WO2011161799A1 - 光検出装置及び流体計測装置 - Google Patents

光検出装置及び流体計測装置 Download PDF

Info

Publication number
WO2011161799A1
WO2011161799A1 PCT/JP2010/060765 JP2010060765W WO2011161799A1 WO 2011161799 A1 WO2011161799 A1 WO 2011161799A1 JP 2010060765 W JP2010060765 W JP 2010060765W WO 2011161799 A1 WO2011161799 A1 WO 2011161799A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
light
output
photoelectric conversion
conversion element
Prior art date
Application number
PCT/JP2010/060765
Other languages
English (en)
French (fr)
Inventor
立石 潔
敦也 伊藤
木村 義則
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to US13/805,262 priority Critical patent/US9237856B2/en
Priority to CN201080067519.1A priority patent/CN103002799B/zh
Priority to PCT/JP2010/060765 priority patent/WO2011161799A1/ja
Priority to JP2011517693A priority patent/JP5244973B2/ja
Priority to EP14194613.7A priority patent/EP2862510B1/en
Priority to EP10853659.0A priority patent/EP2586366B1/en
Publication of WO2011161799A1 publication Critical patent/WO2011161799A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Definitions

  • the present invention relates to a light detection device for detecting a signal light component included in light reflected, scattered, etc., for example, by a subject, and a fluid, such as a laser topler blood flow meter, provided with the light detection device.
  • the present invention relates to the technical field of measuring devices.
  • a laser Doppler blood flow meter irradiates a living body with light such as laser light, and calculates a blood flow velocity or the like of the living body based on a change in wavelength due to Doppler shift during reflection or scattering.
  • a photodetection device used as a light receiving unit in such a laser topler blood flow meter typically amplifies a photoelectric conversion element such as a photodiode and an output current of the photoelectric conversion element and converts it into a voltage signal. And a current-voltage conversion circuit including an operational amplifier (that is, an “operational amplifier circuit”).
  • a bias element is connected to both ends of a photodiode, and both ends are connected to an input terminal of a differential amplifier (op-amp) via a capacitor. It is disclosed that a resistance element is provided between the positive input and the inverted output of the differential amplifier and between the negative input and the positive output.
  • JP 2007-175415 A Japanese Patent No. 3313841 JP-A-6-224652
  • this type of light detection device is used as a light receiving unit in a laser Doppler blood flow meter as described above, the intensity of a signal light component (that is, a Doppler shifted modulation component) included in light reflected or scattered by a living body. Is weaker than the intensity of the steady light component contained in the light reflected or scattered by the living body (that is, the component that does not vary due to reflection or scattering by the living body), and it is difficult to detect the signal light component with high accuracy. There is a technical problem.
  • a signal light component that is, a Doppler shifted modulation component
  • the present invention has been made in view of, for example, the above-described problems.
  • a photodetection device capable of accurately detecting a signal light component included in light reflected or scattered by a subject, and the like, and this It is an object of the present invention to provide a fluid measuring device including such a light detection device.
  • a photodetection device of the present invention is a photodetection device for detecting a signal light component included in input light, wherein the input light is converted into a current and output.
  • a photocurrent conversion unit that includes a second photoelectric conversion element unit and outputs a difference current between a current output from the first photoelectric conversion element unit and a current output from the second photoelectric conversion element unit as a detection current;
  • a first current-voltage conversion unit that amplifies the detection current output from the photocurrent conversion unit, converts the detection current into a voltage signal, and outputs the voltage signal as a photodetection signal for detecting the signal light component; .
  • the fluid measuring device of the present invention is configured to irradiate the subject with light, and the light from the subject caused by the irradiated light is input as the input light.
  • the light detection apparatus of the present invention and a calculation unit that calculates fluid information related to the fluid in the subject based on the light detection signal.
  • the photodetector according to the first embodiment is a photodetector for detecting a signal light component included in input light, and converts the input light into current and outputs the current.
  • Photocurrent conversion comprising first and second photoelectric conversion element units, wherein a difference current between a current output from the first photoelectric conversion element unit and a current output from the second photoelectric conversion element unit is output as a detection current
  • a first current-voltage converter that amplifies the detected current output from the photocurrent converter, converts the detected current into a voltage signal, and outputs the voltage signal.
  • the light detection apparatus during operation, for example, light reflected or scattered by the subject is input to the photocurrent conversion unit as input light.
  • the input light input to the photocurrent conversion unit is converted into a current by the photocurrent conversion unit and output as a detection current.
  • the detection current output from the photocurrent conversion unit is amplified with a predetermined gain and converted into a voltage signal by a first current-voltage conversion unit including an operational amplifier and a negative feedback resistor, for example. Based on the voltage signal output from the first current-voltage converter, it is possible to detect a signal light component included in the input light (for example, a modulation component due to reflection, scattering, etc. in the subject).
  • the photocurrent conversion unit includes first and second photoelectric conversion element units that respectively convert input light into current and output the current, and the current output from the first photoelectric conversion element unit and the second A difference current from the current output from the photoelectric conversion element unit is output as a detection current.
  • each of the first and second photoelectric conversion element units includes one or a plurality of photoelectric conversion elements (for example, photodiodes), and outputs a current according to the amount of input light.
  • the photocurrent conversion unit outputs a difference current between a current output from the first photoelectric conversion element unit and a current output from the second photoelectric conversion element unit as a detection current.
  • the cathode of the first photoelectric conversion element unit and the anode of the second photoelectric conversion element unit are connected, and the anode of the first photoelectric conversion element unit and the second photoelectric conversion element unit Are connected in parallel so as to be connected to the cathode.
  • the cathode of the first photoelectric conversion element unit means an electrode through which a current flows from outside when input light is input to the first photoelectric conversion element unit. Means an electrode from which current flows out when input light is input to the first photoelectric conversion element portion.
  • the cathode of the second photoelectric conversion element unit means an electrode through which current flows from the outside when input light is input to the second photoelectric conversion element unit, and the anode of the second photoelectric conversion element unit.
  • electrode means an electrode from which current flows out when input light is input to the second photoelectric conversion element portion.
  • the first and second photoelectric conversion element units are connected in series so that the cathodes or the anodes are connected to each other.
  • DC direct current
  • AC alternate current
  • a detection current mainly including components can be output as the detection current. That is, the DC component of the current output from the first photoelectric conversion element unit and the DC component of the current output from the second photoelectric conversion element unit can be canceled, and the AC corresponding to the signal light component included in the input light.
  • a detection current mainly including components can be output.
  • the gain when the detected current is amplified and converted into a voltage signal by the first current-voltage converter can be increased.
  • the DC component of the current output from the first photoelectric conversion element unit and the DC component of the current output from the second photoelectric conversion element unit are offset, Since the detection current contains little or no DC component, for example, a saturation phenomenon (for example, the first current-voltage conversion unit) of the first current-voltage conversion unit that may occur when the DC component included in the detection current is relatively large.
  • the gain of amplification by the first current-voltage conversion unit can be increased while avoiding the occurrence of the saturation phenomenon of the operational amplifier included in.
  • the saturation phenomenon of the first current-voltage converter is a voltage output from the first current-voltage converter when the current value of the detected current input to the first current-voltage converter is larger than a predetermined current value. It means a phenomenon that the signal becomes a constant saturation voltage that is determined according to the power supply voltage of the first current-voltage converter, regardless of the current value of the detected current.
  • the first current-voltage converter is The S / N ratio (signal-to-noise ratio) in the output voltage signal. That is, according to the present embodiment, the DC component corresponding to the noise component included in the input light as the steady light component is reduced or removed from the current output from each of the first and second photoelectric conversion element units. Since the detection current mainly including the AC component corresponding to the signal component is output, the S / N ratio in the voltage signal output from the first current-voltage converter can be improved.
  • the photodetecting device According to the photodetecting device according to the present embodiment, it is possible to accurately detect the signal light component included in the input light.
  • the first and second photoelectric conversion element units are connected to the cathode of the first photoelectric conversion element unit and the anode of the second photoelectric conversion element unit.
  • the anode of the first photoelectric conversion element unit and the cathode of the second photoelectric conversion element unit are connected in parallel.
  • the differential current between the current output from the first photoelectric conversion element unit and the current output from the second photoelectric conversion element unit can be reliably output as the detection current.
  • the first and second photoelectric conversion element units are connected in series so that the cathodes or the anodes are connected to each other.
  • the differential current between the current output from the first photoelectric conversion element unit and the current output from the second photoelectric conversion element unit can be reliably output as the detection current.
  • the first and second photoelectric conversion units are connected between the first and second photoelectric conversion element units connected in series.
  • a bias voltage applying unit capable of applying a bias voltage to each of the element units, wherein the photocurrent conversion unit applies the bias to each of the first and second photoelectric conversion element units by the bias voltage applying unit.
  • each DC component of the current output from the first photoelectric conversion element unit and the current output from the second photoelectric conversion element unit can be detected. Therefore, the ratio of the signal light component to the stationary light component included in the input light can be calculated. Therefore, the signal light component included in the input light can be detected with higher accuracy.
  • a third photoelectric conversion element unit that converts the input light into a current and outputs the current, and a current output from the third photoelectric conversion element unit is amplified.
  • a second current-voltage conversion unit for converting the voltage signal.
  • the DC component of the current output from the third photoelectric conversion element unit can be detected based on the voltage signal output from the second current-voltage conversion unit. Therefore, the ratio of the signal light component to the stationary light component included in the input light can be calculated. Therefore, the signal light component included in the input light can be detected with higher accuracy.
  • the photocurrent conversion unit includes first and second terminals connected to both ends of the first and second photoelectric conversion element units, respectively.
  • a first current-voltage converter configured to invert and amplify a signal input to the positive input terminal connected to the first terminal, a negative input terminal connected to the second terminal, and the positive input terminal;
  • a fully differential amplifier having a negative output terminal and a positive output terminal for inverting and amplifying a signal input to the negative input terminal, and between the positive input terminal and the negative output terminal
  • a first negative feedback resistor connected to the negative input terminal, a second negative feedback resistor connected between the negative input terminal and the positive output terminal, a signal output from the positive output terminal, and the negative
  • An amplifier that amplifies the difference from the signal output from the output terminal and outputs it as a voltage signal. That.
  • the first and second photoelectric conversion element portions such as photodiodes can be operated in a state where little or no reverse bias voltage is applied, that is, in a so-called power generation mode. Therefore, the dark current generated in the first and second photoelectric conversion element portions (that is, the reverse current generated by the reverse bias voltage even when input light is not input) can be reduced or eliminated. Therefore, the noise current due to the fluctuation of the dark current can be reduced, and the S / N ratio in the voltage signal output from the amplifier of the first current-voltage converter can be improved. As a result, the signal light component contained in the input light can be detected with higher accuracy.
  • the flow measuring device receives an irradiation unit that irradiates a subject with light, and light from the subject that is caused by the irradiated light is input as the input light. Based on the above-described photodetection device according to the present embodiment (including various aspects thereof) and the voltage signal output from the first current-voltage conversion unit, fluid information relating to the fluid in the subject is calculated. A calculation unit.
  • FIG. 1 is a block diagram showing the overall configuration of the photodetector according to the first embodiment
  • FIG. 2 is a block diagram showing the configuration of the photodetector according to the first embodiment.
  • the photodetecting device 1 is a photodetecting device for detecting a signal light component included in input light input from the outside, and includes a photocurrent conversion unit 100, And a current-voltage conversion unit 200.
  • the input light is, for example, light in which laser light is reflected or scattered, for example, by a subject (for example, a human finger), and a signal light component indicating information on the subject (for example, reflection or scattering in the subject, for example). Etc.).
  • the photocurrent converter 100 includes light receiving elements 110 and 120 and terminals Pd1 and Pd2.
  • the light receiving element 110 is an example of a “first photoelectric conversion element unit” according to the present invention
  • the light receiving element 120 is an example of a “second photoelectric conversion element unit” according to the present invention.
  • Each of the light receiving elements 110 and 120 is a photodiode such as a PIN diode (P-Intrinsic-N diode), for example, which receives input light and outputs a current according to the amount of received input light.
  • P-Intrinsic-N diode P-Intrinsic-N diode
  • the cathode of the light receiving element 110 in other words, the N type semiconductor of the light receiving element 110
  • the anode of the light receiving element 120 in other words, the P type semiconductor of the light receiving element 120
  • the anode 110 and the cathode of the light receiving element 120 are connected in parallel.
  • the anode of the light receiving element 110 and the cathode of the light receiving element 120 are connected to the terminal Pd1, and the cathode of the light receiving element 110 and the anode of the light receiving element 120 are connected to the terminal Pd2. Since the light receiving elements 110 and 120 are connected in parallel as described above, the photocurrent conversion unit 100 uses the current Idt1 output from the light receiving element 110, the current Idt2 output from the light receiving element 120, and the differential current as the detection current Idt, and the terminal Pd1. Can be output from.
  • the terminals Pd1 and Pd2 are respectively connected to input terminals In1 and In2 of a current-voltage converter 200 described later.
