WO2011150551A1 - 多光谱感光器件 - Google Patents

多光谱感光器件 Download PDF

Info

Publication number
WO2011150551A1
WO2011150551A1 PCT/CN2010/073440 CN2010073440W WO2011150551A1 WO 2011150551 A1 WO2011150551 A1 WO 2011150551A1 CN 2010073440 W CN2010073440 W CN 2010073440W WO 2011150551 A1 WO2011150551 A1 WO 2011150551A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
composite
layer
double
pixel
Prior art date
Application number
PCT/CN2010/073440
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立码杰通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立码杰通讯(深圳)有限公司 filed Critical 博立码杰通讯(深圳)有限公司
Priority to PCT/CN2010/073440 priority Critical patent/WO2011150551A1/zh
Priority to US13/699,534 priority patent/US9184204B2/en
Priority to CA2786760A priority patent/CA2786760C/en
Priority to JP2012546317A priority patent/JP5889798B2/ja
Priority to RU2012157799/28A priority patent/RU2525654C1/ru
Priority to EP10852350.7A priority patent/EP2509107A4/en
Priority to KR1020127026178A priority patent/KR101432016B1/ko
Publication of WO2011150551A1 publication Critical patent/WO2011150551A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/14652Multispectral infrared imagers, having a stacked pixel-element structure, e.g. npn, npnpn or MQW structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/17Colour separation based on photon absorption depth, e.g. full colour resolution obtained simultaneously at each pixel location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions

Definitions

  • the present invention relates to a multispectral photosensitive device and, in particular, to a physical implementation and fabrication of a multispectral photosensitive device. More specifically, the present invention relates to a photosensitive device for a full-color image that can simultaneously sense a plurality of spectra such as visible light and infrared rays using a CCD or CMOS semiconductor.
  • full color refers to the entire spectrum of interest.
  • full color refers to the entire visible spectrum covering red, green, blue, and white.
  • full-color refers to the visible spectrum and the infrared spectrum.
  • the invention is applicable to multispectral light sensitive devices comprising infrared, black and white and color images.
  • the present invention is a continuation of the "Multispectral Photosensitive Device and Its Manufacturing Method” (PCT/CN2007/071262) and “Multispectral Photosensitive Device and Its Manufacturing Method” (China Application No.: 200810217270.2). It is intended to provide a more specific and preferred semiconductor physical implementation.
  • the senor either focused on colored visible light or focused on infrared light, and rarely combined the two.
  • semiconductor technology using indium germanium such as semiconductor technology using indium germanium (“Silicon Infrared focal plane arrays”, M. Kimata, in Handbook of Infrared Detection Technologies, edited by M. Henini and M. Razeghi, pp. 352-392, Elsevier Science Ltd., 2002), to achieve both visible and infrared light sensing, but they do not get color.
  • the existing method of simultaneously obtaining color and infrared sensation is to physically superimpose a color photosensitive device and an infrared photosensitive device (such as "Backside-hybrid” Photodetector for trans-chip detection of NIR light], by T. Tokuda et al., in IEEE Workshop on Charge-coupled Devices & Advanced Image Sensors, Elmau, Germany, May 2003, and “A CMOS image sensor with eye-safe detection function Using backside carrier injection”, T. Tokuda et al., J. Inst Image Information & Television Eng., 60(3): 366-372, March 2006).
  • the existing photosensitive device cannot integrate the color photosensitive device with the infrared photosensitive device.
  • the first reason is that existing color sensing devices require a color filter (red/green/blue, or cyan/yellow/magenta/green) to obtain color.
  • These filter films also have strong filtering properties for infrared.
  • an infrared filter is also added to the lens to weaken the fog that the infrared light may cause to the color image.
  • Foveon's X3 three-layer sensitization technology uses a deep selection of colors to eliminate the filter film, the three-layer photographic technology has been very difficult to manufacture and the industrialization is not good.
  • the present invention provides a multi-spectral photosensitive device that not only enables better color sensing, but also provides an implementation for integrating a color photosensitive device with an infrared photosensitive device.
  • a multi-spectral photosensitive device comprising a base layer on which a plurality of composite photosensitive pixel macrocells arranged in a predetermined pattern are repeatedly arranged,
  • the composite photosensitive pixel macro unit includes at least one composite photosensitive pixel, the composite photosensitive pixel being composed of at least two basic photosensitive pixels, the basic photosensitive pixels are arranged in a layer of each layer along the illumination direction, and One side at most two layers, distributed on the top surface of the base layer, or the bottom surface, or the top surface and the bottom surface.
  • the basic photosensitive pixels in the composite photosensitive pixel include two, and are arranged in two layers on the top or bottom surface of the base layer to form a single-sided double-layer composite.
  • Photosensitive pixels, or respectively disposed on the top and bottom surfaces of the base layer, are formed as double-sided double-layer composite photosensitive pixels.
  • the composite photosensitive pixels in the base layer may be single-sided double-layer composite photosensitive pixels, so that the multi-spectral photosensitive device constitutes a single-sided double-layer photosensitive device.
  • the single-sided double-layer composite photosensitive pixel can be made by first performing P doping on a base layer of N silicon. Then, on the P-doped layer, an N-P-N composite junction formed by N-doping is formed.
  • the single-sided double-layer composite photosensitive pixel can also be made by first performing N doping on a base layer of a P-silicon. Then, on the N-doped layer, a P-N-P composite formed by P-doping is formed.
  • the composite photosensitive pixels in the base layer may be double-sided double-layer composite photosensitive pixels, so that the multi-spectral photosensitive device constitutes a double-sided double-layer photosensitive device.
  • the double-sided double-layer composite photosensitive pixel can be made by P-doping on both the top surface and the bottom surface of a base layer of N-silicon (P The P-N-P composite obtained by doping) is formed.
  • the double-sided double-layer composite photosensitive pixel can also be made of N-doped (N through the top and bottom surfaces of a P-silicon base layer).
  • the N-P-N composite knot obtained by doping) is formed.
  • the basic photosensitive pixels in the composite photosensitive pixels comprise three or four, two of which are arranged in two layers on the top or bottom surface of the base layer, and the remaining The basic photosensitive pixels are arranged in one or two layers on the bottom surface or the top surface of the base layer to form a double-sided multilayer composite photosensitive pixel.
  • the composite photosensitive pixels in the base layer may be double-sided multilayer composite photosensitive pixels, thereby making the multi-spectral photosensitive device constitute a double-sided multilayer photosensitive device.
