WO2011158301A1 - Système d'ascenseur - Google Patents

Système d'ascenseur Download PDF

Info

Publication number
WO2011158301A1
WO2011158301A1 PCT/JP2010/004074 JP2010004074W WO2011158301A1 WO 2011158301 A1 WO2011158301 A1 WO 2011158301A1 JP 2010004074 W JP2010004074 W JP 2010004074W WO 2011158301 A1 WO2011158301 A1 WO 2011158301A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
floor
door
landing
reference position
Prior art date
Application number
PCT/JP2010/004074
Other languages
English (en)
Japanese (ja)
Inventor
吉川敏文
古橋昌也
深田裕紀
岡村清志
井上真輔
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2012520168A priority Critical patent/JP5516729B2/ja
Priority to PCT/JP2010/004074 priority patent/WO2011158301A1/fr
Priority to SG2012092425A priority patent/SG186731A1/en
Priority to CN201080067507.9A priority patent/CN102947210B/zh
Priority to EP10853184.9A priority patent/EP2583928B1/fr
Publication of WO2011158301A1 publication Critical patent/WO2011158301A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons

Definitions

  • the present invention relates to an elevator system provided with a door-opening travel protection device, and is particularly suitable for a high-functionality system provided with a safety controller using a microcomputer.
  • UCP door-opening travel protection device
  • the door-opening travel protection device is composed of door zone detection sensors, car door switches, landing door switches, etc., and the car and landing doors are in an open state, and the car has moved up and down the door zone or a predetermined distance from the landing floor.
  • the brake is activated at that time.
  • the car In order to shorten the mileage until braking and stopping by detecting a door development vehicle before leaving the door zone, the car is reopened when the car position is outside the landing zone in the door open state, and the car opens.
  • the brake is activated when the difference between the car position at the time and the car position after the car position correction operation exceeds a predetermined value, and the re-level action is performed when the car is out of the floor level. It is known that when the car speed V2 after the releveling operation is larger than the speed V1 and within a certain time, it is determined that the car position is abruptly changed and the brake is actuated. .
  • Patent Document 1 requires the car to be releveled and takes time until detection, during which the car traveling distance may increase. Further, when the car speed V1 is small, V2 is likely to be erroneously detected as abnormal, and conversely, when V1 is large, it is difficult to detect. Furthermore, an abnormal mode in which the car runs with V2 ⁇ V1 (a mode in which the speed is not increased) cannot be detected or is delayed in detection.
  • An object of the present invention is to solve the above-described problems of the prior art, reliably detect door opening travel at a shorter travel distance (earlier time point), improve safety, and prevent a decrease in operation efficiency. .
  • Another object is to eliminate false detections and provide high reliability regardless of the length of the elevator journey and the difference in floors.
  • Another object is to reliably stop the car within a predetermined distance from the landing landing reference position regardless of the speed pattern of the car speed, speed increase or deceleration.
  • the present invention is to achieve at least one of the above objects.
  • the present invention provides a door-opening travel protection device that, when the car door and the landing door are in an open state and the car is lifted from the floor of the landing floor, determines that the door-opening travel is abnormal and stops the car.
  • the elevator door system includes a car door switch for detecting the open state of the car door, a landing door switch for detecting the open state of the landing door, and a detection device for detecting the speed, the moving amount, and the floor reference position of the car. And a safety controller for determining an abnormal opening of the door based on an abnormality determination threshold value of a car speed set with respect to the car position based on the detection result of the detection device.
  • the floor reference position, the car speed and the amount of movement are detected, and the car speed abnormality determination threshold is set for the car position. It is possible to detect the opening of the door at an earlier point in time with respect to what is determined to be, thereby improving safety and eliminating erroneous detection to prevent a decrease in operation efficiency.
  • the block diagram which shows the safety controller in one embodiment.
  • the side view which shows the determination distance in one embodiment.
  • the graph which shows the characteristic of the abnormality determination threshold value of the car speed set with respect to the car position in one embodiment.
  • the graph which shows the cage
  • a safety system using a mechanical system device such as a contact switch or a relay circuit is constituted by an electronic device using a safety controller by a microcomputer, for example.
  • the safety controller is a highly functional electronic safety system that combines multiple sensor signals and safety switches to perform advanced processing by software and combine multiple status signals.
  • FIG. 1 is an overall configuration diagram showing an elevator system.
