WO2011162323A1 - Led照明器具 - Google Patents
Led照明器具 Download PDFInfo
- Publication number
- WO2011162323A1 WO2011162323A1 PCT/JP2011/064357 JP2011064357W WO2011162323A1 WO 2011162323 A1 WO2011162323 A1 WO 2011162323A1 JP 2011064357 W JP2011064357 W JP 2011064357W WO 2011162323 A1 WO2011162323 A1 WO 2011162323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- led
- parabolic
- parabolic reflection
- reflection surfaces
- leds
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/04—Optical design
- F21V7/06—Optical design with parabolic curvature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/0083—Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
- F21S2/005—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction of modular construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/10—Construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V21/00—Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
- F21V21/14—Adjustable mountings
- F21V21/30—Pivoted housings or frames
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2131/00—Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
- F21W2131/10—Outdoor lighting
- F21W2131/105—Outdoor lighting of arenas or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2131/00—Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
- F21W2131/10—Outdoor lighting
- F21W2131/107—Outdoor lighting of the exterior of buildings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2103/00—Elongate light sources, e.g. fluorescent tubes
- F21Y2103/10—Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
- F21Y2105/10—Planar light sources comprising a two-dimensional array of point-like light-generating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the present invention relates to an LED lighting apparatus including an LED as a light source, and more particularly, to an LED lighting apparatus suitable for use as a projector for effecting illumination of a distant object with sufficient brightness.
- HID High Intensity Discharge lamps that can easily achieve high output are widely used as light sources for lighting fixtures used for production lighting such as buildings.
- LEDs that can have a long lifetime and can be made smaller and lighter have attracted attention as light sources and have been put into practical use as lighting fixtures. That is, in a lighting fixture using a HID lamp as a light source, light distribution control is performed by a reflecting mirror, and it is necessary to use a reflecting mirror having a size that reflects the light emitted from the HID lamp as much as possible in order to increase the efficiency of the fixture. As a result, the equipment becomes large and heavy.
- LED is a structure which radiates
- emission surface and controls light distribution is common. According to this configuration, since all of the emitted light of the LED can be controlled by a small and lightweight lens, the instrument can be reduced in size and weight (for example, see Patent Document 1).
- the HID lamp itself is relatively large, so that the lack of axial luminous intensity due to light that is not reflected and partitioned by a reflector becomes significant, but the HID lamp has a higher output and an optical axis.
- Increasing the luminous flux above compensated for the lack of axial luminous intensity.
- an LED even if the output is increased, an increase in luminous flux as high as that of an HID lamp cannot be expected, so that a desired axial luminous intensity cannot be obtained as it is.
- This invention is made
- the present invention comprises a plurality of LEDs, and a reflection unit having a parabolic reflection surface provided at the bottom with a start end opening facing the LEDs, and the parabolic reflection surface.
- the axial length from the bottom where the LED is arranged to the end opening is set to a length at which an ultra narrow light distribution can be obtained, and the diameter of the end opening is set to a diameter at which the 1/2 beam angle is 5 to 7 degrees.
- the parabolic reflecting surfaces are provided in parallel to each other, and the LEDs and the parabolic reflecting surfaces are arranged at a pitch at which light emitted from each of the parabolic reflecting surfaces overlaps in an irradiation field separated by a predetermined distance.
- the present invention provides the above-mentioned LED lighting apparatus, comprising: a lamp case made of a heat conductive material that houses the LED and the parabolic reflection surface; and a terminal opening side of the parabolic reflection surface from the front of the lamp case.
- the protruding portion is covered with a transparent front cover made of resin.
- the axial length from the bottom where the LED is arranged to the termination opening is set to a length at which ultra-small angle light distribution can be obtained, and the diameter of the termination opening is set to a diameter at which the 1/2 beam angle is 5 to 7 degrees.
- the parabolic reflecting surfaces are identical to each other along the long axis. A reflective film is formed on each of the divided parabolic reflecting surfaces divided into shapes, and each of the divided parabolic reflecting surfaces is combined to form a parabolic reflecting surface, so a uniform parabolic reflecting surface can be easily formed. be able to.
- FIG. 1 is a perspective view showing an external configuration of an LED lighting apparatus according to the first embodiment of the present invention.
- 2A and 2B are diagrams showing the configuration of the LED lighting apparatus, where FIG. 2A is a front view, and FIG. 2B is a cross-sectional view taken along the line II of FIG. 3A and 3B are diagrams illustrating the configuration of the LED unit, where FIG. 3A is a plan view of the LED unit, FIG. 3B is an enlarged view of an LED included in the LED unit, and FIG. 3C is another example of the LED.
- FIG. 4A and 4B are diagrams showing the configuration of the reflection unit, where FIG. 4A is a front view, FIG. 4B is a plan view, and FIG. 4C is a side view.
- FIG. 4A and 4B are diagrams showing the configuration of the reflection unit, where FIG. 4A is a front view, FIG. 4B is a plan view, and FIG. 4C is a side view.
