WO2011155545A1 - 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法 - Google Patents

無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法 Download PDF

Info

Publication number
WO2011155545A1
WO2011155545A1 PCT/JP2011/063180 JP2011063180W WO2011155545A1 WO 2011155545 A1 WO2011155545 A1 WO 2011155545A1 JP 2011063180 W JP2011063180 W JP 2011063180W WO 2011155545 A1 WO2011155545 A1 WO 2011155545A1
Authority
WO
WIPO (PCT)
Prior art keywords
organopolysiloxane
inorganic fine
glass substrate
glass
coating liquid
Prior art date
Application number
PCT/JP2011/063180
Other languages
English (en)
French (fr)
Inventor
雄一 ▲桑▼原
阿部 啓介
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP11792502.4A priority Critical patent/EP2581352A4/en
Priority to JP2012519421A priority patent/JPWO2011155545A1/ja
Priority to CN2011800286624A priority patent/CN102933518A/zh
Publication of WO2011155545A1 publication Critical patent/WO2011155545A1/ja
Priority to US13/710,754 priority patent/US8978416B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • C03C2217/452Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/465Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/476Tin oxide or doped tin oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals

Definitions

  • the present invention relates to a method for producing a glass substrate with inorganic fine particles and a silicon oxide film.
  • the glass substrate may be required to have other functions (ultraviolet ray shielding, infrared ray shielding, antistatic, photocatalyst, wavelength conversion, etc.) as well as antireflection (low reflectance and high transmittance) depending on applications.
  • an antireflection function is required for improving power generation efficiency
  • an ultraviolet shielding function is required for suppressing internal deterioration due to ultraviolet rays.
  • Patent Document 1 A method of forming a titanium film is known (Patent Document 1).
  • Patent Document 1 a thermally decomposable organic titanium compound is used in order to give the film a heat ray reflecting function.
  • the film is formed by a thermal decomposition reaction of the organic titanium compound on a high-temperature glass substrate. Therefore, in order to form a film on a glass substrate with good film deposition efficiency, it is necessary to adjust the thermal decomposition temperature (exothermic peak). Similarly, it is necessary to adjust the thermal decomposition temperature of the organosilicon compound.
  • the respective thermal decomposition temperatures must be taken into account, and naturally, the combination of the compounds used is also reduced.
  • the present invention can directly form an inorganic fine particle-containing silicon oxide film provided with a function derived from inorganic fine particles on a high-temperature glass substrate, and has a high light transmittance and a glass substrate with an inorganic fine particle-containing silicon oxide film. Provide a method that can be produced efficiently.
  • the present invention also relates to a method for producing a glass substrate through a glass ribbon (glass sheet-like continuous formed body), wherein an inorganic fine particle-containing silicon oxide film provided with a function derived from inorganic fine particles on a high-temperature glass ribbon is provided.
  • the method for producing a glass substrate with an inorganic fine particle-containing silicon oxide film according to the present invention is the following inventions (1) and (2).
  • a coating solution containing organopolysiloxane and inorganic fine particles having a main exothermic peak temperature of 500 ° C. or less when heated at a heating rate of 10 ° C./min is applied to a glass substrate in the temperature range of 400 to 650 ° C.
  • an organopolysiloxane having a main exothermic peak temperature when heated at a heating rate of 10 ° C./min is in the range of 300 ° C. or more and less than the temperature of the glass substrate when the coating solution is applied. It is preferable to use siloxane. Moreover, it is preferable that the difference between the main exothermic peak temperature when the organopolysiloxane is heated at a temperature rising rate of 10 ° C./min and the temperature of the glass substrate during coating liquid coating is 30 ° C. or more.
  • the coating liquid preferably further contains a liquid medium.
  • the boiling point of the liquid medium is preferably 60 ° C. or higher.
  • the organopolysiloxane is preferably silicone oil.
  • the silicone oil is preferably a long chain alkyl-modified silicone oil. Further, the viscosity-converted molecular weight of the silicone oil and the long chain alkyl-modified silicone oil is preferably 3500 to 130,000.
  • the proportion of the organopolysiloxane is 70 to 98% by mass
  • the proportion of the inorganic fine particles is The content is preferably 2 to 30% by mass.
  • a glass substrate manufacturing method in which molten glass is formed into a glass ribbon, the glass ribbon is slowly cooled, and then cut to manufacture a glass substrate, at a position where the glass ribbon is in a temperature range of 400 to 650 ° C.
  • a coating liquid containing organopolysiloxane and inorganic fine particles having a main exothermic peak temperature of 500 ° C. or less when heated at a heating rate of 10 ° C./min is applied to the glass ribbon, and inorganic fine particle-containing silicon oxide is applied on the glass ribbon.
  • the organopolysiloxane it is preferable to form the molten glass into a glass ribbon in a float bath and apply the coating liquid between the float bath and the slow cooling step or in the slow cooling step.
  • the organopolysiloxane it is preferable to use an organopolysiloxane having a main exothermic peak temperature of 300 ° C. or higher and lower than the temperature of the glass ribbon at the coating liquid application position when heated at a temperature rising rate of 10 ° C./min. .
  • the difference between the main exothermic peak temperature when the organopolysiloxane is heated at a rate of temperature increase of 10 ° C./min and the temperature of the glass ribbon at the coating liquid application position is preferably 30 ° C. or more.
  • the coating liquid preferably further contains a liquid medium.
  • the boiling point of the liquid medium is preferably 60 ° C. or higher.
  • the organopolysiloxane is preferably silicone oil.
  • the silicone oil is preferably a long chain alkyl-modified silicone oil. Further, the viscosity-converted molecular weight of the silicone oil and the long chain alkyl-modified silicone oil is preferably 3500 to 130,000.
  • the proportion of the organopolysiloxane is 70 to 98% by mass
  • the proportion of the inorganic fine particles is The content is preferably 2 to 30% by mass.
  • an inorganic fine particle-containing silicon oxide film imparted with a function derived from inorganic fine particles can be directly formed on a high-temperature glass substrate or glass ribbon.
  • a glass substrate with an inorganic fine particle-containing silicon oxide film having a high light transmittance can be produced with high production efficiency.
  • a coating liquid containing organopolysiloxane and inorganic fine particles is applied to a glass substrate or a glass ribbon to be a glass substrate, and the organopolysiloxane is thermally decomposed.
  • an inorganic fine particle-containing silicon oxide film is formed on a glass substrate or a glass ribbon.
  • Glass substrate examples of the material for the glass substrate include soda lime silica glass, borosilicate glass, and aluminosilicate glass.
  • a glass substrate in the manufacturing method of the glass substrate which shape
  • An unstrengthened green glass substrate is preferable because it is applied to a method of forming a silicon oxide film containing inorganic fine particles on a glass ribbon by applying a coating solution.
  • the organopolysiloxane is a polymer having an organic group bonded to a silicon atom with a siloxane bond (—Si—O—Si—) as a skeleton.
  • the organic group is an organic group in which the atom bonded to the silicon atom is a carbon atom.
  • An atom or group other than an organic group for example, a hydrogen atom, a hydroxyl group, a hydrolyzable group, etc. may be bonded to a part of the silicon atom.
  • a hydrolyzable group is a group that can react with water to form a hydroxyl group, such as a halogen atom (such as a chlorine atom), a group in which an atom bonded to a silicon atom is an oxygen atom (such as an alkoxy group or an acyl group), or a silicon atom.
  • a halogen atom such as a chlorine atom
  • bonded with is a nitrogen atom is mentioned.
  • the organic group is non-hydrolyzable.
  • a hydrocarbon group an organic group composed of a carbon atom and a hydrogen atom
  • the organic group may be an organic group having a hetero atom (oxygen atom, nitrogen atom, etc.), an organic group having a halogen atom (fluorine atom, etc.), or the like.
  • the hetero atom may be a part of a reactive group (epoxy group, carboxy group, amino group, etc.).
  • hydrocarbon group examples include alkyl groups (methyl group, ethyl group, etc.), alkenyl groups (vinyl group, allyl group, ethynyl group, etc.), aryl groups (phenyl group, etc.) and the like.
  • Organopolysiloxane includes a linear polymer having a siloxane bond skeleton having a linear structure, a branched polymer having a skeleton having a branched structure, a crosslinked polymer having a skeleton having a network structure, and a three-dimensional crosslinking having a skeleton having a three-dimensional network structure. There are polymers.
  • organopolysiloxanes a crosslinked polymer in which two or more skeletons of a siloxane bond having a linear structure are connected by a divalent or higher valent organic group (an alkylene group or the like), an organic compound having no siloxane bond skeleton and a siloxane bond
  • polymers having a polymer skeleton bonded thereto can be used in the present invention.
  • the organopolysiloxane in the present invention can be thermally decomposed on a glass substrate or glass ribbon in the temperature range of 400 to 650 ° C. to form silicon oxide, and the exothermic peak temperature of inorganic fine particles is taken into consideration. Then, the exothermic peak temperature of organopolysiloxane is preferably 500 ° C. or lower.
  • the organopolysiloxane itself is a liquid, can be dissolved in a liquid medium to form a solution, or can be dispersed in a liquid medium to form a dispersion.
  • a linear polymer is preferable among the organopolysiloxanes, and a linear diorganopolysiloxane is particularly preferable, from the viewpoint of deposition efficiency and availability of the inorganic oxide-containing silicon oxide film.
  • Diorganopolysiloxane is a polymer having a silyloxy group having two organic groups bonded as a repeating unit. In a linear diorganopolysiloxane, three organic groups are bonded to silicon atoms at both ends. A part of the organic group may be a hydrogen atom.
  • the organic group is usually an alkyl group having 4 or less carbon atoms (particularly a methyl group), but some organic groups may be alkenyl groups or phenyl groups. Further, as described above, the organic group may be an organic group having a hetero atom (oxygen atom, nitrogen atom, etc.), an organic group having a halogen atom (fluorine atom, etc.), or the like.
  • silicone oil is particularly preferable from the viewpoint of the deposition efficiency of the inorganic oxide-containing silicon oxide film and the viscosity (handleability) of the coating liquid.
  • the silicone oil in the present invention means a linear organopolysiloxane which is an oily compound having fluidity at room temperature. Silicone oil is usually represented by the following formula (1).
  • R 1 to R 5 each represents an organic group or a hydrogen atom
  • n represents an integer of 1 or more.
  • R 1 to R 5 are organic groups, these organic groups may be the same or different.
  • Bifunctional units in [] are usually called D units, and monofunctional units outside [] at both ends are called M units.
  • n is an integer of 2 or more (that is, when there are 2 or more D units)
  • M units monofunctional units outside [] at both ends
  • n is an integer of 2 or more (that is, when there are 2 or more D units)
  • M units When n is an integer of 2 or more (that is, when there are 2 or more D units), these D units may be different.
  • Two M units may be different. That the D unit is different means that at least one of R 1 and R 2 is different.
  • the difference in M units means that at least one of R 3 , R 4 and R 5 is different.
  • silicone oil represented by the formula (1) examples include silicone oils in which R 1 to R 5 are all methyl groups, or a part of R 1 to R 5 is a hydrogen atom or an organic group other than a methyl group.
  • a silicone oil in which is a methyl group is preferred.
  • D 1 unit when all of R 1 to R 5 are methyl groups, the D unit is referred to as D 1 unit, and the M unit is referred to as M 1 unit.
  • a D unit in which one of R 1 and R 2 is a methyl group and the other is a hydrogen atom or an organic group other than a methyl group is called a D 2 unit
  • the other is M units that are hydrogen atoms or other organic groups are referred to as M 2 units.
  • the silicone oil represented by the formula (1) in which R 1 to R 5 are all methyl groups can be represented by M 1 (D 1 ) n M 1 .
  • a silicone oil represented by the formula (1) has an organic group other than a hydrogen atom or a methyl group bonded to a silicon atom
  • Examples of the organic group other than the methyl group include an organic group having 2 or more carbon atoms (such as an ethyl group), a polyfluoroalkyl group, a phenyl group, and a hetero atom (such as an oxygen atom and a nitrogen atom) (particularly a reactive group ( An organic group) having an epoxy group, an amino group or the like is preferred.
