WO2011150841A1 - 一种含有人胰岛素基因的表达载体及其构建方法与应用 - Google Patents

一种含有人胰岛素基因的表达载体及其构建方法与应用 Download PDF

Info

Publication number
WO2011150841A1
WO2011150841A1 PCT/CN2011/075039 CN2011075039W WO2011150841A1 WO 2011150841 A1 WO2011150841 A1 WO 2011150841A1 CN 2011075039 W CN2011075039 W CN 2011075039W WO 2011150841 A1 WO2011150841 A1 WO 2011150841A1
Authority
WO
WIPO (PCT)
Prior art keywords
human insulin
gene
oil
oil body
expression vector
Prior art date
Application number
PCT/CN2011/075039
Other languages
English (en)
French (fr)
Inventor
安胜军
柴锡庆
王崑声
邵铁梅
焦展
温昕
李雪
刘培
卢海刚
胡良元
许海民
于成钢
Original Assignee
An Shengjun
Chai Xiqing
Wang Kunsheng
Shao Tiemei
Jiao Zhan
Wen Xin
Li Xue
Liu Pei
Lu Haigang
Hu Liangyuan
Xu Haimin
Yu Chenggang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by An Shengjun, Chai Xiqing, Wang Kunsheng, Shao Tiemei, Jiao Zhan, Wen Xin, Li Xue, Liu Pei, Lu Haigang, Hu Liangyuan, Xu Haimin, Yu Chenggang filed Critical An Shengjun
Publication of WO2011150841A1 publication Critical patent/WO2011150841A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon

Definitions

  • the present invention relates to an expression vector containing a human insulin gene, and a construction method and application thereof, and particularly to an expression vector containing a human insulin gene, a construction method thereof, and a method for preparing human insulin using the same in oil sunflower . Background technique
  • transgenic plants to produce exogenous proteins of medical and commercial value, particularly for medical and diagnostic purposes, has received widespread attention in recent years.
  • the plant protein is used to express the target protein, and the seed is subjected to pulverization-liquid extraction ⁇ centrifugation ⁇ recovery of the upper oil phase to separate the fusion protein from other components in the cell, and further purification is performed to obtain the target protein.
  • This greatly simplifies the extraction and purification process of the target protein overcomes the difficulty of large-scale production and poor safety of the microbial expression system, and greatly reduces the production cost, and the expression has high fidelity, which is an important aspect in the bioengineering pharmaceutical field. revolution.
  • the Chinese Academy of Agricultural Sciences successfully used a transgenic engineering technique to express a new type of salmon calcitonin analogue in rapeseed and cotton seeds, and obtained transgenic plants and strains.
  • the applicant of the present invention has devoted a lot of creative labor through long-term research, and has completed the stable and efficient production of human insulin by constructing a specific expression vector containing the human insulin gene and selecting oil sunflower as a bioreactor.
  • the invention has been made.
  • the present invention relates to a method for producing human insulin by recombinant DNA technology, and more particularly to a method for producing human insulin using oil sunflower as a host. Specifically, the present invention relates to the use of a fusion protein gene of peanut oil body protein and human insulin in oil sunflower oil to produce a large amount of an important pharmaceutical insulin for treating diabetes.
  • the present invention provides a seed-specific expression vector comprising a human insulin and a peanut oil body protein fusion gene, wherein the promoter of the vector is a rapeseed oil protein gene promoter.
  • the above carrier is used to prepare human insulin in oil sunflower.
  • the present invention also provides a method for constructing the above seed-specific expression vector, comprising the following steps:
  • the specific steps include:
  • the rapeseed variety may be the rapeseed variety which has been disclosed or used in the prior art, for example, it may be 14 varieties of green oil, mutual mutual 101, cold-tolerant high oil king, early oil 100 days and Qinyou 2, etc., preferably green 14 varieties of oil.
  • the above rapeseed oil body protein promoter can be cloned into a suitable site of pUC 19, preferably cloned between the H «dI I I and mHI sites of pUC 19 .
  • the peanut variety may be a peanut variety that has been disclosed or used in the prior art, for example, it may be Huanhua No. 4, Yuyou No. 7, Baisha, Luhua 11, Haihua and Fenghua No. 1, etc., preferably ⁇ 4 ⁇ .
  • the human insulin gene is designed according to the plant-preferred codon, and the human insulin synthesis gene is optimized according to the frequency of the oil sunflower codon.
  • the optimized gene is the human insulin gene. Codons with a frequency less than 10% are considered to be rare codons. Excluded, the remaining codons were optimized according to the frequency of the oil sunflower codon, and the trypsin recognition sequence Klip27 was added to the 5' end of the gene to construct klip27-i ulin, 327 bp.
  • the molecular weight of the pre-optimized gene is 201.6, and the consistency of the sequence before and after optimization is more than 60%, preferably more than 65%, most preferably 73%, and the molecular weight of the optimized gene is preferably 201.6.
  • a plant expression vector of pBINOI a peanut oil body protein gene-driven peanut oil body protein and human insulin fusion gene, was obtained between the H dI II and the site of the plant binary expression vector PBI121 commonly used in plant transgenic engineering.
  • the present invention also provides a method for preparing human insulin using the above seed-specific plant expression vector, comprising the following steps:
  • the recipient plant is preferably oil sunflower.
  • the specific steps include:
  • the method of introducing the seed-specific plant expression vector into the oil sunflower restorer line may be a conventional introduction method in the art, including but not limited to the gene gun method, the pollen tube passage method, the ovary injection method, and the Agrobacterium-mediated method, and preferably the agricultural method. Bacillus mediated method.
  • Agrobacterium-mediated method a seed-specific plant expression vector carrying a human insulin gene is introduced into Agrobacterium, and Agrobacterium tumefaciens-mediated transformation of oil sunflower recovery system explants.
  • the explants include four forms of sterile shoot tips, cotyledons, cotyledonary nodes, and live plants with one cotyledon removed, wherein preferably one shoot of the cotyledon is removed;
  • the regenerated plants obtained after transgenic are screened by resistance to obtain resistant seedlings. After the roots of the resistant seedlings are rooted, they are transplanted into the greenhouse for cultivation until the seeds are harvested. Among them, the resistant shoots were transplanted into the greenhouse for cultivation of vermiculite and nutrient soil mixture. PCR detection and Southern blotting were carried out at the seedling stage, and the kernel protein and human insulin fusion protein were detected by Western blotting after harvesting the grain;
  • a canola oil body protein gene promoter is selected. Experimental studies have shown that this promoter can greatly improve the expression efficiency of human insulin gene.
  • the Kozak sequence expression control element can also be designed around the start codon of the oil body protein gene, which can further improve the gene expression efficiency.
  • fusion expression of oil body protein and human insulin is also selected.
  • Target protein Because the plant is specifically expressed in the oil body in the form of fusion protein and oil body protein, the oil of the transgenic plant is pulverized, liquid extracted, centrifuged, and the upper oil phase is recovered by the lipophilic hydrophobic property of the oil body. The protein is separated from the other components in the cell to remove more than 90% of the seed protein.
  • a trypsin recognition sequence Klip27 is designed between oil body protein and human insulin to release human insulin from the oil body, which simplifies the purification process of the expression product and improves the purification efficiency.
  • a preferred oil body protein is peanut oil body protein.
  • the fusion expression of peanut oil body protein and human insulin has high expression efficiency and good effect.
  • the human insulin gene codon is optimized and the whole gene is artificially synthesized according to the human insulin gene sequence and the codon and GC content preferred by the oil sunflower.
  • a preferred plant bioreactor is oil sunflower.
  • oil sunflower has a long history of planting in China and has the irreplaceable advantages of other crops.
  • the oil sunflower has high yield.
  • As a drought-tolerant crop it can be planted in harsh environments such as saline-alkali land, arid areas and even deserts. Therefore, it is suitable for large-scale planting, not only does it not compete with food, but also helps to improve the mountains of China.
  • the utilization rate of thin land and arid and barren land eases the pressure on the country's cultivated land. Therefore, the selection of oil sunflower as a bioreactor, the large-scale production of human insulin is a way to produce pharmaceutical proteins suitable for China's national conditions.
  • the most advantageous is the use of oil sunflower as a bioreactor, which has a significant increase in productivity and an increase in yield compared to soybeans and safflower which have been used as human insulin production reactors.
  • the production of human insulin by this method of the invention has the following advantages:
  • a plant-expressed foreign protein similar to a mammalian expressed protein, capable of proper folding, which is particularly important for the production of pharmaceutical proteins that must have in vivo activity.
  • Human insulin produced by plant bioreactors is safer because it avoids contamination of endotoxin and animal pathogens in E. coli.
  • the seed-specific plant expression vector and the preparation method of the invention greatly increase the expression level of human insulin, and can reach 1.3% of the total amount of soluble protein in the seed.
  • the invention utilizes transgenic technology to develop a plant bioreactor with high expression, and the human insulin produced is for treating diabetes Special effects of the disease.
  • PUC 19 (purchased from MBI): Commonly used E. coli cloning vector
  • PBI121 Plant binary expression vector commonly used in plant transgenic engineering
  • pUCN pUC19 vector carrying the Brassica napus protein gene promoter (NOP), insertion sites H'wdlll and SamHI
  • Oleosin-klip27 -insulin Peanut oil body protein, klip27 and human insulin fusion gene
  • pUCNOI pUC19 vector carrying the peanut oil body protein (NOP)-driven peanut oil body protein, klip27 and human insulin fusion gene, insertion sites H/mlIII and cl
  • BINOL carries the canola oil body protein gene promoter (NOP)-driven peanut oil body protein, klip27 and human insulin fusion gene PBI121 vector, insertion site H dlll and cl
  • NOP canola oil body protein gene promoter
  • FIG. 1 Schematic diagram of the seed-specific plant expression vector pBINOI
  • FIG. 2 Schematic diagram of the construction process of the seed-specific plant expression vector pBINOI
  • Figure 3 Enzyme digestion and PCR detection of pUC vector
  • Figure 4 Construction of the Oleosin-klip27-insulin fusion gene;
  • Figure 5 Identification of the pUCNOI vector;
  • Figure 6 Identification of the seed-specific plant expression vector pBINOI;
  • FIG. 7 PCR detection of the transgenic oil sunflower ⁇ gene
  • Figure 8 PCR detection of the Oleosin-klip27-insulin fusion gene of the transgenic oil sunflower
  • FIG 10 Western detection of oil body protein-human insulin fusion protein in transgenic oil sunflower oil;
  • Figure 11 Comparison of oil sunflower as bioreactor and safflower as bioreactor for human insulin preparation
  • Example 1 Seed-specific plant expression vector
  • the rapeseed oil body protein gene promoter (NOP) is first amplified by PCR, and the promoter is inserted between the H'/idlll and BamHl cleavage sites of pUC19 to obtain pUCN.
  • the human insulin gene was designed and synthesized based on the human insulin gene sequence and the codons preferred by the oil sunflower, and the synthesized gene was inserted into the 3' end of the peanut oil body protein gene (O/e) to obtain peanut oil body protein and human insulin.
  • the gene was fused, and a trypsin recognition sequence Klip27 was added between the peanut oil body protein gene and the human insulin gene.
  • the fusion gene was inserted between the amHI and Sad cleavage sites of pUCN to obtain pUCNOI, HmdIII and cl double-cut pUCNOI, and the 1779 bp exogenous fragment was recovered by agarose gel, and the exogenous fragment was inserted into the plant binary expression.
  • the plant expression vector ⁇ , ⁇ provided by the present invention is obtained by the rapeseed oil protein gene promoter (NOP) driven by ⁇ /e- 3 ⁇ 4 ⁇ 7- ⁇ M/ fusion gene, pBINOI structure shown in Figure 1, 1 : rapeseed oil protein gene promoter, 2: peanut oil body protein gene, 3: KLIP-27, 4: human insulin gene.
  • NOP rapeseed oil protein gene promoter
  • pBINOI structure shown in Figure 1, 1 rapeseed oil protein gene promoter
  • 2 peanut oil body protein gene
  • 3 KLIP-27
  • 4 human insulin gene.
  • the pBINOI was sequenced to obtain the sequence of the expression cassette, which was 1779 bp in length.
  • rapeseed is an important oil crop with high oil content (42 ⁇ 45%), and the amount of 20kD oil body protein in rapeseed oil is 10 times that of 24kD oil body protein.
  • the forward primer pBINOI-1 was designed according to the rapeseed oil protein promoter nucleotide sequence (Genbank No.
  • AF134411) CCC AAG CTT TTC AAC GTG GTC GGA TCA TGA CG (SEQ ID NO: l) and the reverse primer pBINOI-2 : CGC-GGA TCC GAA TTG AGA GAG ATC GAA GAG ( SEQ ID NO : 2 ), a promoter for PCR amplification of the oily 20 kD oil body protein gene, and introduced H dl ll and S mHI cleavage sites on the primers Point (underlined to indicate the cleavage site), using the genomic DNA of Brassica napus L.
  • the PCR conditions are: 94 °C lmin, 63- 73 °C lmin, 68 °C lmin, 30 cycles, 68 °C extension lOmin, amplification of rapeseed oil body protein gene promoter.
  • the product was recovered by agarose gel electrophoresis, and then digested with H ndlll and SamHI.
  • the obtained product was recovered by agarose gel electrophoresis, and ligated with H/wdIII and ⁇ mffl double-digested pUC 19 to be ligated.
  • the product was mixed with 20 ( ⁇ L DH5 a competent cells (purchased from Tiangen Biochemical Technology (Beijing) Co., Ltd.), ice bath 30mm, heat shock at 42 °C for 1.5 min, ice bath for 3 min, add 800 ⁇ LB medium 37 Incubate for 45 min at °C, apply LB plate containing 50 g / mL ampicillin, and incubate overnight at 37 ° C.
  • 20 ⁇ L DH5 a competent cells (purchased from Tiangen Biochemical Technology (Beijing) Co., Ltd.), ice bath 30mm, heat shock at 42 °C for 1.5 min, ice bath for 3 min, add 800 ⁇ LB medium 37 Incubate for 45 min at °C, apply LB plate containing 50 g / mL ampicillin, and incubate overnight at 37 ° C.
