de carbone orientes/polymeres
WO2008078052A2 (fr) 2006-12-19 2008-07-03 Commissariat A L'energie Atomique Procédé de préparation d'un film organique à la surface d'un support solide dans des conditions non-électrochimiques, support solide ainsi obtenu et kit de préparation
US7611628B1 (en) 2004-05-13 2009-11-03 University Of Kentucky Research Foundation Aligned nanotubule membranes
WO2009141528A2 (fr) 2008-05-06 2009-11-26 Commissariat à l'Energie Atomique Dispositif de séparation de biomolécules d'un fluide
US20090298994A1 (en) * 2003-08-05 2009-12-03 Nanocyl S.A. Polymer-Based Composites Comprising Carbon Nanotubes As A Filler, Method for Producing Said Composites, And Associated Uses
WO2010002805A1 (fr) 2008-06-30 2010-01-07 Nanoasis Technologies, Inc. Membranes à nanotubes incorporés pour perméabilité sélective

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707471A (en) * 1991-12-20 1998-01-13 Dow Corning Corporation Method for making ceramic matrix composites
US5322825A (en) * 1992-05-29 1994-06-21 Allied-Signal Inc. Silicon oxycarbonitride by pyrolysis of polycyclosiloxanes in ammonia
EP1342075B1 (fr) * 2000-12-11 2008-09-10 President And Fellows Of Harvard College Dispositif comprenant nanocapteurs pour detecter un analyte et procede de sa fabrication
JP4049655B2 (ja) * 2002-11-13 2008-02-20 紀夫 坪川 変性カーボンナノ繊維およびこれを含む樹脂組成物、塗料
US7452519B2 (en) * 2002-11-18 2008-11-18 William Marsh Rice University Sidewall functionalization of single-wall carbon nanotubes through C-N bond forming substitutions of fluoronanotubes
US8859037B2 (en) * 2005-01-12 2014-10-14 The Boeing Company Method for manufacturing ceramic matrix composite structures
JP5271922B2 (ja) * 2007-02-28 2013-08-21 ナショナル・リサーチ・カウンシル・オブ・カナダ ブロック官能化方法
US8974904B2 (en) * 2007-07-05 2015-03-10 University Of Dayton Aligned carbon nanotubes for dry adhesives and methods for producing same
WO2009148959A2 (fr) * 2008-05-29 2009-12-10 Lawrence Livermore National Security, Llc Membranes avec des pores de nanotubes de carbone fonctionnalisés pour un transport sélectif

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060812A2 (fr) * 2001-01-29 2002-08-08 William Marsh Rice University Processus de derivatisation de nanotubes de carbone avec des especes chimiques diazonium et compositions de celles-ci
US7250147B2 (en) * 2001-01-29 2007-07-31 Tour James M Process for derivatizing carbon nanotubes with diazonium species
US20040173506A1 (en) 2003-03-06 2004-09-09 Doktycz Mitchel J. Nanoengineered membranes for controlled transport
US20090298994A1 (en) * 2003-08-05 2009-12-03 Nanocyl S.A. Polymer-Based Composites Comprising Carbon Nanotubes As A Filler, Method for Producing Said Composites, And Associated Uses
US7611628B1 (en) 2004-05-13 2009-11-03 University Of Kentucky Research Foundation Aligned nanotubule membranes
WO2007025104A2 (fr) 2005-08-24 2007-03-01 The Regents Of The University Of California Membranes pour transport rapide de masse a l'echelle nanometrique
US20080223795A1 (en) * 2005-08-24 2008-09-18 Lawrence Livermore National Security, Llc Membranes For Nanometer-Scale Mass Fast Transport
WO2008028155A2 (fr) 2006-08-31 2008-03-06 Virginia Tech Intellectual Properties, Inc. Procede de fabrication de membranes nanocomposites nanotubes de carbone orientes/polymeres
WO2008078052A2 (fr) 2006-12-19 2008-07-03 Commissariat A L'energie Atomique Procédé de préparation d'un film organique à la surface d'un support solide dans des conditions non-électrochimiques, support solide ainsi obtenu et kit de préparation
WO2009141528A2 (fr) 2008-05-06 2009-11-26 Commissariat à l'Energie Atomique Dispositif de séparation de biomolécules d'un fluide
WO2010002805A1 (fr) 2008-06-30 2010-01-07 Nanoasis Technologies, Inc. Membranes à nanotubes incorporés pour perméabilité sélective