  • the double-sided multilayer composite photosensitive pixel can be obtained by P-doping through the top and bottom surfaces of the N-base layer of a silicon, and PNP, NPNP, PNPN obtained by making N-doping in the P-doping layer. A composite junction of NPNPN is formed.
  • the double-sided multilayer composite photosensitive pixel can be obtained by N-doping on both the top and bottom surfaces of a P-based layer of silicon, and N-P-N, N-P-N-P obtained by P-doping in the N-doped layer, A composite of P-N-P-N or P-N-P-N-P is formed.
  • the basic photosensitive pixels in the composite photosensitive pixels respectively sense a spectrum segment of two or two orthogonal rays of visible light or visible light and infrared light.
  • the spectral information sensed by all of the composite photosensitive pixels of the composite photosensitive pixel macrocell combine to contain the spectral information necessary for RGB or CMYK color reconstruction.
  • the spectrum sensed by the substantially photosensitive pixels closest to the light source in the composite photosensitive pixel includes empty color, blue color, green color, cyan color, white color, and white plus infrared color.
  • the spectrum sensed by the basic photosensitive pixels farthest from the light source in the composite photosensitive pixel includes empty color, green color, red color, yellow color, white color, red color, infrared color, yellow color plus infrared color, and White plus infrared color.
  • the bottom surface of the basic photosensitive pixel for sensing infrared light of the bottom layer of the composite photosensitive pixel unit is further grown with a silicon germanium crystal layer or a germanium crystal layer which absorbs infrared light better.
  • the bottom of the basic photosensitive pixel for sensing infrared light is further plated with a specular reflection coating.
  • the composite photosensitive pixel is sampled in an active manner to form an active photosensitive pixel (Active Pixel).
  • the composite photosensitive pixel is sampled in a passive manner to form a passive photosensitive pixel (Passive) Pixel).
  • Passive passive photosensitive pixel
  • the basic photosensitive pixel in the composite photosensitive pixel is a photodiode or a photosensitive door.
  • the photosensitive mode of the multi-spectral light-sensing device comprises a front side light sensing, a back side light sensing mode, or a two-way light sensing mode, and the two-way light sensing mode includes a time division, a partition selection, or a pixel selection mode.
  • the predetermined pattern includes a repeating arrangement of a composite pixel, a square array arrangement, or a honeycomb pattern arrangement.
  • At least two photosensitive pixel layers in the direction of illumination of the light source are provided in the form of composite photosensitive pixels comprising at least two substantially photosensitive pixels, the respective photosensitive pixels inducing respective spectra of the spectra on different layers
  • the depth of the photosensitive pixel layer at least two spectral segments can be sensed at the same pixel position on one surface of the substrate, thereby providing a composite photosensitive pixel macrocell on the surface Better flexibility in pattern alignment and more pixel placement, which greatly increases the sensitivity, resolution, and dynamic range of the sensor.
  • two photosensitive pixel layers are arranged such that one senses visible light and the other induces infrared light, integration of visible light and infrared light can be easily realized, thereby simultaneously inducing color and infrared light.
  • the processing technology realized by the product is simple.
  • the invention can be easily fabricated into a single-sided double-layer multi-spectral photosensitive device capable of being used for front side light sensing, back side light sensing, or two-way light sensing by using an existing CCD or CMOS photosensitive chip processing technology and equipment.
  • Spectral sensing devices, and double-sided multilayer multi-spectral sensing devices In the background art of Foveon's three-layer photosensitive device, in order to realize color sensing, three layers must be arranged at the same position to respectively sense RGB three colors to complete color reconstruction.
  • the color reconstruction is performed by arranging the pixel patterns on the plane, so that it is not necessary to arrange 3 layers in the depth direction to realize color reconstruction, so that it is better to arrange two layers of basic photosensitive pixels on the same surface at the same time. Color sensibility. Since only two photosensitive pixel layers are arranged on the same surface, the difficulty of the three-dimensional processing process is significantly reduced, and the wiring is relatively simple.
  • the double-sided double-layer method that is, two basic photosensitive pixels in the composite photosensitive pixel are respectively arranged on the opposite two faces, not only have the same color sensitizing performance as the single-sided double-layer method, For each side, it is simplified into a planar processing process. After the planar processing of one photosensitive pixel layer is completed on one side, the base layer is flipped and the other side is also planarly processed to complete another photosensitive pixel layer. Processing makes the processing process similar to that of the existing single-sided single-layer photosensitive device.
  • the photosensitive device of the present invention adopts a combination of deep spectral filtering and planar pattern arrangement to complete color reconstruction, on the one hand, color plating may not be required. Significantly improved the yield.
  • redundant color information can be provided, so many dead pixels and dead spots can be repaired by back-end processing using redundant color information. Thereby, the failure rate of the photosensitive device is reduced as a whole.
  • the present invention will describe, by way of example, a plurality of preferred implementations of two-layer and multi-layer multi-spectral light-sensing devices that can be used for visible and infrared light. These preferred implementations are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • Figure 1 is a schematic illustration of a conventional single layer photodiode.
  • Figure 2 is a schematic diagram of a three-layer composite photodiode invented by Foveon, in which the top diode senses blue, The middle diode senses green and the bottom diode senses red.
  • This approach takes advantage of the wavelength-dependent relationship of light penetration depth. From this figure we have already imagined the difficulty of reading the photosensitive device in pixels: three pixels of different colors, the reading circuit will occupy a large space and the wiring is difficult.
  • FIG. 3(a) and (b) are schematic views of a two-layer multi-spectral photosensitive device related to the present invention, respectively.
  • Figure 3 (a) applies to single-sided double-layer photosensitive devices
  • Figure 3(b) applies to double-sided double-layer photosensitive devices.
  • the depths T1, T2, T3, and T4 are determined by the relationship between the incident depth of the light in the base material (silicon) and the wavelength (Gerald C. Holst) And Terrance S. Lomheim, "CMOS/CCD Sensors and Camera Systems", JCD Publishing, Pp. 125-125, ISBN 9780819467300, 2007).
  • T1 should be chosen to be around 1.5um (or about 4.5um); and in order to get red, T2 and T4 should be at least 8um.
  • T3 should be at least 4.5um. If the bottom layer is to get yellow, then T2 and T4 should be at least 8um.
  • T3 should be at least 1.5um.
  • the top photodiode and the bottom photodiode form a composite diode pair (composite photosensitive pixels). When the light is illuminated from the top, the photodiode on the top layer is closer to the light source. When light is shining from the bottom, The bottom photodiode is closer to the light source.
  • Figures 4(a) and 4(b) show composite photodiode pairs (composite photosensitive pixels) that simultaneously sense visible and infrared light.