  • Transformants were screened by PCR, pBINOI-1 and pBINOI-2 were used as primers, and the PCR conditions were: 94 ° C lmin 60-73 °C lmin, 72 °C lmin, after 30 cycles, 72 °C extension lOmin, the PCR product was subjected to agarose gel electrophoresis detection, the positive transformant was named pUCN, and the positive transformant was subjected to liquid shock. Culture, extract the plasmid, identify the plasmid by H dlll single digestion and H mini, mffl double digestion, agarose The results of gel electrophoresis showed that the results are shown in Figure 3.
  • the pUCN plasmid was sequenced, and the sequencing steps were as follows: (1) using pUCN as a template, pUC19 universal sequencing primer to carry out PCR reaction to obtain a PCR product; (2) purifying the PCR product to remove enzymes, fluorescent dyes, primers and other ions; 3) The purified PCR product was subjected to denaturation and ice bath treatment and then sequenced on a 3730 sequencer (ABI); (4) The instrument automatically analyzed and printed the color sequencing map and DNA sequence.
  • the exogenous fragment in pUCN was 903 bp in length, and the sequence was as shown in SEQ ID NO: 3, and the molecular weight was 556.7 kDa.
  • the results of digestion and sequencing showed that the promoter of rapeseed oil protein gene was successfully cloned into pUC19.
  • Amplification of the fusion protein gene of 0/eo «>-/3 ⁇ 4 ⁇ 27- ⁇ w//7 was designed based on the peanut oil body protein gene sequence (Genbank No. AF325917) and the klip27-insulin gene sequence (SEQ ID NO: 10).
  • Two pairs of specific primers pBINOI-3/pBINOI-4 and pBINOI-5/pBINOI-6 (SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, respectively) pBINOI-3 and pBINOI
  • the ⁇ HI and Sacl restriction sites were introduced in -6 (underlined bases were enzyme cleavage sites), and the Kozak sequence was designed around the start codon of the oil body protein gene in the pBINOI-3 primer.
  • the crude part, the function is to improve the efficiency of transcription and expression);
  • pBINOI-4 and pBINOI-5 are mutually complementary sequences.
  • pBINOI-3 CGC GGA TCC AGC AAA GCC GCC ACC ATG GCT ACT GCT ACT GAT CG
  • pBINOI-3/pBINOI-4 as primer and peanut (cultivar Quhuahua 4) genomic DNA as template to amplify the peanut oil body protein gene with stop codon deletion.
  • the PCR conditions were: 94 °C lmin, 56-60 °C Lmin, 68 °C lmin, 30 cycles, 68 °C extension lOmin; with pBINOI-5/pBINOI-6 as the primer, the optimized 7 3 ⁇ 4ra/ « gene is The template was amplified by ⁇ / ⁇ 27-/3 ⁇ 4 « ⁇ « gene.
  • the PCR conditions were: 94°C lmin, 55-73 °C lmin, 68 °C lmin, 30 cycles, 68 °C extension lOmin; agarose Gel electrophoresis and recovery of the two PCR products were combined as a template, and PCR was performed using pBINOI-3/pBINOI-6 as a primer. Fusion gene (PCR conditions: 94 °C lmin. 68.5 °C lmin. 68 °C lmin, 30 cycles, 68 °C extension lOmin), agarose gel electrophoresis and recovery of the amplified product to obtain Oleosin-klip27- Insulin ff insect gene.
  • the Oleosin-klip27-insulin fusion gene was sequenced, and the sequencing result was SEQ ID NO. : 15, 855 bp long, molecular weight 527.1 kDa.
  • the predicted amino acid sequence is shown as SEQ ID NO: 16, consisting of 284 amino acid residues, molecular weight 30.161 kDa. 27- /m// fusion gene construction results and sequencing The results showed that the Oleosin-klip27-iulin fusion gene was obtained.
  • the Oleosin-klip27-insulin fusion gene was double-digested with 5amHI and cl, and ligated with the same double-digested pUCN, and the ligation product was combined with 200joL DH5 ⁇ competent cells (purchased from Tiangen Biochemical Technology (Beijing). Co., Ltd.) Mix, ice bath for 30 min, heat at 42 °C for 1.5 min, ice bath for 3 min, add 800 LB medium at 37 °C for 45 mill, apply LB plate containing 50 ⁇ ⁇ / mL ampicillin, 37 Incubate overnight at °C.
  • the PC method was used to screen for transformants, pBINOI-3 and B pBINOI-6 were for the I.
  • the PCR conditions were: 94 °C lmin, 60-73 °C lmin 72 °C 1.5 min, 30 cycles, 72 °C extension l Omin, the PCR product was subjected to agarose gel electrophoresis detection, the positive transformant was named pUCNOI, the positive transformant was subjected to liquid shock culture, the plasmid was extracted by alkaline lysis, and the plasmid was subjected to H «dIII single enzyme digestion identification, H dlll Identification by double digestion with Bamm and double digestion with Bamlil and Saci.
  • the pUCNOI plasmid was sequenced and the result of the sequencing was SEQ ID NO: 17.
  • the full length is 1779 bp and the molecular weight is 1096.8 kDa. , including the rapeseed oil protein gene promoter and the Oleosin-klip27-insulin fusion gene.
  • the results of the digestion (as shown in Figure 5) and the sequencing results (as shown in SEQ ID NO: 17 in the sequence listing) indicate that the expression of the fusion protein of peanut oil body protein and human insulin driven by the rapeseed oil protein gene promoter has been obtained.
  • the cassette, and the expression cassette has been successfully cloned into vector PUC 19.
  • the transformants were screened by PCR, pBINOI-1 and pBINOI-6 were used as primers.
  • the PCR conditions were: 94 °C lmin, 60-73 °C lmin, 72 °C 1.5 min, 30 After one cycle, the cell was extended for 10 min at 72 °C, and the PCR product was subjected to agarose gel electrophoresis.
  • the positive transformant was named pBINOI, the positive transformant was subjected to liquid shock culture, the plasmid was extracted by alkaline lysis, and the plasmid was subjected to H/ « Identification by dIII single enzyme digestion and identification by H/wdlll and Saci double digestion, the results of agarose gel electrophoresis showed that the results are shown in Figure 6.
  • the Brassica napus protein gene promoter is a seed-specific strong promoter.
  • the human insulin is driven in the form of a fusion protein and is specifically expressed in the oil body together with the peanut oil body protein, and the peanut oil body protein carries the human insulin anchored on the surface of the oil body.
  • the seeds of the transgenic plants are pulverized, liquid extracted, centrifuged, and the upper oil phase is recovered to separate the fusion protein from other components in the cell, and more than 90% of the seed protein can be removed.
  • the pancreas is designed between the peanut oil body protein and human insulin. A protease cleavage site for releasing human insulin from an oil body.
  • a single colony of Agrobacterium tumefaciens LBA4404 was picked from 3 mL of YEB liquid medium (containing streptomycin Sm 125 mg/L) and cultured overnight at 28 °C with shaking;
  • a single Agrobacterium tumefaciens containing pBINOI plasmid was picked from the plate, inoculated into 5mLYEB liquid medium (containing 100mg/L Kanhe B 125mg/L Sm), cultured overnight with shaking, and 1mL of bacterial solution was inoculated into 100-200mL YEB liquid.
  • 5mLYEB liquid medium containing 100mg/L Kanhe B 125mg/L Sm
  • 1mL of bacterial solution was inoculated into 100-200mL YEB liquid.
  • the medium containing 100 mg/L Kan and 125 mg/LSm
  • Receptor plant material is cultivated into a complete plant, and the seed is obtained.
  • the above transformed explants were cultured on MS medium containing cephalosporin 300 mg/L, and after 7 days, transferred to MS containing cephalosporin 300 mg/L and kanamycin 70 mg/L. Select the culture on the screening medium, change the medium every 15 ⁇ 20d, obtain the resistant buds after three screenings, and transfer the 2 ⁇ 3cm resistant buds to the rooting medium MS2 (MS + IBA0.1 mg/L+Kan 70 mg) /L+cef 300 mg/L), after the roots of the resistant seedlings are transplanted into the greenhouse, the mixture of vermiculite and nutrient soil is cultured until the seeds are harvested.
  • the Kana resistance gene and the oil body protein-human insulin fusion gene were detected by PCR and PCR-Southem blotting at the seedling stage. After harvesting the grain, the oil protein and human insulin fusion protein were detected by Western blotting.
  • nptllF/nptllR and pBINOI-3/ pBINOI-6 primers The primer sequences were: nptllF: ATG AAC TGC AGGACGAGG (SEQ ID NO: 19) nptllR: GCG ATA CCG TAA AGC ACG (SEQ ID NO: 20)
  • the conditions for PCR amplification of nptllF/nptllR and pBINOI-3/pBINOI-6 are: 94 °C lmin, 60 °C After lmin, 72 °C lmin, 30 cycles, 72 °C extension for 10 min, respectively, amplified 567 bp fragment (part ⁇ / / gene) and 855 bp Ole-kli P 27-i ulin fusion gene fragment.
  • M DNA Molecular Weight Marker DL2000
  • LI-L3 pBINOI-3/ pBINOI-6 is a primer
  • a 855 bp fragment is amplified by using genomic DNA extracted from kana-resistant oil sunflower as a template.
  • Positive plants L4: PCR was used as a positive control with pBINOI as a template, and a 855 bp fragment was added.
  • L5 The genomic DNA extracted from non-resistant oil sunflower was used as a negative control.
  • SDS method was used to extract genomic DNA of true leaves of transgenic oil sunflower seedlings with positive ( /i3 ⁇ 4 « ⁇ -)t3 ⁇ 4 ⁇ 7-/m/ Z 7 , using pBINOI-3/ pBINOI-6 as primer pair genomic DNA PCR amplification was performed.
  • the PCR reaction conditions were 94 °C lmin. 60 °C lmin. 72 °C lmin, after 30 cycles, 72 °C extended for 10 min.
  • Hybridized and washed membranes were rinsed with rinse buffer, rinsed once; immersed in 100 mL of blocking solution for 30 min; soaked in 20 mL of antibody solution for 30 min; rinsed with 100 mL of wash buffer twice for 15 min each; in 20 mL assay buffer
  • the medium was equilibrated for 2-5 min ; the DNA of the membrane was placed upside down into the hybridization bag, and lmLCSPD was added; the membrane was wetted at 37 ° C for 10 min to allow the chemical fluorescence to fully react; and exposed to X-ray film at room temperature.
  • the results are shown in Fig. 9.
  • the transgenic oil sunflower seeds were ground in 5V grinding buffer (50mM Tris-HCl H 7.5, 0.4 M sucrose, 0.5M NaCl), centrifuged 10 X g for 30 min, divided into three parts, the oil phase was taken, and resuspended in an equal volume.
  • 5V grinding buffer 50mM Tris-HCl H 7.5, 0.4 M sucrose, 0.5M NaCl
  • centrifuged 10 X g for 30 min were ground in 5V grinding buffer, mix, gently add 5V pre-cooled 50mM Tris-HCl pH 7.5 buffer, centrifuge 10 X g for 30min, and take the oil phase.
  • the above process was repeated twice to further remove the remaining water-soluble and insoluble components to obtain a pure oil body (the oil body components include: neutral lipid phospholipids, oil body proteins).
  • 2V diethyl ether was added to the oil body, centrifuged, and the neutral lipid was left in the upper diethyl ether phase.
  • the phospholipid was in the lower aqueous phase, and the middle protein layer was taken, resuspended in 0.1 M sucrose buffer, and added with chloroform methanol ( 2 : 1 ) Mixture, extract twice, take the intermediate protein layer, extract once with ether, dissolve in sterile water, perform SDS polyacrylamide gel electrophoresis, and transfect the goat with rabbit polyclonal antibody against rabbit human insulin. Western blotting analysis was performed.
  • M protein molecular weight standard
  • L1 oil body protein extracted from the seeds of the transgenic oil sunflower, with insulin expression
  • the expression product size is about 30kDa, consistent with the expected size (peanut oil body protein) 18.4 kDa
  • L2 Non-GMO oil sunflower control.
  • the expression of insulin accounts for 1.3% of the total soluble protein of the seed, which exceeds the minimum commercialization requirement of recombinant drug protein expression in plants (1%). Therefore, it is feasible and broad to realize the industrialization of insulin by using the vegetable oil body expression system. Application prospects.
  • Step 1 Separate the oil body from the other ingredients in the seed
  • Seeds were ground in 5V grinding buffer (50mM Tris-HCl pH 7.5, 0.4M sucrose, 0.5 M NaCl), centrifuged (10xg) for 30min, divided into three parts: the bottom is insoluble precipitate (seed shell, fibrous material) , insoluble sugar, protein and other insoluble soils), the middle is the aqueous phase, contains soluble cellular components (storage proteins), and the uppermost layer is the oil body and the oil body protein bound to it.
  • 5V grinding buffer 50mM Tris-HCl pH 7.5, 0.4M sucrose, 0.5 M NaCl
  • centrifuged (10xg) for 30min, divided into three parts: the bottom is insoluble precipitate (seed shell, fibrous material) , insoluble sugar, protein and other insoluble soils), the middle is the aqueous phase, contains soluble cellular components (storage proteins), and the uppermost layer is the oil body and the oil body protein bound to it.
  • Step 2 Washing the oil body
  • the third step the enzyme digestion release human insulin
  • the oil body was washed twice with trypsin digestion buffer, and an appropriate amount of trypsin was added thereto, and the mixture was centrifuged overnight at 37 ° C, and human insulin was present in the aqueous phase.
  • Example 4 Comparison of the yield of human insulin prepared by using oil sunflower as a bioreactor and safflower as a bioreactor. The same quality of oil sunflower seeds and safflower seeds of the human insulin gene were obtained, and the human insulin was isolated and purified according to Example 3. After the same amount of electrophoresis, Western blotting was performed to detect 3 ⁇ 4M. The results are shown in Fig. 11. M: Protein molecular weight standard, L1: Self-transgenic oil sunflower purified insulin, the size is 5.7 kDa, which is consistent with the expected size. L2: The human insulin purified from the transgenic safflower has a size of 5.7 kDa, which is consistent with the expected size.
  • the insulin production of the transgenic sunflower seeds is slightly higher than that of the transgenic safflower. Moreover, the yield of oil sunflower is about 250kg, and the yield of safflower is about 200kg. Therefore, whether it is from the same quality of seed insulin production or the yield of insulin per unit area of crops, oil sunflower is better than safflower.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

