WO2011155562A1 - 流路部材およびこれを用いた熱交換器ならびに電子部品装置 - Google Patents

流路部材およびこれを用いた熱交換器ならびに電子部品装置 Download PDF

Info

Publication number
WO2011155562A1
WO2011155562A1 PCT/JP2011/063250 JP2011063250W WO2011155562A1 WO 2011155562 A1 WO2011155562 A1 WO 2011155562A1 JP 2011063250 W JP2011063250 W JP 2011063250W WO 2011155562 A1 WO2011155562 A1 WO 2011155562A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
side wall
gap
path member
ceramic green
Prior art date
Application number
PCT/JP2011/063250
Other languages
English (en)
French (fr)
Inventor
健治 坪川
和彦 藤尾
健次郎 前田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP11792519.8A priority Critical patent/EP2582213B1/en
Priority to KR1020127032111A priority patent/KR101503824B1/ko
Priority to CN201180028161.6A priority patent/CN102934528B/zh
Priority to JP2011543023A priority patent/JP5073104B2/ja
Priority to US13/702,948 priority patent/US20130088837A1/en
Publication of WO2011155562A1 publication Critical patent/WO2011155562A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0272Adaptations for fluid transport, e.g. channels, holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/003Rigid pipes with a rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4697Manufacturing multilayer circuits having cavities, e.g. for mounting components

