WO2012000147A1 - 一种曲柄圆滑块机构、其零件、和由其得到的设备 - Google Patents

一种曲柄圆滑块机构、其零件、和由其得到的设备 Download PDF

Info

Publication number
WO2012000147A1
WO2012000147A1 PCT/CN2010/001590 CN2010001590W WO2012000147A1 WO 2012000147 A1 WO2012000147 A1 WO 2012000147A1 CN 2010001590 W CN2010001590 W CN 2010001590W WO 2012000147 A1 WO2012000147 A1 WO 2012000147A1
Authority
WO
WIPO (PCT)
Prior art keywords
circular slider
crank
dynamic balance
circular
rotary block
Prior art date
Application number
PCT/CN2010/001590
Other languages
English (en)
French (fr)
Inventor
黎明
黎正中
Original Assignee
北京中清能发动机技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中清能发动机技术有限公司 filed Critical 北京中清能发动机技术有限公司
Priority to JP2013516943A priority Critical patent/JP2013531202A/ja
Priority to EP10853853.9A priority patent/EP2604889B1/en
Priority to BR112013000105-4A priority patent/BR112013000105B1/pt
Priority to US13/807,399 priority patent/US10012224B2/en
Publication of WO2012000147A1 publication Critical patent/WO2012000147A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0094Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/06Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/04Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B27/053Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with an actuating element at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/006Crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/045Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/28Counterweights, i.e. additional weights counterbalancing inertia forces induced by the reciprocating movement of masses in the system, e.g. of pistons attached to an engine crankshaft; Attaching or mounting same
    • F16F15/283Counterweights, i.e. additional weights counterbalancing inertia forces induced by the reciprocating movement of masses in the system, e.g. of pistons attached to an engine crankshaft; Attaching or mounting same for engine crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/16Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
    • F16H21/18Crank gearings; Eccentric gearings
    • F16H21/22Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/16Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
    • F16H21/18Crank gearings; Eccentric gearings
    • F16H21/36Crank gearings; Eccentric gearings without swinging connecting-rod, e.g. with epicyclic parallel motion, slot-and-crank motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18056Rotary to or from reciprocating or oscillating
    • Y10T74/18208Crank, pitman, and slide