  • An elevator car 2 and a counterweight 3 are connected by a main rope, and a car 2 is moved up and down by a sheave 5 that is driven to rotate by a motor 4. Move.
  • the sheave 5 is fixed by the brake (doubled configuration) 6.
  • the brake 6 is also used for emergency stop of the car when the elevator is abnormal.
  • the illustrated one is an elevator of an electronic safety system.
  • the safety controller 1 implemented by a highly reliable microcomputer or the like determines the normal / abnormal state of the elevator, and if it is determined to be abnormal, power is supplied to the motor. The main power to be supplied is shut off, and at the same time, the brake 6 is operated, and the car 2 is emergency stopped.
  • the safety controller 1 is composed of, for example, a dual system of microcomputers, and high reliability is achieved by the two microcomputers checking each other's status and computation output.
  • the safety controller 1 includes a microcomputer, an arithmetic processing device including a CPU and a DSP, and an electronic processing device that can implement processing logic by programming an FPGA (logic circuit).
  • a governor device and an encoder 21 are provided for detecting the speed and the movement amount (movement distance) of the car.
  • the governor device is supported by a rotatable governor pulley 20 and is composed of a governor rope 22 fixed to the car 2 and moving in conjunction with the car.
  • the encoder 21 (rotary encoder) is attached to the governor pulley 20 and rotates in conjunction with the car. The speed and movement amount of the car are obtained by counting the pulses generated as the encoder 21 rotates.
  • the signal of the encoder 21 is input to the safety controller 1 and the speed of the car and the amount of movement of the car are calculated by counting the pulses.
  • Car speed and amount of movement can be detected by reading code information magnetically recorded by sticking a magnetic tape vertically (in the up-and-down direction) in the hoistway (eg rail) or optically (eg barcode) It may be a detecting device.
  • the detection of the floor reference position of each floor and the floor position information (for example, the first floor and the second floor) of each floor is attached to the car position sensor 30 (reflection photoelectric sensor) provided in the car 2 and the landing sill of each floor.
  • the car position sensor 30 reflection photoelectric sensor
  • the reflected light of the sensor is detected from each detection plate.
  • the edge of the detection plate may be detected by a step-like change in the sensor signal.
  • the landing reference position (landing level) for the car 2 to land is calculated from the detected floor reference position and the calculated movement amount.
  • the detection plates 31A, 31B, and 31C are attached so that the edge position and the landing reference position are a predetermined distance. Therefore, after the car position sensor 30 detects the edge position of the detection plate, when the car movement amount based on the encoder 21 reaches a predetermined value, the car (more precisely, the car floor) is at the landing reference position of the floor. It will be.
  • a car door switch 43 that detects the open state of the car-side door 42 and landing door switches 41A, 41B, and 41C that detect the open state of the doors 40A, 40B, and 40C on the floors are provided.
  • a sensor for detecting the load of the passenger in the car a spring-type load sensor 32, a beam sensor or a photoelectric sensor (not shown) for detecting a pinching of the passenger's car door provided in the car side door are installed. is doing.
  • the information of the sensor (the governor encoder 21, the car position sensor 30, the spring load sensor 32, the car door beam sensor) and the switch (the car door switch 43, each floor landing door switch 41A, 41B, 41C) is an electric signal, serial It is converted into a communication signal and input to the safety controller 1 via a signal line.
  • the safety controller 1 determines the safety state of the elevator based on the sensor information and the switch information, and when it is determined to be abnormal, shuts off the main power supply and operates the brake 6 to emergency stop the elevator car.
  • FIG. 2 shows a block diagram of the UCMP which is the safety controller 1, and detects an abnormal opening of the door based on the position of the car (the moving distance of the car from the landing reference position) and the speed.
  • the car speed is calculated by counting the pulses by the encoder 21 as the number of pulses per predetermined time (corresponding to the car movement distance) by the car speed calculation unit 101.
  • the traveling direction of the car (the ascending direction or the descending direction) is obtained by determining the rotational direction from the signal of the encoder 21 by the car traveling direction determination unit 102.
  • the distance calculation unit 104 between the landing reference position and the car position calculates a determination distance X between the landing reference position of the landing and the car position (car floor position), and FIG. 3 is an explanatory diagram thereof.
  • the landing reference position is set to a position away from the floor reference position by the car position sensor 30 by a predetermined distance.
  • the car position is obtained from the car movement amount from the time when the car passes the floor reference position.