  • the current-voltage converter 200 has input terminals In1 and In2, an operational amplifier 210, a feedback resistor Rf, and an output terminal Out.
  • the current-voltage conversion unit 200 is configured as a transimpedance amplifier (current-voltage conversion amplifier) that converts a current input to the input terminal In1 into a voltage signal and outputs the voltage signal.
  • the current-voltage conversion unit 200 converts the detection current Idt input from the photocurrent conversion unit 100 to the input terminal In1 into a voltage signal, and outputs the voltage signal from the output terminal Out.
  • the input terminal In1 is connected to the inverting input terminal ( ⁇ ) of the operational amplifier 210.
  • the input terminal In2 is connected to the non-inverting input terminal (+) of the operational amplifier 210.
  • the input terminal In2 and the non-inverting input terminal of the operational amplifier 210 are grounded (that is, connected to a reference potential such as a ground (GND) potential).
  • the feedback resistor Rf is connected between the output terminal of the operational amplifier 210 and the inverting input terminal of the operational amplifier 210, and applies negative feedback and converts the current into a voltage.
  • the feedback resistor Rf By performing negative feedback by the feedback resistor Rf, the potential difference between the inverting input terminal and the non-inverting input terminal of the operational amplifier 210 is almost zero (that is, a so-called “imaginary short (virtual short)” is established. )
  • the output terminal Out is connected to the output terminal of the operational amplifier 210.
  • the output terminal Out outputs the voltage signal output from the operational amplifier 210 as a light detection signal.
  • a current corresponding to the amount of input light is output from each of the light receiving elements 110 and 120. That is, the light receiving element 110 outputs a current Idt1 according to the amount of received input light, and the light receiving element 120 outputs a current Idt2 according to the received amount of input light. Then, as described above, in the light receiving elements 110 and 120, the cathode of the light receiving element 110 and the anode of the light receiving element 120 are connected to each other, and the anode of the light receiving element 110 and the cathode of the light receiving element 120 are connected to each other. Therefore, the difference current between the current Idt1 output from the light receiving element 110 and the current Idt2 output from the light receiving element 120 is output as the detection current Idt from the terminal Pd1.
  • the input light includes a signal light component (for example, a modulation component due to reflection, scattering, etc. in the subject) and a stationary component (for example, a component or a noise component according to the amount of laser light applied to the subject). Is included. Therefore, the current Idt1 output from the light receiving element 110 and the current Idt2 output from the light receiving element 120 are respectively an AC component that is a current component corresponding to the signal light component included in the input light and a steady state included in the input light. And a DC component which is a current component corresponding to the light component.
  • a signal light component for example, a modulation component due to reflection, scattering, etc. in the subject
  • a stationary component for example, a component or a noise component according to the amount of laser light applied to the subject.
  • the signal light component of the input light input to the light receiving element 110 and the signal light component of the input light input to the light receiving element 120 have a position where the light receiving element 110 is disposed and a position where the light receiving element 120 is disposed. Since they are different from each other, the optical paths are different from each other. Therefore, the current components corresponding to the signal light components are signals having a low correlation with each other. Therefore, the AC component of the current Idt1 output from the light receiving element 110 (that is, the current component corresponding to the signal light component) and the AC component of the current Idt2 output from the light receiving element 120 have a low correlation with each other.
  • the AC components of the currents Idt1 and Idt2 include many non-in-phase components having different phases, amplitudes, and frequencies (in other words, uncorrelated components having a low correlation with each other).
  • the DC component of the current Idt1 output from the light receiving element 110 that is, the current component corresponding to the steady light component
  • the DC component of the current Idt2 output from the light receiving element 120 are, for example, designed to have the same light receiving area.
  • the mutual amplitude is almost equal. That is, the DC components of the currents Idt1 and Idt2 are in-phase components (in other words, correlation components having a strong correlation with each other).
  • the detection current Idt which is the difference current between the current Idt1 output from the light receiving element 110 and the current Idt2 output from the light receiving element 120, is compared with the AC components of the currents Idt1 and Idt2. As the current increases, the DC component is reduced or eliminated. Subtraction of signals that contain many uncorrelated components with each other is equivalent to subtraction of random signals, and the signal power after subtraction increases.
  • FIG. 3 is a waveform diagram showing an example of each of the detection current Idt and the output voltage Vout of the operational amplifier 210.
  • the DC component of the current Idt1 output from the light receiving element 110 and the DC component of the current Idt2 output from the light receiving element 120 can be canceled, and the input light It is possible to output a detection current Idt mainly including an AC component corresponding to the signal light component included in.
  • the current / voltage converter 200 amplifies the detection current Idt and converts it into a voltage signal.
  • the DC component of the current Idt1 output from the light receiving element 110 and the DC component of the current Idt2 output from the light receiving element 120 are offset, and the detected current Idt Includes little or no DC component, so that, for example, a saturation phenomenon of the operational amplifier 210 included in the current-voltage converter 200, which may occur when the DC component included in the detection current Idt is relatively large, is avoided.
  • the gain of amplification by the current-voltage converter 200 can be increased.
  • the gain of amplification by the current-voltage conversion unit 200 can be increased while the difference ⁇ V1 between the maximum value of the output voltage Vout of the operational amplifier 210 and the saturation voltage Vs of the operational amplifier 210 is maintained relatively large. .
  • the photocurrent conversion unit 100 can output a current mainly including an AC component corresponding to the signal light component included in the input light as the detection current Idt.
  • the S / N ratio in the light detection signal output from the current-voltage conversion unit 200 can be improved. That is, according to the present embodiment, a noise component (for example, noise caused by fluctuation of the laser light source) included in the input light as a steady light component from the current Idt1 output from the light receiving element 110 and the current Idt2 output from the light receiving element 120.
  • a noise component for example, noise caused by fluctuation of the laser light source
  • each of the light receiving elements 110 and 120 can be operated in a zero bias state (that is, a state where little or no reverse bias voltage is applied), that is, in a so-called power generation mode. Therefore, the dark current generated in the light receiving elements 110 and 120 can be reduced or eliminated. Thereby, the noise current due to the fluctuation of the dark current can be reduced, and the S / N ratio in the photodetection signal output by the current-voltage conversion unit 200 can be improved.
  • the DC component included in the input light as a steady light component can be reduced or removed, in the current-voltage converter 200, an output that is an output with respect to the input detection current Idt while avoiding a saturation phenomenon. Since the ratio of the voltage Vout, that is, the conversion gain can be increased, the S / N ratio can be improved.
  • the saturation phenomenon of the operational amplifier 210 can be avoided.
  • thermal noise of the feedback resistor Rf is well known. Thermal noise is proportional to the square root of the resistance value of the feedback resistor Rf.
  • the conversion gain is proportional to the resistance value of the feedback resistor Rf, when the resistance value of the feedback resistor Rf is increased, the S / N ratio is improved by the square root of the resistance value of the feedback resistor Rf.
  • the operational amplifier 210 is saturated by the DC component.
  • the operational amplifier 210 If the operational amplifier 210 is saturated, the signal component is not output and a fatal problem occurs. On the other hand, according to the present embodiment, since the DC component can be reduced or removed at the detection current Idt stage, the operational amplifier 210 is not saturated even if the resistance value of the feedback resistor Rf is increased. Therefore, according to the present embodiment, it is possible to satisfy both the saturation avoidance of the operational amplifier 210 and the high S / N ratio by the high conversion gain.
  • the S / N ratio in the light detection signal output from the current-voltage conversion unit 200 can be improved.
  • the signal light component included in the input light can be detected with high accuracy.
  • FIG. 4 is a block diagram showing the configuration of the photodetecting device according to the second embodiment.
  • the same reference numerals are given to the same components as those in the first embodiment shown in FIG. 2, and the description thereof will be omitted as appropriate.
  • the photodetector 1b according to the second embodiment includes the photocurrent converter 100b in place of the photocurrent converter 100 in the first embodiment described above, and the light according to the first embodiment described above.
  • the other points are substantially the same as those of the light detection apparatus 1 according to the first embodiment described above.
  • the photocurrent conversion unit 100b includes light receiving elements 110b and 120b and terminals Pd1b and Pd2b.
  • the light receiving element 110b is an example of the “first photoelectric conversion element unit” according to the present invention
  • the light receiving element 120b is an example of the “second photoelectric conversion element unit” according to the present invention.
  • Each of the light receiving elements 110b and 120b is a photodiode such as a PIN diode, for example, which receives input light and outputs a current according to the amount of the received input light.
  • the light receiving elements 110b and 120b are connected in series so that the cathodes are connected to each other.
  • the anode of the light receiving element 110b is connected to the terminal Pd1b, and the anode of the light receiving element 120b is connected to the terminal Pd2b.
  • the photocurrent conversion unit 100b uses the current Idt1b output from the light receiving element 110b, the current Idt2b output from the light receiving element 120b, and the difference current as the detection current Idtb to be the terminal Pd1b. Can be output from.
  • the terminals Pd1b and Pd2b are connected to the input terminals In1 and In2 of the current-voltage conversion unit 200, respectively.
  • the same advantage as that obtained by the light detection device 1 according to the first embodiment can be obtained by the light detection device 1b configured as described above. That is, the DC component of the current Idt1b output from the light receiving element 110b and the DC component of the current Idt2b output from the light receiving element 120b can be canceled, and mainly include an AC component corresponding to the signal light component included in the input light.
  • the detection current Idtb can be output.
  • the S / N ratio in the photodetection signal output from the current-voltage conversion unit 200 can be improved.
  • FIG. 5 is a block diagram showing a configuration of the photodetecting device according to the third embodiment.
  • a photodetection device 1c is a photodetection device for detecting a signal light component included in input light input from the outside, and includes a photocurrent conversion unit 100c and a current-voltage conversion. Part 200c.
  • the input light is, for example, light in which laser light is reflected or scattered, for example, by a subject (for example, a human finger), and a signal light component indicating information on the subject (for example, reflection or scattering in the subject, for example). Etc.).
  • the photocurrent conversion unit 100c includes light receiving elements 110c and 120c and terminals Pd1c and Pd2c.
  • the light receiving element 110c is an example of the “first photoelectric conversion element unit” according to the present invention
  • the light receiving element 120c is an example of the “second photoelectric conversion element unit” according to the present invention.
  • Each of the light receiving elements 110c and 120c is a photodiode such as a PIN diode, for example, which receives input light and outputs a current according to the amount of the received input light.
  • the light receiving elements 110c and 120c are connected in series so that the anodes are connected to each other.
  • the cathode of the light receiving element 110c is connected to the terminal Pd1c, and the cathode of the light receiving element 120c is connected to the terminal Pd2c.
  • the photocurrent conversion unit 100c Since the light receiving elements 110c and 120c are connected in series as described above, the photocurrent conversion unit 100c generates a difference current (Idt2c ⁇ Idt1c) between the current Idt1c output from the light receiving element 110c and the current Idt2c output from the light receiving element 120c.
  • the detection current Idtc can be output from the terminal Pd1c.
  • the photocurrent conversion unit 100c can output a current ( ⁇ Idtc) in which the polarity of the detection current Idtc output from the terminal Pd1 is inverted from the terminal Pd2c.
  • the terminals Pd1c and Pd2c are connected to the input terminals In1c and In2c of the current-voltage converter 200c, respectively.
  • the DC component of the current Idt1c output from the light receiving element 110c and the DC component of the current Idt2c output from the light receiving element 120c can be canceled, and the input light can be offset.
  • a detection current Idtc mainly including an AC component corresponding to the included signal light component can be output. As a result, it is possible to improve the S / N ratio in the photodetection signal output from the current-voltage conversion unit 200c.
  • the current-voltage conversion unit 200c includes input terminals In1c and In2c, a fully differential amplifier 230 as an example of a “fully differential amplifier” according to the present invention, feedback resistors Rf1 and Rf2, an amplifier 240, and an output terminal Out. have.
  • the fully differential amplifier 230 converts the current Idtc input to the input terminal In1c into a voltage signal ⁇ Rf1 ⁇ Idtc and outputs the voltage signal from the output terminal Out ⁇ .
  • the fully-differential amplifier 230 converts the current ⁇ Idtc input to the input terminal In2c into the voltage signal Rf2 ⁇ Idtc and outputs the voltage signal from the output terminal Out +.
  • the fully-differential amplifier 230 is configured as a transimpedance amplifier that independently converts currents input to the input terminals In1 and In2 into current-voltage and outputs them differentially.
  • the current-voltage conversion unit 200c converts the detection current Idtc input from the photocurrent conversion unit 100c to the input terminal In1c into a voltage signal and outputs the voltage signal from the output terminal Out.
  • the fully differential amplifier 230 is a fully differential amplifier having an input terminal In + connected to the input terminal In1c, an input terminal In ⁇ connected to the input terminal In2c, an output terminal Out ⁇ , and an output terminal Out +. .
  • the reference potential is input via the reference potential terminal Vref.
  • the output terminals Out ⁇ and Out + are respectively connected to input terminals In ⁇ and In + of an amplifier 240 described later.
  • the feedback resistor Rf1 is connected between the input terminal In + of the fully differential amplifier 230 and the output terminal Out ⁇ of the fully differential amplifier 230, and performs negative feedback and converts the current into a voltage.
  • the feedback resistor Rf2 is connected between the input terminal In ⁇ of the fully differential amplifier 230 and the output terminal Out + of the fully differential amplifier 230, and applies negative feedback and converts the current into a voltage.
  • the input terminal In + and the input terminal In ⁇ are almost at the same potential. Therefore, the terminal Pd1c connected to the input terminal In + of the fully differential amplifier 230 via the input terminal In1c, and the terminal Pd2c connected to the input terminal In ⁇ of the fully differential amplifier 230 via the input terminal In2c; Is almost zero, and each of the light receiving elements 110c and 120c can be operated in a zero bias state, that is, in a so-called power generation mode. Therefore, the dark current generated in the light receiving elements 110c and 120c can be reduced or eliminated. Thereby, the noise current due to the fluctuation of the dark current can be reduced, and the S / N ratio in the light detection signal output from the current-voltage conversion unit 200c can be improved.