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
BAHR ET AL.: "Covalent chemistry of single-wall carbon nanotubes", J. MATER. CHEM., vol. 12, 2002, pages 1952 - 1958, XP002425262, DOI: doi:10.1039/b201013p
FAN ET AL.: "Synthesis of polymer grafted carbon nanotubes by nitroxide mediated radical polymerization in the presence of spin*-labeled carbon nanotubes", MACROMOLECULAR NANOTECHNOLOGY, vol. 43, 2007, pages 26 - 34, XP005803538, DOI: doi:10.1016/j.eurpolymj.2006.09.018
GARCIA ET AL.: "Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ", COMPOSITES SCIENCE AND TECHNOLOGY, vol. 68, 2008, pages 2034 - 2041, XP022689038, DOI: doi:10.1016/j.compscitech.2008.02.028
HINDS ET AL.: "Aligned multiwalled carbon nanotube membranes", SCIENCE, vol. 303, 2004, pages 62 - 65, XP002427792, DOI: doi:10.1126/science.1092048
HOLT ET AL.: "Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes", SCIENCE, vol. 312, 2006, pages 1034 - 1037, XP002427790, DOI: doi:10.1126/science.1126298
HU ET AL.: "Sidewall functionalisation of single-walled carbon nanotubes by addition of dichlorocarbene", J AM. CHEM. SOC., vol. 125, 2003, pages 14893 - 14900
HUMMER ET AL.: "Water conduction through the hydrophobic channel of a carbon nanotube", NATURE, vol. 414, 2001, pages 188 - 190, XP002295766, DOI: doi:10.1038/35102535
KHARE, BOSE: "Carbon Nanotube Based Composites- A Review", JOURNAL OF MINERALS MATERIALS CHARACTERIZATION ENGINEERING, vol. 4, 2005, pages 31 - 46, XP002531256
KIM ET AL.: "Scalable Fabrication of Carbon Nanotube/Polymer Nanocomposite Membranes for High Flux Gas Transport", NANO LETTERS, vol. 7, 2007, pages 2806 - 2811
LYSKAWA, BÉLANGER: "Direct Modification of a Gold Electrode with Aminophenyl Groups by Electrochemical Reduction of in Situ Generated Aminophenyl Monodiazonium Cations", CHEM. MATER., vol. 18, 2006, pages 4755 - 4763
MARCOUX ET AL.: "Electrochemical functionalization of nanotube films : growth of aryl chain on single-walled carbon nanotubes", NEW J. CHEM., vol. 28, 2004, pages 302 - 307, XP002529647, DOI: doi:10.1039/B309509F
MENZEL ET AL.: "Inverse Gas Chromatography of As-Received and Modified Carbon Nanotubes", LANGMUIR, vol. 25, no. 14, 2009, pages 8340 - 8348
MÉVELLEC ET AL.: "Grafting polymers on surfaces : a new powerful and versatile diazoniumsalt-based one-step process in aqueous media", CHEM. MATER., vol. 19, 2007, pages 6323 - 6330
MIERCZYNSKA ET AL.: "Electrical and mechanical properties of carbon nanotube/ultrahigh- molecular-weight polyethylene composites prepared by a filler prelocalization method", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 105, 2007, pages 158 - 168, XP055025763, DOI: doi:10.1002/app.26044
NAN ET AL.: "A simple model for thermal conductivity of carbon nanotube-based composites", CHEMICAL PHYSICS LETTERS, vol. 375, 2003, pages 666 - 669
OH ET AL.: "Preparation of Aligned Carbon Nanotube Films Using the Langmuir-Blodgett Technique", INT CONF NANOTECH 2006, 2006
PARK ET AL.: "A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon Nanotubes", INT CONF NANOTECH 2008, 2008
PICHOT ET AL.: "Evidence of strong nanotube alignment and for iron preferential growth axis in multiwalled carbon nanotube carpets", APPLIED PHYSICS LETTERS, vol. 85, 2004, pages 473 - 475, XP012064003, DOI: doi:10.1063/1.1773611
PICHOT ET AL.: "Structural and mechanical properties of single-wall carbon nanotube fibers", PHYS REV. B, vol. 74, 2006, pages 245416 - 245423
PINAULT ET AL.: "Evidence for sequential lift in growth of aligned multiwalled carbon nanotubes multilayers", NANO LETTERS, vol. 5, 2005, pages 2394 - 2398, XP055002475, DOI: doi:10.1021/nl051472k
POH ET AL.: "Fabrication and electrochemical behavior of vertically-aligned carbon nanotube electrodes covalently attached to p-type silicon via a thioester linkage", MATERIALS LETTERS, vol. 63, 2009, pages 757 - 760, XP025939011, DOI: doi:10.1016/j.matlet.2008.12.043
See also references of EP2588220A1
TESSIER ET AL.: "Grafting organic polymer films on surfaces of carbon nano-tubes by Surface Electroinitiated Emulsion Polymerization", PHYSICA STATUS SOLIDI A, vol. 205, 2008, pages 1412 - 1418
WANG ET AL.: "Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes", CARBON, vol. 43, 2005, pages 1015 - 1020, XP004765665, DOI: doi:10.1016/j.carbon.2004.11.036
WANLIANG MI ET AL.: "Vertically aligned carbon nanotube membranes on macroporous alumina supports", JOURNAL OF MEMBRANE SCIENCE, vol. 304, 2007, pages 1 - 7, XP022240569, DOI: doi:10.1016/j.memsci.2007.07.021