- FIG. 4A and 4B are
- FIG. 5 is a plan view of the split parabolic reflecting surface.
- FIG. 6 is a perspective view showing an external configuration of an LED lighting apparatus according to the second embodiment of the present invention.
- FIG. 7 is a front view of the LED lighting apparatus.
- FIG. 8 is a side view of the LED lighting apparatus.
- FIG. 9 is a perspective view of the LED lighting apparatus as seen from the back side.
- FIG. 10 is a diagram showing an example of the arrangement of parabolic reflection surfaces according to a modification of the present invention, where (A) shows a multi-row arrangement and (B) shows a concentric arrangement.
- FIG. 1 is a perspective view showing an external configuration of an LED lighting apparatus 1 according to this embodiment.
- 2 is a diagram showing the configuration of the LED lighting apparatus 1
- FIG. 2 (A) is a front view
- FIG. 2 (B) is a cross-sectional view taken along the line II of FIG. 2 (A).
- the LED lighting device 1 is a device (light projector) suitable for illuminating a distant object separated by several tens of meters to several hundreds of meters.
- the LED unit 3 FIG. 2
- a reflection unit 5 and a lamp case 7 in which these are housed.
- the LED unit 3 is configured by arranging a plurality (five in the illustrated example) of LEDs 9 in a line.
- the reflecting unit 5 is provided with a parabolic reflecting surface 11 corresponding to each LED 9.
- the radiated light of LED9 is collimated by each parabolic reflecting surface 11, and is radiate
- FIG. 3A and 3B are diagrams showing the configuration of the LED unit 3.
- FIG. 3A is a plan view of the LED unit 3
- FIG. 3B is an enlarged view of the LED 9 included in the LED unit 3
- FIG. ) Is an enlarged view showing another example of the LED 9.
- the LED unit 3 is configured by arranging five LEDs 9 in a row at a constant pitch P (detailed later) on a single circuit board 13 that extends horizontally.
- a lighting circuit for each LED 9 is mounted on the back side of the LED.
- the LED unit 3 having an output of about 100 W (watt) is configured by using five LEDs 9 having an output of about 20 W (watt).
- the LED 9 is configured by packaging a plurality (four in the illustrated example) of LED elements (LED chips) 15 into one. That is, the LED 9 includes a package substrate 17 having a substantially square shape in a plan view, and a reflector 19 having a substantially circular shape in a plan view is recessed on an upper surface 17A of the package substrate 17, and a plurality of LED elements 15 are provided at a central portion O of the reflector 19.
- the LED element 15 is supplied with electric power from the positive and negative electrodes 21 and 23 provided around the package substrate 17 and is lit.
- the reflector 19 is filled with an encapsulating resin 25 that covers the LED elements 15 together.
- Each of the LED elements 15 has a light emitting point X at substantially the center, and the LED elements 15 are arranged in close proximity to each other in a lattice shape, so that one light emitting point Q having a size surrounding the LED elements 15 is provided.
- the outline of the irradiation field Becomes unclear, and since the central portion O is the optical axis, the axial luminous intensity is also lowered. Therefore, as shown in the example of FIG.
- the light emitting point X of the LED element 15 is arranged at the central portion O of the reflector 19, and another LED element 15 is arranged around the LED element 15 to emit light.
- the LED 9A constituting the Q the outline of the irradiation field becomes clear and the axial luminous intensity can be improved.
- the LED element 15 is downsized or the number of the LED elements 15 is reduced, it is difficult to increase the output of the LED 9 in which these are packaged. For this reason, the output is insufficient as a light source that sufficiently illuminates a distance of several tens to hundreds of tens of meters. Further, when the LED 9 having a high output even when the light emission point Q is large is adopted, the outline of the irradiation field becomes unclear as described above. In other words, since the efficiency of the instrument also decreases due to a decrease in the accuracy of the light distribution control, it is necessary to wastefully increase the output of the LED 9 in order to sufficiently illuminate the distance.
- the parabolic reflecting surface 11 becomes very large, leading to an increase in the size and weight of the instrument, and the merit of using the LED 9 as the light source is impaired.
- the light source is not constituted by one LED 9 but one LED unit 3 is constituted by using a plurality (five in this embodiment) of LEDs 9. According to this configuration, since the output of each LED 9 can be lowered, the light emission point Q can be reduced, more accurate light distribution control can be realized, and the parabolic reflecting surface 11 is not enlarged.
- FIG. 4A and 4B are diagrams showing the configuration of the reflection unit 5, FIG. 4A is a front view thereof, FIG. 4B is a plan view thereof, and FIG. 4C is a side view thereof.
- the reflection unit 5 is configured such that a parabolic reflection surface 11 is provided side by side on the unit body 30 in accordance with the pitch P of the LEDs 9.