  • the output terminal of the amplifier 240 is connected to the output terminal Out of the current-voltage converter 200c.
  • FIG. 6 is a circuit diagram showing a configuration of the amplifier 240.
  • an amplifier 240 is configured as an instrumentation amplifier, and includes operational amplifiers OP1, OP2, and OP3, feedback resistors R2, R3, and R6, a common input resistor R1, and input resistors R4, R5, and R7. ing.
  • the input terminal In ⁇ of the amplifier 240 is connected to the non-inverting input terminal (+) of the operational amplifier OP1.
  • the input terminal In + of the amplifier 240 is connected to the non-inverting input terminal (+) of the operational amplifier OP2.
  • the operational amplifiers OP1 and OP2 are negatively fed back by feedback resistors R2 and R3, respectively.
  • the feedback resistors R2 and R3 are set to the same resistance value.
  • the common input resistor R1 is connected between the inverting input terminal of the operational amplifier OP1 and the inverting input terminal of the operational amplifier OP2.
  • the common input resistor R1 may function as a variable resistor in order to make the gain variable.
  • the output terminal of the operational amplifier OP1 is connected to the inverting input terminal of the operational amplifier OP3 via the input resistor R4.
  • the output terminal of the operational amplifier OP2 is connected to the non-inverting input terminal of the operational amplifier OP3 via the input resistor R5.
  • One terminal of the input resistor R7 is connected between the input resistor R5 and the non-inverting input terminal of the operational amplifier OP3.
  • the other terminal of the input resistor R7 is connected to a reference potential Vref which is, for example, a GND potential.
  • Vref reference potential
  • the input resistors R4 and R5 are set to the same resistance value.
  • the operational amplifier OP3 is negatively fed back by the feedback resistor R6.
  • the output terminal of the operational amplifier OP3 is connected to the output terminal Out of the current-voltage converter 200c.
  • the feedback resistor R6 and the input resistor R7 are set to the same resistance value.
  • in-phase components for example, hum noise
  • the two voltage signals respectively output from the output terminals Out ⁇ and Out + of the fully differential amplifier 230 are differentially output according to the detection current Idtc, and are two differential signals having different polarities. Therefore, the detected light signal components are input in opposite phases to the input terminals In + and In ⁇ of the amplifier 240.
  • in-phase components such as hum noise can be removed as noise from the voltage signal output by the amplifier 240 as a light detection signal.
  • the detected light signal component is out of phase, it is amplified by the amplifier 240 and output as a light detection signal.
  • the noise component can be reduced and the signal component can be increased, so that the S / N can be remarkably improved.
  • the light detection apparatus according to the fourth embodiment is provided with an amplifier 240d instead of the amplifier 240 according to the third embodiment described above with reference to FIGS. 5 and 6.
  • the light detection apparatus according to the third embodiment described above is substantially the same as that of the photodetector 1c according to the third embodiment described above.
  • FIG. 7 is a circuit diagram showing a configuration of an amplifier according to the fourth embodiment.
  • the same components as those in the third embodiment shown in FIGS. 5 and 6 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
  • an amplifier 240d includes operational amplifiers OP1 and OP2, feedback resistors R2 and R3, a common input resistor R1, low-pass filters (that is, low-pass filters) LPF1 and LPF2, and AD (Analog). to Digital) converters ADC1 and ADC2.
  • the amplifier 240 according to the third embodiment described above with reference to FIGS. 5 and 6 is configured to be capable of outputting a light detection signal as an analog signal as well as a single-ended signal.
  • the amplifier 240d according to the present embodiment is configured to output two differential signals having different polarities as photodetection signals DtOut1 and DtOut2.
  • the light detection signals DtOut1 and DtOut2 are output as digital signals via the low-pass filters LPF1 and LPF2 and the AD converters ADC1 and ADC2.
  • the output signal of the operational amplifier OP1 is input to the AD converter ADC1 through the low-pass filter LPF1 as an anti-alias filter (that is, a filter capable of removing aliasing noise generated by sampling by the AD converter).
  • the output signal of the operational amplifier OP2 is input to the AD converter ADC2 via the low pass filter LPF2 as an anti-alias filter. Therefore, it is possible to increase the S / N ratio of each of the light detection signals DtOut1 and DtOut2.
  • the quantized photodetection signals DtOut1 and DtOut2 that are output signals of the AD converters ADC1 and ADC2 are subtracted by a signal processing device (not shown) such as a digital signal processing device such as a DSP (Digital Signal Processor). May be.
  • a signal processing device such as a digital signal processing device such as a DSP (Digital Signal Processor). May be.
  • the photodetection signals DtOut1 and DtOut2 are quantized, so that they are resistant to noise from the external environment, for example, when transmitted via a communication network. Therefore, it is possible to realize long-distance transmission of the light detection signal.
  • FIG. 8 is a block diagram showing the configuration of the blood flow measurement device according to the fifth embodiment.
  • the same components as those in the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • a blood flow measurement device 1001 is an example of a “fluid measurement device” according to the present invention, and is a device for measuring the blood flow volume of a subject 900 that is a living body.
  • the blood flow measuring device 1001 includes a laser driving device 2, a semiconductor laser 3, the light detection device 1 according to the first embodiment described above with reference to FIGS. 1 and 2, and a signal processing unit 5. .
  • the laser driving device 2 and the semiconductor laser 3 are examples of the “irradiation unit” according to the present invention, and the signal processing unit 5 is an example of the “calculation unit” according to the present invention.
  • the subject 900 when the semiconductor laser 3 is driven by the laser driving device 2, the subject 900 is irradiated with light from the semiconductor laser 3.
  • the light irradiated on the subject 900 is reflected or scattered by hemoglobin in the capillary blood vessel of the subject 900.
  • the light reflected or scattered in the subject 900 in this way is incident on the photocurrent conversion unit 100 (more specifically, the light receiving elements 110 and 120 described above with reference to FIG. 2) of the light detection apparatus 1.
  • a detection current Idt is output from the photocurrent conversion unit 100 in accordance with the incident light.
  • the detection current Idt is converted into a voltage signal by the current-voltage conversion unit 200 and input to the signal processing unit 5 as a light detection signal.
  • the signal processing unit 5 calculates a blood flow based on the input light detection signal, and outputs a digital signal indicating the blood flow as a blood flow detection signal.
  • the blood flow measuring device 1001 includes the light detection device 1 according to the first embodiment described above, and thus the blood flow volume is calculated by the signal processing unit 5 based on the light detection signal having a high S / N. can do. Therefore, the blood flow rate can be accurately calculated.
  • the blood flow measuring device includes two light detection devices each configured in the same manner as the light detection device 1 according to the first embodiment described above, and a difference between light detection signals output from the two light detection devices. And a signal processing unit that calculates a blood flow based on the information and outputs a digital signal indicating the blood flow as a blood flow detection signal. If comprised in this way, in-phase components, such as hum noise, can be removed more reliably, for example, and a blood flow rate can be calculated more correctly.
  • FIG. 9 is a block diagram showing the configuration of the blood flow measurement device according to the sixth embodiment.
  • the same reference numerals are assigned to the same constituent elements as the constituent elements according to the second embodiment shown in FIG. 4 and the constituent elements according to the fifth embodiment shown in FIG. Are omitted as appropriate.
  • a blood flow measurement device 1002 according to the present embodiment is an example of a “fluid measurement device” according to the present invention, and is a device for measuring the blood flow volume of a subject 900 that is a living body.
  • the blood flow measuring device 1002 includes a laser driving device 2, a semiconductor laser 3, a light detection device 1g, and a signal processing unit 5g.
  • the photodetecting device 1g includes a photocurrent conversion unit 100b and a current-voltage conversion unit 200g.
  • the photocurrent conversion unit 100b includes light receiving elements 110b and 120b connected in series so that the cathodes are connected to each other.
  • the anode of the light receiving element 110b is connected to the input terminal In1 of the current-voltage converter 200g via the terminal Pd1b
  • the anode of the light-receiving element 120b is connected to the input terminal In2 of the current-voltage converter 200g via the terminal Pd2b. Yes.
  • one end of the bias application selection element 300 is connected between the light receiving elements 110b and 120b.
  • the bias application selection element 300 selects whether or not to apply a bias voltage to the light receiving elements 110b and 120b based on a command from the controller 400.
  • the bias application selection element 300 includes an analog switch SW1.
  • One end of the analog switch SW1 is connected between the light receiving elements 110b and 120b (that is, a connection point between the light receiving elements 110b and 120b), and the other end of the analog switch SW1 is connected to a bias potential such as a GND potential. ing.
  • the bias application selection element 300 selects whether or not to apply a bias voltage to the light receiving elements 110b and 120b by switching on / off the analog switch SW1 in accordance with a command from the controller 400.
  • the bias application selection element 300 and the controller 400 are an example of the “bias voltage application unit” according to the present invention.
  • the current-voltage conversion unit 200g is configured in substantially the same manner as the current-voltage conversion unit included in the photodetector described above with reference to FIG. That is, the current-voltage conversion unit 200g includes a fully differential amplifier 230 (see FIG. 5), feedback resistors Rf1 and Rf2 (see FIG. 5), and an amplifier 240d (see FIG. 7).
  • the current-voltage converter 200g outputs the light detection signals DtOut1 and DtOut2 from the output terminals Out1 and Out2, respectively.
  • the signal processing unit 5g calculates a blood flow based on the input light detection signals DtOut1 and DtOut2, and outputs a digital signal indicating the blood flow as a blood flow detection signal. Based on a command from the controller 400, the signal processing unit 5g is configured to apply a bias to the light receiving elements 110b and 120b (that is, when the analog switch SW1 is turned on), and to receive the light receiving elements 110b and 120b. The signal processing content is changed when the bias is not applied to the open circuit (that is, when the analog switch SW1 is turned off).
  • the signal processing unit 5g calculates the DC optical power component by adding the input photodetection signals DtOut1 and DtOut2.
  • the input light detection signals DtOut1 and DtOut2 are subtracted to calculate the power spectrum of a signal light component such as a beat signal, and the blood flow rate of the subject 900 is calculated based on this.
  • the signal processing unit 5g performs normalization by dividing the blood flow volume calculated at the time of opening by the DC light power component calculated at the time of bias application. As a result, even if power fluctuations occur in the light emitted from the semiconductor laser 3, the blood flow rate of the subject 900 can be accurately measured.
  • FIG. 10 is a circuit diagram showing the configuration of the photodetecting device according to the seventh embodiment.
  • the same reference numerals are given to the same components as those in the first embodiment shown in FIG. 2, and the description thereof will be omitted as appropriate.
  • the photodetector 1h includes the light receiving element 130 and the current-voltage converting portion 203 that converts the current output from the light receiving element 130 into a voltage.
  • the other configuration is substantially the same as the photodetection device 1 according to the first embodiment described above.
  • the light receiving element 130 is an example of a “third photoelectric conversion element unit” according to the present invention
  • the current-voltage conversion part 203 is an example of a “second current-voltage conversion unit” according to the present invention.
  • the photodetecting device 1h includes a photocurrent conversion unit 100h and a current-voltage conversion unit 200h.
  • the photocurrent conversion unit 100h has light receiving elements 110 and 120 connected in parallel and terminals Pd1 and Pd2 in the same manner as the photocurrent conversion unit 100 in the first embodiment described above. Furthermore, the photocurrent conversion unit 100h includes a light receiving element 130 provided separately from the light receiving elements 110 and 120, and terminals Pd1h and Pd2h.
  • the light receiving element 130 is a photodiode such as a PIN diode, for example.
  • the light receiving element 130 receives input light and outputs a current according to the amount of the received input light.
  • the cathode of the light receiving element 130 is connected to the terminal Pd1h, and the anode of the light receiving element 130 is connected to the terminal Pd2h.
  • Terminals Pd1h and Pd2h are respectively connected to input terminals In1h and In2h of a current-voltage conversion unit 200h described later.
  • the current-voltage conversion unit 200h includes input terminals In1 and In2, an operational amplifier 210, a feedback resistor Rf, and an output terminal OutA in substantially the same manner as the photocurrent conversion unit in the first embodiment described above.
  • the output terminal OutA is connected to the output terminal of the operational amplifier 210.
  • the output terminal OutA outputs the voltage signal output from the operational amplifier 210 as the light detection signal DtOutA.
  • the current-voltage converter 200h has a current-voltage converter 203 that converts the current output from the light receiving element 130 into a voltage.
  • the current-voltage conversion part 203 has input terminals In1h and In2h, an operational amplifier 210h, a feedback resistor Rfh, and an output terminal OutB.
  • the input terminal In1h is connected to the inverting input terminal ( ⁇ ) of the operational amplifier 210h.
  • the input terminal In2h is connected to the non-inverting input terminal (+) of the operational amplifier 210h.
  • the input terminal In2h and the non-inverting input terminal of the operational amplifier 210h are grounded.
  • the feedback resistor Rfh is connected between the output terminal of the operational amplifier 210h and the inverting input terminal of the operational amplifier 210h, and performs negative feedback and converts the current into a voltage. By performing negative feedback by the feedback resistor Rfh, the potential difference between the inverting input terminal and the non-inverting input terminal of the operational amplifier 210h is almost zero (that is, a so-called imaginary short is established).
  • the output terminal OutB is connected to the output terminal of the operational amplifier 210h.
  • the output terminal OutB outputs the voltage signal output from the operational amplifier 210h as the light detection signal DtOutB.
  • the light detection device 1h includes the light receiving element 130 and the current-voltage conversion portion 203 that converts the current output from the light receiving element 130 into a voltage. Therefore, the current Idt3 output from the light receiving element 130 Based on the above, a signal corresponding to the stationary light component of the input light can be output as the light detection signal DtOutB.
  • the light detection signal DtOutA (that is, a signal corresponding to the signal light component of the input light) based on the detection current Idt from the light receiving elements 110 and 120 connected in parallel to each other is converted into the light detection signal DtOutB (that is, the steady state of the input light)
  • the signal can be normalized by dividing by a signal corresponding to the light component (DC light component). Therefore, even if power fluctuation occurs in the light emitted from the light source, it is possible to accurately detect the signal component included in the input light.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Amplifiers (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 光検出装置は、入力光を電流に夫々変換して出力する第1光電変換素子部(110)及び第2光電変換素子部(120)を含んでなり、第1光電変換素子部が出力する電流と第2光電変換素子部が出力する電流との差分電流を検出電流として出力する光電流変換部(100)と、この光電流変換部から出力された検出電流を増幅して電圧信号に変換し、この電圧信号を出力する第1電流電圧変換部(200)とを備える。

