WO2011160484A1 - 具有β-木糖苷酶和β-葡萄糖苷酶活性的新的糖基水解酶及其应用 - Google Patents

具有β-木糖苷酶和β-葡萄糖苷酶活性的新的糖基水解酶及其应用 Download PDF

Info

Publication number
WO2011160484A1
WO2011160484A1 PCT/CN2011/072678 CN2011072678W WO2011160484A1 WO 2011160484 A1 WO2011160484 A1 WO 2011160484A1 CN 2011072678 W CN2011072678 W CN 2011072678W WO 2011160484 A1 WO2011160484 A1 WO 2011160484A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
xylose
species
group
amino acid
Prior art date
Application number
PCT/CN2011/072678
Other languages
English (en)
French (fr)
Inventor
朱平
程海立
赵瑞玉
程克棣
何惠霞
孟超
朱慧新
Original Assignee
中国医学科学院药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医学科学院药物研究所 filed Critical 中国医学科学院药物研究所
Priority to CA2804879A priority Critical patent/CA2804879C/en
Priority to CN201180031238.5A priority patent/CN103097528B/zh
Priority to KR1020137002081A priority patent/KR101830131B1/ko
Priority to EP11797515.1A priority patent/EP2586860B1/en
Priority to US13/806,439 priority patent/US9206405B2/en
Priority to JP2013515676A priority patent/JP5868395B2/ja
Publication of WO2011160484A1 publication Critical patent/WO2011160484A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01037Xylan 1,4-beta-xylosidase (3.2.1.37)