Definitions

  • the present invention relates to a flow path member, a heat exchanger using the same, and an electronic component device.
  • the flow path member disclosed in Patent Document 1 is a circuit board formed by firing a plurality of laminated sheets, and has a substantially circular cross-section refrigerant flow path formed therein for passing a refrigerant. Yes.
  • the present invention has been devised to solve the above-described problems, and provides a flow path member in which the volume of the flow path is increased to improve heat exchange efficiency, a heat exchanger using the flow path member, and an electronic component device. It is for the purpose.
  • the flow path member of the present invention includes a lid body part, a side wall part, and a bottom plate part, and has a flow path through which a fluid flows, and is connected to the flow path between the lid body part and the side wall part. It is characterized by having a gap.
  • the heat exchanger of the present invention is characterized in that a metal plate is provided on the lid portion of the flow path member.
  • the electronic component device of the present invention is characterized in that an electronic component is mounted on the metal plate.
  • the flow path member is configured by the lid body part, the side wall part, and the bottom plate part, and has a flow path through which the fluid flows, and the flow path between the lid body part and the side wall part. Therefore, when a heat exchange object is mounted and used on the lid part side of such a flow path member, there is a gap connected to the flow path between the lid part and the side wall part. By being present, the volume of the flow path through which the fluid flows increases, and the efficiency of heat exchange with the lid portion can be increased.
  • a metal plate for mounting a heat exchange object is provided on the outer surface of the lid member of the flow path member of the present invention.
  • An exchange can be provided.
  • the electronic component device of the present invention since the electronic component is mounted on the heat exchanger of the present invention, an electronic component device with high heat exchange efficiency can be provided.
  • FIG. 1 An example of the flow path member of this embodiment is shown, (a) is a perspective view showing a cross section perpendicular to the length direction of the flow path, (b) is a partially enlarged view in a circle surrounded by a broken line in (a) FIG.
  • the other example of the flow path member of this embodiment is shown, (a) is a perspective view showing a cross section perpendicular to the length direction of the flow path, (b) is in a circle surrounded by a broken line of (a) It is a partial enlarged view.
  • FIG. 1 The example of the method for processing the through-hole used as a flow path in the ceramic green sheet for comprising the side wall part of the flow-path member of this embodiment is shown, (a) is a cross-sectional schematic diagram when using a metal mold
  • the flow-path member of this embodiment is shown, (a) is a side view, (b) is sectional drawing.
  • FIG. 1 shows an example of a flow path member of the present embodiment
  • (a) is a perspective view showing a cross section perpendicular to the length direction of the flow path
  • (b) is in a circle surrounded by a broken line in (a).
  • the flow path member 1 of the present embodiment is configured by a lid portion 1a, a side wall portion 1c, and a bottom plate portion 1b, in which an electronic component is cooled.
  • a flow path 3 for flowing a fluid such as gas or liquid is provided, and a gap 4 connected to the flow path 3 is provided between the lid portion 1a and the side wall portion 1c.
  • the lid member 1a, the side wall 1c, and the bottom plate 1b are configured to have the flow channel 3 through which the fluid flows, and the lid 1a and the side wall 1c. It is important to have a gap 4 connected to the flow path 3 between them.
  • the gap 4 connected to the flow path 3 is provided between the lid portion 1a and the side wall 1c for forming the flow path 3 through which the fluid flows.
  • the volume of the flow path is larger than when no cover 4 is provided and the heat exchange object is mounted on the lid body 1a side of the flow path member 1, the heat exchange efficiency between the lid 1a and the fluid is increased. Can be increased.
  • the manufacturing process of the flow path member 1 when individually manufacturing the plate-like body that becomes the lid portion 1a and the side wall portion 1c, it is necessary to previously form a through-hole that becomes the flow passage 3 in the plate-like body. However, when manufacturing a through hole, burrs are likely to occur at least on the end face of the through hole.
  • the lid body portion 1a, the side wall portion 1c, and the bottom plate portion 1b are Even if the flow path member 1 having a flow path for fluid to flow by laminating, pressurizing, bonding and firing is manufactured, there is less possibility that the burr 1f will fit in the gap 4 and be caught in the joint 1d, resulting in poor bonding. Generation can be reduced. As a result, even if a fluid is passed through the flow path member 1 at a high pressure, the occurrence of breakage from the inside of the flow path 3 can be suppressed.
  • FIG. 2 shows another example of the flow path member of the present embodiment, (a) is a perspective view showing a cross section perpendicular to the length direction of the flow path, and (b) is surrounded by a broken line in (a). It is the elements on larger scale in an ellipse.
  • the flow path member 11 is a laminate of a plurality of side walls 1c in which a through-hole serving as the flow path 3 is formed in a plate-like body. It is made.
  • the gap 4 connected to the flow path 3 is provided between the lid 1a and the side wall 1c (joint 1d), and further, flows between the plate-like bodies of the side wall 1c (joint 1d). A gap 4 that leads to the path 3 is provided.
  • the lid portion 1 a, the side wall portion 1 c and the bottom plate portion 1 b can be made of ceramics.
  • each member with ceramics for example, it can be manufactured by firing a laminate in which unfired ceramic green sheets are laminated.
  • a through-hole to be an arbitrary flow path 3 may be formed in advance in a plate-like body of an unfired ceramic green sheet that will be the side wall 1c.
  • the through-hole corresponding to each plate-shaped body is provided.
  • a ceramic green sheet in such an unfired state formed with through holes and a ceramic green sheet for closing the upper and lower sides of the through holes were prepared, and these ceramic green sheets were laminated and pressed.
  • the flow path member 11 can be obtained by firing later.
  • the material of the flow path member 1 is ceramic.
  • the lid portion 1a is ceramic and the side wall portion 1c is other material such as aluminum or copper. The effect of can be obtained.
  • FIG. 3 is a cross-sectional view showing an example of the gap of the flow path member of the present embodiment, where (a) is rectangular, (b) is trapezoidal, and (c) is the gap on the side wall portion side. It is a figure which shows the shape where the height of the direction opened up and down becomes low toward the extending direction.
  • each of the gaps 4 has a rectangular shape and a trapezoidal shape.
  • the shape of the gap 4 is a rectangular shape or a trapezoidal shape
  • a through hole that becomes the flow path 3 is formed in the ceramic green sheet in the through hole manufacturing process for configuring the flow path 3
  • the joint portion 1d of the side wall 1c is connected to the flow path 3 side. Since there is a gap 4 that opens in the shape of a rectangle or trapezoid with a constant depth 4a and a maximum height 4b, it is possible to reduce the occurrence of burrs in the gap 4 and being caught in the joint 1d. Therefore, even when the lid body portion 1a, the side wall portion 1c, and the side wall portion 1c are formed by stacking a plurality of plate-like bodies, it is possible to suppress the occurrence of poor bonding, cracks, and flow path destruction.
  • the gap 4 has a joint portion 1d between the lid portion 1a and the side wall portion 1c and the side wall portion.
  • the height in the direction of opening up and down becomes lower in the direction extending toward the side wall portion 1c (hereinafter referred to as a triangular shape). ) It has a gap 4.
  • the through hole that becomes the flow path 3 is formed in the ceramic green sheet by, for example, a mold.
  • a portion to be chamfered at the time of punching a through hole into a ceramic green sheet is formed by pressing with a protruding punch. According to such a method, the volume of the chamfered part is pushed into the nearest part of the chamfer, increasing the density of the ceramic green sheet, and part of it enters the clearance between the punch and the die of the mold and enters the through hole. It tends to appear as burrs on the end face.
  • the triangular shape has a smaller pressing volume, so the burrs that inevitably occur on the end face of the through hole tend to be smaller, and these ceramic green sheets are laminated and pressed to join.
  • the gap 4 since the gap 4 has a triangular shape, the contact area between the fluid and the flow path member 1 is increased, and the heat exchange efficiency can be improved.
  • the triangular shape of the gap 4 may be a substantially triangular shape including a wedge shape or a hook shape.
  • the gap has a maximum height in the direction of opening up and down, with the depth in the direction extending to the side wall portion being a.
  • the thickness is b, it is preferable that a> b.
  • Each of the flow path members shown in FIGS. 1B, 2B, 3A, and 3B is formed on the end face 1g on the flow path 3 side of the joint portion 1d of the lid portion 1a and the side wall portion 1c.
  • the end face of the through hole of the ceramic green sheet is chamfered in the through hole manufacturing process for forming the flow path 3.
  • the maximum height 4b of the gap 4 in the flow path member 1 is increased, the height of the burr 1f generated on the end surface 1c tends to increase.
  • the height of the gap is increased by punching through holes in the ceramic green sheet during die processing, the high density of the chamfered volume tends to concentrate near the end surface of the ceramic green sheet, and the punch of the die Part of the ceramic green sheet bites into the clearance between the screw and the mouse, and the height of the generated burr increases. Therefore, when the ceramic green sheets are stacked, there is a high possibility that the burr 1f is sandwiched between the joints 1d. Therefore, when the depth 4a of the gap 4 is a and the maximum height 4b in the direction of opening up and down is b, It is preferable to satisfy the relationship of a> b.
  • the burr 1f is accommodated in the gap 4 and is less likely to be sandwiched in the joint 1d, so that it is possible to suppress the occurrence of poor bonding, cracks, and breakage of the flow path 3. Furthermore, since the depth 4a is longer than the maximum height 4b of the gap 4, the fluid that has entered the gap 4 is likely to stay (generates a vortex in the gap 4 by flowing along the surface), and the fluid and the flow path member 1 The heat exchange efficiency with can be improved.
  • the depth of the gap is 0.03 mm or more and 0.08 mm or less.
  • the depth 4a of the gap 4 of the flow path member 1 is 0.03 mm or more, there is a risk that the burr 1f of the end face 1g generated in the manufacturing process of the through hole for constituting the flow path 3 reaches the joint 1d and enters. This can be further reduced, and the occurrence of defective bonding can be further reduced. Furthermore, by increasing the depth 4a, the surface area of the flow path 3 can be increased, and the efficiency of heat exchange between the fluid and the flow path member 1 can be improved. If the depth 4a of the gap 4 is 0.08 m or less, a plurality of ceramic green sheets having through holes to be the flow paths 3 are laminated and added in the through hole manufacturing process for forming the flow paths 3.