Description

光検出装置及び流体計測装置
 本発明は、例えば被検体によって例えば反射、散乱等された光に含まれる信号光成分を検出するための光検出装置、及び該光検出装置を備えた、例えばレーザートップラー血流計等の流体計測装置の技術分野に関する。
 この種の光検出装置として、例えば、レーザートップラー血流計において生体からの光を検出する受光部として用いられるものがある(例えば特許文献1及び2参照)。レーザードップラー血流計は、レーザー光等の光を生体に照射し、その反射又は散乱の際におけるドップラーシフトによる波長の変化により、生体の血流速度等を算出する。このようなレーザートップラー血流計における受光部として用いられる光検出装置は、典型的には、フォトダイオード等の光電変換素子と、この光電変換素子の出力電流を増幅して電圧信号に変換する、オペアンプ(即ち「演算増幅回路」)を含む電流電圧変換回路とを備えている。
 一方、例えば特許文献3には、光通信等に使用される光受信回路において、フォトダイオードの両端にバイアス素子を接続すると共に、この両端をコンデンサを介して差動アンプ(オペアンプ)の入力端に接続し、且つ、差動アンプの正入力と反転出力との間および負入力と正出力との間に抵抗素子を設けることが開示されている。
特開2007-175415号公報 特許第3313841号公報 特開平6-224652号公報
 この種の光検出装置が前述したようなレーザードップラー血流計における受光部として用いられる場合、生体によって反射又は散乱された光に含まれる信号光成分(即ち、ドップラーシフトされた変調成分)の強度は、生体によって反射又は散乱された光に含まれる定常光成分(即ち、生体による反射又は散乱によって変動しない成分)の強度よりも微弱であるため、信号光成分を精度良く検出することが困難であるという技術的問題点がある。
 本発明は、例えば前述した問題点に鑑みなされたものであり、例えば被検体によって例えば反射、散乱等された光に含まれる信号光成分を精度良く検出することが可能な光検出装置、及びこのような光検出装置を備えた流体計測装置を提供することを課題とする。
 本発明の光検出装置は上記課題を解決するために、入力光に含まれる信号光成分を検出するための光検出装置であって、前記入力光を電流に夫々変換して出力する第1及び第2光電変換素子部を含んでなり、前記第1光電変換素子部が出力する電流と前記第2光電変換素子部が出力する電流との差分電流を検出電流として出力する光電流変換部と、該光電流変換部から出力された前記検出電流を増幅して電圧信号に変換し、該電圧信号を前記信号光成分を検出するための光検出信号として出力する第1電流電圧変換部とを備える。
 本発明の流体計測装置は上記課題を解決するために、光を被検体に照射する照射部と、前記照射された光に起因する前記被検体からの光が前記入力光として入力される前述した本発明の光検出装置と、前記光検出信号に基づいて、前記被検体中の流体に関する流体情報を算出する算出部とを備える。
 本発明の作用及び他の利得は次に説明する発明を実施するための形態から明らかにされる。
第1実施例に係る光検出装置の全体構成を示すブロック図である。 第1実施例に係る光検出装置の構成を示すブロック図である。 第1実施例に係る光検出装置の光電流変換部から出力される検出電流Idt、及び電流電圧変換部が有するオペアンプの出力電圧Voutの各々の一例を示す波形図である。 第2実施例に係る光検出装置の構成を示すブロック図である。 第3実施例に係る光検出装置の構成を示すブロック図である。 第3実施例に係る光検出装置が有する増幅器の構成を示す回路図である。 第4実施例に係る光検出装置が有する増幅器の構成を示す回路図である。 第5実施例に係る血流計測装置の構成を示すブロック図である。 第6実施例に係る血流計測装置の構成を示すブロック図である。 第7実施例に係る光検出装置の構成を示す回路図である。
 以下、本発明の実施形態について説明する。
 第1実施形態に係る光検出装置は上記課題を解決するために、入力光に含まれる信号光成分を検出するための光検出装置であって、前記入力光を電流に夫々変換して出力する第1及び第2光電変換素子部を含んでなり、前記第1光電変換素子部が出力する電流と前記第2光電変換素子部が出力する電流との差分電流を検出電流として出力する光電流変換部と、該光電流変換部から出力された前記検出電流を増幅して電圧信号に変換し、該電圧信号を出力する第1電流電圧変換部とを備える。
 本実施形態に係る光検出装置によれば、その動作時には、例えば被検体によって例えば反射、散乱等された光が入力光として光電流変換部に入力される。光電流変換部に入力された入力光は、光電流変換部によって電流に変換されて検出電流として出力される。光電流変換部から出力された検出電流は、例えばオペアンプ及び負帰還抵抗を含んでなる第1電流電圧変換部によって所定の利得で増幅され電圧信号に変換される。第1電流電圧変換部が出力する電圧信号に基づいて、入力光に含まれる信号光成分(例えば、被検体における例えば反射、散乱等による変調成分)を検出することが可能となる。
 本実施形態では特に、光電流変換部は、入力光を電流に夫々変換して出力する第1及び第2光電変換素子部を含んでなり、第1光電変換素子部が出力する電流と第2光電変換素子部が出力する電流との差分電流を検出電流として出力する。
 具体的には、第1及び第2光電変換素子部の各々は、1又は複数の光電変換素子(例えばフォトダイオード等)からなり、入力光の光量に応じて電流を出力する。光電流変換部は、第1光電変換素子部が出力する電流と第2光電変換素子部が出力する電流との差分電流を検出電流として出力する。例えば、第1及び第2光電変換素子部は、第1光電変換素子部のカソードと第2光電変換素子部のアノードとが接続され且つ第1光電変換素子部のアノードと第2光電変換素子部のカソードとが接続されるように、並列接続されている。尚、第1光電変換素子部のカソードとは、第1光電変換素子部に入力光が入力された際に外部から電流が流れ込むことになる電極を意味し、第1光電変換素子部のアノードとは、第1光電変換素子部に入力光が入力された際に外部に電流が流れ出すことになる電極を意味する。同様に、第2光電変換素子部のカソードとは、第2光電変換素子部に入力光が入力された際に外部から電流が流れ込むことになる電極を意味し、第2光電変換素子部のアノードとは、第2光電変換素子部に入力光が入力された際に外部に電流が流れ出すことになる電極を意味する。或いは、例えば、第1及び第2光電変換素子部は、互いにカソード同士又はアノード同士が接続されるように、直列接続されている。
 よって、第1及び第2光電変換素子部の各々から出力される電流のうち入力光に含まれる定常光成分に相当する電流成分(以下「DC(direct current)成分」と適宜称する)を低減或いは除去して、入力光に含まれる信号光成分に相当する電流成分(以下「AC(alternate current)成分」と適宜称する)を主として含む電流を検出電流として出力することができる。即ち、第1光電変換素子部が出力する電流のDC成分と、第2光電変換素子部が出力する電流のDC成分とを相殺させることができ、入力光に含まれる信号光成分に相当するAC成分を主として含む検出電流を出力することができる。
 従って、第1電流電圧変換部によって検出電流を増幅して電圧信号に変換する際の利得を高めることができる。言い換えれば、本実施形態によれば、前述したように、第1光電変換素子部が出力する電流のDC成分と、第2光電変換素子部が出力する電流のDC成分とが相殺されており、検出電流にはDC成分が殆ど或いは全く含まれていないので、例えば検出電流に含まれるDC成分が比較的大きい場合に発生し得る第1電流電圧変換部の飽和現象(例えば第1電流電圧変換部に含まれるオペアンプの飽和現象)の発生を回避しつつ、第1電流電圧変換部による増幅の利得を大きくすることができる。尚、第1電流電圧変換部の飽和現象とは、第1電流電圧変換部に入力される検出電流の電流値が所定の電流値よりも大きい場合に、第1電流電圧変換部が出力する電圧信号が、検出電流の電流値によらず、第1電流電圧変換部の電源電圧に応じて定まる一定の飽和電圧となる現象を意味する。
 更に、本実施形態によれば、前述したように、入力光に含まれる信号光成分に相当するAC成分を主として含む電流を、検出電流として出力することができるので、第1電流電圧変換部が出力する電圧信号におけるS/N比(signal-to-noise ratio)を向上させることができる。即ち、本実施形態によれば、第1及び第2光電変換素子部の各々から出力される電流のうち、入力光に定常光成分として含まれるノイズ成分に相当するDC成分を低減或いは除去して、信号成分に相当するAC成分を主として含む検出電流を出力するので、第1電流電圧変換部が出力する電圧信号におけるS/N比を向上させることができる。
 以上の結果、本実施形態に係る光検出装置によれば、入力光に含まれる信号光成分を精度良く検出することが可能となる。
 第1実施形態に係る光検出装置の一の態様では、前記第1及び第2光電変換素子部は、前記第1光電変換素子部のカソードと前記第2光電変換素子部のアノードとが接続され且つ前記第1光電変換素子部のアノードと前記第2光電変換素子部のカソードとが接続されるように、並列接続されている。
 この態様によれば、第1光電変換素子部が出力する電流と第2光電変換素子部が出力する電流との差分電流を検出電流として確実に出力することができる。
 第1実施形態に係る光検出装置の他の態様では、前記第1及び第2光電変換素子部は、互いにカソード同士又はアノード同士が接続されるように、直列接続されている。
 この態様によれば、第1光電変換素子部が出力する電流と第2光電変換素子部が出力する電流との差分電流を検出電流として確実に出力することができる。
 前述した第1及び第2光電変換素子部が直列接続されている態様では、前記直列接続された前記第1及び第2光電変換素子部間に接続されており、前記第1及び第2光電変換素子部の各々にバイアス電圧を印加することが可能なバイアス電圧印加手段を更に備え、前記光電流変換部は、前記バイアス電圧印加手段によって前記第1及び第2光電変換素子部の各々に前記バイアス電圧が印加された場合には、前記第1光電変換素子部が出力する電流と前記第2光電変換素子部が出力する電流との各々を出力する。
 この場合には、第1光電変換素子部が出力する電流と第2光電変換素子部が出力する電流との各々のDC成分を検出することができる。よって、入力光に含まれる定常光成分に対する信号光成分の比を算出することができる。従って、入力光に含まれる信号光成分をより精度良く検出することが可能となる。
 第1実施形態に係る光検出装置の他の態様では、前記入力光を電流に変換して出力する第3光電変換素子部と、前記第3光電変換素子部から出力された電流を増幅して電圧信号に変換する第2電流電圧変換部とを更に備える。
 この態様によれば、第2電流電圧変換部から出力される電圧信号に基づいて、第3光電変換素子部が出力する電流のDC成分を検出することができる。よって、入力光に含まれる定常光成分に対する信号光成分の比を算出することができる。従って、入力光に含まれる信号光成分をより精度良く検出することが可能となる。
 第1実施形態に係る光検出装置の他の態様では、前記光電流変換部は、前記第1及び第2光電変換素子部の両端に夫々接続された第1及び第2端子を有し、前記第1電流電圧変換部は、前記第1端子に接続された正の入力端子、前記第2端子に接続された負の入力端子、前記正の入力端子に入力された信号を反転増幅して出力する負の出力端子、及び前記負の入力端子に入力された信号を反転増幅して出力する正の出力端子を有する全差動増幅器と、前記正の入力端子と前記負の出力端子との間に接続された第1負帰還抵抗と、前記負の入力端子と前記正の出力端子との間に接続された第2負帰還抵抗と、前記正の出力端子から出力される信号と前記負の出力端子から出力される信号との差を増幅して電圧信号として出力する増幅器とを有する。