Definitions

  • the present invention relates to a reciprocating-rotating motion mutual conversion mechanism, and more particularly to a crank circular slider mechanism.
  • the invention also relates to a component for the crank circular slider mechanism.
  • the present invention also provides an apparatus for using the crank circular slider mechanism.
  • Reciprocating internal combustion engines or compressors need to realize the conversion between the reciprocating motion of the piston and the rotational motion of the crankshaft, wherein the reciprocating internal combustion engine converts the reciprocating motion of the piston into the rotational motion of the crankshaft, and the reciprocating compressor is the crankshaft.
  • the rotational motion is converted into a reciprocating motion of the piston.
  • the above-mentioned conversion process requires the use of a crank-link mechanism. Due to the presence of the connecting rod in the crank-link mechanism, the machine is bulky and cumbersome and cannot be fully balanced.
  • a Chinese patent document CN85100358A discloses a "cranked circular slider reciprocating piston type internal combustion engine”
  • a Chinese patent document CN85100359A discloses "a crank-slider reciprocating piston type compressor”, which is disclosed in Chinese Patent Document CN 1 144879 A.
  • a "crank double circular slider reciprocating piston type internal combustion engine” is disclosed in Chinese Patent No. CN1 144880A, which discloses a "cranked multi-circular slider reciprocating piston type internal combustion engine”.
  • the circular slider of the common special eccentric hole of the above internal combustion engine replaces the connecting rod.
  • the eccentric slider has a cylindrical shape and is provided with an eccentric circular hole parallel to the axis of the cylinder, the eccentric circular hole for passing through the crank pin of the crankshaft.
  • the piston of the internal combustion engine includes a crown portion at both ends and a guiding portion connecting the two crown portions, wherein the guiding portion is provided with a circular hole, and an inner diameter surface of the circular hole is matched with an outer diameter surface of the circular slider, and the circular slider is disposed at
  • the piston guide is in a circular hole that cooperates with its outer circumference.
  • the designer's main consideration is that the single-cylinder structure is relatively simple and lightweight. If a dynamic balancing slider is used as the dynamic balancing component, a reciprocating mechanism is required, and the reciprocating-rotating motion is required. The conversion mechanism is difficult to call the single-cylinder structure, and it also completely loses the advantage of the simple and lightweight single-cylinder machine.
  • the invention provides a crank circular slider mechanism, which can improve the movement balance of the whole mechanism without setting the dynamic balance slider, thereby reducing the design difficulty of the crank circular slider mechanism and improving the body. Stiffness and strength.
  • the crank-slider mechanism provided by the present invention can achieve a fully balanced effect of the crank-slider mechanism when the appropriate parameters are selected and the balance weight is located at a position such as a flywheel or a pulley.
  • the crank-slider mechanism is used in a single-cylinder machine, the mechanism can be fully balanced in motion while keeping the entire mechanism simple and light.
  • the present invention also provides a part for the crank-slider mechanism described above, and an apparatus using the crank-slider mechanism.
  • the present invention provides a crank circular slider mechanism, the crank circular slider mechanism comprising: a crankshaft having at least one crank pin; at least one circular slider having an eccentric hole, the eccentric hole of the circular slider being sleeved on the crank pin of the crankshaft At least one reciprocating member having a circular slider accommodating hole, the circular slider being rotatably mounted in the circular slider accommodating hole, wherein the number of the reciprocating members is equal to the number of the circular sliders; At least one dynamic balance knob of the eccentric hole, the eccentric hole of the dynamic balance knob is sleeved on the crank pin of the crankshaft sleeved with the circular slider, and the adjacent circular slider is fixed to each other.
  • the centroid position of the dynamic balance knob satisfies the following requirements: projecting the axis of the circular slider, the centroid of the dynamic balance knob, and the axis of the crank pin on a plane perpendicular to the crankshaft axis.
  • the projection points are A, B, and C, and the ZACB is between 90° and 270. between.
  • the ZACB 180°; and AOBOe; the e is the crank radius of the crankshaft, which is also the eccentricity of the circular slider.
  • the mass of the dynamic balance rotary block is the mass of the reciprocating member.
  • the two circular sliders are respectively adjacent to the left and right sides of the dynamic balance rotary block and the dynamic balance rotary block, and the axes of the two circular slides are perpendicular to The projections on the plane of the crankshaft axis coincide; the mass of the dynamic balance knob is the sum of the masses of the two reciprocating members respectively accommodating the two circular sliders.
  • the dynamic balance rotating blocks are respectively adjacent to the circular slider on the left and right sides of the circular sliding block, and the axes of the two dynamic balancing rotating blocks are perpendicular to the crankshaft axis.
  • the projections on the plane coincide; the mass of the two dynamic balance knobs is the same, equal to one-half the mass of the reciprocating member.
  • the circular slider and the dynamic balance rotating block are mutually positioned by positioning pins.
  • crank circular slider mechanism is provided with a gear mechanism that overcomes the live point.
  • the present invention also provides a part for the crank-sliding block mechanism according to any one of the above aspects, wherein the part is specifically the dynamic balance rotary block, and the dynamic balance rotary block is a mass member having an eccentric through hole.
  • the distance from the center of mass of the dynamic balance rotating block to the center of the eccentric hole is e, and the e is the crank radius of the crankshaft of the crank circular slider mechanism, and is also the eccentric distance of the circular slider of the crank circular slider mechanism.
  • the dynamic balance knob is a flat cylinder.
  • the mass of the dynamic balance rotary block satisfies the following requirements: when the circular slider fixedly connected thereto is one, the mass of the dynamic balance rotary block is the mass of the reciprocating member where the circular slider fixedly connected thereto is located; When the circular slider is two, the mass of the dynamic balance rotary block is the sum of the masses of the two reciprocating members respectively located with the two circular sliders fixedly connected thereto; two identical dynamic balance rotary blocks and one circular slider are used. When fixed, the mass of the dynamic balance knob is one-half the mass of the reciprocating member where the circular slider is located.
  • the present invention also provides an apparatus, in particular an internal combustion engine, which uses the crank-slider mechanism described in any one of the preceding aspects.
  • the present invention also provides an apparatus, in particular a compressor, which employs a crank circular slider mechanism as described in any one of the preceding aspects.
  • the crank-slider mechanism provided by the present invention includes at least one circular slider and at least one dynamic balance rotary block; the dynamic balance rotary block is sleeved with the circular slider through an eccentric hole a mass member on the crank pin and fixedly coupled to the circular slider.
  • the setting of the dynamic balance knob provides a feasible technical means for adjusting the overall balance of the crank circular slider mechanism.
  • the dynamic balance knob can be made to function the same as the dynamic balance slider by appropriately selecting the mounting position and mass of the dynamic balance knob.
  • the installation position of the dynamic balance rotating block is set as follows: The dynamic balance rotating block is set to have a phase difference of 180° with the phase of the circular slider, that is, the axis of the circular slider, the dynamic balance
  • the center of mass of the knob and the axis of the crank pin are projected on a plane perpendicular to the axis of the crankshaft.
  • the shield (or sum of mass) of the dynamic balance knob to be equal to the mass (or mass) of the reciprocating member where the balance slider is located.
  • the movement of the centroid point of the dynamic balance rotary block is a reciprocating linear motion.
  • the dynamic balance rotary block can be equivalent to a mass point located at the centroid, and the dynamic balance rotation
  • the motion of the block is transformed into a reciprocating linear motion, that is, the role of the dynamic balance rotary block in the balance system of the entire motion mechanism and the "crank double circular slider reciprocating piston internal combustion engine disclosed in Chinese Patent Document CN1 144879A, and Chinese patents.
  • the dynamic balance slider in the "cranked multi-circular slider reciprocating piston internal combustion engine" disclosed in the document CN1 144880A is identical. Therefore, the movement of the dynamic balance rotary block and the reciprocating motion of the reciprocating member in which the fixed circular slider is fixed can be combined. It is transformed into the centrifugal force from the center of the crankshaft to the crank pin. In this way, it is possible to achieve a complete balance of the entire mechanism by setting a balance weight on the pulley or the flywheel.
  • the dynamic balance rotary block has the same effect as the dynamic balance slider on the mechanism balance, but when the dynamic balance slider is used, it is necessary to set the reciprocating motion on the body.
  • the guide rail makes the structure of the body too complicated.
  • the method of the dynamic balance rotary block the body only needs to reserve enough rotating space for the dynamic balance rotary block to avoid motion interference. Therefore, the dynamic balance rotary block is adopted.
  • the method reduces the design difficulty of the body, and also avoids the influence of the reciprocating guide rail on the rigidity or strength of the body.
  • the dynamic balance slider and the reciprocating guide rail will have a large difference. After the frictional force is adopted, the frictional force of the reciprocating motion is no longer present, and the energy conversion efficiency of the mechanism is improved.
  • the structure After adopting this mechanism, as long as the results of the dynamic balance test, the appropriate balance balancing The mass of the block is increased or decreased, that is, the inertia force balance of the entire crank circular slider mechanism can be adjusted. Therefore, the structure also has the advantage of facilitating adjustment of the dynamic balance.
  • FIG. 1 is a schematic view of a crank circular slider mechanism according to a first embodiment of the present invention
  • Figure 2 is a front elevational view of the dynamic balance knob used in Figure 1;
  • Figure 3 is a plan view of the dynamic balance knob used in Figure 1;
  • FIG. 4 is a schematic view of a crank circular slider mechanism according to a second embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a moving mechanism portion of a crank-slider reciprocating piston internal combustion engine according to a first embodiment of the present invention, that is, a crank-slider mechanism.
  • the figure shows the main moving parts of the crank-slider mechanism inside the internal combustion engine and their mutual relations. In order to illustrate some of the specific parts, the thousands of positions in the figure are partially cut.
  • Figures 2 and 3 which shows a front view of the dynamic balance knob used by the mechanism;
  • Figure 3 shows a top view of the dynamic balance knob.
  • the internal combustion engine is a two-stroke diesel engine using a stepped piston, which is reflected in the moving mechanism shown in Fig. 1. It can be seen that the piston 5 is a double-acting piston having two piston heads having different diameters. This will be described in detail below with reference to FIG.
  • the crank circular slider mechanism includes a single turn 1 and a crank 2 which together constitute a crankshaft, and a circular slider 3, a dynamic balance rotary block 4, and a piston 5.
  • the single turn 1 includes three sides of a single-turn main journal 1-1, a crank arm 1-2, and a crank pin 1-3 which are parallel to each other and are sequentially connected from the right side to the left side of FIG.
  • the single-turn spindle neck 1-1 is coaxial with the crank arm 1-2
  • the crank arm 1-2 has a slightly larger diameter and a shorter axial length, forming a flange of the inner end of the single-turn spindle neck 1-1 Part.
  • the axis of the crank pin 1-3 is offset from one side of the single-turn main journal 1-1, and the distance between the axis and the axis of the single-turn main journal is e, and the diameter thereof is smaller than the single-turn main journal; the crank
  • the ends of pins 1-3 are tapered ends 1-3-1.
  • the end surface of the tapered end 1-3-1 is further provided with a threaded hole as a positioning structure, and in addition, two tapered surfaces on the tapered end 1-3-1 are disposed on both sides and open at the end surface.
  • Half round pin hole 1-3-2 (only the first semi-circular pin hole 1-3-2 on one side is shown in the figure).