一种含有人胰岛素基因的表达载体及其构建方法与应用
技术领域 本发明涉及一种含有人胰岛素基因的表达载体及其构建方法与应用, 特别是涉及一种含 有人胰岛素基因的表达载体及其构建方法和利用该载体在油葵中制备人胰岛素的方法。 背景技术
近年来, 糖尿病的发病率逐年升高, 呈现流行势态。 糖尿病已成为世界上许多国家的常 见病和多发病。 世界卫生组织的近期数字指出, 全世界每年约有 320万人死于糖尿病, 即每 分钟 6个人。
在糖尿病用药中, 胰岛素是最有效的治疗药物之一, 也是 I型糖尿病患者唯一的治疗药 物。 此外, 还有 30%〜40%的 II型糖尿病患者最终需要使用胰岛素。 目前, 全球胰岛素市场 基本由诺和诺德公司、 礼来公司和赛诺菲-安万特公司所垄断。 三大巨头都采用微生物发酵的 方法生产人胰岛素类产品, 但利用微生物发酵技术生产有其局限性, 如成本高, 难以扩大再 生产。 相比之下, 植物生物反应器就凸显出其特有的优势: 成本低廉, 且易于规模化生产。
利用转基因植物生产具有医用和商业价值的外源蛋白质, 特别是用于医疗和诊断的药用 蛋白, 在近年来受到人们的广泛关注。 利用植物种子表达目的蛋白, 再将种子经粉碎—液体 抽提→离心处理→回收上层油相即可将融合蛋白与细胞内其它组分分开, 再经进一步纯化获 得目的蛋白。 这样大大简化了目的蛋白的提取纯化过程, 克服了目前微生物表达系统难以规 模化生产、 安全性差的困难, 并且大幅度降低了生产成本, 表达具有高保真性, 是生物工程 制药领域中的一场重要革命。 在国内, 中国农业科学院利用转基因工程技术将一种新型鲑鱼 降钙素类似物成功地在油菜和棉花种子中进行了表达, 获得了转基因植株和株系。
目前, 加拿大赛姆生物系统遗传公司已率先开展了在转基因红花中生产胰岛素的研究, 把嵌合核酸构建体导入红花中, 在种子中表达胰岛素。 该项研究已经完成了全部的临床前工 作,并获得 FDA注册。已在英国申请了 I期和 II期临床试验。但是红花植物其种子体积较小, 整株植物含油率较低, 导致最终产物蛋白的量少, 成本高。
因此, 现有技术仍然需要一种方法稳定、 产率高、 成本低、 步骤简单的制备胰岛素的方 法。 发明内容
本发明的申请人通过长期研究, 付出大量的创造性劳动, 通过构建一种含有人胰岛素基 因的特异型的表达载体, 并选择油葵作为生物反应器, 稳定、 高效地生产出人胰岛素, 从而 完成了本发明。
本发明涉及以重组 DNA技术生产人胰岛素的方法, 特别涉及以油葵作为宿主生产人胰 岛素的方法。 具体的说, 本发明涉及利用花生油体蛋白与人胰岛素的融合蛋白基因在油葵油 体中表达从而可以大量生产制备治疗糖尿病的重要药物胰岛素。
首先, 本发明提供了一种种子特异型表达载体,含有人胰岛素与花生油体蛋白融合基因, 其中, 该载体的启动子为油菜油体蛋白基因启动子。 以上载体用以在油葵中制备人胰岛素。
另外, 本发明还提供了一种构建上述种子特异型表达载体的方法, 包括如下步骤:
1 ) 分离克隆油菜油体蛋白基因启动子和花生油体蛋白基因;
2 ) 按照植物偏爱的密码子设计合成人胰岛素基因;
3 ) 构建以油菜油体蛋白基因启动子驱动的花生油体蛋白与人胰岛素融合基因的植物表 达载体。
具体步骤包括:
1 ) 分离克隆油菜油体蛋白基因启动子和花生油体蛋白基因 釆用 PCR方法自油菜 (Brassica campestris )基因组 DNA中扩增 20kD油体蛋白基因的启动子, 并将该启动子克隆 到 pUC 19 (购自 MBI公司)上得到重组质粒 pUCN, 以花生基因组 DNA为模板 PCR方法扩 增终止密码子缺失的花生油体蛋白基因。 其中, 油菜品种可以是目前现有技术中已经公开或 使用的油菜品种, 例如, 可以是青油 14品种、 互丰 101、 耐寒高油王、 早油 100天和秦油 2 号等, 优选青油 14品种。 以上油菜油体蛋白启动子可以克隆到 pUC 19的适合位点之间, 优 选克隆到 pUC 19的 H «dI I I和 mHI位点之间。 所述的花生品种可以是目前现有技术中已 经公开或使用的花生品种, 例如, 可以是冀花 4号、 冀油 7号、 白沙、 鲁花 11、 海花和丰花 1号等, 优选冀花 4号。
2 ) 按照植物偏爱的密码子设计合成人胰岛素基因, 按照油葵密码子使用频率优化人胰 岛素合成基因, 优选优化的基因为人胰岛素基因, 频率小于 10%的密码子一律认为是稀有密 码子被排除, 其余的各密码子按油葵密码子使用频率优化, 并在基因的 5 ' 端添加了胰蛋白 酶识别序列 Klip27, 构建成 klip27-i ulin, 327bp。 优化前基因的分子量为 201.6, 优化前后 序列的一致性为大于 60%,优选大于 65%,最优选为 73%,优化后基因的分子量优选为 201.6。 油葵密码子 4吏用频率可参考 http:〃 www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species =4232
3 ) 构建以油菜油体蛋白基因启动子驱动的花生油体蛋白与人胰岛素融合基因的植物表 达载体 利用重叠 PCR 技术将花生油体蛋白基因和 klip27-i Ulin 基因构建成融合基因 0/e-^j^7 ara/ «,将该融合基因连入 pUCN得到重组质粒 pUCNOI,优选连入的位点为 pUCN 的 S HI和 酶切位点之间, 双酶切重组质粒 pUCNOI, 优选 H dl l l和 双酶切重 组质粒 pUCNOI, 回收 1779bp的外源片段, 并将该外源片段连入植物转基因工程中常用的植 物双元表达载体 PBI121的 H dI I I和 位点之间获得 pBINOI,即油菜油体蛋白基因启动 子驱动的花生油体蛋白与人胰岛素融合基因的植物表达载体。 最后, 本发明还提供了利用以上种子特异型植物表达载体制备人胰岛素的方法, 包括如 下步骤:
1 ) 将上述构建表达载体导入受体植物外植体内;
2) 将上述受体植物材料培养为完整的植株, 得到种子;
3 ) 从上述种子中分离纯化得到人胰岛素。
其中, 所述的受体植物优选为油葵。
具体步骤包括:
1 ) 将携带人胰岛素基因的种子特异型植物表达载体导入油葵恢复系外植体。 将种子特 异型植物表达载体导入油葵恢复系的方法可以是本领域常规的导入方法, 包括但不限于基因 枪法、 花粉管通道法、 子房注射法和农杆菌介导法, 优选的是农杆菌介导法。 农杆菌介导法 中, 将携带人胰岛素基因的种子特异型植物表达载体导入农杆菌, 由农杆菌介导转化油葵恢 复系外植体。所述外植体包括无菌苗茎尖、 子叶、子叶节、 去掉一片子叶的实生株四种形式, 其中优选去掉一片子叶的实生株;
2 ) 转基因后获得的再生植株经抗性筛选得到抗性苗, 待抗性苗生根后移栽入温室进行 培养, 直至成熟收获种子。 其中, 抗性苗生根后移栽入温室进行蛭石和营养土混合物培养, 在幼苗期进行 PCR检测和 Southern blotting检测, 收获籽粒后进行油体蛋白和人胰岛素融合 蛋白的 Western blotting检测;
3 ) 将含人胰岛素的种子在缓冲液中研磨, 离心将油体和种子的其他成分分离, 洗涤油 体, 通过酶切反应将人胰岛素自油体表面释放, 经 HPLC纯化获得人胰岛素, 并对其进行鉴 定。
在本发明的载体和方法中, 选择了油菜油体蛋白基因启动子。 经实验研究表明, 该启动 子可大大提高人胰岛素基因的表达效率。 优选地, 在油体蛋白基因起始密码子周围还可以设 计 Kozak序列表达控制元件, 可以更加进一步提高基因表达效率。
在本发明的载体和方法中, 还选择了油体蛋白和人胰岛素的融合表达。 目的蛋白在转基 因植物中是以融合蛋白的形式与油体蛋白共同在油体中特异表达, 利用油体亲脂疏水的特性, 将转基因植物种子粉碎, 液体抽提, 离心处理, 回收上层油相即可将融合蛋白与细胞内其它 组分分开, 可去除 90%以上的种子蛋白。优选地,在油体蛋白和人胰岛素之间设计了胰蛋白酶 识别序列 Klip27, 用以从油体上释放人胰岛素, 简化了表达产物的纯化工艺, 提高了纯化效 率。 其中, 优选的油体蛋白为花生油体蛋白。 花生油体蛋白和人胰岛素的融合表达, 表达效 率高, 效果好。
本发明公开的载体和方法中, 为了提高人胰岛素基因的表达效率, 根据人胰岛素基因序 列和油葵偏爱的密码子、 GC含量对人胰岛素基因密码子进行了优化和全基因的人工合成。
在本发明公开的人胰岛素的生产方法中, 优选的植物生物反应器为油葵。 油葵作为我国 一种重要的油料作物, 在我国具有悠久的种植历史, 具有其它作物不可替代的优势。 油葵产 量高, 作为耐旱作物, 可以在盐碱地、 干旱地区甚至沙漠等恶劣环境下种植, 因此适于大面 积推广种植, 不仅不会与粮食 "争地" , 而且还有利于提高我国山岭薄地、 干旱贫瘠之地的 利用率, 缓解国家耕地紧张的压力。 因此, 选择油葵作为生物反应器, 大规模地生产人胰岛 素是适合我国国情的生产药用蛋白的方式。 最有优势的是, 采用油葵作为生物反应器, 与目 前已作为人胰岛素生产反应器的大豆和红花相比, 具有显著的生产效率提高, 产率增加的效 果。 采用此发明方法生产人胰岛素具有以下优点:
1、植物表达的外源蛋白, 类似于哺乳动物表达的蛋白, 能够进行正确的折叠, 这对于必 须具有体内活性的药用蛋白的生产尤为重要。
2、采用植物生物反应器生产的人胰岛素更安全, 因为避免了大肠杆菌中的内毒素和动物 病原菌的的污染。