  • the thickness of the silicon base layer (T2 and T4 in Fig. 3) can be thicker.
  • FIG. 5(a) and 5(b) show the case where the composite photodiode pair in the single-sided double-layer photosensitive device is irradiated on the back side, wherein FIG. 5(a) only senses visible light. And Figure 5(b) simultaneously senses visible and infrared light.
  • a ytterbium or silicon germanium crystal (SiGe) that absorbs infrared light behind the photodiode that senses infrared light. .
  • FIG. 6(a) and 6(b) show the case where the composite photodiode pair in the double-sided double-layer photosensitive device is in frontal illumination, wherein FIG. 6(a) only senses visible light. And Figure 6(b) simultaneously senses visible and infrared light. Similarly, in order to make the thickness of the two composite photodiodes substantially the same, it is possible to grow infrared light or silicon germanium crystals (SiGe) behind the photodiode that senses infrared light. .
  • SiGe silicon germanium crystals
  • Fig. 7 shows the case of the composite photodiode of Fig. 3(a) with a reading device.
  • Single-sided double-layer photosensitive devices are more suitable for passive photosensitive pixels (without FD and amplifying circuits) due to the difficulty of sharing wiring and reading circuits (Passive) Pixel) to achieve.
  • Fig. 8 shows the case of the composite diode of Fig. 3(b) with a reading device.
  • the double-sided double-layer photosensitive device can be realized by passive photosensitive pixels (Passive Pixel), or active photosensitive pixels (Active). Pixel) is implemented, and when implemented with Active Pixel, the average pixel can be used with only 1.5 gates (using a 3T read circuit). Or 1.75 doors (using a 4T read circuit).
  • Figure 9 shows the current better 4-point shared 4T active-sensing pixel read circuit with an average of 1.75 gates per pixel. We use this to illustrate that the two or more layers of the photosensitive device of the present invention can employ current relatively standard reading and sampling circuits.
  • Fig. 10 shows an example of a double-sided three-layer photosensitive device obtained by simply and directly using a single-sided double-layer photosensitive device for double-sided photosensitive, wherein the front surface of Fig. 10(a) is a layer and the back surface is two layers. and The front side of Fig. 10(b) is two layers, and the back side is a layer.
  • This three-layer photoreceptor is easier and much more varied than Foveon's X3 three-layer photoreceptor. Note the difference between Figure 10 and Figure 2.
  • the photosensitive pixels of the three colors are all squeezed on one face, and in Fig. 10, only two pixels are on one face and the other pixel is on the other face.
  • Figure 11 shows a double-sided four-layer photosensitive device produced by combining a single-sided double-layer photosensitive device with a double-sided photosensitive method. By sampling this photosensitive device, four colors of blue, green, red, and infrared can be obtained simultaneously at each image point. Although the color is more and the level is more, the production is still easier than Foveon's X3 three-layer photosensitive device.
  • Figure 12 shows an example of a three-layer and four-layer hybrid double-sided multilayer photosensitive device.
  • Figure 13 shows an example of a two-layer and four-layer mixed double-sided multilayer photosensitive device.
  • Figure 14 shows an example of a two-layer and three-layer hybrid double-sided multilayer photosensitive device.
  • Figures 15 and 16 show examples of single-sided or double-sided double-layer photosensitive devices with two layers and one layer mixed.
  • a hybrid multilayer photosensor is a special case of a multilayer photosensor in which some of the composite pixels contain empty pixels.
  • 17(a) and 17(b) are plan views of a double-sided double-layer photosensitive device in a square array and a honeycomb arrangement, in which FD is a read capacitor shared by the upper and lower layers. of course, If necessary, the upper and lower layers can each use a read capacitor, or even a set of read circuits.
  • Fig. 18(a) is a plan view showing a double-sided double-spectrum multi-spectral (color plus infrared) photosensitive device in a square array in which FD is a common reading capacitor between the upper and lower layers.
  • Fig. 18(b) is a plan view showing a double-sided two-layer multispectral (color plus infrared) photosensitive device in a square array in which FD is a read capacitor shared by the upper and lower layers.
  • Such a macro pixel unit composed of two composite pixels can also adopt a 4-point shared active photosensitive pixel reading circuit as shown in FIG. Unlike single-sided single-layer photosensitive devices, The four photodiodes of the shared read circuit in Fig. 18(b) are distributed on both faces.
  • Figure 19 shows a cross-sectional view of a double-sided, multi-spectral (color plus infrared) sensor 8-point shared or 4-point shared read circuit (3T or 4T read circuitry is omitted). What is shown here is an extreme case where the FD is common.
  • double-sided double-spectrum multi-spectral (color plus infrared) sensors even for 4-point shared read circuits, there are two options: one is that four points are from the same face, and the other two points are from different Face.
  • a specular reflective material such as aluminum, silver or other Achilles or silicon
  • Figure 20 shows a cross-sectional view of a double-sided, multi-spectral (color plus infrared) sensor 8-point shared or 4-point shared read circuit (3T or 4T read circuitry is omitted). What is shown here is a simple case where the FD does not work up and down. When the FD is up and down, Then the top or bottom is the same as the single-sided single layer.
  • Figure 21 shows a simple case of producing a double-sided double-layer photosensitive device.
  • the base layer is opaque, then the upper and lower layers can be obtained by simply repeating the process of processing a single-sided single-layer photosensitive device twice. Devices on both sides can also be completely independent. This is the easiest way to get a bidirectional sensor.
  • Fig. 22 (a) and Fig. 22 (b) show a case where a single-sided double-layer photosensitive device is used for front side light sensing and back side light sensing, respectively. Note that in the two-layer photodiode pair in the figure, the photodiode near the source gets a shorter wavelength of color.
  • Figures 23(a) and 23(b) show the case where a double-sided double-layer photosensitive device is used for front side light sensing and back side light sensing, respectively. Notice the change in color when the two layers of photodiode pairs in the figure change direction.
  • a double-sided double-layer photosensitive device is used for front side light sensing and back side light sensing, respectively. Notice the change in color when the two layers of photodiode pairs in the figure change direction.
  • the two-way symmetrical device see “Multispectral Photosensitive Device and Its Manufacturing Method” (China Application No.: 200810217270.2)
  • cyan and yellow are swapped
  • blue and red are swapped
  • green is unchanged.
  • FIG. 24 (a) and Fig. 24(b) The case where the macro pixel uses the front and back sides of a double-sided double-layer photosensitive device of three composite photodiodes (composite photosensitive pixels).
  • a macro pixel contains 3 points, a honeycomb arrangement is usually employed.
