WO2011162561A2 - 건설기계의 작업궤적 제어 장치 및 그 방법 - Google Patents

건설기계의 작업궤적 제어 장치 및 그 방법 Download PDF

Info

Publication number
WO2011162561A2
WO2011162561A2 PCT/KR2011/004604 KR2011004604W WO2011162561A2 WO 2011162561 A2 WO2011162561 A2 WO 2011162561A2 KR 2011004604 W KR2011004604 W KR 2011004604W WO 2011162561 A2 WO2011162561 A2 WO 2011162561A2
Authority
WO
WIPO (PCT)
Prior art keywords
work
work device
trajectory
driving
posture
Prior art date
Application number
PCT/KR2011/004604
Other languages
English (en)
French (fr)
Other versions
WO2011162561A3 (ko
Inventor
김기용
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100059364A external-priority patent/KR101715940B1/ko
Priority claimed from KR1020100059363A external-priority patent/KR101716499B1/ko
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to CN201180030686.3A priority Critical patent/CN102947513B/zh
Priority to US13/805,558 priority patent/US20130103247A1/en
Priority to EP11798396.5A priority patent/EP2586918A4/en
Publication of WO2011162561A2 publication Critical patent/WO2011162561A2/ko
Publication of WO2011162561A3 publication Critical patent/WO2011162561A3/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/434Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like providing automatic sequences of movements, e.g. automatic dumping or loading, automatic return-to-dig
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/438Memorising movements for repetition, e.g. play-back capability
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2029Controlling the position of implements in function of its load, e.g. modifying the attitude of implements in accordance to vehicle speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • the present invention relates to an apparatus and a method for controlling a work trajectory of a construction machine, and more particularly, to a trajectory control apparatus and a method for a construction machine capable of automatically working with the most appropriate work trajectory at a selection point in selecting an automatic work.
  • excavators are each work device (e.g., boom, arm and bucket), boom cylinders, arm cylinders and bucket cylinders for driving each work device, swing motors for pivoting the excavator body, and each cylinder It is composed of a prime mover and a hydraulic pump for supplying a pressurized oil as a power source.
  • Excavators are hydraulic construction machines that perform a variety of tasks, such as excavation, excavation and grading.
  • the flow rate and hydraulic pressure supplied to the boom cylinder, the arm cylinder, and the bucket cylinder are controlled by a control valve switched according to the operation of the joystick, so that the actuator, that is, the boom, By operating the arm and bucket, etc., the operator can do the work he wants.
  • Intelligent excavators reduce labor costs and reduce the risk of accidents by automatically performing simple repetitive excavation work, rather than by manpower. As part of this, it is essential for the operator to receive information about the excavation environment in real time through various sensors for automated excavation work.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a trajectory control device and method for a construction machine capable of automatically working with the most appropriate work trajectory at the time of selection at the time of automatic work selection.
  • the present invention when the automatic excavation selection, considering the current bucket attitude, the construction machine using a database, which can automatically perform the work trajectory at the point after the posture correction of the bucket, not the work trajectory at the selection point
  • An object of the present invention is to provide a trajectory control device and a method thereof.
  • an object of the present invention is to provide an apparatus and method for controlling the operation trajectory of a construction machine using teaching and playback that can minimize the position error when the automatic operation is made to follow the teaching trajectory specified by the operator.
  • An apparatus is a work trajectory control device for a construction machine including at least one work device and a drive unit for driving the work device, the control unit for generating a joystick signal by the operator's operation ;
  • a data storage unit storing driving trajectory data of the work device to be followed by the work device to be driven at the start of the automatic work;
  • a driving controller configured to read the trajectory data of the work device stored in the data storage unit at the start of the automatic work, and to control the drive unit to drive the work device following the read drive trajectory data.
  • the driving control unit may include, when the automatic job is selected, a position at which an actual position of the work device starts driving of the work device stored in the data storage unit and a position at which driving of a preset work device starts within a reference error. If there is a difference, the automatic driving is controlled to be started at the position at the time of automatic operation selection, but the driving unit is controlled to follow the pre-stored driving trajectory as the time of the automatic driving progresses.
  • the work trajectory control of the construction machine including at least one work device, a drive unit for driving the work device and an operation unit for generating a joystick signal corresponding to the operation of the operator CLAIMS 1.
  • a method comprising: checking whether an automatic task is selected; And comparing the actual position of the work device with a preset reference error by comparing the actual position of the work device with a preset reference error when selecting the automatic work, wherein the actual position of the work device is set to the preset position. If the difference from the automatic work start position is smaller than the reference error, the track data of the preset work device is read, the track data for the automatic work starting from the actual position of the work device is generated, and the automatic work is started. However, the new trajectory data is generated to follow the trajectory data of the preset work device as time passes.
  • the present invention is capable of automatic work considering the current work device posture at the time of automatic work selection, thereby preventing the automatic work from being inefficiently progressed by the posture of the poor work device at the start of the automatic work.
  • the present invention by compensating for the position error in the playback selection to follow the teaching trajectory, it is possible to drive the work device to the trajectory desired by the operator.
  • FIG. 1 is a configuration diagram of an embodiment of a work trajectory control apparatus for a construction machine according to the present invention
  • FIG. 2 is an exemplary view illustrating a work trajectory control of a construction machine using a database according to the present invention
  • FIG. 3 is a detailed configuration diagram of an embodiment of a work trajectory control device in a playback mode according to the present invention.
  • FIG. 4 is a flowchart illustrating a method for controlling a work trajectory of a construction machine using a database according to the present invention
  • FIG. 5 is a flowchart illustrating a work trace control method in a teaching mode according to the present invention.
  • FIG. 6 is a flowchart illustrating a work trace control method in a playback mode according to the present invention.
  • FIG. 1 is a configuration of an embodiment of a work trajectory control apparatus for a construction machine according to the present invention.
  • the apparatus for controlling a job trajectory 100 includes an operation unit 110, a drive controller 120, a gravity compensator 130, a driver 140, and a data storage 150.
  • the work trajectory control device 100 controls the work trajectory of the construction machine, and includes at least one work device and a driving unit 140 for driving the work device.
  • the work trajectory control device for a construction machine according to the present invention will be described by dividing the position of the work device into a case where the position error is larger than the preset reference value and smaller than the preset reference value, and operates as a work trajectory control device for the construction machine using a database.
  • the case of operating as a work trajectory control device for construction machinery using teaching and playback will be described.
  • an example in which the present invention is applied to an excavator among working devices will be described.
  • the data storage unit 150 stores driving trajectory data of a preset work device to automatically start work at a corresponding position of each work device. That is, the data storage unit 150 constructs and stores the drive trajectory data for each location coordinate of the excavator bucket end as a database.
  • the drive trajectory data includes joystick data and cylinder length data or angle data of each link of the boom, arm and bucket.
  • the present invention is not limited thereto, and may generate trajectory data based on various working devices such as a boom and an arm.
  • the data storage unit 150 stores the drive trajectory data for each position coordinate that can be started based on the position coordinates of the excavator bucket end, and the drive trajectory at all points where the bucket end can be located. May contain data.
  • the drive trajectory data is stored in a database based on a bucket angle desirable for performing a job.
  • the driving trajectory data related to the excavation can be databased for each point.
  • the drive trajectory data according to this position may be set by the following example. First, the area where the end of the bucket is driven for work is divided into areas of a predetermined size. In the posture where the tip of the bucket is located at the center of each region, the trajectory data is stored in advance in anticipation of excavation, planar compaction, and trenching.
  • the operation unit 110 outputs, to the driving controller 120, information on whether or not to start automatic work and position information of the work device at the time when the automatic work starts according to the operator's operation.
  • the operation unit 110 may be provided with a joystick or an automatic operation start button provided.
  • a joystick signal or an automatic operation button signal is output according to the operator's operation.
  • the drive control unit 120 reads the drive trace data corresponding to the current position of the work device from the data storage unit 150 when the automatic job is selected, and the work device reads the drive trace data read from the data storage unit 150.
  • the driving unit 140 is controlled to follow and drive.
  • the drive control unit 120 checks the attitude of the work device when the automatic work is selected. As a result of the posture check, when the posture of the work device is a posture in which the designated work cannot be performed immediately, the driving controller 120 controls the drive unit 140 to be changed to a posture in which the work device can perform the designated work. On the other hand, if the posture of the work device is a posture capable of performing a specified task immediately, the driving controller 120 checks whether the new position of the work device by the posture change is changed larger than the preset reference value.
  • the driving controller 120 reads the new driving trajectory data corresponding to the new position changed by the change of the attitude from the data storage unit 150 and then drives the new driving.
  • the driving unit 140 is controlled to follow the trajectory data so that the work device is driven.
  • the driving controller 120 controls the driving unit 140 to drive the work device by following the driving trace data corresponding to the initially selected position.
  • the drive control unit 120 checks the bucket posture at the start of the automatic operation. As a result of the posture check, if the posture of the bucket is similar to the reference posture, the driving unit 140 is controlled to follow the drive trajectory data at the time selected by the operator. On the other hand, if the attitude of the bucket is much different from the reference attitude, the drive control unit 120 changes the attitude of the bucket. The driving controller 120 changes the bucket angle to a reference bucket angle at a point selected by the operator in consideration of the current bucket angle.
  • the driving controller 120 checks the position change by changing the attitude of the bucket.
  • the excavator includes a bucket, and the drive controller 120 determines whether the excavator's posture is changed based on the posture of the bucket.
  • the driving controller 120 controls the driving unit 140 to finally follow the initially selected trajectory data.
  • the driving controller 120 controls the driving unit 140 to read new driving trajectory data corresponding to the changed position from the data storage unit 150 and then follow the new driving trajectory data. do.
  • whether to read the new drive trajectory data is selected in response to the change of the position of the bucket corresponding to the change in the attitude of the bucket.
  • the drive control unit 120 is equipped with a variety of sensors, when it is detected that the change of attitude of the bucket is hindered by obstacles such as the ground, the bucket is automatically driven to the optimized trajectory to other work devices such as boom / arm You can change your posture.
  • the driving controller 120 may automatically set a preset bucket angle (for example, 10 °, etc.) and the current bucket angle at the time of automatic excavation. Compare the and, if more than the predetermined angle by moving the bucket cylinder to control the drive unit 140 so that the bucket angle is within the predetermined angle. If it is determined that the bucket is stuck to the ground or difficult to drive, the driving controller 120 controls the driving unit 140 to adjust the bucket angle by operating the boom, the arm and the bucket cylinder together to adjust the bucket angle.
  • a preset bucket angle for example, 10 °, etc.
  • the driving controller 120 After adjusting the bucket angle, if the position of the end of the bucket is changed, the driving controller 120 reads out new driving trace data from the data storage unit 150 at the changed position.
  • the driving controller 120 controls the work start point and the trajectory following to compensate for the position error according to the driving trajectory data stored in the storage unit 150 in order to perform the automatic excavation work, and adjusts the position error of the bucket end of the excavator.
  • the driving of the excavator can be controlled by compensating the gravity caused by the change of posture to minimize.
  • the driving controller 120 may apply the gravity compensation value calculated by the gravity compensation unit 130 to the driving control.
  • Each cylinder length data of the excavator can be replaced by the angle data of each link in the boom, arm and bucket.
  • the driving controller 120 stops the automatic operation and follows the generated new joystick signal to control the driving unit 140.
  • the driving controller 120 imports driving trajectory data (eg, joystick data (Joy_ref data) and cylinder length data (Cyl_ref data)) stored in the data storage unit 150.
  • the driving controller 120 adds the joystick signal O_Joy, the position error signal O_PI1, and the gravity compensation value Ga, and outputs the driving control signal Com_out to the driving unit 140.
  • the driving controller 120 obtains the joystick signal O_Joy from the joystick data Joy_ref data. In addition, the drive controller 120 obtains an error signal Er by subtracting the cylinder length signal and the currently measured signal from the cylinder length data Cyl_ref data. In addition, the driving controller 120 calculates the position error signal O_PI1 using the error signal Er through the PI controller.
  • the gravity compensator 130 calculates a gravity compensation value Ga by obtaining a mass moment of inertia caused by a change in posture of the current excavator. This is to minimize the position error of the bucket end by the change in the attitude of the excavator.
  • the driving controller 120 calculates the driving output value O_joy + O_PI1 + Ga, which is obtained by adding the joystick signal O_Joy, the position error signal O_PI1 and the gravity compensation value Ga. do.
  • the driving controller 120 converts the sum of the driving output values O_joy + O_PI1 + Ga into a driving control signal Com_out and outputs the driving control signal Com_out to the driving unit 140.
  • a new joystick signal is generated from the operation unit 110 for a predetermined time (for example, 0.3 sec.)
  • the driving control unit 120 considers the emergency situation to stop the automatic operation and the operation unit 110.
  • the driving unit 140 is controlled by following the joystick signal generated from the control unit.
  • FIG. 2 is an exemplary view illustrating a work trajectory control of a construction machine using a database according to the present invention.
  • the data storage unit 150 constructs and stores driving trajectory data at a coordinate 211 at which the bucket end is located as a database.
  • the data storage unit 150 designates the excavable bucket position as a position coordinate value, and stores driving trajectory data corresponding to the designated position coordinate value in a database.
  • the global position coordinates 210 are represented by (0, 0) to (x, y) in the database.
  • x and y represent the position coordinate which displayed the excavable position in a basic length unit. For example, it shows the maximum position coordinate which can be excavated among the areas which an excavator works.
  • the data storage unit 150 stores the driving trajectory data at the position coordinates 211 of the selected point.
  • the driving controller 120 requests the driving trajectory data for the corresponding position coordinates 211
  • the data storage unit 150 transmits the driving trajectory data for the corresponding position coordinates 211 to the driving control unit 120.
  • the driving trajectory data may include joystick data and cylinder length data transmitted from the driving controller 120 or angle data of each link of the boom, the arm and the bucket.
  • the present invention stores a track in which a worker rides on a work device (for example, an excavator and a wheel loader, etc.) and performs a certain operation in the work device (hereinafter, this work is called teaching), and a stored track (for example, The present invention relates to a work track control device for a construction machine capable of minimizing a position error when selecting a playback in which a work device is automatically driven by following a bucket end position).
  • a work track control device for a construction machine capable of minimizing a position error when selecting a playback in which a work device is automatically driven by following a bucket end position.
  • the work trace control apparatus 100 may operate in a teaching mode or a playback mode.
  • the operation unit 110 generates a joystick signal by the operator's operation, the operator can select the teaching mode and playback mode.
  • the teaching mode refers to a mode in which a worker teaches a work process of an excavator to learn a work process.
  • the work trace control apparatus 100 stores the joystick signal according to the joystick operation and each cylinder length data (hereinafter, referred to as 'drive data') of the driving unit 140.
  • the operator may start or end the teaching mode through the teaching start and end buttons provided in the operation unit 110 of the excavator.
  • the operation unit 110 transmits a joystick signal generated according to the operator's joystick operation to the driving controller 120 while the teaching mode is in operation.
  • the driving controller 120 receives the joystick signal from the operation unit 110 and controls the driving unit 140.
  • the driving controller 120 stores the driving data of the work device corresponding to the operator's operation and the trajectory data generated by processing the joystick signal in the data storage 150. That is, the driving controller 120 stores the joystick signal transmitted from the manipulation unit 110 as the joystick data in the data storage unit 150.
  • the driving controller 120 stores the cylinder length data of the boom, the arm and the bucket driven by the driving unit 140 or the angle data of each link in the boom, the arm and the bucket in the data storage unit 150.
  • the driving unit 140 drives the cylinders of the boom, the arm and the bucket according to the driving control of the driving control unit 120.