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014061598A1 (ja) * 2012-10-19 2016-09-05 積水化学工業株式会社 薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法
WO2014177408A1 (fr) * 2013-05-01 2014-11-06 Koninklijke Philips N.V. Procédé de fabrication d'un film de cristal bidimensionnel partiellement autonome et dispositif comprenant un tel film
CN105188894A (zh) * 2013-05-01 2015-12-23 皇家飞利浦有限公司 制造部分独立式二维晶体膜的方法和包括这样的膜的器件
KR20160003213A (ko) * 2013-05-01 2016-01-08 코닌클리케 필립스 엔.브이. 부분적으로 자립하는 그라핀 결정막을 제조하는 방법 및 이러한 막을 포함하는 디바이스
TWI655327B (zh) * 2013-05-01 2019-04-01 皇家飛利浦有限公司 製造部分獨立式二維晶體薄膜之方法及包括該薄膜之裝置
US11033862B2 (en) 2013-05-01 2021-06-15 Koninklijke Philips N.V. Method of manufacturing partially freestanding two-dimensional crystal film and device comprising such a film
KR102268992B1 (ko) 2013-05-01 2021-06-28 코닌클리케 필립스 엔.브이. 부분적으로 자립하는 그라핀 결정막을 제조하는 방법 및 이러한 막을 포함하는 디바이스
CN105854429A (zh) * 2016-03-24 2016-08-17 浙江叁益科技股份有限公司 基于bang-bang控制的过滤吸收器
CN113828322A (zh) * 2020-06-24 2021-12-24 中国石油化工股份有限公司 一种氧化钼、其制备方法及其应用
CN113828322B (zh) * 2020-06-24 2024-01-30 中国石油化工股份有限公司 一种氧化钼、其制备方法及其应用

Also Published As

Publication number Publication date
FR2962052A1 (fr) 2012-01-06
JP2013545825A (ja) 2013-12-26
FR2962052B1 (fr) 2015-04-03
EP2588220A1 (fr) 2013-05-08
JP6329368B2 (ja) 2018-05-23
US20130108865A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
WO2012001177A1 (fr) Matériau comprenant des nanotubes ou des nanofils greffés dans une matrice, procédé de préparation et utilisations
Cho et al. Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons
Wang et al. Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application
Hu et al. Enabling graphene oxide nanosheets as water separation membranes
Kim et al. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport
EP2763786B1 (fr) Utilisation d'un dispositif comprenant un matériau composite présentant des nanotubes soumis à un champ électrique
Zhang et al. Janus graphene from asymmetric two-dimensional chemistry
Tang et al. Manipulating the structural transformation of fullerene microtubes to fullerene microhorns having microscopic recognition properties
Rodríguez González et al. Multicomponent covalent chemical patterning of graphene
FR2929618A1 (fr) Procede pour assembler deux surfaces ou une surface avec une molecule d'interet
WO2012004317A1 (fr) Procédé de préparation d'un matériau composite, matériau ainsi obtenu et ses utilisations
FR2923823A1 (fr) Aerogels de nanotubes de carbone
Zambare et al. Ionic liquid-reduced graphene oxide membrane with enhanced stability for water purification
Isfahani et al. MXenes and other two-dimensional materials for membrane gas separation: Progress, challenges, and potential of MXene-based membranes
Güvensoy-Morkoyun et al. Carbon nanotubes integrated into polyamide membranes by support pre-infiltration improve the desalination performance
Kim et al. Shear-induced assembly of high-aspect-ratio graphene nanoribbon nanosheets in a confined microchannel: Membrane fabrication for ultrafast organic solvent nanofiltration
Wang et al. Unexpected ion sieving in graphene oxide membranes
EP2556180B1 (fr) Procede de fabrication d'un materiau poreux en diamant de synthese
Isaac et al. Van Der Waals Gap engineering of multiwalled carbon nanotubes in ionic liquids at room temperature
Chen et al. Multifunctional coatings of graphene oxide: New membranes for proton permeation and salt rejection
EP1998889A2 (fr) Procede de traitement d'un fluide a l'aide d'un reseau auto organise adsorbe sur une surface
Wu et al. Simultaneous Regulation of Surface Properties and Microstructure of Graphene Oxide Membranes for Enhanced Nanofiltration Performance
Yao et al. Scalable Synthesis of Carbon Nanomembranes from Amorphous Molecular Layers
KR101448922B1 (ko) 수처리용 탄소나노튜브 구조체, 이의 제조방법 및 이를 이용한 역삼투막
WO2010089395A2 (fr) Procédé et kit de séparation de nanotubes de carbone métalliques et semi-conducteurs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11733618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13807180

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011733618

Country of ref document: EP