WO2011158899A1 - Cis系薄膜太陽電池 - Google Patents

Cis系薄膜太陽電池 Download PDF

Info

Publication number
WO2011158899A1
WO2011158899A1 PCT/JP2011/063795 JP2011063795W WO2011158899A1 WO 2011158899 A1 WO2011158899 A1 WO 2011158899A1 JP 2011063795 W JP2011063795 W JP 2011063795W WO 2011158899 A1 WO2011158899 A1 WO 2011158899A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer layer
layer
cis
thin film
solar cell
Prior art date
Application number
PCT/JP2011/063795
Other languages
English (en)
French (fr)
Inventor
駿介 木島
広紀 杉本
白間 英樹
田中 良明
Original Assignee
昭和シェル石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和シェル石油株式会社 filed Critical 昭和シェル石油株式会社
Publication of WO2011158899A1 publication Critical patent/WO2011158899A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to a CIS thin film solar cell.
  • a buffer layer is formed in a two-layer structure, and a sulfur-containing zinc mixed crystal compound (hereinafter referred to as “the first buffer layer”) having a thickness of 10 nm or less by a CBD method (Chemical Bath Deposition: Solution Growth Method) CBD buffer layer "), and a zinc oxide thin film (hereinafter referred to as” MOCVD ") having a thickness of 100 nm or more by MOCVD (Metal-Organic-Chemical-Vapor-Deposition) as the second buffer layer. (Also referred to as “buffer layer”).
  • the buffer layer has a two-layer structure of a CBD buffer layer and an MOCVD buffer layer, thereby making it possible to suppress leakage without increasing the series resistance.
  • Patent Document 2 when the transparent conductive film is a zinc oxide thin film, the composition of the buffer layer formed between the CIS light absorbing layer and the transparent conductive film is changed from the light absorbing layer to the transparent conductive film.
  • the structure which changes continuously from ZnS (zinc sulfide) to ZnO (zinc oxide) is disclosed.
  • the technique disclosed in Patent Document 2 improves the bonding interface characteristics by removing the barrier between the buffer layer and the transparent conductive film by changing the composition of the buffer layer on the transparent conductive film side to be ZnO. ing.
  • the inventor according to the present application aims to further improve the solar cell characteristics, in particular, to improve the fill factor (FF).
  • the buffer layer which combined the technique which improves the junction interface characteristic described in 1 was produced by experiment, the sufficiently high fill factor (FF) was not obtained in the CIS type thin film solar cell provided with the buffer layer.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain a highly efficient CIS-based thin-film solar cell by improving the fill factor FF without increasing the series resistance.
  • a CIS thin film solar cell is a CIS thin film solar cell having a structure in which a CIS light absorbing layer, a buffer layer, and a transparent conductive film are laminated in this order.
  • the buffer layer has a three-layer structure in which a first buffer layer, a second buffer layer, and a third buffer layer are stacked in this order, and the first buffer layer has a thickness of 1 to 3 nm.
  • the second buffer layer is made of ZnS, has a thickness of 20 nm or less, and is a thin film whose composition continuously changes from ZnS to ZnO from the CIS-based light absorption layer toward the transparent conductive film,
  • the third buffer layer is made of ZnO having a thickness of 100 nm or more.
  • the CIS thin film solar cell laminated structure is characterized in that the CIS light absorption layer is composed of copper, indium, gallium, selenium, and sulfur.
  • the schematic of the laminated structure of the CIS type thin film solar cell by preferable embodiment of this invention is shown.
  • the outline of the flowchart which produces the buffer layer of the CIS type thin film solar cell by preferable embodiment of this invention is shown.
  • An example of the cross-sectional image of the laminated structure of the CIS type thin film solar cell by preferable embodiment of this invention is shown.
  • An example of the cross-sectional image of the laminated structure of the CIS type thin film solar cell by preferable embodiment of this invention is shown.
  • the CIS thin film solar cell includes a substrate 11, a metal back electrode layer 12, a p-type CIS light absorption layer (hereinafter also simply referred to as “light absorption layer”) 13, A pn heterojunction device is configured in which a high-resistance buffer layer (hereinafter referred to as a buffer layer) 14 and an n-type transparent conductive film 15 are stacked in this order.
  • a buffer layer high-resistance buffer layer
  • n-type transparent conductive film 15 are stacked in this order.
  • a metal back electrode layer 12 having a thickness of 200 to 500 nm is formed on a substrate 11 made of a glass substrate by a DC sputtering method using Mo (molybdenum) as a material.
  • a glass substrate is used as the substrate 11.
  • the present invention is not limited to this, and a metal substrate such as a stainless plate or a resin substrate such as a polyimide film may be used.
  • an alkali control layer made of SiO x or the like may be formed between the substrate 11 and the metal back electrode layer 12. By providing this alkali control layer, it is possible to control that the alkali metal (Na or the like) contained in the glass substrate is thermally diffused into the light absorption layer 13.
  • a high melting point metal having excellent selenium corrosion resistance such as Ti (titanium) or Cr (chromium) may be applied.
  • ⁇ Light absorption layer 13> After forming a CuGa film on the metal back electrode layer 12 by a DC sputtering method using a Cu—Ga alloy as a material, an In film is stacked thereon by a DC sputtering method using In as a material, A metal precursor film is formed.
  • the light absorption layer 13 is formed by selenizing and sulfurating the metal precursor film.