  • a silicone oil in which all of R 1 to R 5 are methyl groups is called dimethyl silicone oil.
  • a silicone oil in which a part of R 1 to R 5 is a phenyl group and the other is a methyl group is called methylphenyl silicone oil, and a part of R 1 to R 5 is a hydrogen atom and the other is a methyl group.
  • Silicone oil is called methyl hydrogen silicone oil.
  • R 1 to R 5 is a long chain alkyl group (preferably a straight chain alkyl group having 6 to 22 carbon atoms), an organic group having a hetero atom (oxygen atom, nitrogen atom, etc.), a halogen atom (A silicone oil having an organic group or the like having a fluorine atom or the like and the other being a methyl group is called a modified silicone oil.
  • the silicone oil includes a modified silicone.
  • the modified silicone oil is, for example, an epoxy-modified silicone oil, a carboxyl-modified silicone oil, a long-chain alkyl-modified silicone oil, an amino-modified silicone oil, depending on the type of organic group other than the methyl group and the type of reactive group that the organic group has. It is called polyether-modified silicone oil.
  • the silicone oil in the present invention is preferably an epoxy-modified silicone oil or a long-chain alkyl-modified silicone oil from the viewpoint of film deposition efficiency of the inorganic fine particle-containing silicon oxide film, and a long-chain alkyl-modified silicone having an alkyl group having 5 or more carbon atoms. Oil is particularly preferred.
  • a long-chain alkyl-modified silicone oil having an alkyl group having 5 to 20 carbon atoms is more preferable. If the alkyl chain length has more than 20 carbon atoms, it becomes solid at room temperature, which is not preferable from the viewpoint of handling.
  • n represents the degree of polymerization.
  • the viscosity usually increases as n increases. Therefore, the value of n (that is, molecular weight) can be measured by the viscosity of the silicone oil, and the molecular weight is called a viscosity-converted molecular weight.
  • the silicone oil in the present invention is preferably a silicone oil having a molecular weight in terms of viscosity of 3500 to 130,000, more preferably a silicone oil having a viscosity of 3500 to 100,000, and still more preferably a silicone oil having a molecular weight of 6000 to 55000.
  • the molecular weight in terms of viscosity of the silicone oil is 3500 or more, it is difficult to vaporize before adhering to the glass substrate or glass ribbon, and the deposition efficiency of the silicon oxide film containing inorganic fine particles is improved.
  • the molecular weight in terms of viscosity of the silicone oil is 130,000 or less, the haze can be kept low and the transmittance can be maintained high. In addition, the viscosity of the silicone oil is not too high and the handleability is good.
  • the molecular weight in terms of viscosity of silicone oil is determined by the following procedure.
  • (I) The kinematic viscosity ⁇ (25 ° C. and 40 ° C.) of the silicone oil is determined.
  • ⁇ CS / 25 ° C . kinematic viscosity at 25 ° C.
  • ⁇ P / 40 ° C . viscosity at 40 ° C.
  • M molecular weight in terms of viscosity.
  • an organopolysiloxane that can be thermally decomposed to become silicon oxide on a glass substrate or glass ribbon in a temperature range of 400 to 650 ° C. can be used in addition to silicone oil.
  • the organopolysiloxane include silicone resins, silicone rubbers, silicone elastomers, and compounds having a siloxane bond as a skeleton as a raw material thereof.
  • a silicone resin is a trifunctional unit represented by R 6 SiO 3/2 in which one organic group called a T unit is bonded to a silicon atom (where R 6 is the same organic as R 1 to R 5 described above). Is a curable organopolysiloxane having a main structural unit.
  • the silicone resin may have the D unit in addition to the T unit. Furthermore, it may have a tetrafunctional unit (expressed as SiO 4/2 ) called the Q unit and the M unit.
  • a silicone resin before curing can be used as the organopolysiloxane in the present invention.
  • Silicone rubbers and silicone elastomers are crosslinkable organopolysiloxanes (for example, organopolysiloxanes having crosslinkable organic groups (vinyl groups, etc.), organopolysiloxanes having silicon atoms bonded with silanol groups or hydrolyzable groups, etc. And the cross-linkable organopolysiloxane that is the raw material of the cross-linked polymer can be used as the organopolysiloxane in the present invention.
  • organopolysiloxanes for example, organopolysiloxanes having crosslinkable organic groups (vinyl groups, etc.
  • organopolysiloxanes having silicon atoms bonded with silanol groups or hydrolyzable groups etc.
  • the cross-linkable organopolysiloxane that is the raw material of the cross-linked polymer can be used as the organopolysiloxane in the present invention.
  • the main exothermic peak temperature when heated at a heating rate of 10 ° C./min is 300 ° C. or more and 500 ° C. or less and the coating is performed.
  • Organopolysiloxanes in the range below the temperature of the glass substrate at the time of liquid application are preferred.
  • the main exothermic peak temperature when heated at a heating rate of 10 ° C./min is 300 ° C. to 500 ° C. and the temperature of the glass ribbon at the coating liquid application position.
  • Organopolysiloxanes in the range of less than are preferred.
  • the temperature at the position where the main exothermic peak is shown when the organopolysiloxane is heated at a heating rate of 10 ° C./min is hereinafter referred to as exothermic peak temperature.
  • the organopolysiloxane is thermally decomposed to silicon oxide above the exothermic peak temperature. Therefore, an organopolysiloxane having an exothermic peak temperature lower than the temperature of the glass substrate at the time of coating liquid coating or the temperature of the glass ribbon at the coating liquid coating position is used. Conversely, when using an organopolysiloxane having a certain exothermic peak temperature, the temperature of the glass substrate on which the coating liquid is applied exceeds the exothermic peak temperature, and the position where the coating liquid is applied to the glass ribbon is the glass ribbon. Is a position where the temperature exceeds the exothermic peak temperature.
  • the temperature of the glass substrate during coating liquid application and the temperature of the glass ribbon at the coating liquid application position are 400 to 650 ° C.
  • the coating liquid in the present invention contains inorganic fine particles.
  • a temperature of about 100 ° C. or lower is preferable to the surface temperature of the glass substrate or glass ribbon.
  • the surface temperature of the glass ribbon between the float bath outlet and the slow furnace is about 600 ° C. Therefore, the organopolysiloxane used in the present invention is selected from those having an exothermic peak temperature of at least 500 ° C. in view of the exothermic peak temperature of the inorganic fine particles.
  • the temperature of the glass substrate or glass ribbon and the exothermic peak temperature of the organopolysiloxane are close, the rate of the thermal decomposition reaction that becomes silicon oxide will be slow, and byproducts such as carbide may remain. Furthermore, the productivity may be insufficient.
  • the temperature difference between the two is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, and more preferably 100 ° C. or higher in order to obtain a sufficient reaction rate.
  • the organopolysiloxane used in the present invention has an exothermic peak temperature of 300 ° C. or more and 500 ° C. or less and less than the temperature of the glass substrate at the coating liquid application or the glass ribbon at the coating liquid application position. It is preferred to select from a range of organopolysiloxanes.
  • the exothermic peak temperature is 300 ° C. or more and 500 ° C. or less
  • the coating liquid is applied by spraying or the like by the spray method
  • the organopolysiloxane is thermally decomposed before reaching the surface of the glass substrate or the glass ribbon.
  • the exothermic peak temperature is less than the temperature of the glass substrate at the time of coating liquid coating or the glass ribbon at the position of coating liquid coating, the organopolysiloxane will cause a film formation reaction immediately after reaching the surface of the glass substrate or glass ribbon, and good
  • a silicon oxide film containing inorganic fine particles can be formed on a glass substrate or a glass ribbon with a good deposition efficiency.
  • inorganic fine particles examples include metal oxide fine particles and metal fine particles. What is necessary is just to select the kind of inorganic fine particle suitably according to the function requested
  • Examples of the inorganic fine particle material in the present invention include the followings according to functions.
  • UV shielding zinc oxide, cerium oxide, etc.
  • Infrared shielding Indium tin oxide (ITO), antimony tin oxide (ATO), tungsten oxide, erbium, etc.
  • Antistatic ITO, ATO, silver, etc.
  • Photocatalyst titanium oxide and the like.
  • Wavelength conversion zinc oxide, europium doped zinc oxide, zinc sulfide, europium doped zinc sulfide, indium phosphide, bismuth doped calcium sulfide, europium doped calcium fluoride, europium doped yttrium vanadate, and the like.
  • the shape of the inorganic fine particles examples include a spherical shape, a granular shape, a rod shape, a bead shape, a fiber shape, a flake shape, a hollow shape, an aggregate shape, and an indefinite shape.
  • the inorganic fine particles may be core-shell type particles in which one component is coated with another component.
  • the inorganic fine particles may be surface-treated with a surfactant, a polymer dispersant, a silane coupling agent or the like.
  • the average primary particle diameter of the inorganic fine particles is preferably 100 nm or less.
  • the inorganic fine particles may be inert to heat of 400 to 650 ° C., that is, when only the inorganic fine particle dispersion is used as a coating solution, a film is not formed or the deposition efficiency is remarkably low. It may be a thing.
  • the average primary particle diameter of the inorganic fine particles is measured by a dynamic scattering method in a dispersion state.
  • liquid medium capable of dissolving the organopolysiloxane examples include solvents capable of dissolving the organopolysiloxane, such as hydrocarbons (eg, saturated aliphatic hydrocarbons, aromatic hydrocarbons, etc.), unsaturated hydrocarbons, dichloroethane, Examples include trichloroethylene, chlorobenzene, dimethylformamide, methanol, ethanol, acetone, cyclohexanone, and acetylacetone.
  • liquid medium in which the organopolysiloxane can be dispersed (or emulsified) examples include those that do not dissolve the organopolysiloxane, and specifically include water. Moreover, you may use the organic solvent which does not melt
  • the liquid medium in the coating liquid may be one that is evaporated and removed before reaching the surface of the glass substrate or glass ribbon. It may be removed by evaporation after reaching the surface of the glass substrate or glass ribbon.
  • the organopolysiloxane it is preferable to thermally decompose the organopolysiloxane after forming an organopolysiloxane film on the glass substrate or glass ribbon.
  • the boiling point of the liquid medium is preferably 60 ° C. or higher, more preferably 65 ° C. or higher. If the boiling point of the liquid medium is 60 ° C. or higher, the coating liquid is difficult to vaporize before adhering to the surface of a high-temperature glass substrate or glass ribbon, and the deposition efficiency of the silicon oxide film containing inorganic fine particles is improved. As long as the liquid medium has a boiling point lower than the temperature of the surface of the coated glass substrate or glass ribbon, the upper limit of the boiling point is not limited. However, a liquid medium having a boiling point of less than 300 ° C. is usually used. In order to evaporate and remove quickly on a glass substrate or glass ribbon, the boiling point of the liquid medium is preferably 250 ° C. or lower. A more preferable boiling point of the liquid medium is 80 to 200 ° C.
  • the coating liquid contains organopolysiloxane and inorganic fine particles. From the viewpoints of film deposition efficiency of the silicon oxide film containing inorganic fine particles, adjustment of the viscosity of the coating liquid, and handling properties when the coating liquid is applied, a liquid medium is used. Furthermore, it is preferable to include. However, as long as the viscosity of the organopolysiloxane is sufficiently low, it is not always necessary to include a liquid medium.
  • the film component concentration of the coating liquid (that is, the total concentration of organopolysiloxane and inorganic fine particles as film components in the coating liquid) is the adjustment of the deposition efficiency of the silicon oxide film containing inorganic fine particles and the viscosity of the coating liquid, the coating liquid From the viewpoint of handleability at the time of coating, the content is preferably 5 to 90% by mass, more preferably 10 to 85% by mass.
  • the proportion of the organopolysiloxane is preferably 70 to 98% by mass, more preferably 80 to 97% by mass, out of 100% by mass of the film component of the coating solution (that is, the total of the organopolysiloxane and inorganic fine particles in the coating solution). preferable.
  • the proportion of the organopolysiloxane is 70% by mass or more, the refractive index of the inorganic fine particle-containing silicon oxide film can be kept low.
  • the ratio of the organopolysiloxane is 98% by mass or less, the function derived from the inorganic fine particles is sufficiently exhibited.