  • Figure 25 26 and 27 are possible implementations of several other double-sided double-layer photosensitive devices. These illustrations fully demonstrate the flexibility and versatility of double-sided double-layer sensors. Our discussion of composite diodes in Figures 3 through 16 has been reasonably changed. The same applies to the case of Figs. 22 to 27. We intend to illustrate the principles in a small number of figures, rather than limiting the essence and scope of the invention.
  • Figure 28 is a photosensitive door (Photo Schematic diagram of the Gate).
  • Photo Diode the basic photosensitive pixel (Photo) Gate
  • double layer photosensitive device multilayer photosensitive device
  • double-sided photosensitive device means that the photosensitive pixel is physically divided into two layers, and each layer contains photosensitive pixels that sense a specific spectrum.
  • Multi-layer photosensitive devices refer to two or more layers of photosensitive devices, such as Foveon's X3 sensor.
  • a double-sided photosensitive device means that the photosensitive device has two photosensitive surfaces, each of which is sensible in at least one direction.
  • a two-way photosensitive device means that the photosensitive member can be sensitized from two directions (usually 180 degrees apart), that is, from both the front and the back of the photosensitive device.
  • a photosensitive device can have one, two, and all three features of two or more layers, double-sided, double-sided, and bidirectional.
  • the present invention mainly relates to a single-sided double-layer photosensitive device (as shown in Figs. 22(a) and 22(b)), a double-sided double-layer photosensitive device (as shown in Fig. 23(a) and Fig. 23(b)), And double-sided multilayer photosensitive devices ( Figure 10-14).
  • the photosensitive device can be used for front side sensing (as shown in Figure 22 (a)), back side sensitive (as shown in Figure 22 (b)), or two-way Photosensitive (as shown in Figure 21 or Figure 23) .
  • front side sensing as shown in Figure 22 (a)
  • back side sensitive as shown in Figure 22 (b)
  • two-way Photosensitive as shown in Figure 21 or Figure 23
  • the design of the photosensitive device is different when used in different illumination situations.
  • a multi-spectral photosensitive device includes a base layer on which a plurality of composite photosensitive pixel macrocells repeatedly arranged in a predetermined pattern are disposed,
  • the composite photosensitive pixel macro unit includes at least one composite photosensitive pixel, the composite photosensitive pixel being composed of at least two basic photosensitive pixels, the basic photosensitive pixels are arranged in a layer of each layer along the illumination direction, and One side at most two layers, distributed on the top surface of the base layer, or the bottom surface, or the top surface and the bottom surface.
  • the concept of the top and bottom surfaces is used to express the relative positions of the two sides of the base layer, and not the absolute physical position of the base layer.
  • the base layer is described with respect to the position of the light source. The concepts of front and back express similar meanings.
  • a composite photosensitive pixel macro unit a composite photosensitive pixel, and a basic photosensitive pixel, wherein the basic photosensitive pixel is a photosensitive pixel that cannot be subdivided on each layer, and the composite photosensitive pixel.
  • the basic photosensitive pixel is a photosensitive pixel that cannot be subdivided on each layer
  • the composite photosensitive pixel a combination of at least two basic photosensitive pixels, the basic photosensitive pixels in the composite photosensitive pixels are arranged in a layered manner along the illumination direction, and a basic photosensitive pixel is arranged in each layer, as described in the foregoing description of the drawings.
  • the basic photosensitive pixel can be implemented by a photodiode or a photosensitive door.
  • the composite photosensitive pixel forms a composite photodiode pair.
  • each photosensitive pixel layer in the composite photosensitive pixel is arranged along the illumination direction of the light source (usually the normal direction of the base photosensitive surface), but is not limited to being disposed only on one surface of the base layer.
  • the illumination direction of the light source usually the normal direction of the base photosensitive surface
  • one side close to the light source is the front side of the base layer
  • the side away from the light source is the back side of the base layer
  • each photosensitive pixel layer in the composite photosensitive pixel may be on the front side of the base layer, or both On the back side of the base layer, or on the front and back sides of the base layer, respectively, but at most two photosensitive pixel layers are arranged on one side.
  • the photosensitive pixel layer can be distributed in the form of [2, 0], [0, 2] (single-sided double layer), [1, 1] (double-sided double layer), [1, 2], [2, 1], [2, 2] (double-sided multilayer).
  • the previous number is the number of photosensitive pixel layers disposed on the front side of the base layer in the composite photosensitive pixels
  • the latter number is the number of photosensitive pixel layers disposed on the back surface of the base layer in the composite photosensitive pixels.
  • the composite photosensitive pixel macro unit is a set of minimum number of composite photosensitive pixels capable of reconstructing color, also called macro pixels, and the composite photosensitive pixel macro unit is passed through a preset pattern (for example, a square matrix or a honeycomb pattern arrangement). , or repeating the arrangement), so that color reconstruction can be achieved across the entire image plane.
  • a preset pattern for example, a square matrix or a honeycomb pattern arrangement. , or repeating the arrangement
  • the composite photosensitive pixel macrocell typically contains at least two composite pixels.
  • the macrocell can be a single composite pixel.
  • the photosensitive device of the present invention has various flexible forms. From the perspective of a composite photosensitive pixel, according to the number and distribution of the basic photosensitive pixels, a single-sided double-layer composite photosensitive pixel, a double-sided double-layer composite photosensitive pixel, and a double-sided multilayer composite photosensitive pixel can be included.
  • the so-called single-sided double-layer composite photosensitive pixels and double-sided double-layer composite photosensitive pixels have two basic photosensitive pixels, but the distribution is different, and the basic photosensitive in the single-sided double-layer composite photosensitive pixels
  • the pixels are layered on one side of the base layer; and the substantially photosensitive pixels in the double-sided double-layer composite photosensitive pixels are arranged on both sides of the base layer.
  • the number of basic photosensitive pixels may be three or four. Since two layers of photosensitive pixels are arranged at most on one side of the base layer, the basic photosensitive pixels at this time are necessarily distributed on both sides of the base layer. At least one of the layers is a layered arrangement of two substantially photosensitive pixels.
  • a special case of a composite photosensitive pixel is that it contains a null pixel, or the photosensitive pixel induces an empty color.
  • a basic photosensitive pixel in a single-sided double-layer composite photosensitive pixel is In the case of a null pixel, it is equivalent to a single-sided single-layer composite photosensitive pixel in terms of photosensitivity.
  • the pixel arrangement is quite flexible, for example, a single-sided double-layer composite photosensitive pixel is arranged at one pixel position of the base layer, and a double-sided double can be disposed adjacent to the pixel.