  • the ratio of the number of Cu atoms to the number of group III elements of In and Ga (Cu / group III ratio) was 0.85 to 0.95, and Ga atoms accounted for the number of group III elements.
  • the ratio of the numbers (Ga / III group ratio) is 0.15 to 0.4, selenization is performed at 350 ° C. to 600 ° C., and sulfidation is performed at 550 ° C. to 650 ° C., 1.0 to 2.
  • a light absorption layer 13 having a thickness of 0 ⁇ m was formed.
  • the sulfur concentration on the surface of the light absorption layer 13 (approximately 200 nm from the surface) is 0.5 atom% or more. Become. As a result, the forbidden band width on the light receiving surface side (high resistance buffer layer side) can be increased, and as a result, light can be absorbed more effectively.
  • Cu (InGa) (SeS) 2 was formed as the light absorption layer 13 by selenization and sulfidation.
  • the present invention is not limited to this, but by either selenization or sulfidation.
  • the light absorption layer 13 such as CuInSe 2 , Cu (InGa) Se 2 , CuGaSe 2 , CuInS 2 , Cu (InGa) S 2 , or CuGaS 2 may be used.
  • an In film is laminated on a CuGa film as a metal precursor film, but a Cu—Ga—In alloy film, a Cu—In alloy film, a Cu / In laminated film, or the like may be used. Good.
  • the light absorption layer 13 there is a multi-source simultaneous vapor deposition method other than selenization / sulfurization.
  • the multi-source co-evaporation method copper (Cu), indium (In), gallium (Ga), and selenium (Se) are included on the glass substrate 11 on which the metal back electrode layer 12 heated to about 500 ° C. or more is formed.
  • the light absorption layer 13 can be formed by simultaneously depositing the raw materials in an appropriate combination.
  • the CIS-based thin film solar cell according to the present invention may have a configuration including a light absorption layer manufactured by a multi-source co-evaporation method.
  • ⁇ Transparent conductive film 15> After forming a high resistance buffer layer 14 (details will be described later) on the light absorption layer 13 as the transparent conductive film 15 of the present embodiment, a thickness of 0.5 to 0.5 is formed on the high resistance buffer layer 14 by MOCVD. A film of ZnO: B having a thickness of 2.5 ⁇ m is formed.
  • the transparent conductive film 15 may be a zinc oxide thin film such as ZnO: Al, ZnO: Ga, ITO (IndiumInTin Oxide), or the like. Furthermore, the film can be formed by sputtering instead of MOCVD.
  • the high resistance buffer layer of the prior art disclosed in Patent Document 1 (hereinafter referred to as the prior art 1) is composed of two layers of a CBD buffer layer and an MOCVD buffer layer, but according to the present invention.
  • the high-resistance buffer layer 14 includes three layers in which a second buffer layer 142 is stacked on the first buffer layer 141 and a third buffer layer 143 is stacked on the second buffer layer 142. Is done.
  • the CBD buffer layer of prior art 1 is a thin film made of ZnS or Zn (O, OH, S) with a thickness of 10 nm or less
  • the MOCVD buffer layer is a thin film made of ZnO with a thickness of 100 nm or more.
  • Patent Document 2 when the transparent conductive film is made of ZnO: Al, it is formed between the CIS light absorbing layer and the transparent conductive film.
  • a configuration is disclosed in which the composition of the buffer layer continuously changes from ZnS to ZnO from the light absorption layer toward the transparent conductive film.
  • the inventor of the present application aims to further improve the characteristics of the solar cell, in particular, to improve the fill factor (FF: Fill Factor).
  • FF Fill Factor
  • a high-resistance buffer layer combined with techniques to improve the interface characteristics was fabricated by experiment. This configuration is referred to as a comparative example in this specification.
  • the first buffer layer 141, the second buffer layer 142, and the third buffer layer 143 are composed of three layers.
  • a substrate is prepared in which the metal back electrode layer 12 and the light absorption layer 13 are formed on the substrate 11.
  • a 1 to 3 nm ZnS film as the first buffer layer 141 of the present example and a 6 and 10 nm ZnS film as the first buffer layer 141 of the comparative example are formed on the light absorption layer 13 by the CBD method.
  • a film Specifically, zinc acetate is dissolved in ammonium hydroxide at a predetermined liquid temperature to form a zinc ammonium complex salt, and thiourea (thiourea), which is a sulfur-containing salt, is dissolved in the solution, and this solution absorbs light.
  • the substrate 11 on which the layer 13 is formed is immersed for a predetermined time.
  • Table 1 shows the solution temperature and immersion time of each of Examples 1 to 3 and Comparative Examples 1 and 2.
  • the concentrations of ammonia and zinc acetate in the solution are 7.5M and 0.16M, respectively.
  • the film temperature of the first buffer layer was adjusted by fixing the liquid temperature at 70 ° C. and changing the immersion time.
  • the liquid temperature of the solution may be in the range of 60 ° C. to 80 ° C.
  • the film thickness of the first buffer layer can be controlled by adjusting the immersion time according to the liquid temperature.
  • the first buffer layer 141 having a thickness of 2 to 3 nm can be formed by setting the immersion time to 5 minutes.
  • step S23 acetic acid is added at predetermined time intervals to the solution in which the substrate is immersed.
  • a sulfur-containing zinc mixed crystal compound semiconductor thin film in which the pH in the solution approaches neutrality and the composition of the buffer layer (second buffer layer 142) to be formed is continuously changed from ZnS to ZnO is formed. Is done.
  • the immersion time in step S23 in Examples 1 to 3 and Comparative Examples 1 and 2 was 60 minutes, and acetic acid was added stepwise during that time.
  • acetic acid was added at a predetermined interval so that the pH of the solution changed from 11.0 to 9.0, so that the composition of the second buffer layer 142 was ZnS. It is possible to form a thin film continuously changing from ZnO to ZnO.