  • the applied pressure sufficiently propagates to the joint 1d, so that it is possible to suppress the occurrence of joint failure. And even if a fluid is supplied to the flow path member 1 obtained by firing at a high pressure, it is possible to prevent the gap 4 from starting and cracking from occurring and the flow path 3 from being broken.
  • the flow path member 1 according to the present embodiment is less likely to be peeled off or cracked at the joint portion 1d between the lid portion 1a and the side wall portion 1c, and even when a fluid is flowed at a high pressure. 3 can be prevented from being broken. Furthermore, since the heat exchange efficiency is high, as a channel member for cooling of a semiconductor device or a semiconductor manufacturing device, as a channel member for heat exchange of a semiconductor manufacturing device that repeats heating and heating, It can be used as an ink flow path member for heat exchangers and printers.
  • FIG. 4 is a perspective view showing an example of a heat exchanger in which a metal plate is provided on the outer surface of the lid portion of the flow path member of the present embodiment.
  • the heat exchanger 20 of the present embodiment shown in FIG. 4 is provided with a metal plate 5 joined to the outer surface of the lid portion 1a of the flow path member 1 of the present embodiment having a flow path 3 through which a fluid flows. .
  • the metal plate 5 is bonded to the outer surface of the lid portion 1a, the heat exchange with the fluid can be easily performed by mounting the heat exchange object on the metal plate 5.
  • FIG. 5 is a perspective view showing an example of an electronic component device 30 in which the electronic component 6 is mounted on the metal plate 5 of the heat exchanger 20 of the present embodiment, and a fluid serving as a refrigerant in the flow path of the flow path member 1.
  • the electronic component 6 can be effectively cooled, the occurrence of flow path destruction is small, and the electronic component device 30 with high heat exchange efficiency can be provided.
  • the electronic component device 30 is useful as a device that generates high heat during operation, such as a semiconductor module such as a PCU, a semiconductor device of a high-power LED headlamp, a DC high-voltage power supply device, and a switching device.
  • the flow path member 1 can be made of a metal such as aluminum or copper, or a ceramic material.
  • the ceramic material is alumina. , Zirconia, silicon nitride, silicon carbide, aluminum nitride, or a composite thereof can be used.
  • alumina is preferable in consideration of insulation properties and material costs.
  • a material containing silicon oxide or the like and having an alumina content of 94 to 97% by mass is particularly preferable in view of firing costs because sintering is performed at a relatively low temperature.
  • aluminum oxide (Al 2 O 3 ) powder having an average particle diameter of about 1.4 to 1.8 ⁇ m, silicon oxide (SiO 2 ), at least one powder of calcium oxide (CaO) and magnesium oxide (MgO),
  • SiO 2 silicon oxide
  • CaO calcium oxide
  • MgO magnesium oxide
  • a mixed powder of polyethylene glycol is weighed and mixed so that the mixing ratio of each powder is 96.4% by mass of aluminum oxide, 2.3% by mass of silicon oxide, 0.3% by mass of calcium oxide and 1.0% by mass of magnesium oxide. It is put into a rotary mill together with a binder consisting of and mixed with high-purity alumina balls.
  • the added amount of the binder is about 4 to 8% by mass with respect to 100% by mass of the mixed powder.
  • the amount of the binder added is in the range of about 4 to 8% by mass with respect to 100% by mass of the mixed powder, the strength and flexibility of the molded body are good, and the molding binder is not degreased during firing. Insufficient defects can be suppressed.
  • a binder such as polyvinyl alcohol, polyethylene glycol, acrylic resin or butyral resin is added to this in an amount of 4 to 8% by mass with respect to 100% by mass of the mixed powder, and mixed to obtain a slurry.
  • the addition amount of the binder is about 4 to 8% by mass with respect to 100% by mass of the mixed powder, the strength and flexibility of the molded body are good, and the molding binder is not sufficiently degreased during firing. Can be suppressed.
  • a ceramic green sheet is formed by a doctor blade method or a roll compaction method, which is a general ceramic forming method, and then punched out with a mold for forming a product shape. Is produced.
  • the ceramic green sheets to be laminated are preferably used in the same lot in order to reduce deformation and warpage due to shrinkage differences during firing and the occurrence of cracks.
  • FIG. 6 shows an example of a method for processing a through-hole serving as a flow path in a ceramic green sheet for constituting the side wall portion of the flow path member of the present embodiment, (a) when using a mold (B) is a schematic cross-sectional view when a laser beam is used, and (c) and (d) are perpendicular to the cut surface of the ceramic green sheet when each processing method is used. It is a fragmentary sectional view of a surface.
  • the ceramic green sheet 7 is punched with a mold 21 to form a rectangular chamfer 7c ′ on the end surface 7b ′ of the punched ceramic green sheet 7 as shown in FIG. 6C. can do.
  • the upper and lower punches 22 are held while the ceramic green sheet 7 is held between the convex portions 22c.
  • a rectangular chamfer 7 c ′ can be formed on the end surface 7 b ′ of the ceramic green sheet 7.
  • the chamfer 7c ' is trapezoidal, C-plane or R-plane, it is possible to change the shape of the convex portion 22c of the punch 22 by the same method. Further, if the mold 21 without the convex portion 22c of the lower punch 21c is used, the rectangular chamfer 7c 'can be formed only on the upper punch 22a side of the end surface 7b' of the ceramic green sheet 7.
  • a chamfer 8c ' can be formed on the end surface 8b' of the ceramic green sheet 8 as shown in (d) by laser processing of the ceramic green sheet.
  • the laser light 26 is irradiated to the ceramic green sheet 7 through the condenser lens 28.
  • the spot 27 is adjusted to be near the center of the thickness of the ceramic green sheet 8
  • the end surface 8b ′ of the ceramic green sheet 8 is adjusted.
  • the laser light source may be a CO 2 laser, YAG laser, excimer laser, or the like.
  • the oscillation frequency of the laser light 26 is 2000 Hz.
  • the pulse duty is 70 to 80% (signal ON time ratio) and the moving speed of the laser beam 26 on the ceramic green sheet 8 is 8 to 10 m / min, a desired shape can be cut.
  • chamfering 8c ′ is formed only on one side of the upper and lower surfaces of the end surface 8b ′ of the ceramic green sheet 8
  • the focal point of the spot 27 of the laser light 26 is focused on the surface of one of the upper and lower surfaces of the ceramic green sheet 8. You just need to match.
  • a plurality of ceramic green sheets 7 or 8 manufactured in this way are stacked so as to form a desired flow path 3 ′.
  • a pressure of about 0.5 MPa is applied through a flat plate-shaped pressurizing tool, and then about Dry at room temperature of 50-70 ° C. for about 10-15 hours.
  • the laminated ceramic green sheets to be the flow path member 1 are fired in, for example, a known pusher type or roller type continuous tunnel furnace.
  • the firing temperature differs depending on the material, if the material has an alumina content of 94 to 97% by mass, it may be fired in an oxidizing atmosphere at a maximum temperature of about 1500 to 1650 ° C.
  • the lid that seals the through holes to form the flow path
  • the thickness of the body part 1a is preferably as thin as possible in order to improve the efficiency of heat exchange, and is preferably about 0.3 to 0.5 mm when the alumina content is 94 to 97% by mass.
  • the flow path member 1 is manufactured as described above, and an electronic component 6 such as an LSI or LED is mounted on the flow path member 1 via the metal plate 5 so that a refrigerant such as a gas or a liquid is flowed through the flow path member 1.
  • the electronic component 6 can be cooled by passing through.
  • the flow path member 1 of the present embodiment can be used not only for cooling purposes but also for a wide range of uses such as thermal applications.
  • the flow path member 12 of the present embodiment shown in FIG. 7A has a full length L, a height H, a width D, one lid body 1a having a thickness t1, and a sidewall having a thickness t2. Three portions 1c and one bottom plate portion 1b having a thickness t3 are stacked, and two rectangular flow paths 3 are formed inside. Then, as shown in FIG.
  • a chamfer 1e that becomes a gap 4 is attached to an end face 1g of the side wall 1c that forms the flow path 3, and a joint 1d between the lid 1a and the side wall 1c and A gap 4 having a depth 4a and a maximum height 4b that is open to the flow path 3 is formed at a joint 1d between the side wall 1c and the bottom plate 1b.
  • the distance from the outside of the flow path member 12 to the flow path 3 is indicated by B and G
  • the width of the flow path 3 is indicated by C and F
  • the distance between the adjacent flow paths 3 is indicated by E.
  • Al 2 O 3 As aluminum oxide (Al 2 O 3 ), a powder having an average particle diameter of about 1.6 ⁇ m, silicon oxide (SiO 2 ), calcium oxide (CaO), and magnesium oxide (MgO) are prepared.
  • the mixed powder was weighed and mixed so that the mixing ratio of each powder was 96.4% by mass of aluminum oxide, 2.3% by mass of silicon oxide, 0.3% by mass of calcium oxide, and 1.0% by mass of magnesium oxide.
  • a binder composed of 6% by mass of polyethylene glycol into a rotary mill and mixed with high-purity alumina balls.
  • a binder such as an acrylic resin is added to 100% by mass of the mixed powder and mixed to obtain a slurry.
  • a sheet-shaped ceramic green sheet is manufactured from the obtained slurry by a known doctor blade method, and further, individual ceramics are formed using a mold so that a product shape is obtained when the ceramic green sheets are laminated. Make a green sheet.
  • the flow path member 12 has a length L of 200 mm, a height H of 4.5 mm, a width D of 12 mm, a thickness t1 of the lid portion 1a of 0.5 mm, and thicknesses of the other side wall portion 1c and bottom plate portion 1b.
  • the distances B and G from the outside of the flow path member 12 shown in FIG. 7B to the flow path 3 are 3 mm, the widths C and F of the flow path 3 are 2 mm, and the adjacent flow paths 3 are t2 and t3.
  • a sample was manufactured so that the distance E between the two was 2 mm.
  • the fluid supply port (hereinafter not shown) is formed on one side surface, and the discharge port is formed on the other side surface facing the supply port with an aluminum material. The produced one was brazed.
  • the lid member 1a is made of ceramics, and a flow path member 12 is manufactured in which the side wall 1c and the bottom plate 1b are made of metal.
  • Each dimension is sample No. 1 and 24, and the ceramic of the lid 1a is also the sample No. Identical to 1 and 24.
  • the metal of the side wall portion 1c and the bottom plate portion 1b aluminum having a purity of 99.7% is used, and a sample having no gap 4 is designated as Sample No. 101, with a gap of 4 102.
  • Sample No. As a method of manufacturing each t2 through-hole constituting each of the flow path members 12 of 1 and 24, a ceramic green sheet is formed using the mold 21 shown in FIG. A rectangular chamfer was formed on the end surface of the ceramic green sheet so that the gap 4 shown in the figure was formed, and three ceramic green sheets that would have the outer dimensions of the flow path member 12 described above were manufactured.