  • the proportion of the inorganic fine particles is preferably 2 to 30% by mass, more preferably 3 to 20% by mass, out of 100% by mass of the film component in the coating liquid (that is, the total of organopolysiloxane and inorganic fine particles in the coating liquid). preferable.
  • the proportion of the inorganic fine particles is 2% by mass or more, the function derived from the inorganic fine particles is sufficiently exhibited.
  • the proportion of the inorganic fine particles is 30% by mass or less, the refractive index of the inorganic fine particle-containing silicon oxide film can be kept low.
  • the coating liquid is applied by applying a coating liquid obtained by adding inorganic fine particles to liquid organopolysiloxane or a coating liquid obtained by adding inorganic fine particles to a solution or dispersion of organopolysiloxane on a glass substrate or a glass ribbon.
  • a coating liquid containing organopolysiloxane, inorganic fine particles, and a liquid medium is used as a nozzle (for example, a spray gun, etc.) because a glass substrate having an inorganic fine particle-containing silicon oxide film can be produced with high production efficiency.
  • Specific application methods by the spray method include the following methods (i), (ii) and the like, since the number of steps is small and a glass substrate having an inorganic fine particle-containing silicon oxide film can be produced more efficiently. Method (ii) is preferred.
  • the temperature of the glass substrate or glass ribbon when applying the coating liquid is 400 to 650 ° C., and the organopolysiloxane is thermally decomposed into silicon oxide on the glass substrate or glass ribbon in the temperature range.
  • the temperature of the glass substrate or glass ribbon when applying the coating solution is more preferably 500 to 650 ° C.
  • the temperature of the glass substrate or the glass ribbon is less than 400 ° C., it takes time to thermally decompose the organopolysiloxane on the glass substrate into silicon oxide, and thus the productivity is low. If the temperature of the glass ribbon is 650 ° C.
  • the coating liquid can be sprayed not in the float bath but in the place where the glass ribbon is carried out of the float bath, so that the spray contaminates the atmosphere in the bath. There is little fear.
  • the temperature of the glass substrate or the glass ribbon means the surface temperature on the side where the coating liquid is applied.
  • the coating liquid is applied to the glass ribbon at a position where the glass ribbon is in the temperature range of 400 to 650 ° C.
  • the position where the coating liquid is applied is more preferably a position where the glass ribbon is in the temperature range of 500 to 650 ° C.
  • the temperature of the glass ribbon immediately after the float bath depends on the glass composition of the glass substrate, but in the case of soda-lime silica glass, it is usually around 650 ° C. It is not realistic that the temperature of the glass ribbon at the application position exceeds 650 ° C.
  • the glass ribbon exiting the float bath is gradually cooled in the slow cooling step, and is cooled to 400 ° C. or lower in the slow cooling step.
  • Organopolysiloxane is thermally decomposed on a glass substrate or glass ribbon to form silicon oxide. At this time, the presence of oxygen is required in the pyrolysis atmosphere. Under an oxygen-free atmosphere, the organopolysiloxane is easily depolymerized to a low molecular weight organopolysiloxane, and the low molecular weight organopolysiloxane is a low-boiling compound and thus is easily vaporized. Therefore, in an atmosphere without oxygen, the organopolysiloxane is easily lost without being vaporized into silicon oxide. Therefore, the thermal decomposition of the organopolysiloxane is performed in an oxygen-containing atmosphere (for example, an atmosphere such as air or air).
  • an atmosphere for example, an atmosphere such as air or air
  • the application position is a position after the float bath outlet. Since the inside of the float bath is normally maintained in a reducing atmosphere, even if a coating liquid is applied to the glass ribbon inside the float bath, it is difficult to produce a silicon oxide film containing inorganic fine particles. After the float bath exit, there is usually an atmosphere in which there is sufficient oxygen to produce silicon oxide, even if reducing gas from the float bath may be mixed into the air. Moreover, the glass ribbon after the float bath exit moves to a slow cooling device (slow cooling furnace or the like), and the internal atmosphere of the slow cooling device is also usually a heated air atmosphere. Therefore, the position where the coating liquid is applied to the glass ribbon is preferably a position between the float bath and the slow cooling process, or a position during the slow cooling process.
  • the coating amount of the coating liquid is preferably such that the thickness of the thinnest layer portion of the inorganic oxide-containing silicon oxide film is 10 to 300 nm.
  • the thickness of the inorganic oxide-containing silicon oxide film is preferably 10 to 300 nm.
  • An inorganic fine particle-containing silicon oxide film having a thickness in this range is useful as an antireflection film.
  • the inorganic fine particle-containing silicon oxide film having such a thickness may have a convex portion of 300 nm or more.
  • the thickness is not limited to this range.
  • the refractive index of the silicon oxide film containing inorganic fine particles can be kept lower than that of a silicon oxide film containing a metal oxide having a high refractive index. Therefore, a glass substrate having an inorganic fine particle-containing silicon oxide film having a low light reflectance, a high light transmittance, and a function derived from inorganic fine particles can be produced with high production efficiency.
  • the surface of the glass substrate is covered with a thin film of silicon oxide film, so that the occurrence of burns on the surface of the glass substrate Can be suppressed.
  • Example 1 demonstrates this invention in more detail, this invention is not limited to these Examples.
  • Examples 1, 2, and 4 are examples, and example 3 is a comparative example.
  • Transmission reduction amount From the average value of the transmittance at a wavelength of 500 to 550 nm of the glass substrate on which the inorganic fine particle-containing silicon oxide film is not formed, the average of the transmittance at a wavelength of 500 to 550 nm of the glass substrate on which the inorganic fine particle-containing silicon oxide film is formed The difference in transmittance (transmittance reduction amount) was obtained by subtracting the value. It can be said that the lower this value is, the more the glass transmittance can be prevented from decreasing when a film having a high refractive index is formed.
  • Example 1 Long chain alkyl-modified silicone oil (manufactured by Shin-Etsu Silicone, X-22-7322, exothermic peak temperature: 480 ° C., viscosity-converted molecular weight: 6000) to n-decane (manufactured by Kanto Chemical Co., Ltd., boiling point: 174.1 ° C.) Dissolved and dispersed in this dispersion of zinc oxide fine particles (BYK Chemie, NANOBYK-3842, average primary particle diameter of zinc oxide fine particles: 40 nm, concentration of zinc oxide fine particles: 40% by mass, dispersion medium: aromatic free white spirit ) Was added to obtain a coating solution.
  • Table 1 shows the total ratio of the organopolysiloxane and inorganic fine particles (that is, the concentration of the film component) as the film component in the coating liquid, and the respective ratios of the organopolysiloxane and inorganic fine particles in the film component.
  • KM-100 manufactured by SPD Laboratory
  • glass substrate 10 cm ⁇ 10 cm ⁇ 4 mm high transmission glass (Asahi Glass Co., Ltd.) was used.
  • a glass substrate was placed on the stage, and a heater was installed on the back side of the stage without contact with the stage.
  • the glass substrate was heated to 600 ° C. through the stage by the radiant heat of the heater.
  • the temperature of the glass substrate was measured by bringing a thermocouple into contact with one side of the glass substrate. Since the glass substrate was heated for a sufficient time before spraying the coating liquid with the spray gun, the temperature measured here may be regarded as almost the same as the surface temperature of the glass substrate.
  • the spray gun 12 After raising the temperature of the glass substrate to 600 ° C., the spray gun 12 is coated on the glass substrate 10 from the spray gun 12 while moving the spray gun 12 in three steps S1 to S3 above the glass substrate 10 as shown in FIG. The liquid was sprayed.
  • the three steps S1 to S3 were set as one cycle, and coating was performed in five cycles.
  • the liquid feeding pressure to the spray gun 12 is adjusted so that the liquid feeding speed becomes 0.4 to 0.6 mL / second, and the spraying pressure is set to 0.1 MPa. .
  • the coating time in each step was 10 seconds.
  • the stage, glass substrate, and spray gun were sprayed in a state surrounded by an explosion-proof device, and the ambient temperature was not adjusted.
  • the transmittance reduction amount and transmittance of the glass substrate on which the inorganic fine particle-containing silicon oxide film was formed were measured. The results are shown in Table 1 and FIG.
  • Example 2 Long chain alkyl-modified silicone oil (manufactured by Shin-Etsu Silicone, X-22-7322, exothermic peak temperature: 480 ° C., viscosity-converted molecular weight: 6000) to n-decane (manufactured by Kanto Chemical Co., Ltd., boiling point: 174.1 ° C.) Dissolved and dispersed in this dispersion of cerium oxide fine particles (BYK Chemie, NANOBYK-3812, average primary particle diameter of cerium oxide fine particles: 10 nm, concentration of cerium oxide fine particles: 30% by mass, dispersion medium: aromatic free white spirit ) was added to obtain a coating solution.
  • cerium oxide fine particles BYK Chemie, NANOBYK-3812, average primary particle diameter of cerium oxide fine particles: 10 nm, concentration of cerium oxide fine particles: 30% by mass, dispersion medium: aromatic free white spirit
  • Table 1 shows the total ratio of the organopolysiloxane and inorganic fine particles (that is, the concentration of the film component) as the film component in the coating liquid, and the respective ratios of the organopolysiloxane and inorganic fine particles in the film component.
  • a glass substrate on which an inorganic fine particle-containing silicon oxide film was formed was obtained in the same manner as in Example 1 except that the coating solution was changed.
  • the transmittance reduction amount of the glass substrate on which the inorganic fine particle-containing silicon oxide film was formed was measured. The results are shown in Table 1 and FIG.
  • Example 3 Zinc acetate dihydrate (manufactured by Kanto Chemical Co., Inc.) was added to N, N-dimethylformamide (manufactured by Kanto Chemical Co., Ltd., boiling point 153.0 ° C.), and 20% by mass of zinc acetate dihydrate in the total liquid amount was added. A solution containing was obtained. A glass substrate on which a zinc oxide (ZnO) film was formed was obtained in the same manner as in Example 1 except that the coating solution was changed. The transmittance reduction amount of the glass substrate on which the ZnO film was formed was measured. The results are shown in Table 1 and FIG.
  • the glass substrate with inorganic fine particle-containing silicon oxide film of Example 1 and Example 2 has sufficient reflectivity for visible light (wavelength 500 to 550 nm) and transmittance for ultraviolet light (wavelength 400 nm or less) as compared with the high-transmission glass plate alone. It turns out that it has fallen.
  • the ZnO film-coated glass substrate of Example 3 has a sufficiently reduced transmittance of ultraviolet light (wavelength of 400 nm or less) as compared with only a high-transmission glass plate, but the reflectance of visible light (wavelength of 550 to 650 nm) is It became high.
  • Example 4 A glass substrate on which an inorganic fine particle-containing silicon oxide film is formed is manufactured using the glass manufacturing apparatus shown in FIG.
  • the glass manufacturing apparatus 20 melts a glass raw material to form a molten glass 30, and floats the molten glass 30 supplied from the melting furnace 22 on the surface of the molten tin 24, so that the molten glass 30 becomes a glass substrate.
  • an installed air-type spray gun 34 The glass ribbon 32 exiting the slow cooling furnace 28 is cut into a glass substrate by a cutting device (not shown).
  • Conveying speed on glass ribbon 32 moving at 4.2 m / min, at a position where the surface temperature of glass ribbon 32 is 600 ° C. between float bath 26 and slow cooling furnace 28, liquid feeding speed: 36 kg / hour, spraying pressure: The coating liquid is sprayed from the spray gun 34 under the condition of 4.5 kg / cm 2 to form a silicone oil film on the glass ribbon 32, and then the silicone oil is thermally decomposed to form inorganic fine particles on the glass ribbon 32. A silicon oxide film is formed.
  • an inorganic fine particle-containing silicon oxide film having a high light transmittance and having a function derived from inorganic fine particles is directly formed on a high-temperature glass substrate or glass ribbon, and the production efficiency is high.
  • a glass substrate having an inorganic fine particle-containing silicon oxide film manufactured by this method can be produced as a cover glass for solar cells, a protective plate for displays, glass for automobiles, glass for railway vehicles, glass for ships, and for building materials. Useful as glass.