  • the immersion time of step S23 when changing a solution similarly to step S22, it is possible to obtain the 2nd buffer layer 142 of a desired film thickness by adjusting immersion time.
  • the second buffer layer 142 was formed with a liquid temperature of 70 ° C.
  • the second buffer layer 142 having a film thickness of 20 nm or less can be formed with an immersion time of 60 minutes or less.
  • the first buffer layer 141 is formed, and then the second buffer layer 142 is formed while evaporating ammonia in the solution.
  • the pH of the solution approaches neutral, and the composition of the second buffer layer 142 can be changed from ZnS to ZnO.
  • zinc acetate stepwise is added to the solution of the second buffer layer 142, the pH of the solution approaches neutral, and the composition of the second buffer layer 142 can be changed from ZnS to ZnO.
  • the second buffer layer 142 whose composition is continuously changed from ZnS to ZnO is formed by using diethyl zinc as the Zn source, hydrogen sulfide as the S source, and H 2 O as the O source. Is possible.
  • step S24 the substrate on which the second buffer layer 142 is formed is dried by annealing in the atmosphere at a set temperature of 200 ° C. for 15 minutes, and a part of the zinc hydroxide in the film is oxidized. At the same time it is converted to zinc, it is modified with sulfur. Thereby, the quality of the first buffer layer 141 and the second buffer layer 142 can be improved.
  • a zinc oxide thin film having a thickness of 100 nm or more is formed as the third buffer layer 143 on the second buffer layer 142 by MOCVD.
  • the third buffer layer 143 is formed in contact with the transparent conductive film 15. Therefore, the third buffer layer 143 includes aluminum (Al), gallium (Ga), boron (B), and the like as doping impurity elements, and the concentration of these doping impurity elements is set to 1 ⁇ 10 19 atoms / cm 3. By adjusting to 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less, a high-resistance film preferable as a buffer layer is obtained.
  • the resistivity of the third buffer layer 143 is 0.1 ⁇ cm or more, more preferably 1 ⁇ cm or more.
  • the third buffer layer 143 is formed by the MOCVD method.
  • the present invention is not limited to this, and the third buffer layer 143 can also be formed by a sputtering method or the like.
  • the first buffer layer 141 is made of ZnS, and the film thicknesses are 6 nm (Comparative Example 1) and 10 nm (Comparative Example 2). became.
  • the first buffer layer 141 in the example according to the present invention was made of ZnS, and the film thicknesses were 1 nm (Example 1), 2 nm (Example 2), and 3 nm (Example 3).
  • the composition of the second buffer layer 142 is a composition that changes from ZnS to ZnO from the metal back electrode layer 12 side to the transparent conductive film 15 side, and the film thickness is 20 nm or less.
  • Each of the third buffer layers 143 is made of ZnO and has a thickness of 100 nm or more.
  • the thickness of the CBD buffer layer (corresponding to the first buffer layer of the present invention) is only described as 10 nm or less, and the first buffer layer is within a range of 10 nm or less.
  • the CBD buffer layer 141 (corresponding to the first buffer layer of the present invention) is formed by contacting in a solution at 80 ° C. for 10 minutes.
  • the film thickness of the CBD buffer layer 141 formed by the method is 6 nm or more. This is because the temperature of the solution is 80 ° C., which is higher than the temperature of the solution according to the present invention, and the film forming speed is high.
  • the film thickness of the buffer layer made of ZnS is not described, and the buffer layer formed by the first stage processing is considered to correspond to the first buffer layer 141 of the present invention.
  • the base material the substrate on which the CIS-based light absorption layer is formed
  • the film thickness of the layer is 10 nm or more.
  • the film thickness of the first buffer layer 141 is 6 nm or more, in other words, only the solar cells of Comparative Examples 1 and 2 can be obtained.
  • Comparative Examples 1 and 2 as shown in the solar cells of Examples 1 to 3, by setting the thickness of the first buffer layer to 3 nm or less, the fill factor that is one of the solar cell characteristics is shown. Can be improved.
  • FIG. 5 shows an energy band diagram of a layer structure created under the conditions of the prior art 1 for reference
  • FIG. 6 shows an energy band diagram of a comparative example
  • FIG. 7 shows an energy band diagram according to the embodiment of the present invention.
  • the energy band diagram in the prior art 1 shown in FIG. 5 it can be seen that there is a barrier in the band structure at the interface between the CBD buffer layer and the MOCVD buffer layer.
  • the energy band diagram in the comparative example shown in FIG. 6 is based on the structure of the prior art 1 and the technical features of the prior art 2 (a layer in which the composition continuously changes is provided between the ZnO film and the ZnS film). ) Are simply combined. As described above, this comparative example does not lead to a significant improvement in FF.
  • an energy band diagram according to the embodiment of the present invention in which the first buffer layer 141 is 3 nm or less is as shown in FIG. 7, and as a result, a favorable FF is obtained as described above.
  • FIG. 8 shows the result of photographing Example 2 including the first buffer layer 141 having a film thickness of 2 nm, which shows the most preferable FF and Rs results.
  • 8A is an image using a scanning transmission electron microscope (STEM: Scanning Transmission Electron Microscope)
  • FIG. 8B is a sulfur mapping image using electron energy loss spectroscopy (EELS: Electron Energy Loss Spectroscopy). It is.
  • EELS Electron Energy Loss Spectroscopy