  • the playback mode refers to a mode in which the work trace control device 100 automatically plays back a stored work process in the teaching mode.
  • the data storage unit 150 stores trajectory data (eg, joystick data and cylinder length data) learned in the teaching mode.
  • the data storage unit 150 may store the joystick data and the angle data of each link of the boom, the arm, and the bucket as the trajectory data.
  • the driving controller 120 controls the driving unit 140 to automatically drive the work device by following the trajectory data stored in the teaching mode in the data storage unit 150.
  • the position of the work device is compared with the start position of the work device stored in the data storage unit 150.
  • the driving controller 120 controls the automatic driving to be started at the position at the time when the playback mode is selected.
  • This position error can be measured using any of the working tools.
  • a control method in which the position of the bucket, which can be said to be the center of the work by being in direct contact with the work surface during the operation of the excavation or the like, will be described as an example.
  • the playback mode can be controlled by comparing the position difference between the current position of the bucket end and the initial position of the preset bucket end.
  • the driving controller 120 controls the driving unit 140 to follow the previously stored driving trajectory as the time of automatic driving progresses. This is to allow the operation of the initially entered working range over time, even if the automatic drive is started at a point not desired by the driver. Meanwhile, the driving controller 120 compensates for a position error with the trajectory data stored in the data storage unit 150 while the driving device is automatically driven.
  • the driving of the excavator is controlled by compensating gravity corresponding to the posture of the working device to minimize the position error of the bucket end of the excavator.
  • the driving controller 120 updates the trajectory data by applying the gravity compensation value calculated by the gravity compensator 130, and controls the driving unit 140 based on the updated trajectory data.
  • each cylinder length data of the excavator can be replaced by the angle data of each link in the boom, arm and bucket.
  • the gravity compensator 130 calculates a gravity compensation value by obtaining a mass moment of inertia caused by a change in posture of the current excavator. This is to minimize the position error of the bucket end by the change in the attitude of the excavator.
  • This gravity compensation result is used to compensate for the discharge flow rate of the pump or the switching amount of the control valve, thereby enabling the operator to follow the drive speed of the initially intended work tool.
  • the operator may be configured to control the start / end of the playback mode through a playback start and end button provided in the operation unit 110.
  • the control method described above has been described as an example in which the operator needs to move the work device to the initial position of the desired work again when the playback mode is desired after the playback mode is completed.
  • the playback mode described above is not necessarily limited thereto. In other words, the case where the playback mode is selected to be automatically repeated is also applicable.
  • the control can be performed to automatically rework a portion that has not been performed at the start of the first playback mode as described above. This is done by having the work device automatically move from the teaching mode to the initial position of the stored work when the second iteration is repeated, and then resume the playback mode. According to this, even if the work device starts playback at an incorrect position due to immature operation of the work, when the repetitive work is progressed, there is an effect that the worker can work on the intended work area.
  • the work tool may be automatically set so that the bucket is located at the start point of the playback mode stored in the teaching mode. Control methods are also available.
  • the driving control unit 120 stops the playback mode and generates a new joystick signal generated by the operation unit 110.
  • the drive unit 140 By controlling the drive unit 140 according to it is preferable to be prepared in case of emergency.
  • FIG. 3 is a detailed configuration diagram of an apparatus for controlling a job trajectory in the playback mode according to the present invention.
  • the driving controller 120 controls the work start point and the trajectory estimation to compensate for the position error of the bucket when the playback button is selected, and minimizes the position error to compensate for the gravity caused by the change in posture of the work device.
  • the driving controller 120 measures the distance between the current position of the end of the bucket and the position of the end of the bucket where the teaching mode is started at the start of playback, and the difference value between the current position of the bucket end and the initial position of the preset bucket end. Is compared with a predetermined reference error (eg, 10 cm).
  • a predetermined reference error eg, 10 cm.
  • the operator starts the playback operation after placing the work device in the intended position.
  • the posture / position of the work device where the playback is started is different from the previously stored playback initial position. This is due to the fact that you have to.
  • the work device starts immediately at the position where the operator is operated, but is controlled to approach the taught driving trajectory as time passes. In this case, some of the work area intended by the operator may be unworked at the beginning of playback. In this case, if the playback is repeatedly performed, the work device is automatically positioned at the initial position taught during the next playback operation. This can be solved. On the other hand, if the posture / position of the work device where playback starts differs significantly from the previously stored playback initial position, it indicates that the playback operation is disabled and waits for an additional operator's operation, or moves the work device to the initial playback position. There is a method of automatically positioning and following the taught trajectory to proceed with the work. In this embodiment, for example, the playback operation is performed after moving the work device.
  • the driving controller 120 imports the pre-teached joystick data Joy_ref data and cylinder length data Cyl_ref data.
  • the driving controller 120 adds the joystick signal O_Joy, the position error signal O_PI1, and the gravity compensation value Ga, and outputs the driving control signal Com_out to the driving unit 140.
  • the driving controller 120 obtains the joystick signal O_Joy from the joystick data Joy_ref data. In addition, the drive controller 120 obtains an error signal Er by subtracting the cylinder length signal and the currently measured signal from the cylinder length data Cyl_ref data. In addition, the driving controller 120 calculates the position error signal O_PI1 using the error signal Er through the PI controller.
  • the gravity compensator 130 calculates a gravity compensation value Ga by obtaining a mass moment of inertia from a current posture of the work device.
  • the driving controller 120 calculates the driving output value O_joy + O_PI1 + Ga, which is obtained by adding the joystick signal O_Joy, the position error signal O_PI1 and the gravity compensation value Ga. do.
  • the driving controller 120 converts the sum of the driving output values O_joy + O_PI1 + Ga into a driving control signal Com_out and outputs the driving control signal Com_out to the driving unit 140.
  • the driving controller 120 If the joystick signal is generated more than a predetermined time (for example, 0.3 sec.) During the playback on the operation unit 110, the driving controller 120 considers the emergency situation and according to the joystick signal generated by the operation unit 110. The driving unit 140 controls the driving.
  • a predetermined time for example, 0.3 sec.
  • a work trajectory control method for a construction machine will be described by dividing it into a work trajectory control method for a construction machine using a database and a work trajectory control method in a teaching mode.
  • a work trajectory control method for a construction machine using a database will be described.
  • FIG. 4 is a flowchart illustrating a method for controlling a work trajectory of a construction machine using a database according to the present invention.
  • the operator places the work device at a desired position through a joystick or the like provided in the operation unit 110. And when the operator selects the automatic job start through the automatic job selection button provided in the operation unit 110, the automatic job of the working device is selected.
  • the work trajectory control apparatus 100 calculates a current position of the bucket and retrieves driving trajectory data at the position coordinates from a database (DB) (402).
  • DB database
  • the work trace control apparatus 100 compares the current attitude of the bucket with a preset reference attitude so that a difference between the current bucket angle and the bucket angle in the database at the current bucket position is determined to be a specific angle (eg, 10 °, etc.). It is checked whether or not (404).
  • a specific angle eg, 10 °, etc.
  • the work trajectory control device 100 changes the posture of the work device to the reference posture.
  • the work trajectory control device 100 is the current bucket angle to the initial bucket angle Move (406).
  • the angle of the initial bucket may be preset or set by an operator at an angle of the bucket desired to perform the excavation work. If the bucket is stuck to the ground or difficult to drive, the trajectory control device 100 may move the bucket by operating the boom, the arm and the bucket cylinder to adjust the bucket angle.
  • Such a non-moving state of the bucket can be determined by monitoring the change in the hydraulic pressure and posture change of each work device, and in this embodiment, various sensors for this purpose are installed in each hydraulic line and the joint part.
  • the work trajectory control apparatus 100 controls the driving of the work apparatus so that the work apparatus is automatically driven by importing trajectory data corresponding to the changed position of the work apparatus according to the change of posture from the database and following the read trajectory data. do.
  • the work trajectory control device 100 calculates the changed position of the bucket to drive the drive trajectory data of the position coordinates where the bucket end is located from the database. Recall (408).
  • the work trajectory control device 100 performs from the "410" process.
  • the work trajectory control apparatus 100 starts automatic excavation using the drive trajectory data at the current position according to the database loaded in the process “402” or “408” (410).
  • the work trace control apparatus 100 outputs one joystick signal stored every 10 ms at 10 ms intervals (412).
  • the work trace control apparatus 100 checks whether the error between the cylinder length stored for each cylinder and the currently measured cylinder length is equal to or greater than a preset cylinder length error value (for example, 5 cm, etc.) even in one cylinder among three cylinders. (416).
  • a preset cylinder length error value for example, 5 cm, etc.
  • the work trace control device 100 displays a job incapacity message to the worker And the trajectory control ends (418).
  • the work trajectory control device 100 calculates a compensation value Ga by obtaining a mass moment of inertia from the current posture of the work device, and adds the position error signal O_PI1 calculated in step 420 to compensate for gravity according to the posture.
  • the work trajectory control apparatus 100 adds the gravity compensation value Ga corresponding to the gravity compensation to the position error signal O_PI1 calculated in the process of 420, thereby providing more output. It is to let go.
  • the work trace control device 100 checks whether the execution length matches the buffer length stored in the data storage unit 150 (426).
  • the work trace control apparatus 100 outputs the driving output value calculated in step 424, and executes the process again from step 412. On the other hand, if the execution length coincides with the buffer length, the work trajectory control device 100 ends the trajectory control together with the operation completion message.
  • the task trajectory control device 100 regards the emergency situation and stops the automatic operation, and the new joystick signal stand To control the work tool.
  • FIG. 5 is a flowchart illustrating a work trace control method in the teaching mode according to the present invention.
  • the work trajectory control method includes at least one work device, a driving unit 140 for driving the work device, and an operation unit 110 for generating a joystick signal corresponding to an operator's operation, and a teaching mode and It is applied to the work trajectory control device 100 of the construction machine capable of selecting and operating the playback mode.
  • the work trajectory control apparatus 100 checks whether a start button signal for notifying teaching start is input by an operator (502).
  • the work trajectory control apparatus 100 stores the joystick signal generated by the operator's operation and driving data of the work apparatus as the trajectory data when the teaching mode is selected. That is, when the check result 502, the start button signal is input, the work trajectory control device 100 stores the angle at which the joystick is moved by the operator after the start button signal in a predetermined time unit (for example, 10 ms, etc.) The length of each cylinder of the boom, the arm and the bucket is sensed and stored (504). For example, the work trace control apparatus 100 may store the angle and the cylinder length of the joystick in units of 10 ms. Alternatively, the work trace control apparatus 100 may sense and store angles of each link of the boom, the arm, and the bucket.
  • a predetermined time unit for example, 10 ms, etc.
  • the work trajectory control device 100 can calculate the position of the bucket end kinematically by calculating the cylinder length of the boom, the arm and the bucket or the angle of each link. On the other hand, when the check result 502, the start button signal is not input, the work trajectory control device 100 continuously monitors whether the start button signal is input.
  • the work trace control apparatus 100 checks whether a completion button signal for instructing the teaching is input (506).
  • the work trajectory control device 100 stores the angle of the joystick and the cylinder length of the boom, the arm and the bucket stored to date as one trajectory data.
  • the completion button signal is not input, the work trajectory control apparatus 100 performs the process again from the "504" process of storing the trajectory data.
  • FIG. 6 is a flowchart illustrating a work trace control method in a playback mode according to the present invention.
  • the work trajectory control apparatus 100 checks whether a playback start button signal for informing the start of playback is input by an operator (602).
  • the work trajectory control device 100 measures the distance between the position of the current bucket end and the position of the bucket end where the teaching is started, and thus the current of the bucket end. It is checked whether the difference value between the position and the initial position of the preset bucket end exceeds a predetermined reference error (eg, 10 cm, etc.) (604). On the other hand, if the playback start button signal is not input by the operator, the work trajectory control device 100 performs the process "602" until the playback start button signal is input.
  • a predetermined reference error eg, 10 cm, etc.
  • the work trajectory control apparatus 100 controls the bucket to return the current position of the bucket end to the preset initial position. Move (606).
  • the work trajectory control apparatus 100 controls each actuator to move the bucket so that the position difference value of the bucket end is within 10 cm.
  • the difference in position is greater than the reference error
  • the work trajectory control device 100 returns to the position where the teaching mode is started after the first automatic work. Control the automatic operation after the return.
  • the work trajectory control device 100 at the current position The playback signal is output every 10ms so that the work device is automatically driven and used as the reference playback signal.
  • the initial position of the work device differs from the taught position by using the position compensation method as described below, once the playback operation is performed, the data is compensated to follow the taught trajectory as soon as possible and the work device is driven. We use for.
  • the work trace control apparatus 100 may bring the prestored joystick signal O_joy every 10 ms (608).
  • the work trace control apparatus 100 checks whether the error between the cylinder length stored for each cylinder and the currently measured cylinder length is equal to or greater than a preset cylinder length error value (for example, 5 cm, etc.) even in one cylinder among three cylinders. (612).
  • a preset cylinder length error value for example, 5 cm, etc.
  • the work trace control device 100 displays a job incapacity message to the worker The trajectory control is terminated (614).
  • the work trajectory control apparatus 100 calculates a compensation value Ga by obtaining a mass moment of inertia at the current posture, and in addition to the position error signal O_PI1 calculated in step 416, PI to which gravity compensation according to posture is applied.
  • the control signal O_PI O_PI1 + Ga is obtained (618).
  • excavators are heavy on booms, arms, and buckets, so the booms, arms, and buckets are all unfolded and the pressure required to move them all together is different. Therefore, the trajectory control device 100 compensates for the different states of gravity of the boom, the arm and the bucket to control more quickly and accurately.
  • the work trajectory control apparatus 100 adds the gravity compensation value Ga corresponding to the gravity compensation to the position error signal O_PI1 calculated in the “616” process, thereby providing more output. It is to let go.
  • the work trace control apparatus 100 may output the joystick output signal O_joy obtained in the process “608”, the position error signal O_PI1 in step 616 and the PI control signal O_PI calculated in the process “618” as the final output.
  • the work trace control apparatus 100 checks whether the execution length matches the buffer length stored in the data storage unit 150 (622).
  • the work trace control apparatus 100 outputs the driving output value calculated in step “622” and performs the process again from step “408”. On the other hand, if the execution length coincides with the buffer length, the work trajectory control device 100 ends the trajectory control together with the operation completion message.
  • the work trajectory control apparatus 100 controls the work apparatus to be driven by following the previously stored trajectory data when the playback mode is selected.
  • the work trajectory control device 100 compares the difference between the position of the work device at the time of selecting the playback mode and the start position at which the teaching mode is started, and is selected by the operator when the difference in position is smaller than the preset reference error.
  • An automatic operation of following the trajectory data is performed at the selected point of the playback mode, and the control is performed to follow the stored trajectory data as time passes.
  • the work trajectory control device 100 regards the emergency situation and performs driving control according to the joystick signal.
  • the present invention has an effect that the automatic operation can be performed by the operation trajectory at the point after the posture correction of the bucket, not the operation trajectory at the selection point in consideration of the current bucket attitude when selecting the automatic excavation.
  • the present invention can control the work start point and trajectory following to compensate for the position error when selecting the playback to follow the teaching trajectory, and can minimize the position error by compensating the gravity caused by the posture change of the work device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Position Or Direction (AREA)
  • Manipulator (AREA)