  • ⁇ X
  • ⁇ X is the amount of car movement per pulse of the governor encoder
  • XA is the floor reference position
  • XB is the distance between the floor reference position and the landing reference position (predetermined value)
  • ⁇ ⁇ X is the car passing the floor reference position The amount of movement of the car from the point in time when the car travel direction is determined by the car travel direction determination unit 102.
  • the door open determination unit 105 detects whether the car door or the landing door on each floor is open from the output signals of the car door switch 43 and the landing door switches 41A, 41B, 41C on each floor (doors with only car doors). Open may be determined).
  • the car position and car speed abnormality determination unit 106 determines the car speed, the judgment distance X between the landing reference position and the car position, and the judgment distance X.
  • the occurrence of door-open running abnormality is determined from the car speed overspeed threshold (abnormality determination threshold) set for the vehicle.
  • the overspeed threshold value is stored in the threshold value database 107 as a database corresponding to the reference landing position and the determination distance X for each floor.
  • the safety controller 1 sends a signal for shutting down the main power supply of the elevator and a signal for operating the hoisting machine brake (usually a power supply for the hoisting machine brake). Output signal).
  • FIG. 4 shows an operation flowchart of electronic UCMP.
  • a determination distance X (a moving distance of the car from the reference position) between the current car position and the landing reference position of the car stop floor (or the nearest floor) is calculated (F03).
  • the comparison is made (F05).
  • FIG. 5 shows an abnormality determination threshold value (determination criterion).
  • the horizontal axis (A01) is the car speed
  • the vertical axis (A02) is the car position in the ascending / descending direction
  • the dotted line A05 is the landing reference position
  • Curve A03 is an abnormality determination threshold value. It is determined that the inner side (landing reference position side) from the curve A03 is normal and the outer side exceeding the curve is abnormal.
  • the abnormality determination threshold value is set so that the value decreases as the determination distance X (distance to the car position) from the landing reference position increases with the landing reference position as the center.
  • the abnormality determination threshold A03 is based on expansion / contraction due to passengers getting on and off, and defines a door opening travel region A06 that can be in a normal state so as not to erroneously determine the amount of rope extension and the car speed at that time. It is set by adding a predetermined margin (speed detection margin).
  • FIG. 6A shows a car operation (position and speed operation) due to the extension of the main rope when a large number of people get on the car.
  • the motion trajectory C01 indicates the trajectory of the motion point, and the direction of the arrow is time progress.
  • the car stops at the landing reference position (zero speed).
  • the rope stretches and the car descends while increasing the speed, stops at a certain position, and repeats the vibration of rising and lowering next to the end of the end point like the vibration of the spring. Still at position.
  • FIG. 6 (B) shows a case where a large number of people get on after getting off, C02 is an operation trajectory, the many people get off at the starting point, the rope contracts, the car once rises and vibrates, Since many people get on the car, the car vibrates strongly in the downward direction.
  • the curve A06 that should be a normal region is preferably a radial curve centered on the landing reference position.
  • FIG. 7 shows the operation at the time of occurrence of an abnormality
  • the dotted line B01 is a determination threshold value in the conventional method for determining the door opening running abnormality only by the distance between the landing reference position and the car position.
  • a threshold (dotted lines B06, B01) for the distance required to stop the vehicle so that it can be prevented from being caught by the ceiling or floor of the platform.
  • the level difference between the car floor and the landing when exiting should be small, and it is desirable to make it smaller for safety reasons.
  • abnormality is determined according to the determination curve A03, abnormality is detected at the intersection of B04 and A03 even in the case of the motion trajectory B04. Therefore, it is possible to detect an abnormality at an earlier point in time than in the past, to shorten the travel distance until the stop, and to make it easier for passengers to escape.
  • FIG. 8 shows the determination threshold value B01 in FIG. 7 set to be small like B01 in order to shorten the travel distance and time during deceleration.
  • FIG. 9 is a table in which the set value of the abnormality determination threshold value (determination criterion) is changed from that described in FIG. 5, and a threshold value database 107 corresponding to the landing reference position and the determination distance X is stored. This is determined based on the relationship between the car speed and the car position for stopping the car within a predetermined distance with respect to the door opening running abnormality.
