WO2011158301A1 - Elevator system - Google Patents

Elevator system Download PDF

Info

Publication number
WO2011158301A1
WO2011158301A1 PCT/JP2010/004074 JP2010004074W WO2011158301A1 WO 2011158301 A1 WO2011158301 A1 WO 2011158301A1 JP 2010004074 W JP2010004074 W JP 2010004074W WO 2011158301 A1 WO2011158301 A1 WO 2011158301A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
floor
door
landing
reference position
Prior art date
Application number
PCT/JP2010/004074
Other languages
French (fr)
Japanese (ja)
Inventor
吉川敏文
古橋昌也
深田裕紀
岡村清志
井上真輔
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to CN201080067507.9A priority Critical patent/CN102947210B/en
Priority to EP10853184.9A priority patent/EP2583928B1/en
Priority to SG2012092425A priority patent/SG186731A1/en
Priority to JP2012520168A priority patent/JP5516729B2/en
Priority to PCT/JP2010/004074 priority patent/WO2011158301A1/en
Publication of WO2011158301A1 publication Critical patent/WO2011158301A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons

Definitions

  • the present invention relates to an elevator system provided with a door-opening travel protection device, and is particularly suitable for a high-functionality system provided with a safety controller using a microcomputer.
  • UCP door-opening travel protection device
  • the door-opening travel protection device is composed of door zone detection sensors, car door switches, landing door switches, etc., and the car and landing doors are in an open state, and the car has moved up and down the door zone or a predetermined distance from the landing floor.
  • the brake is activated at that time.
  • the car In order to shorten the mileage until braking and stopping by detecting a door development vehicle before leaving the door zone, the car is reopened when the car position is outside the landing zone in the door open state, and the car opens.
  • the brake is activated when the difference between the car position at the time and the car position after the car position correction operation exceeds a predetermined value, and the re-level action is performed when the car is out of the floor level. It is known that when the car speed V2 after the releveling operation is larger than the speed V1 and within a certain time, it is determined that the car position is abruptly changed and the brake is actuated. .
  • Patent Document 1 requires the car to be releveled and takes time until detection, during which the car traveling distance may increase. Further, when the car speed V1 is small, V2 is likely to be erroneously detected as abnormal, and conversely, when V1 is large, it is difficult to detect. Furthermore, an abnormal mode in which the car runs with V2 ⁇ V1 (a mode in which the speed is not increased) cannot be detected or is delayed in detection.
  • An object of the present invention is to solve the above-described problems of the prior art, reliably detect door opening travel at a shorter travel distance (earlier time point), improve safety, and prevent a decrease in operation efficiency. .
  • Another object is to eliminate false detections and provide high reliability regardless of the length of the elevator journey and the difference in floors.
  • Another object is to reliably stop the car within a predetermined distance from the landing landing reference position regardless of the speed pattern of the car speed, speed increase or deceleration.
  • the present invention is to achieve at least one of the above objects.
  • the present invention provides a door-opening travel protection device that, when the car door and the landing door are in an open state and the car is lifted from the floor of the landing floor, determines that the door-opening travel is abnormal and stops the car.
  • the elevator door system includes a car door switch for detecting the open state of the car door, a landing door switch for detecting the open state of the landing door, and a detection device for detecting the speed, the moving amount, and the floor reference position of the car. And a safety controller for determining an abnormal opening of the door based on an abnormality determination threshold value of a car speed set with respect to the car position based on the detection result of the detection device.
  • the floor reference position, the car speed and the amount of movement are detected, and the car speed abnormality determination threshold is set for the car position. It is possible to detect the opening of the door at an earlier point in time with respect to what is determined to be, thereby improving safety and eliminating erroneous detection to prevent a decrease in operation efficiency.
  • the block diagram which shows the safety controller in one embodiment.
  • the side view which shows the determination distance in one embodiment.
  • the graph which shows the characteristic of the abnormality determination threshold value of the car speed set with respect to the car position in one embodiment.
  • the graph which shows the cage
  • a safety system using a mechanical system device such as a contact switch or a relay circuit is constituted by an electronic device using a safety controller by a microcomputer, for example.
  • the safety controller is a highly functional electronic safety system that combines multiple sensor signals and safety switches to perform advanced processing by software and combine multiple status signals.
  • FIG. 1 is an overall configuration diagram showing an elevator system.
  • An elevator car 2 and a counterweight 3 are connected by a main rope, and a car 2 is moved up and down by a sheave 5 that is driven to rotate by a motor 4. Move.
  • the sheave 5 is fixed by the brake (doubled configuration) 6.
  • the brake 6 is also used for emergency stop of the car when the elevator is abnormal.
  • the illustrated one is an elevator of an electronic safety system.
  • the safety controller 1 implemented by a highly reliable microcomputer or the like determines the normal / abnormal state of the elevator, and if it is determined to be abnormal, power is supplied to the motor. The main power to be supplied is shut off, and at the same time, the brake 6 is operated, and the car 2 is emergency stopped.
  • the safety controller 1 is composed of, for example, a dual system of microcomputers, and high reliability is achieved by the two microcomputers checking each other's status and computation output.
  • the safety controller 1 includes a microcomputer, an arithmetic processing device including a CPU and a DSP, and an electronic processing device that can implement processing logic by programming an FPGA (logic circuit).
  • a governor device and an encoder 21 are provided for detecting the speed and the movement amount (movement distance) of the car.
  • the governor device is supported by a rotatable governor pulley 20 and is composed of a governor rope 22 fixed to the car 2 and moving in conjunction with the car.
  • the encoder 21 (rotary encoder) is attached to the governor pulley 20 and rotates in conjunction with the car. The speed and movement amount of the car are obtained by counting the pulses generated as the encoder 21 rotates.
  • the signal of the encoder 21 is input to the safety controller 1 and the speed of the car and the amount of movement of the car are calculated by counting the pulses.
  • Car speed and amount of movement can be detected by reading code information magnetically recorded by sticking a magnetic tape vertically (in the up-and-down direction) in the hoistway (eg rail) or optically (eg barcode) It may be a detecting device.
  • the detection of the floor reference position of each floor and the floor position information (for example, the first floor and the second floor) of each floor is attached to the car position sensor 30 (reflection photoelectric sensor) provided in the car 2 and the landing sill of each floor.
  • the car position sensor 30 reflection photoelectric sensor
  • the reflected light of the sensor is detected from each detection plate.
  • the edge of the detection plate may be detected by a step-like change in the sensor signal.
  • the landing reference position (landing level) for the car 2 to land is calculated from the detected floor reference position and the calculated movement amount.
  • the detection plates 31A, 31B, and 31C are attached so that the edge position and the landing reference position are a predetermined distance. Therefore, after the car position sensor 30 detects the edge position of the detection plate, when the car movement amount based on the encoder 21 reaches a predetermined value, the car (more precisely, the car floor) is at the landing reference position of the floor. It will be.
  • a car door switch 43 that detects the open state of the car-side door 42 and landing door switches 41A, 41B, and 41C that detect the open state of the doors 40A, 40B, and 40C on the floors are provided.
  • a sensor for detecting the load of the passenger in the car a spring-type load sensor 32, a beam sensor or a photoelectric sensor (not shown) for detecting a pinching of the passenger's car door provided in the car side door are installed. is doing.
  • the information of the sensor (the governor encoder 21, the car position sensor 30, the spring load sensor 32, the car door beam sensor) and the switch (the car door switch 43, each floor landing door switch 41A, 41B, 41C) is an electric signal, serial It is converted into a communication signal and input to the safety controller 1 via a signal line.
  • the safety controller 1 determines the safety state of the elevator based on the sensor information and the switch information, and when it is determined to be abnormal, shuts off the main power supply and operates the brake 6 to emergency stop the elevator car.
  • FIG. 2 shows a block diagram of the UCMP which is the safety controller 1, and detects an abnormal opening of the door based on the position of the car (the moving distance of the car from the landing reference position) and the speed.
  • the car speed is calculated by counting the pulses by the encoder 21 as the number of pulses per predetermined time (corresponding to the car movement distance) by the car speed calculation unit 101.
  • the traveling direction of the car (the ascending direction or the descending direction) is obtained by determining the rotational direction from the signal of the encoder 21 by the car traveling direction determination unit 102.
  • the distance calculation unit 104 between the landing reference position and the car position calculates a determination distance X between the landing reference position of the landing and the car position (car floor position), and FIG. 3 is an explanatory diagram thereof.
  • the landing reference position is set to a position away from the floor reference position by the car position sensor 30 by a predetermined distance.
  • the car position is obtained from the car movement amount from the time when the car passes the floor reference position.
  • ⁇ X
  • ⁇ X is the amount of car movement per pulse of the governor encoder
  • XA is the floor reference position
  • XB is the distance between the floor reference position and the landing reference position (predetermined value)
  • ⁇ ⁇ X is the car passing the floor reference position The amount of movement of the car from the point in time when the car travel direction is determined by the car travel direction determination unit 102.
  • the door open determination unit 105 detects whether the car door or the landing door on each floor is open from the output signals of the car door switch 43 and the landing door switches 41A, 41B, 41C on each floor (doors with only car doors). Open may be determined).
  • the car position and car speed abnormality determination unit 106 determines the car speed, the judgment distance X between the landing reference position and the car position, and the judgment distance X.
  • the occurrence of door-open running abnormality is determined from the car speed overspeed threshold (abnormality determination threshold) set for the vehicle.
  • the overspeed threshold value is stored in the threshold value database 107 as a database corresponding to the reference landing position and the determination distance X for each floor.
  • the safety controller 1 sends a signal for shutting down the main power supply of the elevator and a signal for operating the hoisting machine brake (usually a power supply for the hoisting machine brake). Output signal).
  • FIG. 4 shows an operation flowchart of electronic UCMP.
  • a determination distance X (a moving distance of the car from the reference position) between the current car position and the landing reference position of the car stop floor (or the nearest floor) is calculated (F03).
  • the comparison is made (F05).
  • FIG. 5 shows an abnormality determination threshold value (determination criterion).
  • the horizontal axis (A01) is the car speed
  • the vertical axis (A02) is the car position in the ascending / descending direction
  • the dotted line A05 is the landing reference position
  • Curve A03 is an abnormality determination threshold value. It is determined that the inner side (landing reference position side) from the curve A03 is normal and the outer side exceeding the curve is abnormal.
  • the abnormality determination threshold value is set so that the value decreases as the determination distance X (distance to the car position) from the landing reference position increases with the landing reference position as the center.
  • the abnormality determination threshold A03 is based on expansion / contraction due to passengers getting on and off, and defines a door opening travel region A06 that can be in a normal state so as not to erroneously determine the amount of rope extension and the car speed at that time. It is set by adding a predetermined margin (speed detection margin).
  • FIG. 6A shows a car operation (position and speed operation) due to the extension of the main rope when a large number of people get on the car.
  • the motion trajectory C01 indicates the trajectory of the motion point, and the direction of the arrow is time progress.
  • the car stops at the landing reference position (zero speed).
  • the rope stretches and the car descends while increasing the speed, stops at a certain position, and repeats the vibration of rising and lowering next to the end of the end point like the vibration of the spring. Still at position.
  • FIG. 6 (B) shows a case where a large number of people get on after getting off, C02 is an operation trajectory, the many people get off at the starting point, the rope contracts, the car once rises and vibrates, Since many people get on the car, the car vibrates strongly in the downward direction.
  • the curve A06 that should be a normal region is preferably a radial curve centered on the landing reference position.
  • FIG. 7 shows the operation at the time of occurrence of an abnormality
  • the dotted line B01 is a determination threshold value in the conventional method for determining the door opening running abnormality only by the distance between the landing reference position and the car position.
  • a threshold (dotted lines B06, B01) for the distance required to stop the vehicle so that it can be prevented from being caught by the ceiling or floor of the platform.
  • the level difference between the car floor and the landing when exiting should be small, and it is desirable to make it smaller for safety reasons.
  • abnormality is determined according to the determination curve A03, abnormality is detected at the intersection of B04 and A03 even in the case of the motion trajectory B04. Therefore, it is possible to detect an abnormality at an earlier point in time than in the past, to shorten the travel distance until the stop, and to make it easier for passengers to escape.
  • FIG. 8 shows the determination threshold value B01 in FIG. 7 set to be small like B01 in order to shorten the travel distance and time during deceleration.
  • FIG. 9 is a table in which the set value of the abnormality determination threshold value (determination criterion) is changed from that described in FIG. 5, and a threshold value database 107 corresponding to the landing reference position and the determination distance X is stored. This is determined based on the relationship between the car speed and the car position for stopping the car within a predetermined distance with respect to the door opening running abnormality.
  • V ⁇ ⁇ 2 ⁇ ⁇ ⁇ (X0 ⁇ X) ⁇ (2) ⁇ is the deceleration for emergency stop of the car (deceleration by the hoisting machine brake or the second brake (rope brake or rail brake)), X is the distance between the landing reference position and the car position, and V is the abnormality judgment
  • the threshold value, X0 is a predetermined position (distance) at which the car should be stopped.
  • FIG. 10 shows another example in which the set value of the abnormality determination threshold value (determination criterion) is changed, and a dead zone (two lines) in which no determination is made at a nearby position (distance) with respect to the landing reference position on the car stop floor
  • the area between the dotted lines A07 is provided.
  • FIG. 11 is a block diagram of the UCMP shown in FIG. 2, in which the door opening / running abnormality due to the car speed and position is determined according to the characteristics of each floor, corresponding to the floor position of the car.
  • Threshold data 109 is defined. That is, the floor position detection unit 108 detects the floor position (first floor, second floor, third floor, etc.) of the car, and determines door opening running abnormality by the threshold value data 109 optimized for each floor position.
  • An input signal to the floor position detection unit 108 is a car position sensor (reference numeral 30) shown in FIG. 1.
  • the car position sensor is a photoelectric sensor
  • each floor may be identified by a detection plate shape.
  • the floor information may be identified using a code or the like.
  • FIG. 12 shows an example of determination characteristics set for each floor.
  • FIG. 12 (A) shows the case where the floor position of the car is the top floor, and since the length of the main rope that suspends the car is short, the vibration width due to the rope expansion and contraction is small, and the normal region of the door opening traveling due to the rope extension (A region surrounded by an alternate long and short dash line A06) is also reduced. Therefore, the radius (center is the reference landing position) of the abnormality determination curve (curve A03) is also reduced. In other words, the speed abnormality determination threshold for the same car position is reduced.
  • FIG. 12B shows the case where the floor of the car is the lowest floor, and the main rope is long, so the vibration width due to the rope expansion and contraction is large, and the normal region of the door-opening traveling due to the rope elongation (in the alternate long and short dash line A06) The enclosed area becomes larger. Therefore, the radius (center is the landing reference position) of the abnormality determination curve (curve A03) is also increased. That is, the speed abnormality determination threshold for the same car position increases.
  • the abnormality determination is adapted to different rope expansion and contraction at each floor position, and more accurate determination and protection are possible.
  • the standard of determination may be determined based on the amount of rope expansion or contraction, even if a car height position (for example, a height of 10 m) is used instead of the floor position. That is, it is better to increase the abnormality determination threshold value as the car floor becomes lower and the car height position becomes smaller.
  • FIG. 13 is a block diagram of the UCMP shown in FIG. 2 for determining whether or not the door is open depending on the passenger's boarding / exiting state. Then, abnormality is determined from the abnormality determination threshold value data 111 based on the result.
  • the detection of the passenger boarding / exiting state is detected by a change state of the car load detected by the car load sensor 32 or a door beam signal of the car door (it is possible to detect that the passenger has passed the car door).
  • a change state of the car load detected by the car load sensor 32 or a door beam signal of the car door it is possible to detect that the passenger has passed the car door.
  • FIG. 14 is an example in which an abnormality determination threshold value is determined according to whether passengers get on and off, and curve A03A shows the abnormality determination threshold value when there is boarding / exiting and curve A03B shows no boarding / exiting.
  • the main rope expansion / contraction due to boarding / exiting is large, so that the normal area of the door-opening travel (the area surrounded by the one-dot chain line A06 in FIG. 5) widens, and the radius of the abnormality determination curve (curve A03A) Set a large value (center is the reference position for landing).
  • the radius of the curve A03B (the center is the landing reference position) is set small.
  • abnormality determination may be performed according to the number of passengers getting on / off, and further, if the expansion / contraction of the main rope is directly detected by a sensor placed at the end of the rope, the accuracy becomes more accurate.
  • Safety controller 2 Car 6 Brake 21 Encoder (detection device) 30 Car position sensor (position sensor) 31A, 31B, 31C Detection plates 41A, 41B, 41C Landing door switch 43 Car door switch 101 Car speed calculation unit 104 Distance calculation between landing reference position and car position 105 Door open determination unit 106 Car position and car speed abnormality determination Part 107 Threshold database