  • Also provided at the root of the crank pin 1-3 is an outer tooth segment 1-3-3 for engaging the inner tooth segment provided on the waist of the piston to overcome the live point.
  • the crank 2 is a cylinder, and is provided with a taper hole 2-1 whose axis is parallel to the main axis of the crank 2 and whose eccentricity is e.
  • the taper hole 2-1 is eccentrically disposed, the taper thereof and the crank pin 1-3 end.
  • the taper end taper of the end is matched, and the large diameter end opening is toward the crank inner end surface of the crank pin 1-3, and the small diameter end thereof forms a bottom surface in the crank 2.
  • a crank bolt hole 2-2 is disposed on an outer end surface of the crank 2 at a position coaxial with the tapered hole 2-1, and a bottom surface of the crank bolt hole 2-2 is used to provide a positioning surface for the crank bolt 6;
  • the bottom surface of the crank bolt hole 2-2 and the bottom surface of the tapered hole 2-1 communicate with each other through a connecting through hole located at a common axial position.
  • the inner diameter surface of the tapered hole 2-1 is further provided with two second semi-circular pin holes corresponding to the first semi-circular pin hole 1 - 3 -2 .
  • crank 2 and the single turn 1 are combined to form a crankshaft, the following steps are connected. Putting the crank 2 through the tapered hole 2 - 1 on the tapered end 1 -3-1 of the end of the crank pin 1-3; then, the first semicircular pin hole 1-3 - corresponding to each other 2 Align with the second semi-circular pin hole to form a complete locating pin hole, and insert a locating pin into the locating pin hole. Finally, the crank bolt 6 is screwed into the threaded hole of the end face of the end of the crank pin 1-3 through the crank bolt hole 2-2, so that the crank 2 and the single turn 1 become a complete crankshaft.
  • crank 2 is coaxial with the single-turn main journal 1 -1 of the single-turn 1 , which is the rotation axis of the crankshaft, or the axis of the crankshaft; the crank radius of the crankshaft is e.
  • the crank radius is the distance between the crankshaft rotation axis and the crankpin axis.
  • the piston, the circular slider, the dynamic balance knob and the like have been put on the crank pin before the combination.
  • the main reason for using the above combined crankshaft is to facilitate the mounting of the above parts on the crank pin.
  • the split crankshaft having a single turn has been filed by the applicant and will not be further described herein. In short, crank 2 and single turn 1 will eventually combine to form a complete crankshaft.
  • the circular slider 3 is a flat cylinder having an eccentric hole 3-1, the eccentricity of the eccentric hole 3-1 is e, and the circular slider 3 is sleeved on the crank of the single-turn 1 through the eccentric hole 3-1 Pin 1 -3 on.
  • the circular slider 3 needs to be light in weight, and therefore, a plurality of de-duty grooves 3-2 are opened thereon.
  • the center of mass of the circular slider 3 is required to fall on the center of the eccentric hole 3-1.
  • the periphery of the eccentric hole 3-1 is thick to increase the weight of the portion.
  • the circular slider 3 is rotatably mounted in the circular slider accommodating hole 5-4 of the piston 5.
  • the piston 5 is a double acting piston.
  • the upper end is a first piston head 5-1, and the first piston head 5-1 is similar in structure and function to the piston of the existing crank linkage mechanism, having a top 51-1 - 1, a head 5- 1 -2 and The skirt portion 5-1 -3 and the like function to form a combustion chamber with the cylinder and to withstand the burst pressure of the combustible mixture to form a reciprocating motion.
  • the other end of the piston 5 is a second piston head 5-2. Since the internal combustion engine uses a stepped piston, the diameter of the second piston head 5-2 is significantly larger than the first piston head 5-1, but The second piston head 5-2 is thinner.
  • the second piston head 5-2 functions as a scavenging piston to provide a scavenging airflow of a relatively large air pressure to the two-stroke internal combustion engine by cooperation with a scavenging cylinder of the body.
  • a connecting portion 5-3 connecting the first piston head 5-1 and the second piston head 5-2 is provided, the connection The portion 5-3 is a relatively thin sheet-like body on which the circular slider accommodating hole 5-4 is provided.
  • the structure of the piston 5 makes it possible to simultaneously function as a piston of the internal combustion engine and a piston of the compressor, and is particularly suitable for use in a two-stroke internal combustion engine.
  • the dynamic balance knob 4 is a flat cylinder having a second eccentric circular hole 4-1; the second eccentric circular hole 4 1, the dynamic balance rotary block 4 is inserted in the crank pin -3 on.
  • the movable balance knob 4 and the circular slider 3 are fixedly connected, and the specific connection manner can be selected according to the prior art, for example, using two axially arranged fixing pins (not shown in FIG. 1).
  • the dynamic balance knob 4 and the circular slider 3 are integrally connected. In this manner, the dynamic balance knob 4 and the circular slider 3 need to be provided with corresponding pin holes.
  • the distance between the center of mass of the dynamic balance knob 4 and the center of the second eccentric circular hole 4-1 is e.
  • the reciprocating inertial force of the circular slider 3 and the piston 5 is converted into a rotational inertia force, and the positional relationship between the dynamic balance rotary block 4 and the circular slider 3 and the quality of the dynamic balance rotary block need to be suitable. s Choice.
  • the selection of the above positional relationship is specifically to make a 180° phase difference between the dynamic balance knob 4 and the circular slider 3, so-called 180° phase difference, which can be explained as follows:
  • the axis of the circular slider 3 and the dynamic balance are rotated.
  • the mass of the dynamic balance knob 4 is set equal to the mass of the piston 5.
  • the dynamic balance rotary block 4 is equivalent to completely replacing the dynamic balance in the "crank double-circular slider reciprocating piston internal combustion engine" disclosed in the Chinese patent document CN 1 144879A mentioned in the background art.
  • the slider which has the same effect on the dynamic balance of the entire mechanism. That is, the center of mass of the dynamic balance knob reciprocates in a linear orbit perpendicular to the direction of movement of the piston 5 assembly, and the inertial forces of the two are combined into a centrifugal force directed from the center of the crankshaft toward the center of the crank pin.
  • a balance weight can be set on the flywheel or the pulley, etc. as needed to easily achieve complete balance of the entire mechanism.
  • the mass of the dynamic balance rotary block 4 is equal to the mass of the piston 5, the mass of the dynamic balance rotary block 4 is relatively large, and the dynamic balance rotary block shown in Fig. 1 is very thick, and is not as smooth.
  • the de-groove is set as in block 3. In this way, a larger mass can be obtained in the case where the volume of the dynamic balance knob is relatively small.
  • the structure cannot solve the problem of the moving point during the movement of the crank circular slider mechanism, so the dynamic balance rotary block is used as the balance alone.
  • live point means that the round slider is at 90. Or 270.
  • the rotation axis of the crankshaft and the center of the circular slider completely coincide, and it is possible to make the circular slider rotate around the rotation axis without reciprocating motion, so that the movement direction of the piston is uncertain.
  • the above problems are generally prone to occur at startup, causing the internal combustion engine or compressor to fail to start normally.
  • the mechanism can usually be quickly moved through the live position to avoid uncertainty in the motion of the mechanism.
  • the dynamic balance slider structure since the two mutually fixed circular sliders cannot be in the live position at the same time, the circular slider at the live position can depend on the movement of the other circular slider to overcome the live point, thereby solving the problem of the live point. .
  • the dynamic balance rotary block mechanism of the present embodiment After the dynamic balance rotary block mechanism of the present embodiment is used, the above mechanism no longer exists, and it is necessary to provide a special over-the-counter mechanism.
  • the outer tooth segment 1-3-3 provided at the root of the crank pin shown in Fig. 1 is a part of the overcoming point mechanism, and the outer tooth segment is provided with at least two teeth.
  • an inner tooth segment that meshes with the outer tooth segment is provided at the position of the waist of the piston, and the inner tooth segment is provided with at least three teeth.
  • the inner and outer tooth segments together constitute a mechanism for overcoming the live point. Through the mechanism, the round slider is at 90. Or 270.
  • the above-mentioned internal and external tooth segments can be used to overcome the above-mentioned living point problem by pushing the piston through the position of the live point.
  • the above embodiment is a preferred embodiment. After the above-mentioned position and mass of the dynamic balance rotary block, the reciprocating and rotational inertia force of the entire crank circular slider mechanism can be theoretically converted into a centrifugal force directed from the center of the crankshaft toward the center of the crank pin, which is convenient. Set the balance weight to get a good balance.
  • the above requirements for the position and quality of the dynamic balance knob can be relaxed. For example, you can relax the positional relationship to ZACB at 90. To 270. between. In this state, it is possible to obtain a partial improvement of the balance by selecting an appropriate quality. At this time, it is necessary to select the appropriate dynamic balance mass according to the dynamic balance test or theoretical calculation. In general, since a dynamic balance knob is provided, it is desirable to obtain a better dynamic balance effect, so the position and quality requirements mentioned in the above preferred embodiment should be employed.
  • the mechanism for overcoming the live point is provided, since the erroneous motion state at the position of the live point is only a small possibility, generally occurs at the time of starting, and can be shaken by the crankshaft or the like at the time of starting. Overcoming, it is also possible not to provide a mechanism to overcome the live point.
  • the above institutions should be set up.
  • the dynamic balance knob can obtain the above-mentioned better balance effect as long as its centroid position and quality meet the above requirements, and the outline can be arbitrarily set, as long as it does not move with other parts of the crank slider mechanism. .
  • the dynamic balance knob is generally similar to the outline of the circular slider, but generally no structure such as a de-groove is provided to obtain a desired quality at a small size.
  • the above first embodiment is an example of a corresponding double circular slider mechanism.
  • the "cranked multi-circular slider reciprocating piston internal combustion engine" disclosed in the Chinese patent document CN1 144880A can also be placed in the middle of the two circular sliders.
  • the slider assembly is replaced by the above-mentioned dynamic balance rotary block, and the crank circular slider mechanism having the dynamic balance rotary block structure is obtained; in this case, according to different conditions of the piston selecting the double-acting piston or the single-acting piston, obtaining the double-cylinder to Four-cylinder internal combustion engine.
  • a second embodiment of the present invention provides a crank circular slider mechanism for a two-stroke internal combustion engine.
  • FIG. 4 shows a crank slider mechanism.
  • the mechanism includes a combined crankshaft composed of a first dynamic balance rotary block 14-1, a second dynamic balance rotary block 14-2, a piston 15, a circular slider 13, a single turn 11 and a crank 12.
  • the circular slider 13 and the piston 15 are mounted at an intermediate position of the mechanism, and the first dynamic balance rotary block 14-1 and the second dynamic balance rotary block 14-2 are fixedly connected to the circular slider 13 from the left and right sides.
  • the outer tooth segment 1 1 - 1 on the crank pin for overcoming the live point is transferred to the middle portion of the crank pin so that it can be positioned at the end face of the circular slider 13 after installation.
  • the circular slider 13 or the dynamic balance rotary block can be divided into two parts, which are divided into upper and lower parts from the position of the eccentric hole, so as to avoid being blocked by the external tooth segment.
  • the first dynamic balance rotary block 14-1 and the second dynamic balance rotary block 14-2 are identical dynamic balance rotary blocks, and the mass thereof is respectively the piston One-half of 15, the distance between the center of mass and the center of the eccentric hole is e.
  • the first The movement of the balance balancing block 14-1 and the second balancing pad 14-2 can be combined with the reciprocating linear motion of the piston 15 into a centrifugal centrifugal force directed from the center of the crankshaft toward the center of the crank pin, so that the piston 15 is The balance of the reciprocating inertial force translates into a balance of a rotating centrifugal force, making the mechanism balance very easy to achieve.
  • Other aspects of the mechanism are similar to those of the first embodiment and will not be described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Transmission Devices (AREA)