Abstract

본 발명은 건설 기계의 작업궤적 제어 장치 및 그 방법에 관한 것으로서, 상세하게는 자동 작업 선택시 선택 시점에서의 가장 적절한 작업 궤적으로 자동 작업이 가능한 건설기계의 궤적 제어 장치 및 그 방법과, 티칭 궤적을 추종하도록 플레이백 선택시 위치 오차를 보상하도록 작업 시작점 및 궤적 추종을 제어하고, 작업장치의 자세 변화에 의한 중력을 보상하여 위치 오차를 최소화시킬 수 있는, 건설기계의 궤적 제어 장치 및 그 방법에 관한 것이다.

Description

건설기계의 작업궤적 제어 장치 및 그 방법
본 발명은 건설 기계의 작업궤적 제어 장치 및 그 방법에 관한 것으로서, 상세하게는 자동 작업 선택시 선택 시점에서의 가장 적절한 작업 궤적으로 자동 작업이 가능한 건설기계의 궤적 제어 장치 및 그 방법에 관한 것이다.
일반적으로, 굴삭기는 각 작업장치(예컨대, 붐, 암 및 버킷 등)와, 각 작업장치를 구동하기 위한 붐 실린더, 암 실린더 및 버킷 실린더와, 굴삭기 몸체의 선회동작을 위한 선회모터와, 각 실린더에 동력원인 압유를 공급하기 위한 원동기 및 유압펌프로 구성된다. 굴삭기는 굴삭, 배토, 정지 작업 등 여러 가지 작업을 수행하는 유압식 건설기계이다.
굴삭기는 유압탱크에서 흡입된 유압유가 메인펌프에 의해 토출된 후, 조이스틱의 조작에 따라 절환되는 컨트롤밸브에 의해 붐 실린더, 암 실린더 및 버킷 실린더에 공급되는 유량 및 유압이 조절되어 액추에이터 즉, 붐, 암 및 버킷 등을 작동시켜 작업자가 원하는 작업을 가능하게 한다.
굴삭기로 여러 가지 작업을 하기 위하여, 작업자는 각 작업에 따라 각 작업장치의 조이스틱을 숙련된 동작으로 동시 조작하여야만 하기 때문에 고도의 숙련 조작이 요구된다. 굴삭 환경은 매우 열악하고 위험하기 때문에, 점차 작업자의 수동 조작이 아닌 소정 제어 알고리즘을 이용하여 자동으로 제어되는 지능형 굴삭기에 대한 연구가 필요한 상황이다. 즉, 미숙련자도 쉽게 수행할 수 있도록 하는 자동 굴삭 방안이 필요한 실정이다.
지능형 굴삭기는 단순 반복적인 굴삭 작업을 인력이 아닌 자동으로 수행함으로써 노동비 절감을 꾀하고, 사고 위험을 줄일 수 있다. 이에 대한 일환으로, 작업자가 자동화된 굴삭 작업을 위해서는 각종 센서를 통해 굴삭 환경에 대한 정보를 실시간으로 입력받는 것이 필수적이다.
작업자가 굴삭기로 여러 가지 작업을 하기 위하여, 작업자는 각 작업에 따라 각 작업장치의 조이스틱을 숙련된 동작으로 동시에 조작하여야만 하기 때문에 고도의 숙련 조작이 요구된다.
특히, 동일한 작업을 반복적으로 수행하는 경우, 작업자가 고도의 숙련 조작을 동일하게 반복함으로써, 많은 시간 동안 집중력을 요구하게 되어 작업의 효율이 떨어질 수 있다. 또한, 작업자의 숙련이 부족하여 조이스틱의 오조작에 의해 일정 궤적에서 크게 벗어나게 되는 경우에 동일한 작업을 다시 수행해야 하는 문제점이 있다. 전술한 바와 같이, 신뢰성이 있게 동일한 작업을 반복적으로 수행하면서도 굴삭 환경에 따라 능동적으로 대처하고 동일한 작업을 반복적으로 설정하고, 이를 자동으로 반복 작업하는 궤적 제어 기술이 절실히 필요한 상황이다.
본 발명은 상기의 문제점을 해결하기 위해 창안된 것으로서, 자동 작업 선택시 선택 시점에서의 가장 적절한 작업 궤적으로 자동 작업이 가능한 건설기계의 궤적 제어 장치 및 그 방법을 제공하는 것을 목적으로 한다.
즉, 본 발명은, 자동 굴삭 선택시 현재의 버킷 자세를 고려하여 선택 지점에서의 작업 궤적이 아닌 버킷의 자세 수정 후 지점에서의 작업 궤적으로 자동 작업을 수행할 수 있는, 데이터 베이스를 이용한 건설 기계의 작업궤적 제어 장치 및 그 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은, 작업자가 지정한 티칭 궤적을 추종하도록 자동 작업이 이루어지는 경우 위치 오차를 최소화시킬 수 있는 티칭 및 플레이백을 이용한 건설기계의 작업궤적 제어 장치 및 그 방법을 제공하는 것을 목적으로 한다.
본 발명의 제1 측면에 따른 장치는, 적어도 하나의 작업장치와, 상기 작업장치를 구동시키기 위한 구동부를 포함하는 건설기계의 작업궤적 제어 장치에 있어서, 작업자의 조작에 의한 조이스틱 신호를 발생시키는 조작부; 자동작업의 시작시 구동될 상기 작업장치가 추종할 상기 작업장치의 구동궤적 데이터가 저장된 데이터 저장부; 및 상기 자동작업의 시작시, 상기 데이터 저장부에 저장된 상기 작업장치의 궤적 데이터를 독출하고, 상기 작업장치가 상기 독출된 구동궤적 데이터를 추종하여 구동되도록 상기 구동부를 제어하는 구동 제어부;를 포함하며, 상기 구동 제어부는, 상기 자동작업의 선택시, 상기 작업장치의 실체 위치가 상기 데이터 저장부에 저장된 작업장치의 구동이 시작되는 위치와 기 설정된 작업장치의 구동이 시작되는 위치가 기준 오차 이내의 차이가 나는 경우, 상기 자동작업 선택 시점에서의 위치에서 자동 구동이 시작되도록 제어하되 상기 자동 구동이 진행되는 시간이 경과될수록 상기 기 저장된 구동 궤적을 추종하도록 상기 구동부를 제어하는 것이 특징으로 한다.
한편, 본 발명의 제2 측면에 따른 방법은, 적어도 하나의 작업장치와, 상기 작업장치를 구동시키기 위한 구동부 및 작업자의 조작에 대응하는 조이스틱 신호를 발생시키는 조작부를 포함하는 건설기계의 작업궤적 제어 방법에 있어서, 자동작업의 선택여부를 확인하는 단계; 상기 자동작업 선택시 상기 작업장치의 실제 위치를 기 설정된 자동작업 시작 위치를 비교하여 그 차이를 기 설정된 기준 오차와 비교하는 단계;를 포함하며, 상기 비교결과 상기 작업장치의 실제 위치가 상기 기 설정된 자동작업 시작 위치와의 차이가 상기 기준 오차보다 작은 경우, 기 설정된 작업장치의 궤적 데이터를 독출하고, 상기 작업장치의 실체 위치부터 시작되는 자동작업을 위한 궤적 데이터를 생성시킨 후 상기 자동작업을 시작하되, 상기 새로운 궤적 데이터는 시간이 경과될수록 상기 기 설정된 작업장치의 궤적 데이터를 추종하도록 생성되는 것을 특징으로 한다.
본 발명은, 자동 작업 선택시 현재의 작업장치 자세를 고려한 자동 작업이 가능하여, 자동 작업 시작시 불량한 작업장치의 자세에 의해 자동작업이 비효율적으로 진행되는 것을 방지할 수 있다.
아울러, 자동 작업 선택 기능을 통해 미숙련 운전자라 하더라도 용이하게 작업을 진행할 수 있는 효과가 있다.
또한, 본 발명은, 티칭 궤적을 추종하도록 플레이백 선택시 위치 오차를 보상함으로써 작업자가 원하는 궤적으로 작업장치를 구동시킬 수 있다.
아울러, 플레이백 선택 시점에서의 작업장치 위치가 작업자에 의해 학습된 티칭 궤적의 시작지점과 상이하더라도, 그 차이가 크지 않은 경우 작업자가 원하는 작업영역의 작업을 빠른 시간내에 진행할 수 있다.
또한, 작업장치의 자세 변화에 의한 중력의 변화를 보상하여 위치 오차를 최소화시킬 수 있는 효과가 있다.
도 1 은 본 발명에 따른 건설 기계의 작업궤적 제어 장치의 일실시예 구성도,
도 2 는 본 발명에 따른 데이터 베이스를 이용한 건설 기계의 작업궤적 제어에 대한 일실시예 예시도,
도 3 은 본 발명에 따른 플레이백 모드인 경우 작업궤적 제어 장치의 일실시예 상세구성도,
도 4 는 본 발명에 따른 데이터 베이스를 이용한 건설 기계의 작업궤적 제어 방법에 대한 일실시예 흐름도,
도 5 는 본 발명에 따른 티칭 모드에서의 작업궤적 제어 방법에 대한 일실시예 흐름도,
도 6 은 본 발명에 따른 플레이백 모드에서의 작업궤적 제어 방법에 대한 일실시예 흐름도이다.
< 도면의 주요 부분에 대한 부호의 설명 >
100: 작업궤적 제어 장치 110: 조작부
120: 구동 제어부 130: 중력 보상부
140: 구동부 150: 데이터 저장부
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세하게 설명한다. 본 발명의 구성 및 그에 따른 작용 효과는 이하의 상세한 설명을 통해 명확하게 이해될 것이다. 본 발명의 상세한 설명에 앞서, 동일한 구성요소에 대해서는 다른 도면 상에 표시되더라도 가능한 동일한 부호로 표시하며, 공지된 구성에 대해서는 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 구체적인 설명은 생략하기로 함에 유의한다.
도 1 은 본 발명에 따른 건설 기계의 작업궤적 제어 장치의 일실시예 구성도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 작업궤적 제어 장치(100)는 조작부(110), 구동 제어부(120), 중력 보상부(130), 구동부(140) 및 데이터 저장부(150)를 포함한다. 여기서, 작업궤적 제어 장치(100)는 건설기계의 작업궤적을 제어하며, 적어도 하나의 작업장치와, 그 작업장치의 구동을 위한 구동부(140)를 포함한다. 본 발명에 따른 건설 기계의 작업궤적 제어 장치를 자동 작업시 작업장치의 위치가 기 설정된 기준값보다 위치 오차가 큰 경우와 작은 경우로 나누어서 설명하고, 데이터 베이스를 이용한 건설 기계의 작업궤적 제어 장치로 동작하는 경우와 티칭 및 플레이백을 이용한 건설 기계의 작업궤적 제어 장치로 동작하는 경우를 설명하기로 한다. 또한, 본 발명이 작업장치 중에서 굴삭기에 적용되는 일례를 설명하기로 한다.
우선, 본 발명에 따른 데이터 베이스를 이용한 건설 기계의 작업궤적 제어 장치부터 살펴보면 다음과 같다.
데이터 저장부(150)에는 작업장치의 각 위치별로 해당 위치에서 자동 작업이 시작되도록 기 설정된 작업장치의 구동궤적 데이터가 저장된다. 즉, 데이터 저장부(150)는 굴삭기 버킷 끝단의 위치 좌표별로 구동궤적 데이터를 데이터 베이스로 구축하여 저장한다. 여기서, 구동궤적 데이터에는 조이스틱 데이터 및 실린더 길이 데이터 또는 붐, 암 및 버킷의 각 링크의 각도 데이터를 포함한다. 본 실시예에서는 상술한 구동 궤적 데이터의 기준이 버킷의 위치인 경우를 일례로 설명한 것이다. 하지만, 본 발명은 꼭 이에 한정되지 않으며, 붐, 암 등 다양한 작업장치를 기준으로 궤적 데이터를 형성시킬 수 있다. 다만, 본 실시예에서와 같이 버킷이 궤적 데이터의 기준이 되는 경우, 실제로 작업되는 피작업면과 직접 접촉되는 버킷의 이동 궤적이 운전자가 의도하는 작업 영역과 매우 유사하므로, 본 실시예에서와 같이 버킷의 위치를 중심으로 하여 제어가 되도록 하는 것이 보다 바람직하다고 할 수 있다.
굴삭기의 구동궤적 데이터를 살펴보면, 데이터 저장부(150)는 굴삭기 버킷 끝단의 위치 좌표를 기준으로 시작될 수 있는 위치 좌표별 구동궤적 데이터를 저장하며, 버킷 끝단이 위치할 수 있는 모든 지점에서의 구동궤적 데이터를 포함할 수 있다. 또한, 구동궤적 데이터는 작업 수행에 바람직한 버킷 각도를 기준으로 데이터 베이스화되어 저장되어 있다. 굴삭기 출고 당시에 각 포인트별로 굴삭과 관련된 구동궤적 데이터가 데이터 베이스화될 수 있다. 이러한 위치에 따른 구동 궤적 데이터는 아래와 같은 일례에 의해 설정될 수 있다. 우선, 버킷의 끝단이 작업을 위해 구동되는 영역을 소정 크기의 영역으로 나눈다. 각각의 영역의 중심에 버킷의 끝단이 위치하는 자세에서 굴삭, 평면 다지기, 트랜칭 작업 등이 이루어질 것을 각각 예상하여 이에 따른 궤적 데이터를 미리 기억해 놓는 것이다.
조작부(110)는 작업자의 조작에 따라, 자동작업 시작 선택 여부에 대한 정보 및 자동작업이 시작되는 시점의 작업장치의 위치정보를 구동 제어부(120)로 출력한다. 여기서, 조작부(110)는 구비된 조이스틱 또는 자동작업 시작 버튼 등을 구비할 수 있다. 이 경우 작업자 조작에 따라 조이스틱 신호 또는 자동작업 버튼 신호 등을 출력한다.