Abstract

 本願発明のある態様にかかるCIS系薄膜太陽電池は、CIS系光吸収層13、バッファ層14、透明導電膜15の順に積層された構造を備えたCIS系薄膜太陽電池であって、前記バッファ層14が、第1のバッファ層141、第2のバッファ層142、第3のバッファ層143の順に積層された3層の積層構造からなり、前記第1のバッファ層141が、厚さ1乃至3nmのZnSからなり、前記第2のバッファ層142が、厚さ20nm以下であって、前記CIS系光吸収層13から前記透明導電膜15へ向かってZnOからZnSに連続的に組成が変化する薄膜からなり、前記第3のバッファ層143が、厚さ100nm以上のZnOからなることを特徴とする。

Description

CIS系薄膜太陽電池
 本発明は、CIS系薄膜太陽電池に関する。
 従来、CIS系薄膜太陽電池を製造する際、CuInSe系薄膜からなる光吸収層上に高抵抗バッファ層として、硫化カドミウム(CdS)層を成長させることにより変換効率の向上が見込まれることが分かっていた。高抵抗バッファ層としては、CdS層の他に、ZnSと酸素との混晶なども有効であると考えられていた。
 更に、特許文献1には、バッファ層を2層構造で構成し、1層目のバッファ層としてCBD法(Chemical Bath Deposition:溶液成長法)により10nm以下の硫黄含有亜鉛混晶化合物(以下、「CBDバッファ層」ともいう)を製膜し、2層目のバッファ層としてMOCVD法(Metal Organic Chemical Vapor Deposition:有機金属化学的気相成長法)により100nm以上の酸化亜鉛系薄膜(以下、「MOCVDバッファ層」ともいう)を製膜することが開示されている。この特許文献1に開示された技術は、バッファ層をCBDバッファ層とMOCVDバッファ層との2層構造にすることにより、直列抵抗を増加させることなくリーク抑制が可能としている。
 一方、特許文献2には、透明導電膜を酸化亜鉛系薄膜とした場合に、CIS系光吸収層と透明導電膜との間に形成されるバッファ層の組成が、光吸収層から透明導電膜に向かって、ZnS(硫化亜鉛)からZnO(酸化亜鉛)に連続的に変化する構成が開示されている。この特許文献2に開示された技術は、バッファ層の透明導電膜側の組成がZnOとなるように変化させることで、バッファ層と透明導電膜との間の障壁をなくし接合界面特性を向上させている。
国際公開第2009/110092号 特開2004-47916
 ここで、本件出願にかかる発明者は、更なる太陽電池特性の向上、特に、曲線因子(FF:Fill Factor)の向上を目指し、上記特許文献1に開示された構成に対して、特許文献2に記載された接合界面特性を向上させる技術を組み合わせたバッファ層を実験により作製したが、そのバッファ層を備えるCIS系薄膜太陽電池では、十分に高い曲線因子(FF)が得られなかった。
 本発明は、上記課題を解決するためになされたものであって、直列抵抗を増加させることなく、曲線因子FFを向上させ、高効率なCIS系薄膜太陽電池を得ることを目的とする。
 上記目的を達成するため、本願発明のある態様にかかるCIS系薄膜太陽電池は、CIS系光吸収層、バッファ層、透明導電膜の順に積層された構造を備えたCIS系薄膜太陽電池であって、前記バッファ層が、第1のバッファ層、第2のバッファ層、第3のバッファ層の順に積層された3層の積層構造からなり、前記第1のバッファ層が、厚さ1乃至3nmのZnSからなり、前記第2のバッファ層が、厚さ20nm以下であって、前記CIS系光吸収層から前記透明導電膜へ向かってZnSからZnOに連続的に組成が変化する薄膜からなり、前記第3のバッファ層が、厚さ100nm以上のZnOからなる
ことを特徴とする。
 また、本願発明のある態様にかかるCIS系薄膜太陽電池の積層構造は、上記CIS系光吸収層が、銅、インジウム、ガリウム、セレン、硫黄から構成されていることを特徴とする。
本願発明の好ましい実施形態によるCIS系薄膜太陽電池の積層構造の概略図を示す。 本願発明の好ましい実施形態によるCIS系薄膜太陽電池のバッファ層を作製するフローチャートの概略を示す。 本願発明の好ましい実施形態によるCIS系薄膜太陽電池と比較例のCIS系薄膜太陽電池とのRs値の比較結果を示すグラフである。 本願発明の好ましい実施形態によるCIS系薄膜太陽電池と比較例のCIS系薄膜太陽電池との曲線因子FFの比較結果を示すグラフである。 従来技術による積層構造を備えたCIS系薄膜太陽電池のエネルギーバンド図である。 比較例による積層構造を備えたCIS系薄膜太陽電池のエネルギーバンド図である。 本願発明の好ましい実施形態による積層構造を備えたCIS系薄膜太陽電池のエネルギーバンド図である。 本願発明の好ましい実施形態によるCIS系薄膜太陽電池の積層構造の断面画像の一例を示す。 本願発明の好ましい実施形態によるCIS系薄膜太陽電池の積層構造の断面画像の一例を示す。
 本願発明にかかるCIS系薄膜太陽電池の積層構造について、以下に説明する。
 <基本構成>