 この態様によれば、例えばフォトダイオード等である第1及び第2光電変換素子部を、逆バイアス電圧が殆ど或いは全く印加されない状態、即ち、いわゆる発電モードで動作させることができる。よって、第1及び第2光電変換素子部に発生する暗電流(即ち、入力光が入力されなくても逆バイアス電圧によって発生する逆方向電流)を低減或いは無くすことができる。従って、暗電流のゆらぎによるノイズ電流を低下させることができ、第1電流電圧変換部の増幅器が出力する電圧信号におけるS/N比を向上させることができる。この結果、入力光に含まれる信号光成分をより精度良く検出することが可能となる。
 第1実施形態に係る流量計測装置は上記課題を解決するために、光を被検体に照射する照射部と、前記照射された光に起因する前記被検体からの光が前記入力光として入力される前述した本実施形態に係る光検出装置(但し、その各種態様を含む)と、前記第1電流電圧変換部が出力する電圧信号に基づいて、前記被検体中の流体に関する流体情報を算出する算出部とを備える。
 本実施形態に係る流量計測装置によれば、前述した本実施形態に係る光検出装置を備えるので、被検体中の流体に関する流体情報を正確に算出することができる。
 以下、本発明の実施例について図を参照しつつ説明する。
 <第1実施例>
 第1実施例に係る光検出装置について、図1から図3を参照して説明する。
 先ず、第1実施例に係る光検出装置の構成について、図1及び図2を参照して説明する。
 図1は、第1実施例に係る光検出装置の全体構成を示すブロック図であり、図2は、第1実施例に係る光検出装置の構成を示すブロック図である。
 図1及び図2において、第1実施例に係る光検出装置1は、外部から入力される入力光に含まれる信号光成分を検出するための光検出装置であり、光電流変換部100と、電流電圧変換部200とを備えている。入力光は、例えば、レーザー光が被検体(例えば人間の指など)によって例えば反射、散乱等された光であり、被検体に係る情報を示す信号光成分(例えば、被検体における例えば反射、散乱等による変調成分)を含んでいる。
 図2において、光電流変換部100は、受光素子110及び120と、端子Pd1及びPd2とを有している。尚、受光素子110は、本発明に係る「第1光電変換素子部」の一例であり、受光素子120は、本発明に「第2光電変換素子部」の一例である。
 受光素子110及び120の各々は、例えばPINダイオード(P-Intrinsic-N Diode)等のフォトダイオードであり、入力光を受光し、受光した入力光の光量に応じて電流を出力する。受光素子110及び120は、受光素子110のカソード(言い換えれば、受光素子110のN型半導体)と受光素子120のアノード(言い換えれば、受光素子110のP型半導体)とが互いに接続され且つ受光素子110のアノード(言い換えれば、受光素子110のP型半導体)と受光素子120のカソード(言い換えれば、受光素子120のN型半導体)とが互いに接続されるように、並列接続されている。受光素子110のアノード及び受光素子120のカソードは、端子Pd1に接続され、受光素子110のカソード及び受光素子120のアノードは、端子Pd2に接続されている。受光素子110及び120がこのように並列接続されているので、光電流変換部100は、受光素子110が出力する電流Idt1と受光素子120が出力する電流Idt2と差分電流を検出電流Idtとして端子Pd1から出力することができる。
 端子Pd1及びPd2は、後述する電流電圧変換部200の入力端子In1及びIn2にそれぞれ接続されている。
 電流電圧変換部200は、入力端子In1及びIn2と、オペアンプ210と、帰還抵抗Rfと、出力端子Outとを有している。電流電圧変換部200は、入力端子In1に入力される電流を電圧信号に変換して出力するトランスインピーダンスアンプ(電流-電圧変換増幅器)として構成されている。電流電圧変換部200は、光電流変換部100から入力端子In1に入力される検出電流Idtを電圧信号に変換して出力端子Outから光検出信号として出力する。
 入力端子In1は、オペアンプ210の反転入力端子(-)に接続されている。入力端子In2は、オペアンプ210の非反転入力端子(+)に接続されている。入力端子In2及びオペアンプ210の非反転入力端子は接地されている(即ち、例えばグランド(GND)電位等の基準電位に接続されている)。
 帰還抵抗Rfは、オペアンプ210の出力端子とオペアンプ210の反転入力端子との間に接続されており、負帰還を施すと共に電流を電圧に変換する。帰還抵抗Rfによって負帰還が施されることにより、オペアンプ210の反転入力端子と非反転入力端子との電位差は殆どゼロになっている(即ち、いわゆる「イマジナルショート(仮想短絡)」が成立している)。
 出力端子Outは、オペアンプ210の出力端子に接続されている。出力端子Outは、オペアンプ210から出力される電圧信号を光検出信号として出力する。
 次に、本実施例に係る光検出装置の動作について、図2を参照して説明する。
 図2において、光検出装置1の動作時には、入力光が受光素子110及び120の各々によって受光されると、受光素子110及び120の各々から入力光の光量に応じた電流が出力される。即ち、受光素子110は、受光した入力光の光量に応じて電流Idt1を出力し、受光素子120は、受光した入力光の光量に応じて電流Idt2を出力する。すると、前述したように、受光素子110及び120は、受光素子110のカソードと受光素子120のアノードとが互いに接続され且つ受光素子110のアノードと受光素子120のカソードとが互いに接続されるように、並列接続されているので、受光素子110から出力される電流Idt1と受光素子120から出力される電流Idt2との差分電流が端子Pd1から検出電流Idtとして出力される。
 ここで、入力光には信号光成分(例えば、被検体における例えば反射、散乱等による変調成分)と定常成分(例えば、被検体に照射されるレーザー光の光量に応じた成分やノイズ成分)とが含まれる。よって、受光素子110が出力する電流Idt1と受光素子120が出力する電流Idt2とには、それぞれ、入力光に含まれる信号光成分に相当する電流成分であるAC成分と、入力光に含まれる定常光成分に相当する電流成分であるDC成分とが含まれる。受光素子110に入力される入力光の信号光成分と、受光素子120に入力される入力光の信号光成分とは、受光素子110が配置された位置と受光素子120が配置された位置とが互いに異なるため、光学的経路が互いに異なる。そのため信号光成分に相当する電流成分は互いに相関の低い信号となる。よって、受光素子110が出力する電流Idt1のAC成分(即ち、信号光成分に相当する電流成分)と、受光素子120が出力する電流Idt2のAC成分とは、互いに相関が低い。即ち、電流Idt1及びIdt2のAC成分は、互いに位相や振幅や周波数が異なる非同相成分を多く含む(言い換えれば、互いに相関が低い無相関成分である)。一方、受光素子110が出力する電流Idt1のDC成分(即ち、定常光成分に相当する電流成分)と、受光素子120が出力する電流Idt2のDC成分とは、例えば受光面積を等しく設計した場合、互いの振幅はほぼ等しい。即ち、電流Idt1及びIdt2のDC成分は、互いに同相成分(言い換えれば、互いに相関が強い相関成分)である。
 よって、図3に示すように、受光素子110から出力される電流Idt1と受光素子120から出力される電流Idt2との差分電流である検出電流Idtは、電流Idt1及びIdt2のAC成分に比較して増加すると共にDC成分が低減或いは除去された電流となる。互いに無相関成分を多く含む信号同士の減算は、ランダム信号の減算と等価であり、減算後信号パワーは増加する。尚、図3は、検出電流Idt及びオペアンプ210の出力電圧Voutの各々の一例を示す波形図である。
 即ち、本実施例に係る光電流変換部100によれば、受光素子110が出力する電流Idt1のDC成分と、受光素子120が出力する電流Idt2のDC成分とを相殺させることができ、入力光に含まれる信号光成分に相当するAC成分を主として含む検出電流Idtを出力することができる。
 従って、電流電圧変換部200によって検出電流Idtを増幅して電圧信号に変換する際の利得を高めることができる。言い換えれば、本実施例によれば、前述したように、受光素子110が出力する電流Idt1のDC成分と、受光素子120が出力する電流Idt2のDC成分とが相殺されており、検出電流IdtにはDC成分が殆ど或いは全く含まれていないので、例えば検出電流Idtに含まれるDC成分が比較的大きい場合に発生し得る、電流電圧変換部200に含まれるオペアンプ210の飽和現象の発生を回避しつつ、電流電圧変換部200による増幅の利得を大きくすることができる。言い換えれば、図3において、オペアンプ210の出力電圧Voutの最大値とオペアンプ210の飽和電圧Vsとの差ΔV1を比較的大きく維持しつつ、電流電圧変換部200による増幅の利得を大きくすることができる。
 更に、本実施例によれば、前述したように、光電流変換部100は、入力光に含まれる信号光成分に相当するAC成分を主として含む電流を、検出電流Idtとして出力することができるので、電流電圧変換部200が出力する光検出信号におけるS/N比を向上させることができる。即ち、本実施例によれば、受光素子110が出力する電流Idt1と受光素子120が出力する電流Idt2とから、入力光に定常光成分として含まれるノイズ成分(例えばレーザー光源のゆらぎに起因するノイズ成分)に相当するDC成分を低減或いは除去して、信号成分に相当するAC成分を主として含む検出電流Idtを出力するので、電流電圧変換部200が出力する光検出信号におけるS/N比を向上させることができる。
 加えて、本実施例によれば、前述したように、オペアンプ210の反転入力端子と非反転入力端子との電位差が殆どゼロになるイマジナルショートが成立している。よって、オペアンプ210の反転入力端子に入力端子In1を介して接続されている端子Pd1と、オペアンプ210の非反転入力端子に入力端子In2を介して接続されている端子Pd2との電位差も殆どゼロであり、受光素子110及び120の各々をゼロバイアスの状態(即ち、逆バイアス電圧が殆ど或いは全く印加されない状態)、即ち、いわゆる発電モードで動作させることができる。従って、受光素子110及び120に発生する暗電流を低減或いは無くすことができる。これにより、暗電流のゆらぎによるノイズ電流を低下させることができ、電流電圧変換部200が出力する光検出信号におけるS/N比を向上させることができる。
 本実施例によれば、入力光に定常光成分として含まれるDC成分を低減或いは除去できるので、電流電圧変換部200において、飽和現象を回避しつつ、入力である検出電流Idtに対する出力である出力電圧Voutの比、即ち変換ゲインを高くできるので、S/N比を向上させることができる。
 具体的には、図2における帰還抵抗Rfの抵抗値を高くしても、オペアンプ210の飽和現象を回避できる。電流電圧変換部200が発生するノイズの主要成分のひとつとして、帰還抵抗Rfの熱雑音が良く知られている。熱雑音は、帰還抵抗Rfの抵抗値の平方根に比例する。一方、変換ゲインは、帰還抵抗Rfの抵抗値に比例するので、帰還抵抗Rfの抵抗値を高くするとS/N比は、帰還抵抗Rfの抵抗値の平方根倍で改善される。しかし、従来の単一フォトダイオード構成で帰還抵抗Rfの抵抗値を高くすると、DC成分によりオペアンプ210が飽和してしまう。仮にオペアンプ210が飽和した場合、信号成分は出力されなくなり、致命的な不具合が生じる。一方、本実施例によれば、検出電流Idtの段階でDC成分を低減或いは除去できるので、帰還抵抗Rfの抵抗値を高くしてもオペアンプ210は飽和しない。従って、本実施例によれば、オペアンプ210の飽和回避と、高変換ゲインによる高S/N化の両立が可能となる。