Definitions

  • Novel glycosyl hydrolase having ⁇ -xylosidase and ⁇ -glucosidase activity and application thereof
  • the present invention relates to a novel glycosyl hydrolase (GH), an amino acid sequence of the enzyme, and a nucleotide sequence encoding the enzyme.
  • the enzyme has ⁇ -xylosidase- ⁇ -glucosidase activity and is capable of specifically hydrolyzing a xylose group from a 7-xylostaxane compound, and the present invention relates to encoding the 7-wood
  • the nucleotide sequence of the glycosidase hydrolase, the amino acid sequence of the enzyme, and the use of the enzyme or the enzyme producing bacteria are examples of the enzyme produced by the enzyme.
  • Paclitaxel (Taxol®, Paclitaxel) is mainly produced by the genus Taxus, and is one of the important achievements of anticancer drugs in the 1990s. Since its inception, its unique anti-tumor mechanism and remarkable anti-tumor activity have been produced. The world is eye-catching (Kingston DGI, et al. The taxane diterpenoids. In: Herz W, et al. eds. Progress in the chemistry of organic natural products. New York: Springer-Verlag, 1993, 161-165).
  • paclitaxel paclitaxel
  • Paclitaxel is low in yew plants, and only about two-tenths of the bark is found in the highest content (US Patent US 6028206).
  • a centuries-old yew tree can get about 3 kg of bark, from which about 300 mg of paclitaxel can be obtained (Horwitz, SB. How to make taxol from scratch. Nature 1994b, 367: 593-594), therefore, About 3,000 large trees are needed for each kilogram of paclitaxel extracted from the bark, and the dose of one patient is equivalent to destroying 3 to 4 centuries old trees.
  • An alternative method is to extract a higher content of 10-deacetylbaccatin oxime (about 0.1%) from the branches of Taxus baccata L.), and use it as a raw material for semi-synthetic paclitaxel or its structure.
  • the analog is docetaxel, which is slightly more active than paclitaxel and more water soluble than paclitaxel [Denis JN, et al. A highly efficient, practical approach to natural taxol. J Am Chem Soc. 1988. 1 10 (17): 5917-5919; Horwitz RI. Studies with RP 56976 (Taxotere): A semisynthet- Ic analogue of taxol. J Nat Cancer Inst. 1991 , 83(4): 288-291 ; US Patent US
  • nursery cultivation of shrub-type yew hybrids is also considered to be the most simple, resource-renewable, and least costly solution to the source of paclitaxel.
  • a C-7 xylose taxane compound having a paclitaxel core structure was isolated from the bark of the yew, including 7-xylose-10- Acetyl paclitaxel (7-P-xylosyl- 10-deacytyltaxol, XDT), 7-p-xylosyl- 10-deacetylcepholomanine (XDC), 7-xylose-10 - Deacetylpacillol C ( 7-P-xylosyl-l O-deacytyltaxol C, XDTC ), etc., wherein 7-P-xylosyl 10-deacytyltaxol (XDT) is the most abundant Rich (Senilh V, et al.
  • Hydrolysis removes the xylose group to produce the corresponding 7-hydroxy taxane, which can be used for chemical semi-synthetic paclitaxel or docetaxel to improve the utilization of Taxus resources and alleviate the supply and demand of Taxus resources. contradiction.
  • chemical methods have certain deficiencies, such as relatively low yields, relatively complex reaction processes, and environmental pollution, while biological methods are environmentally friendly.
  • FEMS Microbiol Lett 2008, 284:204-212 discloses the hydrolysis of C-7 xylose taxane to C-7 hydroxy taxane using actinomycete Leifsonia shinshuensis DICP 16 (CCTCC No. M 206026) method.
  • CTCC No. M 206026 actinomycete Leifsonia shinshuensis DICP 16 (CCTCC No. M 206026) method.
  • 1 mg of XDT was added to 2 ml of the bacterial suspension, and the reaction was carried out at 30 ° C and 120 rpm for 21 hours, and then the reaction was terminated with 2 ml of methanol, and the reaction liquid was determined by HPLC. There is no XDT residue in it, producing 0.4 mg/ml DT.
  • the wet cell concentration in 2 ml of reaction solution was 231.58 mg/ml, and 7-xylose-10-deacetylbaccatin III was at different concentrations (0.5, 0.9, 1.95, 3.1, 4.4, 5.2, and 6.75). Mg/ml) were added separately and reacted at 31 °C and 120 rpm for more than 40 h.
  • the yield of 10-deacetylbaccatin III reached the highest at 1j when the substrate concentration was 1.95 mg/ml (Hao DC, Et al. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches. FEMS Microbiol Lett 2008, 284:204-212).
  • Another Chinese patent discloses the actinomycete Cellulosimicwbium cellulans, XZ-5CCTCC No. M 207130), hydrolase and its use in taxane conversion: 10 ml XDT (Concentration 5 mg/ml) was added to 90 ml of crude enzyme solution (100 ml of culture solution was added to 1 ml of 30 ⁇ C cultured for 2 days of culture of M. fibrosus, cultured at 150 rpm, shake flask for 30 days at 30 °C. The supernatant was collected by centrifugation, and the reaction was carried out at 50 rpm for 30 hours at 30 ° C to produce 40 mg of DT.
  • beta-xylosidase has been isolated from fungi and other organisms [Tuohy MG, et al.
  • the inventors of the present invention conducted intensive research.
  • the hydrolase (GH), LC-MS/MS De novo sequencing of the purified enzyme, gave the amino acid sequence of some oligopeptides.
  • a series of degenerate primers were designed based on the amino acid sequences of these oligopeptides, and the cDNA and structural genes of the enzyme were cloned by molecular biology techniques such as nested PCR, RACE and Genome Walking.
  • a cDNA fragment encoding an open reading frame (ORF) of the enzyme is ligated to an appropriate expression vector to construct a recombinant plasmid, which is introduced into a corresponding host cell, such as Pichia pastoris which grows fast and can be fermented at a high density.
  • the recombinant bacteria can efficiently catalyze the glycosyl hydrolysis of 7-xylose taxane to produce a 7-hydroxy taxane.
  • the inventors have also discovered that the enzyme is a bifunctional enzyme that hydrolyzes glucose residues on glucosides.
  • the nucleotide sequence has almost no homology with all the nucleotide sequences registered in GenBank, and the closest one is mostly the putative protein gene sequence, and the coverage ratio of both is only 3 ⁇ 7%;
  • the putative amino acid sequence of the sequence is closest to the putative protein sequence of stilago maydis (GenBank accession: XP_760179), and the agreement between the two is 43%, and the similarity is 59%.
  • the present invention encompasses the following inventions:
  • a novel 7-xylosylosidase hydrolase codenamed Lx ⁇ -P l, is provided.
  • a second object of the present invention is to provide a nucleotide sequence encoding the enzyme.
  • a third object of the present invention is to provide a recombinant plasmid containing the nucleotide sequence.
  • a fourth object of the present invention is to provide a host cell comprising the recombinant plasmid or the nucleotide sequence.
  • a fifth object of the present invention is to provide an application of the enzyme.
  • the technical solution adopted is:
  • the present invention provides a 7-xylose taxane glycosyl hydrolase (a bifunctional ⁇ -xylosidase- ⁇ -glucosidase), which is encoded by LXYL-P1.
  • the amino acid sequence of the 7-xylosylosidase hydrolase (LXYL-P1) comprises at least 30% of the amino acid sequence of the sequence of SEQ ID NO: 2;
  • it comprises an amino acid sequence having at least 40% homogeneity of SEQ ID NO: 2;
  • it comprises an amino acid sequence having at least 60% homogeneity of SEQ ID NO: 2; further preferably comprising an amino acid sequence having at least 70% homogeneity of SEQ ID NO: 2; further preferably comprising at least 80% having SEQ ID NO: a constitutive amino acid sequence; further preferably comprising an amino acid sequence having at least 90% homogeneity of SEQ ID NO: 2.
  • amino acid sequence having at least 95% homogeneity to SEQ ID NO: 2.
  • amino acid sequence of SEQ ID NO: 2 is substituted, deleted or added by one or several amino acid residues and has the same activity as the amino acid residue sequence of SEQ ID NO: 2, and the protein derived from SEQ ID NO: 2.
  • the present invention also provides a nucleotide sequence or a coding gene encoding the 7-xylosylosidase hydrolase (LXYL-P1), coded L ⁇ /-W, the nucleotide sequence thereof has SEQ ID NO: 1 or at least 30% of the nucleotide sequence of the nucleotide sequence shown in SEQ ID NO: 3;
  • nucleotide sequence comprising at least 40% of SEQ ID NO: 1 or SEQ ID NO: 3 is included;
  • nucleoside having at least 50% homogeneity of SEQ ID NO: 1 or SEQ ID NO: 3.
  • Acid sequence
  • nucleotide sequence comprising at least 60% of SEQ ID NO: 1 or SEQ ID NO: 3 is included;
  • nucleotide sequence having at least 70% homogeneity of SEQ ID NO: 1 or SEQ ID NO: 3 is included;
  • nucleotide sequence having at least 80% homogeneity of SEQ ID NO: 1 or SEQ ID NO: 3 is included;
  • nucleotide sequence having at least 95% of SEQ ID NO: 1 or SEQ ID NO: 3.
  • the present invention also provides a recombinant plasmid comprising the nucleotide sequence encoding L ⁇ /-/ ⁇ , which can be introduced into a suitable host cell.
  • the invention also provides a suitable host cell which can carry a L/-/ ⁇ gene sequence having at least 30% of the nucleotides shown in SEQ ID NO: 1 or SEQ ID NO: 3. sequence.
  • the host organism may be a homologous producing strain of the peptide (LXYL-P1) having the SEQ ID NO:
  • At least 30% of the amino acid sequence shown in 2 may also be a heterologous host cell.
  • Suitable host organisms are selected from the group consisting of bacteria, actinomycetes, yeasts, filamentous fungi, plant cells or animal cells.
  • Preferred bacteria are selected from the group consisting of Escherichia species Bacillus species;
  • Preferred actinomycetes are selected from the group consisting of Streptomyces species;
  • Preferred yeasts are selected from the group consisting of the yeast ( ⁇ cc/Mramyce species) and the Pichia genus Pichia. Species of Schizophyllum genus (.Schizosacchawmyce species);
  • Preferred filamentous fungi are selected from the group consisting of Aspergillus species, Trichoderma species, Penicillium species, Tricholoma species, Lentinula species, Agaricus species;
  • Preferred plant cells are selected from dicotyledon
  • the animal cells are selected from insect cells.
  • Preferred Escherichia species are preferably Escherichia coli (E. coli; preferably Bac/Zi ⁇ species is preferably Bacillus subtilis B. subtilis', preferably Streptomyces species
  • S. lividans is preferred
  • the preferred Saccharomyce species is preferably Saccharomyce cerevisiae
  • P. pastoris preferred Pichia species P. pastoris
  • preferred chizosaccharomyce species preferably Schizosacchawmyce pombe
  • Preferred Aspergillus species is preferably A. niger, A. nidulans of A. oryz e;
  • Preferred Trichoderma species is preferably T. ef T. viride;
  • the Pem'd painting species is preferably Pem'd ⁇ chrysogenum;
  • the preferred Tricholoma species is preferably Trichoderma mongolicum, preferably entirmla species. (L. edodes;
  • the preferred Agaricus species is preferably Agaricus bisporus; the preferred dicotyledon is preferably Arabidopsis thaliana;
  • Preferred insect cells are preferably Spodopterafmgiperda S cells.
  • the present invention also provides the nucleotide sequence of the present invention, the 7-xylosylosidase hydrolase of the present invention, and the use of a host cell comprising the nucleotide sequence of the present invention.
  • the application is as follows.
  • the DNA is transformed into a suitable host cell using a method conventional in the art, and the transformed recombinant cell is hydrolyzed by a recombinant enzyme produced thereby to hydrolyze various substrates, particularly glycoside compounds.
  • Preferred glycoside compounds as substrates are selected from compounds containing xylose residues or compounds containing glucose residues; i.e., the use of the present invention is to hydrolyze xylose and/or glucosyl groups from such glycoside compounds.
  • the compound containing a xylose residue is selected from the group consisting of taxane xylosides; the substrate is preferably a taxane compound containing a 7-xylose residue, ⁇ , 7-xylose taxane, It is naturally occurring or non-naturally occurring, such as chemically or biosynthetically, or semi-synthetically.
  • the use of the 7-xylosylosidase hydrolase of the present invention is preferably a biotransformation or biocatalytic preparation of a 7-hydroxy taxane for 7-xylose taxane.
  • 7-xylose taxanes include, but are not limited to, the following compounds: 7-xylose-10-deacetylpaclitaxel, 7-xylose-10-deacetyl cephalosporin, 7-xylose-10- Deacetylpaclitaxel (:, 7-xylose-10-deacetylbaccatin III, 7-xylocheol, 7-xylose cephalosporin, 7-xylocheol (:, 7-xylose) Ting ⁇ ⁇ ; products obtained after hydrolysis to remove xylosyl include, but are not limited to: 10-deacetylpaclitaxel, 10-deacetyl cephalosporin, 10-deacetylpaclitaxel (:, 10-deacetylbaccatin III , paclitaxel, cephalosporin, paclitaxel (:, bacatein III.
  • the substrate may also be selected from a mixture of taxane-containing compounds containing xylose residues, such mixtures being, but not limited to, Taxus (T plant tissue, preferably Taxus plants selected from the group consisting of European yew)
  • Taxus T plant tissue, preferably Taxus plants selected from the group consisting of European yew
  • T. baccata T. brevifolic, Himalayan yew T. wallichiana yew (7: m "), Chinese yew (7: cfe 'brain ⁇ ), Yunnan yew (7: y awake ';?), and Northeast yew (7: cuspidate, or cell culture of these plants, or a microbial cell culture capable of producing 7-xylose taxanes.
  • Ph is a phenyl group
  • Bz is a benzoyl group
  • Ac is a solvent for the acetyl group to dissolve the substrate.
  • the solvent may be selected from the group consisting of: water, methanol, ethanol, ethyl acetonate, n-hexane, chloroform, dichloromethane, hydrazine, hydrazine- Dimethylformamide (DMF), dimethyl sulfoxide (DMSO).
  • the use of the present invention also includes the use of the glycosyl hydrolase of the present invention for improving bread properties, improving animal feed characteristics, producing D-xylose for the manufacture of xylitol, and deinking of recycled paper.