 図1に示すように、本実施形態にかかるCIS系薄膜太陽電池は、基板11、金属裏面電極層12、p型CIS系光吸収層(以下、単に「光吸収層」ともいう。)13、高抵抗バッファ層(以下、バッファ層と称す)14、n型の透明導電膜15の順に積層されたpnヘテロ接合デバイスを構成している。
 <実施例>
 以下に、本実施形態の一例となる実施例(以下、本実施例とする。)の詳細な構成および作製方法を説明する。
 <金属裏面電極層12>
 まず、ガラス基板からなる基板11上に、Mo(モリブデン)を材料としてDCスパッタ法等によって、膜厚200乃至500nmの金属裏面電極層12を製膜する。なお、本実施例においては、基板11にガラス基板を用いたが、本発明はこれに限らず、ステンレス板等の金属基板、ボリイミド膜等の樹脂基板を用いても良い。また、図示していないが、基板11と金属裏面電極層12との間に、SiO等からなるアルカリ制御層を製膜してもよい。このアルカリ制御層を設けることにより、ガラス基板中に含まれるアルカリ金属(Na等)が、光吸収層13へ熱拡散することを制御できる。
 さらに、金属裏面電極層12の材料として、Mo以外にTi(チタン)やCr(クロム)等の、耐セレン腐食性に優れた高融点の金属を適用してもよい。
 <光吸収層13>
 次に、金属裏面電極層12上に、Cu-Ga合金を材料としてDCスパッタ法によってCuGa膜を製膜した後、その上に、Inを材料としてDCスパッタ法によってIn膜を積層することで、金属プリカーサー膜を形成する。この金属プリカーサー膜をセレン化および硫化することにより、光吸収層13が製膜される。本実施例では、InおよびGaのIII族元素の原子数に対するCuの原子数の比率(Cu/III族比)を0.85~0.95とし、III族元素の原子数に占めるGaの原子数の比率(Ga/III族比)を0.15~0.4とし、セレン化を350℃~600℃、硫化を550℃~650℃の条件で実行することにより、1.0~2.0μmの光吸収層13を製膜した。
 本実施例の光吸収層13は、セレン化だけでなく硫化も行って製膜されているため、この光吸収層13の表面(概ね表面より200nmまで)における硫黄濃度が0.5atoms%以上となる。これにより、受光面側(高抵抗バッファ層側)での禁制帯幅を増大させることができ、結果、より効果的に光を吸収させることができる。
 なお、本実施例では、光吸収層13として、セレン化および硫化によって、Cu(InGa)(SeS)を製膜したが、本発明はこれに限らず、セレン化又は硫化のいずれか一方によって、例えばCuInSe、Cu(InGa)Se、CuGaSe、CuInS、Cu(InGa)S、CuGaS、等の光吸収層13で構成されてもよい。
 さらに、本実施例においては、金属プリカーサー膜として、CuGa膜上にIn膜を積層したが、Cu-Ga-In合金膜、Cu-In合金膜や、Cu/Inの積層膜等であってもよい。
 また、光吸収層13の他の製造方法として、セレン化/硫化以外に多元同時蒸着法がある。多元同時蒸着法では、500℃程度以上に加熱した金属裏面電極層12が形成されたガラス基板11上に、銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)、を含む原料を適当な組み合わせで同時に蒸着することによって光吸収層13を製膜することができる。本発明に係るCIS系薄膜太陽電池は、多元同時蒸着法によって作製された光吸収層を備える構成であってもよい。
 <透明導電膜15>
 本実施例の透明導電膜15として、光吸収層13上に高抵抗バッファ層14(詳細は後述)を製膜した後、この高抵抗バッファ層14上にMOCVD法によって、厚さ0.5~2.5μmのZnO:Bを製膜する。
 なお、透明導電膜15は、ZnO:B以外に、ZnO:Al、ZnO:Ga等の酸化亜鉛系薄膜や、ITO(Indium Tin Oxide)等であってもよい。さらに、MOCVD法の代わりにスパッタ法によっても製膜可能である。
 <高抵抗バッファ層14>
 次に、本発明のポイントとなる高抵抗バッファ層14について、特許文献1および特許文献2に開示された技術を組み合わせた比較例と、本実施例とを対比しながら説明する。
 特許文献1に開示された従来技術(以下、従来技術1とする)の高抵抗バッファ層は、CBDバッファ層とMOCVDバッファ層との2層から構成されているのに対して、本願発明に係る高抵抗バッファ層14では、第1のバッファ層141の上に第2のバッファ層142が積層され、該第2のバッファ層142の上に第3のバッファ層143が積層される3層から構成される。従来技術1のCBDバッファ層は、ZnSまたはZn(O,OH,S)からなる膜厚が10nm以下の薄膜であり、同MOCVDバッファ層は、ZnOからなる膜厚が100nm以上の薄膜である。また、特許文献2に開示された従来技術(以下、従来技術2とする)には、透明導電膜をZnO:Alとした場合に、CIS系光吸収層と透明導電膜との間に形成されるバッファ層の組成が、光吸収層から透明導電膜に向かって、ZnSからZnOに連続的に変化する構成が開示されている。