  • the layer composites the photosensitive pixels, and the double-sided multilayer composite photosensitive pixels can be arranged at another adjacent position.
  • different types of composite photosensitive pixels can be arranged at different pixel positions of the base layer.
  • the photosensitive device when all the composite photosensitive pixels in the base layer are of the same type is defined according to the composite photosensitive pixel type, for example, when all the composite photosensitive pixels in the base layer are single-sided double-layer composite photosensitive pixels, correspondingly formed
  • the photosensitive device is called a single-sided double-layer photosensitive device, and the photosensitive device formed by the other two composite photosensitive pixels is correspondingly referred to as a double-sided double-layer photosensitive device, or a double-sided multilayer photosensitive device.
  • the composite photosensitive pixels may contain empty pixels
  • the composite photosensitive pixels of the partial pixel positions of the base layer are degraded, for example, in a single-sided double-layer photosensitive device, if one
  • the composite photosensitive pixel contains an empty pixel, and in fact, the single-sided double-layer composite photosensitive pixel is degraded into a single-sided single-layer photosensitive pixel, so that in detail, in a single-sided double-layer photosensitive device
  • the composite photosensitive pixel is not completely single-sided double-layer composite photosensitive pixels, but as a whole, we still classify the photosensitive device in this case as a single-sided double-layer photosensitive device, in particular, it can also be called A hybrid single-sided double-layer photosensitive device, correspondingly, also has a mixed double-sided double-layer photosensitive device and a mixed double-sided multilayer photosensitive device.
  • the basic photosensitive pixels in the composite photosensitive pixels are generally arranged to sense different spectral segments in visible or visible light and infrared light. For example, visible light or visible light and infrared light may be induced by the respective basic photosensitive pixels in the composite photosensitive pixels. a spectral segment that is orthogonal to each other, The spectrum induced by all composite photosensitive pixels of the composite photosensitive pixel macrocell can be obtained by different spectral sections of the composite photosensitive pixels in the composite photosensitive pixel macrocell and the basic photosensitive pixels in the composite photosensitive pixel. The information combines to contain the spectral information necessary for RGB or CMYK color reconstruction.
  • the spectrum sensed by the basic photosensitive pixels closest to the light source in the composite photosensitive pixel includes empty color, blue color, green color, cyan color, white color, and white color plus infrared color.
  • the spectrum of the basic photosensitive pixels farthest from the light source in the composite photosensitive pixel includes empty color, green, red, yellow, white, red plus infrared, yellow plus infrared, and white plus infrared.
  • the P-doped layer is a photosensitive layer of the composite photosensitive pixel, that is, a basic photosensitive pixel in the composite photosensitive pixel is formed.
  • the N-doped layer is another photosensitive layer of the composite photosensitive pixel, that is, formed.
  • Another method is to take a P-base layer of a silicon crystal (as shown in Figure 5(b)). At a pixel position on one side of the P base layer, a certain depth of N impurity is implanted from the surface of the pixel position toward the inside of the base layer according to the depth requirement of the color to form an N-doped layer, and the N-doped layer is A photosensitive layer of the composite photosensitive pixel, that is, a substantially photosensitive pixel in the composite photosensitive pixel is formed.
  • the N-doped layer is implanted with another depth of P impurity to form a P-doped layer in the N-doped layer, and the P-doped layer is another photosensitive layer of the composite photosensitive pixel, that is, formed.
  • Another substantially photosensitive pixel in the composite photosensitive pixel, in this case, the single-sided, two-layer composite photosensitive pixel is formed by a composite junction of NPN.
  • the above description is the fabrication of a composite photosensitive pixel, which is processed in the same manner for the fabrication of other composite photosensitive pixels on the base photosensitive surface, except that at different pixel positions, the depth at which the impurities are implanted is sensed according to the desired pixel.
  • the wavelength of the spectrum of the color is determined differently.
  • the base layer (Fig. 4(a)) classifies the pixels on the front surface by the desired color and makes a certain depth of P-doping for each type of pixel according to the color depth requirement. same, The pixels on the back side are also sorted according to the desired color, and each type of pixel is made to have a certain depth of P-doping according to the depth requirement of the color.
  • the depth at which the P impurity is implanted is determined by the wavelength of the spectrum that is desired to be induced.
  • Another more advantageous approach is to take a P-base layer of a silicon crystal (as shown in Figure 4(b)), classify the pixels on the front surface by the desired color, and do the color depth requirements for each type of pixel.
  • a certain depth of N is mixed.
  • the pixels on the back side are also sorted according to the desired color, and each type of pixel is made to have a certain depth of N in accordance with the depth requirement of the color.
  • the depth at which the N impurity is implanted is determined by the wavelength of the spectrum that is desired to be induced.
  • the double-sided double-layer composite photosensitive pixel formed by the N-P-N composite junction is superior to the double-sided double-layer composite photosensitive pixel formed by the above P-N-P composite junction because N is more fluid than P.
  • the front surface is made into one or two photosensitive pixel layers in a single-sided double layer or single layer manner, and the back surface is made in a single-sided double layer or a single layer.
  • One or two photosensitive pixel layers the composite junction constituting a double-sided multilayer composite photosensitive pixel includes N-P-N, P-N-P, N-P-N-P, P-N-P-N, N-P-N-P-N, and P-N-P-N-P and the like.
  • the arrangement of the read circuit and other control circuits is based on passive pixels (Passive Pixel) or active pixel (Active Pixel) design, if the design of the active pixel is selected, then in addition to the photodiode shown in Figure 3 (a), there will be a read circuit as shown in Figure 7, and many standard timings not shown in the figure. Control circuit.
  • the photosensitive pixel layer used to sense infrared light it can be on the back of its corresponding position. That is, the bottom surface of the photosensitive pixel layer for sensing infrared light, regenerating a long germanium or silicon germanium crystal layer, To improve the absorption efficiency of the infrared spectrum.
  • a specular reflection coating made of aluminum, silver or other materials may be disposed. In order to reflect the infrared photons that are not absorbed back, they are again absorbed by the infrared photosensitive pixel layer. The intensity of the reflection is determined by the thickness and absorptivity of the infrared photosensitive pixel layer to avoid unnecessary interference with other pixels.
  • Double-sided double-layer, or double-sided multilayer sensing devices provide redundant color information, so for many cost- and size-critical applications (such as cell phones), some composite pixels can contain null pixels, resulting in degradation Mixed single-sided double layer, Mixed double-sided double layer, and mixed double-sided multilayer photosensitive device.