  • Glycosyl hydrolase of the present invention can be used with cellulase (ce ll u l ases) and hemicellulases (hemicellulases) other combination, further ethanol, butanol and the like obtaining biofuels hydrolyzed lignocellulosic monosaccharide.
  • the glycosyl hydrolase of the present invention can also release bioactive molecules from other glycoside compounds and is used in the field of medicine.
  • the invention also provides a biotransformation preparation method of paclitaxel and the like: using 7-xylose taxane as a raw material, and using the host cell containing the gene sequence of the invention or the enzyme produced thereby to remove the wood on the raw material Glycosyl, paclitaxel or an analogue thereof is obtained.
  • a preferred host cell is a fungus or a recombinant strain of the family Tricholoma, more preferably Pichia pastoris (abbreviated as Pichia).
  • the bifunctional glycosyl hydrolase of the present invention whose amino acid sequence comprises at least 30% of the amino acid sequence of the sequence of SEQ ID NO: 2, can be used from 7-xylose taxane or other Xylose or glucose is removed from the glycoside compound.
  • the present invention also relates to a recombinant plasmid comprising the above nucleotide sequence, and a host cell comprising the above nucleotide sequence.
  • the invention further relates to the use of a 7-xylosylosidase hydrolase or a host cell comprising a 7-xylose taxane hydrolase for the hydrolysis to remove xylose and/or to hydrolyze glucose groups.
  • the present invention provides a bifunctional ⁇ -xylosidase- ⁇ -glucosidase capable of clarifying its amino acid sequence, 7-xylosylosidase hydrolase, which is a fungus of Tricholomareceae.
  • Lentinula edodes M95.33 is produced by recombinant cells containing the gene encoding the enzyme, may be located in cells or secreted outside the cell, and is used to transform 7-xylose taxane into paclitaxel or an analogue thereof.
  • the nucleotide sequence encoding the glycosyl hydrolase of the present invention can be used to construct various types of recombinant expression plasmids which are transferred to the original fungal or other fungal host, Or is transferred to host cells such as prokaryotic cells (including Escherichia coli, actinomycetes), plant cells, and animal cells, and the expression of the glycosyl hydrolase gene allows these hosts to obtain hydrolysis of 7-xylose taxanes as 7- The ability of hydroxy taxanes.
  • the recombinant host can also be used for biotransformation of other sugar-containing compounds.
  • the use of the present invention also includes the use of the glycosyl hydrolase of the present invention for improving bread characteristics, improving animal feed characteristics, producing D-xylose for use in the manufacture of xylitol, and deinking of recycled paper.
  • the glycosyl hydrolase of the present invention can also be used in combination with cellulases and hemicellulases to hydrolyze lignocellulosic fibers to obtain monosaccharides to prepare biofuels such as ethanol and butanol.
  • the glycosyl hydrolase of the present invention can also release bioactive molecules from other glycoside compounds and is used in the field of medicine.
  • the present invention firstly clones and heterologously expresses a gene capable of specifically catalyzing a glycosyl hydrolase of 7-xyose taxane to 7-hydroxy taxane, and prepares a bioengineered bacteria having the activity of the enzyme. , providing a new and effective way for large-scale preparation of 7-hydroxy taxanes.
  • Term and abbreviation Term and abbreviation
  • CDS refers to the sequence of a protein encoded by a gene, from the start codon to the stop codon.
  • FIG. 1 Fungal M95.33 protein extract Phenyl Sepharose hydrophobic column chromatography (A) and XDT-transformed thin layer chromatography (TLC) (B) for ⁇ -xylosidase- ⁇ -glucosidase.
  • the abscissa is Absorbance values for different fractions (different section collection tube numbers) with ordinate on A405 (405 nm)
  • A is a mixed substrate (control); B is a recombinant yeast + mixed substrate (control) introduced into an empty vector; C is a recombinant bacteria + mixed substrate into which the Lxyl-pl gene is introduced.
  • 1, 2, 3 represent 7-xylose-10-deacetyl cephalosporin (XDC), 7-xylose-10-deacetylpaclitaxel (XDT), 7-xylose-10-desacetylpacepol C, respectively (XDTC); 1', 2' and 3' are their respective 7-hydroxy taxane products 10-deacetyl cephalosporin (DC), 10-deacetylpaclitaxel (DT), 10-deacetylated Paclitaxel C (DTC).
  • Figure 7 represent 7-xylose-10-deacetyl cephalosporin (XDC), 7-xylose-10-deacetylpaclitaxel (XDT), 7-xylose-10-desacetylpacepol C, respectively (
  • Example 1 Purification of Lentinus edodes P-xylosidase-P-glucosidase (LXYL-P1) Culture of fungus M95.33: Pick up about 1 cm 2 square of the lawn from the cultivated strain, and inoculate 100 Ml sterile wheat bran liquid medium [wheat bran medium composition, per liter containing: wheat bran 50.00g (add appropriate amount of water, boil for 30min, filter to remove residue), peptone 20.00g, KH 2 P0 4 1.50g, MgSO 4 0.75g, natural pH ⁇ 6.3], 25 ⁇ 26. C, 160 rpm shake flask culture for 6-8d.
  • glycosyl hydrolase The mycelium was collected by filtration, and after adding liquid nitrogen, 50 mM Tris-HCl (pH 8.0) protein lysate was added in a volume of 3 to 5 times, and sonicated in an ice bath for 5 min (130 W). , 10 seconds / time, interval 10 seconds). After centrifugation (12,000 rpm, lOmin), the supernatant was collected as a crude enzyme solution for further separation and purification.
  • Tris-HCl pH 8.0
  • the protein having ⁇ -xylosidase activity was followed by p-nitrophenyl- ⁇ -D-xyloside (PNP-Xyl) as a specific chromogenic substrate.
  • PNP-Xyl p-nitrophenyl- ⁇ -D-xyloside
  • One enzyme unit is defined as the amount of enzyme required to catalyze the production of 1 nmol of p-nitrophenol in 1 min at 50 °C, pH 5.0 with PNP-Xyl as the substrate.
  • DEAE Sepharose FF anion exchange column (1.6 cm X 20 cm), equilibrated with Tris-HCl buffer (50 mM, pH 8.0), and the above crude enzyme solution (80-90 ml/time) was applied to the column with 0, 0.1, 0.25. And a gradient elution of 2.0 MNaCl in 50 mM Tris-HCl buffer (pH 8.0) (flow rate 2 ml/min), collecting the enzyme-active 0.1 ⁇ 0.25 M NaCl elution fraction and adding 1 M (NH 4 ) 2 S0 4 for the next chromatography.
  • Phenyl Sepharose hydrophobic column (1.6 cm X 20 cm) was equilibrated with 1 M (NH 4 ) 2 S0 4 (50 mM, pH 8.0), and the previous elution fraction was applied to the column with 1.0 ⁇ 0M (NH 4 ).
  • 2 SO 4 Tris-HCl buffer (50 mM, pH 8.0) linear gradient elution (flow rate 2 ml/min), collect active enzyme components, and dialyze with Tris-HCl buffer (50 mM, pH 8.0) .
  • the dialyzed solution was applied to a DEAE Sepharose FF anion exchange column [1.6 cm X 20 cm, equilibrated with Tris-HCl buffer (50 mM, pH 8.0)] with Tris-HCl buffer (50 mM, pH 8. containing 0.1 ⁇ 0.25 M NaCl).
  • LXYL-P 1 or P 1
  • LXYL-P2 or P2
  • Both P 1 and P 2 can hydrolyze 7-xylose-10-deacetylpaclitaxel (XDT) to 10-deacetylpaclitaxel (DT) (as shown in Figure 1).
  • XDT 7-xylose-10-deacetylpaclitaxel
  • DT 10-deacetylpaclitaxel
  • A. is an active peak of the enzyme obtained by chromatography
  • B. is a thin layer chromatography (TLC) for converting the substrate XDT by the P1, P2 active sample.
  • TLC thin layer chromatography
  • 1 in B is the XDT reference
  • 2 is the DT control
  • 3 is the P1 conversion XDT
  • 4 is the P2 conversion XDT.
  • PNP-Glc p-Nitrophenyl-beta-D-glucopyranoside
  • PNP-Gal p-Nitrophenyl-PD-galactopyranoside
  • PNP-Ara p-Nitrophenyl aL-arabinopyranoside
  • a solution of 5 mM, pH 5.0 was prepared using 50 mM acetate buffer.
  • PNP-Xyl can not hydrolyze PNP-Gal and PNP-Ara, the results are shown in Table 2.
  • Example 2 After the LXYL-P1 obtained in Example 1 was subjected to SDS-PAGE electrophoresis (see FIG. 2), the sample was subjected to reduction treatment, and the electrophoresis band having an apparent molecular weight of 110 KDa was subjected to LC-MS/MS analysis, and 5 was selected. The highest peak peptide was subjected to De novo sequencing, and the amino acid residue sequences of the five peptides were obtained, respectively:
  • TLTPLEALQK (where I and BL are indistinguishable, K and Q are indistinguishable) The relative position of the five peptides is evaluated by bioinformatics means, and the order before and after LXYL-P1 is determined as follows: 3 , 2, 5, 1, 4. Design the upper and lower degenerate primers according to peptides 3 and 5, respectively:
  • the above degenerate primers were used for nest-PCR amplification using the fungus M95.33 total R A as a template. After the PCR product was confirmed to contain the peptide 3, 2 and 5 coding sequences, the cDNA fragment containing the above five peptide coding regions was amplified by RACE technology, and the fragment contained a 2412 bp open reading frame (Open Reading Frame). , ORF, or CDS, named Lxyl-pJ), encodes 803 amino acids.
  • the cDNA sequence SEQ ID NO: 3 and its encoded amino acid sequence SEQ ID NO: 2 are shown in the Appendix.
  • the PCR amplification process is shown in Figure 8:
  • the ORF CLxyl-pl of the P1 coding region obtained in Example 3 was introduced into the 5'-, 3'-end of the ⁇ I and Not I restriction sites by PCR, and ⁇ VNot I was digested and ligated.
  • the recombinant expression plasmid pPIC9K-Pl-2 or pPIC3.5K was formed on the Pichia expression vector pPIC9K (secreted expression vector) or pPIC3.5K (non-secretory expression vector) which was also digested with SnaB®/ ⁇ 3 ⁇ 4 I. -Pl-2.
  • the recombinant plasmid was linearized by Sac l digestion and electroporated into Pichia pastoris GS115 competent cells.
  • the empty vector PPIC9K or pPIC3.5K was electroporated into Pichia pastoris GS115 competent cells as a control.
  • the transformed yeast cells were applied to MD plates [containing 20.00 g per glucose, 13.40 g of amino yeast nitrogen source (YNB), 0.4 mg of biotin, 15.00 g of agar), and cultured at 28 ° C for 2 to 3 days. Single colonies were picked and inoculated onto YPD-Geneticin® resistant plates (1 liter per yeast: 10.00 g of yeast extract, 20.00 g of peptone, 20.00 g of glucose, 15.00 g of agar, antibiotic G418 ⁇ 4.00 g), and continued for 2 to 3 days. Resistant colonies were screened and colony PCR was performed on resistant colonies. Take the pPIC9K and PPIC9K-P1-2 transformants as an example ( Figure 3):
  • PCR primers were matched to the sequences flanking the cloning site on the PPIC9K vector, respectively: Forward: 5' GACTGGTTCCAATTGACAAGC 3';
  • 1 is the recombinant yeast genome amplification result of introducing the empty vector pPIC9K; 2 is the recombinant yeast genome amplification result introduced into pPIC9K-Pl-2; 3 is the pPIC9K-Pl-2 recombinant plasmid control amplification result.
  • the seed and fermentation medium used to culture the recombinant yeast were BMGY (1 liter per yeast: 10.00 g of yeast extract, 20.00 g of peptone, 100 mM potassium phosphate buffer, pH 6.0, 10 ml of glycerol) and BMMY (replaced with 10 ml of methanol). 10 ml of glycerol in BMGY as a carbon source) medium.
  • BMGY 1 liter per yeast: 10.00 g of yeast extract, 20.00 g of peptone, 100 mM potassium phosphate buffer, pH 6.0, 10 ml of glycerol
  • BMMY replacement with 10 ml of methanol
  • the cells were transferred to 50 ml fermentation medium, cultured at 30 °C, 220 rpm, and 1% methanol was added every 24 h to induce the expression of recombinant protein.
  • the enzyme activity of the recombinant strain was observed periodically.
  • the cells were washed twice by centrifugation in distilled water and suspended in the same volume of distilled water.
  • the 50 ⁇ suspension was added to 100 ⁇ 5 mM PNP-Xyl, and reacted at 30-55 ° C for 20 min.
  • the recombinant bacteria had a hydrolyzed substrate PNP-Xyl.
  • the ability of the control bacteria transferred to the empty vector was not enzymatically active (see Figure 4).
  • Example 5 Recombinant yeast hydrolysis 7-xylose-10-deacetylpaclitaxel (XDT)
  • the recombinant yeast GS115-9K-P1-2 (secreted expression recombinant plasmid transformant) obtained in Example 4 was induced to culture for 5 days according to the method of Example 4, and the cells were collected by centrifugation and washed, and directly or lyophilized with pH 3.5.
  • - Suspension of cells 65 mg wet cells/ml, or 16 mg stem cells/ml
  • 7.5 50 mM acetate buffer or phosphate buffer as a hydrolysis reaction solution.
  • XDT 7-xylose-10-deacetylpaclitaxel
  • the recombinant yeast GS115-3.5K-P1-2 (non-secretory expression recombinant plasmid transformant) obtained in Example 4 was subjected to the following biotransformation reaction, and the transformation substrate was a 7-xylose taxane mixture, and the main component content was : 7-xylose-10-deacetylpacepol 62.12%, 7-xylose-10-deacetyl cephalosporin 12.75%, 7-xylose-10-desacetylpacepol C 17.04%, other components accounted for 8.09 %.
  • the recombinant culture method was the same as in Example 5. Add 16 ml of the concentration to the 200 ml recombinant reaction solution.
  • the conversion rates are: 7-xylose-10-deacetylpaclitaxel (XDT) 92.45%, 7-xylose-10-deacetyl cephalosporin (XDC) 93.60%, 7- Xylose-10-deacetylpacepol C (XDTC) 92.00%
  • the yields of the three main products were: 10-deacetylpaclitaxel (DT) 3.27 mg/ml, 10-deacetylated cephalosporin (DC) 0.74 Mg/ml, 10-deacetylpacillin C (DTC) 0.92 mg/ml, the sum of the three was 4.93 mg/ml; whereas the control did not have the above activity (Fig. 6).
  • A is a mixed substrate (control); B is a recombinant yeast + mixed substrate (control) into which an empty vector is introduced; and C is a recombinant bacteria + mixed substrate into which the Lxyl-pl gene is introduced.
  • 1 is 7-xylose-10-deacetyl cephalosporin; 2 is 7-xylose-10-deacetylpaclitaxel; 3 is 7-xylose-10-desacetylpacepol C; 1', 2' and 3' is the corresponding 7-hydroxy taxane product, respectively.
  • Example 7 Recombinant Yeast Hydrolysis 7-Xylose Baccarin III (XDB)
  • the strain was the same as in Example 6, and the substrate was 7-xylose-10-deacetylbaccatin I I I (XDB).
  • XDB 7-xylose-10-deacetylbaccatin I I I