Description

一种曲柄圆滑块机构、 其零件、 和由其得到的设备 技术领域
本发明涉及一种往复 -旋转运动相互转换机构, 具体是一种曲柄圆 滑块机构。 本发明同时涉及一种用于该曲柄圆滑块机构的零件。 本发 明还提供使用该曲柄圆滑块机构的设备。
背景技术
往复式内燃机或者压缩机都需要实现活塞的往复运动和曲轴的旋 转运动之间的转换, 其中, 往复式内燃机是将活塞的往复运动转化为 曲轴的旋转运动, 而往复式压缩机则是将曲轴的旋转运动转化为活塞 的往复运动。 目前的通用技术下, 上述转换过程均需要使用曲柄连杆 机构。 由于曲柄连杆机构中连杆的存在, 使机器庞大、 笨重, 无法完 全平衡.
为了解决上述问题, 中国专利文献 CN85100358A 公开了一种"曲 柄圆滑块往复活塞式内燃机 ",中国专利文献 CN85100359A 公开"一种 曲柄圓滑块往复活塞式压缩机 ", 中国专利文献 CN 1 144879 A公开了一 种"曲柄双圆滑块往复活塞式内燃机 ", 中国专利文献 CN1 144880A公 开了一种 "曲柄多圆滑块往复活塞式内燃机" 。 上述内燃机的共同特 偏心圆孔的圆滑块代替连杆。 所述偏心^滑块呈圆柱形,、 并 开有平 行于圆柱体轴线的偏心圆孔, 该偏心圆孔用于穿过曲轴的曲柄销。 该 内燃机的活塞包括两端的冠部和连接两冠部的导向部, 其中导向部上 开有圆孔, 该圆孔的内径面和上述圆滑块的外径面相配合, 所述圆滑 块即安置在活塞导向部上与其外周相配合的圆孔中。 当所述活塞受到 气缸中燃烧气体的推动而在气缸中往复运动时, 所述圆滑块绕其自身 的圆心转动, 并进而带动曲轴转动, 从而将活塞的往复运动转化为曲 轴的旋转运动, 再通过与曲轴连接的旋转部件向外传递功率。 上述专 'J的思想也可以方便的转用到压缩机中, 获得曲柄圆滑块压缩机。
在上述中国专利文献 CN1 144879A公开的 "曲柄双圆滑块往复活塞 式内燃机", 以及中国专利文献 CN1 144880A公开的 "曲柄多圆滑块往 复活塞式内燃机" 中, 一个重要的优点是通过往复运动的动平衡滑块 实现较好的动平衡效果。 但是, 上述采用动平衡滑块的技术方案, 需 要机体为动平衡滑块提供往复运动的导轨, 在许多情况下, 增加妁往 复运动导轨会造成机体加工困难, 以及削弱机体的强度或者刚度, 使 其难以实施。 并且, 动平衡滑块与往复运动导轨之间会产生滑动摩擦, 使整个机体的能量转换效率降低。
尤其在采用单缸机结构时, 设计者的主要考虑就是单缸机结构形 式比较简单轻巧, 如果采用动平衡滑块作为动平衡元件, 需要增加一 套往复运动机构, 则这种往复-旋转运动转换机构就艮难称之为单缸机 结构, 也完全丧失了单缸机简单轻巧的优势。
发明内容
本发明提供一种曲柄圆滑块机构, 该曲柄圆滑块机构能够在不设 置动平衡滑块的情况下, 改善整个机构的运动平衡情况, 从而降低曲 柄圓滑块机构的机体设计难度, 提高机体的刚度和强度。 本发明所提 供的上述曲柄圆滑块机构, 在选择合适的参数同时配合以位于飞轮或 者皮带轮等位置的平衡配重的情况下, 可以使该曲柄圆滑块机构达到 完全平衡的效果。 尤其是在将该种曲柄圆滑块机构用于单缸机时, 可 以在保持整个机构简单轻巧的情况下, 使机构获得完全的运动平衡。
本发明同时提供一种用于上述曲柄圆滑块机构的零件, 以及使用 该曲柄圆滑块机构的设备。
本发明提供一种曲柄圆滑块机构, 该曲柄圓滑块机构包括: 具有 至少一个曲柄销的曲轴; 具有偏心孔的至少一个圆滑块, 所述圆滑块 的偏心孔套在所述曲轴的曲柄销上; 具有圆滑块容置孔的至少一个往 复运动件, 所述圆滑块以可旋转的方式安装在所述圆滑块容置孔中, 其中往复运动件的数量与圆滑块的数量相等; 以及具有偏心孔的至少 一个动平衡旋块, 所述动平衡旋块的偏心孔套在曲轴的套有圆滑块的 曲柄销上, 并且与其相邻的圆滑块相互固定。
优选的, 所述动平衡旋块的质心位置满足下述要求: 将所述圆滑 块的轴心、 所述动平衡旋块的质心以及曲柄销的轴心均投影在垂直于 曲轴轴线的平面上, 投影点依次为 A、 B、 C, 则 ZACB在 90°到 270。 之间。
优选的, 所述 ZACB=180°; 并且 AOBOe; 所述 e 为所述曲轴 的曲柄半径, 也是所述圆滑块的偏心距。 优选的, 所述圓滑块只有一个, 所述动平衡旋块也只有一个, 其 中所述动平衡旋块的质量为往复运动件的质量。
优选的, 所述动平衡旋块只有一个, 所述圆滑块有两个, 分别在 所述动平衡旋块的左右两侧和动平衡旋块邻接, 并且两个圆滑块的轴 心在垂直于曲轴轴线平面上的投影重合; 所述动平衡旋块的质量是分 别容置两个圓滑块的两个往复运动件的质量之和。
优选的, 所述圆滑块只有一个, 所述动平衡旋块有两个, 分别在 所述圆滑块的左右两侧和圆滑块邻接, 并且两个动平衡旋块的轴心在 垂直于曲轴轴线平面上的投影重合; 所述两个动平衡旋块的质量相同, 均等于所述往复运动件的质量的二分之一。
优选的, 所述圆滑块和所述动平衡旋块之间通过定位销实现相互 定位。
优选的, 该曲柄圆滑块机构设置有克服活点的齿轮机构。
本发明同时提供一种用于上述任意一项技术方案所述的曲柄圆滑 块机构的零件, 该零件具体是所述动平衡旋块, 该动平衡旋块为开有 偏心通孔的质量部件。
优选的, 所述动平衡旋块的质心距离其偏心孔圆心的距离为 e, 所 述 e 为该曲柄圆滑块机构的曲轴的曲柄半径, 也是该曲柄圆滑块机构 的圆滑块的偏心距。
优选的, 所述动平衡旋块为扁圓柱体。
优选的, 所述动平衡旋块的质量满足下述要求: 与其固定连接的 圆滑块为一个时, 该动平衡旋块的质量为与其固定连接的圆滑块所在 的往复运动件质量; 与其固定连接的圆滑块为两个时, 该动平衡旋块 的质量为与其固定连接的两个圆滑块分别所在的两个往复运动件的质 量之和; 采用两个同样的动平衡旋块与一个圆滑块固定时, 该动平衡 旋块的质量为圆滑块所在的往复运动件的质量的二分之一。
本发明同时提供一种设备, 具体是内燃机, 该内燃机使用前述任 意一项技术方案所述的曲柄圆滑块机构。
本发明同时提供一种设备, 具体是压缩机, 该压缩机使用前述任 意一项技术方案所述的曲柄圆滑块机构。
本发明提供的曲柄圓滑块机构中, 包括至少一个圆滑块以及至少 一个动平衡旋块; 所述动平衡旋块是通过偏心孔与所述圆滑块套在同 一个曲柄销上, 并且与所述圆滑块固定连接的质量部件。 该动平衡旋 块的设置为调整该曲柄圆滑块机构的整体平衡提供了一种可行的技术 手段。