Abstract

 高温のガラス基板またはガラスリボン上に無機微粒子に由来する機能が付与された酸化ケイ素膜を直接形成することができ、光の反射率が低く、光の透過率が高い、無機微粒子含有酸化ケイ素膜付ガラス基板を生産効率よく製造できる方法を提供する。 (1)400~650℃の温度範囲にあるガラス基板に発熱ピーク温度が500℃以下であるオルガノポリシロキサンおよび無機微粒子を含むコート液を塗布してガラス基板上に無機微粒子含有酸化ケイ素膜を形成する、または(2)溶融ガラスをガラスリボンに成形し、ガラスリボンを徐冷し、切断してガラス基板を製造するガラス基板の製造方法において、ガラスリボンが400~650℃の温度範囲にある位置にて、ガラスリボンに発熱ピーク温度が500℃以下であるオルガノポリシロキサンおよび無機微粒子を含むコート液を塗布してガラスリボン上に無機微粒子含有酸化ケイ素膜を形成する。

Description

無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法
 本発明は、無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法に関する。
 ガラス基板には、反射防止(低反射率および高透過率)とともに、他の機能(紫外線遮蔽、赤外線遮蔽、帯電防止、光触媒、波長変換等)が、用途によっては求められることがある。たとえば、太陽電池用カバーガラスにおいては、発電効率向上のため、反射防止機能が求められるとともに、紫外線による内部の劣化を抑えるため、紫外線遮蔽機能が求められる。
 高温のガラス基板に、熱線反射機能を有する膜を作製するために、有機チタン化合物および有機ケイ素化合物を含むコート液を、高温のガラス基板に噴霧し、熱分解によってガラス基板上に酸化ケイ素含有酸化チタン膜を形成する方法が知られている(特許文献1)。
特公昭56-18547号公報
 しかしながら、特許文献1においては、膜に熱線反射機能を与えるために、熱分解性の有機チタン化合物を用いている。有機チタン化合物を用いた成膜では、高温のガラス基板上での有機チタン化合物の熱分解反応により膜を形成させている。そのため、ガラス基板上に良好な着膜効率で成膜させるためには、熱分解温度(発熱ピーク)を調整する必要がある。同様に、有機ケイ素化合物も熱分解温度を調整する必要がある。このように、2つの化合物を用いると、それぞれの熱分解温度を考慮しなければならず、おのずと、使用する化合物の組み合わせも少なくなってしまう。
 本発明は、高温のガラス基板上に無機微粒子に由来する機能が付与された無機微粒子含有酸化ケイ素膜を直接形成することができ、光の透過率が高い、無機微粒子含有酸化ケイ素膜付ガラス基板を生産効率よく製造できる方法を提供する。
 また、本発明は、ガラスリボン(ガラスのシート状連続成形体)を経てガラス基板を製造する方法において、高温のガラスリボン上に無機微粒子に由来する機能が付与された無機微粒子含有酸化ケイ素膜を直接形成することができ、光の透過率が高い、無機微粒子含有酸化ケイ素膜付ガラス基板を生産効率よく製造できる方法を提供する。
 本発明の無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法は、下記の(1)、(2)の発明である。
 (1)400~650℃の温度範囲にあるガラス基板に、昇温速度10℃/minで加熱したときの主たる発熱ピーク温度が500℃以下であるオルガノポリシロキサンおよび無機微粒子を含むコート液を塗布してガラス基板上に無機微粒子含有酸化ケイ素膜を形成することを特徴とする無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法。
 (1)の発明においては、オルガノポリシロキサンとして、昇温速度10℃/minで加熱したときの主たる発熱ピーク温度が300℃以上かつコート液塗布時のガラス基板の温度未満の範囲にあるオルガノポリシロキサンを用いることが好ましい。
 また、オルガノポリシロキサンの昇温速度10℃/minで加熱したときの主たる発熱ピーク温度とコート液塗布時のガラス基板の温度との差が30℃以上であることが好ましい。
 また、コート液は、液状媒体をさらに含むことが好ましい。
 また、液状媒体の沸点は、60℃以上であることが好ましい。
 また、前記オルガノポリシロキサンは、シリコーンオイルであることが好ましい。
 また、前記シリコーンオイルは、長鎖アルキル変性シリコーンオイルであることが好ましい。
 また、前記シリコーンオイルおよび長鎖アルキル変性シリコーンオイルの粘度換算分子量は、3500~130000であることが好ましい。
 また、オルガノポリシロキサンおよび無機微粒子を含むコート液中のオルガノポリシロキサンおよび無機微粒子の合計を100質量%としたとき、オルガノポリシロキサンの割合は、70~98質量%であり、無機微粒子の割合は、2~30質量%であることが好ましい。
 (2)溶融ガラスをガラスリボンに成形し、ガラスリボンを徐冷し、ついで切断してガラス基板を製造するガラス基板の製造方法において、ガラスリボンが400~650℃の温度範囲にある位置にて、ガラスリボンに、昇温速度10℃/minで加熱したときの主たる発熱ピーク温度が500℃以下であるオルガノポリシロキサンおよび無機微粒子を含むコート液を塗布してガラスリボン上に無機微粒子含有酸化ケイ素膜を形成することを特徴とする無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法。
 (2)の発明においては、フロートバス中で溶融ガラスをガラスリボンに成形し、フロートバスと徐冷工程との間または徐冷工程中でコート液を塗布することが好ましい。
 また、オルガノポリシロキサンとして、昇温速度10℃/minで加熱したときの主たる発熱ピーク温度が300℃以上かつコート液塗布位置のガラスリボンの温度未満の範囲にあるオルガノポリシロキサンを用いることが好ましい。
 また、オルガノポリシロキサンの昇温速度10℃/minで加熱したときの主たる発熱ピーク温度とコート液塗布位置のガラスリボンの温度との差が30℃以上であることが好ましい。
 また、コート液は、液状媒体をさらに含むことが好ましい。
 また、液状媒体の沸点は、60℃以上であることが好ましい。
 また、前記オルガノポリシロキサンは、シリコーンオイルであることが好ましい。
 また、前記シリコーンオイルは、長鎖アルキル変性シリコーンオイルであることが好ましい。
 また、前記シリコーンオイルおよび長鎖アルキル変性シリコーンオイルの粘度換算分子量は、3500~130000であることが好ましい。
 また、オルガノポリシロキサンおよび無機微粒子を含むコート液中のオルガノポリシロキサンおよび無機微粒子の合計を100質量%としたとき、オルガノポリシロキサンの割合は、70~98質量%であり、無機微粒子の割合は、2~30質量%であることが好ましい。
 本発明の無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法によれば、高温のガラス基板またはガラスリボン上に無機微粒子に由来する機能が付与された無機微粒子含有酸化ケイ素膜を直接形成することができ、光の透過率が高い、無機微粒子含有酸化ケイ素膜付ガラス基板を生産効率よく製造できる。
実施例における塗布方法の一例を示す斜視図である。 実施例におけるガラス基板の透過率を示すグラフである。 本発明方法を実施するためのガラス製造装置の一例を示す概略図である。
<無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法>
 本発明の無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法は、ガラス基板またはガラス基板となるガラスリボンに、オルガノポリシロキサンおよび無機微粒子を含むコート液を塗布し、オルガノポリシロキサンを熱分解してガラス基板またはガラスリボン上に無機微粒子含有酸化ケイ素膜を形成する方法である。
(ガラス基板)
 ガラス基板の材料としては、ソーダライムシリカガラス、ホウケイ酸ガラス、アルミノシリケートガラス等が挙げられる。また、ガラス基板としては、溶融ガラスをガラスリボンに成形し、ガラスリボンを徐冷し、次いで切断してガラス基板を製造するガラス基板の製造方法において、ガラスリボンにオルガノポリシロキサンおよび無機微粒子を含むコート液を塗布してガラスリボン上に無機微粒子含有酸化ケイ素膜を形成する方法に適用させるため、強化されていない生板ガラス基板が好ましい。
(オルガノポリシロキサン)
 オルガノポリシロキサンとは、シロキサン結合(-Si-O-Si-)を骨格として、そのケイ素原子に結合した有機基を有するポリマーをいう。該有機基は、ケイ素原子に結合する原子が炭素原子である有機基である。ケイ素原子の一部には有機基以外の原子や基(たとえば、水素原子、水酸基、加水分解性基等)が結合していてもよい。加水分解性基とは、水と反応して水酸基となり得る基であり、ハロゲン原子(塩素原子等)、ケイ素原子に結合する原子が酸素原子である基(アルコキシ基、アシル基等)、ケイ素原子に結合する原子が窒素原子である基(アミノ基等)等が挙げられる。加水分解性基に対し、前記有機基は非加水分解性である。
 非加水分解性の基である有機基としては、炭化水素基(炭素原子と水素原子からなる有機基)が好ましい。また、有機基は、ヘテロ原子(酸素原子、窒素原子等)を有する有機基、ハロゲン原子(フッ素原子等)を有する有機基等であってもよい。ヘテロ原子は、反応性基(エポキシ基、カルボキシ基、アミノ基等)の一部であってもよい。炭化水素基としては、アルキル基(メチル基、エチル基等)、アルケニル基(ビニル基、アリル基、エチニル基等)、アリール基(フェニル基等)等が挙げられる。
 オルガノポリシロキサンには、シロキサン結合の骨格が線状構造を有する線状ポリマー、骨格が分岐構造を有する分岐状ポリマー、骨格が網目構造を有する架橋ポリマー、骨格が三次元網目構造を有する三次元架橋ポリマー等がある。また、他のオルガノポリシロキサンとして、線状構造を有するシロキサン結合の骨格の2以上を2価以上の有機基(アルキレン基等)で連結した架橋ポリマー、シロキサン結合の骨格とシロキサン結合を有しない有機ポリマー骨格とが結合したポリマー等もある。上記した各種のオルガノポリシロキサンは、本発明において使用できる。