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fodder In General (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Paper (AREA)

Description

具有 β-木糖苷酶和 β-葡萄糖苷酶活性的新的糖基水解酶及其应用 技术领域
本发明涉及一种新型的糖基水解酶 (GH)、 该酶的氨基酸序列及编码该酶的 核苷酸序列。 具体讲, 该酶具有 β-木糖苷酶 -β-葡萄糖苷酶活性, 并且能专一性 地从 7-木糖紫杉烷类化合物上水解去除木糖基, 本发明涉及编码该 7-木糖紫杉 烷糖基水解酶的核苷酸序列、 该酶的氨基酸序列以及该酶或者该酶产生菌的应 用。 背景技术 紫杉醇 (Taxol®, Paclitaxel) 主要由红豆杉属植物产生, 作为二十世纪 90年 代抗癌药的重要成就之一, 自问世以来, 其独特的抗肿瘤机制和显著的抗肿瘤活 †生令世人嘱目 ( Kingston DGI, et al. The taxane diterpenoids. In: Herz W, et al. eds. Progress in the chemistry of organic natural products. New York: Springer- Verlag, 1993, 161-165 )。它可以与微管蛋白结合, 促进微管蛋白的聚合并抑制其解聚, 阻 止细胞有丝分裂过程中纺锤丝的形成, 使细胞停滞于 G2/M期(Horwitz SB. Taxol (paclitaxel): mechanisms of action. Ann Oncol. 1994a, 5 Suppl.)。 目前紫杉醇在临床 上被用作乳腺癌、 卵巢癌和非小细胞肺癌等的一线药物。对头颈部癌症、 黑色素 瘤、 结肠癌以及由 HIV引起的卡波济肉瘤也有较好的疗效。
紫杉醇在红豆杉植株中含量很低,即使是含量最高的部位树皮中也只有万分 之二左右 (美国专利 US 6028206 ) 。 一颗生长百年的红豆杉老树可得到大约 3公 斤树皮,从中可制取 300毫克左右的紫杉醇 (Horwitz, SB. How to make taxol from scratch. Nature 1994b, 367: 593-594 ) , 因此, 从树皮中每提取 1公斤紫杉醇需要 大约 3000棵大树, 而满足 1例病人的用药量相当于毁掉 3〜4棵百年老树。 有一种 替代方法是从欧洲红豆杉 Taxus baccata L. ) 等的枝叶中提取含量较高的 10-去 乙酰巴卡亭 ΠΙ (含量可达 0.1%左右), 以此为原料半合成紫杉醇或其结构类似物 多西紫杉醇 (taxotere) , 后者的活性比紫杉醇稍强, 水溶性也高于紫杉醇 [Denis JN, et al. A highly efficient, practical approach to natural taxol. J Am Chem Soc. 1988. 1 10(17):5917-5919; Horwitz RI. Studies with RP 56976 (Taxotere): A semisynthet- ic analogue of taxol. J Nat Cancer Inst. 1991 , 83(4):288-291 ; 美国专利 US
4814470]。灌木型红豆杉杂交种的苗圃栽培也被认为是已知的解决紫杉醇来源最 简易、 资源可再生、 成本最低廉的方法。
除了含量极低的紫杉醇以外,还从红豆杉树皮中分离到具有紫杉醇母核结构 的 C-7 木糖紫杉烷类化合物 (紫杉烷木糖苷), 包括 7-木糖 -10-去乙酰紫杉醇 ( 7-P-xylosyl- 10-deacytyltaxol, XDT )、 7-木糖 -10-去乙酰三尖杉宁碱 ( 7-P-xylosyl- 10-deacetylcepholomanine, XDC )、 7-木糖 -10-去乙酰紫杉醇 C ( 7-P-xylosyl-l O-deacytyltaxol C, XDTC ) 等, 其中, 7-木糖 -10-去乙酰紫杉醇 ( 7-P-xylosyl- 10-deacytyltaxol, XDT) 的含量最为丰富 (Senilh V, et al. Mise en evidence de nouveaux analogues du taxol extraits de Taxus boccata. Nat Prod. 1984, 47: 131-137; Rao KV. Taxol and related taxanes. I. Taxanes of Taxus brevifolia bark. Pharm Res. 1993, 10:521-524)。例如, XDT、 XDC、 XDTC的收率可以分别达到: 0.5%, 0.02% and 0.0075% (欧洲专利 EP0905130B1 )。 这些 7-木糖紫杉烷类化合 物可以用化学方法 (美国专利 US 6028206; 欧洲专利 EP 1298128B1 ) 或生物方 法 (美国专利 US 5700669; 中国专利 CN申请号 No.200610046296.6; 中国专利 CN 申请号 No.200710012698.9 )水解去除其上的木糖基, 产生相应的 7-羟基紫 杉烷,后者可被用于化学半合成紫杉醇或多西紫杉醇, 以提高红豆杉资源利用率 和缓解红豆杉资源的供求矛盾。但比较而言, 化学方法存在某些不足, 如相对较 低的收率、 较为复杂的反应过程以及环境污染等, 而生物方法则符合环保理念。
美国及欧洲专利 (US5700669A; EP0668360B1 ) 及发表的相关论文(Hanson RL, et al. Enzymatic hydrolysis of 7-xylosyltaxanes by xylosidase from Moraxella sp. Biotechnol Appl Biochem 1997, 26: 153-158 ) 公开了利用细菌 Moraxella sp.(ATCC55475) Bacillus macerans (ATCC55476) Bacillus circulans (55477) 禾口 Micrococcus sp.(ATCC55478) 将 C-7木糖紫杉烷转化为 C-7羟基紫杉烷的水解方 法, 其中, Mora;ce//fl sp.的转化能力最强, 在 2ml细胞悬浮液中加入 0.5 mg 7-木 糖 -10-去乙酰紫杉醇 (XDT ) (湿细胞 91.5 mg/ml; XDT 0.25 mg/ml) , 28。C、 12 rpm条件下极向 (end-over-end) 混合 21小时, 用甲醇终止反应、 HPLC检测, 没有看到 XDT剩余, 产物 DT的产率为 0.23mg/ml。 中国专利 (申请号 200610046296.6 ) 及发表的相关论文 (Hao DC, α/. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches. FEMS Microbiol Lett 2008, 284:204-212 ) 公开了利用放线菌 Leifsonia shinshuensis DICP 16 (CCTCC No. M 206026) 将 C-7木糖紫杉烷转化为 C-7羟基 紫杉烷的水解方法。 利用类似于上述美国专利的培养及转化条件, 在 2 ml 菌体 悬浮液中加入 1 mg XDT, 在 30 ° C 、 120 rpm条件下反应 21小时后用 2 ml甲 醇终止反应, HPLC测得反应液中无 XDT残留, 产生 0.4 mg/ml DT。 在另一个 试验中, 2ml 反应液中湿细胞浓度为 231.58mg/ml, 7-木糖 -10-去乙酰巴卡亭 III 以不同浓度 ( 0.5, 0.9,1.95, 3.1 , 4.4, 5.2, 和 6.75 mg/ml) 分别加入, 在 31 °C 、 120 rpm条件下反应 40 h以上, 10-去乙酰巴卡亭 III的收率在底物浓度为 1.95 mg/ml时达至 lj最高 ( Hao DC, et al. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches. FEMS Microbiol Lett 2008, 284:204-212 ) 。
另一份中国专利 (申请号 200710012698.9 ) 公开了放线菌纤维化纤维单孢 菌 Cellulosimicwbium cellulans, XZ-5CCTCC No. M 207130)、 水解酶及其在紫 杉烷转化方面的用途: 将 10 ml XDT (浓度为 5 mg/ml)加入到 90 ml粗酶液 ( 100 ml培养液加入 1 ml 30 °C培养 2天的纤维化纤维单孢菌种子液, 150 rpm, 30 °C 摇瓶培养 5天, 离心收集上清即为粗酶液), 50 rpm, 30 °C下反应 20小时, 产 生 40mg DT。
总的来看,上述生物方法在水解 7-木糖紫杉烷方面均有潜在的应用价值,但 由于现存技术中的细胞酶量普遍偏低、底物在水中的溶解度不高等因素, 导致产 率不高, 难以满足规模化工业生产的要求。 有一些 β-木糖苷酶已从真菌和其他生物中分离得到 [Tuohy MG, et al. The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl beta-D-xylosides and unsubstituted xylans. Biochem J. 1993, 290 (Pt 2):515-523; Golubev AM, et al. Purification, crystallization and preliminary X-ray study of β-xylosidase from Trichoderma reesei. Acta Crystallogr D Biol Crystallogr. 2000, 56 (Pt 8): 1058— 1060; Pan I, et al. Effective extraction and purifi- two-phase partitioning. Enzyme Microb Technol. 2001 , 28 (2-3): 196-201 ; Rizzatti ACS, et al. Purification and properties of a thermostable extracellular β-D-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol BiotechnoL 2001 , 26(3): 156-160; Saha BC. Purification and characterization of an extracellular β-xylosidase from a newly isolated Fusarium verticillioides. J Ind Microbiol Biotechnol 2001 , 27 (4):241-245; Gargouri M, et al. Fungus be- ta-glycosidases:immobilization and use in alkyl-beta-glycoside synthesis. J Mol Catal B: Enzym. 2004, 29, Issues 1-6:89-94; Lama L, et al. Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus . Res Microbiol 2004,155(4):283-289; Belfaquih N & Penninckx MJ. A bifunctional β-xylosidase-xylose isomerase from Streptomyces sp. EC 10. Enzyme Microb Technol 2000, 27(1-2): 114-121] , 还成功克隆并鉴定了一些 β-木糖 苷酶基因 (如几种真菌来源的 β-木糖苷酶基因) [Margolles-Clark E, Cloning of genes encoding alpha-L-arabinofliranosidase and beta-xylosidase from Trichoder- ma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol. 1996, 62(10):3840-3846.; van Peij 顺, et al. β-Xylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger but not for induction of the xylanolytic enzyme spectrum. Eur J Biochem. 1997, 245 (1): 164-173; Perez-Gonzalez JA, et al. Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding a β-xylosidase. Appl Environ Microbiol. 1998, 64(4): 1412-1419; Kitamoto N, et al. Sequence analysis, overexpression, and anti- sense inhibition of a β-xylosidase gene, xylA, from Aspergillus oryzae KBN616. Appl Environ Microbiol. 1999, 65(l):20-24; Berrin JG, et al. High-level production of recombinant fungal endo-β- 1 ,4-xylanase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 2000, 19(1): 179-187; Reen FJ, et al. Molecular characterisation and expression analysis of the first hemicellulase gene (bxll) encoding β-xylosidase from the thermophilic fungus Talaromyces emersonii. Biochem Biophys Res Commun. 2003, 305(3):579-585; Kurakake M, et al. Characteristics of transxylosylation by beta-xylosidase from Aspergillus awamori 4. Biochim Biophys Acta. 2005, 1726(3):272-279; Wakiyama M, et al. Purification and properties of an extracellular β-Xylosidase from Aspergillus japonicus and sequence analysis of the encoding gene. J Biosci Bioeng. 2008, 106(4):398-404] o 然而, 所有这些 β-木糖苷酶(天然的或重 组的) 尚未见到能专一性水解 7-木糖紫杉烷, 因此有理由认为, 迄今为止能够对 7-木糖紫杉烷类化合物具有专一性催化活性的 β-木糖苷酶的基因尚未见到克隆, 更谈不上对其进行功能分析。 事实上, 有许多商品化的木糖苷酶、木聚糖酶和其 他的糖苷酶根本不具备从 7-木糖紫杉烷上水解去除木糖基的能力 (Hanson RL, et al. Enzymatic hydrolysis of 7-xylosyltaxanes by xylosidase from Moraxella sp. Bio- technol Appl Biochem 1997, 26: 153-158)。 发明内容