  • the adhesion liquid when laminating and pressing and bonding the produced ceramic green sheets uses the same binder as when producing the ceramic green sheets (hereinafter, not shown).
  • a 400 mesh, 0.02 mm thick stainless steel screen was used and applied to the entire surface of each ceramic green sheet laminated with a rubber squeegee.
  • a prescale (Fuji Film Co., Ltd., model name: LLLW for ultra-low pressure 0.2 to 0.6 MPa) was sandwiched (hereinafter not shown) and laminated. It was confirmed that the entire surface of the ceramic green sheet was evenly pressurized. At this time, if a uniform pressure is applied to the entire surface of the ceramic green sheet, the portion other than the flow path pattern is colored in red. Alternatively, it was excluded from the sample at this point.
  • the channel member 12 which is a molded product of this product shape, was fired at a maximum temperature of 1600 ° C. in a pusher-type tunnel kiln. A channel member having a triangular gap 4 between 1 and 24 was obtained. In addition, some of the products of the flow path member 12 were partially stored as unfired samples as samples for confirming the state of the joint.
  • the lid portion 1a is the sample No.
  • a lid body 1a fired in advance was prepared.
  • the flow path member 12 was manufactured by joining the obtained lid part 1a and the side wall part 1c by brazing.
  • the brazing was performed by applying a brazing material made of Al—Si by a screen printing method and performing heat treatment at a temperature of about 590 ° C. under a pressure of about 0.15 MPa.
  • the fluid supply port and the discharge port are sample Nos. It produced similarly to 1 and 24.
  • the sample No. of the flow path member 12 obtained in this way. 1 and 24 were subjected to ultrasonic testing.
  • the purpose of the ultrasonic flaw detection test is to check whether there is any delamination that can be regarded as a bonding failure in the bonding portion 1d between the lid portion 1a and the side wall portion 1c that forms the flow channel 3 in the flow channel member 12 after firing. It is for confirmation.
  • the ultrasonic flaw detection test uses model name: mi-scopehyper manufactured by Hitachi Construction Machinery Finetech Co., Ltd., and the thickness t of the laminate of the lid 1a and the side wall 1c of the flow path member 1 is 4.5 mm.
  • Use an ultrasonic probe (model name: 50P6F15) with a frequency of 50 MHz from the top and bottom to the first and second layers, and a 25 MHz ultrasonic probe (model name: PT-3-25-17) for the third layer, which is the middle of the stack.
  • the ultrasonic flaw detection test was conducted on the entire surface of the flow path member.
  • the ultrasonic probe to be used is selectively used depending on the thickness t of the laminated ceramic sheets. Further, when the thickness t is increased, a probe having a lower frequency may be used.
  • the ultrasonic flaw detection test is evaluated by comparing the depth 4a of the gap 4 of each sample with the depth 4a of the gap by the ultrasonic flaw detection test, and the image gap 4 by the ultrasonic flaw detection test. If the maximum value of the difference from the depth 4a is within the range of ⁇ 10%, it was judged as non-defective, and if it exceeded + 10%, it was judged as defective. In addition, when the depth 4a is 0.005 mm or less, the gap 4 is not substantially present.
  • the evaluation is good if the defect rate of the flow channel member 1 of 50 samples is 0%, the evaluation is good if the defect rate is 2% or less, and the evaluation is good if the defect rate exceeds 2%. No.
  • the unfired flow path member 12 same as that of each sample, the bonding portion 1d of 50 samples, and the bonding failure using a magnifying glass (10 times) while peeling by hand Observation was made to see if there was a cause for this.
  • the presence of the gap 4 connected to the flow path 3 at the joint 1d between the lid 1a and the side wall 1c of the flow path member 12 affects the heat exchange efficiency on the mounting surface on which the heat exchange object is placed. The degree was also confirmed.
  • thermocouple As a test method, a heater and a thermocouple were attached to the outer surface of the lid 1a of each sample. And it heated so that the temperature of the location which attached the thermocouple might be set to 50 degreeC.
  • water having a water temperature of 18 ° C. was used as the fluid and supplied to the flow path member 12 at about 0.3 MPa.
  • the surface temperature of the outer surface of the lid portion 1a was measured after 30 minutes, and the average temperature change amount was confirmed in each sample.
  • the depth 4a of the gap 4 is 0.08 mm and the maximum height 4b is 0.06 mm, so even if a burr 1f occurs on the end face 1g, the joint between the lid 1a and the side wall 1c. It is conceivable that the occurrence of poor bonding could be prevented without entering 1d. By the way, although the joint part of the unfired sample was confirmed, no burrs on the end face on the flow path side of the ceramic green sheet were caught in the joint part of the ceramic green sheet and no joint was found.
  • Samples 101 and 102 in which the lid portion 1a is integrally formed of alumina ceramics and the side wall portion 1c and the bottom plate portion 1b are integrally formed by brazing, are bonded to a sample 1d of the lid portion 1a and the side wall portion 1c. Regardless of the presence or absence of the gap 4 connected to the flow path 3, no bonding failure occurred.
  • This is the sample No. 1 and 24 are both soft green molded bodies that are laminated, pressed and fired to join, and in the vicinity of the flow path 3, the propagation of the applied pressure to the intermediate layer serving as the side wall 1 c is the presence or absence of burrs. Greatly depends on the sample number.
  • the sintered body since the sintered body is joined, if there is a burr on the end face or the like, it can be removed by polishing or the like, and the burr including the flatness can be absorbed by the thickness of the brazing material. Furthermore, since a hard object is joined, there is little influence on the propagation of the applied pressure to the vicinity of the flow path.
  • sample No. 1 in which the lid portion 1a is ceramic and the side wall portion 1c and the bottom plate portion 1b are metal.
  • Sample No. 101 with a gap of 4 for a temperature change of 101 ° C. 102 is 28 ° C. It can be seen that the heat exchange efficiency is improved by the presence of the gap 4.
  • the contact portion 1d between the lid portion 1a and the side wall portion 1c of the flow path member 12 has a gap 4 connected to the flow path 3, so that the heat contact area between the flow path 3 and the fluid is increased. It can be seen that the heat exchange efficiency with the outer surface of the lid 1a can be improved by the increase.
  • the gap 4 connected to the flow path 3 at the joint 1d between the lid portion 1a and the side wall 1c is connected to the flow path 3 of the ceramic green sheet. It can be seen that the occurrence of defective bonding can be suppressed because the burrs generated when the through-holes to be formed are absorbed in the gap 4 and are not sandwiched between the joint portions 1d.
  • the material of the flow path member may be either ceramics or metal.
  • the flow path is winding, it is difficult to perform extrusion molding, injection molding, or integral molding with a mold or a press. Specifically, a plurality of sheets each having a complicated through hole serving as a flow path are laminated and manufactured. And in the case of a heat exchanger that repeats heating and cooling, if the lid part, the side wall part, and the bottom plate part are made of the same material, there is little risk of peeling of the joint part due to the difference in thermal expansion.
  • a ceramic flow path member obtained by laminating and firing ceramic green sheets.
  • the sample is prepared using the same alumina ceramic used in Example 1, and the evaluation method for bonding failure is also the same.
  • Sample No. 1 and 14 are the same as in Example 1, except that sample no. Nos. 2 to 8 have a gap 4 shape or a rectangular shape. In Nos. 11 to 17, the gap 4 has a trapezoidal shape. In 21 to 27, the gap 4 has a triangular shape. Moreover, the metal mold
  • sample No. in the example. Nos. 6, 15 and 25 have an occurrence rate of the above-mentioned joint failure of 2%. Evaluation was good as in 2, but no burrs were found to cause bonding failure. After laminating the ceramic green sheets, the prescale sandwiched in order to see the pressure propagation state when pressurized was confirmed. The depth 4a of the gap 4 was about 0.09 mm when converted to the dimensional value after firing. Since the density of the red color development is thin, it is considered that the insufficient pressure propagation of the pressurization is the cause of the bonding failure.
  • Sample No. 7, 8, 16, 17, 26 and 27 have the same length 4a and the maximum height 4b of the gap 4, but the incidence of joint failure is 2% and the evaluation is good. It was. The cause of the bonding failure is that part of the burr has entered the bonding portion because the depth 4a is equal to the maximum height 4b.
  • Specimen No. 4 in which the depth 4a of the gap 4 is 0.03, 0.04, 0.08 mm and is longer than the maximum height 4b.
  • the occurrence rate of bonding failure was 0%, and the evaluation was excellent.
  • the junction part of the unbaked sample was confirmed, the thing which caused the burr
  • the shape of the gap 4 may be any of a rectangular shape, a trapezoidal shape, or a triangular shape opened to the flow path 3 side.
  • the gap 4 has a rectangular shape or a trapezoidal shape, it is when the burr generated on the end face of the through-hole serving as the flow path 3 in the ceramic green sheet is allowed in the gap 4 in the manufacturing process.
  • the shape is selected when it is desired to reduce the size of the burr, and the processing method may be selected as appropriate.
  • the joining is performed by sandwiching the ceramic green sheets and pressing them into the joining portion when pressed. It is possible to further suppress the occurrence of bonding failure due to the failure and insufficient propagation of the applied pressure.
  • the 50 flow path members 12 for each sample were manufactured by the same method as in Example 1, and the bonding failure was also confirmed by the ultrasonic flaw detection test, and the evaluation method was similarly performed.
  • the outer dimension of the flow path member 12 is a structure having a length L of 200 mm, a width D of 12 mm, and a height H of 4.5 mm, but the content of aluminum oxide is 94.0 to 97.0% by mass and the balance is the remainder.
  • the respective joint portions 1d between the lid portion 1a and the side wall portion 1c inside the flow path member 12 can be joined without any problem. Therefore, it can be said that the occurrence of sinterability problems was also suppressed. Since it contains an appropriate sintering aid, the sinterability is enhanced and there is no need to increase the firing temperature, and the firing cost can be reduced.
  • the flow path member 12 of the present example is less likely to cause poor bonding of the side wall portion, and suppresses the occurrence of delamination even when the fluid is flowed at a high pressure and used for cooling or heating. it can. Furthermore, a relatively low-cost channel member can be provided.
  • Channel member 1a Lid 1b: Bottom plate 1c: Side wall 1d: Joint 1e: Chamfer 1f: Burr 1g: End surface 3: Channel 4: Clearance 4a: Depth of gap 4b: Maximum height of gap 5: Metal plate 6: Electronic component 7, 8: Processed ceramic green sheet 7b ', 8b': End face 7c ', 8c': Chamfer 20: Heat exchanger 30: Electronic component apparatus