- the unit main body 30 has a substantially parabolic shape in side view along the parabolic reflecting surface 11, and as shown in FIG. It is supported by the lamp case 7 so that the bottom 31 is positioned on the circuit board 13 of the LED unit 3.
- the reflecting unit 5 is divided into two parabolic reflecting surface units 30A and 30B which are divided into two so as to have the same shape on the surfaces passing through the major axis K of the parabolic reflecting surfaces 11, respectively. These are configured by fastening with screws.
- FIG. 5 is a plan view of the split parabolic reflecting surface unit 30A.
- segmentation parabolic reflection surface unit 30B is the same as that of the structure shown in this figure, illustration and description are abbreviate
- the divided parabolic reflecting surface unit 30A is formed by casting a material having high thermal conductivity such as aluminum, for example, and has a parabolic reflecting surface 11 that is vertically divided along the long axis K as shown in FIG. Has an exposed surface. This surface is subjected to aluminum vapor deposition for enhancing the reflectivity of the parabolic reflecting surface 11 after casting, and then the divided parabolic reflecting surface units 30A and 30B are joined to form the reflecting unit 5. According to this configuration, even when the parabolic reflecting surface 11 is deep, the aluminum vapor deposition film can be uniformly formed on the entire surface, and an efficient reflecting mirror can be easily obtained.
- the parabolic reflecting surface 11 of the reflecting unit 5 is a concave mirror having a reflecting surface as a parabolic surface, and a bottom end 31 is provided with a starting end opening 33 facing the LED 9, and parabolic reflection from the starting end opening 33.
- the emitted light emitted by the LED 9 facing the surface 11 is converted into parallel light and emitted from the terminal opening 35.
- collimating and emitting it is possible to suppress the spread of light at a distance and prevent a decrease in illuminance.
- simply emitting the light with parallel light cannot solve the shortage of light quantity when the distance to the irradiation object is long, and it is important to increase the axial luminous intensity. Therefore, in the present embodiment, in order to increase the axial luminous intensity at each parabolic reflection surface 11, the shape of each parabolic reflection surface 11 is as follows.
- the parabolic reflecting surface 11 has an axial length L from the bottom 31 where the LED 9 is disposed to the terminal opening 35 to a length that can provide an ultra narrow angle light distribution, and
- the diameter D1 is formed to a length with a 1/2 beam angle of 5 to 7 degrees.
- the ultra narrow angle light distribution is a light distribution used for irradiating a place distant from several tens to one hundred and several tens of meters, and a 1/2 beam angle is 5 to 7 degrees. It is a light distribution.
- the LED 9 having a width W (FIG. 2A) of about 6.4 mm is adopted, and the diameter D2 (FIG. 5) of the starting end opening 33 of the parabolic reflecting surface 11 is
- the length of the LED 9 is about 11 mm, which is about the same as the width W of the LED 9, the axial length L from the start opening 33 to the end opening 35 is about 116.55 mm, and the diameter D1 of the end opening 35 (FIG. 5). Is about 84.9 mm, which is the diameter at which the 1/2 beam angle is 5 to 7 degrees (5 degrees in this embodiment).
- the diameter D1 which is the opening of the terminal opening 35 of the parabolic reflecting surface 11 is much smaller than the conventional length with respect to the axial length L, and the cut-off angle ⁇ (FIG. 5) is also about 13.03 degrees. Therefore, parallel light rays can be collected on the long axis K of the parabolic reflecting surface 11 and the axial luminous intensity can be improved. Further, since the 1/2 beam angle is as small as 5 to 7 degrees, the spread of the irradiation field in the distance is suppressed, and the illuminance in the distance is increased.
- the total output is increased by irradiating light from each of the plurality of parabolic reflection surfaces 11.
- the pitch P of the parabolic reflecting surfaces 11 (LEDs 9) is set so that each radiated light overlaps in a predetermined far field in consideration of the spread of light emitted from each parabolic reflecting surface 11. ing.
- the axial luminous intensity of the LED lighting fixture 1 provided with the LED unit 3 and the reflection unit 5 is raised, and sufficient illuminance can be maintained in a distant place.
- the major axes K of the parabolic reflection surfaces 11 parallel to each other, high axial luminous intensity can be maintained over a long distance without condensing light in an irradiation field separated by a predetermined distance.
- the lamp case 7 has a horizontally long box shape when viewed from the front, and is made of, for example, an aluminum alloy having high thermal conductivity.
- a housing part 41 for housing the reflection unit 5 and the LED unit 3 is provided on the front side thereof.
- On the back side of the housing part 41 there is provided a space for housing a power supply circuit and the like.
- a support arm 43 is provided on the back side of the housing part 41.
- the housing portion 41 of the lamp case 7 is formed to a depth such that the front end side (the end opening 35 side) of the reflection unit 5 protrudes toward the front.
- a lightweight resin transparent cover (front cover) 45 such as polycarbonate is provided so as to cover the protruding portion.
- the LED lighting device 1 with excellent design can be obtained, and the length before and after the lamp case 7 can be shortened. Cost reduction is possible.