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

In order to reliably detect open-door travel at a shorter travel distance (at an earlier point in time), thereby enhancing safety, and maintaining operational efficiency, an elevator system equipped with an open-door travel prevention device, which assesses open-door travel and stops the car if the car moves up or down relative to the landing floor with the car doors and/or landing doors ajar, and is further provided with: a car door switch (43) that detects when car doors are ajar and a landing door switch (41) that detects when landing doors are ajar, a detection device (21) that detects the velocity and travel distance of the car, a position sensor (30) that detects the reference floor position at each storey, and a safety controller (1) that identifies an open-door travel irregularity on the basis of the results detected by the detection device (21) and the position sensor (30), using a car-speed irregularity identification threshold value that is assigned to the car position.

Description

エレベータシステムElevator system
 本発明は、戸開走行保護装置を設けたエレベータシステムに関し、特に、マイコンによる安全コントローラを設けて高機能化したものに好適である。 The present invention relates to an elevator system provided with a door-opening travel protection device, and is particularly suitable for a high-functionality system provided with a safety controller using a microcomputer.
 戸開走行保護装置(UCMP)の設置が義務付けられており、戸開走行保護装置は駆動装置や制御器に故障が生じ、かご及び昇降路のすべての出入口の戸が閉じる前にかごが昇降したときなどに自動的にかごを静止する安全装置である。 Installation of a door-opening travel protection device (UCMP) is obligatory, and the door-opening travel protection device has failed in the drive and controller, and the car has moved up and down before all doors of the car and the hoistway are closed. It is a safety device that automatically stops the car at times.
 戸開走行保護装置は、ドアゾーン検出センサ,かごドアスイッチ,乗場ドアスイッチなどで構成され、かご及び乗り場のドアが開放状態であり、かごが乗り場の床からドアゾーン又は所定距離を昇降して外れた時点でブレーキ作動させている。 The door-opening travel protection device is composed of door zone detection sensors, car door switches, landing door switches, etc., and the car and landing doors are in an open state, and the car has moved up and down the door zone or a predetermined distance from the landing floor. The brake is activated at that time.
 ドアゾーンを外れる以前に戸開発車を検出して制動・停止までの走行距離を短くするため、戸開状態でかご位置が着床ゾーンを外れたときにかごリレベル動作を行い、かごが戸開したときのかご位置と、かご位置の補正動作を行った後のかご位置との差が予め定めた値を超えるときブレーキを作動させること、床レベルを外れたときリレベル動作を行い、このときのかご速度V1よりもリレベル動作後のかご速度V2が大きく、一定時間内である場合、かご位置の急激な変化と判断してブレーキを作動させること、が知られ、例えば特許文献1に記載されている。 In order to shorten the mileage until braking and stopping by detecting a door development vehicle before leaving the door zone, the car is reopened when the car position is outside the landing zone in the door open state, and the car opens. The brake is activated when the difference between the car position at the time and the car position after the car position correction operation exceeds a predetermined value, and the re-level action is performed when the car is out of the floor level. It is known that when the car speed V2 after the releveling operation is larger than the speed V1 and within a certain time, it is determined that the car position is abruptly changed and the brake is actuated. .
特開2007-55691号公報JP 2007-55691 A
 上記従来技術において、異常判定する所定距離をドアゾーン内でより短く設定すると、誤検出の可能性が増大し、特に乗客の乗車または降車によるロープの伸縮によるかご移動を誤検出する。そして、誤検出の場合、ブレーキでかごを非常停止させるため、エレベータの運行サービスが停止され、運行効率が低下する。特に長行程のエレベータのようなロープの長いエレベータではロープがあたかもばねのような状態となるため、乗客の乗降によるロープ伸びが発生し易く、運行効率の低下が著しく、階床毎にも異なることとなる。 In the above-described prior art, if the predetermined distance for determining abnormality is set shorter in the door zone, the possibility of erroneous detection increases, and in particular, the movement of the car due to the expansion or contraction of the rope caused by passengers getting on or getting off is erroneously detected. And in the case of a false detection, in order to carry out an emergency stop of a car with a brake, the operation service of an elevator is stopped and operation efficiency falls. Especially in elevators with long ropes such as long-stroke elevators, the ropes will be in a spring-like state, so the ropes will easily stretch due to passengers getting on and off, and the operating efficiency will be significantly reduced. It becomes.
 また、特許文献1に記載のものでは、かごのリレベル動作の実施を必要とし、検出までの時間が掛かり、その間に戸開状態でのかご走行距離が長くなる恐れがある。さらに、かご速度V1が小さい場合はV2を異常として誤検出し易くなり、逆にV1が大きい場合には検出され難くなる。さらに、V2<V1でかごが走行する異常モード(増速しないモード)は検出不可または検出が遅れる。 In addition, the one described in Patent Document 1 requires the car to be releveled and takes time until detection, during which the car traveling distance may increase. Further, when the car speed V1 is small, V2 is likely to be erroneously detected as abnormal, and conversely, when V1 is large, it is difficult to detect. Furthermore, an abnormal mode in which the car runs with V2 <V1 (a mode in which the speed is not increased) cannot be detected or is delayed in detection.
 本発明の目的は、上記従来技術の課題を解決し、より短い走行距離(より早い時点)で確実に戸開走行を検出し、より安全性を高めると共に、運行効率の低下を防ぐことにある。 An object of the present invention is to solve the above-described problems of the prior art, reliably detect door opening travel at a shorter travel distance (earlier time point), improve safety, and prevent a decrease in operation efficiency. .
 また、他の目的は、エレベータの行程の長短,階床の違いに係らず、誤検出を無くし、信頼性の高いものとすることにある。 Also, another object is to eliminate false detections and provide high reliability regardless of the length of the elevator journey and the difference in floors.
 さらに、他の目的は、かご速度の大小,増速あるいは減速等の速度パターンによらず、乗り場着床基準位置から所定距離内で確実にかごを停止させることにある。 Furthermore, another object is to reliably stop the car within a predetermined distance from the landing landing reference position regardless of the speed pattern of the car speed, speed increase or deceleration.
 なお、本発明は、上記目的の少なくともいずれかを達成することにある。 The present invention is to achieve at least one of the above objects.
 上記目的を達成するため、本発明は、かごドア及び乗り場ドアが開放状態であり、かごが乗り場の床から昇降した場合、戸開走行異常と判定して前記かごを停止させる戸開走行保護装置を設けたエレベータシステムにおいて、前記かごドアの開放状態を検出するかごドアスイッチ及び前記乗り場ドアの開放状態を検出する乗り場ドアスイッチと、かごの速度と移動量及び階床基準位置を検出する検出装置と、前記検出装置の検出結果に基づき、かご位置に対して設定されたかごの速度の異常判定しきい値により戸開走行異常を判定する安全コントローラと、を備えたものである。 In order to achieve the above object, the present invention provides a door-opening travel protection device that, when the car door and the landing door are in an open state and the car is lifted from the floor of the landing floor, determines that the door-opening travel is abnormal and stops the car. The elevator door system includes a car door switch for detecting the open state of the car door, a landing door switch for detecting the open state of the landing door, and a detection device for detecting the speed, the moving amount, and the floor reference position of the car. And a safety controller for determining an abnormal opening of the door based on an abnormality determination threshold value of a car speed set with respect to the car position based on the detection result of the detection device.
 本発明によれば、階床基準位置とかごの速度と移動量を検出し、かご位置に対してかごの速度の異常判定しきい値を設定しているので、かご位置だけで戸開走行異常と判定するものに対してより早い時点で戸開走行を検出し、より安全性が高まると共に、誤検出を無くして運行効率の低下を防ぐことができる。 According to the present invention, the floor reference position, the car speed and the amount of movement are detected, and the car speed abnormality determination threshold is set for the car position. It is possible to detect the opening of the door at an earlier point in time with respect to what is determined to be, thereby improving safety and eliminating erroneous detection to prevent a decrease in operation efficiency.
本発明における一実施の形態を示す全体構成図。1 is an overall configuration diagram illustrating an embodiment of the present invention. 一実施の形態における安全コントローラを示すブロック図。The block diagram which shows the safety controller in one embodiment. 一実施の形態における判定距離を示す側面図。The side view which shows the determination distance in one embodiment. 一実施の形態における戸開走行保護装置の動作フローチャート。The operation | movement flowchart of the door opening travel protection apparatus in one Embodiment. 一実施の形態におけるかご位置に対して設定されたかご速度の異常判定しきい値の特性を示すグラフ。The graph which shows the characteristic of the abnormality determination threshold value of the car speed set with respect to the car position in one embodiment. 一実施の形態におけるロープの伸縮によるかご動作を示すグラフ。The graph which shows the cage | basket | car operation | movement by the expansion-contraction of the rope in one Embodiment. 一実施の形態及び従来における異常発生時の動作(停止距離)を示すグラフ。The graph which shows the operation | movement (stop distance) at the time of abnormality occurrence in one Embodiment and the past. 一実施の形態及び従来における異常発生時の動作(誤検出)を示すグラフ。The graph which shows the operation | movement (error detection) at the time of abnormality generation in one Embodiment and the past. 他の実施の形態におけるかご位置に対して設定されたかご速度の異常判定しきい値の特性を示すグラフ。The graph which shows the characteristic of the abnormality determination threshold value of the car speed set with respect to the car position in other embodiment. さらに他の実施の形態におけるかご位置に対して設定されたかご速度の異常判定しきい値の特性を示すグラフ。The graph which shows the characteristic of the abnormality determination threshold value of the car speed set with respect to the car position in other embodiment. 他の実施の形態における安全コントローラを示すブロック図。The block diagram which shows the safety controller in other embodiment. さらに他の実施の形態におけるかご位置に対して設定されたかご速度の異常判定しきい値の特性を示すグラフ。The graph which shows the characteristic of the abnormality determination threshold value of the car speed set with respect to the car position in other embodiment. さらに、他の実施の形態における安全コントローラを示すブロック図。Furthermore, the block diagram which shows the safety controller in other embodiment. さらに他の実施の形態におけるかご位置に対して設定されたかご速度の異常判定しきい値の特性を示すグラフ。The graph which shows the characteristic of the abnormality determination threshold value of the car speed set with respect to the car position in other embodiment.