Abstract

 【課題】 複数の側壁部を積層して内部に流路を備えた流路部材において、側壁部の接合不良の発生の少ない流路部材を提供する。 【解決手段】 本発明の流路部材1は、蓋体部1aと側壁部1cと底板部1bとで構成され、内部に流体が流れる流路3を有するとともに、前記蓋体部1aと前記側壁部1cとの間に前記流路3につながる隙間4を有している。この流路部材1によれば、蓋体部1aと側壁部1cとの間に流路3につながる隙間4が存在することにより、流路3と流体の接触面積が大きくなり蓋体部1aとの熱交換効率を高めることができる。

Description

流路部材およびこれを用いた熱交換器ならびに電子部品装置
 本発明は、流路部材およびこれを用いた熱交換器ならびに電子部品装置に関する。
 近年、電子部品に搭載される半導体素子の高集積化・高速化に伴い、半導体素子からの発熱量が増大しており、さらには、電子部品が高温の環境下で使用されるようになり、電子部品を冷却する必要性が高くなってきている。
 特許文献1に開示された流路部材は、積層された複数のシートが焼成されて形成された回路基板であって、冷媒を通すための略円形断面の冷媒用流路が内部に形成されている。
特開平7-142822号公報
 しかしながら、特許文献1に記載の流路部材を製作する際には、金型を用いて複数のセラミックグリーンシートを所望の形状に打ち抜き、積層,加圧して接合したあとに焼成することによって中空の流路部材を得るが、流路と流体との接触面積を広くするために、流路を構成するための一部である蓋体部と側壁部との接合部に流路につながる隙間を形成することに関する記載や示唆はなかった。
 本発明は、上記課題を解決するために案出されたものであり、流路の体積を増加させ熱交換効率が向上した流路部材およびこれを用いた熱交換器ならびに電子部品装置を提供することを目的とするものである。
 本発明の流路部材は、蓋体部と側壁部と底板部とで構成され、内部に流体が流れる流路を有するとともに、前記蓋体部と前記側壁部との間に前記流路につながる隙間を有することを特徴とするものである。
 また、本発明の熱交換器は、前記流路部材の前記蓋体部に金属板を設けてなることを特徴とするものである。
 また、本発明の電子部品装置は、前記金属板上に電子部品を搭載してなることを特徴とするものである。
 本発明の流路部材によれば、蓋体部と側壁部と底板部とで構成され、内部に流体が流れる流路を有するとともに、前記蓋体部と前記側壁部との間に前記流路につながる隙間を有していることから、このような流路部材の蓋体部側に熱交換対象物を搭載して用いるときには、蓋体部と側壁部との間に流路につながる隙間が存在することにより、流体が流れるための流路の体積が大きくなり蓋体部との熱交換効率を高めることができる。
 また、本発明の熱交換器によれば、本発明の流路部材の蓋体部の外面に、熱交換対象物を搭載するための金属板を設けてなることから、熱交換効率の高い熱交換器を提供できる。
 また、本発明の電子部品装置によれば、本発明の熱交換器に電子部品を搭載してなることから、熱交換効率が高い電子部品装置を提供できる。
本実施形態の流路部材の一例を示す、(a)は流路の長さ方向に垂直な断面を示す斜視図であり、(b)は(a)の破線で囲んだ円内の部分拡大図である。 本実施形態の流路部材の他の一例を示す、(a)は流路の長さ方向に垂直な断面を示す斜視図であり、(b)は(a)の破線で囲んだ円内の部分拡大図である。 本実施形態の流路部材の隙間の一例を示す断面図であり、(a)は矩形状であり、(b)は台形状であり、(c)は隙間が側壁部側に延びる方向に向かって、上下に開口する方向の高さが低くなる形状を示す図である。 本実施形態の流路部材の蓋体部の外面に金属板を設けた熱交換器の一例を示す斜視図である。 本実施形態の熱交換器に電子部品を載置した電子部品装置の一例を示す斜視図である。 本実施形態の流路部材の側壁部を構成するためのセラミックグリーンシートに流路となる貫通孔を加工するための方法の例を示す、(a)は金型を用いたときの断面模式図であり、(b)はレーザ光を用いたときの断面模式図であり、(c)および(d)はそれぞれの加工法を用いたときのセラミックグリーンシートの切断面に垂直な面の部分断面図である。 本実施形態の流路部材を示す、(a)は側面図であり、(b)は断面図である。
 以下、本発明の流路部材の実施の形態の例を説明する。
 図1は本実施形態の流路部材の一例を示す、(a)は流路の長さ方向に垂直な断面を示す斜視図であり、(b)は(a)の破線で囲んだ円内の部分拡大図である。
 図1(a)および(b)に示すように、本実施形態の流路部材1は、蓋体部1aと側壁部1cと底板部1bとにより構成され、その内部には、電子部品を冷却するための気体や液体などの流体を流すための流路3を備えており、蓋体部1aと側壁部1cとの間に流路3につながる隙間4を有している。
 本実施形態の流路部材1によれば、蓋体部1aと側壁部1cと底板部1bとで構成され、内部に流体が流れる流路3を有するとともに、蓋体部1aと側壁部1cとの間に流路3につながる隙間4を有することが重要である。
 本実施形態の流路部材1によれば、内部に流体が流れる流路3を形成するための蓋体部1aと側壁部1cとの間に流路3につながる隙間4を有することから、隙間4を有さないときに比べ流路の体積が大きくなり、流路部材1の蓋体部1a側に熱交換対象物を搭載して用いるときには、蓋体部1aと流体との熱交換効率を高めることができる。また、流路部材1の製造工程において、蓋体部1aと側壁部1cとなる板状体を個別に製作するときに、板状体には予め流路3となる貫通孔を形成する必要があるが、貫通孔を製作する場合には、この貫通孔の端面に少なからずバリが発生しやすい。本実施形態の流路部材1においては、蓋体部1aと側壁部1cとの間に流路3につながる隙間4を有することにより、蓋体部1aと側壁部1cと底板部1bとを、積層,加圧して接合,焼成することによって流体が流れるための流路を有する流路部材1を製作しても、バリ1fが隙間4に収まり接合部1dに挟み込むおそれが少なくなり、接合不良の発生を低減することができる。その結果、流路部材1に高い圧力で流体を流しても流路3の内部からの破壊の発生を抑制することができる。
 図2は、本実施形態の流路部材の他の一例を示す、(a)は流路の長さ方向に垂直な断面を示す斜視図であり、(b)は(a)の破線で囲んだ円内の部分拡大図である。
 図2(a)および(b)に示す本実施形態の他の一例を示す流路部材11は、側壁部1cが、板状体に流路3となる貫通孔を形成したものを複数枚積層してなるものである。そして、蓋体部1aと側壁部1cとの間(接合部1d)に流路3につながる隙間4を有するとともに、さらに、側壁部1cの各板状体との間(接合部1d)に流路3につながる隙間4を有している。
 このような流路部材11において、例えば、薬液の熱交換器として耐薬品性に優れるようにするにあたっては、蓋体部1a、側壁部1cおよび底板部1bは、それぞれセラミックスにて製作することが好ましく、各部材をセラミックスにて製作するにあたっては、例えば、未焼成のセラミックグリーンシートを積層した積層体を焼成することで製作できる。
 そして、内部に流体が流れる流路3を形成するには、例えば、側壁部1cとなる未焼成のセラミックグリーンシートの板状体に任意の流路3となる貫通孔を予め形成すればよい。なお、側壁部を複数のグリーンシートを積層して製作する場合には、それぞれの板状体に対応する貫通孔を設ける。そして、このような未焼成の状態であるセラミックグリーンシートに貫通孔を形成したものと、この貫通孔の上下を塞ぐためのセラミックグリーンシートを準備し、これらのセラミックグリーンシートを積層,加圧した後に焼成することによって流路部材11とすることができる。
 しかしながら、側壁部1cとなる板状体を製作するとなると、貫通孔の端面にはバリが発生することは避けられず、このようなセラミックグリーンシートを積層,加圧すると、貫通孔の端面に発生したバリがセラミックグリーンシートの接合部に挟まり、積層したセラミックグリーンシートを加圧しても接合部に挟まったバリに加圧力が集中してしまい、加圧のムラが発生することによって接合不良が発生しやすい。本実施形態の流路部材11では、流路3につながる接合部1dに隙間4を有することにより、側壁部1cの端面1gに発生したバリ1fが接合部1dに挟み込むおそれが少なくなり、接合不良の発生を低く抑えられ、流路3に流体を流した時でも接合不良が少ないためにクラックや流路3の破壊といった問題の発生を抑制することができる。
 なお上述においては、流路部材1の材質をセラミックスとした例にて説明したが、蓋体部1aがセラミックスで側壁部1cがアルミニウムや銅系などの金属などの他の材料であっても同様の効果を得ることができる。
 図3は、本実施形態の流路部材の隙間の一例を示す断面図であり、(a)は矩形状であり、(b)は台形状であり、(c)は隙間が側壁部側に延びる方向に向かって、上下に開口する方向の高さが低くなる形状を示す図である。
 図3(a)および(b)に示す流路部材13,14は、流体が流れる方向に対して直交するように断面視したとき、蓋体部1aと側壁部1cとの接合部1dに、流路3とつながる接合部1dの奥行き方向の距離が4a(以下、単に奥行き4aとする。),上下に開口する方向の最大高さが4b(以下、単に最大高さ4bとする。)となる、それぞれ矩形状、台形状の隙間4を有している。
 このように、隙間4の形状がそれぞれ矩形状または台形状であるときには、流路3を構成するための貫通孔の製作工程において、セラミックグリーンシートに流路3となる貫通孔を形成したとき、貫通孔の端面にバリが発生しても、これらのセラミックグリーンシートを積層し加圧し所定の温度で焼成して得られた流路部材において、側壁部1cの接合部1dには流路3側に開口する隙間4があり、隙間4は一定の奥行き4a・最大高さ4bの矩形状または台形状であるため、バリがこの隙間4の中に収まり接合部1dに挟み込むことを少なくできる。したがって、蓋体部1aと側壁部1cおよび側壁部1cを複数枚の板状体を積層した場合であっても接合不良およびクラックならびに流路の破壊の発生を抑制できる。
 また、図3(c)に示す流路部材15は、流体が流れる方向に対して直交するように断面視したとき、隙間4が蓋体部1aと側壁部1cとの接合部1dおよび側壁部1cを複数枚の板状体を積層した流路3とつながる接合部1dにおいて、側壁部1c側に延びる方向に向かって、上下に開口する方向の高さが低くなる(以下、三角形状という。)隙間4を有している。
 このように、隙間4の断面形状を三角形状とするにあたっては、流路3を構成するための貫通孔の製作工程において、セラミックグリーンシートに流路3となる貫通孔を、たとえば金型により形成し、セラミックグリーンシートへの貫通孔の打ち抜き時に面取りする箇所は突設したパンチで押圧し形成する方法がある。そのような方法によると、面取りする部分の体積量が面取りした直近の箇所に押し込まれセラミックグリーンシートの密度が高まり、その一部が金型のパンチとウスとの間のクリアランスに入り込み貫通孔の端面にバリとして表れやすい。
 しかし、矩形状や台形状の面取りに比べ三角形状は押圧する体積が小さいことから必然的に貫通孔の端面に発生するバリは小さくなりやすく、これらのセラミックグリーンシートを積層し加圧して接合したとしても、バリ1fが接合部1dに挟み込むことを少なくでき、蓋体部1aと側壁部1cとの接合不良およびクラックならびに流路の破壊の発生を抑制できる。さらに、隙間4が三角形状であるから流体と流路部材1の接触面積が大きくなり熱交換効率の向上が図れる。また、ここで、隙間4の三角形状は、楔状や鈎状といった形状を含む略三角形状であっても良い。
 また、本実施形態の流路部材は、流体が流れる方向に対して直交するように断面視したとき、隙間は、側壁部側に延びる方向の奥行きをaとし、上下に開口する方向の最大高さをbとしたとき、a>bの関係であることが好ましい。
 図1(b)、図2(b)および図3(a)、(b)に示す各流路部材は、蓋体部1aと側壁部1cの接合部1dの流路3側の端面1gに、流路3とつながる奥行き4a,最大高さ4bの隙間4が存在しているが、流路3を構成するための貫通孔の製作工程において、セラミックグリーンシートの貫通孔の端面を面取りするときに、流路部材1における隙間4の最大高さ4bを高くすると端面1cに発生するバリ1fの高さも大きくなる傾向にある。例えば、金型加工でセラミックグリーンシートに貫通孔を打ち抜くことにより隙間の高さを高く形成すると、面取りする部分の体積分の高い密度がセラミックグリーンシートの端面付近に集中しやすく、金型のパンチとウスとのクリアランスにセラミックグリーンシートの一部が噛み込み、発生するバリの高さも高くなる。したがって、セラミックグリーンシートを積層したときにバリ1fが接合部1dに挟み込むおそれが高くなることから、隙間4の奥行き4aをaとし、上下に開口する方向の最大高さ4bをbとしたとき、a>bの関係を満たすことが好ましい。
 それにより、バリ1fが発生しても、この隙間4の中に収まり、接合部1dに挟み込むことを少なくし、接合不良およびクラックならびに流路3の破壊の発生を抑制できる。さらに、隙間4の最大高さ4bよりも奥行き4aが長いことから、隙間4に入り込んだ流体は滞留しやすく(沿面流動することにより隙間4内で渦流を発生させる)、流体と流路部材1との熱交換効率の向上が図れる。
 また、本実施形態の流路部材は、隙間の奥行きが0.03mm以上0.08mm以下であることが好ましい。