  • V ⁇ ⁇ 2 ⁇ ⁇ ⁇ (X0 ⁇ X) ⁇ (2) ⁇ is the deceleration for emergency stop of the car (deceleration by the hoisting machine brake or the second brake (rope brake or rail brake)), X is the distance between the landing reference position and the car position, and V is the abnormality judgment
  • the threshold value, X0 is a predetermined position (distance) at which the car should be stopped.
  • FIG. 10 shows another example in which the set value of the abnormality determination threshold value (determination criterion) is changed, and a dead zone (two lines) in which no determination is made at a nearby position (distance) with respect to the landing reference position on the car stop floor
  • the area between the dotted lines A07 is provided.
  • FIG. 11 is a block diagram of the UCMP shown in FIG. 2, in which the door opening / running abnormality due to the car speed and position is determined according to the characteristics of each floor, corresponding to the floor position of the car.
  • Threshold data 109 is defined. That is, the floor position detection unit 108 detects the floor position (first floor, second floor, third floor, etc.) of the car, and determines door opening running abnormality by the threshold value data 109 optimized for each floor position.
  • An input signal to the floor position detection unit 108 is a car position sensor (reference numeral 30) shown in FIG. 1.
  • the car position sensor is a photoelectric sensor
  • each floor may be identified by a detection plate shape.
  • the floor information may be identified using a code or the like.
  • FIG. 12 shows an example of determination characteristics set for each floor.
  • FIG. 12 (A) shows the case where the floor position of the car is the top floor, and since the length of the main rope that suspends the car is short, the vibration width due to the rope expansion and contraction is small, and the normal region of the door opening traveling due to the rope extension (A region surrounded by an alternate long and short dash line A06) is also reduced. Therefore, the radius (center is the reference landing position) of the abnormality determination curve (curve A03) is also reduced. In other words, the speed abnormality determination threshold for the same car position is reduced.
  • FIG. 12B shows the case where the floor of the car is the lowest floor, and the main rope is long, so the vibration width due to the rope expansion and contraction is large, and the normal region of the door-opening traveling due to the rope elongation (in the alternate long and short dash line A06) The enclosed area becomes larger. Therefore, the radius (center is the landing reference position) of the abnormality determination curve (curve A03) is also increased. That is, the speed abnormality determination threshold for the same car position increases.
  • the abnormality determination is adapted to different rope expansion and contraction at each floor position, and more accurate determination and protection are possible.
  • the standard of determination may be determined based on the amount of rope expansion or contraction, even if a car height position (for example, a height of 10 m) is used instead of the floor position. That is, it is better to increase the abnormality determination threshold value as the car floor becomes lower and the car height position becomes smaller.
  • FIG. 13 is a block diagram of the UCMP shown in FIG. 2 for determining whether or not the door is open depending on the passenger's boarding / exiting state. Then, abnormality is determined from the abnormality determination threshold value data 111 based on the result.
  • the detection of the passenger boarding / exiting state is detected by a change state of the car load detected by the car load sensor 32 or a door beam signal of the car door (it is possible to detect that the passenger has passed the car door).
  • a change state of the car load detected by the car load sensor 32 or a door beam signal of the car door it is possible to detect that the passenger has passed the car door.
  • FIG. 14 is an example in which an abnormality determination threshold value is determined according to whether passengers get on and off, and curve A03A shows the abnormality determination threshold value when there is boarding / exiting and curve A03B shows no boarding / exiting.
  • the main rope expansion / contraction due to boarding / exiting is large, so that the normal area of the door-opening travel (the area surrounded by the one-dot chain line A06 in FIG. 5) widens, and the radius of the abnormality determination curve (curve A03A) Set a large value (center is the reference position for landing).
  • the radius of the curve A03B (the center is the landing reference position) is set small.
  • abnormality determination may be performed according to the number of passengers getting on / off, and further, if the expansion / contraction of the main rope is directly detected by a sensor placed at the end of the rope, the accuracy becomes more accurate.
  • Safety controller 2 Car 6 Brake 21 Encoder (detection device) 30 Car position sensor (position sensor) 31A, 31B, 31C Detection plates 41A, 41B, 41C Landing door switch 43 Car door switch 101 Car speed calculation unit 104 Distance calculation between landing reference position and car position 105 Door open determination unit 106 Car position and car speed abnormality determination Part 107 Threshold database