鉴于现有技术中存在的上述问题, 本发明的目的是提供一种新型的、 高效 的、 能专一性地水解 7-木糖紫杉烷木糖基的水解酶, 及其基因序列。
为解决上述技术问题, 本发明的发明人进行了潜心的研究。首先, 从具有专 一性 β-木糖苷酶活性、能够转化 7-木糖紫杉烷为 7-羟基紫杉烷的真菌 Μ95.33中 纯化专一性的 7-木糖紫杉烷糖基水解酶 (GH), 对纯化的酶进行 LC-MS/MS De novo 测序, 得到一些寡肽的氨基酸序列。 根据这些寡肽的氨基酸序列设计出一 系列简并引物, 通过巢式 PCR、 RACE和 Genome Walking等分子生物学技术克 隆该酶的 cDNA及其结构基因。 将编码该酶的开放阅读框 (open reading frame, 0RF )之 cDNA片段与适当表达载体连接, 构建重组质粒, 后者被导入相应的宿 主细胞,如生长快并能进行高密度发酵的毕赤酵母。重组菌能够高效催化 7-木糖 紫杉烷的糖基水解反应,产生 7-羟基紫杉烷。发明人还发现该酶是一种双功能酶, 能水解去除葡萄糖苷上的葡萄糖残基。
该核苷酸序列与 GenBank中已注册的所有核苷酸序列几乎没有同源性, 最为 接近者也多为假定蛋白基因序列, 且两者的覆盖率仅 3〜7%; 由其核苷酸序列推 定的氨基酸序列与玉蜀黍黑粉菌 stilago maydis ) 的假定蛋白序列 (GenBank accession: XP_760179 )最为接近, 可比较范围内两者的一致性为 43%, 相似性为 59%。 本发明包含了如下的发明:
提供了一种新的 7-木糖紫杉烷糖基水解酶, 代号为 Lx≠-Pl。 本发明的第二发明目的在于提供编码该酶的核苷酸序列。
本发明的第三发明目的在于提供含有该核苷酸序列的重组质粒。
本发明的第四发明目的在于提供含有该重组质粒或该核苷酸序列的宿主细 胞。
本发明的第五发明目的在于提供该酶的应用。 为了实现本发明之目的, 采用的技术方案为:
本发明提供一种 7-木糖紫杉烷的糖基水解酶 (一种双功能的 β-木糖苷酶 -β- 葡萄糖苷酶), 该酶代号为 LXYL-P1。 所述 7-木糖紫杉烷糖基水解酶(LXYL-P1 )的氨基酸序列包括 SEQ ID NO: 2所示序列的至少 30%—致性的氨基酸序列;
优选包括具有 SEQ ID NO:2至少 40%—致性的氨基酸序列;
更优选包括具有 SEQ ID NO:2至少 50%—致性的氨基酸序列;
进一步优选包括具有 SEQ ID NO:2至少 60%—致性的氨基酸序列; 进一步优选包括具有 SEQ ID NO:2至少 70%—致性的氨基酸序列; 进一步优选包括具有 SEQ ID NO:2至少 80%—致性的氨基酸序列; 进一步优选包括具有 SEQ ID NO:2至少 90%—致性的氨基酸序列。
进一步优选包括具有 SEQ ID NO:2至少 95%—致性的氨基酸序列。 或者是 SEQ ID NO: 2的氨基酸序列经过一个或几个氨基酸残基的取代、 缺 失或添加且具有与 SEQ ID NO: 2的氨基酸残基序列相同活性的由 SEQ ID NO: 2 衍生的蛋白质。 本发明还提供了一种编码所述 7-木糖紫杉烷糖基水解酶 (LXYL-P1 ) 的核 苷酸序列或编码基因,代号为 L^/-W,其核苷酸序列具有 SEQ ID NO: 1或者 SEQ ID NO: 3所示的核苷酸序列的至少至少 30%—致性的核苷酸序列;
优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 40%—致性的核苷酸 序列;
更优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 50%—致性的核苷 酸序列;
进一步优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 60%—致性的 核苷酸序列;
进一步优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 70%—致性的 核苷酸序列;
进一步优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 80%—致性的 核苷酸序列;
进一步优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 90%—致性的 核苷酸序列。
进一步优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 95%—致性的 核苷酸序列。
来自丝状真菌的基因, 其与 SEQ ID NO: 1或者 SEQ ID NO: 3所示的 DNA 的全部或部分, 或与和 SEQ ID NO: 1或者 SEQ ID NO: 3所示序列互补的 DNA 的全部或部分在严格条件下杂交,并且编码具有水解 7-木糖紫杉烷木糖基活性的 蛋白质。 本发明还提供含有该核苷酸序列、 编码 L^/-/^的重组质粒, 该质粒能够 被导入到适当宿主细胞中。 本发明还提供适当的宿主细胞,该宿主细胞可携带 L /-/^基因序列, 该基 因序列具有 SEQ ID NO: 1或者 SEQ ID NO: 3所示的至少 30%—致性的核苷酸序 列。其宿主生物可以是所述肽(LXYL-P1 )的同源产生菌, 该肽具有 SEQ ID NO:
2所示的至少 30%—致性的氨基酸序列, 也可以是异源宿主细胞。
适宜的宿主生物选自细菌、 放线菌、 酵母菌、 丝状真菌、 植物细胞或动物细 胞。
优选的细菌选自大肠埃希氏菌属 ( Escherichia species ) 芽胞杆菌属 ( Bacillus species );
优选的放线菌选自链霉菌属 ( Streptomyces species);
优选的酵母菌选自酵母菌属(^cc/Mramyce species )、毕赤酵母菌属 Pichia species ) 裂殖酉孝母菌属 (.Schizosacchawmyce species);
优选的丝状真菌选自曲霉属 Aspergillus species )、 木霉属 iTrichoderma species ) 青霉属 .Penicillium species ) 口蘑属 ( Tricholoma species ) 香 属 .Lentinula species ) 伞菌属 (Agaricus species);
优选的植物细胞选自双子叶植物 (dicotyledon);
动物细胞选自昆虫细胞。 优选的大肠埃希氏菌属 (Escherichia species) 优选大肠杆菌 (E. coli ; 优选的芽胞杆菌属 (Bad/Zi^ species) 优选枯草芽孢杆菌 B. subtilis ', 优选的链霉菌属 (Streptomyces species) 优选变铅青链霉菌 (S. lividans); 优选的酉孝母菌属 ( Saccharomyce species ) 优选酿酒酉孝母 ( Saccharomyce cerevisiae);
优选的毕赤酵母菌属 (ΑΆ species) 优选巴斯德毕赤酵母 P. pastoris)', 优选的裂殖酵母菌属 chizosaccharomyce species ) 优选粟酒裂殖酵母 (Schizosacchawmyce pombe);
优选的曲霉属 Aspergillus species) 优选黑曲霉 (A. niger), 米曲霉 (A. oryz e ) 构巢曲霉 (A. nidulans);
优选的木霉属 Trichoderma species) 优选里氏木霉 (T. ef 绿色木霉 ( T. viride );
优选的青霉属 (Pem'd〃 画 species)优选产黄青霉 (Pem'd〃 画 chrysogenum); 优选的口蘑属 ( Tricholoma species )优选口蘑 ( Trichoderma mongolicum) 优选的香菇属 entirmla species) 优选香菇 (L. edodes ;
优选的伞菌属 (.Agaricus species) 优选双孢蘑 (Agaricus bisporus); 优选的双子叶植物 (dicotyledon) 优选拟南芥 (Ambidopsis thaliana ;
优选的昆虫细胞优选草地贪夜蛾 Spodopterafmgiperda S 细胞。 本发明还提供了本发明的核苷酸序列、 本发明的 7-木糖紫杉烷糖基水解酶, 以及含有本发明核苷酸序列的宿主细胞的应用。 具体而言, 所述的应用如下, 使用本领域常规的方法将该 DNA转化合适的 宿主细胞, 转化后的重组细胞, 通过其产生的重组酶, 水解各种底物, 特别是糖 苷化合物。
优选的作为底物的糖苷化合物选自含有木糖残基的化合物或含有葡萄糖残 基的化合物; 即本发明的应用为从这类糖苷化合物上水解去除木糖基和 /或葡萄 糖基。
优选的含有木糖残基的化合物选自紫杉烷木糖苷类化合物; 所述的底物优 选含 7-木糖残基的紫杉烷类化合物, δΡ, 7-木糖紫杉烷, 可以是天然形成的、 或 是非天然产生的, 如化学或生物合成的、 或半合成的。
本发明的 7-木糖紫杉烷糖基水解酶的应用优选是用于 7-木糖紫杉烷的生物 转化或生物催化制备 7-羟基紫杉烷。
作为底物 7-木糖紫杉烷包括但不限于如下化合物: 7-木糖 -10-去乙酰紫杉 醇、 7-木糖 -10-去乙酰三尖杉宁碱、 7-木糖 -10-去乙酰紫杉醇 (:、 7-木糖 -10-去 乙酰巴卡亭 I I I、 7-木糖紫杉醇、 7-木糖三尖杉宁碱、 7-木糖紫杉醇 (:、 7-木糖 巴卡亭 Π Ι ; 水解去除木糖基后得到的产物包括但不限于: 10-去乙酰紫杉醇、 10-去乙酰三尖杉宁碱、 10-去乙酰紫杉醇 (:、 10-去乙酰巴卡亭 I I I、 紫杉醇、 三 尖杉宁碱、 紫杉醇 (:、 巴卡亭 I I I。
这些底物单独或彼此混合或与其他紫杉烷相混合。
所述的底物也可选自含木糖残基的紫杉烷类化合物的混合物,这类混合物包 括但不限于红豆杉属 ( T 植物组织, 优选的红豆杉属植物选自欧洲红豆杉
( T. baccata) , 短叶红豆杉 T. brevifolic 、 喜马拉雅红豆杉 T. wallichiana 曼地亚红豆杉(7: m ")、中国红豆杉(7: cfe '腦^ )、云南红豆杉(7: y醒匿 ';?)、 以及东北红豆杉 (7: cuspidate , 或者是这些植物的细胞培养物, 或者是能够产 生 7-木糖紫杉烷类化合物的微生物细胞培养物。 这里所述的植物组织包括植物 的根、 针叶、 树皮以及整个苗木。 本发明提供的方法中制备的紫杉醇或其类似物 (产物), 以及所用的 C-7-木 糖紫杉烷原料 (底物), 其结构特征如通式 I所示。 = Xylose
Figure imgf000011_0001
通式 I 化
7 -木糖 -10-去
10-
7-
-木糖 -lo-去乙酰
10-去乙酰
7-木糖
Figure imgf000011_0002
7-木糖 -10-去乙酰巴卡亭 III, XDB Xylose 676
H H
10-去乙酰巴卡亭 III, DB H 544
7-木糖巴卡亭 III, XB Xylose 718
H Ac 巴卡亭 III H 586
Figure imgf000012_0001
注: Ph为苯基, Bz为苯甲酰基, Ac为乙酰基 溶解底物的溶剂可以选自: 水、 甲醇、 乙醇、 乙酸乙酷 丙酮、 正己烷、 氯 仿、 二氯甲烷、 Ν,Ν-二甲基甲酰胺 (DMF ) 、 二甲基亚砜 (DMSO )。
本发明的应用还包括将本发明的糖基水解酶用于改善面包特性,改善动物伺 料特性, 生产 D-木糖用于制造木糖醇, 和再生纸脱墨等。 本发明的糖基水解酶 还可与纤维素酶 (cellulases)及半纤维素酶 ( hemicellulases )等合用, 水解木质 纤维获取单糖进而制备乙醇、丁醇等生物燃料。本发明的糖基水解酶还可从其它 糖苷类化合物上释放出生物活性分子, 应用于医药领域。
本发明还提供了一种紫杉醇及其类似物的生物转化制备方法:以 7-木糖紫杉 烷为原料,利用含有本发明基因序列的宿主细胞或其产生的酶水解除去原料上的 木糖基, 得到紫杉醇或其类似物。优选的宿主细胞为口蘑科的真菌或重组菌, 更 优选的为毕赤酵母属的巴斯德毕赤酵母 (简称毕赤酵母)。 总而言之,本发明的双功能的糖基水解酶,其氨基酸序列包括 SEQ ID NO: 2 所示序列的至少 30%—致性的氨基酸序列, 能被用于从 7-木糖紫杉烷或其他糖 苷化合物上去除木糖或葡萄糖。 本发明亦涉及含有上述核苷酸序列的重组质粒、 以及含有上述核苷酸序列的宿主细胞。本发明还涉及 7-木糖紫杉烷糖基水解酶或 含有 7-木糖紫杉烷糖基水解酶的宿主细胞在水解去除木糖基和 /或水解去除葡萄 糖基方面的应用。 本发明提供的一种能明确其氨基酸序列的双功能的 β-木糖苷酶 -β-葡萄糖苷 酶—— 7-木糖紫杉烷糖基水解酶, 系由一种口蘑科(Tricholomareceae)真菌香菇 (Lentinula edodes M95.33 ) 或由含有该酶编码基因的重组细胞产生, 可位于细 胞内或分泌到细胞外, 用于转化 7-木糖紫杉烷为紫杉醇或其类似物。 本发明的编码该糖基水解酶的核苷酸序列,包括完整的开放阅读框架(0RF) 可以用来构建各种不同类型的重组表达质粒,后者被转移到原来的真菌或其他真 菌宿主、 或者被转移到原核细胞 (包括大肠杆菌、 放线菌)、 植物细胞和动物细 胞等宿主细胞,由于该糖基水解酶基因的表达可以使这些宿主获得水解 7-木糖紫 杉烷为 7-羟基紫杉烷的能力。 重组的宿主还可以用于其他含糖化合物的生物转 化。
本发明的应用还包括将本发明的糖基水解酶用于改善面包特性,改善动物伺 料特性, 生产 D-木糖进而用于制造木糖醇, 和再生纸脱墨等。 本发明的糖基水 解酶还可与纤维素酶 (cellulases )及半纤维素酶 (hemicellulases)等合用, 水解 木质纤维获取单糖进而制备乙醇、丁醇等生物燃料。本发明的糖基水解酶还可从 其它糖苷类化合物上释放出生物活性分子, 应用于医药领域。 有益技术效果 本发明首次克隆并异源表达了能专一性地催化 7-木糖紫杉烷为 7-羟基紫杉 烷的糖基水解酶的基因, 制备出具有该酶活性的生物工程菌, 为大规模制备 7- 羟基紫杉烷提供了新的、 有效的途径。 术语和简称
CDS是指一个基因中编码蛋白的序列, 从起始密码子到终止密码子。
附图说明
图 1. 真菌 M95.33蛋白提取物中 β-木糖苷酶 -β-葡萄糖苷酶的 Phenyl Sepharose 疏水柱层析 (A) 和 XDT转化的薄层层析 (TLC) ( B)。
A: PI , LXYL-P1的活性洗脱峰; P2, LXYL-P2的活性洗脱峰。 横坐标为 不同流份 (不同分部收集管序号), 纵坐标为 A405 (405nm) 时的吸光值
B: 1, XDT (对照); 2, DT (对照); 3 , LXYL-P1生物转化 XDT; 4. LXYL-P2 生物转化 XDT。 图 2. LXYL-P1的 SDS-PAGE电泳图。 1, 蛋白质分子量标记; 2, LXYL-P1还原 处理; 3, LXYL-P1非还原处理。箭头表示用于 LC-MS/MS分析的蛋白条带。 图 3. 重组酵母菌落 PCR鉴定琼脂糖凝胶电泳。 M, 分子量标记; 1, 重组菌 GS115-9K (对照, 转入 pPIC9K ) ; 2, 重组菌 GS115-9K-P1-2 (转入 pPIC9K-Pl-2); 3, 重组质粒 pPIC9K-Pl-2 (对照)。 图 4. 重组菌 GS115-9K-P1-2和 GS115-9K (对照) β-木糖苷酶活性的比较。 图 5. 重组菌 GS115-9K-P1-2转化 XDT的 HPLC分析。 Α,转化前; Β,转化后。 图 6. 重组菌 GS115-3.5K-P1-2转化 7-木糖紫杉烷混合物的 HPLC分析。, A为混 合底物(对照); B为导入空载体的重组酵母 +混合底物(对照); C为导入 Lxyl-pl 基因的重组菌 +混合底物。 1、2、3分别代表 7-木糖 -10-去乙酰三尖杉宁碱(XDC)、 7-木糖 -10-去乙酰紫杉醇 (XDT)、 7-木糖 -10-去乙酰紫杉醇 C (XDTC) ; 1'、 2' 和 3'分别为各自对应的 7-羟基紫杉烷产物 10-去乙酰三尖杉宁碱 (DC) 、 10-去 乙酰紫杉醇 (DT)、 10-去乙酰紫杉醇 C (DTC) 。 图 7. 重组菌 GS115-3.5K-P1-2转化 7-木糖 -10-去乙酰巴卡亭 III的 HPLC分析 (保 留时间为 2min的溶剂峰在 XDT之前)。 图 8. PCR扩增过程示意如图。 具体实施方式