 そこで、本願発明者は、更なる太陽電池特性の向上、特に、曲線因子(FF:Fill Factor)の向上を目指し、従来技術1に開示された構成に対して、特許文献2に記載された接合界面特性を向上させる技術を組み合わせた高抵抗バッファ層を実験により作製した。かかる構成を、本明細書では比較例と称する。比較例および本実施例では、第1のバッファ層141、第2のバッファ層142、第3のバッファ層143が積層される3層から構成される。
 図2を参照して、本実施例および比較例による高抵抗バッファ層14の製造方法について説明する。
 図2のステップS21において、基板11上に金属裏面電極層12、光吸収層13を製膜した基板を準備する。
 ステップS22では、光吸収層13上に、本実施例の第1のバッファ層141として1~3nmのZnS膜を、比較例の第1のバッファ層141として6および10nmのZnS膜を、CBD法によって製膜する。具体的には、酢酸亜鉛を所定の液温の水酸化アンモニウムに溶解して亜鉛アンモニウム錯塩を形成し、その溶液中に硫黄含有塩であるチオ尿素(チオウレア)を溶解し、この溶液に光吸収層13が製膜された基板11を所定の時間浸漬する。本実施例1乃至3、比較例1および2の各々の、溶液の液温および浸漬時間を表1に示す。なお、溶液中のアンモニアと酢酸亜鉛の濃度はそれぞれ7.5Mと0.16Mである。
Figure JPOXMLDOC01-appb-T000001
 本実施例および比較例では、液温を70℃に固定して、浸漬時間を変化させることにより、第1のバッファ層の膜厚を調整した。なお、溶液の液温は60℃~80℃の範囲であればよく、その場合、液温に応じて浸漬時間を調整することにより、第1のバッファ層の膜厚を制御可能となる。例として、液温が80℃の場合では、浸漬時間を5分にすることにより、2乃至3nmの第1のバッファ層141を製膜することができる。
 ステップS23では、基板を浸漬している溶液に対して、所定の時間間隔で酢酸を追加する。これにより、溶液中のpHが中性に近づき、製膜されるバッファ層(第2のバッファ層142)の組成が、ZnSからZnOに連続的に変化した硫黄含有亜鉛混晶化合物半導体薄膜が形成される。
 本実施例1~3、比較例1および2におけるステップS23での浸漬時間は60分であり、その間に段階的に酢酸を追加した。なお、本実施例および比較例では、溶液のpHが11.0から9.0に変化するように酢酸を所定間隔で追加し、これにより、第2のバッファ層142のような、組成がZnSからZnOに連続的に変化した薄膜を形成可能となる。なお、ステップS23の浸漬時間について、ステップS22と同様に、溶液を変化させた場合は、浸漬時間を調整することにより、所望の膜厚の第2のバッファ層142を得ることが可能である。具体的には、本実施例では液温が70℃、浸漬時間が60分で第2のバッファ層142を形成したが、浸漬時間を短くすることにより、20nm未満の膜厚にすることが可能であり、さらに、液温を70℃よりも高くした場合は、浸漬時間が60分以下で膜厚20nm以下の第2のバッファ層142を形成可能性となる。
 他の実施形態では、第2のバッファ層142をCBDで製膜するにあたり、第1のバッファ層141を製膜した後、溶液中のアンモニアを蒸発させながら第2のバッファ層142を製膜することにより、層が成長する途中で、溶液のpHが中性に近づき、第2のバッファ層142の組成をZnSからZnOに変化させることができる。また、第2のバッファ層142の溶液に、段階的に酢酸亜鉛を添加することで、溶液のpHが中性に近づき、第2のバッファ層142の組成をZnSからZnOに変化させることができる。
 更に他の実施形態としては、ALD(Atomic Layer Deposition)法を用いてZnSからZnOに変化するように1原子層づつ堆積させる方法がある。具体的には、Zn源にジエチル亜鉛、S源に硫化水素、O源にHOを用いることで、組成がZnSからZnOに連続的に変化した第2のバッファ層142を製膜することが可能となる。
 次に、ステップS24では、第2のバッファ層142が製膜された基板を大気中で設定温度200℃で15分間アニールすることで乾燥し、かつ、膜中の水酸化亜鉛の一部を酸化亜鉛に転化すると同時に硫黄により改質する。これにより、第1のバッファ層141および第2のバッファ層142を高品質化できる。
 ステップS25では、第2のバッファ層142上に、MOCVD法によって膜厚が100nm以上の酸化亜鉛系薄膜を、第3のバッファ層143として形成する。この第3のバッファ層143は、透明導電膜15に接して形成される。このため、第3のバッファ層143は、ドーピング不純物元素として、アルミニウム(Al)、ガリウム(Ga)、ホウ素(B)などを含むが、これらのドーピング不純物元素濃度を、1×1019atoms/cm3以下、より好ましくは1×1018atoms/cm3以下となるように調整することにより、バッファ層として好ましい高抵抗な膜となる。この第3のバッファ層143の抵抗率は、0.1Ωcm以上、より好ましくは1Ωcm以上となっている。