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

Afin de déceler de façon fiable un déplacement porte ouverte après une distance de déplacement plus courte (plus tôt dans le temps) et de ce fait améliorer la sécurité et maintenir l'efficacité opérationnelle, un système d'ascenseur est équipé d'un dispositif de prévention des déplacements porte ouverte, qui évalue le déplacement porte ouverte et arrête la cabine si celle-ci monte ou descend par rapport au sol du palier avec les portes de la cabine et/ou les portes palières entrouvertes et est en outre équipé de: un contacteur (43) de porte de cabine, qui détecte quand les portes de la cabine sont entrouvertes, et un contacteur (41) de porte palière, qui détecte quand les portes palières sont entrouvertes, un dispositif de détection (21), qui détecte la vitesse et la distance de déplacement de la cabine, un capteur de position (30), qui détecte la position de référence du sol à chaque étage, et un appareil de sécurité (1), qui identifie une irrégularité de déplacement porte ouverte en fonction des résultats fournis par le dispositif de détection (21) et le capteur de position (30) au moyen d'une valeur seuil d'identification d'irrégularité de la vitesse de cabine qui est assignée à la position de la cabine. DRAWING: Figure 1: AA Appareil de sécurité BB Cabine CC Moteur électrique DD Réa EE Frein FF Encodeur GG Câble du limiteur de vitesse (enclenché avec la cabine) HH Limiteur de vitesse II Capteur de position de la cabine JJ Porte de la cabine KK Plaque de détection LL Porte du palier du 1er étage MM Porte du palier du 2ème étage NN Porte du palier du 3ème étage OO Palan PP Coupe la source principale d'énergie
PCT/JP2010/004074 2010-06-18 2010-06-18 Système d'ascenseur WO2011158301A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012520168A JP5516729B2 (ja) 2010-06-18 2010-06-18 エレベータシステム
PCT/JP2010/004074 WO2011158301A1 (fr) 2010-06-18 2010-06-18 Système d'ascenseur
SG2012092425A SG186731A1 (en) 2010-06-18 2010-06-18 Elevator system
CN201080067507.9A CN102947210B (zh) 2010-06-18 2010-06-18 电梯系统
EP10853184.9A EP2583928B1 (fr) 2010-06-18 2010-06-18 Système d'ascenseur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004074 WO2011158301A1 (fr) 2010-06-18 2010-06-18 Système d'ascenseur

Publications (1)

Publication Number Publication Date
WO2011158301A1 true WO2011158301A1 (fr) 2011-12-22

Family

ID=45347730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004074 WO2011158301A1 (fr) 2010-06-18 2010-06-18 Système d'ascenseur

Country Status (5)