本发明通过下列实施例予以进一步阐明, 这些实施例是仅用于说明性的, 而不是 以任何方式限制本发明权利要求的范围。 实施例 1: 香菇 P-木糖苷酶 -P-葡萄糖苷酶 ( LXYL-P1) 的纯化 真菌 M95.33的培养: 从培养好的菌种斜面挑取约 lcm2见方的菌苔, 接种到 100 ml无菌的麦麸液体培养基中 [麦麸培养基成分, 每升含: 麦麸 50.00g (加适 量水, 煮沸 30min, 过滤去渣), 蛋白胨 20.00g, KH2P041.50g, MgSO40.75g, 自然 pH〜6.3], 25〜26。C、 160 rpm摇瓶培养 6-8d。
糖基水解酶的分离纯化与分析: 过滤收集菌丝, 加入液氮研磨后, 按照 3〜5 倍体积加入 50 mM Tris-HCl (pH8.0) 蛋白裂解液, 冰浴超声处理 5min (130 W, 10 秒 /次, 间隔 10秒)。 离心 (12000rpm, lOmin) 后收集上清为粗酶液,用于进 一步分离纯化。
以对硝基苯基 -β-D-木糖苷 (PNP-Xyl)作为特异性生色底物对有 β-木糖苷酶 活性的蛋白进行跟踪。一个酶单位定义为在 50 °C, pH5.0, 以 PNP-Xyl 为底物, 1 min内催化产生 1 nmol对硝基酚所需要的酶量。
DEAE Sepharose FF阴离子交换柱(1.6 cmX20 cm), 用 Tris-HCl 缓冲液(50 mM, pH8.0)平衡, 将上述粗酶液(80〜90ml/次)上柱, 用含有 0、 0.1、 0.25 和 2.0 MNaCl的 50 mM Tris-HCl 缓冲液 (pH 8.0) 阶段梯度洗脱 (流速 2ml/min), 收集有酶活性的 0.1〜0.25 M NaCl洗脱组分并加入 1 M (NH4)2S04用于下一步层 析。
Phenyl Sepharose疏水柱(1.6 cmX20 cm)用含有 1 M (NH4)2S04的(50 mM, pH8.0)平衡, 将上一步洗脱组分上柱, 用含有 1.0〜0M(NH4)2SO4的 Tris-HCl 缓 冲液(50mM, pH8.0)线性梯度洗脱(流速 2ml/min), 收集有活性的酶活组分, 用 Tris-HCl 缓冲液 (50mM, pH8.0) 透析。
透析后的溶液上 DEAE Sepharose FF 阴离子交换柱 [1.6 cmX20 cm, 用 Tris-HCl 缓冲液 (50 mM, pH 8.0) 平衡], 用含有 0.1〜0.25 M NaCl 的 Tris-HCl 缓冲液(50mM, pH8.0)线性梯度洗脱(流速 2ml/min), 收集酶活最高的组分, 浓縮后上 Sephacryl S200 HR分子筛层析柱 [1.6 cmX60 cm,用含有 0.1M NaCl 的 Tris-HCl缓冲液 (50 mM, pH8.0)平衡], 用含有 0.1 M NaCl的 Tris-HCl缓冲 液 (50mM, pH8.0)洗脱 (流速 2ml/min), 收集酶活最高的组分, 最终得到纯 化的酶。 以上纯化过程可归纳为:
真菌 M95.33培养
液氮研磨菌丝、 裂解得总蛋白提取液
DEAE Sepharose FF阴离子交换柱
(1.6x20cm), 阶段洗脱收集 0.1~0.25 M
NaCl洗脱组分
Phenyl Sepharose疏水柱
(1.6x20cm), 1.0-0 M (NH4)2S04
线性洗脱
DEAE Sepharose FF阴离子交换柱
(1.6x20cm), 0.1-0.25 M NaCl
线性洗脱
Sephacryl S200 HR分子筛
( 1.6 cmx60 cm)
SDS PAGE检测 · <—
PI的各个阶段纯化结果归纳于表 1。
寸 0 表 1 :
体积 总蛋白 总活力 比活力 回收率 纯化倍数 纯化步骤
( ml) ( mg) (U) (U/ mg) (%)
粗酶液 510 527.8 4099550.9 7767.2 100 1
DEAE Sepharose
225 91.8 1384245.0 15078.9 33.77 1.94 FF
Phenyl Sepharose 120 8.27 1103753.3 133464.7
DEAE
Figure imgf000016_0001
Sephacryl S200
3 0.048 161373.8 3361954.7
HR 用 Phenyl Sepharose疏水柱线性梯度洗脱时得到两个独立的具有 β-木糖苷酶 活性的峰, 分别命名为 LXYL-P 1 (或 P 1 )和 LXYL-P2 (或 P2 )。 P 1和 P2均能 水解 7-木糖 -10-去乙酰紫杉醇(XDT)为 10-去乙酰紫杉醇(DT) (如图 1所示)。 其中, 在图 1中, A. 为层析得到的酶活峰; B.为 Pl、 P2酶活样品对底物 XDT 转化的薄层层析 (TLC)。 B中的 1为 XDT对照品, 2为 DT对照品, 3为 P1 转化 XDT, 4为 P2转化 XDT。 后经 LC-MS/MS De novo测序结果分析, 推定 P1与 P2具有相同的氨基酸残基序列, 但为不同的糖基化类型。
Figure imgf000017_0001
实施例 2: LXYL-Pl (或 PI ) 蛋白水解不同糖苷类底物的特异性实验:
除了具有 β-木糖苷酶活性, 尤其是具有水解 7-木糖紫杉烷的活性以外, LXYL-P1 (或 P1 ) 对其他糖苷化合物的特异性也进行了试验: 选取 4种生色底 物:
对硝基苯基 -β-D-葡萄糖苷( p-Nitrophenyl-beta-D-glucopyranoside, PNP-Glc )、 对硝基苯基 -β-D-半乳糖苷 ( p-Nitrophenyl-P-D-galactopyranoside, PNP-Gal )、 对硝基苯基 -α-L-阿拉伯糖苷 (p-Nitrophenyl a-L-arabinopyranoside, PNP-Ara) 禾口
对硝基苯基 -β-D-木糖苷 ( -Nitrophenyl beta-D-xylopyranoside , PNP-Xyl) (对 昭、),,
均用 50 mM的醋酸缓冲液配制成 5 mM、 pH 5.0的溶液。
取实施例 1得到的 25 μΐ纯化的 P1蛋白稀释液, 加 100 μΐ生色底物, 50 °C,
20 min , 用 2 ml 饱和硼酸钠溶液终止反应, 在 405 nm 处检测对硝基苯酚 (p-nitrophenol ) 释放情况 (吸光值)。 结果显示: P1 蛋白能水解 PNP-Glc 和
PNP-Xyl, 不能水解 PNP-Gal和 PNP-Ara, 结果见表 2。
表 2:
底物 OD4Q5 值 相对活力 (%对照:) p- ■nitrophenyl-P-D-xylopyranoside (PNP-Xyl) 0.745 100 p- ■nitrophenyl-P-D-glucopyranoside (PNP-Glc) 1.615 217 p- ■nitrophenyl-P-D-galactopyranoside (PNP-Gal) 0.000 0 p- ■nitrophenyl-a-L-arabinopyranoside (PNP-Ara) 0.000 0 实施例 3: 糖基水解酶 LXYL-P1编码基因 (Lx_)½ ) 的克隆
将实施例 1得到的 LXYL-P1经 SDS-PAGE电泳 (见附图 2 ) 后, 回收样品 经还原处理、 表观分子量在 110 KDa处的电泳条带, 进行 LC-MS/MS分析, 挑 选 5个峰值最高的肽段进行 De novo测序, 获得 5个肽段的氨基酸残基序列, 分 别为:
1. LPWTWGK
2. QSGSLPLQHPQR
3. HWLAYEQETSR
4. DLPVGDSAWTYPPR
5. TLTPLEALQK (其中 I 禾 B L无法区分, K和 Q无法区分) 应用生物信息学手段对这 5个肽段所处的相对位置进行评估, 确定了其在 LXYL-P1上的前后顺序为: 3, 2, 5, 1, 4。 根据肽段 3和 5分别设计上、 下游 简并引物:
3F1 : CTTGCGTACGAGCARGARAC
3F2: CACTGGCTTGCGTAYGARCA
3F3: CACTGGCTTGCNTAYG
5R1: AGCCTCCAGTGGCGTNAGNGT
5R2: CTGCAGAGCCTCCAGNGGNGT
5R3: TTCTGCAGAGCCTCNAGNGG
以真菌 M95.33总 R A为模板, 应用上述简并引物进行 nest-PCR扩增。 PCR产 物经证实含有肽段 3, 2和 5编码序列后, 再利用 RACE技术向两端扩增得到包 含上述 5个肽段编码区的 cDNA片段, 该片段含有 2412bp的开放阅读框(Open Reading Frame, ORF,或称为 CDS, 命名为 Lxyl-pJ ),编码 803个氨基酸。该 cDNA 序列 SEQ ID NO : 3及其编码的氨基酸序列 SEQ ID NO : 2如附录所示。 其 PCR扩 增过程如图 8所示:
根据此 cDNA序列设计特异性引物, 以真菌 M95.33基因组 DNA为模板, 进行 PCR扩增和染色体步移 (Genome Walking) , 获得 LXYL-P1的结构基因序 列 ( G-lxyl-pl 。 在基因组水平, 该基因含有 19个外显子和 18个内含子, 从起 始密码子 ATG到终止密码子 TGA共有 3608bp, 其核苷酸序列 SEQ ID NO : 1如 附录所示。 实施例 4: 重组质粒的构建和重组酵母菌的筛选
将实施例 3得到的 P1编码区的 ORF CLxyl-pl ) 通过 PCR方法在其 5'-、 3'- 端分别引入 ΛίβΒ I和 Not I酶切位点, ΛίοΒ VNot I双酶切后将其连接到同样用 SnaB Ι/Λ¾ I双酶切的毕赤酵母表达载体 pPIC9K (分泌型表达载体)或 pPIC3.5K (非分泌型表达载体) 上, 形成重组表达质粒 pPIC9K-Pl-2 或 pPIC3.5K-Pl-2。 重组质粒通过 Sac l单酶切线性化, 电转入毕赤酵母 GS115感受态细胞, 同时, 以空载体 PPIC9K或 pPIC3.5K用同样方法电转入毕赤酵母 GS115感受态细胞作 为对照。 将转化后的酵母细胞涂布到 MD平板 [每升含: 葡萄糖 20.00g, 无氨基 酵母氮源 (YNB ) 13.40g, 生物素 0.4mg, 琼脂 15.00g]上, 28 °C培养 2〜3天后 挑取单菌落接种到 YPD-Geneticin®抗性平板上 (每升含: 酵母提取物 10.00g, 蛋白胨 20.00g, 葡萄糖 20.00g, 琼脂 15.00g, 抗生素 G418 ≤4.00g), 继续培养 2〜3 天后筛选抗性菌落, 并对抗性菌落进行菌落 PCR 鉴定。 以 pPIC9K 和 PPIC9K-P1-2的转化子为例 (附图 3 ) :
PCR引物分别与 PPIC9K载体上克隆位点两侧的 序列相匹配: 正向: 5' GACTGGTTCCAATTGACAAGC 3';
反向: 5' GGCAAATGGCATTCTGACATCC 3'。
空载体 pPIC9K转化菌株扩增出 492bp的片段, 而重组质粒 pPIC9K_Pl_2及 其转化菌株均能扩增出 2910bp的片段。 其中, 图 3中 1为导入空载体 pPIC9K 的重组酵母基因组对照扩增结果; 2为导入 pPIC9K-Pl-2的重组酵母基因组扩增 结果; 3为 pPIC9K-Pl-2重组质粒对照扩增结果。
用于培养重组酵母菌的种子和发酵培养基分别为 BMGY (每升含: 酵母提取 物 10.00g,蛋白胨 20.00g,磷酸钾缓冲液 100 mM, pH 6.0,甘油 10ml)和 BMMY (用 10ml甲醇代替 BMGY中的 10ml甘油作为碳源) 培养基。 将筛选到的抗性 菌株接种到 10 ml种子培养基中, 30 °C, 220 rpm培养 18 h,离心洗涤菌体 2次, 并将菌体转入 50 ml发酵培养基, 30 °C, 220 rpm培养, 每隔 24 h补加 1 %的甲 醇诱导重组蛋白的表达, 定时取样观察重组菌的酶活力。菌体经蒸馏水离心洗涤 两遍后用同样体积蒸馏水悬浮, 取 50 μΐ悬浮液加入 100 μΐ 5 mM PNP-Xyl, 30〜55 °C反应 20 min, 可见到重组菌具有水解底物 PNP-Xyl的能力, 而转入空 载体的对照菌没有酶活性 (见附图 4), 另外, 重组菌的发酵液上清部分尚未检 测到明显活性, 说明重组酶主要位于细胞内。 实施例 5: 重组酵母菌水解 7-木糖 -10-去乙酰紫杉醇(XDT)
将实施例 4得到的重组酵母菌 GS115-9K-P1-2 (分泌型表达重组质粒转化 子)按照实施例 4的方法诱导培养 5天, 离心收集并洗涤细胞, 直接或冷干后用 pH 3.5- 7.5的 50mM醋酸盐缓冲液或磷酸盐缓冲液悬浮细胞(65 mg湿细胞 / ml, 或 16 mg干细胞 / ml), 作为水解反应液。 在 20 ml菌体反应液中加入 0.5 ml的 7-木糖 -10-去乙酰紫杉醇(XDT)溶液, 至 XDT终浓度为 0.625 mg/ml, 30-55 °C 水浴, 往返震荡 12 h。
反应结束后用乙酸乙酯萃取, 经 TLC分析底物已完全转化, HPLC [条件: 色谱柱: Agilent Eclipse XDB-C18 (4.6x 150 mm, 5 μηι),流动相:乙睛 (38 %〜52%), 流速: 1 ml/min, 柱温: 28 °C, 检测波长: 230 nm] 分析萃取物中底物 XDT和 产物 DT含量, 转化率为 98.80 %。
重组酵母菌水解 XDT反应结果的 HPLC分析如图 5所示,其中 A为转化前, B为转化后。 实施例 6: 重组酵母菌水解 7-木糖紫杉烷混合物
将实施例 4得到的重组酵母菌 GS115-3.5K-P1-2 (非分泌型表达重组质粒转 化子)进行如下生物转化反应, 转化底物为 7-木糖紫杉烷混合物, 主要成分含量 为: 7-木糖 -10-去乙酰紫杉醇 62.12 %, 7-木糖 -10-去乙酰三尖杉宁碱 12.75%, 7- 木糖 -10-去乙酰紫杉醇 C 17.04%, 其它成分约占 8.09%。
重组菌培养方法同实施例 5。 在 200 ml重组菌反应液中加入 16 ml浓度为
100 mg/ml 的 7-木糖紫杉烷混合物, 至 7-木糖紫杉烷混合物终浓度为 8 mg/ml (过饱和状态)。 以导入空载体的重组酵母作为阴性对照。 30〜55 °C、 磁力搅拌 混合 24 ho反应结束后按照实施例 5的方法用 HPLC分析转化体系中底物和产物 含量 (附图 6), 转化率分别为: 7-木糖 -10-去乙酰紫杉醇 (XDT) 92.45%, 7-木 糖 -10-去乙酰三尖杉宁碱 (XDC) 93.60%, 7-木糖 -10-去乙酰紫杉醇 C (XDTC) 92.00% 三种主要产物的产率分别为: 10-去乙酰紫杉醇 (DT) 3.27 mg/ml, 10- 去乙酰三尖杉宁碱 (DC) 0.74 mg/ml, 10-去乙酰紫杉醇 C (DTC) 0.92 mg/ml, 三者之和为 4.93 mg/ml; 而对照则不具备上述活性 (附图 6)。
附图 6中, A为混合底物(对照); B为导入空载体的重组酵母 +混合底物(对 照); C为导入 Lxyl-pl基因的重组菌 +混合底物。 1为 7-木糖 -10-去乙酰三尖杉宁 碱; 2为 7-木糖 -10-去乙酰紫杉醇; 3为 7-木糖 -10-去乙酰紫杉醇 C; 1'、 2'和 3' 分别为对应的 7-羟基紫杉烷产物。 实施例 7: 重组酵母菌水解 7-木糖巴卡亭 III (XDB)
菌株同实施例 6, 底物为 7-木糖 -10-去乙酰巴卡亭 I I I (XDB)。 在 1.5 ml菌 体反应液中含有 16mg干细胞 /ml, 8 mg XDB/ml, 30〜55°C水浴,往返震荡 24 h。
HPLC分析结果显示: XDB 的转化率为 86.54%, 10-去乙酰巴卡亭 III (DB ) 的 产率为 5.57 mg/ml (附图 7)。