- the front and rear lengths of the lamp case 7 are set to such an extent that the heat generated by the LED unit 3 from the lamp case 7 can be sufficiently dissipated.
- the axial length L of the parabolic reflecting surface 11 of the reflecting unit 5 is longer than that of the conventional one, the heat capacity of the reflecting unit 5 is increased, so that the lamp case 7 can be further shortened.
- the parabolic reflecting surface 11 has the axial length L from the bottom 31 where the LED 9 is disposed to the terminal opening 35 as a length that can provide an ultra narrow angle light distribution, and the terminal opening.
- the diameter D2 of 35 is set to a diameter at which the 1/2 beam angle is 5 to 7 degrees. According to this configuration, parallel rays can be collected on the long axis K of the parabolic reflecting surface 11 and the axial luminous intensity can be improved as compared with the conventional one. Furthermore, since the 1/2 beam angle is small, the spread of the irradiation field in the distance can be suppressed and sufficient illuminance can be maintained. Thereby, the LED lighting fixture 1 which can illuminate the object 100 meters away with sufficient brightness using the LED unit 3 having an output of about 100 W (watts) as a light source is obtained.
- the LED unit 3 is configured by including a plurality of LEDs 9, the reflection unit 5 having the parabolic reflection surface 11 for each LED 9 is configured, and the parabolic reflection surfaces 11 are provided in parallel to each other.
- the plurality of LEDs 9 and the parabolic reflecting surface 11 are respectively arranged at a pitch P at which light emitted from each of the parabolic reflecting surfaces 11 overlaps in an irradiation field separated by a predetermined distance.
- each of the divided parabolic reflecting surface units 30A and 30B having the same shape divided along the long axis K of the parabolic reflecting surface 11 of the reflecting unit 5,
- the reflection unit 5 is configured by combining the divided parabolic reflection surface units 30A and 30B.
- the lamp case 7 made of a heat conductive material that houses the LED unit 3 and the reflection unit 5 is provided, and the terminal opening of the parabolic reflection surface 11 of the reflection unit 5 from the front of the lamp case 7 is provided. 35 side was made to project, and the projected part was covered with a resin transparent cover 45.
- the LED lighting device 1 with excellent design can be obtained, and the length of the lamp case 7 can be shortened before and after, so that weight reduction and cost reduction are possible.
- the axial length L of the parabolic reflecting surface 11 of the reflecting unit 5 is longer than that of the conventional one, the heat capacity of the reflecting unit 5 increases, so that the lamp case 7 can be further shortened.
- Second Embodiment 6 to 9 are views showing the configuration of the LED lighting apparatus 100 according to the second embodiment of the present invention, in which FIG. 6 is a front perspective view, FIG. 7 is a front view, FIG. 8 is a side view, and FIG. FIG. 9 is a perspective view seen from the back.
- the members described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the reflection unit 105A in which the three LEDs 9 and the parabolic reflection surface 11 are arranged in one row, and the two LEDs 9 and the parabolic reflection surface 11 are arranged in one row.
- the reflection unit 105 ⁇ / b> B is arranged in two stages on the top and bottom.
- the manufacturing method and optical characteristics of each reflecting unit 5 are as described in the first embodiment.
- an LED 9 having an output of about 40 W (watts) is used, and higher output than the LED lighting apparatus 1 of the first embodiment is achieved.
- the diameter D2 of the start end opening 33 of the parabolic reflecting surface 11 is about 20.7 mm
- the axial length L from the start end opening 33 to the end opening 35 is about 166 mm
- the end opening The diameter D1 of 35 is about 113.6 mm, which is the diameter at which the 1/2 beam angle is 5 to 7 degrees (5 degrees in this embodiment).
- parallel rays are collected on the long axis of the parabolic reflecting surface 11 to improve the axial luminous intensity.
- the 1/2 beam angle is as small as 5 to 7 degrees, it is far away.
- the upper and lower reflection units 105A and 105B are such that the pitches P, which are the separation distances of all the LEDs 9 and the parabolic reflection surface 11, are all equidistant. It is arranged to suppress the occurrence of uneven illuminance in the irradiation field.
- the pitch P between the rows is defined so that the light emitted from the parabolic reflection surfaces 11 of the rows has an overlap in the irradiation field separated by a predetermined distance. Thereby, the further high output of the LED lighting fixture 1 can be made easy.
- the numbers of the LEDs 9 and the parabolic reflection surfaces 11 are made different in the upper and lower reflection units 105A and 105B.
- the present invention is not limited to this.
- the pitch between the rows is defined so that the light emitted from the parabolic reflecting surfaces 11 of the rows has an overlap in the irradiation field separated by a predetermined distance.
- a parabolic reflection surface 11 is disposed at the optical axis position of the LED lighting device 1, and a plurality of parabolic reflection surfaces 11 are disposed so as to surround the parabolic reflection surface 11.