Country Link
EP (1) EP2583928B1 (fr)
JP (1) JP5516729B2 (fr)
CN (1) CN102947210B (fr)
SG (1) SG186731A1 (fr)
WO (1) WO2011158301A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2457860A3 (fr) * 2010-11-29 2013-10-16 ThyssenKrupp Aufzugswerke GmbH Dispositif de sécurité pour ascenseur
JP2015003803A (ja) * 2013-06-21 2015-01-08 三菱電機株式会社 エレベータ安全装置およびエレベータ制御方法
WO2015004776A1 (fr) * 2013-07-11 2015-01-15 三菱電機株式会社 Système d'ascenseur
JP2017013958A (ja) * 2015-07-01 2017-01-19 株式会社日立製作所 エレベータ及びエレベータの制振方法
WO2017033238A1 (fr) * 2015-08-21 2017-03-02 三菱電機株式会社 Appareil d'ascenseur
CN106800225A (zh) * 2017-02-23 2017-06-06 深圳市海浦蒙特科技有限公司 电梯返平层方法
WO2019130407A1 (fr) * 2017-12-26 2019-07-04 株式会社日立製作所 Ascenseur et procédé de protection contre le déplacement d'un ascenseur dont la porte est ouverte
US20190352130A1 (en) * 2017-02-10 2019-11-21 Kone Corporation Method and an elevator system for performing a synchronization run of an elevator car
CN110526054A (zh) * 2019-09-17 2019-12-03 日立楼宇技术(广州)有限公司 电梯乘客检测方法、控制器、系统和存储介质
CN114538222A (zh) * 2020-11-24 2022-05-27 株式会社日立大厦系统 电梯系统
CN117576491A (zh) * 2024-01-17 2024-02-20 浙江新再灵科技股份有限公司 电梯门故障检测方法、电梯门故障发生率预测方法及装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105026296B (zh) * 2013-03-01 2017-03-15 三菱电机株式会社 电梯的轿厢位置检测装置
US9452909B2 (en) * 2013-10-25 2016-09-27 Thyssenkrupp Elevator Ag Safety related elevator serial communication technology
CN103964272B (zh) * 2014-01-11 2018-10-30 广东日创电梯有限公司 防止电梯轿厢意外移动或失控的保护系统
JP6187978B2 (ja) * 2014-06-20 2017-08-30 株式会社日立ビルシステム エレベーターの制御装置
CN104150316B (zh) * 2014-08-07 2017-05-24 江苏蒙哥马利电梯有限公司 一种防止电梯轿厢异常移动的装置
CN105173953A (zh) * 2015-06-24 2015-12-23 贵州天义电梯成套设备有限公司 一种防止电梯轿厢意外移动的控制系统及其控制方法
WO2017028919A1 (fr) * 2015-08-19 2017-02-23 Otis Elevator Company Système de commande d'ascenseur et procédé de fonctionnement d'un système d'ascenseur
CN105173954A (zh) * 2015-09-18 2015-12-23 江南嘉捷电梯股份有限公司 一种防止轿厢非故意移动装置
CN105480806B (zh) * 2016-01-20 2017-12-26 孟令海 电梯物联网系统和管理方法
CN105460725B (zh) * 2016-01-20 2018-05-08 孟令海 电梯门状态监测器及其故障判断方法
EP3438033B1 (fr) * 2016-03-30 2021-06-16 Hitachi, Ltd. Système d'ascenseur
CN107720477A (zh) * 2016-08-12 2018-02-23 康力电梯股份有限公司 一种电梯开门溜车保护装置
EP3366626B1 (fr) 2017-02-22 2021-01-06 Otis Elevator Company Système de sécurité d'ascenseur et procédé de surveillance d'un système d'ascenseur
EP3444214A1 (fr) * 2017-08-14 2019-02-20 Otis Elevator Company Systèmes de commande et de sécurité d'ascenseur
CN110065861B (zh) * 2018-01-24 2020-12-25 日立楼宇技术(广州)有限公司 电梯轿厢意外移动的检测方法、装置、设备及存储介质
US11518650B2 (en) * 2018-06-15 2022-12-06 Otis Elevator Company Variable thresholds for an elevator system
CN109132771B (zh) * 2018-10-25 2020-06-26 日立楼宇技术(广州)有限公司 电梯轿厢保护系统和方法
CN113056429B (zh) * 2018-12-14 2023-03-10 株式会社日立制作所 电梯控制装置
WO2020124547A1 (fr) * 2018-12-21 2020-06-25 深圳技术大学(筹) Procédé et appareil de surveillance de défauts de rencontre d'ascenseur avec la fosse ou le toit
CN109650230B (zh) * 2018-12-29 2020-12-29 日立电梯(中国)有限公司 电梯曳引系统及其控制方法
EP3744673B1 (fr) * 2019-05-31 2023-05-03 Cedes AG Procédé de fixation d'une cabine d'ascenseur à travers une zone de déverrouillage temporaire
EP3744672A1 (fr) * 2019-05-31 2020-12-02 Cedes AG Commande de courbe limite pour ascenseurs
JP7168085B2 (ja) * 2019-07-01 2022-11-09 三菱電機株式会社 エレベーターの制御装置
CN113874310B (zh) * 2019-07-02 2022-11-29 株式会社日立制作所 电梯设备
DE102019212726A1 (de) * 2019-08-26 2021-03-04 Thyssenkrupp Elevator Innovation And Operations Ag Aufzugsanlage die einen Fahrkorb abhängig von einem Schließzustandssignal und einer Position des Fahrkorbs in einen Sicherheitsbetriebszustand überführt