구동 제어부(120)는 자동작업의 선택시, 작업장치의 현재 위치에 대응되는 구동궤적 데이터를 데이터 저장부(150)로부터 독출하고, 작업장치가 데이터 저장부(150)로부터 독출된 구동궤적 데이터를 추종하여 구동되도록 구동부(140)를 제어한다.
즉, 구동 제어부(120)는, 자동작업의 선택시, 작업장치의 자세를 확인한다. 상기 자세 확인 결과, 작업장치의 자세가 곧바로 지정된 작업을 수행할 수 없는 자세인 경우, 구동 제어부(120)는 작업장치가 지정된 작업을 수행할 수 있는 자세로 변경되도록 구동부(140)를 제어한다. 반면, 작업장치의 자세가 곧바로 지정된 작업을 수행할 수 있는 자세인 경우, 구동 제어부(120)는 자세 변경에 의한 작업장치의 새로운 위치가 기 설정된 기준값보다 크게 변경되는지 여부를 확인한다.
이어서, 상기 기준값 확인 결과, 기 설정된 기준값보다 크게 변경된 경우, 구동 제어부(120)는 버킷이 자세 변경에 의해 변경된 새로운 위치에 대응되는 새로운 구동궤적 데이터를 데이터 저장부(150)로부터 독출한 후 새로운 구동궤적 데이터를 추종하여 작업장치가 구동되도록 구동부(140)를 제어한다. 반면, 상기 기준값 확인 결과, 기 설정된 기준값보다 크게 변경되지 않은 경우, 구동 제어부(120)는 초기 선택된 위치에 대응되는 구동궤적 데이터를 추종하여 작업장치가 구동되도록 구동부(140)를 제어한다.
작업장치 중에서 버킷을 구비한 굴삭기를 일례로 살펴보면, 구동 제어부(120)는 자동작업의 시작시 버켓 자세를 확인한다. 상기 자세 확인 결과, 버켓의 자세가 기준 자세와 유사한 경우, 작업자가 선택한 시점에서의 구동궤적 데이터를 추종하도록 구동부(140)를 제어한다. 반면, 버켓의 자세가 기준 자세와 차이가 많이 나는 경우, 구동 제어부(120)는 버켓의 자세를 변경한다. 구동 제어부(120)는 현재의 버킷 각도를 고려하여 작업자가 선택한 지점에서 버킷 각도를 기준 버킷 각도로 변경한다.
그리고 구동 제어부(120)는 버켓의 자세 변경에 의한 위치 변경을 확인한다. 여기서, 굴삭기는 버킷을 포함하며, 구동 제어부(120)는 버킷의 자세를 기준으로 굴삭기의 자세 변경 여부를 판단한다. 상기 위치 변경 확인 결과, 위치 변경이 큰 차이가 없는 경우, 구동 제어부(120)는 초기 선택된 궤적 데이터를 최종적으로 추종하도록 구동부(140)를 제어한다. 반면, 위치 변경이 큰 차이가 있는 경우, 구동 제어부(120)는 변경된 위치에 대응되는 새로운 구동궤적 데이터를 데이터 저장부(150)로부터 독출한 후 새로운 구동궤적 데이터를 추종하도록 구동부(140)를 제어한다. 여기서, 새로운 구동궤적 데이터의 독출 여부는 버킷의 자세 변경에 대응되는 버킷의 위치 변경에 대응하여 선택된다.
이러한 경우, 구동 제어부(120)는 다양한 센서를 구비함으로써 지면 등과 같은 장애물에 의해 버켓의 자세 변경이 방해되는 것이 감지될 경우, 붐/암과 같은 다른 작업장치들까지 최적화된 궤적으로 자동 구동되어 버켓의 자세를 변경시킬 수 있다.
한편, 작업궤적 제어 장치(100)에서 미리 설정된 버킷 각도가 10°인 경우를 구체적으로 살펴보면, 구동 제어부(120)는 자동 굴삭시, 기설정된 버킷의 각도(예컨대, 10° 등)와 현재 버킷 각도를 비교하고, 기설정된 각도 이상이면 버킷 실린더를 움직여 버킷 각도가 기설정된 각도 이내가 되도록 구동부(140)를 제어한다. 만약, 버킷이 지면에 붙어 있거나 구동되기 어려운 상황으로 판단되면, 구동 제어부(120)는 버킷 각도를 맞추기 위하여 붐, 암 및 버킷 실린더를 함께 작동하여 버킷 각도를 맞추도록 구동부(140)를 제어한다.
버킷 각도를 맞춘 후, 만약 버킷 끝단의 위치가 변경되었다면 구동 제어부(120)는 변경된 위치에서의 새로운 구동궤적 데이터를 데이터 저장부(150)로부터 독출한다.
이후, 구동 제어부(120)는 자동 굴삭 작업을 수행하기 위하여, 저장부(150)에서 저장된 구동궤적 데이터에 따라 위치 오차를 보상하도록 작업 시작점 및 궤적 추종을 제어하되, 굴삭기의 버킷 끝단의 위치 오차를 최소화하도록 자세 변화에 의한 중력을 보상하여 굴삭기의 구동을 제어할 수 있다. 여기서, 구동 제어부(120)는 중력 보상부(130)에서 계산된 중력 보상값을 구동 제어에 적용할 수 있다. 굴삭기의 각 실린더 길이 데이터는 붐, 암 및 버킷에서 각 링크의 각도 데이터로 대체될 수 있다. 여기서, 구동 제어부(120)는 조작부(110)로부터 자동작업 진행 중 새로운 조이스틱 신호가 소정의 시간 동안 발생하면, 자동작업을 중단하고 그 발생된 새로운 조이스틱 신호를 추종하여 구동부(140)를 제어한다.
자동 굴삭시, 구동 제어부(120)는 데이터 저장부(150)에 저장된 구동궤적 데이터(예컨대, 조이스틱 데이터(Joy_ref data) 및 실린더 길이 데이터(Cyl_ref data))를 가져온다. 그리고 구동 제어부(120)는 조이스틱 신호(O_Joy), 위치 오차 신호(O_PI1) 및 중력 보상값(Ga)을 합산하고 구동 제어 신호(Com_out)를 구동부(140)로 출력한다.
이러한 구동 제어 신호(Com_out)의 출력 과정을 구체적으로 살펴보면, 구동 제어부(120)는 조이스틱 데이터(Joy_ref data)로부터 조이스틱 신호(O_Joy)를 가져온다. 또한, 구동 제어부(120)는 실린더 길이 데이터(Cyl_ref data)로부터 실린더 길이 신호와 현재 측정된 신호를 감산하여 오차 신호(Er)를 구한다. 그리고 구동 제어부(120)는 오차 신호(Er)를 PI 제어기를 통해 위치 오차 신호(O_PI1)를 계산한다.
중력 보상부(130)는 현재 굴삭기의 자세 변화에 의한 질량 관성 모멘트를 구하여 중력 보상값(Ga)을 계산한다. 이는 굴삭기의 자세 변화에 의한 버킷 끝단의 위치 오차를 최소화하기 위함이다.
중력 보상값(Ga)이 결정되면, 구동 제어부(120)는 조이스틱 신호(O_Joy), 위치 오차 신호(O_PI1) 및 중력 보상값(Ga)을 합산한 구동 출력 값(O_joy+O_PI1+Ga)을 계산한다. 그리고 구동 제어부(120)는 합산한 구동 출력 값(O_joy+O_PI1+Ga)을 구동 제어 신호(Com_out)로 변환하여 구동부(140)로 출력한다.
만약, 자동굴삭 진행 중에 조작부(110)로부터 새로운 조이스틱 신호가 기설정된 시간(예컨대, 0.3 sec 등) 동안 발생되면, 구동 제어부(120)는 긴급 상황으로 간주하여 자동작업을 중단하고, 조작부(110)로부터 발생된 조이스틱 신호를 추종하여 구동부(140)를 제어한다.
도 2 는 본 발명에 따른 데이터 베이스를 이용한 건설 기계의 작업궤적 제어에 대한 일실시예 예시도이다.
도 2에 도시된 바와 같이, 데이터 저장부(150)는 버킷 끝단이 위치한 좌표(211)에서의 구동궤적 데이터를 데이터 베이스로 구축하여 저장한다. 데이터 저장부(150)는 굴삭가능한 버킷 위치를 위치 좌표값으로 지정하고, 그 지정된 위치 좌표값에 해당하는 구동궤적 데이터를 데이터 베이스로 저장한다. 여기서, 데이터 베이스에는 전체 위치 좌표(210)가 (0, 0) 내지 (x, y)로 표시되어 있다. 여기서, x, y는 굴삭 가능한 위치를 기본 길이 단위로 표시한 위치 좌표를 나타낸다. 예를 들면, 굴삭기가 작업하는 영역 중 굴삭 작업가능한 최대 위치 좌표를 나타낸다.
데이터 저장부(150)는 선택 지점의 위치 좌표(211)에서의 구동궤적 데이터를 저장하고 있다. 구동 제어부(120)가 해당 위치 좌표(211)에 대한 구동궤적 데이터를 요청하면, 데이터 저장부(150)는 해당 위치 좌표(211)에 대한 구동궤적 데이터를 구동 제어부(120)로 전달한다. 여기서, 구동궤적 데이터에는 구동 제어부(120)로부터 전달된 조이스틱 데이터 및 실린더 길이 데이터 또는 붐, 암 및 버킷의 각 링크의 각도 데이터를 포함할 수 있다.
한편, 본 발명에 따른 도 1의 건설 기계의 작업궤적 제어 장치(100)가 티칭 및 플레이백을 이용한 건설 기계의 작업궤적 제어 장치로 동작하는 경우 각 구성요소에 대해서 살펴보기로 한다.
본 발명은 작업자가 작업장치(예컨대, 굴삭기 및 휠로더 등)에 탑승하여 일정 동작을 수행한 궤적을 작업장치에 기억시키고(이후로는 본 작업을 티칭(Teaching)이라 칭한다), 저장된 궤적(예컨대, 버킷 끝단 위치)을 추종하여 자동으로 작업장치가 구동되는 플레이백 선택시 위치 오차를 최소화 시킬 수 있는 건설기계의 작업궤적 제어 장치 및 그 방법에 관한 것이다. 이하, 본 발명이 작업장치 중에서 굴삭기에 적용되는 일례를 설명하기로 한다.
작업궤적 제어 장치(100)는 티칭 모드(Teaching Mode) 또는 플레이백 모드(Playback Mode)로 동작하게 된다. 여기서, 조작부(110)는 작업자의 조작에 의한 조이스틱 신호를 발생시키고, 작업자가 티칭모드 및 플레이백 모드의 선택조작이 가능하다.
첫째, 티칭 모드는 작업자가 굴삭기의 작업 과정을 티칭하여 작업 과정을 학습시키는 모드를 의미한다. 티칭 모드에서 작업자가 조이스틱을 조작하면, 작업궤적 제어 장치(100)는 조이스틱 조작에 따른 조이스틱 신호 및 구동부(140)의 각 실린더 길이 데이터(이하, '구동 데이터'라 함)를 저장한다. 여기서, 작업자는 굴삭기의 조작부(110)에 구비된 티칭 시작 및 종료 버튼 등을 통해 티칭 모드를 시작하거나 종료시킬 수 있다.
티칭 모드를 구체적으로 살펴보면, 조작부(110)는 티칭 모드가 동작하는 동안, 작업자의 조이스틱 조작에 따라 발생하는 조이스틱 신호를 구동 제어부(120)로 전달한다. 이때, 구동 제어부(120)는 조작부(110)로부터 조이스틱 신호를 전달받아 구동부(140)를 구동제어한다. 또한, 구동 제어부(120)는 티칭 모드의 선택시, 작업자의 조작에 대응되는 작업장치의 구동 데이터와 상기 조이스틱 신호를 처리하여 생성된 궤적 데이터를 데이터 저장부(150)에 저장한다. 즉, 구동 제어부(120)는 조작부(110)로부터 전달된 조이스틱 신호를 데이터 저장부(150)에 조이스틱 데이터로 저장시킨다. 또한, 구동 제어부(120)는 구동부(140)에 의해 구동되는 붐, 암 및 버킷의 실린더 길이 데이터 또는 붐, 암 및 버킷에서 각 링크의 각도 데이터를 데이터 저장부(150)에 저장시킨다.
구동부(140)는 구동 제어부(120)의 구동 제어에 따라 붐, 암 및 버킷의 실린더를 구동시킨다.
둘째, 플레이백 모드는 작업궤적 제어 장치(100)가 티칭 모드에서 저장된 작업 과정을 자동으로 플레이백하는 모드를 말한다.
데이터 저장부(150)는 티칭 모드에서 학습된 궤적 데이터(예컨대, 조이스틱 데이터 및 각 실린더 길이 데이터)를 저장하고 있다. 또한, 데이터 저장부(150)는 궤적 데이터로서, 조이스틱 데이터 및 붐, 암 및 버킷의 각 링크의 각도 데이터를 저장할 수 있다.