 以上説明したように、本実施例に係る光検出装置1によれば、電流電圧変換部200が出力する光検出信号におけるS/N比を向上させることができる。この結果、入力光に含まれる信号光成分を精度良く検出することが可能となる。
 <第2実施例>
 第2実施例に係る光検出装置について、図4を参照して説明する。
 図4は、第2実施例に係る光検出装置の構成を示すブロック図である。尚、図4において、図2に示した第1実施例に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
 図4において、第2実施例に係る光検出装置1bは、前述した第1実施例における光電流変換部100に代えて光電流変換部100bを備える点で、前述した第1実施例に係る光検出装置1と異なり、その他の点については、前述した第1実施例に係る光検出装置1と概ね同様に構成されている。
 図4において、光電流変換部100bは、受光素子110b及び120bと、端子Pd1b及びPd2bとを有している。尚、受光素子110bは、本発明に係る「第1光電変換素子部」の一例であり、受光素子120bは、本発明に「第2光電変換素子部」の一例である。
 受光素子110b及び120bの各々は、例えばPINダイオード等のフォトダイオードであり、入力光を受光し、受光した入力光の光量に応じて電流を出力する。受光素子110b及び120bは、互いにカソード同士が接続されるように、直列接続されている。受光素子110bのアノードは、端子Pd1bに接続され、受光素子120bのアノードは、端子Pd2bに接続されている。受光素子110b及び120bがこのように直列接続されているので、光電流変換部100bは、受光素子110bが出力する電流Idt1bと受光素子120bが出力する電流Idt2bと差分電流を検出電流Idtbとして端子Pd1bから出力することができる。
 端子Pd1b及びPd2bは、電流電圧変換部200の入力端子In1及びIn2にそれぞれ接続されている。
 このように構成された光検出装置1bによって、前述した第1実施例に係る光検出装置1によって得られる利益と同様の利益を得ることができる。即ち、受光素子110bが出力する電流Idt1bのDC成分と、受光素子120bが出力する電流Idt2bのDC成分とを相殺させることができ、入力光に含まれる信号光成分に相当するAC成分を主として含む検出電流Idtbを出力することができる。この結果、電流電圧変換部200が出力する光検出信号におけるS/N比を向上させることができる。
 <第3実施例>
 第3実施例に係る光検出装置について、図5及び図6を参照して説明する。
 図5は、第3実施例に係る光検出装置の構成を示すブロック図である。
 図5において、第3実施例に係る光検出装置1cは、外部から入力される入力光に含まれる信号光成分を検出するための光検出装置であり、光電流変換部100cと、電流電圧変換部200cとを備えている。入力光は、例えば、レーザー光が被検体(例えば人間の指など)によって例えば反射、散乱等された光であり、被検体に係る情報を示す信号光成分(例えば、被検体における例えば反射、散乱等による変調成分)を含んでいる。
 図5において、光電流変換部100cは、受光素子110c及び120cと、端子Pd1c及びPd2cとを有している。尚、受光素子110cは、本発明に係る「第1光電変換素子部」の一例であり、受光素子120cは、本発明に「第2光電変換素子部」の一例である。
 受光素子110c及び120cの各々は、例えばPINダイオード等のフォトダイオードであり、入力光を受光し、受光した入力光の光量に応じて電流を出力する。受光素子110c及び120cは、互いにアノード同士が接続されるように、直列接続されている。受光素子110cのカソードは、端子Pd1cに接続され、受光素子120cのカソードは、端子Pd2cに接続されている。受光素子110c及び120cがこのように直列接続されているので、光電流変換部100cは、受光素子110cが出力する電流Idt1cと受光素子120cが出力する電流Idt2cとの差分電流(Idt2c-Idt1c)を検出電流Idtcとして端子Pd1cから出力することができる。また、光電流変換部100cは、端子Pd1から出力する検出電流Idtcの極性が反転された電流(-Idtc)を端子Pd2cから出力することができる。
 端子Pd1c及びPd2cは、電流電圧変換部200cの入力端子In1c及びIn2cにそれぞれ接続されている。
 このように構成された光電流変換部200cによれば、受光素子110cが出力する電流Idt1cのDC成分と、受光素子120cが出力する電流Idt2cのDC成分とを相殺させることができ、入力光に含まれる信号光成分に相当するAC成分を主として含む検出電流Idtcを出力することができる。この結果、電流電圧変換部200cが出力する光検出信号におけるS/N比を向上させることができる。
 電流電圧変換部200cは、入力端子In1c及びIn2cと、本発明に係る「全差動増幅器」の一例としての全差動アンプ230と、帰還抵抗Rf1及びRf2と、増幅器240と、出力端子Outとを有している。全差動アンプ230は、入力端子In1cに入力される電流Idtcを電圧信号-Rf1・Idtcに変換し、出力端子Out-から出力する。同時に、全差動アンプ230は、入力端子In2cに入力される電流-Idtcを電圧信号Rf2・Idtcに変換し、出力端子Out+から出力する。即ち、全差動アンプ230は、入力端子In1及びIn2に入力される電流を、それぞれ独立して電流電圧変換し、差動出力するトランスインピーダンスアンプとして構成されている。
電流電圧変換部200cは、光電流変換部100cから入力端子In1cに入力される検出電流Idtcを電圧信号に変換して出力端子Outから光検出信号として出力する。
 全差動アンプ230は、入力端子In1cに接続された入力端子In+と、入力端子In2cに接続された入力端子In-と、出力端子Out-と、出力端子Out+とを有する全差動増幅器である。基準電位は、基準電位端子Vrefを介して入力される。出力端子Out-及びOut+は、後述する増幅器240の入力端子In-及びIn+にそれぞれ接続されている。
 帰還抵抗Rf1は、全差動アンプ230の入力端子In+と全差動アンプ230の出力端子Out-との間に接続されており、負帰還を施すと共に電流を電圧に変換する。帰還抵抗Rf2は、全差動アンプ230の入力端子In-と全差動アンプ230の出力端子Out+との間に接続されており、負帰還を施すと共に電流を電圧に変換する。帰還抵抗Rf1及びRf2によって負帰還が施されることにより、全差動アンプ230の入力端子In+と基準電位端子Vrefとの電位差は殆どゼロになっている。同様に入力端子In-との基準電位端子Vrefとの電位差は殆どゼロになっている。その結果、入力端子In+と入力端子In-は殆ど同電位になる。よって、全差動アンプ230の入力端子In+に入力端子In1cを介して接続されている端子Pd1cと、全差動アンプ230の入力端子In-に入力端子In2cを介して接続されている端子Pd2cとの電位差も殆どゼロであり、受光素子110c及び120cの各々をゼロバイアスの状態、即ち、いわゆる発電モードで動作させることができる。従って、受光素子110c及び120cに発生する暗電流を低減或いは無くすことができる。これにより、暗電流のゆらぎによるノイズ電流を低下させることができ、電流電圧変換部200cが出力する光検出信号におけるS/N比を向上させることができる。
 増幅器240は、入力端子In-から入力される電圧信号-Rf1・Idtcと、入力端子In+から入力される電圧信号Rf2・Idtcとの電位差2・Rf・Idtc(Rf1=Rf2=Rfに選ぶ)を増幅して出力する増幅器である。増幅器240の出力端子は、電流電圧変換部200cの出力端子Outに接続されている。
 図6は、増幅器240の構成を示す回路図である。
 図6において、増幅器240は、計装アンプとして構成されており、オペアンプOP1、OP2及びOP3と、帰還抵抗R2、R3及びR6と、共通入力抵抗R1と、入力抵抗R4、R5及びR7とを備えている。
 増幅器240の入力端子In-は、オペアンプOP1の非反転入力端子(+)に接続されている。増幅器240の入力端子In+は、オペアンプOP2の非反転入力端子(+)に接続されている。オペアンプOP1及びOP2は、帰還抵抗R2及びR3によってそれぞれ負帰還が施される。
 帰還抵抗R2とR3とは、等しい抵抗値に設定されている。
 共通入力抵抗R1は、オペアンプOP1の反転入力端子とオペアンプOP2の反転入力端子との間に接続されている。尚、共通入力抵抗R1は、利得を可変とするために可変抵抗として機能してもよい。
 オペアンプOP1の出力端子は、入力抵抗R4を介して、オペアンプOP3の反転入力端子に接続されている。オペアンプOP2の出力端子は、入力抵抗R5を介して、オペアンプOP3の非反転入力端子に接続されている。入力抵抗R5とオペアンプOP3の非反転入力端子との間には、入力抵抗R7の一方の端子が接続されている。入力抵抗R7の他方の端子は、例えばGND電位である基準電位Vrefに接続されている。オペアンプOP2から出力される電圧は、入力抵抗R5及びR7によって分圧されオペアンプOP3の非反転入力端子に入力される。
 入力抵抗R4とR5とは、等しい抵抗値に設定されている。
 オペアンプOP3は、帰還抵抗R6によって負帰還が施される。オペアンプOP3の出力端子は、電流電圧変換部200cの出力端子Outに接続されている。
 帰還抵抗R6と入力抵抗R7とは、等しい抵抗値に設定されている。
 このように構成された増幅器240によれば、全差動アンプ230の出力端子Out-及びOut+からそれぞれ出力される2つの電圧信号における同相成分(例えばハムノイズなど)を、ノイズとして除去することができる。更に、全差動アンプ230の出力端子Out-及びOut+からそれぞれ出力される2つの電圧信号は、検出電流Idtcに応じて差動出力されており、極性が互いに異なる2つの差動信号である。よって、増幅器240の入力端子In+及びIn-には、検出した光の信号成分は逆相で入力される。これにより、増幅器240が光検出信号として出力する電圧信号から例えばハムノイズ等の同相成分を、ノイズとして除去することができる。加えて、検出した光の信号成分は逆相なので、増幅器240によって増幅されて、光検出信号として出力される。この結果、光検出信号において、ノイズ成分を低下させると共に信号成分を増加させることができるので、S/Nを顕著に向上させることができる。
 <第4実施例>
 第4実施例に係る光検出装置について、図7を参照して説明する。
 第4実施例に係る光検出装置は、図5及び図6を参照して前述した第3実施例における増幅器240に代えて増幅器240dを備える点で、前述した第3実施例に係る光検出装置1cと異なり、その他の点については、前述した第3実施例に係る光検出装置1cと概ね同様に構成されている。
 図7は、第4実施例に係る増幅器の構成を示す回路図である。尚、図7において、図5及び図6に示した第3実施例に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
 図7において、本実施例に係る増幅器240dは、オペアンプOP1及びOP2と、帰還抵抗R2及びR3と、共通入力抵抗R1と、ローパスフィルタ(即ち、低域通過フィルタ)LPF1及びLPF2と、AD(Analog to Digital)変換器ADC1及びADC2とを備えている。