 以下、図面を参照して、一実施の形態について詳細を説明する。 
 従来、接点スイッチやリレー回路のような機械系装置を用いた安全システムに対して、例えば、マイコンによる安全コントローラを利用した電子装置で構成する。
Hereinafter, an embodiment will be described in detail with reference to the drawings.
Conventionally, a safety system using a mechanical system device such as a contact switch or a relay circuit is constituted by an electronic device using a safety controller by a microcomputer, for example.
 安全コントローラは、入力される複数のセンサや安全スイッチの情報を組み合わせてソフトウエアによる高度な処理を行い、複数の状態信号を組み合わせたより高機能な電子安全システムとなる。 The safety controller is a highly functional electronic safety system that combines multiple sensor signals and safety switches to perform advanced processing by software and combine multiple status signals.
 図1は、エレベータシステムを示す全体構成図であり、エレベータの乗りかご2と釣合いおもり3が主ロープで結ばれて、モータ4で回転駆動される綱車5によって、かご2が上下に昇降して移動する。かごを停止する場合は、ブレーキ(二重化された構成)6によって、綱車5を固定する。ブレーキ6はエレベータ異常時にかごを非常停止する場合にも用いられる。 FIG. 1 is an overall configuration diagram showing an elevator system. An elevator car 2 and a counterweight 3 are connected by a main rope, and a car 2 is moved up and down by a sheave 5 that is driven to rotate by a motor 4. Move. When stopping the car, the sheave 5 is fixed by the brake (doubled configuration) 6. The brake 6 is also used for emergency stop of the car when the elevator is abnormal.
 図示したものは、電子安全システムのエレベータであり、高信頼なマイコン等で実装された安全コントローラ1によって、エレベータの正常/異常状態が判定されて、異常と判定された場合にはモータに電力を供給する主電源を遮断し、同時にブレーキ6を作動させて、かご2を非常停止させる。 The illustrated one is an elevator of an electronic safety system. The safety controller 1 implemented by a highly reliable microcomputer or the like determines the normal / abnormal state of the elevator, and if it is determined to be abnormal, power is supplied to the motor. The main power to be supplied is shut off, and at the same time, the brake 6 is operated, and the car 2 is emergency stopped.
 安全コントローラ1は、例えばマイコンの二重系で構成され、2つのマイコンが相互に相手の状態および演算出力をチェックすることにより、高信頼化が図られている。安全コントローラ1は、マイコン,CPUやDSPを備えた演算処理装置,FPGA(ロジック回路)などのプログラミングにより処理論理を実装可能な電子式の処理装置で構成する。 The safety controller 1 is composed of, for example, a dual system of microcomputers, and high reliability is achieved by the two microcomputers checking each other's status and computation output. The safety controller 1 includes a microcomputer, an arithmetic processing device including a CPU and a DSP, and an electronic processing device that can implement processing logic by programming an FPGA (logic circuit).
 エレベータの異常状態を検出するセンサの1つとしては、かごの速度と移動量(移動距離)を検出するため、ガバナ装置,エンコーダ21が設けられる。ガバナ装置は回転可能とされたガバナプーリ20に支持され、かご2に固定され、かごと連動して動くガバナロープ22で構成される。エンコーダ21(ロータリエンコーダ)はガバナプーリ20に取付けられ、かごと連動して回転し、かごの速度と移動量はエンコーダ21の回転に伴い発生するパルスをカウントすることにより求められる。 As one of the sensors for detecting an abnormal state of the elevator, a governor device and an encoder 21 are provided for detecting the speed and the movement amount (movement distance) of the car. The governor device is supported by a rotatable governor pulley 20 and is composed of a governor rope 22 fixed to the car 2 and moving in conjunction with the car. The encoder 21 (rotary encoder) is attached to the governor pulley 20 and rotates in conjunction with the car. The speed and movement amount of the car are obtained by counting the pulses generated as the encoder 21 rotates.
 エンコーダ21の信号は安全コントローラ1に入力され、パルスをカウントすることにより、かごの速度やかごの移動量が算出される。かご速度と移動量の検出は、昇降路内(例えばレール)に垂直(昇降方向)に磁気テープを貼って磁気的に記録したコード情報を読み取ったり、光学的(例えばバーコード)に検出したりする検出装置でも良い。 The signal of the encoder 21 is input to the safety controller 1 and the speed of the car and the amount of movement of the car are calculated by counting the pulses. Car speed and amount of movement can be detected by reading code information magnetically recorded by sticking a magnetic tape vertically (in the up-and-down direction) in the hoistway (eg rail) or optically (eg barcode) It may be a detecting device.
 各階の階床基準位置および各階の階位置情報(例えば、1階,2階)の検出は、かご2に設けられたかご位置センサ30(反射型光電センサ)と各階の乗り場敷居に取付けられた検出板31A,31B,31Cで行われ、かご位置センサ30が検出板と対向した位置にある場合、各検出板からセンサの反射光を検出する。各検出板の長さや形状を階床毎に変えることで、かご2がその階の所定の基準位置にあることを検出する。基準位置を精度良く検出するには、検出板のエッジをセンサ信号のステップ状の変化で検出すれば良い。 The detection of the floor reference position of each floor and the floor position information (for example, the first floor and the second floor) of each floor is attached to the car position sensor 30 (reflection photoelectric sensor) provided in the car 2 and the landing sill of each floor. When the car position sensor 30 is located at a position facing the detection plate, which is performed by the detection plates 31A, 31B, and 31C, the reflected light of the sensor is detected from each detection plate. By changing the length and shape of each detection plate for each floor, it is detected that the car 2 is at a predetermined reference position on that floor. In order to detect the reference position with high accuracy, the edge of the detection plate may be detected by a step-like change in the sensor signal.
 検出された階床基準位置と算出された移動量とより、かご2が着床するための着床基準位置(着床レベル)を演算する。検出板のエッジ位置を階床基準位置とした場合、エッジ位置と着床基準位置とが所定の距離となるように検出板31A,31B,31Cを取付ける。したがって、かご位置センサ30で検出板のエッジ位置を検出後、エンコーダ21に基づくかご移動量が所定値に達した場合に、かご(正確にはかご床)がその階の着床基準位置にあることになる。 よ り The landing reference position (landing level) for the car 2 to land is calculated from the detected floor reference position and the calculated movement amount. When the edge position of the detection plate is the floor reference position, the detection plates 31A, 31B, and 31C are attached so that the edge position and the landing reference position are a predetermined distance. Therefore, after the car position sensor 30 detects the edge position of the detection plate, when the car movement amount based on the encoder 21 reaches a predetermined value, the car (more precisely, the car floor) is at the landing reference position of the floor. It will be.
 また、かご側のドア42の開放状態を検出するかごドアスイッチ43,各階乗り場のドア40A,40B,40Cの開放状態を検出する乗り場ドアスイッチ41A,41B,41Cを設けている。さらに、かご内の乗客の荷重を検出するセンサとして、ばね式荷重センサ32,かご側ドアに備え付けられた乗客のかごドアへの挟まれを検出するビームセンサまたは光電センサ(図示せず)を設置している。 In addition, a car door switch 43 that detects the open state of the car-side door 42 and landing door switches 41A, 41B, and 41C that detect the open state of the doors 40A, 40B, and 40C on the floors are provided. Further, as a sensor for detecting the load of the passenger in the car, a spring-type load sensor 32, a beam sensor or a photoelectric sensor (not shown) for detecting a pinching of the passenger's car door provided in the car side door are installed. is doing.
 センサ(ガバナのエンコーダ21,かご位置センサ30,ばね式荷重センサ32,かごドアのビームセンサ)およびスイッチ(かごドアスイッチ43,各階乗り場ドアスイッチ41A,41B,41C)の情報は、電気信号,シリアル通信信号に変換されて、信号線を介して安全コントローラ1に入力される。 The information of the sensor (the governor encoder 21, the car position sensor 30, the spring load sensor 32, the car door beam sensor) and the switch (the car door switch 43, each floor landing door switch 41A, 41B, 41C) is an electric signal, serial It is converted into a communication signal and input to the safety controller 1 via a signal line.
 安全コントローラ1は、センサ情報,スイッチ情報に基づきエレベータの安全状態を判定し、異常と判定された場合、主電源を遮断すると共にブレーキ6を動作させて、エレベータかごを非常停止させる。 The safety controller 1 determines the safety state of the elevator based on the sensor information and the switch information, and when it is determined to be abnormal, shuts off the main power supply and operates the brake 6 to emergency stop the elevator car.
 図2は安全コントローラ1であるUCMPのブロック図を示し、かごの位置(着床基準位置からのかごの移動距離)と速度とに基づき戸開走行異常を検出する。 FIG. 2 shows a block diagram of the UCMP which is the safety controller 1, and detects an abnormal opening of the door based on the position of the car (the moving distance of the car from the landing reference position) and the speed.
 かご速度はエンコーダ21によるパルスをかご速度算出部101で所定時間当りのパルス数(かご移動距離に対応)としてカウントすることにより算出される。かごの走行方向(上昇方向もしくは下降方向)は、かご走行方向判定部102によりエンコーダ21の信号から回転方向が判別されることで求める。 The car speed is calculated by counting the pulses by the encoder 21 as the number of pulses per predetermined time (corresponding to the car movement distance) by the car speed calculation unit 101. The traveling direction of the car (the ascending direction or the descending direction) is obtained by determining the rotational direction from the signal of the encoder 21 by the car traveling direction determination unit 102.
 着床基準位置とかご位置間の距離算出部104は、乗り場の着床基準位置とかご位置(かご床位置)間の判定距離Xを算出し、図3はその説明図である。着床基準位置はかご位置センサ30による階床基準位置から所定の距離離れた位置とする。かご位置は階床基準位置を通過した時点からのかご移動量で求める。 
X=|かご位置-着床基準位置|
 =|(Σ△X+XA)-(XB+XA)|         (1) 
 △Xはガバナエンコーダ1パルス当りのかご移動量、XAは階床基準位置、XBは階床基準位置と着床基準位置の距離(所定値)、Σ△Xはかごが階床基準位置を通過した時点からのかご移動量(かご走行方向判定部102で判定されたかご走行方向から+/-の符号を定めて積算)。
The distance calculation unit 104 between the landing reference position and the car position calculates a determination distance X between the landing reference position of the landing and the car position (car floor position), and FIG. 3 is an explanatory diagram thereof. The landing reference position is set to a position away from the floor reference position by the car position sensor 30 by a predetermined distance. The car position is obtained from the car movement amount from the time when the car passes the floor reference position.
X = | Car position-Landing reference position |
= | (ΣΔX + XA) − (XB + XA) | (1)
△ X is the amount of car movement per pulse of the governor encoder, XA is the floor reference position, XB is the distance between the floor reference position and the landing reference position (predetermined value), and Σ △ X is the car passing the floor reference position The amount of movement of the car from the point in time when the car travel direction is determined by the car travel direction determination unit 102.