구동 제어부(120)는 플레이백 모드의 선택시, 데이터 저장부(150)에 티칭모드에서 저장된 궤적 데이터를 추종하여 작업장치가 자동으로 구동되도록 구동부(140)를 제어한다. 우선, 플레이백 모드가 선택된 시점에서는 작업장치의 위치가 데이터 저장부(150)에 저장된 작업장치의 시작 위치를 비교한다. 비교결과 위치의 차이가 기 설정된 기준 오차 이내인 경우, 구동 제어부(120)는 플레이백 모드가 선택된 시점에서의 위치에서 자동 구동이 시작되도록 제어한다. 이러한 위치 오차의 측정은 작업장치들 중 어느 것을 이용하여도 측정이 가능하다. 본 실시예에서는 굴삭 등의 작업시 직접 피작업면과 접촉되어 작업의 중심이 된다고 할 수 있는 버킷의 위치를 제어 기준으로 설정한 제어방법을 예를 들어 설명한다. 즉, 버킷 끝단의 현재 위치와 기설정된 버킷 끝단의 초기위치 간의 위치 차이를 비교함으로써 플레이백 모드의 제어가 가능하게 되는 것이다. 이때, 구동 제어부(120)는 자동 구동이 진행되는 시간이 경과할 수록 기 저장된 구동 궤적을 추종하도록 구동부(140)를 제어한다. 이는 자동 구동이 비록 운전자가 원하지 않았던 지점에서 시작되더라도 시간이 지날수록 최초에 입력된 작업범위의 작업을 가능하게 하기 위함이다. 한편, 구동 제어부(120)는 작업 장치의 자동 구동이 진행되는 중 데이터 저장부(150)에서 저장된 궤적 데이터와의 위치 오차를 보상한다. 본 실시예에서는 굴삭기의 버킷 끝단의 위치 오차를 최소화하도록 작업장치의 자세에 대응하는 중력을 보상하여 굴삭기의 구동을 제어한다. 여기서, 구동 제어부(120)는 중력 보상부(130)에서 계산된 중력 보상값을 적용하여 궤적 데이터를 갱신하고, 그 갱신된 궤적 데이터를 기준으로 구동부(140)를 제어한다. 궤적 데이터 중에서 굴삭기의 각 실린더 길이 데이터는 붐, 암 및 버킷에서 각 링크의 각도 데이터로 대체될 수 있다. 중력 보상부(130)는 현재 굴삭기의 자세 변화에 의한 질량 관성 모멘트를 구하여 중력 보상값을 계산한다. 이는 굴삭기의 자세 변화에 의한 버킷 끝단의 위치 오차를 최소화하기 위함이다. 이러한 중력 보상 결과는 펌프의 토출 유량 또는 콘트롤 밸브의 절환량을 보상하는데 사용됨으로써 작업자가 최초에 의도한 작업장치의 구동속도의 추종을 가능하게 한다. 작업자는 이러한 플레이백 모드의 시작/종료는 조작부(110)에 구비된 플레이백 시작 및 종료 버튼 등을 통해 제어가 가능하게 구성될 수 있다.
앞서 설명한 제어방법은 플레이백 모드가 완료된 후 다시 플레이백 모드를 사용하고 싶은 경우, 작업자가 다시 원하는 작업의 초기 위치로 작업장치를 이동시켜야 하는 경우를 일례로 들어 설명하였다. 하지만, 상술한 플레이백 모드는 반드시 이에 한정되는 것은 아니다. 즉, 플레이백 모드가 자동으로 반복되게 선택하는 경우도 그 적용이 가능한 것이다. 이렇게 플레이백 모드가 자동으로 반복되는 경우, 앞서 설명한 바와 같이 최초의 플레이백 모드의 시작시 작업을 하지 못한 부분을 자동으로 재작업할 수 있도록 제어가 가능하다. 이는 2번째 반복될 때 작업장치가 자동으로 티칭모드에서 저장된 작업의 초기 위치로 자동으로 이동하게 한 후 다시 플레이백 모드가 진행되도록 하면 되는 것이다. 이에 따르면, 작업의 조작 미숙에 의해 작업장치가 부정확한 위치에서 플레이백이 시작되더라도 반복작업이 진행되면 작업자가 의도한 작업영역의 작업을 할 수 있게 하는 효과가 있다.
한편, 플레이백 모드의 시작시 위치 오차가 기 설정된 기준 오차보다 큰 경우, 운전자가 의도한 작업영역의 자동 작업이 불가능하다는 이유로 플레이백 모드가 시작될 수 없음을 고지하고 운전자의 조작신호가 다시 입력되는 것을 기다리게 할 수 있다. 이와는 반대로 작업장치가 능동적으로 작업을 가능하게 하기 위해서는, 상술한 위치 오차가 기준 오차보다 클 경우, 작업장치 보다 상세하게는 버켓이 티칭모드에서 저장된 플레이백 모드 시작 지점에 위치하도록 각 작업장치를 자동제어하는 방법도 사용이 가능하다.
이상과 같은 플레이백 모드 상태에서, 조작부(110)로부터 작업자에 의한 새로운 조이스틱 신호가 소정의 시간 동안 발생하면, 구동 제어부(120)는 플레이백 모드를 중지하고 조작부(110)에서 발생된 새로운 조이스틱 신호에 따라 구동부(140)를 제어함으로써 유사시를 대비할 수 있도록 하는 것이 바람직하다.
도 3 은 본 발명에 따른 플레이백 모드인 경우 작업궤적 제어 장치의 일실시예 상세구성도이다.
구동 제어부(120)는 플레이백 버튼 선택시 버킷의 위치 오차를 보상하도록 작업 시작점 및 궤적 추정을 제어하고, 작업장치의 자세 변화에 의한 중력을 보상하도록 위치 오차를 최소화시킨다.
즉, 구동 제어부(120)는 플레이백 시작시, 현재 버킷 끝단의 위치와 티칭 모드가 시작된 버킷 끝단의 위치와의 거리를 측정하고, 버킷 끝단의 현재 위치와 기설정된 버킷 끝단의 초기위치 간의 차이값을 기설정된 기준 오차(예컨대, 10cm 등)와 비교하는 과정이 포함된다. 이는 통상적으로 작업자가 작업장치를 의도한 위치에 위치시킨 후 플레이백 작업을 시작하게 되는데, 이렇게 플레이백 작업이 시작되는 경우 플레이백이 시작되는 작업장치의 자세/위치와 기 저장된 플레이백 초기위치가 상이할 수 밖에 없는 점을 감안한 것이다. 상술한 바와 같이 초기위치의 차이값이 기준 오차보다 작은 경우 플레이백이 시작되면, 작업장치는 작업자의 조작에 의해 위치한 위치에서 곧바로 시작하되 시간이 경과될 수록 티칭된 구동 궤적에 근접하도록 제어된다. 이 경우, 플레이백 초기에 작업자가 의도한 작업영역 중 일부가 미작업된 상태일 수가 있는데, 이러한 경우는 플레이백이 반복적으로 이루어질 경우, 차기 플레이백 작업시 자동으로 티칭된 초기위치로 작업장치를 위치시킴으로써 해결할 수 있게 된다. 한편, 플레이백이 시작되는 작업장치의 자세/위치가 기 저장된 플레이백 초기위치와 차이가 많이 나는 경우, 플레이백 작업의 불능을 표시하고 추가적인 작업자의 조작을 기다리거나, 플레이백 초기위치로 작업장치를 자동으로 위치시킨 후 티칭된 궤적을 추종하여 작업을 진행할 수 있게 하는 방법이 있다. 본 실시예에서는 작업장치를 이동시킨 후 플레이백 작업이 진행되도록 하는 것을 일례로 설명한다.
플레이백 시작 후, 구동 제어부(120)는 미리 티칭된 조이스틱 데이터(Joy_ref data) 및 실린더 길이 데이터(Cyl_ref data)를 가져온다. 그리고 구동 제어부(120)는 조이스틱 신호(O_Joy), 위치 오차 신호(O_PI1) 및 중력 보상값(Ga)을 합산하고 구동 제어 신호(Com_out)를 구동부(140)로 출력한다.
이러한 구동 제어 신호(Com_out)의 출력 과정을 구체적으로 살펴보면, 구동 제어부(120)는 조이스틱 데이터(Joy_ref data)로부터 조이스틱 신호(O_Joy)를 가져온다. 또한, 구동 제어부(120)는 실린더 길이 데이터(Cyl_ref data)로부터 실린더 길이 신호와 현재 측정된 신호를 감산하여 오차 신호(Er)를 구한다. 그리고 구동 제어부(120)는 오차 신호(Er)를 PI 제어기를 통해 위치 오차 신호(O_PI1)를 계산한다.
중력 보상부(130)는 작업장치의 현재 자세에서 질량 관성 모멘트를 구하여 중력 보상값(Ga)을 계산한다.
중력 보상값(Ga)이 결정되면, 구동 제어부(120)는 조이스틱 신호(O_Joy), 위치 오차 신호(O_PI1) 및 중력 보상값(Ga)을 합산한 구동 출력 값(O_joy+O_PI1+Ga)을 계산한다. 그리고 구동 제어부(120)는 합산한 구동 출력 값(O_joy+O_PI1+Ga)을 구동 제어 신호(Com_out)로 변환하여 구동부(140)로 출력한다.
만약, 조작부(110)에서 플레이백 수행 도중에 조이스틱 신호가 기설정된 시간(예컨대, 0.3 sec 등) 이상 발생하면, 구동 제어부(120)는 긴급 상황으로 간주하고 조작부(110)에서 발생된 조이스틱 신호에 따라 구동부(140)를 구동 제어한다.
한편, 본 발명에 따른 건설 기계의 작업궤적 제어 방법을 데이터 베이스를 이용한 건설 기계의 작업궤적 제어 방법과 티칭 모드에서의 작업궤적 제어 방법으로 나누어서 설명하기로 한다. 우선, 데이터 베이스를 이용한 건설 기계의 작업궤적 제어 방법에 대해서 설명하기로 한다.
도 4 는 본 발명에 따른 데이터 베이스를 이용한 건설 기계의 작업궤적 제어 방법에 대한 일실시예 흐름도이다.
우선, 작업장치의 자동 작업의 선택 과정을 살펴보면, 작업자가 조작부(110)에 구비된 조이스틱 등을 통해 작업장치를 원하는 위치에 위치시킨다. 그리고 작업자가 조작부(110)에 구비된 자동작업 선택 버튼 등을 통해 자동작업 시작을 선택하면, 작업장치의 자동작업이 선택된다.
자동작업 선택 후, 작업궤적 제어 장치(100)는 버킷의 현재 위치를 계산하여 그 위치 좌표에서의 구동궤적 데이터를 데이터 베이스(DB: Database)로부터 불러온다(402).
그리고 작업궤적 제어 장치(100)는 버킷의 현재 자세와 기 설정된 기준 자세를 비교하여, 현재 버킷의 위치에서 현재 버킷 각도와 데이터 베이스에서의 버킷 각도 간의 차이가 특정 각도(예컨대, 10° 등)를 초과하는지 여부를 확인한다(404).
상기 비교 결과에 따라, 작업궤적 제어 장치(100)는 작업 장치의 자세를 기준 자세로 변경시킨다.
기준 자세로의 변경 과정을 구체적으로 살펴보면, 상기 확인 결과(404), 현재 버킷과 초기 버킷 각도 간의 차이가 특정 각도를 초과하면, 작업궤적 제어 장치(100)는 현재 버킷의 각도를 초기 버킷 각도로 이동시킨다(406). 여기서, 초기 버킷의 각도란 굴삭 작업을 수행하기에 바람직한 버킷의 각도로 기설정되거나 작업자에 의해 설정될 수 있다. 만약, 버킷이 지면에 붙어 있거나 구동되기 어려운 상황이면, 작업궤적 제어 장치(100)는 버킷 각도를 맞추기 위하여 붐, 암 및 버킷 실린더를 작동하여 버킷을 이동시킬 수 있다. 이러한 버킷의 이동 불가 상황은 각 작업장치의 유압의 변동 및 자세 변동을 감시함으로써 판단이 가능하며, 본 실시예에서는 이를 위한 각종 센서가 각 유압라인 및 관절부 등에 설치된다.
작업궤적 제어 장치(100)는 자세의 변경에 따른 작업장치의 변경 위치에 대응되는 궤적 데이터를 데이터 베이스로부터 가져와서, 독출된 궤적 데이터를 추종하여 작업장치가 자동으로 구동되도록 작업 장치의 구동을 제어한다.
즉, 현재 버킷이 초기 버킷의 각도로 이동된 후 버킷 끝단의 위치가 변경되었다면, 작업궤적 제어 장치(100)는 버킷의 변경된 위치를 계산하여 버킷 끝단이 위치한 위치 좌표의 구동궤적 데이터를 데이터 베이스로부터 불러온다(408).
반면, 상기 확인 결과(404), 현재 버킷과 초기 버킷 각도 간의 차이가 특정 각도 이하이면, 작업궤적 제어 장치(100)는 "410" 과정부터 수행한다.
이후, 작업궤적 제어 장치(100)는 "402" 과정 또는 "408" 과정에서 불러온 데이터 베이스에 따라 현재 위치에서의 구동궤적 데이터를 이용하여 자동 굴삭을 시작한다(410).
작업궤적 제어 장치(100)는 10ms 간격으로 저장된 조이스틱 신호를 10ms 마다 하나씩 출력한다(412).
그리고 작업궤적 제어 장치(100)는 각 실린더별로 저장된 실린더 길이 데이터(Cyl_ref)와 현재 측정된 데이터(Cyl_cur) 간의 오차(Er=Cyl_ref-Cyl_cur)를 계산한다(414).
이어서, 작업궤적 제어 장치(100)는 3개의 실린더 중에서 1개의 실린더라도 각 실린더별로 저장된 실린더 길이와 현재 측정된 실린더 길이 간의 오차가 기설정된 실린더 길이 오차값(예컨대, 5cm 등) 이상인지 여부를 확인한다(416).
상기 확인 결과(416), 기준 실린더 길이와 현재 측정된 실린더 길이 간의 오차가 기설정된 실린더 길이 오차값(예컨대, 5cm 등) 이상이면, 작업궤적 제어 장치(100)는 작업 수행 불능 메시지를 작업자에게 표시하고 궤적 제어를 종료한다(418).
반면, 상기 확인 결과(416), 기준 실린더 길이와 현재 측정된 실린더 길이 간의 오차가 기설정된 실린더 길이 오차값(예컨대, 5cm 등) 미만이면, 작업궤적 제어 장치(100)는 이를 비례적분(PI: Proportional Integral) 제어기를 통하여 피드백 제어를 수행하기 위하여 위치 오차 신호(O_PI1=Kp*Er+Ki*sum(Er))를 계산한다(420).