3、 利用转基因植物的油体表达系统表达人胰岛素, 大大简化了纯化工艺, 降低了成本, 有利于将来的产业化。 较之已经被 SemBioSys Genetics公司采用的拟南芥以及红花具有很大 的优势。
4、 采用本发明的种子特异型植物表达载体和制备方法, 大大提高了人胰岛素的表达量, 能达到种子可溶性蛋白总量的 1.3%。
5、采用农杆菌介导法, 不仅可以降低成本、提高转化效率, 还提高了转基因植株的遗传 稳定性。 本发明是利用转基因技术开发高效表达的植物生物反应器, 所生产人胰岛素是治疗糖尿 病的特效药物。
除有特殊说明, 在本发明中出现术语均具有本领域通常的含义, 其中的缩写代表的内容 如下:
PUC 19 (购自 MBI公司) : 常用的大肠杆菌克隆载体
PBI121 : 植物转基因工程中常用的植物双元表达载体
pUCN:携带油菜油体蛋白基因启动子(NOP)的 pUC19载体,插入位点 H'wdlll和 SamHI
Oleosin-klip27 -insulin: 花生油体蛋白、 klip27和人胰岛素融合基因
pUCNOI: 携带油菜油体蛋白基因启动子 (NOP )驱动的花生油体蛋白、 klip27和人胰 岛素融合基因的 pUC19载体, 插入位点 H/mlIII和 cl
BINOL 携带油菜油体蛋白基因启动子(NOP )驱动的花生油体蛋白、 klip27和人胰岛 素融合基因的 PBI121载体, 插入位点 H dlll和 cl 附图说明
图 1 种子特异型植物表达载体 pBINOI结构示意图;
图 2 种子特异型植物表达载体 pBINOI构建流程示意图;
图 3 pUC 载体的酶切鉴定及 PCR检测;
图 4 Oleosin-klip27 -insulin融合基因的构建; 图 5 pUCNOI载体的酶切鉴定; 图 6 种子特异型植物表达载体 pBINOI的酶切鉴定;
图 7 转基因油葵 ΙΙ基因的 PCR检测; 图 8 转基因油葵的 Oleosin-klip27-insulin融合基因的 PCR检测;
图 9 转基因油葵 PCR-Southem杂交结果;
图 10转基因油葵籽粒油体中油体蛋白-人胰岛素融合蛋白的 Western检测; 图 11 油葵作为生物反应器和红花作为生物反应器制备人胰岛素的比较
具体实施方式
以下具体实施方式仅是对于本发明进行进一步说明, 并不用于限定本发明的范围。 在了 解本发明的内容后, 本领域技术人员在不背离本发明精神的前提下对本发明进行改变, 这些 技术方案均落在本发明的保护范围之内。
除有特殊说明外, 下列实施例中所述的方法均为本领域的常规方法。 实施例 1 : 种子特异型植物表达载体
本发明中首先采用 PCR方法扩增了油菜油体蛋白基因启动子 (NOP) , 将该启动子插入 pUC 19的 H'/idlll和 BamHl酶切位点之间得到 pUCN。 同时依据人胰岛素基因序列和油葵偏 爱的密码子设计并人工合成了人胰岛素基因,并将该合成的基因插入花生油体蛋白基因(O/e) 的 3'末端, 获得花生油体蛋白和人胰岛素融合基因, 同时在花生油体蛋白基因和人胰岛素基 因之间添加了胰蛋白酶识别序列 Klip27。 进而将该融合基因插入 pUCN的 amHI和 Sad酶 切位点之间得到 pUCNOI, HmdIII和 cl双酶切 pUCNOI, 琼脂糖凝胶回收 1779bp的外源 片段, 并将该外源片段插入植物双元表达载体 pBI121的 H^JIII和 &CI酶切位点之间, 获得 本发明提供的植物表达载体 ρΒΙΝΟΙ, ρΒΙΝΟΙ的表达盒为以油菜油体蛋白基因启动子(NOP) 驱动的 < /e- ¾^7-^M/ 融合基因, pBINOI结构如图 1所示, 1 : 油菜油体蛋白基因启动子, 2: 花生油体蛋白基因, 3 : KLIP-27, 4: 人胰岛素基因。 将 pBINOI进行测序获得表达盒的 序列, 长度为 1779bp。
实施例 2: 种子特异型植物表达载体 pBINOI的构建
植物表达载体 pBINOI构建流程如图 2所示, 具体步骤如下:
油菜油体蛋白基因启动子的克隆, 油菜是重要的油料作物, 含油量高 (42〜45%) , 而 且油菜油体中 20kD油体蛋白的量为 24kD油体蛋白量的 10倍。 根据油菜油体蛋白启动子核 苷酸序列(Genbank No. AF134411 )设计正向引物 pBINOI-1 : CCC AAG CTT TTC AAC GTG GTC GGA TCA TGA CG ( SEQ ID NO: l ) 和反向引物 pBINOI-2: CGC-GGA TCC GAA TTG AGA GAG ATC GAA GAG ( SEQ ID NO :2 ), 用于 PCR扩增油菜 20kD油体蛋白基因的启动 子,在引物上分别引入了 H dl l l和 S mHI酶切位点(下划线表示酶切位点),以油菜 (Sra^ cfl campestris )品种青油 14基因组 DNA为模板, 以 pBINOI-1和 pBINOI-2为引物, PCR的条 件为: 94°C lmin、 63-73 °C lmin、 68 °C lmin, 30个循环后, 68 °C 延伸 lOmin, 扩增油菜油 体蛋白基因启动子。 琼脂糖凝胶电泳并回收扩增产物, 进而用 H ndlll和 SamHI双酶切, 琼 脂糖凝胶电泳回收所得产物, 并将其与 H/wdIII和 ^mffl双酶切的 pUC 19连接, 将连接产物 与 20(^L DH5 a感受态细胞(购自天根生化科技 (北京)有限公司)混匀, 冰浴 30mm, 42°C热 击 1.5min, 冰浴 3min, 加入 800μΙ^ LB培养基 37°C培养 45 min, 涂布含 50 g /mL氨苄青霉 素的 LB平板, 37°C培养过夜。 PCR方法筛选转化子, pBINOI-1和 pBINOI-2为引物, PCR 的条件为: 94°C lmin, 60-73 °C lmin, 72 °C lmin, 30个循环后, 72°C 延伸 lOmin, 将 PCR 产物进行琼脂糖电泳检测筛选结果, 将阳性转化子命名为 pUCN, 将阳性转化子进行液体震 荡培养, 提取质粒, 将质粒进行 H dlll单酶切鉴定和 H mini、 mffl双酶切鉴定, 琼脂糖 凝胶电泳显示鉴定结果如图 3所示, M: DNA Molecular Weight Marker λ DNA/£coT 141, L1: HmdIII 酶切 pUCN质粒的产物为 3565bp的片段, L2: H dlll和 ΒωηΐΏ双酶切 pUCN质 粒的产物为 2662bp的载体片段和 903bp的启动子, L3: PCR检测 pUCN质粒得到 903bp的 启动子。 将 pUCN质粒进行测序, 测序步骤如下: (1) 以 pUCN为模板, pUC19通用测序 引物进行 PCR反应, 得到 PCR产物; (2) 纯化 PCR产物, 以去除酶、 荧光染料、 引物和 其他离子; (3)纯化后的 PCR产物经变性和冰浴处理后上 3730测序仪(ABI公司)进行测 序; (4)仪器自动分析并打印出彩色测序图谱和 DNA序列。 pUCN中外源片段长度为 903bp, 序列如 SEQIDNO:3所示, 分子量为 556.7kDa。 酶切结果和测序结果表明: 已将油菜油体蛋 白基因启动子成功克隆到 pUC19上。
人胰岛素的人工合成, 依据人胰岛素基因序列 (SEQ ID NO:4, ABI63346.1) , 氨基酸 序 列 如 SEQ ID NO:5 所 示 , 同 时 参 照 油 葵 密 码 子 使 用 频 率 ίρ:〃 www.kazusa.or,jn/codon/cgi-biii/shovcodorii,c'iri?species::: 232设计优化人胰岛素合成基因, 并在基 因的 5' 端添加了胰蛋白酶识别序列 (Klip27) , 核苷酸序列如 SEQ ID NO:6所示, 氨基酸 序列为 SEQ ID NO:7所示 iklip27-insulin的核苷酸序列如 SEQ ID O:8所示, 327bp, 分子量 为 201.6, 氨基酸序列如 SEQIDNO:9所示, 分子量为 11.752 kDa)经密码子优化并人工合成 后的 klip27-i ulin基因核苷酸序列如 SEQ ID NO: 10所示, 分子量为 201.6, 密码子优化前后 基因的一致性为 73%。
0/eo«>-/¾^27-^w//7融合蛋白基因的扩增, 依据花生油体蛋白基因序列 (Genbank No. AF325917 ) 和 klip27 -insulin 基因序列 (SEQ ID NO:10 ) 设计了两对特异性引物 pBINOI-3/pBINOI-4和 pBINOI-5/pBINOI-6(分别如 SEQIDNO:ll, SEQ ID NO: 12, SEQ ID NO:13, SEQ ID NO:14) pBINOI-3和 pBINOI-6中分别引入 β HI和 Sacl酶切位点 (带下 划线的碱基为酶切位点), 且 pBINOI-3引物中在油体蛋白基因起始密码子周围设计了 Kozak 序列(序列中加粗部分, 功能是提高转录和表达效率); pBINOI-4和 pBINOI-5互为反向互补 序列。
pBINOI-3: CGC GGA TCC AGC AAA GCC GCC ACC ATG GCT ACT GCT ACT GAT CG