- the axial luminous intensity of the LED lighting device 1 can be further increased by adopting a concentric arrangement.
- the arrangement is defined so that the light emitted from each parabolic reflecting surface 11 has an overlap in the irradiation field separated by a predetermined distance.
- a parabolic reflection surface having a light distribution other than the super narrow-angle light distribution may be additionally provided in the reflection unit 5.
- a parabolic reflection surface having a light distribution other than the super narrow-angle light distribution for example, a narrow-angle light distribution
- the LED lighting apparatus 1 described in the above-described embodiment can illuminate an irradiation field separated by several tens of meters to hundreds of tens of meters with sufficient brightness, and thus is suitably used as a projector that produces a high-rise building. Can do. Moreover, it can use suitably also for the stadium lighting which needs to illuminate the wide range from a distant place, such as a baseball field and a stadium, by arranging the LED lighting fixture 1 side by side.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
すなわち、HIDランプを光源とする照明器具においては、配光制御を反射鏡で行っており、器具効率を高めるためにHIDランプの放射光を可能な限り反射する大きさの反射鏡を用いる必要があるから器具が大型、重量化する。これに対し、LEDを光源とする照明器具においては、LEDが、その放射面から光を放射する構造であることから当該放射面にレンズを配して配光制御する構成が一般的である。この構成によれば、LEDの放射光の全てを小型・軽量のレンズで制御することができることから、器具の小型、軽量化が可能になる(例えば、特許文献1参照)。
この問題を解決するに、配光制御に反射鏡を用いることが考え得るが、反射鏡を単純に用いた場合、レンズに比べて光源の放射光の全てを制御できないため軸光度が低下し、遠方で所望の明るさが確保できない。HIDランプを光源に採用した従来の照明器具では、当該HIDランプ自体が比較的大きいため、反射鏡で反射仕切れない光に起因した軸光度不足が顕著になるものの、HIDランプを高出力化し光軸上の光束を増やすことで軸光度不足を補っていた。しかしながら、LEDにおいては、出力を高めたとしてもHIDランプ程の光束増加は望めないため、そのままでは所望の軸光度が得られない。
上記目的を達成するために、本発明は、複数のLEDと、前記LEDを臨ませる始端開口を底部に設けた放物反射面を前記LEDごとに有する反射ユニットとを備え、前記放物反射面のそれぞれを、前記LEDが配される底部から終端開口までの軸長を超狭角配光が得られる長さとし、前記終端開口の径を1/2ビーム角が5~7度となる径としつつ、それぞれの前記放物反射面を互いに平行に設け、所定距離離れた照射野で前記放物反射面のそれぞれから放射した光が重なるピッチで前記LED及び放物反射面のそれぞれを配置するとともに、前記放物反射面を長軸に沿って互いに同一形状に分割して成る分割放物反射面のそれぞれに反射膜を形成し、それぞれの分割放物反射面を合わせて前記放物反射面を構成したことを特徴とするLED照明器具を提供する。
また、かかる放物反射面は、長さが通常よりも非常に長くなることから均一な反射面の形成が困難となるが、本発明では、当該放物反射面を長軸に沿って互いに同一形状に分割して成る分割放物反射面のそれぞれに反射膜を形成し、それぞれの分割放物反射面を合わせて放物反射面を構成するため、均一な放物反射面を簡単に形成することができる。
<第1実施形態>
図1は、本実施形態に係るLED照明器具1の外観構成を示す斜視図である。また、図2はLED照明器具1の構成を示す図であり、図2(A)は正面図、図2(B)は図2(A)のI-I線における断面視図である。
LED照明器具1は、数十メートル~百数十メートル離れた遠方の対象物のライトアップに用いて好適な器具(投光器)であり、図1及び図2に示すように、LEDユニット3(図2)と、反射ユニット5と、これらを納めた灯体ケース7とを備えている。LEDユニット3は、複数個(図示例では5個)のLED9を一列に配列して構成されている。また、反射ユニット5には、それぞれのLED9に対応して放物反射面11が設けられている。そして各放物反射面11でLED9の放射光が平行光化されて出射される。
以下、各部をより詳細に説明する。
LEDユニット3は、同図に示すように、横長に延びる一枚の回路基板13に、5個のLED9を一定のピッチP(後に詳述)で一列に配置して構成され、当該回路基板13の裏面側には各LED9の点灯回路が実装されている。本実施形態では、約20W(ワット)の出力のLED9を5個用いることで約100W(ワット)の出力のLEDユニット3を構成している。
このとき、図3(B)の例では、発光点Qの中心部OにLED素子15の発光点Xが無いことから、これらを1つの発光点Qとして光学設計した際に、照射野の輪郭が不鮮明になり、また、中心部Oが光軸となるので軸光度も低下する。そこで、図3(C)の例に示すように、リフレクタ19の中心部OにLED素子15の発光点Xを配し、このLED素子15の周囲に他のLED素子15を配して発光点Qを構成したLED9Aとすることで照射野の輪郭が鮮明になり、また、軸光度の向上も得られる。