 戸開判定部105は、かごドアスイッチ43,各階の乗り場ドアスイッチ41A,41B,41Cの出力信号からかごドアまたは各階の乗り場ドアのいずれかが開いているかどうかを検出する(かごドアのみの戸開を判定してもよい)。 The door open determination unit 105 detects whether the car door or the landing door on each floor is open from the output signals of the car door switch 43 and the landing door switches 41A, 41B, 41C on each floor (doors with only car doors). Open may be determined).
 かご位置およびかご速度異常判定部106は、かごドアまたは乗り場ドアが戸開状態であることが検出された場合、かご速度と、着床基準位置とかご位置間の判定距離Xと、判定距離Xに対して設定されたかご速度の過速度しきい値(異常判定しきい値)と、から戸開走行異常の発生を判定する。 When it is detected that the car door or the landing door is in the door open state, the car position and car speed abnormality determination unit 106 determines the car speed, the judgment distance X between the landing reference position and the car position, and the judgment distance X. The occurrence of door-open running abnormality is determined from the car speed overspeed threshold (abnormality determination threshold) set for the vehicle.
 過速度しきい値はしきい値データベース107に階床毎に着床基準位置,判定距離Xに対応してデータベースとして記憶されている。しきい値データベース107を参照して戸開走行異常と判定された場合、安全コントローラ1はエレベータの主電源を遮断する信号と巻上機ブレーキを作動させる信号(通常は巻上機ブレーキの供給電源を遮断する信号)を出力する。 The overspeed threshold value is stored in the threshold value database 107 as a database corresponding to the reference landing position and the determination distance X for each floor. When it is determined that the door-opening traveling abnormality has occurred with reference to the threshold value database 107, the safety controller 1 sends a signal for shutting down the main power supply of the elevator and a signal for operating the hoisting machine brake (usually a power supply for the hoisting machine brake). Output signal).
 図4は、電子化UCMPの動作フローチャートを示している。 FIG. 4 shows an operation flowchart of electronic UCMP.
 かごドアおよび各階の乗り場ドアが開状態であるか否かを判定する(F01)。ドア開状態でない場合は、戸開走行異常は無いと判定して処理を抜ける。 It is determined whether the car door and the landing door on each floor are open (F01). When it is not in the door open state, it is determined that there is no door open running abnormality and the process is exited.
 ドア開状態の場合、かごの速度を検出して(F02)。 
 現在のかご位置とかご停止階(または最寄り階)の着床基準位置との判定距離X(基準位置からのかごの移動距離)を算出する(F03)。
When the door is open, the speed of the car is detected (F02).
A determination distance X (a moving distance of the car from the reference position) between the current car position and the landing reference position of the car stop floor (or the nearest floor) is calculated (F03).
 しきい値データベース107に記憶された異常判定しきい値を参照して(F04)、比較する(F05)。 Referring to the abnormality determination threshold value stored in the threshold value database 107 (F04), the comparison is made (F05).
 かご速度が異常判定しきい値異常,速度超過の場合、かごが戸開走行異常状態にあると判定(F06)、かごを非常停止させる(F07)。 場合 If the car speed is abnormal, the threshold is abnormal, and the speed is exceeded, it is determined that the car is in the door open running abnormal state (F06), and the car is emergency stopped (F07).
 図5は、異常判定しきい値(判定基準)を示し、あるN階床で横軸(A01)がかご速度、縦軸(A02)が昇降方向のかご位置、点線A05は着床基準位置、曲線A03は異常判定しきい値である。曲線A03より内側(着床基準位置側)を正常、この曲線を超えた外側を異常と判定する。 FIG. 5 shows an abnormality determination threshold value (determination criterion). In a certain N floor, the horizontal axis (A01) is the car speed, the vertical axis (A02) is the car position in the ascending / descending direction, the dotted line A05 is the landing reference position, Curve A03 is an abnormality determination threshold value. It is determined that the inner side (landing reference position side) from the curve A03 is normal and the outer side exceeding the curve is abnormal.
 異常判定しきい値は、着床基準位置を中心にして、着床基準位置からの判定距離X(かご位置までの距離)が大きくなるほど、値が小さくなるように設定されている。 The abnormality determination threshold value is set so that the value decreases as the determination distance X (distance to the car position) from the landing reference position increases with the landing reference position as the center.
 異常判定しきい値A03は、乗客の乗降りによる伸縮に基づき、ロープ伸び量、そのときのかご速度を誤判定しないように、正常な状態でも有り得る戸開走行の動作領域曲線A06を定めて、所定のマージン(速度検出のマージン)を加えることで設定されている。 The abnormality determination threshold A03 is based on expansion / contraction due to passengers getting on and off, and defines a door opening travel region A06 that can be in a normal state so as not to erroneously determine the amount of rope extension and the car speed at that time. It is set by adding a predetermined margin (speed detection margin).
 ロープ伸びなどによる正常な戸開走行の動作領域(曲線A06)について説明する。 
 図6(A)は、かごに多人数が乗車した場合の主ロープの伸びによるかご動作(位置および速度の動作)を表している。動作軌跡C01は、動作点の軌跡を示し、矢印の向きが時間的な進行である。始点において、かごは着床基準位置に停止(速度ゼロ)している。かごに多人数が乗車したことにより、ロープが伸びてかごが速度を上げながら下降して、ある位置で停止し、バネの振動のように、次は上昇,下降という振動を繰り返して、終点の位置で静止する。
An operation region (curve A06) of normal door-opening traveling due to rope elongation will be described.
FIG. 6A shows a car operation (position and speed operation) due to the extension of the main rope when a large number of people get on the car. The motion trajectory C01 indicates the trajectory of the motion point, and the direction of the arrow is time progress. At the start point, the car stops at the landing reference position (zero speed). When a large number of people get on the car, the rope stretches and the car descends while increasing the speed, stops at a certain position, and repeats the vibration of rising and lowering next to the end of the end point like the vibration of the spring. Still at position.
 図6(B)は、多人数が降車後に乗車した場合であり、C02は動作軌跡であり、始点で多人数が降車して、ロープが縮み、かごが一旦上昇して振動し、その間にさらに多人数が乗車するため、かごが下降方向に強く振動する。 FIG. 6 (B) shows a case where a large number of people get on after getting off, C02 is an operation trajectory, the many people get off at the starting point, the rope contracts, the car once rises and vibrates, Since many people get on the car, the car vibrates strongly in the downward direction.
 以上、ロープ伸縮によるかごの移動を誤検出しないため、正常領域とすべき曲線A06は、着床基準位置を中心にした放射状の曲線とすることが良い。 As described above, in order not to erroneously detect the movement of the car due to the rope expansion / contraction, the curve A06 that should be a normal region is preferably a radial curve centered on the landing reference position.
 図7は、異常発生時の動作を示し、点線B01は着床基準位置とかご位置との距離のみで戸開走行異常を判定する従来方式での判定しきい値である。 FIG. 7 shows the operation at the time of occurrence of an abnormality, and the dotted line B01 is a determination threshold value in the conventional method for determining the door opening running abnormality only by the distance between the landing reference position and the car position.
 従来方式では、かごが着床基準位置で停止している時に異常(故障)が発生して、動作軌跡B04に沿ってかごが増速しながら下降していく場合、かご位置が点線B01のしきい値を越えて異常を検出するので、増速が動作軌跡B06に示すように継続し、かごの速度が図示のように大きくなっている。したがって、異常を検出した時点でブレーキを作動させ、減速しても停止までに時間及び長い距離を要する(図で従来)。 In the conventional method, when an abnormality (fault) occurs when the car is stopped at the landing reference position, and the car descends while accelerating along the operation locus B04, the car position is indicated by a dotted line B01. Since the abnormality is detected beyond the threshold value, the speed increase continues as indicated by the operation locus B06, and the speed of the car increases as shown in the figure. Therefore, it takes time and a long distance to stop even if the brake is operated at the time of detecting an abnormality and decelerates (conventional in the figure).
 停止までに必要とする距離は、乗り場の天井または床と挟まれることを防止できるようにしきい値(点線B06,B01)を設定する必要があり、かごが非常停止した後に乗客がかごから乗り場へ脱出する際のかご床と乗り場の段差は小さくすべきであること、より安全上より小さくすることが望ましい。 It is necessary to set a threshold (dotted lines B06, B01) for the distance required to stop the vehicle so that it can be prevented from being caught by the ceiling or floor of the platform. The level difference between the car floor and the landing when exiting should be small, and it is desirable to make it smaller for safety reasons.
 本実施例では、判定曲線A03に従って異常を判定するので、動作軌跡B04の場合でもB04とA03の交点で異常を検出する。したがって、従来に比べてより早い時点で異常を検出し、停止までの走行距離をより短くでき、乗客の脱出もより安全とすることができる。 In this embodiment, since abnormality is determined according to the determination curve A03, abnormality is detected at the intersection of B04 and A03 even in the case of the motion trajectory B04. Therefore, it is possible to detect an abnormality at an earlier point in time than in the past, to shorten the travel distance until the stop, and to make it easier for passengers to escape.
 図8は、図7の判定しきい値B01を減速時の走行距離,時間を短くするため、B01のように小さく設定したものである。 FIG. 8 shows the determination threshold value B01 in FIG. 7 set to be small like B01 in order to shorten the travel distance and time during deceleration.
 従来方式では、図5で示したかごの正常な戸開走行動作(曲線A06内の領域)を異常と誤検出する可能性がある。つまり、曲線A06内で点線B01を越える領域D02が誤検出となる可能性の出る領域となる。 In the conventional system, there is a possibility that the normal door-opening traveling operation (the area in the curve A06) of the car shown in FIG. That is, a region D02 that exceeds the dotted line B01 in the curve A06 is a region that is likely to be erroneously detected.
 本実施例では、誤検出の領域D02が無いことより誤検出の恐れは無い。また、かごの動作軌跡D03に対して、戸開正常領域を越えた領域(D04の領域)で異常を検出するため、より速やかに異常を判定することができる。その結果、戸開走行異常に対する安全性が増すことができ、同時に不要な非常停止を回避してエレベータの運行サービスを向上できる。 In this embodiment, there is no fear of false detection because there is no false detection area D02. Further, since the abnormality is detected in the region exceeding the normal door opening region (region D04) with respect to the car movement locus D03, the abnormality can be determined more quickly. As a result, it is possible to increase safety against abnormal opening of the door, and at the same time, avoid unnecessary emergency stop and improve elevator operation service.