이후, 작업궤적 제어 장치(100)는 작업장치의 현재 자세에서 질량 관성 모멘트를 구하여 보상값(Ga)을 계산하고, "420" 과정에서 계산된 위치 오차 신호(O_PI1)와 더하여 자세에 따른 중력 보상이 적용된 PI 제어 신호(O_PI=O_PI1+Ga)를 구한다(422). 예를 들어, 굴삭기는 붐, 암 및 버킷의 무게가 무겁기 때문에, 붐, 암 및 버킷이 모두 펼쳐진 상태와 모두 모여 있는 경우 이를 움직이는데 필요한 압력이 다르다. 그러므로 작업궤적 제어 장치(100)는 붐, 암 및 버킷의 중력이 다른 상태를 보상하여 더욱 빠르고 정확하게 제어한다. 즉, 붐, 암 및 버킷이 펼쳐진 경우, 작업궤적 제어 장치(100)는 "420" 과정에서 계산된 위치 오차 신호(O_PI1)에 중력 보상에 해당하는 중력 보상값(Ga)을 더하여 더욱 많은 출력이 나갈 수 있게 하는 것이다.
그리고 작업궤적 제어 장치(100)는 최종 출력으로 "412" 과정에서 가져온 조이스틱 출력 신호(O_joy), "420" 과정에서 위치 오차 신호(O_PI1) 및 "422" 과정에서 계산된 PI 제어 신호(O_PI)를 더하여 구동 출력 값(O_co=O_joy+O_PI1+Ga)을 계산한다(424).
작업궤적 제어 장치(100)는 수행 길이가 데이터 저장부(150)에 저장된 버퍼 길이와 일치하는지 여부를 확인한다(426).
상기 확인 결과(426), 수행 길이가 버퍼 길이와 일치하지 않으면, 작업궤적 제어 장치(100)는 "424" 과정에서 계산된 구동 출력 값을 출력하고, "412" 과정부터 다시 수행한다. 반면, 수행 길이가 버퍼 길이와 일치하면, 작업궤적 제어 장치(100)는 작동 완료 메시지와 함께 궤적 제어를 종료한다.
만약, 작업궤적 제어 도중, 작업자에 의한 새로운 조이스틱 신호가 기설정된 시간(예컨대, 0.3 sec 등) 동안 발생되면, 작업궤적 제어 장치(100)는 긴급 상황으로 간주하고 자동 작업을 중단하고, 새로운 조이스틱 신호대로 작업장치를 제어할 수 있다.
한편, 본 발명에 따른 티칭 및 플레이백을 이용한 건설기계의 작업궤적 제어 방법 중에서 티칭 모드에서의 작업궤적 제어 방법에 대해서 살펴보기로 한다.
도 5 는 본 발명에 따른 티칭 모드에서의 작업궤적 제어 방법에 대한 일실시예 흐름도이다.
본 발명에 따른 작업궤적 제어 방법은 적어도 하나의 작업장치와, 상기 작업장치를 구동시키기 위한 구동부(140) 및 작업자의 조작에 대응하는 조이스틱 신호를 발생시키는 조작부(110)를 포함하며, 티칭 모드 및 플레이백 모드의 선택 조작이 가능한 건설 기계의 작업궤적 제어 장치(100)에 적용된다.
작업궤적 제어 장치(100)는 작업자에 의해 티칭 시작을 알리는 시작 버튼 신호가 입력되는지 여부를 확인한다(502).
작업궤적 제어 장치(100)는 티칭 모드 선택시 작업자의 조작에 의해 발생되는 조이스틱 신호 및 작업장치의 구동 데이터를 궤적 데이터로 저장한다. 즉, 상기 확인 결과(502), 시작 버튼 신호가 입력되면, 작업궤적 제어 장치(100)는 시작 버튼 신호 이후에 작업자에 의해 조이스틱이 움직이는 각도를 기설정된 시간 단위(예컨대, 10ms 등)로 저장하며, 붐, 암 및 버킷의 각 실린더 길이를 센싱하여 저장한다(504). 예를 들면, 작업궤적 제어 장치(100)는 10ms 단위로 조이스틱의 각도 및 실린더 길이를 저장할 수 있다. 또는, 작업궤적 제어 장치(100)는 붐, 암 및 버킷의 각 링크의 각도를 센싱하여 저장할 수 있다. 여기서, 작업궤적 제어 장치(100)는 붐, 암 및 버킷의 실린더 길이 또는 각 링크의 각도를 계산함으로써, 기구학적으로 버킷 끝단의 위치를 계산할 수 있다. 반면, 상기 확인 결과(502), 시작 버튼 신호가 입력되지 않는 경우에, 작업궤적 제어 장치(100)는 시작 버튼 신호의 입력 여부를 지속적으로 모니터링한다.
이후, 작업궤적 제어 장치(100)는 티칭 종료를 알리는 완료 버튼 신호가 입력되는지 여부를 확인한다(506).
상기 확인 결과(506), 완료 버튼 신호가 입력되면, 작업궤적 제어 장치(100)는 현재까지 저장된 조이스틱의 각도 및 붐, 암 및 버킷의 실린더 길이를 하나의 궤적 데이터로 저장한다. 반면, 완료 버튼 신호가 입력되지 않는 경우에, 작업궤적 제어 장치(100)는 궤적 데이터를 저장하는 "504" 과정부터 다시 수행한다.
도 6 은 본 발명에 따른 플레이백 모드에서의 작업궤적 제어 방법에 대한 일실시예 흐름도이다.
작업궤적 제어 장치(100)는 작업자에 의해 플레이백 시작을 알리는 플레이백 시작 버튼 신호가 입력되는지 여부를 확인한다(602).
상기 확인 결과(602), 작업자에 의해 플레이백 시작 버튼 신호가 입력되면, 작업궤적 제어 장치(100)는 현재 버킷 끝단의 위치와 티칭이 시작된 버킷 끝단의 위치와의 거리를 측정하여 버킷 끝단의 현재 위치와 기설정된 버킷 끝단의 초기위치 간의 차이값이 기설정된 기준 오차(예컨대, 10cm 등)를 초과하는지 여부를 확인한다(604). 반면, 작업자에 의해 플레이백 시작 버튼 신호가 입력되지 않으면, 작업궤적 제어 장치(100)는 플레이백 시작 버튼 신호가 입력되기 전까지 "602" 과정부터 수행한다.
상기 확인 결과(604), 버킷 끝단의 현재 위치와 초기위치 간이 위치 차이값이 기설정된 기준 오차 이상이면, 작업궤적 제어 장치(100)는 버킷을 제어하여 버킷 끝단의 현재 위치를 기설정된 초기위치로 이동시킨다(606). 작업궤적 제어 장치(100)는 버킷 끝단의 위치 차이값이 10cm 이내가 되도록 각 엑츄에이터를 제어하여 버킷을 이동시킨다. 여기서, 위치의 차이가 기준 오차보다 큰 상태에서 플레이백 모드 선택에 의한 자동작업이 반복적으로 이루어지도록 선택된 경우, 작업궤적 제어 장치(100)는 작업장치가 1차 자동 작업 이후 티칭 모드가 시작된 위치로 복귀 후 자동 작업이 진행되도록 제어한다.
반면, 상기 확인 결과(604), 버킷 끝단의 현재 위치와 초기위치 간의 위치 차이값이 기설정된 기준 오차 미만 즉, 버킷 끝단의 위치가 10cm 이내로 들어오면, 작업궤적 제어 장치(100)는 현재 위치에서 작업장치가 자동으로 구동되도록 10ms 마다 플레이백 신호를 출력하여 기준 플레이백 신호로 이용한다. 이때, 아래와 같은 위치 보상 방법을 이용하여 작업장치의 초기위치가 티칭된 위치와 차이가 있더라도, 일단 플레이백 작업이 진행되면 최대한 빠른 시간 내에 티칭된 궤적을 추종하도록 데이터를 보상하여 이를 작업장치의 구동에 이용한다.
구체적으로 살펴보면, 작업궤적 제어 장치(100)는 미리 저장된 조이스틱 신호(O_joy)를 10ms 마다 가져온다(608).
그리고 작업궤적 제어 장치(100)는 각 실린더별로 저장된 실린더 길이 데이터(Cyl_ref)와 현재 측정된 데이터(Cyl_cur) 간의 오차(Er=Cyl_ref-Cyl_cur)를 계산한다(610).
이어서, 작업궤적 제어 장치(100)는 3개의 실린더 중에서 1개의 실린더라도 각 실린더별로 저장된 실린더 길이와 현재 측정된 실린더 길이 간의 오차가 기설정된 실린더 길이 오차값(예컨대, 5cm 등) 이상인지 여부를 확인한다(612).
상기 확인 결과(612), 기준 실린더 길이와 현재 측정된 실린더 길이 간의 오차가 기설정된 실린더 길이 오차값(예컨대, 5cm 등) 이상이면, 작업궤적 제어 장치(100)는 작업 수행 불능 메시지를 작업자에게 표시하고 궤적 제어를 종료한다(614).
반면, 상기 확인 결과(612), 기준 실린더 길이와 현재 측정된 실린더 길이 간의 오차가 기설정된 실린더 길이 오차값(예컨대, 5cm 등) 미만이면, 작업궤적 제어 장치(100)는 이를 비례적분(PI: Proportional Integral) 제어기를 통하여 피드백 제어를 수행하기 위하여 위치 오차 신호(O_PI1=Kp*Er+Ki*sum(Er))를 계산한다(616).
이후, 작업궤적 제어 장치(100)는 현재 자세에서 질량 관성 모멘트를 구하여 보상값(Ga)을 계산하고, "416" 과정에서 계산된 위치 오차 신호(O_PI1)와 더하여 자세에 따른 중력 보상이 적용된 PI 제어 신호(O_PI=O_PI1+Ga)를 구한다(618). 예를 들어, 굴삭기는 붐, 암 및 버킷의 무게가 무겁기 때문에, 붐, 암 및 버킷이 모두 펼쳐진 상태와 모두 모여 있는 경우 이를 움직이는데 필요한 압력이 다르다. 그러므로 작업궤적 제어 장치(100)는 붐, 암 및 버킷의 중력이 다른 상태를 보상하여 더욱 빠르고 정확하게 제어한다. 즉, 붐, 암 및 버킷이 펼쳐진 경우, 작업궤적 제어 장치(100)는 "616" 과정에서 계산된 위치 오차 신호(O_PI1)에 중력 보상에 해당하는 중력 보상값(Ga)을 더하여 더욱 많은 출력이 나갈 수 있게 하는 것이다.
그리고 작업궤적 제어 장치(100)는 최종 출력으로 "608" 과정에서 가져온 조이스틱 출력 신호(O_joy), "616 과정에서 위치 오차 신호(O_PI1) 및 "618" 과정에서 계산된 PI 제어 신호(O_PI)를 더하여 구동 출력 값(O_co=O_joy+O_PI1+Ga)을 계산하여 작업장치를 제어한다(620). 즉, 작업궤적 제어 장치(100)는 작업장치의 자세 변환에 따른 중력 변화를 이용한 중력 보상값을 계산하고, 그 계산된 중력 보상값을 적용하여 작업장치가 티칭 모드에서 저장된 궤적 데이터에 포함된 작업장치의 구동속도를 추종하도록 제어할 수 있다.
작업궤적 제어 장치(100)는 수행 길이가 데이터 저장부(150)에 저장된 버퍼 길이와 일치하는지 여부를 확인한다(622).
상기 확인 결과(622), 수행 길이가 버퍼 길이와 일치하지 않으면, 작업궤적 제어 장치(100)는 "622" 과정에서 계산된 구동 출력 값을 출력하고, "408" 과정부터 다시 수행한다. 반면, 수행 길이가 버퍼 길이와 일치하면, 작업궤적 제어 장치(100)는 작동 완료 메시지와 함께 궤적 제어를 종료한다.
전술된 바와 같이, 작업궤적 제어 장치(100)는 플레이백 모드의 선택시 기 저장된 궤적 데이터를 추종하여 작업장치가 구동되도록 제어한다. 이때, 작업궤적 제어 장치(100)는 플레이백 모드의 선택 시점에서의 작업장치의 위치와 티칭 모드가 시작된 시작 위치의 차이를 비교하여, 위치의 차이가 기 설정된 기준 오차보다 작은 경우 작업자에 의해 선택된 플레이백 모드의 선택 지점에서 궤적 데이터를 추종하는 자동 작업을 진행시키되, 시간이 경과될 수록 상기 저장된 궤적 데이터를 추종하도록 제어한다.
만약, 궤적 제어 도중, 사용자에 의한 조이스틱 신호가 기설정된 시간(예컨대, 0.3 sec 등) 이상 입력되면, 작업궤적 제어 장치(100)는 긴급 상황으로 간주하고 조이스틱 신호대로 구동 제어한다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술적 사상에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서 본 발명의 명세서에 개시된 실시 예들은 본 발명을 한정하는 것이 아니다. 본 발명의 범위는 아래의 특허청구범위에 의해 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술도 본 발명의 범위에 포함되는 것으로 해석해야 할 것이다.
본 발명은 자동 굴삭 선택시 현재의 버킷 자세를 고려하여 선택 지점에서의 작업 궤적이 아닌 버킷의 자세 수정 후 지점에서의 작업 궤적으로 자동 작업을 수행할 수 있는 효과가 있다. 또한, 본 발명은 티칭 궤적을 추종하도록 플레이백 선택시 위치 오차를 보상하도록 작업 시작점 및 궤적 추종을 제어하고, 작업장치의 자세 변화에 의한 중력을 보상하여 위치 오차를 최소화시킬 수 있다.