 詳細は後述するが、本発明におけるオルガノポリシロキサンとしては、400~650℃の温度範囲にあるガラス基板やガラスリボン上で熱分解して酸化ケイ素となり得るもの、かつ無機微粒子の発熱ピーク温度を考慮すると、オルガノポリシロキサンの発熱ピーク温度が500℃以下のものが好ましい。特に、オルガノポリシロキサン自身が液状であるもの、液状媒体に溶解して溶液となり得るもの、または液状媒体に分散して分散液となり得るものであることが好ましい。
 本発明におけるオルガノポリシロキサンとしては、無機微粒子含有酸化ケイ素膜の着膜効率および入手容易性の点から、前記オルガノポリシロキサンのうち線状のポリマーが好ましく、線状のジオルガノポリシロキサンが特に好ましい。ジオルガノポリシロキサンとは、2個の有機基が結合したシリルオキシ基を繰り返し単位とするポリマーであり、線状のジオルガノポリシロキサンでは両末端のケイ素原子に3個の有機基が結合する。有機基の一部は水素原子であってもよい。有機基は通常炭素数4以下のアルキル基(特にメチル基)であるが、一部の有機基はアルケニル基やフェニル基であってもよい。また、有機基は、上述のように、ヘテロ原子(酸素原子、窒素原子等)を有する有機基、ハロゲン原子(フッ素原子等)を有する有機基等であってもよい。
 本発明におけるオルガノポリシロキサンとしては、無機微粒子含有酸化ケイ素膜の着膜効率およびコート液の粘度(取扱性)の点から、シリコーンオイルが特に好ましい。本発明におけるシリコーンオイルとは、室温で流動性を有するオイル状の化合物である線状オルガノポリシロキサンを意味する。シリコーンオイルは、通常、下式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
 式(1)において、R~Rは有機基または水素原子を表し、nは1以上の整数を表す。R~Rが有機基の場合、それら有機基は同一であっても異なっていてもよい。[ ]内の2官能性の単位は通常D単位と呼ばれ、両末端の[ ]外の1官能性の単位はM単位と呼ばれている。nが2以上の整数である場合(すなわち、D単位が2以上存在する場合)、それらD単位は異なっていてもよい。2個存在するM単位も異なっていてもよい。D単位が異なるとはRとRの少なくとも1つが異なることをいう。M単位が異なるとはR、R、Rの少なくとも1つが異なることをいう。
 式(1)で表されるシリコーンオイルとしては、R~Rがすべてメチル基であるシリコーンオイル、またはR~Rの一部が水素原子またはメチル基以外の有機基であって他がメチル基であるシリコーンオイルが好ましい。以下、R~Rのすべてがメチル基である場合、そのD単位をD単位といい、そのM単位をM単位という。一方、RとRの一方がメチル基で他方が水素原子またはメチル基以外の有機基であるD単位をD単位といい、R~Rの2つがメチル基で他の1つが水素原子または他の有機基であるM単位をM単位という。そうすると、R~Rがすべてメチル基である式(1)で表されるシリコーンオイルは、M(Dで表すことができる。式(1)で表されるシリコーンオイルがケイ素原子に結合した水素原子またはメチル基以外の有機基を有する場合、M(D(Dで表されるシリコーンオイル、M(Dで表されるシリコーンオイル、M(D(Dで表されるシリコーンオイルが好ましい(ただし、pおよびqは1以上の整数であり、p+q=nである)。メチル基以外の有機基としては、炭素数2以上のアルキル基(エチル基等)、ポリフルオロアルキル基、フェニル基、ヘテロ原子(酸素原子、窒素原子等)を有する有機基(特に反応性基(エポキシ基、アミノ基等)を有する有機基)等が好ましい。
 R~Rのすべてがメチル基であるシリコーンオイルは、ジメチルシリコーンオイルと呼ばれている。また、R~Rの一部がフェニル基で他がメチル基であるシリコーンオイルは、メチルフェニルシリコーンオイルと呼ばれ、R~Rの一部が水素原子で他がメチル基であるシリコーンオイルは、メチルハイドロジェンシリコーンオイルと呼ばれている。さらに、R~Rの一部が、長鎖アルキル基(炭素数6~22の直鎖アルキル基が好ましい。)、ヘテロ原子(酸素原子、窒素原子等)を有する有機基、ハロゲン原子(フッ素原子等)を有する有機基等で他がメチル基であるシリコーンオイルは変性シリコーンオイルと呼ばれている。本発明において、シリコーンオイルとは変性シリコーンも含むものである。変性シリコーンオイルは、メチル基以外の有機基の種類やその有機基が有する反応性基の種類により、たとえば、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、長鎖アルキル変性シリコーンオイル、アミノ変性シリコーンオイル、ポリエーテル変性シリコーンオイル等と呼ばれている。本発明におけるシリコーンオイルとしては、無機微粒子含有酸化ケイ素膜の着膜効率の点から、エポキシ変性シリコーンオイルまたは長鎖アルキル変性シリコーンオイルが好ましく、アルキル基の炭素数が5以上の長鎖アルキル変性シリコーンオイルが特に好ましい。かかる長鎖アルキル変性シリコーンオイルとしては、炭素数が5以上、20以下のアルキル基を有する長鎖アルキル変性シリコーンオイルがさらに好ましい。アルキル鎖長の炭素数が20より大きくなると、常温で固体となり、取扱いの点から好ましくない。
 式(1)におけるnは重合度を表し、R~Rが同一のシリコーンオイル間の比較では、通常nが大きくなるほどその粘度が高くなる。したがって、シリコーンオイルの粘度によりそのnの値(すなわち分子量)を測定することができ、その分子量は粘度換算分子量と呼ばれている。本発明におけるシリコーンオイルとしては、粘度換算分子量が3500~130000のシリコーンオイルが好ましく、3500~100000のシリコーンオイルがより好ましく、6000~55000のシリコーンオイルがさらに好ましい。
 シリコーンオイルの粘度換算分子量が3500以上であれば、ガラス基板やガラスリボンに付着する前に気化しにくく、無機微粒子含有酸化ケイ素膜の着膜効率がよくなる。シリコーンオイルの粘度換算分子量が130000以下であれば、ヘイズが低く抑えられ、透過率を高く維持できる。また、シリコーンオイルの粘度が高すぎず、取扱性がよい。
 シリコーンオイルの粘度換算分子量は、下記の手順にて求める。
 (I)シリコーンオイルの動粘度η(25℃および40℃)を求める。
 (II)動粘度ηが100mm/秒以上の場合、下式(2)のBarryの式から分子量Mを求める。動粘度ηが100mm/秒未満の場合、下式(3)のWarrikの式から分子量Mを求める。
   logηCS/25℃=1.00+0.0123M0.5 ・・・(2)、
   logηP/40℃=1.43logM-5.54    ・・・(3)。
 ここで、
   ηCS/25℃:25℃における動粘度、
   ηP/40℃:40℃における粘度、
   M:粘度換算分子量
である。
 また、本発明におけるオルガノポリシロキサンとしては、シリコーンオイル以外に、400~650℃の温度範囲にあるガラス基板またはガラスリボン上で熱分解して酸化ケイ素となり得るオルガノポリシロキサンを用いることができる。該オルガノポリシロキサンとしては、たとえば、シリコーンレジン、シリコーンゴム、シリコーンエラストマー、およびそれらの原料であるシロキサン結合を骨格とする化合物が挙げられる。
 シリコーンレジンは、T単位と呼ばれる1個の有機基がケイ素原子と結合したRSiO3/2で表される3官能性の単位(ただし、Rは前記R~Rと同様の有機基を表す。)を主たる構成単位とする硬化性のオルガノポリシロキサンである。シリコーンレジンは、T単位以外に前記D単位を有していてもよい。さらに、Q単位と呼ばれる4官能性の単位(SiO4/2で表される。)や前記M単位を有することもある。硬化前のシリコーンレジンを本発明におけるオルガノポリシロキサンとして用いることができる。シリコーンゴムやシリコーンエラストマーは、架橋性のオルガノポリシロキサン(例えば、架橋性有機基(ビニル基等)を有するオルガノポリシロキサン、シラノール基や加水分解性基が結合したケイ素原子を有するオルガノポリシロキサン等である。)を架橋して得られるポリマーであり、該架橋したポリマーやその原料である架橋性のオルガノポリシロキサンを本発明におけるオルガノポリシロキサンとして用いることができる。
 本発明において用いるオルガノポリシロキサンとしては、オルガノポリシロキサンを含むコート液をガラス基板に塗布する場合、昇温速度10℃/minで加熱した際の主たる発熱ピーク温度が300℃以上500℃以下かつコート液塗布時のガラス基板の温度未満の範囲にあるオルガノポリシロキサンが好ましい。また、オルガノポリシロキサンを含むコート液をガラスリボンに塗布する場合、昇温速度10℃/minで加熱した際の主たる発熱ピーク温度が300℃以上500℃以下かつコート液塗布位置のガラスリボンの温度未満の範囲にあるオルガノポリシロキサンが好ましい。オルガノポリシロキサンを昇温速度10℃/minで加熱した際に主たる発熱ピークが示される位置の温度を、以下、発熱ピーク温度と記す。
 該発熱ピーク温度以上においてオルガノポリシロキサンが熱分解して酸化ケイ素となる。したがって、コート液塗布時のガラス基板の温度やコート液塗布位置のガラスリボンの温度よりも低い発熱ピーク温度を有するオルガノポリシロキサンを用いる。逆に言えば、ある発熱ピーク温度を有するオルガノポリシロキサンを用いる場合、コート液を塗布するガラス基板の温度は該発熱ピーク温度を超える温度とし、ガラスリボンにコート液を塗布する位置は、ガラスリボンが該発熱ピーク温度を超える温度となる位置とする。
 コート液塗布時のガラス基板の温度やコート液塗布位置のガラスリボンの温度は、400~650℃である。本発明におけるコート液は、無機微粒子を含有する。無機微粒子がきちんと成膜されるためには、ガラス基板やガラスリボンの表面温度よりも100℃以下ぐらいの温度が好ましい。一般的に、フロートバス出口と徐令炉との間のガラスリボンの表面温度は600℃ぐらいである。したがって、本発明において用いるオルガノポリシロキサンは、無機微粒子の発熱ピーク温度を考慮すると、発熱ピーク温度が少なくとも500℃以下のものから選ばれる。
 さらに、ガラス基板やガラスリボンの温度と、オルガノポリシロキサンの発熱ピーク温度とが近接していると、酸化ケイ素となる熱分解反応の速度が遅くなり、炭化物等の副生物が残存するおそれが生じ、さらに生産性が不充分となるおそれがある。両者の温度差は30℃以上が好ましく、50℃以上がより好ましく、充分な反応速度を得るためには100℃以上がさらに好ましい。無機微粒子の発熱ピーク温度を考慮すると、本発明で用いるオルガノポリシロキサンとしては、発熱ピーク温度が300℃以上500℃以下かつコート液塗布時のガラス基板またはコート液塗布位置のガラスリボンの温度未満の範囲にあるオルガノポリシロキサンから選択することが好ましい。
 発熱ピーク温度が300℃以上500℃以下あることで、スプレー法による噴霧等でコート液を塗布する場合、オルガノポリシロキサンがガラス基板やガラスリボンの表面に到達する前に熱分解するおそれが少なくなる。発熱ピーク温度がコート液塗布時のガラス基板またはコート液塗布位置のガラスリボンの温度未満であれば、オルガノポリシロキサンがガラス基板やガラスリボンの表面に到達した後に速やかに膜形成反応を起こし、良好な着膜効率でガラス基板やガラスリボン上に無機微粒子含有酸化ケイ素膜を形成できる。
(無機微粒子)
 本発明における無機微粒子としては、金属酸化物微粒子、金属微粒子が挙げられる。無機微粒子含有酸化ケイ素膜付ガラス基板に要求される機能に応じて、適宜、無機微粒子の種類を選択すればよい。
 本発明における無機微粒子の材料としては、機能別に下記のものが挙げられる。
  紫外線遮蔽:酸化亜鉛、酸化セリウム等。
  赤外線遮蔽:酸化インジウムスズ(ITO)、酸化アンチモンスズ(ATO)、酸化タングステン、エルビウム等。
  帯電防止:ITO、ATO、銀等。
  光触媒:酸化チタン等。
  波長変換:酸化亜鉛、ユーロピウムドープ酸化亜鉛、硫化亜鉛、ユーロピウムドープ硫化亜鉛、リン化インジウム、ビスマスドープ硫化カルシウム、ユーロピウムドープフッ化カルシウム、ユーロピウムドープバナジン酸イットリウム等。
 無機微粒子の形状としては、球状、粒状、棒状、数珠状、繊維状、フレーク状、中空状、凝集体状、不定形状等が挙げられる。無機微粒子は、一つの成分が別の成分によって被覆されたコア-シェル型粒子であってもよい。また、無機微粒子は、界面活性剤、高分子分散剤、シランカップリング剤等によって表面処理されていてもよい。
 無機微粒子の平均一次粒子径は、100nm以下が好ましい。無機微粒子の平均一次粒子径が100nm以下であれば、光の散乱による透過率の低下が抑えられる。また、無機微粒子は400~650℃の熱に対して不活性なものであってもよく、つまり無機微粒子分散液のみを塗布液として用いた場合に膜を形成しない、または著しく着膜効率の低いものであってもよい。
 無機微粒子の平均一次粒子径は、分散液の状態にて動的散乱法で測定する。
(液状媒体)
 オルガノポリシロキサンを溶解し得る液状媒体としては、オルガノポリシロキサンを溶解できる溶媒が挙げられ、炭化水素類(例えば、飽和脂肪族炭化水素、芳香族炭化水素等。)、不飽和炭化水素、ジクロロエタン、トリクロロエチレン、クロロベンゼン、ジメチルホルムアミド、メタノール、エタノール、アセトン、シクロヘキサノン、アセチルアセトン等が挙げられる。
 オルガノポリシロキサンを分散(または乳化)し得る液状媒体としては、オルガノポリシロキサンを溶解しないものが挙げられ、具体的には水が挙げられる。また、オルガノポリシロキサンの種類によりそれを溶解しない有機溶媒を用いてもよく、有機溶媒としては前記溶媒が挙げられる。
 スプレー法による噴霧等でコート液を塗布する場合、コート液における液状媒体としては、ガラス基板やガラスリボンの表面に到達する前に蒸発して除去されるものであってもよく、コート液が高温のガラス基板やガラスリボンの表面に到達した後に蒸発して除去されるものであってもよい。ガラス基板やガラスリボン上に均一な無機微粒子含有酸化ケイ素膜を形成するためには、ガラス基板やガラスリボン上にオルガノポリシロキサンの膜を形成した後、オルガノポリシロキサンを熱分解することが好ましい。そのためには、比較的沸点の高い液状媒体を用い、ガラス基板やガラスリボン上に液状媒体を含むオルガノポリシロキサンの膜を形成した後、液状媒体を蒸発させることが好ましい。
 液状媒体の沸点は、60℃以上が好ましく、65℃以上がより好ましい。液状媒体の沸点が60℃以上であれば、コート液が高温のガラス基板やガラスリボンの表面に付着する前に気化しにくく、無機微粒子含有酸化ケイ素膜の着膜効率がよくなる。液状媒体は、塗布されたガラス基板やガラスリボンの表面の温度よりも低い沸点を有する限り、その沸点の上限は制約されない。しかし、通常は300℃未満の沸点を有する液状媒体が用いられる。ガラス基板やガラスリボン上で速やかに蒸発除去するためには、液状媒体の沸点は250℃以下が好ましい。液状媒体のより好ましい沸点は80~200℃である。
(コート液)
 コート液は、オルガノポリシロキサンおよび無機微粒子を含むものであり、無機微粒子含有酸化ケイ素膜の着膜効率およびコート液の粘度の調整、コート液の塗布時の取扱性等の点から、液状媒体をさらに含むことが好ましい。
 ただし、オルガノポリシロキサンの粘度が充分低いものであれば、必ずしも液状媒体を含むことを要しない。
 コート液の膜成分濃度(すなわち、コート液中の膜成分となるオルガノポリシロキサンおよび無機微粒子の合計の濃度)は、無機微粒子含有酸化ケイ素膜の着膜効率およびコート液の粘度の調整、コート液の塗布時の取扱性等の点から、5~90質量%が好ましく、10~85質量%がより好ましい。
 オルガノポリシロキサンの割合は、コート液の膜成分(すなわち、コート液中のオルガノポリシロキサンおよび無機微粒子の合計)の100質量%のうち、70~98質量%が好ましく、80~97質量%がより好ましい。オルガノポリシロキサンの割合が70質量%以上であれば、無機微粒子含有酸化ケイ素膜の屈折率を低く抑えることができる。オルガノポリシロキサンの割合が98質量%以下であれば、無機微粒子に由来する機能が充分に発揮される。
 無機微粒子の割合は、コート液中の膜成分(すなわち、コート液中のオルガノポリシロキサンおよび無機微粒子の合計)の100質量%のうち、2~30質量%が好ましく、3~20質量%がより好ましい。無機微粒子の割合が2質量%以上であれば、無機微粒子に由来する機能が充分に発揮される。無機微粒子の割合が30質量%以下であれば、無機微粒子含有酸化ケイ素膜の屈折率を低く抑えることができる。
(コート液の塗布)
 コート液の塗布は、液状のオルガノポリシロキサンに無機微粒子を添加したコート液、またはオルガノポリシロキサンの溶液や分散液に無機微粒子を添加したコート液をガラス基板やガラスリボンに塗布することによって行う。
 コート液の塗布方法としては、無機微粒子含有酸化ケイ素膜を有するガラス基板を生産効率よく製造できる点から、オルガノポリシロキサンと無機微粒子と液状媒体とを含むコート液を、ノズル(例えば、スプレーガン等)を用いて噴霧するスプレー法が好ましい。
 スプレー法による具体的な塗布方法としては、下記の方法(i)、(ii)等が挙げられ、工程数が少なく、無機微粒子含有酸化ケイ素膜を有するガラス基板をより生産効率よく製造できる点から、方法(ii)が好ましい。
 (i)固定されたガラス基板の上方でノズルを移動させながら、ノズルからガラス基板にコート液を噴霧する方法。
 (ii)一方向に移動しているガラスリボンが後述の温度範囲にある位置に設置されたノズルから、ガラスリボンにコート液を噴霧する方法。特に、フロートバス中で溶融ガラスを成形して得られたガラスリボンに対し、フロートバスと徐冷工程との間または徐冷工程中でコート液を噴霧することが好ましい。
 コート液を塗布する際のガラス基板またはガラスリボンの温度は、400~650℃であり、該温度範囲にあるガラス基板またはガラスリボン上でオルガノポリシロキサンが熱分解して酸化ケイ素となる。コート液を塗布する際のガラス基板またはガラスリボンの温度は、500~650℃がより好ましい。ガラス基板またはガラスリボンの温度が400℃未満では、ガラス基板上のオルガノポリシロキサンを酸化ケイ素に熱分解するのに時間がかかるため、生産性が低い。ガラスリボンの温度が650℃以下であれば、フロートバス内ではなく、ガラスリボンがフロートバスから搬出された場所でのコート液のスプレーとすることができ、そのためスプレーにバス内の雰囲気を汚染するおそれが少ない。
 ここで、ガラス基板やガラスリボンの温度とは、コート液を塗布する側の表面温度を意味する。
 ガラスリボンにコート液を塗布する場合、ガラスリボンが400~650℃の温度範囲にある位置にて、ガラスリボンにコート液を塗布する。コート液を塗布する位置は、ガラスリボンが500~650℃の温度範囲にある位置がより好ましい。フロート法でガラス基板を製造する場合、フロートバス直後の位置のガラスリボンの温度は、ガラス基板のガラス組成にもよるが、通常ソーダライムシリカガラスの場合、650℃程度であるため、コート液を塗布する位置のガラスリボンの温度が650℃を超えることは現実的でない。フロートバスを出たガラスリボンは徐冷工程で徐冷され、徐冷工程中で400℃以下に冷却される。
 オルガノポリシロキサンは、ガラス基板やガラスリボン上で熱分解し、酸化ケイ素となる。この際、熱分解雰囲気に酸素の存在が必要とされる。酸素のない雰囲気下では、オルガノポリシロキサンは低分子量のオルガノポリシロキサンに解重合しやすく、低分子量のオルガノポリシロキサンは低沸点の化合物であることから気化しやすい。そのため、酸素のない雰囲気下では、オルガノポリシロキサンは、酸化ケイ素とならずに気化して失われやすい。したがって、オルガノポリシロキサンの熱分解は酸素含有雰囲気(例えば、空気、大気等の雰囲気)下で行う。フロート法で成形したガラスリボンにコート液を塗布する場合、その塗布位置はフロートバス出口以降の位置とする。フロートバス内は、通常、還元雰囲気に保たれていることから、フロートバス内部のガラスリボンにコート液を塗布しても無機微粒子含有酸化ケイ素膜は生成し難い。フロートバス出口以降では、たとえフロートバスから出た還元性ガスが空気に混入することがあったとしても、通常、酸化ケイ素が生成するに充分な酸素が存在する雰囲気にある。また、フロートバス出口以降のガラスリボンは徐冷装置(徐冷炉等)に移行し、該徐冷装置の内部雰囲気もまた、通常は加熱空気雰囲気にある。したがって、ガラスリボンにコート液を塗布する位置は、フロートバスと徐冷工程との間の位置、または徐冷工程中の位置とすることが好ましい。
 コート液の塗布量は、無機微粒子含有酸化ケイ素膜の最薄層部分の厚さが10~300nmとなる量が好ましい。
 無機微粒子含有酸化ケイ素膜の厚さは、10~300nmであることが好ましい。厚さが該範囲の無機微粒子含有酸化ケイ素膜は、反射防止膜として有用である。なお、かかる厚さの無機微粒子含有酸化ケイ素膜は、300nm以上の凸部分を有していても構わない。しかし、反射防止以外を目的とする無機微粒子含有酸化ケイ素膜を形成する場合は、厚さは該範囲に限定されるものではない。
(作用効果)
 以上説明した本発明の無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法にあっては、発熱ピーク温度が500℃以下であるオルガノポリシロキサンおよび無機微粒子を含むコート液を加熱されたガラス基板やガラスリボンに塗布しているため、スパッタ法やCVD法に比べ、無機微粒子含有酸化ケイ素膜を生産効率よく形成できる。また、該酸化ケイ素を主成分とする膜は、無機微粒子を含んでいるため、無機微粒子に由来する機能を有する。また、無機微粒子含有酸化ケイ素膜の屈折率は、高屈折率の金属酸化物を含む酸化ケイ素膜に比べ低く抑えられる。よって、光の反射率が低く、光の透過率が高く、かつ無機微粒子に由来する機能が付与された無機微粒子含有酸化ケイ素膜を有するガラス基板を生産効率よく製造できる。
 また、本発明の製造方法によって得られた無機微粒子含有酸化ケイ素膜付ガラス基板にあっては、ガラス基板の表面が酸化ケイ素膜の薄膜で覆われているため、ガラス基板の表面におけるヤケの発生を抑制できる。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
 例1、2、4は実施例であり、例3は比較例である。
(発熱ピーク温度)
 シリコーンオイルについて、TG-DTA(BRUKER axs社製、ASC 7000S)を用い、昇温速度10℃/minで、25℃から700℃まで昇温させたときに現れる発熱ピークを測定し、該発熱ピークのうち最も高いピークにおける温度を発熱ピーク温度とした。
(動粘度)
 シリコーンオイルの動粘度(25℃および40℃)は、JIS Z8803(1991年)によるウベローデ粘度計により測定した。
(透過率低減量)
 無機微粒子含有酸化ケイ素膜が形成されていないガラス基板の、波長500~550nmにおける透過率の平均値から、無機微粒子含有酸化ケイ素膜が形成されたガラス基板の、波長500~550nmにおける透過率の平均値を減算して透過率の差(透過率低減量)を求めた。この値が低いほど、高屈折率の膜を成膜した際に起きるガラス透過率の低下を抑制できているといえる。
〔例1〕
 長鎖アルキル変性シリコーンオイル(信越シリコーン社製、X-22-7322、発熱ピーク温度:480℃、粘度換算分子量:6000)を、n-デカン(関東化学社製、沸点:174.1℃)に溶解し、これに酸化亜鉛微粒子の分散液(BYKケミー社製、NANOBYK-3842、酸化亜鉛微粒子の平均一次粒子径:40nm、酸化亜鉛微粒子の濃度:40質量%、分散媒:芳香族フリーホワイトスピリット)を加えてコート液を得た。表1に、コート液中の膜成分となるオルガノポリシロキサンおよび無機微粒子の合計の割合(すなわち、膜成分の濃度)と、膜成分中のオルガノポリシロキサンおよび無機微粒子のそれぞれの割合を示す。
 塗布装置としては、KM-100(SPD研究所社製)を用いた。ガラス基板としては、10cm×10cm×4mmの高透過ガラス(旭硝子社製)を用いた。
 ガラス基板をステージ上に載置し、ステージ裏面側にステージと非接触でヒーターを設置した。ヒーターの放射熱により、ステージを介してガラス基板を600℃に加熱した。ガラス基板の温度は、ガラス基板の一側面に熱電対を接触させることにより測定した。スプレーガンでコート液を噴霧する前にガラス基板を充分な時間加熱したため、ここで測定された温度はガラス基板の表面温度とほぼ同じとみなしてよい。
 ガラス基板を600℃まで昇温した後、図1に示すように、ガラス基板10の上方でスプレーガン12をS1~S3の3つのステップで移動させながら、スプレーガン12からガラス基板10上にコート液を噴霧した。S1~S3の3つのステップを1サイクルとし、5サイクルで塗布を行った。また、スプレーガン12からコート液を噴霧する際、送液速度が0.4~0.6mL/秒となるようにスプレーガン12への送液圧力を調節し、噴霧圧力は0.1MPaとした。各ステップにおける塗布時間は10秒とした。なお、ステージ、ガラス基板、スプレーガンは防爆装置で囲われた状態で噴霧を行い、雰囲気温度は調整しなかった。
 無機微粒子含有酸化ケイ素膜が形成されたガラス基板の透過率低減量、透過率を測定した。結果を表1および図2に示す。
〔例2〕
 長鎖アルキル変性シリコーンオイル(信越シリコーン社製、X-22-7322、発熱ピーク温度:480℃、粘度換算分子量:6000)を、n-デカン(関東化学社製、沸点:174.1℃)に溶解し、これに酸化セリウム微粒子の分散液(BYKケミー社製、NANOBYK-3812、酸化セリウム微粒子の平均一次粒子径:10nm、酸化セリウム微粒子の濃度:30質量%、分散媒:芳香族フリーホワイトスピリット)を加えてコート液を得た。表1に、コート液中の膜成分となるオルガノポリシロキサンおよび無機微粒子の合計の割合(すなわち、膜成分の濃度)と、膜成分中のオルガノポリシロキサンおよび無機微粒子のそれぞれの割合を示す。
 コート液を変更した以外は、例1と同様にして無機微粒子含有酸化ケイ素膜が形成されたガラス基板を得た。
 無機微粒子含有酸化ケイ素膜が形成されたガラス基板の透過率低減量を測定した。結果を表1および図2に示す。
〔例3〕
 酢酸亜鉛二水和物(関東化学社製)をN,N-ジメチルホルムアミド(関東化学社製、沸点153.0℃)に加え、全液量のうち20質量%の酢酸亜鉛二水和物を含む溶液を得た。
 コート液を変更した以外は、例1と同様にして酸化亜鉛(ZnO)膜が形成されたガラス基板を得た。
 ZnO膜が形成されたガラス基板の透過率低減量を測定した。結果を表1および図2に示す。
Figure JPOXMLDOC01-appb-T000002
 例1および例2の無機微粒子含有酸化ケイ素膜付ガラス基板は、高透過ガラス板のみに比べ、可視光(波長500~550nm)の反射率がおよび紫外線(波長400nm以下)の透過率が充分に低下していることがわかる。
 一方、例3のZnO膜付ガラス基板は、高透過ガラス板のみに比べ、紫外線(波長400nm以下)の透過率が充分に低下しているものの、可視光(波長550~650nm)の反射率は高くなった。
〔例4〕
 図3に示すガラス製造装置を用いて無機微粒子含有酸化ケイ素膜が形成されたガラス基板を製造する。ガラス製造装置20は、ガラス原料を溶解し、溶融ガラス30とする溶解窯22と、溶解窯22から供給された溶融ガラス30を溶融スズ24の表面に浮かべることで溶融ガラス30をガラス基板となるガラスリボン32に成形するフロートバス26と、該ガラスリボン32を徐冷する徐冷炉28と、フロートバス26の出口と徐冷炉28の入り口との間で、かつガラスリボン32の上方に570mmの高さで設置されたエアー式スプレーガン34とを備える。徐冷炉28を出たガラスリボン32は図示されていない切断装置により切断されてガラス基板とされる。
 長鎖アルキル変性シリコーンオイル(信越シリコーン社製、X-22-7322、発熱ピーク温度:480℃、粘度換算分子量:6000)を、n-デカン(関東化学社製、沸点:174.1℃)に溶解し、これに酸化亜鉛微粒子の分散液(BYKケミー社製、NANOBYK-3842、酸化亜鉛微粒子の平均一次粒子径:40nm、酸化亜鉛微粒子の濃度:40質量%、分散媒:芳香族フリーホワイトスピリット)を加え、コート液中の膜成分となるオルガノポリシロキサンおよび無機微粒子の合計の割合が82質量%であって、長鎖アルキル変性シリコーンオイルの割合が85質量%、酸化亜鉛微粒子の割合が15質量%のコート液を調製する。
 搬送速度:4.2m/分で移動するガラスリボン32に、フロートバス26と徐冷炉28の間でガラスリボン32表面温度が600℃にある位置にて、送液速度:36kg/時、噴霧圧力:4.5kg/cmの条件で、スプレーガン34から上記コート液を噴霧し、ガラスリボン32上にシリコーンオイルの膜を形成し、その後、シリコーンオイルを熱分解させてガラスリボン32上に無機微粒子含有酸化ケイ素膜を形成する。
 以上説明したように、本発明の無機微粒子含有酸化ケイ素膜付きガラス基板の製造方法によれば、発熱ピーク温度が500℃以下のオルガノポリシロキサンを用いているため、無機微粒子との組み合わせがよく、400~650℃の温度範囲にあるガラス面に、きちんと成膜できる。
 本発明の製造方法によれば、高温のガラス基板またはガラスリボン上に無機微粒子に由来する機能が付与された、光の透過率の高い無機微粒子含有酸化ケイ素膜を、直接形成、かつ生産効率よく製造することができ、この方法により製造された無機微粒子含有酸化ケイ素膜を有するガラス基板は、太陽電池用カバーガラス、ディスプレイ用保護板、自動車用ガラス、鉄道車両用ガラス、船舶用ガラス、建材用ガラス等として有用である。
 なお、2010年6月11日に出願された日本特許出願2010-134187号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 10:ガラス基板、 12:スプレーガン、 26:フロートバス、 28:徐冷炉、 30:溶融ガラス、 32:ガラスリボン、 34:エアー式スプレーガン。