 図9は、図5で説明したものに対して、異常判定しきい値(判定基準)の設定値を代えたものであり、着床基準位置,判定距離Xに対応したしきい値データベース107を変更し、戸開走行異常に対して、所定距離以内にかご停止させるためのかご速度とかご位置の関係から定めている。 FIG. 9 is a table in which the set value of the abnormality determination threshold value (determination criterion) is changed from that described in FIG. 5, and a threshold value database 107 corresponding to the landing reference position and the determination distance X is stored. This is determined based on the relationship between the car speed and the car position for stopping the car within a predetermined distance with respect to the door opening running abnormality.
 所定位置(距離)X0に減速度βでかごを非常停止させるための速度Vとかご位置Xの必要条件は、
  V=√{2・β・(X0-X)}            (2) 
 βはかごを非常停止するときの減速度(巻上機ブレーキまたは第2のブレーキ(ロープブレーキやレールブレーキ)による減速度)、Xは着床基準位置とかご位置間の距離、Vは異常判定しきい値、X0はかごを止めるべき所定位置(距離)。
The necessary conditions for the speed V and the car position X for emergency stop of the car at the deceleration β at the predetermined position (distance) X0 are:
V = √ {2 · β · (X0−X)} (2)
β is the deceleration for emergency stop of the car (deceleration by the hoisting machine brake or the second brake (rope brake or rail brake)), X is the distance between the landing reference position and the car position, and V is the abnormality judgment The threshold value, X0, is a predetermined position (distance) at which the car should be stopped.
 図10は、さらに異常判定しきい値(判定基準)の設定値を代えたものであり、かご停止階の着床基準位置に対して、近傍位置(距離)に判定を行わない不感帯(2本の点線A07で挟まれた領域)を設けたものである。不感帯を設けることで、乗客の乗降による過渡的な振動のため、時間は短く(振幅幅は短く)安全上は問題ないが、着床基準位置の近傍のかご速度が瞬間的に相当に大きくなる場合であっても、誤検出を防ぐことができ、不要な非常停止を回避でき、エレベータの運行サービスを向上できる。 FIG. 10 shows another example in which the set value of the abnormality determination threshold value (determination criterion) is changed, and a dead zone (two lines) in which no determination is made at a nearby position (distance) with respect to the landing reference position on the car stop floor The area between the dotted lines A07 is provided. By providing a dead zone, the time is short (amplitude width is short) and there is no safety problem due to transient vibration caused by passengers getting on and off, but the car speed near the landing reference position increases instantaneously considerably. Even in this case, erroneous detection can be prevented, unnecessary emergency stop can be avoided, and the elevator service can be improved.
 図11は、図2に示したUCMPのブロック図に対して、階床別の特性に応じてかご速度および位置による戸開走行異常を判定するものであり、かごの階位置に対応してしきい値データ109を定めている。つまり、階位置検出部108は、かごの階位置(1階,2階,3階など)を検出し、階位置毎に最適化したしきい値データ109により戸開走行異常を判定する。 FIG. 11 is a block diagram of the UCMP shown in FIG. 2, in which the door opening / running abnormality due to the car speed and position is determined according to the characteristics of each floor, corresponding to the floor position of the car. Threshold data 109 is defined. That is, the floor position detection unit 108 detects the floor position (first floor, second floor, third floor, etc.) of the car, and determines door opening running abnormality by the threshold value data 109 optimized for each floor position.
 階位置検出部108に対する入力信号は、図1に示したかご位置センサ(符号30)であり、かご位置センサが光電センサの場合は検出板形状で各階床を識別すれば良く、RFIDタグやバーコードなどを用いて階床情報を識別することでも良い。 An input signal to the floor position detection unit 108 is a car position sensor (reference numeral 30) shown in FIG. 1. When the car position sensor is a photoelectric sensor, each floor may be identified by a detection plate shape. The floor information may be identified using a code or the like.
 これにより、階位置に応じてロープ伸びの振動幅が異なったとしても、ロープ伸びに応じた適正な判定しきい値を定めることができること、マンションなどで特定の階(例えば、年配の方が多い階,子供の多い階など)に対してより早く異常を検出させる判定しきい値とすること、が可能となり、より正確かつ速やかな判定が可能になる。 As a result, even if the vibration width of the rope stretch differs according to the floor position, it is possible to set an appropriate judgment threshold value according to the rope stretch, and a specific floor (for example, more elderly people in an apartment, etc.) It is possible to set a determination threshold value for detecting an abnormality earlier with respect to a floor, a floor with many children, etc., and a more accurate and quick determination is possible.
 図12は、階床別に設定された判定特性の例を示す。 
 図12(A)はかごの階位置が最上階の場合であり、かごを吊り下げている主ロープの長さが短いため、ロープ伸縮による振動幅は小さく、ロープ伸びによる戸開走行の正常領域(一点鎖線A06で囲まれた領域)も小さくなる。従って、異常判定曲線(曲線A03)の半径(中心は着床基準位置)も小さくする。つまり、同じかご位置に対する速度異常の判定しきい値が小さくなる。
FIG. 12 shows an example of determination characteristics set for each floor.
FIG. 12 (A) shows the case where the floor position of the car is the top floor, and since the length of the main rope that suspends the car is short, the vibration width due to the rope expansion and contraction is small, and the normal region of the door opening traveling due to the rope extension (A region surrounded by an alternate long and short dash line A06) is also reduced. Therefore, the radius (center is the reference landing position) of the abnormality determination curve (curve A03) is also reduced. In other words, the speed abnormality determination threshold for the same car position is reduced.
 図12(B)はかごの階位置が最下階の場合であり、主ロープの長さが長いため、ロープ伸縮による振動幅が大きく、ロープ伸びによる戸開走行の正常領域(一点鎖線A06で囲まれた領域)は大きくなる。従って、異常判定曲線(曲線A03)の半径(中心は着床基準位置)も大きくする。つまり、同じかご位置に対する速度の異常判定しきい値が大きくなる。 FIG. 12B shows the case where the floor of the car is the lowest floor, and the main rope is long, so the vibration width due to the rope expansion and contraction is large, and the normal region of the door-opening traveling due to the rope elongation (in the alternate long and short dash line A06) The enclosed area becomes larger. Therefore, the radius (center is the landing reference position) of the abnormality determination curve (curve A03) is also increased. That is, the speed abnormality determination threshold for the same car position increases.
 階位置に応じて戸開走行異常の判定基準を変えているので、各階位置で異なるロープ伸縮に適応した異常判定となり、より正確判定および保護が可能となる。また、階位置の代わりにかご高さ位置(例えば、高さ10mなど)を用いてもロープ伸縮の量に基づいて判定基準を定めても良い。つまり、かごの停止階が下になるほど、前記かご高さ位置が小さくなるほど、異常判定しきい値を大きくすることが良い。 Since the criteria for abnormal opening of doors are changed according to the floor position, the abnormality determination is adapted to different rope expansion and contraction at each floor position, and more accurate determination and protection are possible. In addition, the standard of determination may be determined based on the amount of rope expansion or contraction, even if a car height position (for example, a height of 10 m) is used instead of the floor position. That is, it is better to increase the abnormality determination threshold value as the car floor becomes lower and the car height position becomes smaller.
 図13は、図2に示したUCMPのブロック図に対して、乗客の乗降状態に応じて戸開走行異常の判定を行うものであり、乗客乗降状態判定部110で乗客の乗降の有無を検出して、その結果に基づいた異常判定しきい値データ111より、異常を判定する。 FIG. 13 is a block diagram of the UCMP shown in FIG. 2 for determining whether or not the door is open depending on the passenger's boarding / exiting state. Then, abnormality is determined from the abnormality determination threshold value data 111 based on the result.
 乗客の乗降状態の検出は、かご内荷重センサ32で検出したかご内荷重の変化状態、もしくはかごドアのドアビーム信号(乗客がかごドアを通過したことを検出可)で検出する。乗客の乗降が有る場合は、乗降による主ロープ伸縮に基づいた異常判定しきい値を定めることで、より正確な判定が可能になる。 The detection of the passenger boarding / exiting state is detected by a change state of the car load detected by the car load sensor 32 or a door beam signal of the car door (it is possible to detect that the passenger has passed the car door). When passengers get on and off, more accurate determination is possible by determining an abnormality determination threshold value based on main rope expansion and contraction by getting on and off.
 図14は、乗客の乗降の有無に応じて異常判定しきい値を定めた例であり、曲線A03Aは乗降有り、曲線A03Bは乗降無しの場合における異常判定しきい値を示している。乗降有りの場合は、乗降による主ロープ伸縮が大きいため、戸開走行の正常領域(図5の一点鎖線A06で囲まれた領域)が広がり、広がりに基づいて異常判定曲線(曲線A03A)の半径(中心は着床基準位置)を大きく設定する。乗客の乗降無しの場合は、主ロープ伸縮が小さいため、曲線A03Bの半径(中心は着床基準位置)を小さく設定する。 FIG. 14 is an example in which an abnormality determination threshold value is determined according to whether passengers get on and off, and curve A03A shows the abnormality determination threshold value when there is boarding / exiting and curve A03B shows no boarding / exiting. When there is boarding / exiting, the main rope expansion / contraction due to boarding / exiting is large, so that the normal area of the door-opening travel (the area surrounded by the one-dot chain line A06 in FIG. 5) widens, and the radius of the abnormality determination curve (curve A03A) Set a large value (center is the reference position for landing). When there is no passenger boarding / exiting, since the main rope expansion / contraction is small, the radius of the curve A03B (the center is the landing reference position) is set small.
 これにより、乗降の有無に係らず、より短い走行距離で確実に戸開走行を検出し、より安全性を高めると共に、運行効率の低下を防ぐことができる。また、乗降の有無に代えて、乗客の乗降人数に応じて、異常判定を行っても良く、さらに、主ロープの伸縮をロープ端に置いたセンサで直接検出すればより正確なものとなる。 This makes it possible to reliably detect a door opening with a shorter mileage regardless of whether or not the passenger gets on and off, thereby improving safety and preventing a decrease in operation efficiency. In addition, instead of the presence / absence of boarding / exiting, abnormality determination may be performed according to the number of passengers getting on / off, and further, if the expansion / contraction of the main rope is directly detected by a sensor placed at the end of the rope, the accuracy becomes more accurate.
1 安全コントローラ
2 かご
6 ブレーキ
21 エンコーダ(検出装置)
30 かご位置センサ(位置センサ)
31A,31B,31C 検出板
41A,41B,41C 乗り場ドアスイッチ
43 かごドアスイッチ
101 かご速度算出部
104 着床基準位置とかご位置間の距離算出部
105 戸開判定部
106 かご位置およびかご速度異常判定部
107 しきい値データベース
1 Safety controller 2 Car 6 Brake 21 Encoder (detection device)
30 Car position sensor (position sensor)
31A, 31B, 31C Detection plates 41A, 41B, 41C Landing door switch 43 Car door switch 101 Car speed calculation unit 104 Distance calculation between landing reference position and car position 105 Door open determination unit 106 Car position and car speed abnormality determination Part 107 Threshold database