そこで本実施形態では、1個のLED9で光源を構成するのではなく、複数(本実施形態では5個)のLED9を用いて1個のLEDユニット3を構成している。この構成によれば、個々のLED9の出力を低くできるので、発光点Qを小さくでき、より正確な配光制御が実現できるとともに放物反射面11の大型化を招くことがない。
反射ユニット5は、ユニット本体30に、LED9のピッチPに合わせて放物反射面11が横並びに設けて構成されている。このユニット本体30は、図4(B)に示すように、側面視形状が上記放物反射面11に沿った略放物線形状を成し、図2(B)に示すように、ユニット本体30の底部31がLEDユニット3の回路基板13上に位置するように灯体ケース7に支持される。また、反射ユニット5は、図4に示すように、それぞれの放物反射面11の長軸Kを通る面で互いに同一形状になるように2分割して成る分割放物反射面ユニット30A、30Bを備え、これらがネジで締結して構成されている。
分割放物反射面ユニット30Aは、例えばアルミニウム等の高熱伝導性を有する素材から鋳造により成形され、同図に示すように、長軸Kに沿って縦に2分割された放物反射面11を露出した面を有する。この面には、鋳造後に、放物反射面11の反射率を高めるためのアルミ蒸着が施され、その後、分割放物反射面ユニット30A、30Bを接合して上記反射ユニット5が構成される。かかる構成によれば、放物反射面11が深い場合であっても、その表面全体にアルミ蒸着膜を均一に形成することができ、効率の良い反射鏡が簡単に得られる。
ただし、単に平行光化して出射するだけでは、照射対象物までの距離が遠くなったときの光量不足を解消することはできず、軸光度を如何に高めることが重要となる。そこで、本実施形態では、それぞれの放物反射面11での軸光度を高めるために、各放物反射面11の形状を次ぎのようにしている。
これにより、放物反射面11の終端開口35の開きである径D1が軸長Lに対して従来よりも非常に小さな形状となり、また、カットオフ角θ(図5)も約13.03度と小さくなることから、従来のものよりも平行光線が放物反射面11の長軸Kに集められ軸光度を向上させることができる。さらに、1/2ビーム角が5~7度と小さいことから遠方での照射野の拡がりが抑えられ、遠方での照度が高められる。
このとき、各放物反射面11の長軸Kを互いに平行とすることで、所定距離離れた照射野で集光することもなく、高い軸光度を長距離に亘って維持することができる。
この構成によれば、従来のものよりも平行光線が放物反射面11の長軸Kに集められ軸光度を向上させることができる。さらに、1/2ビーム角が小さいため遠方での照射野の拡がりが抑えられ十分な照度を維持することができる。これにより、約100W(ワット)の出力のLEDユニット3を光源として、100メートル離れた対象物を十分な明るさで照らすことができるLED照明器具1が得られる。
この構成により、1つのLED9を無理に高出力化せずとも所定距離離れた照射野で十分な照度が得られる。また、各放物反射面11が互いに平行であるため、所定距離離れた照射野で集光することもなく、高い軸光度を長距離に亘って維持することができる。
図6~図9は、本発明の第2実施形態に係るLED照明器具100の構成を示す図であり、図6は正面からみた斜視図、図7は正面図、図8は側面図、及び図9は背面からみた斜視図である。なお、これらの図において、第1実施形態で説明した部材については同一の符号を付して、その説明を省略する。
これらの図に示すように、LED照明器具100においては、3つのLED9及び放物反射面11を1列に配置した反射ユニット105Aと、2つのLED9及び放物反射面11を1列に配置した反射ユニット105Bと、を上下に2段配置した構成としている。各反射ユニット5の製造方法、及び光学特性については、第1実施形態で説明した通りである。
また本実施形態では、放物反射面11の始端開口33の径D2を、約20.7mmとするとともに、当該始端開口33から終端開口35までの軸長Lを約166mmとし、また、終端開口35の径D1を1/2ビーム角が5~7度(本実施形態では5度)となる径である約113.6mmとしている。これにより、第1実施形態と同様に、平行光線が放物反射面11の長軸に集められて軸光度が向上し、さらに、1/2ビーム角が5~7度と小さいことから遠方での照射野の拡がりが抑えられて遠方での照度が高められることとなる。
また、このLED照明器具100においては、図7に示すように、上下の反射ユニット105A、105Bは、全てのLED9及び放物反射面11の離間距離であるピッチPが全て等距離となるように配置されており、照射野での照度ムラ発生を抑制することとしている。
このとき、各列の放物反射面11から放射された光が所定距離離れた照射野で重なりを有するように各列間のピッチPが規定される。これにより、LED照明器具1の更なる高出力化が容易にできる。
さらに、上述した実施形態において、1つのLED9により所定距離離れた照射野で十分な照度が得られる場合には、LED9及び放物反射面11の数をそれぞれ1つとしても良い。
3 LEDユニット
5 反射ユニット
7 灯体ケース
9、9A LED
D1 終端開口の径
D2 始端開口の径
11 放物反射面
15 LED素子
30A、30B 分割放物反射面ユニット
31 底部
33 始端開口
35 終端開口
45 樹脂製透明カバー(前面カバー)
K 長軸
L 軸長
P ピッチ
Claims (2)
- 複数のLEDと、前記LEDを臨ませる始端開口を底部に設けた放物反射面を前記LEDごとに有する反射ユニットとを備え、
前記放物反射面のそれぞれを、前記LEDが配される底部から終端開口までの軸長を超狭角配光が得られる長さとし、前記終端開口の径を1/2ビーム角が5~7度となる径としつつ、それぞれの前記放物反射面を互いに平行に設け、
所定距離離れた照射野で前記放物反射面のそれぞれから放射した光が重なるピッチで前記LED及び放物反射面のそれぞれを配置するとともに、
前記放物反射面を長軸に沿って互いに同一形状に分割して成る分割放物反射面のそれぞれに反射膜を形成し、それぞれの分割放物反射面を合わせて前記放物反射面を構成したことを特徴とするLED照明器具。 - 前記LED及び前記放物反射面を納める熱伝導性材から成る灯体ケースを備え、当該灯体ケースの正面から前記放物反射面の終端開口側を突出させ、当該突出させた部位を樹脂製の透明な前面カバーで覆ったことを特徴とする請求項1に記載のLED照明器具。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180007553.4A CN102725581B (zh) | 2010-06-24 | 2011-06-23 | Led照明器具 |