  • the invention can be fabricated using CCD technology and processes, or by CMOS technology and processes. Due to the ultra-high sensitivity brought by the present invention, passive pixels can be used as basic pixels (Passive) Pixel) way, you can also use active photosensitive pixels (Active Pixel) way to read. These features make the present invention fully integrated with the existing mature semiconductor photosensitive chip fabrication technology, and thus can be widely used.
  • the invention greatly improves the performance and function of the photosensitive chip, and at the same time, due to the improvement of the yield rate, It is also possible to reduce or at least not increase the cost.
  • the invention greatly expands by arranging the basic photosensitive pixels in the composite photosensitive pixels optimally at two depths, and forming single-sided double-layer, double-sided double-layer, and multiple types of double-sided multilayer photosensitive devices.
  • the type of sensor chip, and for the first time physically achieved the overlap and integration of infrared and color sensing on a single chip.
  • the manufacturing method provided by the present invention and based on the natural and slight modification (such as adding a filter film), it can be formed by a single-sided double layer, a double-sided double layer, a single or double-sided multilayer form ( Empty, white), (blue, yellow), (blue, green), (green, red), (blue, red), (blue, red + infrared), (blue, yellow + infrared), (empty color, white + infrared), (white + infrared), (blue/green/red/cyan/yellow/white, infrared) and the like correspond to all of the visible or visible light plus orthogonal double or multi-layer composite photosensitive pixels in the infrared light.
  • the invention can be applied to the two-way photosensitive system by using a single photosensitive device by the above-mentioned double-sided, bidirectional, double-layer, and multi-layer photosensitive sensing methods, thereby greatly reducing system cost, reducing size, and reducing system complexity; Applications that require multiple spectra or multiple directions (or multispectral signals from both directions) on the same system are possible.
  • a pill camera currently used to inspect a patient's gastrointestinal system is equipped with a camera head only at one end. In order to obtain an image of a certain position in the gastrointestinal system, it may take multiple shots, which brings great pain to the patient and huge economic expenses.
  • the present invention can monitor the front and rear directions on a single surveillance camera.
  • the present invention can be replaced by a two-way camera, and the front and rear scenes can be realized by electronic or mechanical switching. Switch.
  • the invention can eliminate the need for two sets of monitoring systems to monitor the two directions separately, and only one monitoring system can complete the necessary Monitoring.
  • the present invention provides an integrated method for achieving simultaneous color and infrared sensitization on the same (CMOS or CCD semiconductor) device, and the color image and the infrared image are spatially overlapped.
  • CMOS or CCD semiconductor complementary metal-oxide-semiconductor
  • Such a new type of photosensitive device Greatly expands the dynamic range of the photosensitive device to meet the high performance requirements in the automotive, security and other fields. Not only that, but also for small-sized color photosensitive devices, For example, the camera used in mobile phones can also greatly improve the image quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Description