 流路部材1の隙間4の奥行き4aが0.03mm以上であるときには、流路3を構成するための貫通孔の製作工程において生じる端面1gのバリ1fが、接合部1dまで到達して入り込むおそれをさらに少なくでき、接合不良の発生をさらに低減できる。さらに、奥行き4aは長くすることで、流路3の表面積を増大させることができ、流体と流路部材1との熱交換効率の向上が図れる。また、隙間4の奥行き4aが0.08m以下であると、流路3を構成するための貫通孔の製作工程において、流路3となる貫通孔を形成した複数枚のセラミックグリーンシートを積層し加圧したときに、接合部1dに加圧力が十分に伝搬するために接合不良の発生を抑制できる。そして、焼成して得られた流路部材1に高い圧力で流体を供給したとしても隙間4が起点となってクラックが入り流路3の破壊が発生することも抑制できる。
 このように、本実施形態の流路部材1は、蓋体部1aと側壁部1cとの接合部1dの剥離やクラックの発生が少なく、高い圧力で流体を流した場合であっても流路3の内部からの破壊の発生を抑制できる。さらに、熱交換効率が高いため、半導体装置や半導体製造装置の冷却用流路部材として、また、加熱と加温を繰り返すような半導体製造装置の熱交換用流路部材として、さらには、薬液の熱交換器やプリンター等のインク流路部材として用いることができる。
 図4は本実施形態の流路部材の蓋体部の外面に金属板を設けた熱交換器の一例を示す斜視図である。
 図4に示す本実施形態の熱交換器20は、内部に流体が流れる流路3を有する本実施形態の流路部材1の蓋体部1aの外面に金属板5が接合して設けてある。このように、蓋体部1aの外面に金属板5が接合されているときには、金属板5上に熱交換対象物を搭載することにより、流体との熱交換が容易にしやすくなる。
 図5は、本実施形態の熱交換器20の金属板5の上に電子部品6を搭載した電子部品装置30の一例を示す斜視図であり、流路部材1の流路に冷媒となる流体を流すことにより、電子部品6を効果的に冷却することができ、流路破壊の発生が少なく、かつ、熱交換効率が高い電子部品装置30を提供できる。
 電子部品装置30としては、PCUなどの半導体モジュールや、高出力LED前照灯の半導体装置、直流高電圧電源装置およびスイッチング装置など作動時に高熱を発する装置として有用である。
 以下、本実施形態の流路部材1の製造方法の一例について説明する。
 流路部材1は、アルミニウムや銅系などの金属やセラミック材料により製作することができるが、例えば、耐薬品性に優れるようにするためにセラミック材料より製作する場合には、セラミック材料として、アルミナ,ジルコニア,窒化珪素,炭化珪素および窒化アルミニウムまたはこれらの複合物を用いることができる。中でも絶縁性や材料コスト等を考慮すればアルミナが好ましい。さらに、酸化珪素等を含みアルミナ含有量94~97質量%の材料であれば比較的低い温度で焼結するために、焼成コストを考慮すれば特に好ましい。
 以下、流路部材1をアルミナで製作する場合について詳細に説明する。
 まず、平均粒径が1.4~1.8μm程度の酸化アルミニウム(Al)の粉末と、酸化珪素(SiO)と、酸化カルシウム(CaO)および酸化マグネシウム(MgO)の少なくとも1種の粉末とを準備し、例えば、各粉末の混合割合が、酸化アルミニウム96.4質量%,酸化珪素2.3質量%,酸化カルシウム0.3質量%および酸化マグネシウ1.0質量%となるように秤量し混合した混合粉末を、ポリエチレングリコールからなるバインダとともに回転ミルに投入して、高純度のアルミナボールで混合する。ここで、バインダの添加量は混合粉末100質量%に対して4~8質量%程度とする。なお、バインダの添加量が混合粉末100質量%に対して4~8質量%程度の範囲内であれば、成形体の強度や可撓性が良好で、また、焼成時に成形用バインダの脱脂が不十分となる不具合を抑制できる。
 次に、これにポリビニルアルコール,ポリエチレングリコールやアクリル樹脂またはブチラール樹脂等のバインダを、混合粉末100質量%に対して4~8質量%程度添加し、混合してスラリーを得る。ここで、バインダの添加量が混合粉末100質量%に対して4~8質量%程度とすれば成形体の強度や可撓性が良好で、また、焼成時に成形用バインダの脱脂が不十分となる不具合を抑制できる。
 次に、このスラリーを用いてセラミックスの一般的な成形法であるドクターブレード法やロールコンパクション成形法によりセラミックグリーンシートを形成し、次に、製品形状とするための金型により打ち抜いてセラミックグリーンシートを製作する。積層する各セラミックグリーンシートは、焼成時の収縮差による変形や反り、また、クラックの発生を少なくするために同一のロットのものを用いることが好ましい。
 図6は、本実施形態の流路部材の側壁部を構成するためのセラミックグリーンシートに流路となる貫通孔を加工するための方法の例を示す、(a)は金型を用いたときの断面模式図であり、(b)はレーザ光を用いたときの断面模式図であり、(c)および(d)はそれぞれの加工法を用いたときのセラミックグリーンシートの切断面に垂直な面の部分断面図である。
 図6(a)に示すように、セラミックグリーンシート7を金型21で打ち抜くことにより、(c)に示すような、打ち抜いたセラミックグリーンシート7の端面7b’に矩形状の面取り7c’を形成することができる。特に、セラミックグリーンシート7と当接する上パンチ22aと下パンチ21cとの当接面の両端に凸部22cを設けることにより、セラミックグリーンシート7を凸部22cで狭持しながら上下のパンチ22の嵌合で打ち抜くことにより、セラミックグリーンシート7の端面7b’に、矩形状の面取り7c’を形成できる。また、面取り7c’を台形状,C面またはR面にする場合にも、同様な方法でパンチ22の凸部22cの形状を変更することで可能である。また、下パンチ21cの凸部22cがない金型21を用いれば、セラミックグリーンシート7の端面7b’の上パンチ22a側にのみ矩形状の面取り7c’を形成することができる。
 図6(b)は、セラミックグリーンシートをレーザ加工により、(d)に示すようなセラミックグリーンシート8の端面8b’に面取り8c’を形成することができる。特に、レーザ光26を集光レンズ28を通してセラミックグリーンシート7に照射するが、スポット27がセラミックグリーンシート8の厚みの中央付近となるように調整することにより、セラミックグリーンシート8の端面8b’の上下面とも面取り8c’を形成することができる。
 なお、セラミックグリーンシートを、レーザ加工する場合には、レーザ光源は、COレーザ,YAGレーザまたはエキシマレーザ等を用いればよく、例えば、COレーザであれば、レーザ光26の発振周波数を2000Hz程度とし、パルスデューティを70~80%(信号ON時間の割合)、レーザ光26のセラミックグリーンシート8上での移動速度を8~10m/分とすることにより所望の形状の切断加工ができる。
 また、セラミックグリーンシート8の端面8b’の上下面の片側のみに面取り8c’を形成する場合は、レーザ光26のスポット27の焦点をセラミックグリーンシート8の上下面のいずれかの面の表面に合わせればよい。
 このようにして製作した複数のセラミックグリーンシート7または8を所望の流路3’となるように積層するが、それぞれのセラミックグリーンシート7または8の接合面に、セラミックグリーンシートを製作するときに用いたものと同様のバインダを密着液として塗布し、セラミックグリーンシート7または8を積層したあとに、平板状の加圧具を介して約0.5MPa程度の加圧を加え、そのあとに、約50~70℃の室温で約10~15時間乾燥させる。
 次に、流路部材1となる積層したセラミックグリーンシートを、例えば公知のプッシャー方式やローラー方式の連続トンネル炉で焼成する。それぞれの材質により焼成温度は異なるが、アルミナ含有量が94~97質量%の材料であれば、最高温度が約1500~1650℃で酸化雰囲気にて焼成すればよい。
 特に図5に示すような、高熱を発する電子部品6が搭載された基板を流路部材1の蓋体部1aに搭載するときには、流路を形成するために貫通孔を封止している蓋体部1aの厚みは、熱交換の効率を向上させるためになるべく薄くすることが好ましく、アルミナ含有量が94~97質量%においては、0.3~0.5mm程度とすることが好ましい。
 以上により流路部材1が製作され、この流路部材1に、金属板5を介してLSIやLED等の電子部品6を搭載することによって、気体や液体といった冷媒を流路部材1の流路に通すことで電子部品6を冷却することができる。
 また、本実施形態の流路部材1は、冷却用途だけでなく温熱用途など幅広い用途にも利用することができる。
 図7(a)に示す本実施形態の流路部材12は、全長がL,高さがH,幅がDであって、厚みがt1の蓋体部1aが1枚,厚みがt2の側壁部1cが3枚,厚みがt3の底板部1bが1枚積層されており、内部に2つの四角形状の流路3が形成されている。そして、図7(b)に示すように、流路3を形成する側壁部1cの端面1gに隙間4となる面取り1eを付けてあり、蓋体部1aと側壁部1cとの接合部1dおよび側壁部1cと底板部1bとの接合部1dに流路3側に開口した奥行き4a,最大高さ4bの隙間4が形成されている。また、流路部材12の外側から流路3までの距離をB,G、流路3の幅をC,F、隣り合う流路3の間の距離をEで示す。
 以下、本発明の実施例を具体的に説明するが、本発明はこの実施例に限定されるものではない。
 酸化アルミニウム(Al)として平均粒径が1.6μm程度の粉末と、酸化珪素(SiO)と、酸化カルシウム(CaO)および酸化マグネシウム(MgO)の粉末とを準備する。
 そして、各粉末の混合割合が、酸化アルミニウム96.4質量%,酸化珪素2.3質量%,酸化カルシウム0.3質量%および酸化マグネシウム1.0質量%となるように秤量し混合した混合粉末を、混合粉末100質量%に対して6質量%のポリエチレングリコールからなるバインダとともに回転ミルに投入して、高純度のアルミナボールで混合する。
 次に、これにアクリル樹脂等のバインダを混合粉末100質量%に対して4質量%添加し、混合してスラリーを得る。
 次に、得られたスラリーを公知のドクターブレード法でシート状のセラミックグリーンシートを製作し、さらに、このセラミックグリーンシートを積層したときに製品形状となるように、金型を用いて個々のセラミックグリーンシートを製作する。
 実施例では、図7(a)に示す流路部材12と同形状の試料を製作した。また、流路部材12の寸法を、全長Lが200mm、高さHが4.5mm、幅Dが12mmで、蓋体部1aの厚みt1が0.5mm、その他の側壁部1cおよび底板部1bの厚みt2およびt3が1.0mmで、図7(b)に示す流路部材12の外側から流路3までの距離BおよびGが3mm、流路3の幅CおよびFが2mm、隣り合う流路3の間の距離Eが2mmとなるように試料を製作した。
 また、表1に示すように、図7(b)の隙間4の奥行き4aが無いもの(実質的には奥行き4aが0.005mm以下を無いものと見なす)と0.08mm、最大高さ4bが無いもの(実質的には最大高さ4bが0.005mm以下を無いものと見なす)と0.06mmのものを各試料につきそれぞれ50個製作した。これを試料No.1および24とする。
 そして、流路部材12の熱交換効率を確認するために、(以下、不図示)流体の供給口を一方の側面に、また、この供給口に対向する他方の側面に排出口をアルミニウム材で作製したものをろう付けした。
 さらに、蓋体部1aはセラミックスで、側壁部1cと底板部1bとが金属からなる流路部材12も製作した。
 各寸法は試料No.1および24と同一で、蓋体部1aのセラミックスも試料No.1および24と同一である。側壁部1cおよび底板部1bの金属は、純度99.7%のアルミニウムを用い、隙間4の無いものを試料No.101、隙間4のあるものを試料No.102とした。
 また、試料No.1および24の流路部材12を構成する各々のt2の貫通孔の製造方法として、セラミックグリーンシートを図6(a)に示す金型21を用いて成形することにより、図7(b)に示す隙間4となるように、セラミックグリーンシートの端面に矩形状の面取りを成形し、上述した流路部材12の外形寸法となるような3枚のセラミックグリーンシートを製作した。
 次に製作したセラミックグリーンシートを積層し加圧,接合するときの密着液は、セラミックグリーンシートを製作するときと同じバインダを用い、(以下、不図示)密着液であるバインダの塗布方法は、400メッシュ、厚み0.02mmのステンレス製スクリーンを用い、ゴム製のスキージで積層する個々のセラミックグリーンシートの全面に塗布した。
 次に、これらの密着液が塗布された5枚のセラミックグリーンシートを積層し、積層したセラミックグリーンシートの上下を平板で挟み約0.5MPaで加圧した。
 このときに、セラミックグリーンシートの下端に圧力伝搬状態を観察するために、プレスケール(富士フィルム株式会社製 型名:LLLW 超低圧0.2~0.6MPa用)を挟み込み(以下、不図示)、積層したセラミックグリーンシートの全面に均等に加圧していることを確認した。このとき、セラミックグリーンシートの全面に均等な圧力が掛かっていれば、流路パターン以外の箇所は赤色に発色するが、流路パターン以外の箇所で発色していない場合には、再度加圧するか、もしくは、この時点で試料から除外した。
 次に、この製品形状の成形体である流路部材12を、プッシャー式トンネルキルンにて最高温度が1600℃で焼成して、表1に示す試料No.1および24の隙間4が三角形状の流路部材を得た。また、流路部材12の一部製品は、接合部の状態を確認するための試料として未焼成のものを一部保管した。