KR1020127020179A KR20130091242A (ko) | 2010-06-24 | 2011-06-23 | Led 조명 기구 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010144308A JP5612380B2 (ja) | 2010-06-24 | 2010-06-24 | Led照明器具 |
JP2010-144308 | 2010-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011162323A1 true WO2011162323A1 (ja) | 2011-12-29 |
Family
ID=45371495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064357 WO2011162323A1 (ja) | 2010-06-24 | 2011-06-23 | Led照明器具 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5612380B2 (ja) |
KR (1) | KR20130091242A (ja) |
CN (1) | CN102725581B (ja) |
WO (1) | WO2011162323A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2722582A1 (en) * | 2012-10-19 | 2014-04-23 | Toshiba Lighting & Technology Corporation | Luminaire |
WO2014173816A1 (de) * | 2013-04-25 | 2014-10-30 | Zumtobel Lighting Gmbh | Leuchte mit gehäuse mit mehreren lichtabstrahlöffnungen |
US9909745B2 (en) | 2015-03-19 | 2018-03-06 | Glp German Light Products Gmbh | Lighting apparatus |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014093129A (ja) | 2012-10-31 | 2014-05-19 | Toshiba Lighting & Technology Corp | 発光ユニット及び照明器具 |
JP5758424B2 (ja) * | 2013-03-01 | 2015-08-05 | 株式会社アイ・ライティング・システム | 照明器具 |
JP6179760B2 (ja) * | 2013-04-01 | 2017-08-16 | 東芝ライテック株式会社 | 照明器具 |
US9995475B2 (en) | 2013-05-31 | 2018-06-12 | Iwasaki Electric Co., Ltd. | Illumination device |
JP5753221B2 (ja) * | 2013-05-31 | 2015-07-22 | 株式会社アイ・ライティング・システム | 照明器具 |
JP6004101B2 (ja) * | 2013-08-22 | 2016-10-05 | 岩崎電気株式会社 | 照明器具 |
KR101668265B1 (ko) | 2013-09-06 | 2016-10-24 | 주식회사 케이엠더블유 | 고출력 엘이디 조명장치 |
JP6187764B2 (ja) * | 2014-01-31 | 2017-08-30 | 東芝ライテック株式会社 | 照明装置 |
WO2018131291A1 (ja) * | 2017-01-13 | 2018-07-19 | Necライティング株式会社 | ランプ |
JP6324553B2 (ja) * | 2017-01-25 | 2018-05-16 | シチズン時計株式会社 | Ledパッケージ |
JP6324552B2 (ja) * | 2017-01-25 | 2018-05-16 | シチズン時計株式会社 | Ledパッケージ |
JP6742384B2 (ja) * | 2018-11-06 | 2020-08-19 | 三菱電機株式会社 | 照明器具 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005203111A (ja) * | 2004-01-13 | 2005-07-28 | Koito Mfg Co Ltd | 車両用灯具 |
JP2007258114A (ja) * | 2006-03-24 | 2007-10-04 | Jefcom Kk | 照明装置 |
JP2008016412A (ja) * | 2006-07-10 | 2008-01-24 | Showa Denko Kk | 照明装置用のリフレクタ及び照明装置 |
JP2009099470A (ja) * | 2007-10-18 | 2009-05-07 | Ccs Inc | 照明装置 |
JP2009230856A (ja) * | 2008-03-19 | 2009-10-08 | Puratekku:Kk | 照明器具、照明器具の筒体及び照明器具の製造方法 |
JP2010073650A (ja) * | 2008-09-22 | 2010-04-02 | Toshiba Lighting & Technology Corp | 照明器具 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7182496B2 (en) * | 2004-04-14 | 2007-02-27 | Opto Technology, Inc. | Multiple LED focused lighting device |
JP3787148B1 (ja) * | 2005-09-06 | 2006-06-21 | 株式会社未来 | 照明ユニット及び照明装置 |
US8231251B2 (en) * | 2005-10-28 | 2012-07-31 | Philips Lumileds Lighting Company Llc | Multiple piece reflective angle transformer |
US7845827B2 (en) * | 2007-05-08 | 2010-12-07 | The Coleman Company, Inc. | LED spotlight |
-
2010