pBINOI-6: C GAG CTC TTA GTT GCA GTA ATT TTC TAG
以 pBINOI-3/pBINOI-4为引物, 花生 (品种冀花 4号) 基因组 DNA为模板扩增终止密 码子缺失的花生油体蛋白基因, PCR的条件为: 94°C lmin、 56-60 °C lmin、 68 °C lmin, 30 个循环后, 68°C 延伸 lOmin; 以 pBINOI-5/pBINOI-6为引物, 优化后的 7 ¾ra/«基因为 模板扩增 Α/φ27-/¾«ώ·«基因, PCR的条件为: 94°C lmin、 55-73 °C lmin、 68 °C lmin, 30个 循环后, 68 °C 延伸 lOmin;琼脂糖凝胶电泳并回收两种 PCR产物合并作为模板,以 pBINOI-3/ pBINOI-6为引物进行重叠 PCR, 获得
Figure imgf000010_0001
融合基因 (PCR的条件为: 94 °C lmin. 68.5 °C lmin. 68 °C lmin, 30个循环后, 68 °C 延伸 lOmin) , 琼脂糖凝胶电泳并回收扩 增产物获得 Oleosin-klip27-insulin ff虫合基因。 Oleosin-klip27-insulin融合基因的构建如图 4所 示, M: DNA Molecular Weight Marker DL2000, LI : pBINOI-3/ pBINOI-4为引物, 花生(品种 冀花 4号)基因组 DNA为模板扩增终止密码子缺失的花生油体蛋白基因 528bp的片段, L2: 以 pBINOI-5/ pBINOI-6为引物, 优化后的 Jdip27-insulin基因为模板扩增 klip27-i ulin基因 327bp , L3 : 以 pBINOI-3/ pBINOI-6为引物进行重叠 PCR, 获得的( /ea«>7-A:¾^7-^w//w融合 基因 855bp。 将 Oleosin-klip27-insulin融合基因进行测序, 测序结果如 SEQ ID NO: 15所示, 长 855bp, 分子量 527.1 kDa。 预测的氨基酸序列如 SEQ ID NO: 16所示, 由 284个氨基酸残 基组成, 分子量 30.161 kDa。 27- /m// 融合基因的构建结果和测序结果表明: 已 得到 Oleosin-klip27-i ulin融合基因。
中间载体 pUCNOI的构建,将 Oleosin-klip27-insulin融合基因进行 5amHI和 cl双酶切后 与同样双酶切的 pUCN连接,将连接产物与 200joL DH5 α感受态细胞(购自天根生化科技 (北 京)有限公司) 混匀, 冰浴 30min, 42 °C热击 1.5min, 冰浴 3min, 加入 800 LB培养基 37 °C培养 45 mill,涂布含 50μ§ /mL氨苄霉素的 LB平板, 37°C培养过夜。 PC 方法筛选转化子, pBINOI-3禾 B pBINOI-6为弓 I物, PCR的条件为: 94 °C lmin、 60-73 °C lmin 72 °C 1.5min, 30 个循环后, 72°C 延伸 l Omin, 将 PCR产物进行琼脂糖电泳检测筛选结果, 将阳性转化子命 名为 pUCNOI , 将阳性转化子进行液体震荡培养, 碱裂解法提取质粒, 将质粒进行 H «dIII单 酶切鉴定、 H dlll和 Bamm双酶切鉴定以及 Bamlil和 Saci双酶切鉴定, 琼脂糖凝胶电泳显 示鉴定结果如图 5所示, M : DNA Molecular Weight Marker λ DNA/^coTMI, LI : HmdIII酶切 pUCNOI质粒的产物为 4426bp的片段, L2 : HmdIII和 cl双酶切 pUCNOI质粒的产物为 2647bp 的载体片段和 1799bp 的外源片段 (包含油菜油体蛋白基因启动子和 Oleosin-klip27-insulin融合基因) L3 : Bamlil禾 B Sad双酶切 pUCNOI质粒的产物为 3571bp 的载体片段和 855bp
Figure imgf000010_0002
融合基因) 。 将 pUCNOI质粒进行测 序, 测序结果 SEQ ID NO: 17。 全长 1779bp, 分子量 1096.8 kDa。 , 包括油菜油体蛋白基因启 动子和 Oleosin-klip27-insulin融合基因。 酶切结果 (如图 5所示) 和测序结果 (如序列表中 SEQ ID NO: 17所示)表明: 已获得了油菜油体蛋白基因启动子驱动的花生油体蛋白与人胰岛 素融合基因的表达盒, 并已将该表达盒成功克隆到载体 PUC 19上。
种子特异型植物表达载体 pBINOI的构建,碱裂解法提取 pUCNOI质粒 DNA,用 H mffll 和 cl双酶切, 回收 1779bp的外源片段, 将其与经 H/ndlll和 cl双酶切的 pBI121连接, 将连接产物与 20(^L DH5 ct感受态细胞 (购自天根生化科技 (北京)有限公司) 混匀, 冰浴 30min, 42°C热击 1.5min, 冰浴 3min,加入 80(^L LB培养基 37°C培养 45 min, 涂布含 lOO g /mL卡那霉素的 LB平板, 37°C培养过夜。 PCR方法筛选转化子, pBINOI-1和 pBINOI-6为 引物, PCR的条件为: 94 °C lmin、 60-73 °C lmin、 72 °C 1.5min, 30个循环后, 72 °C 延伸 lOmin, 将 PCR产物进行琼脂糖电泳检测筛选结果,将阳性转化子命名为 pBINOI ,将阳性转化子进行 液体震荡培养, 碱裂解法提取质粒, 将质粒进行 H/«dIII单酶切鉴定以及 H/wdlll和 Saci双酶 切鉴定, 琼脂糖凝胶电泳显示鉴定结果如图 6, M : DNA Molecular Weight Marker λ DNA/£coT14I, LI : Hindlll 酶切 pBINOI质粒的产物为 13782bp的片段, L2: H dlll和 &d 双酶切 pBINOI 质粒的产物为 12003bp的载体片段和 1779bp的外源片段(包含油菜油体蛋白 基因启动子和 Oleosin-klip27-insulin融合基因)。将 pBINOI质粒进行测序,测序结果 SEQ ID NO: 17, 整个表达盒长 1779bp, 分子量为 1096.8 kDa, 包括油菜油体蛋白基因启动子和 Oleosin-klip27 -insulin融合基因。 载体的全长核苷酸序列如 SEQ ID NO: 18所示。 油菜油体蛋 白基因启动子是种子特异型的强启动子, 在转基因植物的种子中驱动人胰岛素以融合蛋白的 形式与花生油体蛋白共同在油体中特异表达, 花生油体蛋白携带人胰岛素锚定在油体表面。 利用油体亲脂疏水的特性,将转基因植物种子粉碎,液体抽提,离心处理, 回收上层油相即可 将融合蛋白与细胞内其它组分分开,可去除 90%以上的种子蛋白。 并在花生油体蛋白和人胰 岛素之间设计了胰蛋白酶酶切位点, 用以从油体上释放人胰岛素。
实施例 3 : 利用该载体制备人胰岛素
3.1 上述构建的种子特异型表达载体导入受体植物外植体内;
3.1.1 农杆菌感受态细胞的制备
( 1 )挑取根癌农杆菌 LBA4404单菌落于 3mL的 YEB液体培养基 (含链霉素 Sm 125mg/L) 中, 28°C振荡培养过夜;
(2 )取过夜培养菌液 500μί接种于 50mL YEB(Sm 125mg/L)液体培养基中, 28°C振荡 培养至 OD6G()为 0.5 ;
( 3 ) 5,000rpm, 离心 5min;
(4 )力卩 10mL 0.15M NaCl悬浮农杆菌细胞, 5,000rpm, 离心 5min;
( 5 ) lmL预冷的 20mM CaCl2悬浮细胞, 冰浴, 24h内使用, 或分装成每管 200μί, 液 氮中速冻 1 min, 置 -70°C保存备用。
3.1.2种子特异型植物表达载体向农杆菌感受态细胞的转化
取 20(^L感受态细胞,加入 1 μ§构建好的质粒 DNA,液氮中速冻 1 min, 37°C水浴 5 min, 然后加入 ImLYEB培养基, 28°C慢速振荡培养 4h; 1,000 rpm离心 30sec, 弃上清, 加入 0. ImLYEB培养基重新悬浮细胞, 涂布于含有 100mg/L Kan和 125mg/L Sm的 YEB平板上, 28°C培养约 48h。
阳性克隆的鉴定
挑取平板上长出的单菌落, 接种于 YEB液体培养液 (含有 100mg/L Kan和 125mg/L Sm) 中, 28°C振荡培养过夜; 碱裂解法小量提取质粒 DNA, 以质粒 DNA为模板, pBINOI-1和 pBINOI-6为引物,进行 PCR扩增鉴定, PCR的条件为:94 °C lmin, 60-73 °C lmin、72°C 1.5min, 30个循环后, 72°C 延伸 10min, 将 PCR产物进行琼脂糖电泳检测筛选结果获得阳性转化子。 用于转化油葵的农杆菌菌液的准备