在本发明的优选实施方案中, 通过适当选择动平衡旋块的安装位 置和质量, 可以使该动平衡旋块起到动平衡滑块相同的作用。 具体而 言, 对动平衡旋块的安装位置作如下设置: 将所述动平衡旋块设置为 和圓滑块的相位呈 180° 相位差, 即将所述圆滑块的轴心、 所述动平衡 旋块的质心以及曲柄销的轴心均投影在垂直于曲轴轴线的平面上, 投 影点依次为 A、 B、 C, 则 ZACB=180。; 同时, 设置 AC=BC=e, 所述 e为所述曲轴的曲柄半径, 也是所述圆滑块的偏心距。 对动平衡旋块的 盾量 (或者质量之和) 设置为等于动平衡滑块所在的往复运动件的质 量 (或者质量之和) 。 在进行上述设置后, 动平衡旋块的质心点的运 动为往复直线运动, 在分析机构的运动平衡时, 可以将该动平衡旋块 等效为位于质心的一个质量点, 则该动平衡旋块的运动就转化为往复 直线运动, 也就是该动平衡旋块对整个运动机构的平衡体系中的作用 和中国专利文献 CN1 144879A 公开的 "曲柄双圆滑块往复活塞式内燃 机,,, 以及中国专利文献 CN1 144880A公开的 "曲柄多圆滑块往复活塞 式内燃机" 中的动平衡滑块完全相同。 因此, 该动平衡旋块的运动和 与其固定的圆滑块所在的往复运动件的往复运动合成, 可以转化为从 曲轴中心指向曲柄销的离心力, 这样, 就有可能通过在皮带轮或者飞 轮上设置平衡配重等方式, 非常方便的使整个机构获得完全的平衡。 上述往复运动合成转化为离心力的具体分析过程, 在上述提及的两个 专利文献中已经公开, 在此不再赘述。 可以看出, 采用所述动平衡旋 块在机构平衡上具有和采用动平衡滑块相同的效果, 但是, 采用动平 衡滑块时, 需要在机体上设置往复运动导轨, 使机体的结构过于复杂, 而采用该动平衡旋块的方式, 机体只需要为该动平衡旋块预留足够的 旋转空间, 以避免出现运动干涉即可。 因此, 采用动平衡旋块的方式 降低了机体的设计难度, 同时也避免了往复运动导轨对机体刚度或者 强度的影响。 另外, 在采用动平衡滑块的机构中, 动平衡滑块与往复 运动导轨之间会产生很大的摩擦力, 采用该动平衡旋块的结构后, 该 往复运动的摩擦力也不复存在, 机构的能量转化效率得到提高。
采用该机构后, 只要根据动平衡试验的结果, 适当的对动平衡旋 块的质量进行增减, 即可以调整整个曲柄圆滑块机构惯性力平衡情况。 因此, 该结构还具有便于调整动平衡的优点。
附图说明
图 1是本发明第一实施例提供的曲柄圆滑块机构简图;
图 2是图 1 中使用的动平衡旋块的正视图;
图 3是图 1 中使用的动平衡旋块的俯视图;
图 4是本发明第二实施例提供的曲柄圆滑块机构简图。
具体实施方式
图 1 为本发明第一实施例提供的一种曲柄圆滑块往复活塞式内燃 机的运动机构部分, 即曲柄圆滑块机构的结构简图。 该图可以看出该 内燃机内部的曲柄圆滑块机构的主要运动部件及其相互关系, 为了说 明其中一些具体部位, 该图中若千位置进行了局部剖。 请同时参看图 2 和图 3, 图 2示出该机构使用的动平衡旋块的正视图; 图 3示出该动平 衡旋块的俯视图。
该内燃机为采用级差式活塞的二冲程柴油机, 反映在图 1 所示的 运动机构上, 可以看出其活塞 5 为一个两个活塞头具有不同直径的双 作用活塞。 以下结合图 1对其进行详细的介绍。
如图 1 所示, 该曲柄圆滑块机构包括共同组成曲轴的单拐 1 和曲 柄 2, 以及圆滑块 3、 动平衡旋块 4和活塞 5。
所述单拐 1 从图 1 的右侧到左侧包括轴线相互平行并且依次连接 的单拐主轴颈 1-1、 曲柄臂 1-2、 曲柄销 1-3三部分, 三部分均为圆柱 形, 其中单拐主轴颈 1-1与所述曲柄臂 1-2同轴, 所述曲柄臂 1-2的直 径稍大, 轴向长度较短, 形成单拐主轴颈 1-1 内侧端的凸缘部位。 所述 曲柄销 1-3的轴线偏置于所述单拐主轴颈 1-1的一侧,其轴线与单拐主 轴颈的轴线之间距离为 e, 其直径小于单拐主轴颈; 该曲柄销 1-3的末 端为锥端 1-3-1。 该锥端 1-3-1 的端面还设置有螺紋孔作为定位结构, 另外, 沿所述锥端 1-3-1的锥面表面设置有两个分别布置在两側并在端 面开口的第一半圆销孔 1-3-2(图中只示出一侧的第一半圆销孔 1-3-2)。 在曲柄销 1-3 的根部还设置有外齿段 1-3-3, 该外齿段 1-3-3用于与活 塞腰部上设置的内齿段配合以克服活点。
所述曲柄 2为圓柱体, 并设置有轴线和曲柄 2主轴线平行的偏心 距为 e的锥孔 2-1, 该锥孔 2-1偏心设置, 其锥度和所述曲柄销 1-3末 端的锥形端锥度相匹配,其大径端开口在朝向所述曲柄销 1 -3的曲柄内 侧端面, 其小径端则在曲柄 2 内形成一个底面。 所述曲柄 2的外侧端 面上, 与所述锥孔 2-1 同轴的位置设置有曲柄螺栓孔 2-2, 该曲柄螺栓 孔 2-2的底面用于为曲柄螺栓 6提供定位面; 该曲柄螺栓孔 2-2的底面 和所述锥孔 2-1 的底面通过位于两者共同轴线位置的连接通孔相通。所 述锥孔 2-1的内径面上, 还对应所述第一半圓销孔 1 -3-2设置有两个第 二半圆销孔。
上述曲柄 2与所述单拐 1 组合成曲轴时,. 按照下述步骤连接。 将 所述曲柄 2通过所述锥孔 2- 1套在所述曲柄销 1-3末端的锥端 1 -3-1上; 接着, 将相互对应的所述第一半圆销孔 1-3-2和第二半圆销孔对准, 形 成完整的定位销孔, 在定位销孔中插入定位销。 最后, 将曲柄螺栓 6 通过所述曲柄螺栓孔 2-2拧入所述曲柄销 1 -3末端端面的螺纹孔,使所 述曲柄 2和单拐 1 成为一个完整的曲轴。 此时, 所述曲柄 2与单拐 1 的单拐主轴颈 1 -1 同轴, 该共同轴即为该曲轴的旋转轴, 或者称为曲轴 的轴线; 该曲轴的曲柄半径为 e。 所述曲柄半径即曲轴旋转轴和曲柄销 轴线之间的距离。 当然, 在组合前曲柄销上已经套上了活塞、 圆滑块、 动平衡旋块等零件。 事实上采用上述组合式曲轴的主要原因就是便于 在曲柄销上安装上述零件。 该具有一个单拐的分离式曲轴本申请人已 经申请相关专利, 在此不再赘述。 总之, 曲柄 2和单拐 1 最终会组合 形成一个完整的曲轴。
所述圆滑块 3为具有偏心孔 3-1的扁圆柱体,该偏心孔 3-1 的偏心 距为 e, 该圆滑块 3通过所述偏心孔 3-1套在所述单拐 1 的曲柄销 1 -3 上。 该圆滑块 3需要质量较轻, 因此, 其上开设有若干去重槽 3-2。 该 圆滑块 3的质心要求落在所述偏心孔 3-1的圆心上, 为了实现这一点, 偏心孔 3-1的周缘较厚, 以增加该部位重量。 该圆滑块 3以可旋转方式 安装在所述活塞 5的圓滑块容置孔 5-4中。
所述活塞 5为一个双作用活塞。 其上端为第一活塞头 5-1, 该第一 活塞头 5- 1 的结构和功能与现有曲柄连杆机构的活塞类似, 具有顶部 5-1 - 1、 头部 5- 1 -2和裙部 5-1 -3等部位, 其功能为用于与气缸形成燃烧 室, 以及承受可燃混合气的爆发压力, 形成往复运动。 该活塞 5 的另 一端为第二活塞头 5-2 , 由于该内燃机采用的是级差式活塞, 因此, 该 第二活塞头 5-2的直径明显大于所述第一活塞头 5-1 , 但该第二活塞头 5-2厚度较薄。 该第二活塞头 5-2的作用是作为扫气活塞, 通过与机体 的扫气气缸的配合, 为该二沖程内燃机提供较大气压的扫气气流。 在 所述第一活塞头 5-1和所述第二活塞头 5-2之间,设置有连接第一活塞 头 5- 1和第二活塞头 5-2的连接部 5-3 , 该连接部 5-3为比较薄的片状 体, 其上设置所述圆滑块容置孔 5-4。 该活塞 5的结构使其能够同时起 到内燃机活塞和压缩机活塞的作用, 特别适合用于二冲程内燃机。