 また、蓋体部1aがアルミナセラミックスで、側壁部1cと底板部1bとの金属がアルミニウムの試料No.101および102の作製方法は、蓋体部1aは試料No.1および24と同じ方法により、予め、蓋体部1aを焼成したものを準備した。
 そして、側壁部1cと底板部1bとは、公知の熱間押出成形法により側壁部1cと底板部1bとが一体となったものを作製した。
 次に、得られた蓋体部1aと側壁部1cとをろう付けにより接合することにより流路部材12を製作した。なお、ろう付けは、スクリーン印刷法によりAl-Siからなるろう材を塗布し、約0.15MPaで加圧した状態で約590℃の温度で熱処理した。
 次に、流体の供給口および排出口は試料No.1および24と同様に作製した。
 このようにして得られた流路部材12の試料No.1および24について、超音波探傷試験を行なった。
 超音波探傷試験の目的は、焼成後の流路部材12の内部の流路3を形成する蓋体部1aと側壁部1cとの接合部1dに接合不良とみなせる層間剥離の発生がないかを確認するためのものである。
 超音波探傷試験は、日立建機ファインテック株式会社製の型名:mi-scopehyperを用い、流路部材1の蓋体部1aと側壁部1cとの積層の厚みtが4.5mmに対して、上下から1,2層までを周波数50MHzの超音波プローブ(型名:50P6F15)を用い、積層の中間になる3層目については25MHzの超音波プローブ(型名:PT-3-25-17)を用い、流路部材の全面の超音波探傷試験を行なった 。そして、積層した蓋体部1aと側壁部1cと底板部1bとの1,2層と3層と4,5層との、それぞれの超音波探傷試験の画像を観察した。ここで、使用する超音波プローブは、セラミックシートの積層した厚みtにより使い分けるもので、さらに、厚みtが厚くなる場合には、周波数のさらに低いものを使用すればよい。
 超音波探傷試験においては、空洞があれば白い画像、空洞がないところは黒い画像となる。したがって、本来の流路パターンから外れる所に白色部があれば接合不良による層間剥離が発生している。
 超音波探傷試験の評価は、各試料の隙間4の奥行き4aと超音波探傷試験による隙間の奥行き4aとの比較により評価し、本来の隙間4の奥行き4aと超音波探傷試験による画像の隙間4の奥行き4aとの差の最大値が±10%の範囲内であれば良品とし、+10%を超えるものは不良品とした。また、奥行き4aが0.005mm以下のものは実質的に隙間4がないものとした。そして、各試料50個の流路部材1の不良率が0%であれば評価は優良とし、不良率が2%以下であれば評価は良とし、不良率が2%を超えるものは評価が否とした。
 そしてさらに、接合不良の原因を解明するために、各試料と同じ未焼成の流路部材12について、各試料50個の接合部1dについて、手で剥離しながら拡大鏡(10倍)により接合不良に繋がるような原因がないか観察を行なった。
 また、流路部材12の蓋体部1aと側壁部1cとの接合部1dに流路3につながる隙間4があることによって、熱交換対象物を載置する搭載面への熱交換効率の影響度合いも確認した。
 試験方法としては、上記各試料の蓋体部1aの外面にヒータと熱電対を取り付けた。そして、熱電対を取り付けた箇所の温度が50℃となるように加熱した。
 次に、流体として水温が18℃の水を用い、約0.3MPaで流路部材12に供給した。
 こうして、30分経過後に蓋体部1aの外面の表面温度を測定し、各試料において平均の温度変化量を確認した。
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から分かるように、蓋体部1aと側壁部1cとがセラミックスからなる試料No.1は、接合不良の発生率が8%であり、評価は否であった。また、保管していた未焼成の試料を調べたところ、積層したセラミックグリーンシートの接合部に、セラミックグリーンシートを金型21で成形したとき生じたバリが付着しており、このバリによりセラミックグリーンシートの接合が十分に行なわれなかったものであった。
 また、試料No.1と同じくセラミックスの試料No.24は、上記接合不良の発生率が0%であって、評価は優良であった。
 これは、隙間4の奥行き4aが、0.08mmであって、最大高さ4bが0.06mmであるから、端面1gにバリ1fが発生したとしても、蓋体部1aと側壁部1cとの接合部1dまで入り込むことがなく接合不良の発生を防止できたことが考えられる。ちなみに、未焼成の試料の接合部を確認したがセラミックグリーンシートの流路側端面のバリがセラミックグリーンシートの接合部に巻き込まれて接合不良を起こしているものは見つからなかった。
 また、蓋体部1aがアルミナセラミックスで側壁部1cおよび底板部1bがアルミニウムで一体成形したものをろう付けで接合した試料101および102は、蓋体部1aと側壁部1cとの接合部1dの流路3につながる隙間4の有無にかかわらず、接合不良の発生はなかった。これは、試料No.1および24は、いずれも柔らかい生の成形体で積層,加圧,焼成して接合するもので、流路3となる近辺は側壁部1cとなる中間層への加圧力の伝搬がバリの有無により大きく左右されるのに対して、試料No.101および102は、焼結体を接合するのであるから、端面等にバリが存在すれば研磨等により除去できることと、ろう材の厚み等で平坦度を含めバリも吸収できることによる。さらに、堅いものを接合するから流路の近辺への加圧力の伝搬にも影響が少ないからである。
 また、流路部材12の加熱、冷却の試験結果では、蓋体部1aと側壁部1cと底板部1bとがセラミックスであるものにおいては、蓋体部1aと側壁部1cとの接合部1dに流路3につながる隙間4がない試料No.1の温度変化量が18℃であったのに対して、隙間4がある試料No.24の温度変化量が20℃であって、僅かな隙間4であっても、隙間4があることで熱交換効率が向上することが分かる。
 また、同様に、蓋体部1aがセラミックスで、側壁部1cおよび底板部1bが金属の試料No.101と102では、隙間4のない試料No.101の温度変化量が26℃に対して、隙間4のある試料No.102は28℃であり、こちらも、隙間4があることで熱交換効率が向上することが分かる。
 以上の結果から、流路部材12の蓋体部1aと側壁部1cとの接合部1dには、流路3につながる隙間4があることによって、流路3と流体との熱の接触面積が大きくなる分、蓋体部1aの外面との熱交換効率を向上できることが分かる。
 また、セラミックグリーンシートを積層して、内部に流路を形成する場合、蓋体部1aと側壁部1cとの接合部1dに流路3につながる隙間4が、セラミックグリーンシートの
流路3となる貫通孔を形成するときに発生するバリを隙間4中で吸収し接合部1dに挟み込むことがないから接合不良の発生を抑制できることが分かる。
 ここでは、流路部材の材質は、セラミックスや金属の何れでも良いとしたが、流路が曲がりくねっている場合には、押出成形や射出成形や鋳型若しくはプレスによる一体成型では困難であるから、一般的には流路となる複雑な貫通孔を個々に形成した複数のシートを積層して作製することになる。そして、昇温と冷却を繰り返すような熱交換器である場合には、蓋体部と側壁部ならびに底板部とが同一材料であれば熱膨張差による接合部の剥離等が生じるおそれが少ないから、流路が複雑で、使用温度範囲の広い場合には、セラミックグリーンシートを積層、焼成したセラミック流路部材とすることがより好ましい。
 次に、蓋体部1aと側壁部1cとの接合部1dで形成される流路3につながる隙間4の形状と接合不良との関係を確認した。
 試料は、実施例1で用いたアルミナセラミックスと同じものを用いて作製し、接合不良の評価方法も同じである。
 なお、試料No.1および14は実施例1と同じであるが、試料No.2~8は隙間4の形状か矩形状で、試料No.11~17は隙間4の形状が台形形状であり、試料No.21~27は隙間4の形状が三角形状である。また、各試料の形状に合う金型を作製して成形し、隙間4の奥行き4aおよび最大高さ4bは表に示すとおりである。
 得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から分かるように、まず、試料No.1は、接合不良の発生率が8%であり、評価は否であった。また、保管していた未焼成の試料を調べたところ、積層したセラミックグリーンシートの接合部に、セラミックグリーンシートを金型21で成形したとき生じたバリが付着しており、このバリによりセラミックグリーンシートの接合が十分に行なわれなかったものであった。
 実施例の試料No.2,11および21は、上記接合不良の発生率が2%であって、評価は良であった。接合不良の原因は試料No.1と同じく金型21によるセラミックグリーンシートへの成形時のバリであり、発生率は少ないものの、隙間4の奥行き4aが0.02mmと浅いために、セラミックグリーンシートの流路側端面に発生したバリがセラミックグリーンシート圧着時に接合部に挟み込んだものがあったと推測される。
 また、実施例の試料No.6,15および25は、上記接合不良の発生率は2%で、試料No.2と同じく評価は良であったが、接合不良の原因となるようなバリの挟み込みは見つからなかった。セラミックグリーンシートの積層後、加圧したときに圧力伝搬状態を見るために挟み込んだプレスケールを確認したところ隙間4の奥行き4aが、焼成後の寸法値に換算したときに約0.09mmの付近が赤色発色の濃度が薄くなっているので、加圧の圧力伝搬が不足していたことが接合不良の原因であると考えられる。
 また、試料No.7,8,16,17,26および27は、隙間4の奥行き4aと最大高さ4bとが同じ長さのものであるが、接合不良の発生率はいずれも2%で評価は良であった。接合不良の原因は最大高さ4bに対して奥行き4aが同等であったためバリの一部が接合部に入り込んだためである。
 また、隙間4の奥行き4aが、0.03,0.04,0.08mmであって、最大高さ4bよりも長い試料No.3~5,12~14および22~24は、接合不良の発生率は、いずれも0%で評価は優良であった。なお、未焼成の試料の接合部を確認したがセラミックグリーンシートの流路側端面のバリがセラミックグリーンシートの接合部に巻き込まれて接合不良を起こしているものは見つからなかった。
 以上の結果から、流路部材12を、セラミックグリーンシートを積層して、内部に流路を形成する場合、流路の側面の積層したセラミックグリーンシートの接合部1dには、流路3側に開口した隙間4があることにより接合不良の発生を抑制できることが分かる。
 また、隙間4の形状は、流路3側に開口した矩形状,台形状または三角形状のいずれでも良いことが分かる。
 隙間4の形状が矩形状または台形状を選択するときは、製造工程において、セラミックグリーンシートに流路3となる貫通孔の端面に発生するバリを隙間4の中で許容したいときであり、三角形状を選択するときは、バリの大きさを抑えたいときであり、加工方法も適宜選択すればよい。
 また、隙間4の奥行き4aが、0.03~0.08mmであって、かつ、最大高さ4bの長さよりも長いときには、セラミックグリーンシートを積層、加圧したときにバリの接合部への挟み込みによる接合不良および加圧力の伝搬不足による接合不良の発生をさらに抑制することができる。
 次に、酸化アルミニウムの含有量を増減したときの、蓋体部1aと側壁部1cとの接合部1dの接合不良への影響の有無を調査した。
 ここでは、図7に示す流路部材12の各寸法は実施例2で用いた試料No.4と同じであるが、酸化アルミニウムの含有量を94.0質量%と97.0質量%とに変更して、残部が酸化珪素,酸化カルシウムおよび酸化マグネシウムからなる表3に示す試料No.9と10とを製作した。
 各試料50個の流路部材12を実施例1と同様の方法で製作し、また、接合不良の確認も超音波探傷試験により行ない、評価の方法も同じように行なった。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から分かるように、実施例である酸化アルミニウムの含有量が94.0質量%の試料No.9および、97.0質量%の試料No.10のいずれも接合部1dの接合不良の発生率は0%で評価は優良であった。
 ここでは、流路部材12の外形寸法が、長さLが200mm、幅Dが12mm、高さHが4.5mmの構造物であるが、酸化アルミニウムの含有量が94.0~97.0質量%で残部が酸化珪素と酸化カルシウムと酸化マグネシウムからなるときには、焼成温度が1600℃のままであっても、流路部材12の内部の蓋体部1aと側壁部1cとの各接合部1dも問題なく接合していることから焼結性の問題も発生が抑制されたと言える。適度な焼結助剤を含有していることから焼結性が高められ焼成温度を高める必要もなく、焼成コストを低減することができる。
 以上のように、本実施例の流路部材12は、側壁部の接合不良の発生のおそれが少なく、流体を高圧で流し冷却用や温熱用などに用いたとしても、層間剥離の発生を抑制できる。さらには、比較的低コストの流路部材を提供できるものである。
 1,11,12,13,14,15:流路部材
 1a:蓋体部
 1b:底板部
 1c:側壁部
 1d:接合部
 1e:面取り
 1f:バリ
 1g:端面
 3:流路
 4:隙間
 4a:隙間の奥行き
 4b:隙間の最大高さ
 5:金属板
 6:電子部品
 7,8:加工したセラミックグリーンシート
 7b’,8b’:端面
 7c’,8c’:面取り
 20:熱交換器
 30:電子部品装置