从平板上挑取含 pBINOI 质粒的农杆菌单菌落, 接种到 5mLYEB液体培养基中 (含有 100mg/L Kan禾 B 125mg/L Sm), 振荡培养过夜, 取 lmL菌液接种到 100-200mL YEB液体培 养基 (含有 100mg/L Kan和 125mg/LSm) 中, 剧烈振荡培养至 OD6(3。为 0.4〜0.8, 3500rpm 离心 lOmin, 菌体用 MS (不含植物生长调节剂和抗生素)液体培养基重悬, 使 OD6Q。为 0.6 左右, 以进行侵染。
3.1.3 农杆菌介导的油葵外植体的遗传转化
将发芽 3〜4d的油葵种子实生幼苗的茎尖、 子叶、 子叶节和去掉一片子叶的实生株四种 形式的外植体, 在上述农杆菌菌液中浸泡 6〜8min, 转至 MS固体培养基上共培养 3d (25°C 黑暗)。 其中优选的方式是去掉一片子叶的实生株。
3.2将上述受体植物材料培养为完整的植株, 得到种子并进行目的基因和蛋白的检测;
3.2.1受体植物材料培养为完整的植株, 得到种子
将上述转化过的外植体到含头孢霉素 300mg/L的 MS培养基上继续进行培养, 约 7d后, 转至 MS含头孢霉素 300mg/L和卡那霉素 70mg/L的抗性筛选培养基上选择培养,每 15〜20d 更换培养基,筛选三次后获得抗性芽,将 2〜3厘米抗性芽转至生根培养基 MS2 (MS + IBA0.1 mg/L+Kan 70 mg/L+cef 300 mg/L), 待抗性苗生根后移栽入温室进行蛭石和营养土混合物培 养, 直至成熟收获种子。
3.2.2 目的基因和蛋白的检测
在幼苗期对卡那抗性基因和油体蛋白-人胰岛素融合基因进行 PCR检测和 PCR-Southem blotting检测, 收获籽粒后对油体蛋白和人胰岛素融合蛋白进行 Western blotting检测。
转基因油葵幼苗的 PCR检测和 PCR- Southern blotting检测
采用 SDS 法提取抗性油葵幼苗幼嫩真叶的基因组 DNA作为模板, 以 nptllF/nptllR和 pBINOI-3/ pBINOI-6两对引物进行 PCR扩增检测, 引物序列分别为: nptllF: ATG AAC TGC AGGACGAGG (SEQIDNO:19) nptllR: GCG ATA CCG TAA AGC ACG (SEQ ID NO:20) nptllF/nptllR和 pBINOI-3/ pBINOI-6的 PCR扩增的条件均为为: 94 °C lmin、 60 °C lmin、 72 °C lmin, 30个循环后, 72°C 延伸 10min, 分别扩增出预期为 567bp的片段 (部分 ρί//基因) 和 855bp的 Ole-kliP27-i ulin融合基因片段。结果如图 7和图 8所示。图 7中, M: DNA Molecular Weight Marker DL2000, LI- L3: nptBF/np置为引物, 以自卡那抗性的油葵所提基因组 DNA 为模板扩增出 567bp的片段, 即为抗性植株。 L4: pBINOI 作模板进行 PCR作为阳性对照, 增出 567bp的片段。 L5: 以自非抗性油葵所提基因组 DNA为模板作为阴性对照。 图 8中, M: DNA Molecular Weight Marker DL2000, LI- L3: pBINOI-3/ pBINOI-6为引物, 以自卡那抗性 的油葵所提基因组 DNA为模板扩增出 855bp的片段, 即为阳性植株, L4: 以 pBINOI作模 板进行 PCR作为阳性对照, 增出 855bp的片段, L5: 以自非抗性油葵所提基因组 DNA为模 板作为阴性对照。
PCR-Southern blotting检测
1) 采用 SDS 法提取 和( /i¾«^-)t¾^7-/m/Z 7均为阳性的转基因油葵幼苗真叶的基因组 DNA,以 pBINOI-3/ pBINOI-6为引物对基因组 DNA进行 PCR扩增。 PCR反应条件为 94 °C lmin. 60 °C lmin. 72 °C lmin, 30个循环后, 72°C 延伸 10min。
2) 将 PCR产物从凝胶转移至尼龙膜, 电泳完毕, 进行变性、 中和后, 进行半干转膜, 将膜 晾干, 真空 80°C干烤 1.2hrs。
3) DNA探针标记
回收 pBINOI质粒的 SawHI和 cl双酶切片段, 取 3 μ gDNA用于标记
4) 杂交
63°C预杂交膜 30mins, 63°C杂交过夜, 用充足的 2XSSC, 0.1%SDS洗膜 2次; 用预热 到 65°C的 0.5XSSC, 0.1%SDS条件下洗膜 2次。
5) 检测
杂交和洗过的膜用冲洗缓冲液冲洗, 简单淋洗一次; 在 lOOmL封闭液中浸泡 30min; 在 20mL抗体溶液中浸泡 30min; 用 lOOmL冲洗缓冲液冲洗 2次, 各 15min; 在 20mL检测 缓冲液中平衡 2-5min; 将膜的 DNA面向上放到杂交袋中, 加入 lmLCSPD; 37°C温浴湿 润的膜 lOmin, 以使化学荧光充分反应; 在 X光片上室温曝光。 结果如图 9所示, M: DL2000, LI- L3: 以 PCR检测阳性植株基因组为模板以 pBINOI-3/ pBINOI-6为引物扩增 产物的 Southern blotting 结果, 0.85kb 处显示杂交信号, 与预期结果一致, 表明 Oleosin-klip27 -insulin融合基因已经整合到油葵基因组中, L4:以 pBINOI作模板进行 PCR 产物作为阳性对照, L5: 以自非抗性油葵所提基因组 DNA为模板作为阴性对照。 转基因油葵籽粒中油体蛋白和人胰岛素融合蛋白的 Western blotting检测
将转基因油葵籽粒于 5V研磨缓冲液 (50mM Tris-HCl H 7.5, 0.4 M sucrose, 0.5M NaCl) 中研磨, 离心 10 X g 30min, 分为三部分, 取油相, 重新悬浮于等体积的研磨缓冲液中, 混匀, 轻轻加入 5V预冷的 50mM Tris-HCl pH 7.5缓冲液, 离心 10 X g 30min, 取油相。 将上述过程重 复 2次,用以进一步去除剩余的水溶性成分和不溶性成分,得到纯净的油体(油体的成分包括: 中性脂类磷脂、 油体蛋白) 。 在油体中加入 2V乙醚, 离心, 中性脂类留在了上层乙醚相中, 磷脂在下层的水相中, 取中间的蛋白层, 以 0.1M的蔗糖缓冲液重悬, 加入氯仿甲醇 (2 : 1 ) 混合物, 抽提两次, 取中间蛋白层, 乙醚抽提一次, 溶于无菌水中, 进行 SDS聚丙烯酰胺凝 胶电泳, 经转膜后用山羊抗兔人胰岛素的多克隆抗体进行 Westem blotting分析。 结果如图 10 所示, M: 蛋白分子量标准, L1 : 为自转基因油葵的种子中提取的油体蛋白, 有胰岛素的表 达, 表达产物大小约为 30kDa, 与预期的大小一致 (花生油体蛋白 18.4 kDa
+01eosin-klip27-insulm 11.7kDa) L2: 非转基因油葵对照。胰岛素表达量占种子可溶性蛋白总 量的 1.3%, 超过了重组药物蛋白在植物中表达的最低商业化要求(1%) , 因此利用植物油体 表达系统来实现胰岛素的产业化, 具有可行性和广阔的应用前景。
3.3 从上述种子中分离纯化得到人胰岛素。
第一步: 将油体与种子中的其它成分分开
将种仁于 5V研磨缓冲液(50mMTris-HCl pH 7.5, 0.4M蔗糖, 0.5 M NaCl)中研磨, 离心 ( 10xg) 30min, 分为三部分: 最底部是不可溶沉淀(籽壳、 纤维质材料、 不溶糖、 蛋白质和 其它不溶性污物), 中间是水相, 内含可溶的细胞成分 (储藏蛋白), 最上层是油体和与之结 合的油体蛋白。
第二步: 洗涤油体
取第一步所得油相, 重新悬浮于等体积的研磨缓冲液中, 混匀, 加入 5V预冷的 50m MTris-HCl pH 7.5缓冲液, 离心 (10xg) 30min, 取油相。 将上述过程重复 2次, 用以进一步 去除剩余的水溶性成分和不溶性成分, 洗涤过的油体重悬于等体积预冷的 50mM Tris-HCl pH 7.5中, 这样所得的油体是基本纯净的油体制品, 仅存的蛋白质是油体蛋白。
第三步: 酶切反应释放人胰岛素
用胰蛋白酶酶切缓冲液洗涤油体两次, 加入适量的胰蛋白酶, 37°C过夜, 离心, 人胰岛 素存在于水相中。
第四步: HPLC纯化人胰岛素
上反相色谱柱。18(5μ, 0.24*25cm),紫外波长 214nm,缓冲液 A(10%乙腈 0.1%三氟乙酸) 平衡柱子, 将上一步所得水相上样, 对柱子施以 19min缓冲液 B (5-50%乙腈 0.1%三氟乙酸) 线性梯度洗脱, 得人胰岛素, 纯度高于 99.8%。
实施例 4: 油葵作为生物反应器和和红花作为生物反应器制备人胰岛素的产量比较 取相同质量的转人胰岛素基因的油葵种子和红花种子, 依据实施例 3分离纯化获得人胰 岛素,等量上样电泳后,进行 Western blotting检 ¾M, 结果如图 11所示, M: 蛋白分子量标准, L1 : 自转基因油葵纯化的胰岛素, 大小为 5.7kDa, 与预期大小一致。 L2: 自转基因红花纯化 的人胰岛素, 大小为 5.7kDa, 与预期大小一致, 转基因油葵种子的胰岛素产量略高于转基因 红花的胰岛素产量。 而且油葵的亩产量约 250kg, 红花的亩产量约 200公斤。 因此无论是从 相同质量的种子胰岛素产量还是单位面积种植作物的胰岛素的产量来看,油葵都要优于红花。