所述动平衡旋块 4为一个扁圆柱体, 其上开有第二偏心圆孔 4-1 ; 通过该第二偏心圆孔 4- 1, 该动平衡旋块 4插在所述曲柄销〗 -3上。 该 动平衡旋块 4和所述圆滑块 3之间固定连接, 具体连接方式可以在现 有技术下选择任何合适的方案, 例如釆用两个轴向布置的固定销(图 1 未示出) 将动平衡旋块 4和圓滑块 3连接为一体, 采用此种方式时, 所述动平衡旋块 4和所述圆滑块 3需要设置相对应的销孔。 动平衡旋 块 4的质心和所述第二偏心圆孔 4-1的圆心的距离为 e。
为了获得理想的动平衡效果, 即将所述圆滑块 3 以及活塞 5 的往 复惯性力转化为旋转惯性力, 需要对动平衡旋块 4与圆滑块 3 的位置 关系以及动平衡旋块的质量进行合适的选择。
上述位置关系的选择, 具体是使动平衡旋块 4与所述圆滑块 3之 间呈 180° 相位差, 所谓 180° 相位差, 可以作如下解释: 将圆滑块 3 的轴心、 动平衡旋块 4 的质心、 曲柄销的轴心等均投影在垂直于曲轴 轴线的平面上, 投影点依次为 A、 B、 C , 则 ZACB=180°。 由于圆滑块 3和动平衡旋块 4的偏心距均为 e, 因此, C点恰好在八、 B两点的中 点位置, A、 C之间和 B、 C之间的距离均为曲柄半径 e。
对动平衡旋块 4的质量设定为等于活塞 5 的质量。 在采用该质量 和上述位置关系以后, 所述动平衡旋块 4 相当于完全代替了背景技术 中提到的中国专利文献 CN 1 144879A公开的 "曲柄双圆滑块往复活塞式 内燃机"中的动平衡滑块, 其对整个机构的动平衡所起到的作用也完全 相同。 即动平衡旋块的质心在所述活塞 5 总成的运动方向垂直的直线 轨道上往复运动, 两者惯性力合成为由曲轴中心指向曲柄销中心的离 心力。 在这种情况下, 可以在飞轮或者皮带轮等零件上根据需要设置 平衡配重, 方便地实现整个机构的完全平衡。
由于所述动平衡旋块 4 的质量等于活塞 5 的质量, 故该动平衡旋 块 4的质量比较大, 图 1 中示出该动平衡旋块非常厚实, 没有如圆滑 块 3那样设置去重槽。 这样可以在动平衡旋块的体积比较小的情况下, 获得较大的质量。
尽管采用上述动平衡旋块结构能够获得与设置动平衡滑块相同的 平衡效果, 但是, 该结构无法解决曲柄圆滑块机构运动过程中的活点 问题, 所以, 在单独采用动平衡旋块作为平衡元件时, 需要增加克服 活点的齿轮结构。 所谓活点, 是指当圆滑块处于 90。或者 270。相位上, 则曲轴的旋转轴和圆滑块的圆心完全重合, 有可能使圆滑块绕旋转轴 作旋转运动, 而不作往复运动, 使活塞的运动方向出现不确定性。 上 述问题一般在启动时容易出现, 造成内燃机或者压缩机无法正常启动。 一旦启动后, 依靠活塞的往复惯性力, 通常可以使机构迅速通过活点 位置, 避免机构运动的不确定性。 在采用动平衡滑块结构时, 由于两 个相互固定的圆滑块不可能同时处于活点位置, 使处于活点位置的圆 滑块可以依赖另一个圆滑块的运动克服活点, 解决了活点问题。 采用 本实施例的动平衡旋块机构以后, 上述机制不再存在, 就有必要设置 专门的克服活点机构。
图 1中示出的曲柄销根部设置的外齿段 1 -3-3即为克服活点机构的 一部分, 该外齿段至少设置两个齿。 对应该外齿段 1 -3-3, 在活塞腰部 的位置设置有与上述外齿段啮合的内齿段, 该内齿段至少设置三个齿。 上述内外齿段共同构成克服活点的机构。 通过该机构, 在圆滑块处于 90。或者 270。相位时, 以上述内外齿段的配合拨动活塞通过活点位置, 即可克服上述活点问题。
上述实施例是一个优选的实施例, 采用上述位置和质量的动平衡 旋块后, 理论上可以使整个曲柄圆滑块机构的往复和旋转惯性力转化 为由曲轴中心指向曲柄销中心的离心力, 便于设置平衡配重, 最终获 得良好的动平衡效果。
如果仅仅希望通过动平衡旋块改善机构的动平衡, 而并不要求强 求一定要达到最佳效果, 则上述对动平衡旋块的位置和质量的要求可 以放宽。 例如, 可以将位置关系放宽为 ZACB在 90。到 270。之间。 在 这种状态下, 选择合适的质量, 都有可能获得局部改善平衡的效果。 此时需要根据动平衡试验或者理论计算, 选取合适的动平衡旋块质量。 在一般情况下, 既然设置了动平衡旋块, 就希望获得较好的动平衡效 果, 所以应当采用上述优选实施例中提到的位置和质量要求。 另外, 在上述实施例中设置了克服活点的机构, 由于在活点位置 出现错误运动状态仅仅是一种较小的可能性, 一般在启动时发生, 并 且可以在启动时通过摇动曲轴等方式克服, 所以也可以不设置克服活 点的机构。 当然, 一般情况下, 应当设置上述机构。
原则上, 动平衡旋块只要使其质心位置和质量符合上述要求即可 获得上述较佳的平衡效果, 其外形轮廓可以任意设置, 只要不和曲柄 圆滑块机构的其他部位发生运动千涉即可。 实际中, 考虑到制造方便, 动平衡旋块一般和圆滑块的外形轮廓相似, 但一般不设置去重槽等结 构, 以在较小尺寸下获得满足需要的质量。
以上第一实施例是对应双圆滑块机构的例子, 实际上, 对应于中 国专利文献 CN1 144880A公开的 "曲柄多圆滑块往复活塞式内燃机" , 也可以将其中位于两个圆滑块中间的动平衡滑块总成置换为上述动平 衡旋块, ¾得具有动平衡旋块结构的曲柄圆滑块机构; 在此种情况下, 根据活塞选择双作用活塞或者单作用活塞的不同情况, 获得双缸到四 缸的内燃机。 此时, 两个圆滑块的轴心在垂直于曲轴轴线平面上的投 影重合, 动平衡旋块的质量是两个圆滑块所在的活塞的质量之和。 采 用此种方案时, 仍然需要设置解决活点的结构。 另外一个方案是, 使 用动平衡旋块置换左右两个活塞总成, 而在中间圆滑块位置设置活塞 总成, 构成一个具有一个活塞的内燃机。 本发明第二实施例即提供一 种用于二冲程内燃机的该种曲柄圆滑块机构。
请参看图 4 , 该图示出一种采用曲柄圆滑块机构。 该机构包括第一 动平衡旋块 14- 1、 第二动平衡旋块 14-2、 活塞 15、 圆滑块 13、 单拐 1 1和曲柄 12组成的组合式曲轴。 其特点是, 圆滑块 13以及活塞 15安 装于机构的中间位置, 所述第一动平衡旋块 14-1 和第二动平衡旋块 14-2从左右两侧与所述圆滑块 13固连为一体。 在该机构中, 将曲柄销 上用于克服活点的外齿段 1 1 - 1转移到曲柄销的中部, 使其在安装后能 够位于圆滑块 13 的端面的位置。 所述圆滑块 13或者动平衡旋块可以 采用从偏心孔位置剖分为上下两部分的分体式形式, 避免被外齿段挡 住无法装入。
在采用该实施例的形式时, 所述第一动平衡旋块 14- 1和所述第二 动平衡旋块 14-2为完全相同的动平衡旋块, 并且, 其质量分别为所述 活塞 15的二分之一, 质心与其偏心孔中心的距离为 e。 这样, 所述第 一动平衡旋块 14-1和所述第二动平衡旋块 14-2的运动就可以和所述活 塞 15 的往复直线运动合成为从曲轴中心指向曲柄销中心的旋转离心 力, 使对活塞 15的往复运动惯性力的平衡转化为对一个旋转离心力的 平衡, 使机构平衡非常容易实现。 该机构的其它方面和第一实施例相 仿, 在此不再说明。
本发明虽然以较佳实施例公开如上, 但其并不是用来限定本发明, 任何本领域技术人员在不脱离本发明的精神和范围内, 都可以做出可 能的变动和修改, 因此本发明的保护范围应当以本发明权利要求所界 定的范围为准。 ·