Claims (13)

  1.  かごドア及び乗り場ドアが開放状態であり、かごが乗り場の床から昇降した場合、戸開走行異常と判定して前記かごを停止させる戸開走行保護装置を設けたエレベータシステムにおいて、
     前記かごドアの開放状態を検出するかごドアスイッチ及び前記乗り場ドアの開放状態を検出する乗り場ドアスイッチと、
     かごの速度と移動量及び階床基準位置を検出する検出装置と、
     前記検出装置の検出結果に基づき、かご位置に対して設定されたかごの速度の異常判定しきい値により戸開走行異常を判定する安全コントローラと、
    を備えたことを特徴とするエレベータシステム。
    When the car door and the landing door are in an open state, and the car is raised and lowered from the floor of the landing floor, an elevator system provided with a door opening travel protection device that determines that the door is open abnormally and stops the car,
    A car door switch for detecting the open state of the car door and a landing door switch for detecting the open state of the landing door;
    A detection device for detecting the speed and travel of the car and the floor reference position;
    Based on the detection result of the detection device, a safety controller that determines door opening running abnormality by an abnormality determination threshold value of the car speed set with respect to the car position;
    An elevator system characterized by comprising:
  2.  請求項1に記載のものにおいて、前記検出装置はかごの速度と移動量を検出する検出センサと、各階の階床基準位置を検出する位置センサと、を備えたことを特徴とするエレベータシステム。 2. The elevator system according to claim 1, wherein the detection device includes a detection sensor for detecting a speed and a moving amount of a car, and a position sensor for detecting a floor reference position of each floor.
  3.  請求項1に記載のものにおいて、前記安全コントローラは、前記階床基準位置と前記移動量とから前記かごが着床するための着床基準位置及び該着床基準位置から前記かご位置間の判定距離を演算し、前記かごドアスイッチ及び乗り場ドアスイッチによりドアが開放状態と検出された場合、前記判定距離に対応して前記異常判定しきい値が記憶されたしきい値データベースを参照して戸開走行異常を判定することを特徴とするエレベータシステム。 The safety controller according to claim 1, wherein the safety controller determines a landing reference position for the car to land from the floor reference position and the movement amount, and a determination between the car positions from the landing reference position. The distance is calculated, and when the door is detected to be open by the car door switch and the landing door switch, the door is referred to a threshold database in which the abnormality determination threshold value is stored corresponding to the determination distance. An elevator system characterized by determining an open running abnormality.
  4.  請求項1に記載のものにおいて、前記異常判定しきい値は階位置毎に定められていることを特徴とするエレベータシステム。 The elevator system according to claim 1, wherein the abnormality determination threshold value is determined for each floor position.
  5.  請求項1に記載のものにおいて、前記安全コントローラは、前記階床基準位置と前記移動量とから前記かごが着床するための着床基準位置及び該着床基準位置から前記かご位置間の判定距離を演算し、前記異常判定しきい値は前記判定距離が大きくなるほど小さくなるように設定されていることを特徴とするエレベータシステム。 The safety controller according to claim 1, wherein the safety controller determines a landing reference position for the car to land from the floor reference position and the movement amount, and a determination between the car positions from the landing reference position. An elevator system, wherein a distance is calculated, and the abnormality determination threshold value is set so as to decrease as the determination distance increases.
  6.  請求項1に記載のものにおいて、前記異常判定しきい値は前記かごを昇降するロープが乗客の乗降りによる伸縮に基づいて誤判定とならないように設定されていることを特徴とするエレベータシステム。 2. The elevator system according to claim 1, wherein the abnormality determination threshold value is set so that a rope that moves up and down the car does not make an erroneous determination based on expansion and contraction caused by passengers getting on and off.
  7.  請求項1に記載のものにおいて、前記異常判定しきい値は前記かご位置と、前記かごを所定位置に停止させるときの減速度に基づいて設定されていることを特徴とするエレベータシステム。 2. The elevator system according to claim 1, wherein the abnormality determination threshold value is set based on the car position and a deceleration when the car is stopped at a predetermined position.
  8.  請求項1に記載のものにおいて、前記安全コントローラは、前記階床基準位置と前記移動量とから前記かごが着床するための着床基準位置及び該着床基準位置から前記かご位置間の判定距離を演算し、前記着床基準位置に対して判定を行わない不感帯を設けたことを特徴とするエレベータシステム。 The safety controller according to claim 1, wherein the safety controller determines a landing reference position for the car to land from the floor reference position and the movement amount, and a determination between the car positions from the landing reference position. An elevator system comprising a dead zone that calculates a distance and does not make a determination with respect to the landing reference position.
  9.  請求項1に記載のものにおいて、前記かごの停止階が下になるほど、前記かご高さ位置が小さくなるほど、かご位置に対する前記異常判定しきい値が大きくされたことを特徴とするエレベータシステム。 2. The elevator system according to claim 1, wherein the abnormality determination threshold value for the car position is increased as the stop floor of the car is lowered and the car height position is reduced.
  10.  請求項1に記載のものにおいて、乗客の乗降有無を検出する乗客乗降状態判定部を設け、前記異常判定しきい値は乗降有が検出された場合、乗降無しとされた場合に比べかご位置に対する前記異常判定しきい値が大きくされたことを特徴とするエレベータシステム。 The thing of Claim 1 WHEREIN: The passenger boarding / alighting state determination part which detects a passenger's boarding / alighting presence-absence is provided, The said abnormality determination threshold value with respect to a car position compared with the case where there is no boarding / alighting when a boarding / alighting is detected. An elevator system, wherein the abnormality determination threshold value is increased.
  11.  請求項1に記載のものにおいて、前記かごと連動してパルスを発生するエンコーダと、前記かごに設けられた反射型光電センサと各階の乗り場敷居に取付けられた検出板と、を備え、前記パルスがカウントされることにより前記かごの速度と移動量とが算出され、前記反射型光電センサが前記検出板と対向した位置にある場合、前記階床基準位置が検出されることを特徴とするエレベータシステム。 2. The encoder according to claim 1, comprising: an encoder that generates a pulse in conjunction with the car; a reflective photoelectric sensor provided in the car; and a detection plate attached to a landing sill on each floor. Is calculated by calculating the speed and the amount of movement of the car, and the floor reference position is detected when the reflective photoelectric sensor is at a position facing the detection plate. system.
  12.  請求項1に記載のものにおいて、前記かごの速度と移動量及び階床基準位置の検出は、昇降方向に貼られた磁気テープに記録した磁気的なコード情報を読み取ることで行われることを特徴とするエレベータシステム。 2. The thing of Claim 1 WHEREIN: The speed of the said cage | basket | car, the amount of movement, and detection of a floor reference position are performed by reading the magnetic code information recorded on the magnetic tape stuck in the raising / lowering direction. Elevator system.
  13.  請求項1に記載のものにおいて、前記かごの速度と移動量及び階床基準位置の検出は、光学的に検出されることを特徴とするエレベータシステム。 The elevator system according to claim 1, wherein the speed, the moving amount, and the floor reference position of the car are detected optically.
PCT/JP2010/004074 2010-06-18 2010-06-18 Elevator system WO2011158301A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080067507.9A CN102947210B (en) 2010-06-18 2010-06-18 Elevator system
EP10853184.9A EP2583928B1 (en) 2010-06-18 2010-06-18 Elevator system
SG2012092425A SG186731A1 (en) 2010-06-18 2010-06-18 Elevator system
JP2012520168A JP5516729B2 (en) 2010-06-18 2010-06-18 Elevator system
PCT/JP2010/004074 WO2011158301A1 (en) 2010-06-18 2010-06-18 Elevator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004074 WO2011158301A1 (en) 2010-06-18 2010-06-18 Elevator system