Claims

权 利 要 求 书 、 一种表达载体, 含有人胰岛素与花生油体蛋白融合基因, 其中启动子为油菜油体蛋 白基因启动子。
、 根据权利要求 1的载体, 其具有 SEQ ID NO: 17所示序列。
、 一种构建权利要求 1所述的表达载体的方法, 其包括如下步骤:
1 ) 分离克隆油菜油体蛋白基因启动子和花生油体蛋白基因。
2 ) 按照植物偏爱的密码子设计合成人胰岛素基因,其特征是按照油葵偏爱的密码子 优化人胰岛素基因。
3 ) 构建以油菜油体蛋白基因启动子驱动的花生油体蛋白与人胰岛素融合基因植物 表达载体。
、 根据权利要求 3的方法, 其中的油菜油体蛋白启动子可以克隆到 pUC19的 H dl ll 和 S wHI位点之间。
、 根据权利要求 4的方法,在步骤 (2)中将频率小于 10%的密码子一律认为是稀有密码 子被排除, 其余的各密码子按油葵密码子使用频率优化。
、 根据权利要求 5的方法, 优化前后的一致性大于 60%。
、 根据权利要求 6的方法, 优化前后的一致性为 73%。
、 根据权利要求 7的方法, 在歩骤 (3)中利用重叠 PCR技术将花生油体蛋白基因和人 胰岛素基因构建成融合基因 Ok-klip27-i lin,将该融合基因连入 pUCN得到重组质 粒 pUCNOI, 优选连入的位点为 pUCN的 amHI和 & ¾cl酶切位点之间, 双酶切重 组质粒 pUCNOI, 优选 H dl l l和 双酶切重组质粒 pUCNOI, 回收 1779bp的 外源片段, 并将该外源片段连入植物表达载体的 H dl l l和 位点之间。
、 一种制备人胰岛素的方法, 其包括如下步骤:
1 )将权利要求 1或 2所述表达载体导入受体植物外植体内;
2 ) 将上述受体植物材料培养为完整的植株, 得到种子;
3 ) 从上述种子中分离纯化得到人胰岛素。
0、 根据权利要求 9所述的方法, 其中受体植物为油葵。
1、 根据权利要求 10所述方法, 其中所述油葵种子为卡那霉素抗性表型。
、 根据权利要求 9所述的方法, 所制备的是人胰岛素。
3、 根据权利要求 9所述方法, 其中步骤 1 ) 中的导入方法为农杆菌介导法转化。 、 根据权利要求 9所述方法, 其中所述纯化方法为高效液相色谱法。
5、 根据权利要求 9所述方法, 其中的分离纯化方法包括将含人胰岛素的种子在缓冲 液中研磨, 离心将油体和种子的其他成分分离, 洗涤油体, 通过酶切反应将人胰岛 素自油体表面释放, 经 HPLC纯化获得人胰岛素。
BLANK UPON FILING
PCT/CN2011/075039 2010-06-01 2011-05-31 一种含有人胰岛素基因的表达载体及其构建方法与应用 WO2011150841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010188296.6 2010-06-01
CN201010188296 2010-06-01

Publications (1)

Publication Number Publication Date
WO2011150841A1 true WO2011150841A1 (zh) 2011-12-08

Family

ID=45050911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075039 WO2011150841A1 (zh) 2010-06-01 2011-05-31 一种含有人胰岛素基因的表达载体及其构建方法与应用

Country Status (2)

Country Link
CN (1) CN102268451B (zh)
WO (1) WO2011150841A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017809A (zh) * 2014-06-05 2014-09-03 山东省农业科学院生物技术研究中心 改造的人Insulin蛋白表达基因及表达方法
CN106701784B (zh) * 2017-01-24 2020-04-17 河南农业大学 大豆油体蛋白基因GmOLEO1及其编码蛋白与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424399A (zh) * 2001-12-14 2003-06-18 中国农业科学院生物技术研究所 一种新型鲑鱼降钙素类似物及其在植物油体中表达的方法
WO2004111244A2 (en) * 2003-06-17 2004-12-23 Sembiosys Genetics Inc. Methods for the production of insulin in plants
CN101037692A (zh) * 2006-12-28 2007-09-19 吉林农业大学 利用植物油体表达人胰岛素的方法
CN101586117A (zh) * 2009-03-20 2009-11-25 中山大学 花生油体蛋白基因启动子在驱动外源基因在转基因植物种子中特异表达上的应用
CN101591671A (zh) * 2009-06-30 2009-12-02 山东省农业科学院高新技术研究中心 一种在花生种子中表达人成骨蛋白-1的方法
CN101736029A (zh) * 2008-11-21 2010-06-16 复旦大学 一种利用植物油体蛋白表达系统生产人胰岛素样生长因子-i的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424399A (zh) * 2001-12-14 2003-06-18 中国农业科学院生物技术研究所 一种新型鲑鱼降钙素类似物及其在植物油体中表达的方法
WO2004111244A2 (en) * 2003-06-17 2004-12-23 Sembiosys Genetics Inc. Methods for the production of insulin in plants
CN101037692A (zh) * 2006-12-28 2007-09-19 吉林农业大学 利用植物油体表达人胰岛素的方法
CN101736029A (zh) * 2008-11-21 2010-06-16 复旦大学 一种利用植物油体蛋白表达系统生产人胰岛素样生长因子-i的方法
CN101586117A (zh) * 2009-03-20 2009-11-25 中山大学 花生油体蛋白基因启动子在驱动外源基因在转基因植物种子中特异表达上的应用
CN101591671A (zh) * 2009-06-30 2009-12-02 山东省农业科学院高新技术研究中心 一种在花生种子中表达人成骨蛋白-1的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ON SUN LAU ET AL.: "Plant seeds as bioreactors for recombinant protein production", BIOTECHNOLOGY ADVANCES, vol. 27, 18 May 2009 (2009-05-18), pages 1015 - 1022 *
S.C. BHATLA ET AL.: "Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications", BIOTECHNOLOGY ADVANCES, vol. 28, 11 January 2010 (2010-01-11), pages 294 - 300 *
ZHANG RAN: "Expression of recombinant human proinsulin using oleosin fusion expression systems in Brassica Napus", CHINA EXCELLENCE MASTER THESIS FULL TEXT DATABASE, 21 July 2010 (2010-07-21) *

Also Published As

Publication number Publication date
CN102268451A (zh) 2011-12-07
CN102268451B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
CN109180791B (zh) 一种与植物耐旱相关的基因及其编码蛋白与应用
CN111944816B (zh) 一种花生种子贮藏蛋白基因Arachin6的启动子Arachin6P及其克隆和应用
CN102127562B (zh) 一种种子特异型表达载体及其构建方法与应用
CN110204600B (zh) BnSPL14基因、蛋白及其在控制甘蓝型油菜株型中的应用
CN102212530A (zh) 一种大豆自噬相关基因的克隆及其应用
WO2011150841A1 (zh) 一种含有人胰岛素基因的表达载体及其构建方法与应用
CN107893081B (zh) 一种人源角质细胞生长因子-2的基因序列、表达载体及生产方法
CN114410658B (zh) 一种降低水稻糙米镉含量的基因OsWNK9及其编码蛋白和应用
CN111961124B (zh) 一种植物早熟蛋白及其编码基因与应用
CN110964728B (zh) 控制油菜株高的基因ed1及其应用
CN103261419A (zh) 一种调控植物花粉育性的构建体及其使用方法
CN112538107B (zh) 三萜相关蛋白质与其编码基因以及在提高植物三萜化合物含量中的应用
CN108948166B (zh) 植物株高相关蛋白IbCbEFP及其编码基因与应用
KR102046117B1 (ko) 식물의 캘러스를 이용한 재조합 인간 인슐린 유사 성장인자-i 단백질의 생산방법
CN106755085B (zh) 一种制备鲑鱼降钙素的方法
CN114717245B (zh) MsbHLH35基因及其编码蛋白在调控紫花苜蓿产量和耐渍性中的应用
CN115927394B (zh) 玉米VPS23类似基因ZmVPS23L及其应用
CN112725353B (zh) 重组载体、转化体、用于扩增AtNAC58基因的引物及其制备方法和应用
CN106636189B (zh) 一种表达鲑鱼降钙素的方法及其专用表达盒
CN106755078B (zh) 一种表达蛋白质或多肽的方法及其专用表达盒
CN107699588B (zh) 一种制备鲑鱼降钙素的方法
CN106636190B (zh) 一种表达蛋白质或多肽的方法及其专用表达盒
CN106591356B (zh) 一种表达鲑鱼降钙素的方法及其专用表达盒
CN117088954A (zh) 来源于谷子的蛋白质及其调控其表达的物质的应用
CN116987165A (zh) 高粱株高SgSD1蛋白及其育种材料和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789220

Country of ref document: EP

Kind code of ref document: A1