Claims

权 利 要 求
1. 一种曲柄圆滑块机构, 包括: 具有至少一个曲柄销的曲轴; 具有偏心孔的至少一个圆滑块, 所述圆滑块的偏心孔套在所述曲 轴的曲柄销上;
具有圓滑块容置孔的至少一个往复运动件, 所述圆滑块以可旋转 的方式安装在所述圆滑块容置孔中, 其中往复运动件的数量与圆滑块 的数量相等; 其特征在于, 还包括:
具有偏心孔的至少一个动平衡旋块, 所述动平衡旋块的偏心孔套 在曲轴的套有圆滑块的曲柄销上, 并且与其相邻的圆滑块相互固定。
2. 根据权利要求 1 所述的曲柄圓滑块机构, 其特征在于, 所述动 平衡旋块的质心位置满足下述要求: 将所述圆滑块的轴心、 所述动平 衡旋块的质心以及曲柄销的轴心均投影在垂直于曲轴轴线的平面上, 投影点依次为 A、 B、 C, 则 ZACB在 90。到 270。之间。
3. 根据权利要求 2 所述的曲柄圆滑块机构, 其特征在于, 所述
ZACB=180°; 并且 AC=BC=e; 所述 e 为所述曲轴的曲柄半径, 也是 所述圆滑块的偏心距。
4. 根据权利要求 3所述的曲柄圆滑块机构, 其特征在于, 所述圆 滑块只有一个, 所述动平衡旋块也只有一个, 其中所述动平衡旋块的 质量为往复运动件的质量。
5. 根据权利要求 3所述的曲柄圆滑块机构, 其特征在于, 所述动 平衡旋块只有一个, 所述圆滑块有两个, 分别在所述动平衡旋块的左 右两侧和动平衡旋块邻接, 并且两个圆滑块的轴心在垂直于曲轴轴线 平面上的投影重合; 所述动平衡旋块的质量是分别容置两个圆滑块的 两个往复运动件的质量之和。
6. 根据权利要求 3所述的曲柄圆滑块机构, 其特征在于, 所述圆 滑块只有一个, 所述动平衡旋块有两个, 分别在所述圆滑块的左右两 侧和圆滑块邻接, 并且两个动平衡旋块的轴心在垂直于曲轴轴线平面 上的投影重合; 所述两个动平衡旋块的质量相同, 均等于所述往复运 动件的质量的二分之一。
7. 根据权利要求 1-6任意一项所述的曲柄圆滑块机构, 其特征在 于, 所述圆滑块和所述动平衡旋块之间通过定位销实现相互定位。
8. 根据权利要求 1 -6任意一项所述的曲柄圆滑块机构, 其特征在 于, 该曲柄圆滑块机构设置有克服活点的齿轮机构。
9. 一种用于权利要求 1 -8任意一项所述的曲柄圆滑块机构的零件, 其特征在于, 该零件具体是所述动平衡旋块, 该动平衡旋块为开有偏 心通孔的质量部件。
10. 根据权利要求 9所述的用于权利要求 1 -8任意一项所述的曲柄 圆滑块机构的零件, 其特征在于, 该动平衡旋块的质心距离其偏心孔 圆心的距离为 e; 所述 e为该曲柄圆滑块机构的曲轴的曲柄半径, 也是 该曲柄圆滑块机构的圓滑块的偏心距。
1 1. 根据权利要求 9或者 10所述的用于权利要求 1 -8任意一项所 述的曲柄圓滑块机构的零件, 其特征在于, 该动平衡旋块为扁圆柱体。
12. 根据权利要求 9或者 10所述的用于权利要求 1 -8任意一项所 述的曲柄圆滑块机构的零件, 其特征在于, 该动平衡旋块的质量满足 下述要求: 与其固定连接的圆滑块为一个时, 该动平衡旋块的质量为 与其固定连接的圆滑块所在的往复运动件质量; 与其固定连接的圆滑 块为两个时, 该动平衡旋块的质量为与其固定连接的两个圆滑块分别 所在的两个往复运动件的质量之和; 采用两个同样的动平衡旋块与一 个圆滑块固定时, 该动平衡旋块的质量为圆滑块所在的往复运动件的 质量的二分之一。
13. 一种设备, 具体是内燃机, 其特征在于, 该内燃机使用上述权 项 1 -8任意一项所述的曲柄圆滑块机构。
14. 一种设备, 具体是压缩机, 其特征在于, 该压缩机使用上述 权项 1 -8任意一项所述的曲柄圆滑块机构。
PCT/CN2010/001590 2010-07-02 2010-10-11 一种曲柄圆滑块机构、其零件、和由其得到的设备 WO2012000147A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013516943A JP2013531202A (ja) 2010-07-02 2010-10-11 クランク円形摺動ブロック機構、その部品、及びそれより成る装置
EP10853853.9A EP2604889B1 (en) 2010-07-02 2010-10-11 Crank circular sliding block mechanism, parts thereof, and equipment therefrom
BR112013000105-4A BR112013000105B1 (pt) 2010-07-02 2010-10-11 mecanismo deslizante circular de manivela
US13/807,399 US10012224B2 (en) 2010-07-02 2010-10-11 Crank circular sliding block mechanism, parts thereof, and equipment therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010215948.0 2010-07-02
CN201010215948.0A CN101886693B (zh) 2010-07-02 2010-07-02 一种曲柄圆滑块机构及设备

Publications (1)

Publication Number Publication Date
WO2012000147A1 true WO2012000147A1 (zh) 2012-01-05

Family

ID=43072727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001590 WO2012000147A1 (zh) 2010-07-02 2010-10-11 一种曲柄圆滑块机构、其零件、和由其得到的设备

Country Status (6)