- 2010-06-24 JP JP2010144308A patent/JP5612380B2/ja active Active
-
2011
- 2011-06-23 KR KR1020127020179A patent/KR20130091242A/ko not_active Application Discontinuation
- 2011-06-23 WO PCT/JP2011/064357 patent/WO2011162323A1/ja active Application Filing
- 2011-06-23 CN CN201180007553.4A patent/CN102725581B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005203111A (ja) * | 2004-01-13 | 2005-07-28 | Koito Mfg Co Ltd | 車両用灯具 |
JP2007258114A (ja) * | 2006-03-24 | 2007-10-04 | Jefcom Kk | 照明装置 |
JP2008016412A (ja) * | 2006-07-10 | 2008-01-24 | Showa Denko Kk | 照明装置用のリフレクタ及び照明装置 |
JP2009099470A (ja) * | 2007-10-18 | 2009-05-07 | Ccs Inc | 照明装置 |
JP2009230856A (ja) * | 2008-03-19 | 2009-10-08 | Puratekku:Kk | 照明器具、照明器具の筒体及び照明器具の製造方法 |
JP2010073650A (ja) * | 2008-09-22 | 2010-04-02 | Toshiba Lighting & Technology Corp | 照明器具 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2722582A1 (en) * | 2012-10-19 | 2014-04-23 | Toshiba Lighting & Technology Corporation | Luminaire |
US8770798B2 (en) | 2012-10-19 | 2014-07-08 | Toshiba Lighting & Technology Corporation | Luminaire |
WO2014173816A1 (de) * | 2013-04-25 | 2014-10-30 | Zumtobel Lighting Gmbh | Leuchte mit gehäuse mit mehreren lichtabstrahlöffnungen |
US9909745B2 (en) | 2015-03-19 | 2018-03-06 | Glp German Light Products Gmbh | Lighting apparatus |
US10775031B2 (en) | 2015-03-19 | 2020-09-15 | Glp German Light Products Gmbh | Lighting apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR20130091242A (ko) | 2013-08-16 |
JP5612380B2 (ja) | 2014-10-22 |
CN102725581A (zh) | 2012-10-10 |
CN102725581B (zh) | 2015-08-05 |
JP2012009280A (ja) | 2012-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5612380B2 (ja) | Led照明器具 | |
JP5635495B2 (ja) | 光源モジュール及び面状発光装置 | |
US8696156B2 (en) | LED light bulb with light scattering optics structure | |
US8931929B2 (en) | Light emitting diode primary optic for beam shaping | |
JP2014067716A (ja) | 一様な投影照明を供給するための方法及び装置 | |
TW201333382A (zh) | 照明裝置及用於該裝置的集光體 | |
US8556473B2 (en) | Lamp with a truncated reflector cup | |
JP2014524105A (ja) | Led用の光学レンズに関連する方法及び装置 | |
JP6217972B2 (ja) | 照明器具 | |
JP6072785B2 (ja) | 光導波路 | |
US20130250543A1 (en) | Lighting device | |
KR20110023231A (ko) | 봉형 엘이디조명등기구 | |
WO2013145049A1 (ja) | ランプ | |
JP6238199B2 (ja) | 照明器具 | |
JP5914600B2 (ja) | Led照明器具 | |
JP6241599B2 (ja) | 照明装置 | |
JP5742629B2 (ja) | 発光装置及びこれを備えた照明器具 | |
TWM423203U (en) | High-brightness LED lamp structure | |
JP2008300207A (ja) | 照明装置 | |
JP2013045921A (ja) | 発光装置及び照明装置 | |
TWI524036B (zh) | 燈具 | |
JP2008140627A (ja) | 照明装置 | |
KR20180026826A (ko) | 직관형 엘이디 조명등 | |
JP2013109926A (ja) | Led照明装置 | |
JP2016091745A (ja) | 照明装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180007553.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11798204 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127020179 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11798204 Country of ref document: EP Kind code of ref document: A1 |