多光谱感光器件 技术领域
本发明涉及一种多光谱感光器件,具体的说,涉及一种多光谱感光器件的物理实现和制作。更准确而言,本发明涉及用CCD或CMOS半导体来实现可以同时感应多个光谱(如可见光和红外线)的用于全色图像的感光器件。这里,全色是指整个感兴趣的光谱。对于普通(可见光)感光器件,全色指涵盖红,绿,蓝和白色的整个可见光谱。对于红外和彩色合一的感光器件,全色是指可见光谱和红外光谱。本发明可适用于包含红外,黑白和彩色图像的多光谱感光器件。
背景技术
本发明是本发明人稍早一点的《多光谱感光器件及其制作方法》(PCT/CN2007/071262)和《多光谱感光器件及其制作方法》(中国申请号:200810217270.2)的延续, 旨在提供更为具体而且优选的半导体物理实现。
之前的感光器件,要么专注于彩色可见光,要么专注于红外光,很少有将二者合在一起的。虽然也有其它的发明或申请,例如采用铟锑的半导体技术(“Silicon infrared focal plane arrays”, M. Kimata, in Handbook of Infrared Detection Technologies, edited by M. Henini and M. Razeghi, pp. 352-392, Elsevier Science Ltd., 2002),来同时实现可见和红外光的感应,但它们没有得到彩色。而现有的同时得到彩色和红外感光的方法是将一个彩色感光器件与一个红外感光器件,物理迭加在一起(如“Backside-hybrid Photodetector for trans-chip detection of NIR light], by T. Tokuda et al., in IEEE Workshop on Charge-coupled Devices & Advanced Image Sensors, Elmau, Germany, May 2003, and “A CMOS image sensor with eye-safe detection function using backside carrier injection”, T. Tokuda et al., J. Inst Image Information & Television Eng., 60(3):366-372, March 2006) 。
之所以现有的感光器件,未能将彩色感光器件与红外感光器件集成在一起的主要原因有三个。第一个原因是现有的彩色感光器件都需要用到彩色滤光膜(红/绿/兰,或青/黄/品红/绿色)来得到彩色。而这些滤光膜对红外也有很强的滤光特性。此外,为了让色彩鲜艳,还专门在镜头上加红外滤光镜,以削弱红外光可能给彩色图象带来的发雾现象。虽然Foveon公司的X3三层感光技术用深度实现色彩的选择,省去了滤光膜,但是三层感光技术制作已经非常困难而且产业化情况并不好,如果再在下面加一个红外层, 那么,情况只会更加复杂,因而很难具备实用价值。第二个原因是,半导体常用的硅通常只能吸收1100纳米以下波长的红外线。因此,很多用于红外感光的器件,采用的是其它半导体材料, 如锗,硅锗混合晶体, HgCdTe, InSb等材料。这些材料不适合用于可见光。第三个是缺少切实可行的双层或多层感光器件的制作技术。
因此,如何更好地实现彩色感光,并将彩色感光器件与红外感光器件进行集成,这些问题有待于进一步的研究与改进。
技术问题
基于上面所述,本发明提供了一种多光谱感光器件,不但能够更好地实现彩色感光,也提供了将彩色感光器件与红外感光器件集成的实现方案。
技术解决方案
本发明解决所述技术问题的技术方案是:
一种多光谱感光器件,包括一个基层,在所述基层上设有复数个按照预设图案重复排列的复合感光象素宏单元, 所述复合感光象素宏单元包含至少一个复合感光象素,所述复合感光象素由至少两个基本感光象素组成,所述基本感光象素沿光照方向每层一个分层布置,并以一面至多两层的方式,分布在基层的顶面,或底面,或顶面和底面。
在所述的多光谱感光器件的一种实施例中,所述复合感光象素中的基本感光象素包括2个,在基层的顶面或底面分两层布置,形成为单面双层复合感光象素,或分别布置在基层的顶面和底面,形成为双面双层复合感光象素。
所述的多光谱感光器件,所述基层中的复合感光象素可以为单面双层复合感光象素,从而使所述多光谱感光器件构成单面双层感光器件。
所述单面双层复合感光象素可以由通过在一个N硅的基层上先做P参杂(P doping), 然后再在P参杂的层上面, 做N参杂后构成的N-P-N复合结来形成。
所述单面双层复合感光象素也可以由通过在一个P硅的基层上先做N参杂(N doping), 然后再在N参杂的层上面, 做P参杂后构成的P-N-P复合结来形成。
所述的多光谱感光器件,所述基层中的复合感光象素可以为双面双层复合感光象素,从而使所述多光谱感光器件构成双面双层感光器件。
所述双面双层复合感光象素可以由通过在一个N硅的基层的顶面和底面都做P参杂(P doping)而得到的P-N-P复合结来形成。
所述双面双层复合感光象素也可以由通过在一个P硅的基层的顶面和底面都做N参杂(N doping)而得到的N-P-N复合结来形成。
在所述的多光谱感光器件的一种实施方式中,所述复合感光象素中的基本感光象素包括3个或4个,其中两个在基层的顶面或底面分两层布置,剩余的基本感光象素在基层的底面或顶面分一层或两层布置,形成为双面多层复合感光象素。
所述的多光谱感光器件,所述基层中的复合感光象素可以为双面多层复合感光象素,从而使所述多光谱感光器件构成双面多层感光器件。
所述双面多层复合感光象素可以由通过在一个硅的N基层的顶面和底面都做P参杂,以及再在P参杂层做N参杂而得到的P-N-P,N-P-N-P,P-N-P-N,N-P-N-P-N的复合结来形成。
所述双面多层复合感光象素可以由通过在一个硅的P基层的顶面和底面都做N参杂,以及再在N参杂层做P参杂得到的N-P-N,N-P-N-P, P-N-P-N,或P-N-P-N-P的复合结来形成。
所述的多光谱感光器件,所述复合感光象素中的基本感光象素各自感应可见光或可见光及红外光的两两正交的一个谱段, 所述复合感光象素宏单元的所有复合感光象素所感应的光谱信息结合起来包含RGB或CMYK彩色重建所必需的光谱信息。
所述的多光谱感光器件,所述复合感光象素中离光源最近的基本感光象素所感应的光谱包括空色,蓝色,绿色,青色,白色,和白色加红外色。
所述的多光谱感光器件,所述复合感光象素中离光源最远的基本感光象素所感应的光谱包括空色,绿色,红色,黄色,白色,红色加红外色,黄色加红外色,和白色加红外色。
所述的多光谱感光器件,所述复合感光象素单元的底层用于感应红外光的基本感光象素的底部表面还生长有对红外光吸收更好的硅锗晶体层或锗晶体层。
所述的多光谱感光器件,所述用于感应红外光的基本感光象素的底部,还镀设有镜面反射镀膜。
所述的多光谱感光器件,所述复合感光象素用主动方式来采样而形成主动感光象素(Active Pixel)。
所述的多光谱感光器件,所述复合感光象素用被动方式来采样而形成被动感光象素(Passive Pixel)。
所述的多光谱感光器件,所述复合感光象素中的基本感光象素为感光二极管或感光门。
所述的多光谱感光器件,所述多光谱感光器件的感光方式包括正面感光,背面感光,或双向感光方式,所述双向感光方式包括分时选向,分区选向,或象素选向方式。
所述的多光谱感光器件,所述预设图案包括复合象素的重复排列,方阵排列,或蜂窝图案排列。
有益效果
本发明有益的技术效果在于:
1、更加良好的彩色感光性能以及彩色感光与红外感光的集成。在本发明中,以包含至少两个基本感光象素的复合感光象素的形式提供了在光源照射方向上的至少两个感光象素层,基本感光象素在不同层上感应光谱的各个谱段,这样,通过感光象素层在深度上的布置,实现了在基层一个表面上的同一象素位置可以感应到至少两个谱段,从而提供了在该表面上的复合感光象素宏单元图案排列上的更好的灵活性以及更多的象素布置,从而能够大幅提高感光器件的灵敏度,解析度,和动态范围。另一方面,当将两个感光象素层布置为一者感应可见光,另一者感应红外光,则可轻易地实现将可见光与红外光的集成,实现同时感应彩色和红外光。