Country Link
US (1) US10012224B2 (zh)
EP (1) EP2604889B1 (zh)
JP (1) JP2013531202A (zh)
CN (1) CN101886693B (zh)
BR (1) BR112013000105B1 (zh)
WO (1) WO2012000147A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117181881A (zh) * 2023-09-25 2023-12-08 广东豪辉科技股份有限公司 高速精密冲床智能设备及其控制方法
CN117181881B (zh) * 2023-09-25 2024-06-11 广东豪辉科技股份有限公司 高速精密冲床智能设备及其控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634354B (zh) * 2009-06-24 2011-07-20 北京中清能发动机技术有限公司 一种曲柄圆滑块机构及其内燃机、压缩机
CN102168739B (zh) * 2011-02-22 2012-08-29 北京中清能发动机技术有限公司 曲柄圆滑块或端轴-动轴机构平衡配重及内燃机、压缩机
CN203809627U (zh) * 2013-12-12 2014-09-03 北京中清能发动机技术有限公司 一种曲柄圆滑块机构及一种柱塞泵
CN106917856A (zh) * 2015-12-25 2017-07-04 罗凤玲 一种动力传动结构
CN208431127U (zh) * 2017-03-23 2019-01-25 中清能(北京)科技有限公司 一种活塞式空压机、运动转换机构及车用空压机
CN109488388B (zh) * 2018-12-19 2022-09-06 上海齐耀动力技术有限公司 一种无连杆热气机传动机构、无连杆热气机传动系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100358A (zh) 1985-04-01 1986-08-20 黎正中 曲柄圆滑块往复活塞式内燃机
CN85100359A (zh) 1985-04-01 1986-08-20 黎正中 曲柄圆滑块往复活塞式压缩机
CN1144880A (zh) 1995-06-13 1997-03-12 黎正中 曲柄多圆滑块往复活塞式内燃机
CN1144879A (zh) 1995-06-13 1997-03-12 黎正中 曲柄双圆滑块往复活塞式内燃机
CN2859083Y (zh) * 2005-12-30 2007-01-17 黄岩余 新型低振高速径向活塞式气动马达
CN1982742A (zh) * 2005-12-13 2007-06-20 王榕生 少齿差行星传动的动平衡驱动机构
CN101200041A (zh) * 2006-12-11 2008-06-18 上海建设路桥机械设备有限公司 多偏心轴的加工方法及其使用的平衡块和偏心套
CN101392789A (zh) * 2008-11-10 2009-03-25 北京中清能发动机技术有限公司 用于内燃机或压缩机曲轴的零件、曲轴及内燃机、压缩机
CN101614158A (zh) * 2009-07-24 2009-12-30 北京中清能发动机技术有限公司 一种二冲程曲柄圆滑块往复活塞式内燃机
CN101691887A (zh) * 2009-08-26 2010-04-07 北京中清能发动机技术有限公司 曲柄圆滑块机构的圆滑块以及其内燃机、压缩机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829913A (zh) * 1971-08-24 1973-04-20
US4173151A (en) * 1977-06-30 1979-11-06 Grundy Reed H Motion translating mechanism
JPH02278049A (ja) * 1989-01-24 1990-11-14 Yasuo Kuramasu 往復直線運動と回転運動の変換機構
CN2125711U (zh) * 1992-07-01 1992-12-23 易南勋 偏心圆滑块无侧压力全平衡内燃机
DE19504890A1 (de) 1995-02-14 1996-08-22 Bayerische Motoren Werke Ag Hubkolbenmaschine mit in Kurbelwellenrichtung in einem Maschinengehäuse benachbarten Zylindern
ES2337651T3 (es) * 1999-04-01 2010-04-28 Peter Robert Raffaele Maquinas de fluidos reciprocos.
US6619926B2 (en) * 2001-09-12 2003-09-16 Tecumseh Products Company Cam and crank engagement for a reversible, variable displacement compressor and a method of operation therefor
US7219500B1 (en) * 2004-12-02 2007-05-22 Process Equipment & Service Company, Inc. Compressor fuel gas conditioner
GB0501763D0 (en) * 2005-01-28 2005-03-02 Torotrak Dev Ltd Powertrain control method and system
JPWO2008010490A1 (ja) 2006-07-18 2009-12-17 孝 松田 サイクロイド往復動機関並びにこのクランク機構を用いたポンプ装置
CN101634354B (zh) 2009-06-24 2011-07-20 北京中清能发动机技术有限公司 一种曲柄圆滑块机构及其内燃机、压缩机
CN201517602U (zh) * 2009-08-26 2010-06-30 北京中清能发动机技术有限公司 曲柄圆滑块机构的圆滑块组以及其内燃机、压缩机
CN201487165U (zh) * 2009-08-26 2010-05-26 北京中清能发动机技术有限公司 曲柄圆滑块机构的圆滑块组以及其内燃机、压缩机
CN101761359B (zh) 2009-10-22 2012-05-09 北京中清能发动机技术有限公司 一种v型机体及其缸套、缸套组、内燃机、压缩机
CN201836317U (zh) * 2010-07-02 2011-05-18 北京中清能发动机技术有限公司 一种曲柄圆滑块机构及零件、内燃机、压缩机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100358A (zh) 1985-04-01 1986-08-20 黎正中 曲柄圆滑块往复活塞式内燃机
CN85100359A (zh) 1985-04-01 1986-08-20 黎正中 曲柄圆滑块往复活塞式压缩机
CN1144880A (zh) 1995-06-13 1997-03-12 黎正中 曲柄多圆滑块往复活塞式内燃机
CN1144879A (zh) 1995-06-13 1997-03-12 黎正中 曲柄双圆滑块往复活塞式内燃机
CN1982742A (zh) * 2005-12-13 2007-06-20 王榕生 少齿差行星传动的动平衡驱动机构
CN2859083Y (zh) * 2005-12-30 2007-01-17 黄岩余 新型低振高速径向活塞式气动马达
CN101200041A (zh) * 2006-12-11 2008-06-18 上海建设路桥机械设备有限公司 多偏心轴的加工方法及其使用的平衡块和偏心套
CN101392789A (zh) * 2008-11-10 2009-03-25 北京中清能发动机技术有限公司 用于内燃机或压缩机曲轴的零件、曲轴及内燃机、压缩机
CN101614158A (zh) * 2009-07-24 2009-12-30 北京中清能发动机技术有限公司 一种二冲程曲柄圆滑块往复活塞式内燃机
CN101691887A (zh) * 2009-08-26 2010-04-07 北京中清能发动机技术有限公司 曲柄圆滑块机构的圆滑块以及其内燃机、压缩机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117181881A (zh) * 2023-09-25 2023-12-08 广东豪辉科技股份有限公司 高速精密冲床智能设备及其控制方法
CN117181881B (zh) * 2023-09-25 2024-06-11 广东豪辉科技股份有限公司 高速精密冲床智能设备及其控制方法

Also Published As

Publication number Publication date
EP2604889A1 (en) 2013-06-19
BR112013000105A2 (pt) 2017-11-14
US10012224B2 (en) 2018-07-03
BR112013000105B1 (pt) 2020-11-10
US20130160580A1 (en) 2013-06-27
CN101886693B (zh) 2014-02-12
JP2013531202A (ja) 2013-08-01
EP2604889A4 (en) 2018-03-14
EP2604889B1 (en) 2020-01-08
CN101886693A (zh) 2010-11-17

Similar Documents

Publication Publication Date Title
WO2012000147A1 (zh) 一种曲柄圆滑块机构、其零件、和由其得到的设备
WO2009100759A1 (en) A reciprocating piston mechanism and a method of increasing internal egr in an internal combustion engine
JP2013524078A (ja) 改良された内燃機関
JP2009036030A (ja) 高膨張比エンジンのクランクシャフト構造
KR101650818B1 (ko) 내연 엔진을 위한 가변 행정 메커니즘
JP6990059B2 (ja) 4サイクルエンジン
CN111594408B (zh) 一种凸轮式往复压缩机构
CN208431127U (zh) 一种活塞式空压机、运动转换机构及车用空压机
CN201836317U (zh) 一种曲柄圆滑块机构及零件、内燃机、压缩机
CN201517602U (zh) 曲柄圆滑块机构的圆滑块组以及其内燃机、压缩机
US20200340556A1 (en) Apparatus to convert linear motion to rotary motion
JP2011501032A (ja) ピストン機械
JP4845989B2 (ja) エンジン
CN203272410U (zh) 用于曲柄圆滑块机构的曲轴及采用该曲轴的设备
JPS61187537A (ja) 内燃機関
CN101881216B (zh) 一种曲柄圆滑块单缸二冲程内燃机
WO2011044743A1 (zh) 往复运动和旋转运动相互转换的机构、其部件以及由其得到的设备
CN203322207U (zh) 一种圆滑块、应用该圆滑块的设备
CN201705464U (zh) 一种曲柄圆滑块单缸二冲程内燃机
RU2480648C1 (ru) Способ преобразования возвратно-поступательного движения штока во вращательное движение вала, преобразователь для его осуществления (варианты) и двигатель, использующий такой преобразователь
TWI342921B (zh)
CN203532645U (zh) 圆滑块、应用该圆滑块的内燃机、压缩机、真空泵、活塞泵
CN201802480U (zh) 一种转子发动机的转子部分及转子发动机
JP2016520750A (ja) 小型非振動吸熱エンジン
CN203431115U (zh) 一种圆滑块、应用该圆滑块的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853853

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013516943

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010853853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13807399

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013000105

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013000105

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130102