Claims (8)

  1. 蓋体部と側壁部と底板部とで構成され、内部に流体が流れる流路を有するとともに、前記蓋体部と前記側壁部との間に前記流路につながる隙間を有することを特徴とする流路部材。
  2. 前記側壁部は、前記流路を形成するための孔を有する板状体を複数備えてなる積層体であって、該積層体を構成する板状体の間に前記流路につながる隙間があることを特徴とする請求項1に記載の流路部材。
  3. 前記流体が流れる方向に対して直交するように断面視したとき、前記隙間が矩形状または台形状であることを特徴とする請求項1または請求項2に記載の流路部材。
  4. 前記流体が流れる方向に対して直交するように断面視したとき、前記隙間は、前記側壁部側に延びる方向に向かって、上下に開口する方向の高さが低くなることを特徴とする請求項1または請求項2に記載の流路部材。
  5. 前記流体が流れる方向に対して直交するように断面視したとき、前記隙間は、前記側壁部側に延びる方向の奥行きをaとし、上下に開口する方向の最大高さをbとしたとき、a>bの関係であることを特徴とする請求項1乃至請求項4のいずれかに記載の流路部材。
  6. 前記奥行きが0.03mm以上0.08mm以下であることを特徴とする請求項5に記載の流路部材。
  7. 請求項1乃至6のいずれかに記載の流路部材の前記蓋体部の外面に、金属板を設けてなることを特徴とする熱交換器。
  8. 請求項7に記載の熱交換器の前記金属板上に電子部品を搭載してなることを特徴とする電子部品装置。
PCT/JP2011/063250 2010-06-09 2011-06-09 流路部材およびこれを用いた熱交換器ならびに電子部品装置 WO2011155562A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11792519.8A EP2582213B1 (en) 2010-06-09 2011-06-09 Flow channel member, heat exchanger using same, and electronic component device
KR1020127032111A KR101503824B1 (ko) 2010-06-09 2011-06-09 유로 부재, 이것을 사용한 열교환기, 및 전자 부품 장치
CN201180028161.6A CN102934528B (zh) 2010-06-09 2011-06-09 流路构件、使用该流路构件的热交换器、以及电子部件装置
JP2011543023A JP5073104B2 (ja) 2010-06-09 2011-06-09 流路部材およびこれを用いた熱交換器ならびに電子部品装置
US13/702,948 US20130088837A1 (en) 2010-06-09 2011-06-09 Flow channel member, and heat exchanger using the same, and electronic component device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010132103 2010-06-09
JP2010-132103 2010-06-09

Publications (1)

Publication Number Publication Date
WO2011155562A1 true WO2011155562A1 (ja) 2011-12-15

Family

ID=45098166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063250 WO2011155562A1 (ja) 2010-06-09 2011-06-09 流路部材およびこれを用いた熱交換器ならびに電子部品装置

Country Status (6)

Country Link
US (1) US20130088837A1 (ja)
EP (1) EP2582213B1 (ja)
JP (2) JP5073104B2 (ja)
KR (1) KR101503824B1 (ja)
CN (1) CN102934528B (ja)
WO (1) WO2011155562A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048204A (ja) * 2011-07-28 2013-03-07 Kyocera Corp 流路部材、これを用いた熱交換器および電子部品装置ならびに半導体製造装置
JP2014060393A (ja) * 2012-08-24 2014-04-03 Kyocera Corp 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2015138910A (ja) * 2014-01-23 2015-07-30 京セラ株式会社 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2017044363A (ja) * 2015-08-24 2017-03-02 京セラ株式会社 流路部材
JP2019220611A (ja) * 2018-06-21 2019-12-26 株式会社デンソー 電力変換装置及び冷却システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073104B2 (ja) * 2010-06-09 2012-11-14 京セラ株式会社 流路部材およびこれを用いた熱交換器ならびに電子部品装置
US20130308273A1 (en) * 2012-05-21 2013-11-21 Hamilton Sundstrand Space Systems International Laser sintered matching set radiators
US20130306293A1 (en) * 2012-05-21 2013-11-21 Hamilton Sundstrand Space Systems International Extruded matching set radiators
JP6909126B2 (ja) * 2017-10-13 2021-07-28 京セラ株式会社 半導体装置の製造方法
CN109819603B (zh) * 2017-11-20 2022-05-27 Tvs电机股份有限公司 用于机动车辆的主控制单元组件
CN108036668B (zh) * 2017-12-07 2024-03-15 程向锋 换热管、包括它的换热器和换热管的制造方法
JP7238635B2 (ja) * 2019-06-27 2023-03-14 株式会社デンソー 電力変換装置及び冷却システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626959U (ja) * 1979-08-09 1981-03-12
JPH03296646A (ja) * 1990-04-16 1991-12-27 Fujitsu Ltd 積層体の層間密着度検査方法
JPH07142822A (ja) 1993-09-20 1995-06-02 Fujitsu Ltd 回路基板及びその製造方法
JP2002329938A (ja) * 2001-04-27 2002-11-15 Kyocera Corp セラミック回路基板
JP2008071800A (ja) * 2006-09-12 2008-03-27 Mitsubishi Electric Corp 放熱板、冷却構造体およびヒートシンク

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538855A (en) * 1976-07-13 1978-01-26 Hitachi Cable Ltd Condensing heat transmission wall
DE3323830C2 (de) * 1983-07-01 1985-06-20 Siemens AG, 1000 Berlin und 8000 München Anordnung zum Auflöten einer elektrischen Schaltungsplatte auf einen Grundkörper
JPH0676872B2 (ja) * 1989-05-19 1994-09-28 日本発条株式会社 ヒートシンク
US5946188A (en) * 1998-07-29 1999-08-31 Epsilon Electronics, Inc. Car amplifier incorporating a peltier device for cooling
US6490159B1 (en) * 2000-09-06 2002-12-03 Visteon Global Tech., Inc. Electrical circuit board and method for making the same
JP4626082B2 (ja) * 2001-04-16 2011-02-02 株式会社日立製作所 冷却水路を備えた電気装置
US6452798B1 (en) * 2001-09-12 2002-09-17 Harris Corporation Electronic module including a cooling substrate having a fluid cooling circuit therein and related methods
US6819561B2 (en) * 2002-02-22 2004-11-16 Satcon Technology Corporation Finned-tube heat exchangers and cold plates, self-cooling electronic component systems using same, and methods for cooling electronic components using same
US7311137B2 (en) * 2002-06-10 2007-12-25 Wolverine Tube, Inc. Heat transfer tube including enhanced heat transfer surfaces
JP2005166855A (ja) * 2003-12-02 2005-06-23 Hitachi Ltd 電子機器
EP1542516B1 (en) * 2003-12-08 2005-12-14 Asia Vital Component Co., Ltd., Heat dissipating microdevice and method of making the same
US7080683B2 (en) * 2004-06-14 2006-07-25 Delphi Technologies, Inc. Flat tube evaporator with enhanced refrigerant flow passages
US20060196640A1 (en) * 2004-12-01 2006-09-07 Convergence Technologies Limited Vapor chamber with boiling-enhanced multi-wick structure
JP5004423B2 (ja) * 2005-01-27 2012-08-22 京セラ株式会社 電子部品収納用パッケージおよび電子装置
JP4729336B2 (ja) * 2005-04-27 2011-07-20 株式会社豊田自動織機 パワーモジュール用基板
JP2006329439A (ja) * 2005-05-23 2006-12-07 Furukawa Sky Kk コールドプレート
JP4826887B2 (ja) * 2005-10-28 2011-11-30 中村製作所株式会社 液冷熱交換器を備えた電子部品用パッケージ、およびその形成方法
JP2007294891A (ja) * 2006-03-30 2007-11-08 Dowa Metaltech Kk 放熱器
JP2009024933A (ja) * 2007-07-19 2009-02-05 Sony Corp 熱拡散装置及びその製造方法
JP5073104B2 (ja) * 2010-06-09 2012-11-14 京セラ株式会社 流路部材およびこれを用いた熱交換器ならびに電子部品装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626959U (ja) * 1979-08-09 1981-03-12
JPH03296646A (ja) * 1990-04-16 1991-12-27 Fujitsu Ltd 積層体の層間密着度検査方法
JPH07142822A (ja) 1993-09-20 1995-06-02 Fujitsu Ltd 回路基板及びその製造方法
JP2002329938A (ja) * 2001-04-27 2002-11-15 Kyocera Corp セラミック回路基板
JP2008071800A (ja) * 2006-09-12 2008-03-27 Mitsubishi Electric Corp 放熱板、冷却構造体およびヒートシンク

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2582213A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048204A (ja) * 2011-07-28 2013-03-07 Kyocera Corp 流路部材、これを用いた熱交換器および電子部品装置ならびに半導体製造装置
JP2014060393A (ja) * 2012-08-24 2014-04-03 Kyocera Corp 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2015138910A (ja) * 2014-01-23 2015-07-30 京セラ株式会社 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2017044363A (ja) * 2015-08-24 2017-03-02 京セラ株式会社 流路部材
JP2019220611A (ja) * 2018-06-21 2019-12-26 株式会社デンソー 電力変換装置及び冷却システム
JP7087715B2 (ja) 2018-06-21 2022-06-21 株式会社デンソー 電力変換装置及び冷却システム

Also Published As

Publication number Publication date
JP5502133B2 (ja) 2014-05-28
CN102934528A (zh) 2013-02-13
EP2582213A1 (en) 2013-04-17
KR101503824B1 (ko) 2015-03-18
JP2012165006A (ja) 2012-08-30
CN102934528B (zh) 2015-07-01
US20130088837A1 (en) 2013-04-11
JP5073104B2 (ja) 2012-11-14
EP2582213B1 (en) 2021-01-20
EP2582213A4 (en) 2014-01-15
KR20130036244A (ko) 2013-04-11
JPWO2011155562A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5073104B2 (ja) 流路部材およびこれを用いた熱交換器ならびに電子部品装置
JP5714119B2 (ja) 流路部材、これを用いた熱交換器および半導体装置ならびに半導体製造装置
US7532481B2 (en) Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material
US9379038B2 (en) Heat dissipation device and semiconductor device
JP2016171343A (ja) 流路部材、これを用いた熱交換器および電子部品装置ならびに半導体製造装置
JP6251381B2 (ja) 流路部材および半導体モジュール
JP6162558B2 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2002329938A (ja) セラミック回路基板
JP7151583B2 (ja) ヒートシンク付き絶縁回路基板
JP2011071260A (ja) 積層材およびその製造方法、絶縁積層材およびその製造方法
JP6215668B2 (ja) セラミック焼結体、これを用いた流路部材ならびに半導体検査装置および半導体製造装置
JP6028352B2 (ja) ヒートシンク付パワーモジュール用基板の製造方法
JP5569305B2 (ja) パワーモジュール用基板及びパワーモジュール用基板の製造方法
JP5803484B2 (ja) パワーモジュール用基板およびその製造方法
WO2022172900A1 (ja) セラミック板及びその製造方法、並びに、回路基板及びその製造方法
JP6154248B2 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
JP2009023904A (ja) セラミックス積層体の製造方法及びセラミックス積層体
WO2020115869A1 (ja) 半導体装置用基板
JP5195379B2 (ja) セラミックス基板及びその製造方法
JP2009266993A (ja) 多層配線基板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028161.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011543023

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127032111

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13702948

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011792519

Country of ref document: EP