Claims

权 利 要 求 书
1、 一种糖基水解酶, 其特征在于, 所述糖基水解酶的氨基酸序列包括 SEQ ID NO: 2所示序列的至少 30%—致性的氨基酸序列;
优选包括具有 SEQ ID NO: 2至少 40%—致性的氨基酸序列;
更优选包括具有 SEQ ID NO: 2至少 50%—致性的氨基酸序列;
进一步优选包括具有 SEQ ID NO: 2至少 60%—致性的氨基酸序列;
进一步优选包括具有 SEQ ID NO: 2至少 70%—致性的氨基酸序列;
进一步优选包括具有 SEQ ID NO: 2至少 80%—致性的氨基酸序列;
进一步优选包括具有 SEQ ID NO: 2至少 90%—致性的氨基酸序列;
进一步优选包括具有 SEQ ID NO: 2至少 95%—致性的氨基酸序列;
或所述 7-木糖紫杉烷糖基水解酶的氨基酸序列是 SEQ ID NO: 2的氨基酸序列经 过一个或几个氨基酸残基的取代、 缺失或添加且具有与 SEQ ID NO: 2的氨基酸 残基序列相同活性的由 SEQ ID NO: 2衍生的蛋白质。
2、 一种编码权利要求 1所述糖基水解酶的核苷酸序列。
3、根据权利要求 2所述的核苷酸序列,其特征在于,所述的核苷酸序列具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 30%—致性的核苷酸序列;
优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 40%—致性的核苷酸 序列;
更优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 50%—致性的核苷 酸序列;
进一步优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 60%—致性的 核苷酸序列;
进一步优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 70%—致性的 核苷酸序列;
进一步优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 80%—致性的 核苷酸序列; 进一步优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 90%—致性的 核苷酸序列。
进一步优选包括具有 SEQ ID NO: 1或者 SEQ ID NO: 3至少 95%—致性的 核苷酸序列。
或来自丝状真菌的基因, 其与 SEQ ID NO: 1或者 SEQ ID NO: 3所示的 DNA的全部或部分, 或与和 SEQ ID NO: 1或者 SEQ ID NO: 3所示序列互补的
DNA的全部或部分在严格条件下杂交, 并且编码具有水解 7-木糖紫杉烷木糖基 活性的蛋白质。
4、 一种含有权利要求 2〜3所述核苷酸序列的重组质粒。
5、 一种含有权利要求 2-3所述核苷酸序列的宿主细胞。
6、 根据权利要求 5所述的宿主细胞, 其特征在于, 所述宿主细胞可以是能够产 生包括 SEQ ID NO:2所示序列的至少 30%—致性的氨基酸序列的同源产生菌, 或者是异源宿主细胞。
7、 根据权利要求 6的宿主细胞, 其特征在于, 所述的宿主细胞的宿主生物选自 细菌、 放线菌、 酵母菌、 丝状真菌、 植物细胞或动物细胞。
8、 根据权利要求 7的宿主细胞, 其特征在于, 所述的细菌选自大肠埃希氏菌属 (.Escherichia species ) 芽胞杆菌属 (Bacillus species ) ;
所述的放线菌选自链霉菌属 i Stfeptomyces species) ;
所述的酵母菌选自酵母菌属(^cc/Mramyce species )、毕赤酵母菌属 Pichia species ) 裂殖酉孝母菌属 ( Schizosaccharomyce species) ;
所述的丝状真菌选自曲霉属 ί Aspergillus species ) 木霉属 Trichode画 species ) 青霉属 (Penicillium species ) 口蘑属 ( Tricholoma species ) 香 属 (.Lentinula species ) 伞菌属 (.Agaricus species) ;
所述的植物细胞选自双子叶植物 (dicotyledon) ;
所述的动物细胞选自昆虫细胞。
9、根据权利要求 8的宿主细胞,其特征在于,所述的大肠埃希氏菌属( ¾C^n'r/7/« species) 优选大肠杆菌 (E. coif);
所述的芽胞杆菌属 (B d//^ species) 优选枯草芽孢杆菌 B. subtilis ; 所述的链霉菌属 ( reptomyci^ species) 优选变铅青链霉菌 (S. Uvidans); 所述的酵母菌属 Sacchammyce species ) 优选酉良酒酵母 ( Saccharomyce cerevisiae);
所述的毕赤酵母菌属 (/¾/ώ species) 优选巴斯德毕赤酵母 P. pastori 所述的裂殖酵母菌属 Schizosacchawmyce species ) 优选粟酒裂殖酵母 (Schizo saccharomyce pombe);
所述的曲霉属 (Aspergillus species) 优选黑曲霉 (A niger), 米曲霉 (A. oryzae 构巢曲霉 (Λ.
Figure imgf000024_0001
所述的木霉属 iTrichode species) 优选里氏木霉 T. reeseO, 绿色木霉 ( T. viride );
所述的青霉属 画 species)优选产黄青霉 〃 画 chrysogenum); 所述的口蘑属 ( Tricholoma species ) 优选口蘑 ( Trichoderma mongolicum ); 所述的香菇属 (Z^w .//< species) 优选香菇 L. edodes
所述的伞菌属 (Agaricus species) 优选双孢蘑 (Agaricus bisporus);
所述的双子叶植物 (dicotyledon) 优选拟南芥 iArabidopsis thaliana 所述的昆虫细胞优选草地贪夜蛾 iSpodoptera frugiperda) S 细胞。
10、 权利要求 1 的糖基水解酶在水解底物去除木糖基和 /或水解去除葡萄糖基中 的应用。
11、权利要求 5-9的宿主细胞在水解底物去除木糖基和 /或水解去除葡萄糖基中的 应用。
12、 根据权利要求 11所述的应用, 其特征在于, 所述的底物为糖苷化合物。
13、 根据权利要求 12所述的应用, 其特征在于, 所述的糖苷化合物选自含有木 糖残基的化合物或含有葡萄糖残基的化合物。
14、 根据权利要求 13所述的应用, 其特征在于, 所述的含有木糖残基的化合物 选自紫杉烷木糖苷类化合物。
15、 根据权利要求 14所述的应用, 其特征在于, 所述的含有紫杉烷木糖苷类化 合物选自 7-木糖紫杉烷类化合物。
16、 根据权利要求 15所述的应用, 其特征在于, 所述的所述的 7-木糖紫杉烷类 化合物选自:
7-木糖紫杉醇、 7 -木糖 -10-去乙酰紫杉醇、 7-木糖三尖杉宁碱、 7—木糖 -10-去乙酰三尖杉宁碱、
7-木糖紫杉醇 C、 7—木糖 -10-去乙酰紫杉醇 C、
7-木糖巴卡亭 III、 7 -木糖 -10-去乙酰巴卡亭 III。
17、 根据权利要求 10〜16所述的应用, 其特征在于, 所述的 7-木糖紫杉烷糖基 水解酶水解去除木糖基后得到的产物为 7-羟基紫杉烷类化合物, 选自
紫杉醇、 10-去乙酰紫杉醇、 三尖杉宁碱、
10-去乙酰三尖杉宁碱、 紫杉醇 C、 10-去乙酰紫杉醇 C、 巴卡亭 III、 10-去乙酰巴卡亭 III。 、 根据权利要求 15所述的应用, 其特征在于, 所述的 7-木糖紫杉烷原料选自 带有木糖基的紫杉烷类的混合物。 、 根据权利要求 18所述的应用, 其特征在于, 所述的紫杉烷类的混合物选自 红豆杉属 (K∞«)植物组织, 红豆杉属植物细胞培养物, 或者是能够产生 7- 木糖紫杉烷类化合物的微生物细胞培养物。 、 根据权利要求 19所述的应用, 其特征在于, 所述的红豆杉属植物选自欧洲 红豆杉 (7: baccata 短叶红豆杉 (T. brevifolia , 喜马拉雅红豆杉 (T. waUic iana), 曼地亚红豆杉 media)、 中国红豆杉 T. chinensis 、 云南红 ϋ杉 (T. yunnanensis) ^ 以及东北红 ϋ杉 (T. cuspidate) 、 权利要求 19所述的应用, 其特征在于, 所述的红豆杉属 (Τ 植物组织 选自其根、 针叶、 树皮或整个苗木。 、 根据权利要求 10所述的应用, 其特征在于, 所述的 7-木糖紫杉烷糖基水解 酶在进行水解反应时的溶剂选自: 水、 甲醇、 乙醇、 乙酸乙酯、 丙酮、 正己 烷、 氯仿、 二氯甲烷、 Ν,Ν-二甲基甲酰胺 (DMF)或二甲基亚砜(DMSO) 。 、 权利要求 1 的糖基水解酶在改善面包特性, 改善动物伺料特性, 生产 D-木 糖, 或再生纸脱墨中的应用。 、 权利要求 1 的糖基水解酶与纤维素酶和 /或半纤维素酶合用, 水解木质纤维 获取单糖的应用。
PCT/CN2011/072678 2010-06-25 2011-04-12 具有β-木糖苷酶和β-葡萄糖苷酶活性的新的糖基水解酶及其应用 WO2011160484A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2804879A CA2804879C (en) 2010-06-25 2011-04-12 Novel glycosyl hydrolase with beta-xylosidase and beta-glucosidase activities and uses thereof
CN201180031238.5A CN103097528B (zh) 2010-06-25 2011-04-12 具有β-木糖苷酶和β-葡萄糖苷酶活性的新的糖基水解酶及其应用
KR1020137002081A KR101830131B1 (ko) 2010-06-25 2011-04-12 일종의 β-자일로시다제와 β-글루코시다제의 활성을 지닌 새로운 글리코실 가수분해효소 및 그의 응용
EP11797515.1A EP2586860B1 (en) 2010-06-25 2011-04-12 Novel glycosyl hydrolase with beta-xylosidase and beta-glucosidase activities and uses thereof
US13/806,439 US9206405B2 (en) 2010-06-25 2011-04-12 Glycosyl hydrolase with beta-xylosidase and beta-glucosidase activities and uses thereof
JP2013515676A JP5868395B2 (ja) 2010-06-25 2011-04-12 β−キシロシダーゼ活性およびβ−グルコシダーゼ活性を有する新規なグリコシルヒドロラーゼならびにその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010209089.4 2010-06-25
CN201010209089.4A CN102296053B (zh) 2010-06-25 2010-06-25 一种7-木糖紫杉烷糖基水解酶、其基因的核苷酸序列及其应用