Publications (1)

Publication Number Publication Date
WO2011158301A1 true WO2011158301A1 (en) 2011-12-22

Family

ID=45347730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004074 WO2011158301A1 (en) 2010-06-18 2010-06-18 Elevator system

Country Status (5)

Country Link
EP (1) EP2583928B1 (en)
JP (1) JP5516729B2 (en)
CN (1) CN102947210B (en)
SG (1) SG186731A1 (en)
WO (1) WO2011158301A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2457860A3 (en) * 2010-11-29 2013-10-16 ThyssenKrupp Aufzugswerke GmbH Safety device for a lift
JP2015003803A (en) * 2013-06-21 2015-01-08 三菱電機株式会社 Elevator safety device and elevator control method
WO2015004776A1 (en) * 2013-07-11 2015-01-15 三菱電機株式会社 Elevator system
JP2017013958A (en) * 2015-07-01 2017-01-19 株式会社日立製作所 Elevator and vibration control method for elevator
WO2017033238A1 (en) * 2015-08-21 2017-03-02 三菱電機株式会社 Elevator apparatus
CN106800225A (en) * 2017-02-23 2017-06-06 深圳市海浦蒙特科技有限公司 Elevator returns flatting method
WO2019130407A1 (en) * 2017-12-26 2019-07-04 株式会社日立製作所 Elevator and method for protecting against elevator moving with door open
US20190352130A1 (en) * 2017-02-10 2019-11-21 Kone Corporation Method and an elevator system for performing a synchronization run of an elevator car
CN110526054A (en) * 2019-09-17 2019-12-03 日立楼宇技术(广州)有限公司 Elevator passenger detection method, controller, system and storage medium
CN114538222A (en) * 2020-11-24 2022-05-27 株式会社日立大厦系统 Elevator system
CN117576491A (en) * 2024-01-17 2024-02-20 浙江新再灵科技股份有限公司 Elevator door fault detection method, elevator door fault occurrence rate prediction method and device