 図5及び図6を参照して前述した第3実施例に係る増幅器240は、シングルエンドの信号であると共にアナログ信号として光検出信号を出力することが可能に構成されている。これに対して、図7に示すように、本実施例に係る増幅器240dは、極性の異なる2つの差動信号を光検出信号DtOut1及びDtOut2として出力するように構成されている。加えて、光検出信号DtOut1及びDtOut2は、ローパスフィルタLPF1及びLPF2並びにAD変換器ADC1及びADC2を介してデジタル信号として出力される。増幅器240dによれば、オペアンプOP1の出力信号は、アンチエリアスフィルタ(即ち、AD変換器によるサンプリングによって発生するエリアシングノイズを除去可能なフィルタ)としてのローパスフィルタLPF1を介してAD変換機ADC1に入力され、オペアンプOP2の出力信号は、アンチエリアスフィルタとしてのローパスフィルタLPF2を介してAD変換機ADC2に入力される。よって、光検出信号DtOut1及びDtOut2の各々のS/N比を高めることが可能である。AD変換器ADC1及びADC2の出力信号である量子化された光検出信号DtOut1及びDtOut2は、例えばDSP(Digital Signal Processor)等のデジタル信号処理装置等の信号処理装置(不図示)によって減算処理が実行されてよい。
 以上の結果、本実施例によれば、光検出信号DtOut1及びDtOut2は、量子化されているので、例えば通信網を介して伝送する場合における、外界環境からのノイズに強くなる。よって、光検出信号の長距離伝送を実現することが可能となる。
 <第5実施例>
 第5実施例に係る血流計測装置について、図8を参照して説明する。
 図8は、第5実施例に係る血流計測装置の構成を示すブロック図である。尚、図8において、図1及び図2に示した第1実施例に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
 図8において、本実施例に係る血流計測装置1001は、本発明に係る「流体計測装置」の一例であり、生体である被検体900の血流量を計測するための装置である。
 血流計測装置1001は、レーザー駆動装置2と、半導体レーザー3と、図1及び図2を参照して前述した第1実施例に係る光検出装置1と、信号処理部5とを備えている。尚、レーザー駆動装置2及び半導体レーザー3は、本発明に係る「照射部」の一例であり、信号処理部5は、本発明に係る「算出部」の一例である。
 図8において、レーザー駆動装置2によって半導体レーザー3が駆動されることにより、半導体レーザー3からの光が被検体900に照射される。被検体900に照射された光は、被検体900の毛細血管内のヘモクロビンにより反射或いは散乱される。このように被検体900において反射或いは散乱された光は、光検出装置1の光電流変換部100(より具体的には、図2を参照して前述した受光素子110及び120)に入射される。入射された光に応じて光電流変換部100から検出電流Idtが出力される。検出電流Idtは、電流電圧変換部200によって電圧信号に変換されて、光検出信号として信号処理部5に入力される。信号処理部5は、入力された光検出信号に基づいて血流量を算出し、血流量を示すデジタル信号を血流量検出信号として出力する。
 ここで特に、血流計測装置1001は、前述した第1実施例に係る光検出装置1を備えているので、S/Nが高い光検出信号に基づいて、信号処理部5によって血流量を算出することができる。よって、血流量を正確に算出することができる。
 尚、血流計測装置は、前述した第1実施例に係る光検出装置1と同様にそれぞれ構成された2つの光検出装置と、該2つの光検出装置からそれぞれ出力される光検出信号の差分に基づいて血流量を算出し、血流量を示すデジタル信号を血流量検出信号として出力する信号処理部とを更に備えてもよい。このように構成すれば、例えばハムノイズ等の同相成分をより確実に除去することができ、より正確に、血流量を算出することができる。
 <第6実施例>
 第6実施例に係る血流計測装置について、図9を参照して説明する。
 図9は、第6実施例に係る血流計測装置の構成を示すブロック図である。尚、図9において、図4に示した第2実施例に係る構成要素及び図8に示した第5実施例に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
 図9において、本実施例に係る血流計測装置1002は、本発明に係る「流体計測装置」の一例であり、生体である被検体900の血流量を計測するための装置である。
 血流計測装置1002は、レーザー駆動装置2と、半導体レーザー3と、光検出装置1gと、信号処理部5gとを備えている。
 光検出装置1gは、光電流変換部100b及び電流電圧変換部200gを備えている。
 光電流変換部100bは、互いにカソード同士が接続されるように、直列接続された受光素子110b及び120bを有している。受光素子110bのアノードは、端子Pd1bを介して電流電圧変換部200gの入力端子In1に接続され、受光素子120bのアノードは、端子Pd2bを介して電流電圧変換部200gの入力端子In2に接続されている。
 本実施例では特に、受光素子110b及び120b間にバイアス印加選択素子300の一端が接続されている。バイアス印加選択素子300は、コントローラ400からの指令に基づいて、受光素子110b及び120bにバイアス電圧を印加するか否かを選択する。バイアス印加選択素子300は、アナログスイッチSW1から構成されている。アナログスイッチSW1の一端は、受光素子110bと120bとの間(即ち、受光素子110bと120bとの接続点)に接続され、アナログスイッチSW1の他端は、例えばGND電位等のバイアス電位に接続されている。バイアス印加選択素子300は、コントローラ400からの指令に応じて、アナログスイッチSW1のオンオフを切り替えることで、受光素子110b及び120bにバイアス電圧を印加するか否かを選択する。尚、バイアス印加選択素子300及びコントローラ400は、本発明に係る「バイアス電圧印加手段」の一例である。
 電流電圧変換部200gは、図7を参照して前述した光検出装置が備える電流電圧変換部と概ね同様に構成されている。即ち、電流電圧変換部200gは、全差動アンプ230(図5参照)、帰還抵抗Rf1及びRf2(図5参照)並びに増幅器240d(図7参照)を備えている。電流電圧変換部200gは、出力端子Out1及びOut2から光検出信号DtOut1及びDtOut2をそれぞれ出力する。
 信号処理部5gは、入力された光検出信号DtOut1及びDtOut2に基づいて血流量を算出し、血流量を示すデジタル信号を血流量検出信号として出力する。信号処理部5gは、コントローラ400からの指令に基づいて、受光素子110b及び120bにバイアスが印加されるバイアス印加時(即ち、アナログスイッチSW1がオン状態とされたとき)と、受光素子110b及び120bにバイアスが印加さない開放時(即ち、アナログスイッチSW1がオフ状態とされたとき)とで、信号処理の内容を変更する。
 具体的には、バイアス印加時には、信号処理部5gは、入力される光検出信号DtOut1及びDtOut2を加算することにより、DC光パワー成分を算出する。一方、開放時には、入力される光検出信号DtOut1及びDtOut2を減算することにより、例えばビート信号等の信号光成分のパワースペクトルを算出し、これに基づいて被検体900の血流量を算出する。更に、信号処理部5gは、開放時に算出した血流量を、バイアス印加時に算出したDC光パワー成分で除算することで規格化を行う。これにより、半導体レーザー3から出射される光にパワー変動が生じたとしても被検体900の血流量を精度良く測定することが可能となる。
 <第7実施例>
 第7実施例に係る光検出装置について、図10を参照して説明する。
 図10は、第7実施例に係る光検出装置の構成を示す回路図である。尚、図10において、図2に示した第1実施例に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
 図10において、第7実施例に係る光検出装置1hは、受光素子130及び該受光素子130から出力される電流を電圧に変換する電流電圧変換部分203を更に備える点で、前述した第1実施例に係る光検出装置1と異なり、その他の点については、前述した第1実施例に係る光検出装置1と概ね同様に構成されている。尚、受光素子130は、本発明に係る「第3光電変換素子部」の一例であり、電流電圧変換部分203は、本発明に係る「第2電流電圧変換部」の一例である。
 図10において、第7実施例に係る光検出装置1hは、光電流変換部100hと、電流電圧変換部200hとを備えている。
 光電流変換部100hは、前述した第1実施例における光電流変換部100と同様に、並列接続された受光素子110及び120と、端子Pd1及びPd2とを有している。更に、光電流変換部100hは、受光素子110及び120とは別個に設けられた受光素子130と、端子Pd1h及びPd2hとを有している。受光素子130は、例えばPINダイオード等のフォトダイオードであり、入力光を受光し、受光した入力光の光量に応じて電流を出力する。受光素子130のカソードは、端子Pd1hに接続され、受光素子130のアノードは、端子Pd2hに接続されている。
 端子Pd1h及びPd2hは、後述する電流電圧変換部200hの入力端子In1h及びIn2hにそれぞれ接続されている。
 電流電圧変換部200hは、前述した第1実施例における光電流変換部と概ね同様に、入力端子In1及びIn2と、オペアンプ210と、帰還抵抗Rfと、出力端子OutAとを有している。尚、出力端子OutAは、オペアンプ210の出力端子に接続されている。出力端子OutAは、オペアンプ210から出力される電圧信号を光検出信号DtOutAとして出力する。
 更に、電流電圧変換部200hは、受光素子130から出力される電流を電圧に変換する電流電圧変換部分203を有している。電流電圧変換部分203は、入力端子In1h及びIn2hと、オペアンプ210hと、帰還抵抗Rfhと、出力端子OutBとを有している。
 入力端子In1hは、オペアンプ210hの反転入力端子(-)に接続されている。入力端子In2hは、オペアンプ210hの非反転入力端子(+)に接続されている。入力端子In2h及びオペアンプ210hの非反転入力端子は接地されている。
 帰還抵抗Rfhは、オペアンプ210hの出力端子とオペアンプ210hの反転入力端子との間に接続されており、負帰還を施すと共に電流を電圧に変換する。帰還抵抗Rfhによって負帰還が施されることにより、オペアンプ210hの反転入力端子と非反転入力端子との電位差は殆どゼロになっている(即ち、いわゆるイマジナルショートが成立している)。
 出力端子OutBは、オペアンプ210hの出力端子に接続されている。出力端子OutBは、オペアンプ210hから出力される電圧信号を光検出信号DtOutBとして出力する。
 このように本実施例では特に、光検出装置1hは、受光素子130及び該受光素子130から出力される電流を電圧に変換する電流電圧変換部分203を備えるので、受光素子130が出力する電流Idt3に基づいて、入力光の定常光成分に相当する信号を光検出信号DtOutBとして出力することができる。よって、互いに並列接続された受光素子110及び120からの検出電流Idtに基づく光検出信号DtOutA(即ち、入力光の信号光成分に相当する信号)を、光検出信号DtOutB(即ち、入力光の定常光成分(DC光成分)に相当する信号)で除算することにより信号の規格化を行うことができる。よって、光源から出射される光にパワー変動が生じたとしても入力光に含まれる信号成分を精度良く検出することができる。
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う光検出装置及び流体計測装置もまた本発明の技術的範囲に含まれるものである。
1、1b、1c、1g、1h 光検出装置
2 レーザー駆動装置
3 半導体レーザー
5、5g 信号処理部
100、100b、100c、100g、100h 光電流変換部
110、120、110b、120b、110c、120c 受光素子
200、200c、200g、200h 電流電圧変換部
210、210h オペアンプ
230 全差動アンプ
240、240d 増幅器
300 バイアス印加選択素子
400 コントローラ
1001、1002 血流計測装置
Rf、Rfh、Rf1、Rf2 帰還抵抗
SW1 アナログスイッチ