 なお、本実施例においては、MOCVD法によって第3のバッファ層143を製膜したが、本発明はこれに限らず、スパッタ法などにより形成することもできる。
<実験結果>
 上記各ステップにより形成された第1のバッファ層141の製膜結果は、比較例では第1のバッファ層141はZnSからなり、膜厚は6nm(比較例1)および10nm(比較例2)となった。これに対して、本願発明に係る実施例における第1のバッファ層141はZnSからなり、膜厚は1nm(実施例1)、2nm(実施例2)および3nm(実施例3)となった。第2のバッファ層142の組成はいずれも、金属裏面電極層12側から透明導電膜15側にかけてZnSからZnOと変化する組成となり、膜厚は20nm以下である。第3のバッファ層143はいずれも、ZnOからなり、膜厚は100nm以上である。
 上記比較例1,2と実施例1乃至3により作製した高抵抗バッファ層14を備えた太陽電池について特性を比較した結果を図3及び図4に示す。なお具体的な数値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図3、4及び表2に示したとおり、従来技術1および2を単に組み合わせただけの比較例1および2にかかる太陽電池については、十分に高い曲線因子(FF)が得られなかった。これに対して、第1のバッファ層141の膜厚を3nm以下とした本実施例1乃至3の太陽電池は、良好な曲線因子(FF)が確認できる。同様にRs[Ω cm2]についても、比較例1および2に比べ、第1のバッファ層141の膜厚を3nm以下とした本実施例1乃至3の太陽電池は良好な結果が得られた。
 ここで、従来技術1には、CBDバッファ層(本発明の第1のバッファ層に相当)の膜厚について10nm以下と記載されているにすぎず、10nm以下の範囲において、第1のバッファ層の膜厚によってFFが変化することに関する知見はなく、従来技術1の出願時において発明者もかかる知見を認識していなかった。また、従来技術1における実施形態では、80℃の溶液中に10分間接触させてCBDバッファ層141(本発明の第1のバッファ層に相当)を製膜することが開示されているが、この方法で製膜したCBDバッファ層141の膜厚は、6nm以上になる。これは、溶液の温度が80℃であり、本発明にかかる溶液の温度よりも高く、製膜速度が高いためである。
 また、従来技術2では、ZnSからなるバッファ層の膜厚については記載されておらず、第1段階の処理で製膜されたバッファ層が、本発明の第1のバッファ層141に相当すると見ても、この第1段階の処理では、基材(CIS系光吸収層が製膜された基板)を80℃の溶液に15分間投入しており、第1段階の処理で製膜されたバッファ層の膜厚は、10nm以上になる。
 このように、従来技術1および従来技術2を単に組み合わせた構成では、第1のバッファ層141の膜厚は6nm以上となり、言い換えれば、比較例1および2の太陽電池を得られるにすぎない。この比較例1および2に対して、本実施例1~3の太陽電池に示したとおり、第1のバッファ層の膜厚を3nm以下とすることにより、太陽電池特性の一つである曲線因子を向上させることが可能となる。
 上記事実に鑑みて比較例と本願発明に係る実施例との比較をエネルギーバンド図にて検討する。対比として、参考までに従来技術1の条件で作成した層構造のエネルギーバンド図を図5に示し、比較例のエネルギーバンド図を図6に示す。さらに、図7に本願発明に係る実施例によるエネルギーバンド図を示す。
 図5に示した従来技術1におけるエネルギーバンド図からわかるように、CBDバッファ層とMOCVDバッファ層との界面でのバンド構造に障壁があるのがわかる。図6に示した比較例におけるエネルギーバンド図は、従来技術1の構造をベースに、従来技術2の技術的特徴(ZnO膜とZnS膜との間に、組成が連続して変化する層を設ける)を単に組み合わせただけである。上述の通り、かかる比較例では、FFの大きな向上には繋がらない。これに対して、第1のバッファ層141を3nm以下とした本願発明に係る実施例によるエネルギーバンド図は図7に示したようになり、その結果は上述したとおり、良好なFFが得られる。
 また最も好適なFFおよびRsの結果を示した、膜厚が2nmの第1のバッファ層141を備える実施例2を撮影した結果を図8に示す。図8(a)は走査透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)を使用した画像であり、図8(b)は電子エネルギー損失分光法(EELS:Electron Energy Loss Spectroscopy)を使用した硫黄マッピング像である。図8(b)において白く現れているのが硫黄であり、2nmの極薄膜の第1のバッファ層141が形成され、さらに、第2のバッファ層142において、CIS光吸収層13側から透明導電膜15側に向かって硫黄濃度が減少しているのが確認できる。
 11  基板
 12  金属裏面電極層
 13  光吸収層
 14  バッファ層
 141 第1のバッファ層
 142 第2のバッファ層
 143 第3のバッファ層
 15  透明導電膜