Claims (16)

  1. 적어도 하나의 작업장치와, 상기 작업장치를 구동시키기 위한 구동부를 포함하는 건설기계의 작업궤적 제어 장치에 있어서,
    작업자의 조작에 의한 조이스틱 신호를 발생시키는 조작부;
    자동작업의 시작시 구동될 상기 작업장치가 추종할 상기 작업장치의 구동궤적 데이터가 저장된 데이터 저장부; 및
    상기 자동작업의 시작시, 상기 데이터 저장부에 저장된 상기 작업장치의 궤적 데이터를 독출하고, 상기 작업장치가 상기 독출된 구동궤적 데이터를 추종하여 구동되도록 상기 구동부를 제어하는 구동 제어부;를 포함하며,
    상기 구동 제어부는,
    상기 자동작업의 선택시, 상기 작업장치의 실체 위치가 상기 데이터 저장부에 저장된 작업장치의 구동이 시작되는 위치와 기 설정된 작업장치의 구동이 시작되는 위치가 기준 오차 이내의 차이가 나는 경우, 상기 자동작업 선택 시점에서의 위치에서 자동 구동이 시작되도록 제어하되 상기 자동 구동이 진행되는 시간이 경과될수록 상기 기 저장된 구동 궤적을 추종하도록 상기 구동부를 제어하는 것이 특징으로 하는 건설기계의 작업궤적 제어 장치.
  2. 제 1 항에 있어서,
    상기 데이터 저장부는 상기 작업장치의 각 위치별로 자동작업시 구동될 상기 작업장치의 구동궤적 데이터가 저장되고,
    상기 구동 제어부는, 상기 자동작업의 선택시 상기 작업장치의 자세가 곧바로 지정된 작업을 수행할 수 없는 자세인 경우, 상기 작업장치가 상기 지정된 작업을 수행할 수 있는 자세로 변경되도록 제어하고, 상기 자세 변경에 의한 상기 작업장치의 새로운 위치가 기 설정된 위치가 기 설정된 기준 오차보다 큰 경우, 상기 새로운 위치에 대응되는 새로운 구동궤적 데이터를 독출한 후 상기 새로운 구동궤적 데이터를 추종하여 상기 작업장치가 구동되도록 상기 구동부를 제어하는 것을 특징으로 하는 건설기계의 작업궤적 제어장치.
  3. 제 2 항에 있어서,
    상기 작업장치는 버킷을 포함하며, 상기 구동 제어부는 상기 버킷의 자세를 기준으로 상기 작업장치의 자세 변경 여부를 판단하고, 상기 새로운 구동궤적 데이터의 독출 여부는 상기 버킷의 자세 변경에 대응되는 상기 버킷의 위치 변경량에 대응하여 선택되는 것을 특징으로 하는 건설기계의 작업궤적 제어장치.
  4. 제 1 항에 있어서,
    상기 구동 제어부는, 상기 자동작업의 선택시 상기 작업장치의 자세가 곧바로 지정된 작업을 수행할 수 없는 자세인 경우, 상기 작업장치가 상기 지정된 작업을 수행할 수 있는 자세로 변경되도록 제어하고, 상기 자세 변경에 의한 상기 작업장치의 새로운 위치가 기 설정된 위치가 기 설정된 기준 오차보다 큰 경우, 상기 작업장치의 구동이 시작되는 위치로 상기 작업장치의 위치를 변경시킨 후 상기 기 저장된 구동 궤적을 추종하도록 상기 구동부를 제어하는 것을 특징으로 하는 건설기계의 작업궤적 제어장치.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 작업장치는 버킷을 포함하며, 상기 구동 제어부는 상기 버킷의 위치를 기준으로 상기 작업장치의 상기 기 설정된 구동궤적 데이터를 독출하는 것을 특징으로 하는 건설기계의 작업궤적 제어장치.
  6. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 구동 제어부는, 상기 자동작업 진행 중 상기 조작부로부터 새로운 조이스틱 신호가 소정의 시간 동안 발생되면, 상기 자동작업을 중단하고 상기 발생된 새로운 조이스틱 신호를 추종하여 상기 구동부를 제어하는 것을 특징으로 하는 건설기계의 작업궤적 제어장치.
  7. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 구동 제어부는 상기 작업장치의 자세에 의한 중력 보상값을 계산하기 위한 중력 보상부;를 더 포함하는 것을 특징으로 하는 건설기계의 작업궤적 제어장치.
  8. 제 1 항에 있어서,
    상기 조작부는, 티칭모드 및 플레이백 모드의 선택조작이 더 가능하며,
    상기 구동제어부는, 상기 티칭 모드의 선택시 상기 작업자의 조작에 대응되는 상기 궤적 데이터를 상기 데이터 저장부에 저장하고, 상기 플레이백 모드의 선택시 상기 데이터 저장부에 저장된 상기 작업장치의 궤적 데이터를 추종하여 상기 작업장치가 자동으로 구동되도록 상기 구동부를 제어하는 것을 특징으로 하는 건설기계의 작업궤적 제어장치.
  9. 제 8 항에 있어서,
    상기 작업자의 플레이백 모드 선택시, 상기 작업장치의 버킷 끝단의 현재 위치와 기설정된 버킷 끝단의 초기위치 간의 위치 차이를 비교하여 상기 버킷의 끝단을 상기 기설정된 초기위치로 이동시킨 후 기 저장된 구동 궤적을 추종하여 자동 작업이 되도록 상기 구동부를 제어하는 건설기계의 작업궤적 제어 장치.
  10. 제 8 항 또는 제 9 항에 있어서,
    상기 구동 제어부는, 상기 자동작업 진행 중 상기 조작부로부터 새로운 조이스틱 신호가 소정의 시간 동안 발생되면, 상기 자동작업을 중단하고 상기 발생된 새로운 조이스틱 신호를 추종하여 상기 구동부를 제어하는 것을 특징으로 하는 건설기계의 작업궤적 제어장치.
  11. 제 8 항 또는 제 9 항에 있어서,
    상기 작업장치의 자세에 대응되는 중력 보상값을 산출하는 중력 보상부;를 더 포함하며,
    상기 구동 제어부는 상기 중력 보상값을 적용하여 상기 궤적 데이터를 갱신하여 상기 갱신된 궤적 데이터를 기준으로 상기 구동부를 제어하는 것을 특징으로 하는 건설기계의 작업궤적 제어 장치.
  12. 적어도 하나의 작업장치와, 상기 작업장치를 구동시키기 위한 구동부 및 작업자의 조작에 대응하는 조이스틱 신호를 발생시키는 조작부를 포함하는 건설기계의 작업궤적 제어 방법에 있어서,
    자동작업의 선택여부를 확인하는 단계;
    상기 자동작업 선택시 상기 작업장치의 실제 위치를 기 설정된 자동작업 시작 위치를 비교하여 그 차이를 기 설정된 기준 오차와 비교하는 단계;를 포함하며,
    상기 비교결과 상기 작업장치의 실제 위치가 상기 기 설정된 자동작업 시작 위치와의 차이가 상기 기준 오차보다 작은 경우, 기 설정된 작업장치의 궤적 데이터를 독출하고, 상기 작업장치의 실체 위치부터 시작되는 자동작업을 위한 궤적 데이터를 생성시킨 후 상기 자동작업을 시작하되, 상기 새로운 궤적 데이터는 시간이 경과될수록 상기 기 설정된 작업장치의 궤적 데이터를 추종하도록 생성되는 것을 특징으로 하는 건설기계의 작업궤적 제어 방법.
  13. 제 12 항에 있어서,
    상기 기준 오차와 비교하는 단계는,
    복수의 작업장치 중 적어도 하나의 현재 자세와 기 설정된 기준 자세를 비교하는 자세 비교 단계; 및
    상기 비교 결과에 따라 상기 작업장치의 자세를 상기 기준 자세로 변경시키는 자세 변경 단계;를 더 포함하며,
    상기 작업장치의 실체 위치는 상기 자세의 변경에 따른 상기 작업장치의 변경 위치로 수정되는 것을 특징으로 하는 건설기계의 작업궤적 제어 방법.
  14. 제 13 항에 있어서,
    상기 작업장치의 위치 변경의 판단은, 상기 작업장치가 작업을 위해 구동가능한 가상의 영역을 복수의 영역으로 나눈 후, 상기 작업장치가 자세의 변경에 의해 최초에 위치한 영역에서 다른 영역으로의 이동여부를 기준으로 판단하며,
    상기 구동궤적 데이터들은 상기 복수의 영역 각각에 대응되게 상기 데이터 베이스에 저장되어 있는 것을 특징으로 하는 건설기계의 작업궤적 제어 방법.
  15. 제 14 항에 있어서,
    상기 건설기계는 운전자의 조작에 의해 티칭 모드 및 플레이백 모드의 선택이 가능하며,
    상기 자동작업 선택여부를 확인하는 단계는,
    상기 작업자의 조작에 의해 발생되는 조이스틱 신호 및 상기 작업장치의 구동 데이터를 궤적 데이터로 저장하는 상기 티칭 모드 선택 단계와, 상기 티칭 모드 선택 단계에서 저장된 상기 궤적 데이터를 추정하여 상기 자동 작업이 시작되도록 선택하는 플레이백 단계 선택 단계를 포함하는 것을 특징으로 하는 건설기계의 작업궤적 제어 방법.
  16. 제 12 항 내지 제 15 항 중 어느 한 항에 있어서,
    상기 궤적 플레이백 단계에서, 상기 작업장치의 자세 변환에 따른 중력 변화를 이용한 중력 보상값을 계산하고, 상기 계산된 중력 보상값을 적용하여 상기 작업장치가 상기 티칭 모드에서 저장된 궤적 데이터에 포함된 작업장치의 구동속도를 추종하도록 제어하는 것을 특징으로 하는 건설기계의 작업궤적 제어 방법.
PCT/KR2011/004604 2010-06-23 2011-06-23 건설기계의 작업궤적 제어 장치 및 그 방법 WO2011162561A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180030686.3A CN102947513B (zh) 2010-06-23 2011-06-23 建筑机械的作业轨迹控制装置及其方法
US13/805,558 US20130103247A1 (en) 2010-06-23 2011-06-23 Apparatus and Method for Controlling Work Trajectory of Construction Equipment
EP11798396.5A EP2586918A4 (en) 2010-06-23 2011-06-23 APPARATUS AND METHOD FOR CONTROLLING A WORKING TRACK OF A CONSTRUCTION MACHINE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0059363 2010-06-23
KR10-2010-0059364 2010-06-23
KR1020100059364A KR101715940B1 (ko) 2010-06-23 2010-06-23 티칭 및 플레이백을 이용한 건설기계의 작업궤적 제어 장치 및 그 방법
KR1020100059363A KR101716499B1 (ko) 2010-06-23 2010-06-23 데이터 베이스를 이용한 건설기계의 작업궤적 제어 장치 및 그 방법