Claims (7)

  1.  入力光に含まれる信号光成分を検出するための光検出装置であって、
     前記入力光を電流に夫々変換して出力する第1及び第2光電変換素子部を含んでなり、前記第1光電変換素子部が出力する電流と前記第2光電変換素子部が出力する電流との差分電流を検出電流として出力する光電流変換部と、
     該光電流変換部から出力された前記検出電流を増幅して電圧信号に変換し、該電圧信号を出力する第1電流電圧変換部と
     を備えることを特徴とする光検出装置。
  2.  前記第1及び第2光電変換素子部は、前記第1光電変換素子部のカソードと前記第2光電変換素子部のアノードとが接続され且つ前記第1光電変換素子部のアノードと前記第2光電変換素子部のカソードとが接続されるように、並列接続されていることを特徴とする光検出装置。
  3.  前記第1及び第2光電変換素子部は、互いにカソード同士又はアノード同士が接続されるように、直列接続されていることを特徴とする光検出装置。
  4.  前記直列接続された前記第1及び第2光電変換素子部間に接続されており、前記第1及び第2光電変換素子部の各々にバイアス電圧を印加することが可能なバイアス電圧印加手段を更に備え、
     前記光電流変換部は、前記バイアス電圧印加手段によって前記第1及び第2光電変換素子部の各々に前記バイアス電圧が印加された場合には、前記第1光電変換素子部が出力する電流と前記第2光電変換素子部が出力する電流との各々を出力する
     ことを特徴とする請求項3に記載の光検出装置。
  5.  前記入力光を電流に変換して出力する第3光電変換素子部と、
     前記第3光電変換素子部から出力された電流を増幅して電圧信号に変換する第2電流電圧変換部と
     を更に備えることを特徴とする請求項1から4のいずれか一項に記載の光検出装置。
  6.  前記光電流変換部は、前記第1及び第2光電変換素子部の両端に夫々接続された第1及び第2端子を有し、
     前記第1電流電圧変換部は、
     前記第1端子に接続された正の入力端子、前記第2端子に接続された負の入力端子、前記正の入力端子に入力された信号を反転増幅して出力する負の出力端子、及び前記負の入力端子に入力された信号を反転増幅して出力する正の出力端子を有する全差動増幅器と、
     前記正の入力端子と前記負の出力端子との間に接続された第1負帰還抵抗と、
     前記負の入力端子と前記正の出力端子との間に接続された第2負帰還抵抗と、
     前記正の出力端子から出力される信号と前記負の出力端子から出力される信号との差を増幅して電圧信号として出力する増幅器と
     を有することを特徴とする請求項1から5のいずれか一項に記載の光検出装置。
  7.  光を被検体に照射する照射部と、
     前記照射された光に起因する前記被検体からの光が前記入力光として入力される請求項1から6のいずれか一項に記載の光検出装置と、
     前記第1電流電圧変換部が出力する電圧信号に基づいて、前記被検体中の流体に関する流体情報を算出する算出部と
     を備えることを特徴とする流体計測装置。
PCT/JP2010/060765 2010-06-24 2010-06-24 光検出装置及び流体計測装置 WO2011161799A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/805,262 US9237856B2 (en) 2010-06-24 2010-06-24 Light detecting apparatus and fluid measuring apparatus
CN201080067519.1A CN103002799B (zh) 2010-06-24 2010-06-24 光检测设备和流体测量设备
PCT/JP2010/060765 WO2011161799A1 (ja) 2010-06-24 2010-06-24 光検出装置及び流体計測装置
JP2011517693A JP5244973B2 (ja) 2010-06-24 2010-06-24 光検出装置及び流体計測装置
EP14194613.7A EP2862510B1 (en) 2010-06-24 2010-06-24 Light detecting apparatus and fluid measuring apparatus
EP10853659.0A EP2586366B1 (en) 2010-06-24 2010-06-24 Photo-detection device and fluid measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060765 WO2011161799A1 (ja) 2010-06-24 2010-06-24 光検出装置及び流体計測装置

Publications (1)

Publication Number Publication Date
WO2011161799A1 true WO2011161799A1 (ja) 2011-12-29

Family

ID=45371012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060765 WO2011161799A1 (ja) 2010-06-24 2010-06-24 光検出装置及び流体計測装置

Country Status (5)

Country Link
US (1) US9237856B2 (ja)
EP (2) EP2586366B1 (ja)
JP (1) JP5244973B2 (ja)
CN (1) CN103002799B (ja)
WO (1) WO2011161799A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007337A (ja) * 2014-06-24 2016-01-18 ローム株式会社 脈波センサ
EP2929834A4 (en) * 2012-12-05 2016-08-03 Pioneer Corp MEASURING DEVICE, SONDENTEIL AND CONNECTING CABLE
EP2837327B1 (en) * 2012-04-13 2023-10-18 Air Water Biodesign Inc. Fluid assessment device and method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546013B (zh) * 2012-02-17 2014-08-13 华为技术有限公司 一种检测信号功率的方法及设备
DE112015006220T5 (de) * 2015-03-25 2017-11-23 Olympus Corporation Verfahren zur Blutgefäßerkennung und Blutflussmessung
EP3087916B1 (en) * 2015-04-28 2023-09-20 Nokia Technologies Oy Physiological measurement sensor
LT3317658T (lt) * 2015-07-03 2020-12-10 Kamstrup A/S Drumstumo jutiklis, pagrįstas ultragarsiniais matavimais
JP2017064115A (ja) * 2015-09-30 2017-04-06 株式会社東芝 生体計測装置および生体計測システム
US10883931B2 (en) * 2016-02-24 2021-01-05 Sony Corporation Optical measuring instrument, flow cytometer, and radiation counter
JP6323921B2 (ja) * 2016-11-08 2018-05-16 Nttエレクトロニクス株式会社 光受信回路
EP3550270B1 (en) * 2016-11-29 2022-01-05 Pioneer Corporation Measurement device
CN109031393B (zh) * 2017-06-09 2020-07-28 京东方科技集团股份有限公司 光电探测电路以及光电探测器
US11566927B2 (en) * 2017-09-21 2023-01-31 Air Water Biodesign Inc. Optical measurement apparatus, optical measurement method, computer program, and recording medium
EP3581898B1 (de) 2018-06-13 2020-07-29 E+E Elektronik Ges.M.B.H. Elektronische anordnung, optischer gassensor umfassend eine solche elektronische anordnung und verfahren zur kombinierten fotostrom- und temperaturmessung mittels einer solchen elektronischen anordnung
JP7175435B2 (ja) * 2019-01-31 2022-11-21 エア・ウォーター・バイオデザイン株式会社 流速特定装置
EP3951327A4 (en) * 2019-03-29 2023-04-05 Kyocera Corporation MEASUREMENT DEVICE, MEASUREMENT SYSTEM, MEASUREMENT PROCEDURE AND PROGRAM
CN112806972B (zh) * 2019-11-18 2023-04-07 Oppo广东移动通信有限公司 Ppg测量电路和方法、可穿戴电子设备
CN114366043B (zh) * 2020-10-15 2024-07-30 Oppo广东移动通信有限公司 Ppg传感器、ppg测试方法、电子设备和可穿戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161080A (ja) * 1974-06-17 1975-12-26
JPH06224652A (ja) 1993-01-26 1994-08-12 Toshiba Corp 光受信回路
WO1999012469A1 (fr) * 1997-09-05 1999-03-18 Seiko Epson Corporation Photodetecteur a reflexion et instrument de mesure de donnees biologiques
JP2000323940A (ja) * 1999-05-07 2000-11-24 Matsushita Electric Ind Co Ltd 全差動増幅器
JP3313841B2 (ja) 1993-09-24 2002-08-12 興和株式会社 血流測定装置
JP2007175415A (ja) 2005-12-28 2007-07-12 Nippon Telegr & Teleph Corp <Ntt> 光学センサ及びそのセンサ部
JP2009039568A (ja) * 2008-11-21 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> 生体情報計測装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873989A (en) * 1984-03-08 1989-10-17 Optical Technologies, Inc. Fluid flow sensing apparatus for in vivo and industrial applications employing novel optical fiber pressure sensors
JPS60213804A (ja) * 1984-04-06 1985-10-26 Canon Inc 半導体光位置検出器
GB8907101D0 (en) 1989-03-29 1989-05-10 Nat Res Dev Blood flow determination
US5410145A (en) * 1994-02-25 1995-04-25 Coroy; Trenton G. Light detector using reverse biased photodiodes with dark current compensation
US6459919B1 (en) * 1997-08-26 2002-10-01 Color Kinetics, Incorporated Precision illumination methods and systems
US6584566B1 (en) 1998-08-27 2003-06-24 Nortel Networks Limited Distributed group key management for multicast security
US6813714B1 (en) 1999-08-17 2004-11-02 Nortel Networks Limited Multicast conference security architecture
US6400974B1 (en) * 2000-06-29 2002-06-04 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method for processing implanted sensor output
US7082200B2 (en) 2001-09-06 2006-07-25 Microsoft Corporation Establishing secure peer networking in trust webs on open networks using shared secret device key
FI113515B (fi) 2002-01-18 2004-04-30 Nokia Corp Osoitteistus langattomissa lähiverkoissa
JP2005123872A (ja) * 2003-10-16 2005-05-12 Sharp Corp 光ビーム検出装置およびプリンタ機器
KR100698112B1 (ko) 2004-09-08 2007-03-26 엘지전자 주식회사 위치정보 기반서비스 기능을 적용한 단 방향 통신 시스템 및 통신 방법
EP1727329A1 (en) 2005-05-23 2006-11-29 Siemens S.p.A. Method and system for the remote management of a machine via IP links of an IP multimedia subsystem, IMS
DE102005033327A1 (de) * 2005-07-16 2007-01-25 Roche Diagnostics Gmbh Medizinisches Testgerät und Verfahren zur optischen Untersuchung eines Analyten
DE102005045733A1 (de) 2005-09-23 2007-04-05 Nec Europe Ltd. Verfahren zum Übermitteln von Nachrichten
US8848912B2 (en) 2005-12-19 2014-09-30 Nippon Telegraph And Telephone Corporation Terminal identification method, authentication method, authentication system, server, terminal, wireless base station, program, and recording medium
CN101229060A (zh) * 2007-01-24 2008-07-30 陈居阳 反射式红外动脉波形采集器及传感器
JP2008257340A (ja) 2007-04-02 2008-10-23 Canon Inc 情報処理装置、情報処理方法、記憶媒体及びプログラム
US8870780B2 (en) * 2008-10-15 2014-10-28 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for monitoring heart function

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161080A (ja) * 1974-06-17 1975-12-26
JPH06224652A (ja) 1993-01-26 1994-08-12 Toshiba Corp 光受信回路
JP3313841B2 (ja) 1993-09-24 2002-08-12 興和株式会社 血流測定装置
WO1999012469A1 (fr) * 1997-09-05 1999-03-18 Seiko Epson Corporation Photodetecteur a reflexion et instrument de mesure de donnees biologiques
JP2000323940A (ja) * 1999-05-07 2000-11-24 Matsushita Electric Ind Co Ltd 全差動増幅器
JP2007175415A (ja) 2005-12-28 2007-07-12 Nippon Telegr & Teleph Corp <Ntt> 光学センサ及びそのセンサ部
JP2009039568A (ja) * 2008-11-21 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> 生体情報計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2586366A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2837327B1 (en) * 2012-04-13 2023-10-18 Air Water Biodesign Inc. Fluid assessment device and method
EP2929834A4 (en) * 2012-12-05 2016-08-03 Pioneer Corp MEASURING DEVICE, SONDENTEIL AND CONNECTING CABLE
US10070797B2 (en) 2012-12-05 2018-09-11 Pioneer Corporation Measuring apparatus, probe portion, and connecting cable
JP2016007337A (ja) * 2014-06-24 2016-01-18 ローム株式会社 脈波センサ

Also Published As

Publication number Publication date
EP2862510A1 (en) 2015-04-22
EP2862510B1 (en) 2018-02-28
EP2586366B1 (en) 2016-04-06
EP2586366A4 (en) 2014-06-11
JP5244973B2 (ja) 2013-07-24
CN103002799B (zh) 2017-02-08
JPWO2011161799A1 (ja) 2013-08-19
CN103002799A (zh) 2013-03-27
US9237856B2 (en) 2016-01-19
US20130090564A1 (en) 2013-04-11
EP2586366A1 (en) 2013-05-01

Similar Documents

Publication Publication Date Title
JP5244973B2 (ja) 光検出装置及び流体計測装置
JP5085785B2 (ja) 光量検出装置、及び光量情報処理装置
JP5897812B2 (ja) 光検出装置及び流体計測装置
WO2013153664A1 (ja) 流体評価装置及び方法
KR20140127761A (ko) 포토다이오드들에 대한 회로 아키텍처
JPWO2014136242A1 (ja) 検出器
JP4756614B2 (ja) 信号検出装置
WO2015198470A1 (ja) 測定装置及び測定方法
CN212905520U (zh) 基于平衡探测器的光信号发射与探测系统
EP2518660B1 (en) Circuit and method for performing arithmetic operations on current signals
CN108534893B (zh) 一种用于光外差探测的光电检测电路
CN108760045B (zh) 一种大动态范围的光电探测电路
CN107817097B (zh) 激光器光检测电路
JPS6388871A (ja) 光混成集積回路装置
EP3296761A1 (en) Distance measuring device
JP2008039548A (ja) シンチレーション検出器
JP2558691B2 (ja) 交流光成分増幅装置
KR102544474B1 (ko) 먼지 센서
JP2021142346A (ja) 検出器
JP6605755B2 (ja) 流体評価装置及び方法、コンピュータプログラム並びに記録媒体
WO2018087815A1 (ja) 光検出装置および画像取得装置
JP5822776B2 (ja) 光学変位センサ
CN115127672A (zh) 一种共振平衡零拍探测微弱光的装置
JP2018126520A (ja) 検出器
JPS63207175A (ja) 光混成集積回路装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011517693

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13805262

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010853659

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE