WO2014199798A1 - 太陽電池劣化抑制用の塗工液及びその薄膜、並びに太陽電池劣化抑制方法 - Google Patents

太陽電池劣化抑制用の塗工液及びその薄膜、並びに太陽電池劣化抑制方法 Download PDF

Info

Publication number
WO2014199798A1
WO2014199798A1 PCT/JP2014/063644 JP2014063644W WO2014199798A1 WO 2014199798 A1 WO2014199798 A1 WO 2014199798A1 JP 2014063644 W JP2014063644 W JP 2014063644W WO 2014199798 A1 WO2014199798 A1 WO 2014199798A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
thin film
deterioration
coating liquid
metal
Prior art date
Application number
PCT/JP2014/063644
Other languages
English (en)
French (fr)
Inventor
友博 井上
学 古舘
栄口 吉次
小林 隆志
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to AU2014279389A priority Critical patent/AU2014279389B2/en
Priority to KR1020167000344A priority patent/KR20160018700A/ko
Priority to US14/897,500 priority patent/US20160111559A1/en
Priority to CN201480033561.XA priority patent/CN105518873A/zh
Priority to EP14811634.6A priority patent/EP3010047B1/en
Priority to JP2015522692A priority patent/JP6107950B2/ja
Publication of WO2014199798A1 publication Critical patent/WO2014199798A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/253Coating containing SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/27Oxides by oxidation of a coating previously applied
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/22ZrO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to protection of solar cells. More specifically, it is an easy and inexpensive method of coating various solar cell cover glasses, in particular a method for preventing performance degradation called PID, a coating solution used therefor, and a thin film formed from the coating solution About.
  • Non-Patent Document 1 a mechanism has been proposed in which Na ions in the cover glass diffuse to the inside and block the charge transfer of the cell (battery) (Non-Patent Document 1).
  • the present invention has been made in view of the above-described problems, and an object thereof is to prevent a decrease in power generation capability of a solar cell without changing the solar cell member itself.
  • the inventors of the present invention have formed a metal oxide thin film that easily cures at room temperature to about 120 ° C. on the surface or back surface of the cover glass of the solar cell, thereby insulating the cover glass surface. It was found that the leakage current can be suppressed and the power generation efficiency can be prevented from being lowered by PID. In particular, even when applied to the surface of the solar cell itself, it has become clear that some effects of suppressing the performance degradation of the battery can be seen, and this may be possible even for already installed solar cells. This discovery is significant and has great significance in terms of protecting existing solar cells.
  • the present invention provides the following inventions.
  • the present invention firstly comprises an aqueous solution of a compound of at least one metal selected from silicon, aluminum, zirconium, tin, and zinc, or a fine particle dispersion of the metal oxide, and the aqueous solution and the fine particle dispersion are Each of the compound and the oxide contains 0.01 to 10% by mass in terms of metal oxide, and the fine particle dispersion has fine particles having an average primary particle size of 50 nm or less and a dispersed particle size (D50) of less than 100 nm.
  • Dispersing coating liquid for suppressing solar cell deterioration is provided.
  • the present invention secondly suppresses deterioration of a solar cell having a thickness of 10 to 700 nm made of an oxide of at least one metal selected from silicon, aluminum, zirconium, tin and zinc formed from the coating solution.
  • a thin film is provided.
  • the present invention is characterized in that a thin film is formed by drying and curing a coating film formed by applying the coating liquid on the front or back surface of a cover glass of a solar cell at a temperature of room temperature to 200 ° C.
  • a solar cell deterioration suppressing method is provided.
  • the present invention provides a solar cell in which deterioration is suppressed, having a thin film having a thickness of 10 to 700 nm formed by applying the coating liquid on the front or back surface of a cover glass of the solar cell. .
  • the present invention it is possible to prevent performance degradation due to PID of various solar cell panels by an easy and inexpensive method of forming a metal inorganic oxide thin film on a solar cell cover glass.
  • the type of solar cell to which this method can be applied is not particularly limited as long as it has a cover glass on the surface, and in particular, in the order of cover glass / sealing sheet / cell / sealing sheet / back sheet.
  • a stacked solar cell is preferred.
  • metal oxide coating solution that can be used for forming the thin film
  • a coating solution that satisfies the following conditions can be suitably used. That is, an aqueous solution of a water-soluble metal compound or a metal oxide fine particle dispersion capable of forming a metal inorganic oxide thin film after coating. Silicon, aluminum, zirconium, tin, zinc or the like is selected as the metal species.
  • aqueous solution of the metal compound examples include an aqueous solution of a water-soluble compound of the metal species.
  • a water-soluble silicate liquid aqueous solution of water-soluble silicate
  • a SiO 2 precursor an aluminum chloride aqueous solution as an Al 2 O 3 precursor
  • a (NH 4 ) 2 ZrO (CO that is a ZrO 2 precursor 3 ) 2 aqueous solution
  • zinc acetate precursor zinc acetate acetate hydrate.
  • the metal oxide fine particle dispersion is a dispersion in which fine particles of the above metal species having an average primary particle size of 50 nm or less, preferably 30 nm or less, are dispersed in a solvent, preferably water.
  • D50 in the dispersed particle size means, for example, a volume-based 50% cumulative distribution diameter measured by a dynamic light scattering method using laser light using Nanotrac UPA-UZ152 manufactured by Nikkiso Co., Ltd. I mean.
  • the average primary particle size is a particle size that can be confirmed by a transmission electron microscope (for example, H-9500 manufactured by Hitachi High-Technologies Corporation) at a magnification of about 150,000. This is the average value for 20 arbitrary visual fields.
  • colloidal silica having a dispersed particle size of 1 to 50 nm as SiO 2 fine particles, an alumina fine particle dispersion having particle properties in which particles having an average primary particle size of 50 nm or less are dispersed with a dispersed particle size of less than 100 nm, zirconium oxide Examples thereof include fine particle dispersion, tin oxide fine particle dispersion, and zinc oxide fine particle dispersion.
  • the coating liquid is a liquid containing the above metal compound or metal oxide fine particles, and the metal compound or metal oxide is about 0.01% by mass to 10% by mass in terms of metal oxide, preferably 0.1% by mass to Those containing 5% by mass are preferably used. If the concentration is too low, the resulting thin film will be too thin, and if the concentration is too high, the film will be too thick and the film will be cracked, preventing the insulation effect.
  • any conventionally known method can be used to apply the coating solution to the solar cell cover glass. Specifically, dip coating method, spin coating method, spray coating method, flow coating method, brush coating method, impregnation method, roll method, wire bar method, die coating method, screen printing method, gravure printing method, ink jet method, etc. Can be used to form a coating film on the cover glass.
  • the said coating liquid can be apply
  • the coating film on the cover glass to form a thin film is preferably treated at a temperature range of room temperature to 200 ° C. for 1 to 120 minutes, particularly 5 to 5 ° C. at a temperature range of room temperature to 120 ° C. It is preferable to treat for 60 minutes. If the drying / curing temperature is too low or the drying / curing time is too short, there is a risk of curing failure, and if the drying / curing temperature is too high or the drying / curing time is too long, Na ions will leach out due to thermal diffusion, Insulation function may be reduced.
  • the thickness of the thin film to be formed is preferably between 10 and 700 nm, more preferably between 20 and 500 nm, and particularly preferably between 50 and 300 nm. If the thin film is too thin, the insulating effect may not be exhibited, and if it is too thick, cracks may occur and the insulating effect may not be exhibited.
  • the decrease ( ⁇ ) in the total light transmittance of the cover glass before and after the formation of the thin film is preferably 5% or less, and the increase ( ⁇ ) in the haze ratio is preferably 2% or less. If the change in total light transmittance ( ⁇ ) is reduced by more than 10% after the thin film is formed, the transparency is lowered, and the light reaching the solar cell is reduced, so that the power generation efficiency may be lowered. If the haze rate rises beyond 2% after the thin film is formed, the film becomes turbid, and the light reaching the solar cell is reduced by light scattering, which may reduce the power generation efficiency.
  • Examples 1-37, Comparative Examples 1-2 In any example, an aqueous solution or an aqueous dispersion prepared by adjusting a coating material for forming the following thin film to a total solid content (converted to metal oxide) concentration of 1% by mass was used as the coating solution.
  • Each coating solution is applied to the front or back surface of the following solar cell test module cover glass by the dip coating method, dried and cured at 80 ° C. for 15 minutes, and the thin films having the thicknesses shown in Tables 1 and 2 are formed on the cover glass. Formed on top.
  • silicate molecule with clear structure> (Examples 7 to 12) PSS hydrate-octakis (tetramethylammonium) substitution product (cage silsesquioxane with Q 3 8 TMA structure, handled by Sigma-Aldrich) dissolved in water as a water-soluble SiO 2 forming component, strongly acidic Na ions were removed with an ion exchange resin, diluted with purified water, and used after solid content adjustment (1% by mass in terms of SiO 2 ).
  • PSS hydrate-octakis (tetramethylammonium) substitution product (cage silsesquioxane with Q 3 8 TMA structure, handled by Sigma-Aldrich) dissolved in water as a water-soluble SiO 2 forming component, strongly acidic Na ions were removed with an ion exchange resin, diluted with purified water, and used after solid content adjustment (1% by mass in terms of SiO 2 ).
  • alpha-in 83 product name, 23% highly basic aluminum chloride salt aqueous solution, manufactured by Daimei Chemical
  • purified water is diluted with purified water to adjust the solid content (1% by mass in terms of Al 2 O 3 ) Used after.
  • ⁇ ZrO 2 precursor> (Examples 19 to 24) Zircozol AC-20 (product name, (NH 4 ) 2 ZrO (CO 3 ) 2 , aqueous solution of zirconium compound, manufactured by Daiichi Rare Elemental Science) is diluted with purified water as a water-soluble zirconium salt aqueous solution to adjust the solid content It was used after (1% by mass in terms of ZrO 2 ).
  • ⁇ Aqueous dispersion of SnO 2 ultrafine particles> (Examples 25 to 30) As fine particles of SnO 2 , ultrafine stannic oxide sol (average primary particle size 5 nm, manufactured by Yamanaka Sangyo Co., Ltd.) was used after adjusting the concentration with purified water (1% by mass in terms of SnO 2 ). The obtained aqueous dispersion had a dispersed particle diameter D50 of 50 nm.
  • ⁇ ZnO precursor> (Examples 31 to 36) A commercially available zinc acetate dihydrate hydrolyzed with water / ethanol + triethanolamine aqueous solution so as to be 1% by mass in terms of zinc oxide was immediately used.
  • ⁇ SiO 2 fine particle (large) aqueous dispersion> (Comparative Example 1) As an aqueous dispersion of SiO 2 fine particles, Snowtex ST-OUP (product name, colloidal silica with an average primary particle size of 100 nm, manufactured by Nissan Chemical) is diluted with purified water and the concentration is adjusted (1% by mass in terms of SiO 2 ). Used. The dispersion particle diameter D50 of the aqueous dispersion was 100 nm.
  • ⁇ SiO 2 fine particle (small) aqueous dispersion> (Example 37) As an aqueous dispersion of fine SiO 2 particles, Snowtex ST-NXS (product name, colloidal silica with an average primary particle size of 5 nm, manufactured by Nissan Chemical Co., Ltd., with an average primary particle size of 5 nm) is diluted with purified water to adjust the concentration (SiO 2 equivalent) 1% by mass).
  • the dispersion particle diameter D50 of the aqueous dispersion was 5 nm.
  • the film thickness of the thin film was measured using a thin film measuring apparatus F-20 (product name, manufactured by FILMETRICS) and a scanning electron microscope S-3400 nm (product name, manufactured by Hitachi High-Technologies).
  • the total light transmittance and haze ratio of the thin film were measured using a digital haze meter NDH-20D (manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the PID-promoting environment for solar cells was exposed to a temperature of 60 ° C / humidity 85% RH / surface-water-filled, and a test voltage of -1,000Vdc applied [-1,000Vdc on the internal circuit based on the frame potential] for 96 hours.
  • the characteristics of the solar cell were measured using a specified apparatus (IV curve tracer MP160, Eihiro Seiki Co., Ltd.) and an EL image inspection apparatus (PVX-300, ITES Co., Ltd.).
  • the EL image determination shows that the light emission capability still remains and suppresses the decrease in conversion efficiency It had been. This indicates that PID can be attenuated even if it is applied to the surface of a cover panel of a solar cell that has already been applied, which is significant.
  • the leakage current was less than half, and many cells in which the light emission performance remained were observed even in the EL image inspection, and obvious deterioration suppression was recognized.
  • the thin film of Example 37 using a fine particle dispersion having small particles has an insulating effect and an effect of suppressing deterioration.
  • the thin film of Comparative Example 1 does not have the expected effect due to the large particles. It is considered that since the used particles were large, the density of the thin film was low, and a sufficient deterioration suppressing effect could not be obtained.
  • Comparative Example 2 the SiO 2 thin film was applied to a thickness of 1 micron (1000 nm) and tested, but the 1 micron thick inorganic film is very hard and easily cracks in normal handling environments. appear. The occurrence of this crack can be judged from a significant decrease in optical properties. It is considered that due to this crack, a sufficient density cannot be obtained in the inorganic film, and a sufficient deterioration suppressing effect cannot be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池の部材そのものを変更することなく、太陽電池の発電能力の低下を防ぐ手段を提供する。 ケイ素、アルミニウム、ジルコニウム、スズ及び亜鉛から選ばれる少なくとも1種の金属の、水溶性化合物の水溶液又は該金属の酸化物の微粒子分散液からなり、金属酸化物換算で固形分濃度が0.01~10質量%であり、該微粒子分散液は平均一次粒径が50nm以下の微粒子が、分散粒径(D50)100nm未満で分散している、太陽電池劣化抑制用塗工液、該塗工液から形成された厚さ10~700nmの太陽電池劣化抑制用薄膜、該塗工液を太陽電池のカバーガラス面上に塗布し、常温~200℃の温度で乾燥硬化させて厚さ10~700nmの薄膜を形成する太陽電池劣化抑制方法、及び該塗工液の薄膜を太陽電池のカバーガラス面上に形成した、劣化抑制された太陽電池。

Description

太陽電池劣化抑制用の塗工液及びその薄膜、並びに太陽電池劣化抑制方法
 本発明は、太陽電池の保護に関するものである。更に詳しくは、多様な太陽電池のカバーガラスへのコーティング処理という容易かつ廉価な方法で、特にPIDと呼ばれる性能低下を防ぐ方法、それに使用する塗工液、及び該塗工液から形成された薄膜に関する。
 再生可能エネルギーの利用が増えるにつれ、太陽電池の利用が増えてきている。ところが最近になって、特に温度/湿度の過酷な条件で駆動する太陽電池において、PID(Potential Induced Degradation)と呼ばれる現象によって著しい発電能力低下が起こる事が判明した。原因は明らかでないものの、カバーガラス中のNaイオンが内部に拡散し、セル(電池)の電荷移動をさまたげるような機構が提案されている(非特許文献1)。
 原因が明らかでないために明確な対応指針が無く、セルの封止剤の変更、セル自体への保護コーティングなど、種々の検討が開始されているが、いずれも太陽電池の主要材料は既に決まりつつあるため置き換えが容易でなく、製造工程の追加によるコスト増まで勘案すると、このPIDに対して有効な手段は現状無いに等しい。まして、既に設置された太陽電池への対策となると、内部部材の変更ができないために、解決はほぼ不可能となる。
太陽電池専門誌"PVeye" ヴィズオンプレス株式会社発行 2012年12月号
 本発明は、前述の問題点に鑑み為されたものであり、太陽電池の部材そのものを変更することなく、太陽電池の発電能力の低下を防ぐことを目的とする。
 本発明者らは、鋭意検討を行った結果、太陽電池のカバーガラスの表面または裏面に、常温~120℃程度で容易に硬化する金属酸化物の薄膜を形成することでカバーガラス表面の絶縁性を高め、漏れ電流を抑制し、PIDによる発電効率の低下を防ぐことができることを見出した。
 また、特に、太陽電池自体の表面に塗布した際にも一部、電池の性能低下を抑制する効果が見られる事も明らかになり、これは既に施工済みの太陽電池においても対策できる可能性を示す発見であり、既存太陽電池の保護という観点から大きな意義がある。
 即ち、本発明は、次の発明を提供するものである。
 本発明は、第一に、ケイ素、アルミニウム、ジルコニウム、スズ、亜鉛から選ばれる少なくとも1種の金属の化合物の水溶液又は該金属の酸化物の微粒子分散液からなり、該水溶液及び該微粒子分散液はそれぞれ、該化合物及び該酸化物を金属酸化物に換算して0.01~10質量%含み、該微粒子分散液は平均一次粒径が50nm以下の微粒子が、分散粒径(D50)100nm未満で分散している、太陽電池劣化抑制用の塗工液を提供する。
 本発明は、第二に、上記塗工液から形成された、ケイ素、アルミニウム、ジルコニウム、スズ、亜鉛から選ばれる少なくとも1種の金属の酸化物からなる、厚さ10~700nmの太陽電池劣化抑制用薄膜を提供する。
 本発明は、第三に、太陽電池のカバーガラスの表面又は裏面に上記塗工液を塗布して形成された塗膜を常温~200℃の温度で乾燥硬化させて薄膜を形成することを特徴とする、太陽電池劣化抑制方法を提供する。
 本発明は、第四に、太陽電池のカバーガラスの表面又は裏面に、上記塗工液を塗布して形成された厚さ10~700nmの薄膜を有する、劣化が抑制された太陽電池を提供する。
 本発明によると、太陽電池のカバーガラスへの金属無機酸化物薄膜の形成という容易かつ廉価な方法で、種々の太陽電池パネルのPIDによる性能低下を防ぐことができる。
[太陽電池]
 本方法が適用可能な太陽電池の種類は、表面にカバーガラスを備えている形態のものであれば特に制限されないが、特に、カバーガラス/封止シート/セル/封止シート/バックシートの順に積層された太陽電池であるのが好適である。
[金属無機酸化物薄膜の形成]
 薄膜の形成に使用しうる金属酸化物の塗工液は、下記条件を満たすものが好適に使用できる。
 即ち、塗布後に金属無機酸化物薄膜を形成しうる、水溶性金属化合物の水溶液、または金属酸化物の微粒子分散液である。
 上記金属種として、ケイ素、アルミニウム、ジルコニウム、スズ、亜鉛などが選択される。
 上記金属化合物の水溶液としては、上記金属種の水溶性化合物の水溶液が挙げられる。具体的には、SiO2前駆体である水溶性シリケート液(水溶性ケイ酸塩の水溶液)、Al2O3前駆体として塩化アルミニウム水溶液、ZrO2前駆体である(NH4)2ZrO(CO3)2水溶液、ZnO前駆体である酢酸亜鉛水和物が挙げられる。
 上記金属酸化物の微粒子分散液としては、上記金属種の酸化物微粒子であって、平均一次粒径が50nm以下、好ましくは30nm以下の微粒子が溶媒、好ましくは水、に分散した分散液であって、その分散粒径がD50=100nm未満、好ましくは70nm未満、更に好ましくは50nm以下の粒子である分散液が用いられる。
 ここで分散粒径における「D50」とは、例えば日機装(株)製ナノトラックUPA-UZ152等を用いて、レーザー光を用いた動的光散乱法により測定される体積基準の50%累積分布径のことをいう。D50が100nmより大きな粒子であると形成後の薄膜に空隙が多く、薄膜の密度が低いために、先述のNaイオンの拡散を止める力が弱く、発電能力低下抑制の効果が得られない。
 上記平均一次粒径とは、透過型電子顕微鏡(例えば(株)日立ハイテクノロジーズ製H-9500)にて、倍率150,000程度にて一粒を確認し得る粒子サイズを測定し、これを他の任意の視野20か所に対して行った平均値である。
 具体的には、SiO2微粒子として分散粒径1~50nmのコロイダルシリカ、平均一次粒径50nm以下の粒子が、分散粒径100nm未満で分散している粒子物性を持つアルミナ微粒子分散液、酸化ジルコニウム微粒子分散液、酸化スズ微粒子分散液、および酸化亜鉛微粒子分散液が挙げられる。
[塗工液の形態]
 前記塗工液としては、上記金属化合物若しくは金属酸化物微粒子を含む液であって、該金属化合物若しくは金属酸化物を金属酸化物換算で0.01質量%~10質量%程度、好ましくは0.1質量%~5質量%の質量で含むものが好適に用いられる。濃度が低すぎると得られる薄膜が薄くなりすぎ、濃度が高すぎると膜が厚くなり、膜が割れて絶縁効果が得られない。
[薄膜の形成]
 上記塗工液を太陽電池カバーガラスに塗布するには、従来公知のいずれの方法も用いることができる。具体的には、ディップコーティング法、スピンコーティング法、スプレーコーティング法、フローコーティング法、ハケ塗り法、含浸法、ロール法、ワイヤーバー法、ダイコーティング法、スクリーン印刷法、グラビア印刷法、インクジェット法等を利用して、塗膜をカバーガラス上に形成させることができる。上記塗工液は太陽電池カバーガラスの表(オモテ)面及び/又は裏面に塗布することができるが、カバーガラスの裏面の塗布がより効果的である。また、太陽電池の表面に直接塗布することもできる。
 上記カバーガラス上の上記塗膜を乾燥硬化させて薄膜を形成するためには、常温~200℃の温度範囲で1~120分間処理することが好ましく、とくには常温~120℃の範囲で5~60分間処理することが好ましい。乾燥硬化温度が低すぎるかあるいは乾燥硬化時間が短すぎると硬化不良の恐れがあり、乾燥硬化温度が高すぎるかあるいは乾燥硬化時間が長すぎるとNaイオンが熱拡散により滲出してきて、該薄膜の絶縁機能が低下する恐れがある。
 形成される薄膜の厚さは、10~700nmの間にあることが好ましく、更に20~500nmの間にあることが好ましく、特に50~300nmの間にあることが好ましい。当該薄膜は、薄すぎると絶縁効果を発揮できない場合があり、また、厚すぎると割れが生じて同じく絶縁効果を発揮できない場合がある。
 本発明の薄膜は、薄膜形成前後のカバーガラスの全光線透過率の減少量(△)が5%以下であり、かつヘイズ率の上昇量(△)が2%以下であることが好ましい。
 薄膜形成後に全光線透過率変化(△)が10%を越えて低下すると透明性が低下し、太陽電池に届く光が減少するために、発電効率が低下してしまうことがある。薄膜形成後にヘイズ率が2%を越えて上昇すると膜に濁りが生じ、光の散乱によって太陽電池に届く光が減少するために、発電効率が低下してしまうことがある。
 以下、実施例および比較例により本発明を具体的に説明する。ただし、本発明は下記実施例により制限されるものではない。
[実施例1~37、比較例1~2]
 いずれの例でも、塗工液として、下記薄膜形成用のコーティング材料を総固形分(金属酸化物換算)濃度1質量%に調整した水溶液又は水分散液を用いた。ディップコーティング法により各塗工液を下記太陽電池試験モジュールのカバーガラスの表面又は裏面に塗布し、80℃で15分間乾燥硬化して、表1及び表2に示す厚さの薄膜を該カバーガラス上に形成した。
[太陽電池試験モジュールの構成]
 テストモジュールとして、6インチ多結晶シリコン4直列のセルを、カバーガラス/EVA(エチレン・酢酸ビニルコポリマー)封止シート/セル/EVA封止シート/バックシートの順に積層し、熱ラミネートして作成したものを用いた。
[薄膜形成用のコーティング材料]
<SiO2前駆体、不定形シリケート>(実施例1~6、比較例2)
 水溶性のシリケート液として、Shield-S(製品名、シリケート水溶液、信越化学塩ビ研開発製品)を使用した。
<SiO2前駆体、構造明確なシリケート分子>(実施例7~12)
 水溶性のSiO2形成成分として、PSS水和物‐オクタキス(テトラメチルアンモニウム)置換体(Q3 8TMA構造を有するカゴ型シルセスキオキサン、シグマアルドリッチ社取扱)を水に溶解し、強酸性イオン交換樹脂にてNaイオンを除去し、精製水で希釈して固形分調整(SiO2換算で1質量%)の後に使用した。
<Al2O3前駆体>(実施例13~18)
 水溶性のアルミニウム塩水溶液として、アルファイン83(製品名、23%高塩基性塩化アルミニウム塩水溶液、大明化学製)を精製水で希釈して固形分調整(Al2O3換算で1質量%)の後に使用した。
<ZrO2前駆体>(実施例19~24)
 水溶性のジルコニウム塩水溶液として、ジルコゾールAC-20(製品名、(NH4)2ZrO(CO3)2、ジルコニウム化合物の水溶液、第一稀元素科学製)を精製水で希釈して固形分調整(ZrO2換算で1質量%)の後に使用した。
<SnO2超微粒子の水分散液>(実施例25~30)
 SnO2の微粒子として、超微粒子酸化第二錫ゾル(平均一次粒径5nm、山中産業株式会社製)を精製水で濃度調整(SnO2換算で1質量%)して用いた。得られた水分散液の分散粒径D50は50nmであった。
<ZnO前駆体>(実施例31~36)
 市販の酢酸亜鉛二水和物を、酸化亜鉛換算で1質量%となるように水/エタノール+トリエタノールアミン水溶液にて加水分解したものを直ちに用いた。
<SiO2微粒子(大)水分散液>(比較例1)
 SiO2微粒子の水分散液として、スノーテックスST-OUP(製品名、平均一次粒径100nmのコロイダルシリカ、日産化学製)を精製水にて希釈し濃度調整(SiO2換算で1質量%)して使用した。該水分散液の分散粒径D50は100nmであった。
<SiO2微粒子(小)水分散液>(実施例37)
 SiO2微粒子の水分散液として、スノーテックスST-NXS(製品名、粒径4~6nm、平均一次粒径5nmのコロイダルシリカ、日産化学製)を精製水にて希釈し濃度調整(SiO2換算で1質量%)して使用した。該水分散液の分散粒径D50は5nmであった。
[薄膜の特性評価方法]
 薄膜の膜厚は、薄膜測定装置F-20(製品名、FILMETRICS社製)及び走査型電子顕微鏡S-3400nm(製品名、日立ハイテクノロジーズ製)を用いて測定した。
 薄膜の全光線透過率およびヘイズ率は、デジタルヘイズメーターNDH-20D(日本電色工業製)を用いて測定した。
 太陽電池のPID促進環境は、温度60℃/湿度85%RH/表面水張り、試験電圧-1,000Vdc印加[フレーム電位を基準として、内部回路に-1,000Vdc]の環境下に96時間暴露した。
 太陽電池の特性は、規定の装置(I-Vカーブトレーサー MP160,英弘精機(株))によるI-V特性の測定、およびEL画像検査装置(PVX-300、(株)アイテス)を用いて測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の結果から、実施例にて示した各種金属酸化物の膜が形成されている太陽電池では性能低下が抑えられていた。一方、ブランクの太陽電池は著しく性能低下している。
 実施例でカバーガラスの表面に塗布した場合には、漏れ電流値に大きな違いは認められないものの、EL画像判定ではまだ発光能力が残っていることが示されており、変換効率の低下も抑制されていた。これは、既に施工された太陽電池のカバーパネルの表面に施工してもPIDが減弱できることを示しており、有意義である。
 実施例でカバーガラスの裏面に塗布した場合、漏れ電流が半分以下となり、EL画像検査でも発光性能が残存しているセルが多数認められ、明らかな劣化抑制が認められた。
 粒子が小さい微粒子分散液を用いた実施例37の薄膜は、絶縁効果があり劣化抑制の効果が得られることが分かる。これに対し比較例1の薄膜は、粒子が大きいために期待する効果が得られていない。用いた粒子が大きいために薄膜の密度が低く、十分な劣化抑制効果が得られなかったものと考えられる。
 比較例2ではSiO2系薄膜を1ミクロン(1000nm)に達する厚みに塗布して試験をしているが、1ミクロン厚みの無機膜は非常に硬質であり、通常の取扱い環境において容易にクラックを発生する。このクラックの発生は光学特性の著しい低下から判断できる。このクラックのために該無機膜に十分な密度が得られず、十分な劣化抑制効果が得られないものと考えられる。

Claims (8)

  1.  ケイ素、アルミニウム、ジルコニウム、スズ及び亜鉛から選ばれる少なくとも1種の金属の、水溶性化合物の水溶液又は該金属の酸化物の微粒子分散液からなり、該水溶液および該微粒子分散液はそれぞれ、該化合物又は該酸化物を金属酸化物に換算して0.01~10質量%含み、該微粒子分散液は平均一次粒径が50nm以下の微粒子が、分散粒径(D50)100nm未満で分散している、太陽電池劣化抑制用塗工液。
  2.  前記水溶性金属化合物が、水溶性シリケート、塩化アルミニウム、(NH4)2ZrO(CO3)2、及び酢酸亜鉛から選ばれる、請求項1記載の太陽電池劣化抑制用塗工液。
  3.  前記金属酸化物の微粒子分散液が、分散粒径D50が50nm以下の微粒子の水分散液である、請求項1記載の太陽電池劣化抑制用塗工液。
  4.  請求項1~3のいずれか1項記載の塗工液から形成された、ケイ素、アルミニウム、ジルコニウム、スズ及び亜鉛から選ばれる少なくとも1種の金属の酸化物からなる、厚さ10~700nmの太陽電池劣化抑制用薄膜。
  5.  太陽電池のカバーガラス面上に形成される、請求項4記載の太陽電池劣化抑制用薄膜。
  6.  太陽電池のカバーガラスの裏面上に形成される、請求項4記載の太陽電池劣化抑制用薄膜。
  7.  請求項1~3のいずれか1項記載の塗工液を太陽電池のカバーガラスの表面又は裏面上に塗布し、形成された塗膜を常温~200℃の温度で乾燥硬化させて、ケイ素、アルミニウム、ジルコニウム、スズ及び亜鉛から選ばれる少なくとも1種の金属の酸化物から成る厚さ10~700nmの薄膜を形成することを特徴とする、太陽電池劣化抑制方法。
  8.  太陽電池のカバーガラスの表面又は裏面上に、請求項1~3のいずれか1項記載の塗工液を塗布して形成された、ケイ素、アルミニウム、ジルコニウム、スズ及び亜鉛から選ばれる少なくとも1種の金属の酸化物からなる厚さ10~700nmの薄膜を有する、劣化が抑制された太陽電池。
PCT/JP2014/063644 2013-06-12 2014-05-23 太陽電池劣化抑制用の塗工液及びその薄膜、並びに太陽電池劣化抑制方法 WO2014199798A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2014279389A AU2014279389B2 (en) 2013-06-12 2014-05-23 Coating liquid for suppressing deterioration of solar cell, thin film of same, and method for suppressing deterioration of solar cell
KR1020167000344A KR20160018700A (ko) 2013-06-12 2014-05-23 태양 전지 열화 억제용의 도공액 및 그의 박막, 및 태양 전지 열화 억제 방법
US14/897,500 US20160111559A1 (en) 2013-06-12 2014-05-23 Solar cell degradation control-coating liquid and thin film and solar cell degradation control method
CN201480033561.XA CN105518873A (zh) 2013-06-12 2014-05-23 用于抑制太阳能电池劣化的涂布液和其薄膜、以及抑制太阳能电池劣化的方法
EP14811634.6A EP3010047B1 (en) 2013-06-12 2014-05-23 Production method of a solar cell degradation control-cover glass
JP2015522692A JP6107950B2 (ja) 2013-06-12 2014-05-23 太陽電池劣化抑制用の塗工液及びその薄膜、並びに太陽電池劣化抑制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-123725 2013-06-12
JP2013123725 2013-06-12

Publications (1)

Publication Number Publication Date
WO2014199798A1 true WO2014199798A1 (ja) 2014-12-18

Family

ID=52022099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063644 WO2014199798A1 (ja) 2013-06-12 2014-05-23 太陽電池劣化抑制用の塗工液及びその薄膜、並びに太陽電池劣化抑制方法

Country Status (7)

Country Link
US (1) US20160111559A1 (ja)
EP (1) EP3010047B1 (ja)
JP (1) JP6107950B2 (ja)
KR (1) KR20160018700A (ja)
CN (1) CN105518873A (ja)
AU (1) AU2014279389B2 (ja)
WO (1) WO2014199798A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992993A (zh) * 2015-06-02 2015-10-21 张一熙 隔音保温的太阳能电池板解决方案
CN105990468A (zh) * 2015-02-11 2016-10-05 英利集团有限公司 硅片生产系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411000B2 (en) * 2016-03-31 2019-09-10 Intel IP Corporation Microelectronic package with illuminated backside exterior

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001975A1 (ja) * 2011-06-29 2013-01-03 信越化学工業株式会社 無機親水性コート液、それから得られる親水性被膜及びこれを用いた部材
JP2013080067A (ja) * 2011-10-03 2013-05-02 Sketch:Kk 塗布液及び基板
JP2013095944A (ja) * 2011-10-28 2013-05-20 Sharp Corp ガラス基材への成膜方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808462A (en) * 1987-05-22 1989-02-28 Glasstech Solar, Inc. Solar cell substrate
GB2252332A (en) * 1991-01-31 1992-08-05 Glaverbel Glass coated with two tin oxide coatings
DE4442824C1 (de) * 1994-12-01 1996-01-25 Siemens Ag Solarzelle mit Chalkopyrit-Absorberschicht
JP2001291881A (ja) * 2000-01-31 2001-10-19 Sanyo Electric Co Ltd 太陽電池モジュール
JP4162447B2 (ja) * 2001-09-28 2008-10-08 三洋電機株式会社 光起電力素子及び光起電力装置
JP5591530B2 (ja) * 2009-06-24 2014-09-17 日揮触媒化成株式会社 シリカ系微粒子分散ゾルの製造方法、シリカ系微粒子分散ゾル、該分散ゾルを含む塗料組成物、硬化性塗膜および硬化性塗膜付き基材
WO2011004811A1 (ja) * 2009-07-08 2011-01-13 三菱電機株式会社 太陽電池モジュール用コーティング剤、並びに太陽電池モジュール及びその製造方法
US8188363B2 (en) * 2009-08-07 2012-05-29 Sunpower Corporation Module level solutions to solar cell polarization
EP2581352A4 (en) * 2010-06-11 2014-12-10 Asahi Glass Co Ltd METHOD FOR PRODUCING A GLASS SUBSTRATE WITH A SILICON OXIDE FILM WITH INORGANIC MICROPARTICLES
EP3633740A1 (en) * 2011-08-04 2020-04-08 Corning Incorporated Photovoltaic module package
CN102655178B (zh) * 2012-04-28 2015-08-26 法国圣戈班玻璃公司 盖板及其制造方法、太阳能玻璃、光伏器件
US9598586B2 (en) * 2014-07-14 2017-03-21 Enki Technology, Inc. Coating materials and methods for enhanced reliability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001975A1 (ja) * 2011-06-29 2013-01-03 信越化学工業株式会社 無機親水性コート液、それから得られる親水性被膜及びこれを用いた部材
JP2013080067A (ja) * 2011-10-03 2013-05-02 Sketch:Kk 塗布液及び基板
JP2013095944A (ja) * 2011-10-28 2013-05-20 Sharp Corp ガラス基材への成膜方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Professional journal of solar cell", December 2012, VIS ON PRESS CO., LTD., article "PVeye"

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105990468A (zh) * 2015-02-11 2016-10-05 英利集团有限公司 硅片生产系统
CN105990468B (zh) * 2015-02-11 2018-09-07 英利集团有限公司 硅片生产系统
CN104992993A (zh) * 2015-06-02 2015-10-21 张一熙 隔音保温的太阳能电池板解决方案

Also Published As

Publication number Publication date
EP3010047A1 (en) 2016-04-20
US20160111559A1 (en) 2016-04-21
JP6107950B2 (ja) 2017-04-05
AU2014279389A1 (en) 2016-01-07
KR20160018700A (ko) 2016-02-17
JPWO2014199798A1 (ja) 2017-02-23
CN105518873A (zh) 2016-04-20
EP3010047B1 (en) 2021-01-20
AU2014279389B2 (en) 2018-06-14
EP3010047A4 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
US9109121B2 (en) Sol-gel based antireflective coatings using alkyltrialkoxysilane binders having low refractive index and high durability
TW201536864A (zh) 水性塗布劑、膜、膜的製造方法、層疊體、及太陽能電池模組
CN107078172B (zh) 用于增强可靠性的涂层材料和方法
EP3660109B1 (en) Ink composition, film, and display
EP2920261A1 (en) Fluoropolymer coatings suitable for films of photovoltaic modules
JP5965210B2 (ja) 強化ガラス基板及び太陽電池モジュール
JP6107950B2 (ja) 太陽電池劣化抑制用の塗工液及びその薄膜、並びに太陽電池劣化抑制方法
US20130034722A1 (en) Sol-gel based antireflective coatings using particle-binder approach with high durability, moisture resistance, closed pore structure and controllable pore size
US20180112459A1 (en) Heat ray reflective material, window, and method for manufacturing heat ray reflective material
KR20170000643A (ko) 발수성 박막용 조성물, 이를 이용한 발수성 박막 및 그 제조방법
WO2017033872A1 (ja) 熱線反射材料、窓、及び窓の断熱方法
JP6348276B2 (ja) 反射防止膜形成用塗布液および反射防止膜付基材とその製造方法ならびにその用途
WO2016072509A1 (ja) 水性塗布液、膜及びその製造方法、積層体、並びに太陽電池モジュール
JP6155600B2 (ja) 透明樹脂積層体とその製造方法、ならびに熱線遮蔽機能を有するプライマー層形成用のプライマー液
JP2012144630A (ja) めっき付着性良好なポリオルガノシロキサン塗料組成物とその塗膜
WO2017022433A1 (ja) 水性塗布液、膜及びその製造方法、積層体、並びに太陽電池モジュール
WO2019021662A1 (ja) 赤外線遮蔽フィルム、赤外線遮蔽ガラス、及び、窓
WO2019239810A1 (ja) 光触媒複合材、サイネージ用ディスプレイ保護部材、タッチパネル用保護部材、太陽電池用保護部材、センサカバー用保護部材、サイネージ用ディスプレイ、タッチパネル、太陽電池、及び、センサカバー
WO2018101277A1 (ja) 塗布組成物、反射防止膜、積層体及び積層体の製造方法、並びに、太陽電池モジュール
WO2016103827A1 (ja) 水性塗布液、膜及びその製造方法、積層体、並びに太陽電池モジュール
WO2014119680A1 (ja) ガラス基板及びそれを用いたデバイス
KR20190033172A (ko) 발수성이 우수하고 자기회복능력을 갖는 박막용 조성물 및 이로부터 제조된 발수성 박막
KR101212449B1 (ko) 태양전지모듈 백시트용 수지코팅조성물, 태양전지모듈용 백시트, 이를 포함하는 태양전지 및 이의 제조방법
WO2018221739A1 (ja) 塗布組成物及び積層体の製造方法
TWM636207U (zh) 用於太陽能板的鍍膜結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522692

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014811634

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14897500

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014279389

Country of ref document: AU

Date of ref document: 20140523

Kind code of ref document: A

Ref document number: 20167000344

Country of ref document: KR

Kind code of ref document: A