CN110697528A (zh) * 2019-09-10 2020-01-17 宁夏电通物联网科技股份有限公司 基于漫反射检测轿门开关状态的检测装置及电梯及检测方法
CN111056409A (zh) * 2020-01-08 2020-04-24 广东博智林机器人有限公司 升降装置及防止轿厢意外移动的控制方法
IL272062B1 (en) * 2020-01-15 2024-10-01 Avraham Stein Mr A method of operating an elevator
EP3878788A1 (fr) * 2020-03-09 2021-09-15 Otis Elevator Company Systèmes de sécurité d'ascenseur
CN113624185B (zh) * 2020-05-07 2023-12-05 上海三菱电梯有限公司 自动测距装置及其测距方法
JP7284735B2 (ja) * 2020-05-25 2023-05-31 株式会社日立ビルシステム エレベータ診断装置、および、エレベータ診断方法
WO2022058276A1 (fr) 2020-09-17 2022-03-24 Inventio Ag Dispositif de sécurité pour la commande de fonctions ucm et udm relatives à la sécurité dans un système d'ascenseur
CN114834987B (zh) * 2022-03-24 2023-09-26 浙江速捷电梯有限公司 一种电梯轿厢位置识别装置及其控制方法
CN116199059B (zh) * 2023-03-08 2023-11-14 天津宜科自动化股份有限公司 一种电梯运行状态监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127582A (en) * 1980-02-19 1981-10-06 Westinghouse Electric Corp Elevator device
JPH01256475A (ja) * 1988-04-05 1989-10-12 Toshiba Corp エレベータ制御装置
JPH08225269A (ja) * 1995-01-20 1996-09-03 Inventio Ag エレベータ・シャフトのシャフト情報データを発生する方法およびこの方法を実施する装置
JP2007055691A (ja) 2005-08-22 2007-03-08 Toshiba Elevator Co Ltd エレベータ戸開発車防止装置
JP2008285265A (ja) * 2007-05-16 2008-11-27 Toshiba Elevator Co Ltd エレベータ強制減速装置
JP2010006562A (ja) * 2008-06-30 2010-01-14 Hitachi Ltd エレベータの位置検出装置、並びにエレベータ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526368B1 (en) * 2000-03-16 2003-02-25 Otis Elevator Company Elevator car position sensing system
WO2009008058A1 (fr) * 2007-07-10 2009-01-15 Mitsubishi Electric Corporation Ascenseur
CN102036898B (zh) * 2008-06-27 2013-05-01 三菱电机株式会社 电梯装置及其运转方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127582A (en) * 1980-02-19 1981-10-06 Westinghouse Electric Corp Elevator device
JPH01256475A (ja) * 1988-04-05 1989-10-12 Toshiba Corp エレベータ制御装置
JPH08225269A (ja) * 1995-01-20 1996-09-03 Inventio Ag エレベータ・シャフトのシャフト情報データを発生する方法およびこの方法を実施する装置
JP2007055691A (ja) 2005-08-22 2007-03-08 Toshiba Elevator Co Ltd エレベータ戸開発車防止装置
JP2008285265A (ja) * 2007-05-16 2008-11-27 Toshiba Elevator Co Ltd エレベータ強制減速装置
JP2010006562A (ja) * 2008-06-30 2010-01-14 Hitachi Ltd エレベータの位置検出装置、並びにエレベータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2583928A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2457860A3 (fr) * 2010-11-29 2013-10-16 ThyssenKrupp Aufzugswerke GmbH Dispositif de sécurité pour ascenseur
JP2015003803A (ja) * 2013-06-21 2015-01-08 三菱電機株式会社 エレベータ安全装置およびエレベータ制御方法
WO2015004776A1 (fr) * 2013-07-11 2015-01-15 三菱電機株式会社 Système d'ascenseur
JP2017013958A (ja) * 2015-07-01 2017-01-19 株式会社日立製作所 エレベータ及びエレベータの制振方法
JPWO2017033238A1 (ja) * 2015-08-21 2017-10-26 三菱電機株式会社 エレベータ装置
WO2017033238A1 (fr) * 2015-08-21 2017-03-02 三菱電機株式会社 Appareil d'ascenseur
US20190352130A1 (en) * 2017-02-10 2019-11-21 Kone Corporation Method and an elevator system for performing a synchronization run of an elevator car
CN106800225A (zh) * 2017-02-23 2017-06-06 深圳市海浦蒙特科技有限公司 电梯返平层方法
WO2019130407A1 (fr) * 2017-12-26 2019-07-04 株式会社日立製作所 Ascenseur et procédé de protection contre le déplacement d'un ascenseur dont la porte est ouverte
CN110526054A (zh) * 2019-09-17 2019-12-03 日立楼宇技术(广州)有限公司 电梯乘客检测方法、控制器、系统和存储介质
CN114538222A (zh) * 2020-11-24 2022-05-27 株式会社日立大厦系统 电梯系统
CN114538222B (zh) * 2020-11-24 2023-11-17 株式会社日立大厦系统 电梯系统
CN117576491A (zh) * 2024-01-17 2024-02-20 浙江新再灵科技股份有限公司 电梯门故障检测方法、电梯门故障发生率预测方法及装置
CN117576491B (zh) * 2024-01-17 2024-04-26 浙江新再灵科技股份有限公司 电梯门故障检测方法、电梯门故障发生率预测方法及装置