Claims (19)

  1.  400~650℃の温度範囲にあるガラス基板に、昇温速度10℃/minで加熱したときの主たる発熱ピーク温度が500℃以下であるオルガノポリシロキサンおよび無機微粒子を含むコート液を塗布してガラス基板上に無機微粒子含有酸化ケイ素膜を形成することを特徴とする無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法。
  2.  オルガノポリシロキサンとして、昇温速度10℃/minで加熱したときの主たる発熱ピーク温度が300℃以上かつコート液塗布時のガラス基板の温度未満の範囲にあるオルガノポリシロキサンを用いる、請求項1に記載の製造方法。
  3.  オルガノポリシロキサンの昇温速度10℃/minで加熱したときの主たる発熱ピーク温度とコート液塗布時のガラス基板の温度との差が30℃以上である、請求項2に記載の製造方法。
  4.  コート液が、液状媒体をさらに含む、請求項1~3のいずれかに記載の製造方法。
  5.  液状媒体の沸点が、60℃以上である、請求項4に記載の製造方法。
  6.  前記オルガノポリシロキサンが、シリコーンオイルである、請求項1~5のいずれかに記載の製造方法。
  7.  前記シリコーンオイルが、長鎖アルキル変性シリコーンオイルである、請求項6に記載の製造方法。
  8.  前記シリコーンオイルの粘度換算分子量が、3500~130000である、請求項6または7に記載の製造方法。
  9.  オルガノポリシロキサンおよび無機微粒子を含むコート液中のオルガノポリシロキサンおよび無機微粒子の合計を100質量%としたとき、オルガノポリシロキサンの割合は、70~98質量%であり、無機微粒子の割合は、2~30質量%である、請求項1~8のいずれかに記載の製造方法。
  10.  溶融ガラスをガラスリボンに成形し、ガラスリボンを徐冷し、ついで切断してガラス基板を製造するガラス基板の製造方法において、
     ガラスリボンが400~650℃の温度範囲にある位置にて、ガラスリボンに、昇温速度10℃/minで加熱したときの主たる発熱ピーク温度が500℃以下であるオルガノポリシロキサンおよび無機微粒子を含むコート液を塗布してガラスリボン上に無機微粒子含有酸化ケイ素膜を形成することを特徴とする無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法。
  11.  フロートバス中で溶融ガラスをガラスリボンに成形し、フロートバスと徐冷工程との間または徐冷工程中でコート液を塗布する、請求項10に記載の製造方法。
  12.  オルガノポリシロキサンとして、昇温速度10℃/minで加熱したときの主たる発熱ピーク温度が300℃以上かつコート液塗布位置のガラスリボンの温度未満の範囲にあるオルガノポリシロキサンを用いる、請求項10または11に記載の製造方法。
  13.  オルガノポリシロキサンの昇温速度10℃/minで加熱したときの主たる発熱ピーク温度とコート液塗布位置のガラスリボンの温度との差が30℃以上である、請求項12に記載の製造方法。
  14.  コート液が、液状媒体をさらに含む、請求項10~13のいずれかに記載の製造方法。
  15.  液状媒体の沸点が、60℃以上である、請求項14に記載の製造方法。
  16.  前記オルガノポリシロキサンが、シリコーンオイルである、請求項10~15のいずれかに記載の製造方法。
  17.  前記シリコーンオイルが、長鎖アルキル変性シリコーンオイルである、請求項16に記載の製造方法。
  18.  前記シリコーンオイルの粘度換算分子量が、3500~130000である、請求項16または17に記載の製造方法。
  19. オルガノポリシロキサンおよび無機微粒子を含むコート液中のオルガノポリシロキサンおよび無機微粒子の合計を100質量%としたとき、オルガノポリシロキサンの割合は、70~98質量%であり、無機微粒子の割合は、2~30質量%である、請求項10~18のいずれかに記載の製造方法。
PCT/JP2011/063180 2010-06-11 2011-06-08 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法 WO2011155545A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11792502.4A EP2581352A4 (en) 2010-06-11 2011-06-08 METHOD FOR PRODUCING A GLASS SUBSTRATE WITH A SILICON OXIDE FILM WITH INORGANIC MICROPARTICLES
JP2012519421A JPWO2011155545A1 (ja) 2010-06-11 2011-06-08 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法
CN2011800286624A CN102933518A (zh) 2010-06-11 2011-06-08 带含无机微粒的氧化硅膜的玻璃基板的制造方法
US13/710,754 US8978416B2 (en) 2010-06-11 2012-12-11 Process for producing glass substrate provided with inorganic fine particle-containing silicon oxide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-134187 2010-06-11
JP2010134187 2010-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/710,754 Continuation US8978416B2 (en) 2010-06-11 2012-12-11 Process for producing glass substrate provided with inorganic fine particle-containing silicon oxide film

Publications (1)

Publication Number Publication Date
WO2011155545A1 true WO2011155545A1 (ja) 2011-12-15

Family

ID=45098149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063180 WO2011155545A1 (ja) 2010-06-11 2011-06-08 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法

Country Status (6)

Country Link
US (1) US8978416B2 (ja)
EP (1) EP2581352A4 (ja)
JP (1) JPWO2011155545A1 (ja)
CN (1) CN102933518A (ja)
TW (1) TW201204667A (ja)
WO (1) WO2011155545A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161827A1 (ja) 2012-04-24 2013-10-31 旭硝子株式会社 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201500188A (zh) * 2013-04-18 2015-01-01 Agc Glass Europe 玻璃片之搪瓷方法
US20160111559A1 (en) * 2013-06-12 2016-04-21 Shin-Etsu Chemical Co., Ltd. Solar cell degradation control-coating liquid and thin film and solar cell degradation control method
EP3630691A1 (en) 2017-06-02 2020-04-08 Guardian Glass, LLC Glass article containing a coating with an interpenetrating polymer network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648776A (ja) * 1992-02-21 1994-02-22 Asahi Glass Co Ltd 透明酸化物膜および赤外線反射性ガラスの製造方法
JPH0797237A (ja) * 1993-09-30 1995-04-11 Nippon Sheet Glass Co Ltd 屈折率低減透明被膜の形成方法
JPH10316885A (ja) * 1997-03-14 1998-12-02 Nippon Sheet Glass Co Ltd 着色膜形成用組成物および着色膜被覆ガラス物品の製造方法
JP2008201624A (ja) * 2007-02-20 2008-09-04 Asahi Glass Co Ltd 着色層付きガラス板の製造方法
WO2008139920A1 (ja) * 2007-05-08 2008-11-20 Central Glass Company, Limited 手塗り可能なゾルゲル膜形成用塗布液
JP2010134187A (ja) 2008-12-04 2010-06-17 Canon Inc 画像形成装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB931381A (en) * 1960-09-13 1963-07-17 Philips Electrical Ind Ltd Improvements in or relating to ultra-violet radiators and envelopes therefor
GB2119360B (en) * 1982-04-30 1986-03-26 Glaverbel Coating vitreous substrates
DK1304366T4 (da) * 1995-03-20 2013-01-14 Toto Ltd Anvendelse af en overflade, der er gjort fotokatalytisk superhydrofil med dug-hindrende virkning
JP2008273991A (ja) * 2005-08-15 2008-11-13 Asahi Glass Co Ltd ガラス用塗料組成物、着色層付きガラス板の製造方法、および着色層付きガラス板
US20070178317A1 (en) * 2006-02-01 2007-08-02 Asahi Glass Company, Limited Infrared shielding film-coated glass plate and process for its production
US8419863B2 (en) * 2011-08-26 2013-04-16 Jesse Duane Johnson Method for removing painted markings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648776A (ja) * 1992-02-21 1994-02-22 Asahi Glass Co Ltd 透明酸化物膜および赤外線反射性ガラスの製造方法
JPH0797237A (ja) * 1993-09-30 1995-04-11 Nippon Sheet Glass Co Ltd 屈折率低減透明被膜の形成方法
JPH10316885A (ja) * 1997-03-14 1998-12-02 Nippon Sheet Glass Co Ltd 着色膜形成用組成物および着色膜被覆ガラス物品の製造方法
JP2008201624A (ja) * 2007-02-20 2008-09-04 Asahi Glass Co Ltd 着色層付きガラス板の製造方法
WO2008139920A1 (ja) * 2007-05-08 2008-11-20 Central Glass Company, Limited 手塗り可能なゾルゲル膜形成用塗布液
JP2010134187A (ja) 2008-12-04 2010-06-17 Canon Inc 画像形成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161827A1 (ja) 2012-04-24 2013-10-31 旭硝子株式会社 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法
CN104245613A (zh) * 2012-04-24 2014-12-24 旭硝子株式会社 带含有无机微粒的氧化硅膜的玻璃基板的制造方法
US20150030778A1 (en) * 2012-04-24 2015-01-29 Asahi Glass Company, Limited Process for producing glass substrate provided with inorganic fine particle-containing silicon oxide film
EP2842920A4 (en) * 2012-04-24 2016-03-30 Asahi Glass Co Ltd METHOD FOR PRODUCING A GLASS SUBSTRATE WITH A SILICON OXIDE LAYER WITH FINE INORGANIC PARTICLES

Also Published As

Publication number Publication date
EP2581352A1 (en) 2013-04-17
US8978416B2 (en) 2015-03-17
US20130098112A1 (en) 2013-04-25
JPWO2011155545A1 (ja) 2013-08-01
TW201204667A (en) 2012-02-01
CN102933518A (zh) 2013-02-13
EP2581352A4 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
US7344783B2 (en) Durable hydrophobic surface coatings using silicone resins
JP3517698B2 (ja) ナノ粒子分散構造体及びその積層体
WO2004070436A1 (ja) 低反射処理物品の製造方法、低反射層形成用溶液および低反射処理物品
US20160289457A1 (en) High gain durable anti-reflective coating
EP1935929B1 (en) Sol gel process for producing protective films for polymeric substrates
JP6520922B2 (ja) 防曇性物品及びその製造方法
WO2013161827A1 (ja) 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法
WO2011155545A1 (ja) 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法
JP5545221B2 (ja) 酸化ケイ素膜付ガラス基板の製造方法
WO2006011605A1 (ja) 防曇性物品およびその製造方法
JP2007121786A (ja) コーティング液の製造方法、およびそのコーティング液を用いた反射防止膜の製造方法
WO2015001979A1 (ja) 塗膜付き基板の製造方法
WO2011155543A1 (ja) 酸化アルミニウム含有酸化ケイ素膜付ガラス基板の製造方法
JP2002161262A (ja) 表面処理剤、薄膜製造方法、薄膜を備えた基材および太陽電池パネル
JP2005081292A (ja) 微細凹部を有する皮膜付き基体の製造方法、およびそれに用いる液組成物
JP2007099828A (ja) コーティング材組成物及び塗装品
JP4725072B2 (ja) コーティング材組成物及び塗装品
JP4725074B2 (ja) コーティング材組成物及び塗装品
JP2002348542A (ja) 被覆物品、被覆用液組成物および被覆物品を製造する方法
JP4175880B2 (ja) 凸状又は凹状若しくは凹凸状の表面形状を有するゾルゲル膜及び塗布液並びに製法
JP2012180544A (ja) ガラスコーティング剤
JP2017008289A (ja) 防曇膜形成用塗布液、防曇性物品、及びそれらの製法
JP2006111850A (ja) シリカ系膜の形成溶液
JP2011028185A (ja) 親水性低反射部材
JP2006111781A (ja) コーティング材組成物及び塗装品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028662.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519421

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011792502

Country of ref document: EP