Publications (2)

Publication Number Publication Date
WO2011162561A2 true WO2011162561A2 (ko) 2011-12-29
WO2011162561A3 WO2011162561A3 (ko) 2012-05-03

Family

ID=45371969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004604 WO2011162561A2 (ko) 2010-06-23 2011-06-23 건설기계의 작업궤적 제어 장치 및 그 방법

Country Status (4)

Country Link
US (1) US20130103247A1 (ko)
EP (1) EP2586918A4 (ko)
CN (1) CN102947513B (ko)
WO (1) WO2011162561A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170056560A (ko) * 2014-09-18 2017-05-23 스미토모 겐키 가부시키가이샤 쇼벨

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2012000933A1 (es) 2011-04-14 2014-07-25 Harnischfeger Tech Inc Un metodo y una pala de cable para la generacion de un trayecto ideal, comprende: un motor de oscilacion, un motor de izaje, un motor de avance, un cucharon para excavar y vaciar materiales y, posicionar la pala por medio de la operacion del motor de izaje, el motor de avance y el motor de oscilacion y; un controlador que incluye un modulo generador de un trayecto ideal.
JP5707313B2 (ja) 2011-12-19 2015-04-30 日立建機株式会社 作業車両
US9043098B2 (en) * 2012-10-05 2015-05-26 Komatsu Ltd. Display system of excavating machine and excavating machine
KR20150054566A (ko) * 2013-11-12 2015-05-20 삼성에스디아이 주식회사 비밀 번호 설정 장치 및 방법
US9234329B2 (en) * 2014-02-21 2016-01-12 Caterpillar Inc. Adaptive control system and method for machine implements
JP5856685B1 (ja) * 2014-06-02 2016-02-10 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
CN104619921B (zh) 2014-09-10 2016-10-12 株式会社小松制作所 作业车辆及作业车辆的控制方法
EP3168373B1 (en) * 2014-11-14 2019-07-10 Caterpillar Inc. A machine with a system for improving safety
AR104232A1 (es) * 2015-04-13 2017-07-05 Leica Geosystems Pty Ltd Compensación dinámica del movimiento en maquinarias
JP6618072B2 (ja) * 2015-08-28 2019-12-11 キャタピラー エス エー アール エル 作業機械
JP6666142B2 (ja) * 2015-12-25 2020-03-13 株式会社小松製作所 作業車両および作業車両の制御方法
JP6740025B2 (ja) * 2016-06-17 2020-08-12 住友重機械工業株式会社 ショベル
CN106836364B (zh) * 2017-01-17 2019-02-12 大连理工大学 智能挖掘机的自动控制系统及最优轨迹规划方法
CN107527074B (zh) 2017-09-05 2020-04-07 百度在线网络技术(北京)有限公司 用于车辆的图像处理方法和装置
CN107882103B (zh) * 2017-10-26 2019-09-10 南京工业大学 一种挖掘机三维姿态显示及远程自动控制系统
WO2019123511A1 (ja) * 2017-12-18 2019-06-27 住友重機械工業株式会社 ショベル
WO2019189624A1 (ja) * 2018-03-30 2019-10-03 住友建機株式会社 ショベル
EP3561183B1 (en) * 2018-04-26 2022-04-06 Komatsu Ltd. Hydraulic control system, work machine and method for controlling operation of a work attachment
DE102018208642A1 (de) * 2018-05-30 2019-12-05 Robert Bosch Gmbh Verfahren zur automatisierten Steuerung eines Baggers
CN108643275A (zh) * 2018-06-06 2018-10-12 马鞍山松鹤信息科技有限公司 一种挖掘机轨迹规划与控制系统
JP7188940B2 (ja) * 2018-08-31 2022-12-13 株式会社小松製作所 制御装置、積込機械、および制御方法
CN109811822B (zh) 2019-01-25 2021-08-03 北京百度网讯科技有限公司 用于控制挖掘机的方法和装置
CN109782767B (zh) 2019-01-25 2022-06-07 北京百度网讯科技有限公司 用于输出信息的方法和装置
CN110409546B (zh) * 2019-07-25 2021-12-14 中国航空工业集团公司西安飞行自动控制研究所 一种挖掘机的电控系统及正流量系统挖掘机
CN110725359B (zh) * 2019-10-28 2022-03-01 上海三一重机股份有限公司 一种轨迹控制方法及挖掘机
EP3872023A1 (de) * 2020-02-28 2021-09-01 MOBA Mobile Automation AG Steuereinheit zur aufzeichnung von bewegungsabläufen einer mobilen bau- und arbeitsmaschine
US11898321B2 (en) * 2020-12-17 2024-02-13 Topcon Positioning Systems, Inc. Input shaping for error detection and recovery in dynamically agile grading machines
CN113006185B (zh) * 2021-02-08 2023-01-31 南京工程学院 一种挖掘机自动导航作业方法及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065326A (en) * 1989-08-17 1991-11-12 Caterpillar, Inc. Automatic excavation control system and method
WO1991009183A1 (en) * 1989-12-12 1991-06-27 Kabushiki Kaisha Komatsu Seisakusho Method and apparatus for automating work of construction equipment
JP2912986B2 (ja) * 1991-10-24 1999-06-28 日立建機株式会社 作業機の軌跡制御装置
JP3173618B2 (ja) * 1991-10-29 2001-06-04 株式会社小松製作所 作業機の自動運転モード選択方法
KR950001446A (ko) * 1993-06-30 1995-01-03 경주현 굴삭기의 자동 반복작업 제어방법
US5493798A (en) * 1994-06-15 1996-02-27 Caterpillar Inc. Teaching automatic excavation control system and method
KR0168992B1 (ko) * 1995-10-31 1999-02-18 유상부 굴삭기의 제어방법
KR100231757B1 (ko) * 1996-02-21 1999-11-15 사쿠마 하지메 건설기계의 작업기 제어방법 및 그 장치
JP3258891B2 (ja) * 1996-02-21 2002-02-18 新キャタピラー三菱株式会社 建設機械の作業機制御方法およびその装置
JP3145027B2 (ja) * 1996-03-22 2001-03-12 新キャタピラー三菱株式会社 油圧ショベルの自動制御装置
CN100464036C (zh) * 2005-03-28 2009-02-25 广西柳工机械股份有限公司 用于液压挖掘机工作装置的轨迹控制系统及方法
US8065060B2 (en) * 2006-01-18 2011-11-22 The Board Of Regents Of The University And Community College System On Behalf Of The University Of Nevada Coordinated joint motion control system with position error correction
JP5752350B2 (ja) * 2009-11-02 2015-07-22 住友重機械工業株式会社 建設機械の作業方法及び建設機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2586918A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170056560A (ko) * 2014-09-18 2017-05-23 스미토모 겐키 가부시키가이샤 쇼벨
KR102406097B1 (ko) 2014-09-18 2022-06-07 스미토모 겐키 가부시키가이샤 쇼벨

Also Published As

Publication number Publication date
WO2011162561A3 (ko) 2012-05-03
CN102947513A (zh) 2013-02-27
CN102947513B (zh) 2015-07-08
EP2586918A2 (en) 2013-05-01
EP2586918A4 (en) 2014-10-29
US20130103247A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
WO2011162561A2 (ko) 건설기계의 작업궤적 제어 장치 및 그 방법
KR20110139344A (ko) 티칭 및 플레이백을 이용한 건설기계의 작업궤적 제어 장치 및 그 방법
Tafazoli et al. Impedance control of a teleoperated excavator
CN101360873B (zh) 一种用于由多块砖建造建筑物的自动砌砖系统
RU2311511C2 (ru) Способ и устройство для мониторинга режима нагрузки драглайна или электрического одноковшового экскаватора
WO2014051170A1 (en) Automatic grading system for construction machine and method for controlling the same
WO2013051737A1 (ko) 굴삭기를 이용한 평탄화 작업 제어시스템
US20210001484A1 (en) Collaborative Robot System Incorporating Enhanced Human Interface
WO2014208828A1 (ko) 플로팅기능을 갖는 건설기계용 유압회로 및 플로팅기능 제어방법
WO2015111775A1 (ko) 건설기계용 재생유량 제어장치 및 그 제어방법
CA2765144A1 (en) Definition of control data for automatic control of mobile mining machine
US10120369B2 (en) Controlling a digging attachment along a path or trajectory
WO2016104832A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2018048291A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
US20220332248A1 (en) System and method providing visual aids for workpiece manipulator positioning and movement preview path
WO2021251463A1 (ja) 作業支援システム、作業支援方法
WO2020204238A1 (ko) 건설기계
CN111749235A (zh) 辅助打桩系统及设有辅助打桩系统的打桩机
KR100538757B1 (ko) 굴삭기와 연계한 흄관 매설장치 및 그 제어방법
WO2017034259A1 (ko) 건설기계 및 건설기계의 제어 방법
JP6714549B2 (ja) 建設機械のセンサ搭載位置判定システム及び判定方法
KR101716499B1 (ko) 데이터 베이스를 이용한 건설기계의 작업궤적 제어 장치 및 그 방법
WO2019117375A1 (en) Hydraulic machine
WO2020141659A1 (ko) 컨트롤러, 조정장치 및 조정시스템
WO2020204240A1 (ko) 건설기계

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030686.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798396

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13805558

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011798396

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011798396

Country of ref document: EP