Also Published As

Publication number Publication date
SG186731A1 (en) 2013-02-28
JP5516729B2 (ja) 2014-06-11
EP2583928A4 (fr) 2017-11-08
JPWO2011158301A1 (ja) 2013-08-15
CN102947210B (zh) 2015-05-06
EP2583928A1 (fr) 2013-04-24
EP2583928B1 (fr) 2021-02-24
CN102947210A (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5516729B2 (ja) エレベータシステム
JP5741746B2 (ja) エレベータシステム
US9708158B2 (en) Multi-car elevator using an exclusion zone and preventing inter-car collision
US9676591B2 (en) Elevator apparatus
EP3366626B1 (fr) Système de sécurité d'ascenseur et procédé de surveillance d'un système d'ascenseur
US8177035B2 (en) Elevator system which controls a value of overspeed
US10858218B2 (en) Elevator apparatus
JP4907097B2 (ja) エレベータ装置
CN104860148B (zh) 电梯系统
WO2010100802A1 (fr) Dispositif d'ascenseur et procédé d'inspection de celui-ci
US9580273B2 (en) Testing apparatus and safety arrangement
JP6403894B2 (ja) エレベータ装置
KR20140128406A (ko) 엘리베이터 차체의 속력을 감소시키는 시스템 및 방법
JP2013040029A (ja) エレベーター用制御装置
JP6180591B2 (ja) マルチカー式エレベータ
WO2011001764A1 (fr) Équipement d'ascenseur
JP2011084355A (ja) エレベータの制御装置
WO2020115883A1 (fr) Dispositif de surveillance pour empêcher le piégeage des passagers d'un ascenseur
WO2019130407A1 (fr) Ascenseur et procédé de protection contre le déplacement d'un ascenseur dont la porte est ouverte
JP2023014525A (ja) エレベータ用待機型ブレーキの試験方法および試験装置
CN114104911A (zh) 电梯系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067507.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520168

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10987/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010853184

Country of ref document: EP