Publications (1)

Publication Number Publication Date
WO2011160484A1 true WO2011160484A1 (zh) 2011-12-29

Family

ID=45356729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072678 WO2011160484A1 (zh) 2010-06-25 2011-04-12 具有β-木糖苷酶和β-葡萄糖苷酶活性的新的糖基水解酶及其应用

Country Status (7)

Country Link
US (1) US9206405B2 (zh)
EP (1) EP2586860B1 (zh)
JP (1) JP5868395B2 (zh)
KR (1) KR101830131B1 (zh)
CN (2) CN102296053B (zh)
CA (1) CA2804879C (zh)
WO (1) WO2011160484A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864729A (zh) * 2014-03-03 2014-06-18 无锡紫熙生物科技有限公司 一种10-去乙酰基巴卡亭iii的制备方法
WO2014201595A1 (zh) * 2013-06-21 2014-12-24 中国科学院大连化学物理研究所 一种木糖苷酶Xy1_S及其编码基因与应用
CN105331596A (zh) * 2014-08-04 2016-02-17 本田技研工业株式会社 属于GH3家族的耐热性β-木糖苷酶
CN105420216A (zh) * 2014-09-17 2016-03-23 本田技研工业株式会社 属于GH3家族的耐热性β-木糖苷酶

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106085987B (zh) * 2015-05-25 2020-03-31 中国医学科学院药物研究所 具有β-木糖苷酶和β-葡萄糖苷酶双重活性的糖基水解酶突变体及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100998373A (zh) * 2006-12-30 2007-07-18 浙江大学 新型水产复合酶制剂及其制备方法
CN101492661A (zh) * 2009-01-16 2009-07-29 江南大学 一种β-葡萄糖苷酶基因的克隆、表达及用于龙胆低聚糖的制备
CN101701196A (zh) * 2009-11-18 2010-05-05 山东农业大学 表达嗜热毛壳菌bgl基因的毕赤酵母工程菌株

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2601675B1 (fr) 1986-07-17 1988-09-23 Rhone Poulenc Sante Derives du taxol, leur preparation et les compositions pharmaceutiques qui les contiennent
IL112061A (en) 1994-01-13 1999-10-28 Bristol Myers Squibb Co Methods for the preparation of taxanes
US5856532A (en) 1996-08-14 1999-01-05 Council Of Scientific & Industrial Research Process for the production of taxol
IN192059B (zh) 1999-02-12 2004-02-14 Council Scient Ind Res
EP1298128B1 (en) 2001-09-28 2005-03-02 Council Of Scientific And Industrial Research Process for the preparation of 10-deacetylbaccatin III
ATE471370T1 (de) * 2003-05-02 2010-07-15 Novozymes Inc Varianten von beta-glukosidasen
CN100595270C (zh) 2006-04-12 2010-03-24 中国科学院大连化学物理研究所 紫杉烷木糖苷去糖微生物及其应用
CN101381708A (zh) 2007-09-04 2009-03-11 中国科学院大连化学物理研究所 纤维化纤维单胞菌、水解酶及其在紫杉烷转化方面的用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100998373A (zh) * 2006-12-30 2007-07-18 浙江大学 新型水产复合酶制剂及其制备方法
CN101492661A (zh) * 2009-01-16 2009-07-29 江南大学 一种β-葡萄糖苷酶基因的克隆、表达及用于龙胆低聚糖的制备
CN101701196A (zh) * 2009-11-18 2010-05-05 山东农业大学 表达嗜热毛壳菌bgl基因的毕赤酵母工程菌株

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 25 April 2006 (2006-04-25), XP003033124, retrieved from NCBI Database accession no. XP_760179 *
DATABASE GENBANK [online] 25 April 2006 (2006-04-25), XP003033125, retrieved from NCBI Database accession no. XM_755086 *
JIANG T.Y.: "Studies on the construction of the P450 reductase gene replacement vector for the optimization of the engineered artemisinin producing yeast, A006-20", CHINESE MASTER'S THESES FULL-TEXT DATABASE BASIC SCIENCES, no. 7, 15 July 2009 (2009-07-15), CNKI, BEIJING, CHINA, pages 50 - 54, XP008168081 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201595A1 (zh) * 2013-06-21 2014-12-24 中国科学院大连化学物理研究所 一种木糖苷酶Xy1_S及其编码基因与应用
CN104232605A (zh) * 2013-06-21 2014-12-24 中国科学院大连化学物理研究所 一种木糖苷酶Xyl_S及其编码基因与应用
CN104232605B (zh) * 2013-06-21 2016-07-06 中国科学院大连化学物理研究所 一种木糖苷酶Xyl_S及其编码基因与应用
CN103864729A (zh) * 2014-03-03 2014-06-18 无锡紫熙生物科技有限公司 一种10-去乙酰基巴卡亭iii的制备方法
CN105331596A (zh) * 2014-08-04 2016-02-17 本田技研工业株式会社 属于GH3家族的耐热性β-木糖苷酶
CN105331596B (zh) * 2014-08-04 2018-11-23 本田技研工业株式会社 属于GH3家族的耐热性β-木糖苷酶
CN105420216A (zh) * 2014-09-17 2016-03-23 本田技研工业株式会社 属于GH3家族的耐热性β-木糖苷酶
CN105420216B (zh) * 2014-09-17 2018-11-30 本田技研工业株式会社 属于GH3家族的耐热性β-木糖苷酶

Also Published As

Publication number Publication date
EP2586860A4 (en) 2014-11-19
JP2013538043A (ja) 2013-10-10
CA2804879A1 (en) 2011-12-29
CN103097528B (zh) 2014-12-10
US20130130330A1 (en) 2013-05-23
EP2586860B1 (en) 2018-07-25
KR20140038335A (ko) 2014-03-28
KR101830131B1 (ko) 2018-03-29
CN103097528A (zh) 2013-05-08
JP5868395B2 (ja) 2016-02-24
US9206405B2 (en) 2015-12-08
CN102296053B (zh) 2015-03-11
CN102296053A (zh) 2011-12-28
EP2586860A1 (en) 2013-05-01
CA2804879C (en) 2021-03-02

Similar Documents

Publication Publication Date Title
JP5599104B2 (ja) 発酵微生物からの有機物質の生成を高める方法
US9493754B2 (en) Aspergillus containing beta-glucosidase, beta-glucosidases and nucleic acids encoding the same
JP5868395B2 (ja) β−キシロシダーゼ活性およびβ−グルコシダーゼ活性を有する新規なグリコシルヒドロラーゼならびにその使用
WO2011021616A1 (ja) β-グルコシダーゼ活性を有する新規タンパク質およびその用途
Cheng et al. Cloning and characterization of the glycoside hydrolases that remove xylosyl groups from 7-β-xylosyl-10-deacetyltaxol and its analogues
CN104975039B (zh) 一种重组质粒及其在降解纤维素原料中的应用
US11261436B2 (en) Mutant β-glucosidase
CN109553664B (zh) 一种真菌α-L-阿拉伯呋喃糖苷酶合成调控蛋白突变体及其应用
CN109295031B (zh) 一种抗真菌蛋白β-1,3-葡聚糖酶和含有该基因的工程菌及其应用
CN117070379B (zh) 一种重组粗糙脉孢菌及其应用
CN110029122A (zh) 一种甘露聚糖酶高产菌株及其应用
CN113106028A (zh) 高产头孢菌素c的基因工程菌构建方法及其应用
CN106085987B (zh) 具有β-木糖苷酶和β-葡萄糖苷酶双重活性的糖基水解酶突变体及其应用
WO2021029828A1 (en) Talaromyces pinophilus strain for producing cellulolytic enzymes
CN109554355B (zh) 具有纤维素降解增强活性的多肽及其应用
JP6950873B2 (ja) セルラーゼ及びキシラナーゼを生産するための変異株アスペルギルス・アクレアツス並びにその調製方法
WO2007114729A1 (en) Method of lignocellulose materials saccharification using enzymes produced by penicillium fimiculosum
CN109402086A (zh) 一种2-甲基丁酸侧链水解酶及其表达菌株和应用
CN114196682B (zh) 一种提高大球盖菇木质纤维素酶活性的方法
Jeya et al. Identification of new GH 10 and GH 11 xylanase genes from Aspergillus versicolor MKU3 by genome-walking PCR
CN111088244B (zh) 蛋白酶基因在促进纤维素酶生产和复杂氮源利用中的应用
CN116836958A (zh) 一种重组蛋白及其编码基因和应用
WO2019044887A1 (ja) 新規β-グルコシダーゼ、これを含む酵素組成物およびこれらを用いた糖液の製造方法
KR20100085751A (ko) 식물 세포벽을 분해하는 푸사리움 속 균주 및 이를 이용하여 식물 세포벽을 분해하는 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031238.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797515

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2804879

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013515676

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011797515

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13806439

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137002081

Country of ref document: KR

Kind code of ref document: A