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5933811B2 (en) * 2013-03-01 2016-06-15 三菱電機株式会社 Elevator car position detector
US9452909B2 (en) * 2013-10-25 2016-09-27 Thyssenkrupp Elevator Ag Safety related elevator serial communication technology
CN103964272B (en) * 2014-01-11 2018-10-30 广东日创电梯有限公司 Prevent accidental movement of elevator cage or protection system out of control
JP6187978B2 (en) * 2014-06-20 2017-08-30 株式会社日立ビルシステム Elevator control device
CN104150316B (en) * 2014-08-07 2017-05-24 江苏蒙哥马利电梯有限公司 Device for preventing elevator cage from abnormally moving
CN105173953A (en) * 2015-06-24 2015-12-23 贵州天义电梯成套设备有限公司 Control system and control method for preventing elevator car from accidentally moving
WO2017028919A1 (en) * 2015-08-19 2017-02-23 Otis Elevator Company Elevator control system and method of operating an elevator system
CN105173954A (en) * 2015-09-18 2015-12-23 江南嘉捷电梯股份有限公司 Device for preventing lift car from moving by accident
CN105480806B (en) * 2016-01-20 2017-12-26 孟令海 elevator internet of things system and management method
CN105460725B (en) * 2016-01-20 2018-05-08 孟令海 Elevator door state monitor and its fault judgment method
WO2017168619A1 (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Elevator system
CN107720477A (en) * 2016-08-12 2018-02-23 康力电梯股份有限公司 A kind of door-opened elevator car slipping protection device
EP3366626B1 (en) * 2017-02-22 2021-01-06 Otis Elevator Company Elevator safety system and method of monitoring an elevator system
EP3444214A1 (en) * 2017-08-14 2019-02-20 Otis Elevator Company Elevator safety and control systems
CN110065861B (en) * 2018-01-24 2020-12-25 日立楼宇技术(广州)有限公司 Method, device and equipment for detecting accidental movement of elevator car and storage medium
US11518650B2 (en) * 2018-06-15 2022-12-06 Otis Elevator Company Variable thresholds for an elevator system
CN109132771B (en) * 2018-10-25 2020-06-26 日立楼宇技术(广州)有限公司 Elevator car protection system and method
WO2020121524A1 (en) * 2018-12-14 2020-06-18 株式会社日立製作所 Elevator control apparatus
WO2020124547A1 (en) * 2018-12-21 2020-06-25 深圳技术大学(筹) Method and apparatus for monitoring pit and roof hitting failures of elevator
CN109650230B (en) * 2018-12-29 2020-12-29 日立电梯(中国)有限公司 Elevator traction system and control method thereof
ES2949640T3 (en) * 2019-05-31 2023-10-02 Cedes Ag Procedure for securing an elevator car by means of a temporary unlocking zone
EP3744672A1 (en) * 2019-05-31 2020-12-02 Cedes AG Limit curve control for elevators
CN114026037B (en) * 2019-07-01 2023-07-14 三菱电机株式会社 Control device for elevator
WO2021002107A1 (en) * 2019-07-02 2021-01-07 株式会社日立製作所 Elevator device
DE102019212726A1 (en) * 2019-08-26 2021-03-04 Thyssenkrupp Elevator Innovation And Operations Ag Elevator system that converts a car into a safety operating state depending on a closed state signal and a position of the car
CN110697528A (en) * 2019-09-10 2020-01-17 宁夏电通物联网科技股份有限公司 Detection device for detecting opening and closing states of car door based on diffuse reflection, elevator and detection method
CN111056409A (en) * 2020-01-08 2020-04-24 广东博智林机器人有限公司 Lifting device and control method for preventing lift car from moving accidentally
EP3878788A1 (en) * 2020-03-09 2021-09-15 Otis Elevator Company Elevator safety systems
CN113624185B (en) * 2020-05-07 2023-12-05 上海三菱电梯有限公司 Automatic distance measuring device and distance measuring method thereof
JP7284735B2 (en) * 2020-05-25 2023-05-31 株式会社日立ビルシステム ELEVATOR DIAGNOSTIC DEVICE AND ELEVATOR DIAGNOSTIC METHOD
WO2022058276A1 (en) 2020-09-17 2022-03-24 Inventio Ag Safety device for controlling safety-relevant ucm and udm functions in a lift system
CN114834987B (en) * 2022-03-24 2023-09-26 浙江速捷电梯有限公司 Elevator car position identification device and control method thereof
CN116199059B (en) * 2023-03-08 2023-11-14 天津宜科自动化股份有限公司 Elevator running state monitoring system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127582A (en) * 1980-02-19 1981-10-06 Westinghouse Electric Corp Elevator device
JPH01256475A (en) * 1988-04-05 1989-10-12 Toshiba Corp Elevator controller
JPH08225269A (en) * 1995-01-20 1996-09-03 Inventio Ag Method for producing shaft information data of elevator shaft and device for conducting method thereof
JP2007055691A (en) 2005-08-22 2007-03-08 Toshiba Elevator Co Ltd Device for preventing start of elevator with opened door
JP2008285265A (en) * 2007-05-16 2008-11-27 Toshiba Elevator Co Ltd Elevator forced decelerating device
JP2010006562A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Elevator position detecting device and elevator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526368B1 (en) * 2000-03-16 2003-02-25 Otis Elevator Company Elevator car position sensing system
WO2009008058A1 (en) * 2007-07-10 2009-01-15 Mitsubishi Electric Corporation Elevator
CN102036898B (en) * 2008-06-27 2013-05-01 三菱电机株式会社 Elevator apparatus and operating method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127582A (en) * 1980-02-19 1981-10-06 Westinghouse Electric Corp Elevator device
JPH01256475A (en) * 1988-04-05 1989-10-12 Toshiba Corp Elevator controller
JPH08225269A (en) * 1995-01-20 1996-09-03 Inventio Ag Method for producing shaft information data of elevator shaft and device for conducting method thereof
JP2007055691A (en) 2005-08-22 2007-03-08 Toshiba Elevator Co Ltd Device for preventing start of elevator with opened door
JP2008285265A (en) * 2007-05-16 2008-11-27 Toshiba Elevator Co Ltd Elevator forced decelerating device
JP2010006562A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Elevator position detecting device and elevator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2583928A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2457860A3 (en) * 2010-11-29 2013-10-16 ThyssenKrupp Aufzugswerke GmbH Safety device for a lift
JP2015003803A (en) * 2013-06-21 2015-01-08 三菱電機株式会社 Elevator safety device and elevator control method
WO2015004776A1 (en) * 2013-07-11 2015-01-15 三菱電機株式会社 Elevator system
JP2017013958A (en) * 2015-07-01 2017-01-19 株式会社日立製作所 Elevator and vibration control method for elevator
JPWO2017033238A1 (en) * 2015-08-21 2017-10-26 三菱電機株式会社 Elevator equipment
WO2017033238A1 (en) * 2015-08-21 2017-03-02 三菱電機株式会社 Elevator apparatus
US20190352130A1 (en) * 2017-02-10 2019-11-21 Kone Corporation Method and an elevator system for performing a synchronization run of an elevator car
CN106800225A (en) * 2017-02-23 2017-06-06 深圳市海浦蒙特科技有限公司 Elevator returns flatting method
WO2019130407A1 (en) * 2017-12-26 2019-07-04 株式会社日立製作所 Elevator and method for protecting against elevator moving with door open
CN110526054A (en) * 2019-09-17 2019-12-03 日立楼宇技术(广州)有限公司 Elevator passenger detection method, controller, system and storage medium
CN114538222A (en) * 2020-11-24 2022-05-27 株式会社日立大厦系统 Elevator system
CN114538222B (en) * 2020-11-24 2023-11-17 株式会社日立大厦系统 Elevator system
CN117576491A (en) * 2024-01-17 2024-02-20 浙江新再灵科技股份有限公司 Elevator door fault detection method, elevator door fault occurrence rate prediction method and device
CN117576491B (en) * 2024-01-17 2024-04-26 浙江新再灵科技股份有限公司 Elevator door fault detection method, elevator door fault occurrence rate prediction method and device

Also Published As

Publication number Publication date
CN102947210B (en) 2015-05-06
SG186731A1 (en) 2013-02-28
EP2583928B1 (en) 2021-02-24
EP2583928A4 (en) 2017-11-08
JP5516729B2 (en) 2014-06-11
EP2583928A1 (en) 2013-04-24
CN102947210A (en) 2013-02-27
JPWO2011158301A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5516729B2 (en) Elevator system
JP5741746B2 (en) Elevator system
US8177035B2 (en) Elevator system which controls a value of overspeed
US9676591B2 (en) Elevator apparatus
US9708158B2 (en) Multi-car elevator using an exclusion zone and preventing inter-car collision
JP4907097B2 (en) Elevator equipment
EP3366626B1 (en) Elevator safety system and method of monitoring an elevator system
US10858218B2 (en) Elevator apparatus
CN104860148B (en) Elevator device
KR101664942B1 (en) System and method for reducing speed of an elevator car
WO2010100802A1 (en) Elevator device and method of inspecting same
US9580273B2 (en) Testing apparatus and safety arrangement
JP6403894B2 (en) Elevator equipment
JP2013040029A (en) Elevator controller
WO2011001764A1 (en) Elevator equipment
JP6180591B2 (en) Multi-car elevator
JP2011084355A (en) Control device of elevator
WO2020115883A1 (en) Monitor device to prevent elevator passenger entrapment
WO2019130407A1 (en) Elevator and method for protecting against elevator moving with door open
CN112744660B (en) Multi-car elevator
JP2023014525A (en) Test method and test device of standby-type brake for elevator
CN114104911A (en) Elevator system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067507.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520168

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10987/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010853184

Country of ref document: EP