Claims (2)

  1.  CIS系光吸収層、バッファ層、透明導電膜の順に積層された構造を備えたCIS系薄膜太陽電池であって、
     前記バッファ層が、第1のバッファ層、第2のバッファ層、第3のバッファ層の順に積層された3層の積層構造からなり、
     前記第1のバッファ層が、厚さ1乃至3nmのZnSからなり、
     前記第2のバッファ層が、厚さ20nm以下であって、前記CIS系光吸収層から前記透明導電膜へ向かってZnSからZnOに連続的に組成が変化する薄膜からなり、
     前記第3のバッファ層が、厚さ100nm以上のZnOからなる
    ことを特徴とするCIS系薄膜太陽電池。
  2.  上記CIS系光吸収層が、銅、インジウム、ガリウム、セレン、硫黄から構成されていることを特徴とする、請求項1に記載のCIS系薄膜太陽電池。
PCT/JP2011/063795 2010-06-16 2011-06-16 Cis系薄膜太陽電池 WO2011158899A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010137035A JP2012004287A (ja) 2010-06-16 2010-06-16 Cis系薄膜太陽電池
JP2010-137035 2010-06-16

Publications (1)

Publication Number Publication Date
WO2011158899A1 true WO2011158899A1 (ja) 2011-12-22

Family

ID=45348292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063795 WO2011158899A1 (ja) 2010-06-16 2011-06-16 Cis系薄膜太陽電池

Country Status (2)

Country Link
JP (1) JP2012004287A (ja)
WO (1) WO2011158899A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2768030A3 (en) * 2013-02-19 2015-01-14 Samsung SDI Co., Ltd. Solar cell and method of manufacturing the same
US9246120B2 (en) 2013-07-22 2016-01-26 Samsung Display Co., Ltd. Functional layer for organic light-emitting diode, organic light-emitting display apparatus including the same, and method of manufacturing the organic light-emitting diode
US10304978B2 (en) * 2012-08-24 2019-05-28 Nitto Denko Corporation Compound solar cell and production method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130111815A (ko) * 2012-04-02 2013-10-11 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR101439992B1 (ko) 2012-12-21 2014-09-16 한국과학기술원 무카드뮴 버퍼층을 이용한 cigs 박막태양전지의 충실도 향상 방법
KR101523246B1 (ko) * 2013-12-19 2015-06-01 한국에너지기술연구원 황화아연(ZnS)을 포함하는 이중 버퍼와 이를 이용한 태양전지 및 이들의 제조방법
KR102192943B1 (ko) * 2014-02-06 2020-12-18 한국전자통신연구원 Cigs 태양전지
JP6224532B2 (ja) * 2014-06-27 2017-11-01 京セラ株式会社 光電変換装置
US20180308995A1 (en) * 2015-10-19 2018-10-25 Solar Frontier K.K. Photoelectric conversion element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047916A (ja) * 2002-07-12 2004-02-12 Honda Motor Co Ltd 化合物薄膜太陽電池およびその製造方法
WO2009110092A1 (ja) * 2008-03-07 2009-09-11 昭和シェル石油株式会社 Cis系太陽電池の積層構造、及び集積構造

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047916A (ja) * 2002-07-12 2004-02-12 Honda Motor Co Ltd 化合物薄膜太陽電池およびその製造方法
WO2009110092A1 (ja) * 2008-03-07 2009-09-11 昭和シェル石油株式会社 Cis系太陽電池の積層構造、及び集積構造

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.BAR ET AL.: "Formation of a ZnS/Zn(S,O) bilayer buffer on CuInS2 thin film solar cell absorbers by chemical bath deposition", JOURNAL OF APPLIED PHYSICS, vol. 99, 2006, pages 123503-1 - 123503-9 *
M.BAR ET AL.: "Replacement of the CBD-CdS buffer and sputtered i-ZnO layer by an ILGAR- ZnO WEL: optimization of the WEL deposition", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 75, 2003, pages 101 - 107 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10304978B2 (en) * 2012-08-24 2019-05-28 Nitto Denko Corporation Compound solar cell and production method therefor
EP2768030A3 (en) * 2013-02-19 2015-01-14 Samsung SDI Co., Ltd. Solar cell and method of manufacturing the same
US9246120B2 (en) 2013-07-22 2016-01-26 Samsung Display Co., Ltd. Functional layer for organic light-emitting diode, organic light-emitting display apparatus including the same, and method of manufacturing the organic light-emitting diode

Also Published As

Publication number Publication date
JP2012004287A (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
KR101488413B1 (ko) Cis계 태양전지의 집적 구조
WO2011158899A1 (ja) Cis系薄膜太陽電池
WO2009110092A1 (ja) Cis系太陽電池の積層構造、及び集積構造
US8110428B2 (en) Thin-film photovoltaic devices
JP2013004743A (ja) Czts系薄膜太陽電池の製造方法及びczts系薄膜太陽電池
JP2011129631A (ja) Cis系薄膜太陽電池の製造方法
WO2013077417A1 (ja) Czts系薄膜太陽電池及びその製造方法
JP6328018B2 (ja) 光電変換素子および太陽電池
JP6103525B2 (ja) Cigs膜およびそれを用いたcigs太陽電池
CN105261660B (zh) 一种cigs基薄膜太阳能电池
JP5054157B2 (ja) Cis系薄膜太陽電池
KR20140047760A (ko) 태양전지 광흡수층 제조방법
JP2017059656A (ja) 光電変換素子および太陽電池
JP5258951B2 (ja) 薄膜太陽電池
JP5851434B2 (ja) Cigs膜の製法およびその製法を用いたcigs太陽電池の製法
KR101924538B1 (ko) 투명 전도성 산화물 후면전극을 가지는 칼코게나이드계 태양전지 및 그 제조방법
JP6415317B2 (ja) 太陽電池の製造方法
JP5575163B2 (ja) Cis系薄膜太陽電池の製造方法
US20180090630A1 (en) Photoelectric conversion element, multi-junction photoelectric conversion element, solar cell module, and solar power system
WO2017043596A1 (ja) 光電変換素子
JP2017092066A (ja) 光電変換層の製造方法及び光電変換素子の製造方法
JP2018006543A (ja) 光電変換モジュールの製造方法
JP2015198211A (ja) 光電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795801

Country of ref document: EP

Kind code of ref document: A1