2、产品实现的加工工艺简单。本发明可以通过采用现有的CCD或CMOS感光芯片加工工艺和设备,而能轻易制成能够用于正面感光,背面感光,或双向感光的单面双层多光谱感光器件,双面双层多光谱感光器件,和双面多层多光谱感光器件。背景技术中的Foveon公司的三层感光器件,其为了实现彩色感光,必须在同一位置布置3层来分别感应RGB三色从而完成彩色重建。然而,这样的方式,不仅在3层的加工上难度极大,同时在布线上,由于各层间的引线需要相互隔离,3层引线显然造成了布线上的困难。在这样的基础上,如果还想增加一层来进行红外感光,几乎已不可能。而本发明,则以平面上的象素图案排列完成彩色重建,从而不需要在深度方向布置3层来实现彩色重建,因而得以同一面上最多布置两层基本感光象素的方式来实现更好的彩色感光性能。由于同一面上最多只布置两个感光象素层,因而明显降低了立体加工工艺的难度,且在布线上,也相对简单。尤其是当采用双面双层方式,即复合感光象素中的两个基本感光象素分别布置在相对的两个面时,不仅与单面双层方式一样,具有更好的彩色感光性能,对于每一面而言,其都简化为平面加工工艺,可以在一面上完成一个感光象素层的平面加工后,将基层进行翻转而在另一面同样以平面加工工艺完成另一感光象素层的加工,使得加工工艺近似于现有的单面单层感光器件的加工工艺。
3、由于本发明的感光器件采用深度光谱滤波及平面图案排列相结合的方式来完成彩色重建,一方面,可以不需要做彩色镀膜, 大幅提高了良品率。另一方面,可以提供冗余的色彩信息,因而很多的坏点和死点情况,可以通过后端处理,利用冗余的色彩信息来修复。从而从整体上降低了感光器件的故障发生率。
本发明将通过实施例描述多个能用于可见光和红外光的双层和多层多光谱感光器件的优选实现。这些优选实现,仅仅是作为举例来说明本发明,而不是为了限制本发明的保护范围。
对于相关业界的有识之士而言,本发明的上述及其它目的和优点,在阅读过下面的结合了附图说明的具体实施方式的细节描述之后,将是十分明显的。
附图说明
为了简单起见, 下面的附图描述主要都是以感光二极管(Photo Diode)为基础的示意图。但几乎所有的例子都同样可以用于感光门(Photo Gate)。
图1是一个传统的单层感光二极管的示意图。
图2是一个Foveon公司发明的三层复合感光二极管的示意图, 其中顶层二极管感应蓝色, 中间二极管感应绿色,底层的二极管感应红色。这种方式充分利用光的穿透深度与波长有关的关系。从这个图中我们已经可以想象这种感光器件在象素读取上的困难:三个不同色彩的象素,读取电路将占据很大的空间而且布线困难。
图3(a)、(b)分别是与本发明相关的双层多光谱感光器件的示意图。图3(a)适用于单面双层感光器件, 图3(b)适用于双面双层感光器件。其中深度T1, T2, T3,和T4根据光在基层材料(硅)中的入射深度与波长的关系曲线来决定(Gerald C. Holst and Terrance S. Lomheim, “CMOS/CCD Sensors and Camera Systems”, JCD Publishing, pp. 125-125, ISBN 9780819467300, 2007)。例如, 如果顶层想得到蓝色(或青色),那么其中T1应该选为1.5um左右(或4.5um左右);而底层为了得到红色, 则T2和T4至少应为8um, T3至少应为4.5um。如果底层为了得到黄色, 则T2和T4至少应为8um, T3至少应为1.5um。顶层的感光二极管与底层的感光二极管构成了一个复合二极管对(复合感光象素)。当光从顶部照射时,顶层的感光二极管离光源更近。当光从底部照射时, 底层的感光二极管离光源更近。
图4(a)和图4(b)显示的是同时感应可见光和红外光的复合感光二极管对(复合感光象素)。为了接受红外光, 硅基层的厚度(图3中的T2和T4)可以更厚一些。
图5(a)和图5(b)是单面双层感光器件中的复合感光二极管对处于背面照射时的情况,其中图5(a)仅感应可见光, 而图5(b)同时感应可见光和红外光。为了让两种复合感光二极管的厚度基本一样,可以在感应红外线光的感光二极管的背后,生长吸收红外光更好的锗或硅锗晶体(SiGe) 。
图6(a)和图6(b)是双面双层感光器件中的复合感光二极管对处于正面照射时的情况,其中图6(a)仅感应可见光, 而图6(b)同时感应可见光和红外线光。同样,为了让两种复合感光二极管的厚度基本一样,可以在感应红外光的感光二极管的背后,生长吸收红外光更好的锗或硅锗晶体(SiGe) 。
图7显示的是图3(a)中的复合感光二极管的带有读取装置的情况。单面双层感光器件由于布线和读取电路共享的困难,所以比较适合于用(不带FD和放大电路的)被动感光象素(Passive Pixel)来实现。
图8显示的是图3(b)中的复合二极管的带有读取装置的情况。相比之下, 双面双层感光器件在布置读取电路时, 比单层感光器件还要容易和灵活。因此, 双面双层感光器件即可以用被动感光象素(Passive Pixel)来实现,也可以用主动感光象素(Active Pixel)来实现, 而且,用主动感光象素(Active Pixel)来实现时,平均每个象素可以做到只用1.5个门(采用3T读取电路), 或1.75个门(采用4T读取电路) 。
图9显示的是当前比较好的4-点共享4T主动感光象素的读取电路,平均每个象素采用了1.75个门。我们用这个来说明,本发明的两层或多层感光器件,可以采用当前相当标准的读取和采样电路。
图10显示的是简单直接地将单面双层感光器件用于双面感光而得到的双面三层感光器件的一个例子,其中图10(a)的正面为一层,背面为两层,而 图10(b)的正面为两层,背面为一层。 这种同样是三层的感光器件比Foveon公司的X3三层感光器件容易而且变化多很多。注意到图10与图2的差别。图2中三个色彩的感光象素都挤在一个面上,而图10中只有两个象素在一个面上,另一个象素在另一个面上。
图11显示的是将单面双层感光器件与双面感光方式结合而产生的一种双面四层感光器件。采样这种感光器件,可以在每一个象点同时得到兰,绿,红,和红外四个色彩。虽然色彩更多,层次也更多,但制作仍然比Foveon公司的X3三层感光器件容易。
图12显示的是三层和四层混合的双面多层感光器件的例子。
图13显示的是两层和四层混合的双面多层感光器件的例子。
图14显示的是两层和三层混合的双面多层感光器件的例子。
图15 和图16显示的是两层和一层混合的单面或双面双层感光器件的例子。
在图12-16中我们看到了多层复合感光象素的一种退化的情况:当N层复合感光象素的其中一个为空象素时,那么,N层复合感光象素就退化成(N-1)层复合感光象素。如图15和16就显示了一些双层感光象素退化成单层的情况。当其中两个为空象素时,N层复合感光象素就退化成(N-2)层复合感光象素,如此类推。
当复合象素中层数不一致时,可以看成是其中一些层包含了空象素(感应空色)。因而,混合多层感光器件是多层感光器件的特例,即其中一些复合象素包含了空象素。
这些例子充分显示出单面双层感光器件和双面双层或多层感光器件的威力。将这两种器件的技术结合,可以产生一系列全新的丰富多彩的高性能感光器件。需要特别指出的是, 在一个三层以上的感光器件中,处于各个层面的感光二极管所感应的光谱,必须两两正交(即理论上没有公共或重合部分)。
图17(a)和图17(b)显示的是一种方阵排列和蜂窝排列的双面双层感光器件的俯视图,其中FD是上下两层共用的读取电容。当然, 如果需要,上下两层可以各用一个读取电容,甚至各用一组读取电路。
图18(a)显示的方阵排列的双面双层多光谱(彩色加红外)感光器件的俯视图,其中FD是上下两层共用的读取电容。图18(b)显示的方阵排列的双面双层多光谱(彩色加红外)感光器件的俯视图,其中FD是上下两层共用的读取电容。这种由两个复合象素组成的宏象素单元,也可以采用图9所示意的4-点共享主动感光象素的读取电路。与单面单层的感光器件不同, 图18(b)中的共用读取电路的四个感光二极管,分布在两个面上。
图19显示的是一个双面双层多光谱(彩色加红外)感光器件8-点共享或4-点共享读取电路的横截面图(省去了3T或4T读取电路)。这里显示的是一种极端的,FD上下共通的情况。对于双面双层多光谱(彩色加红外)感光器件,即使是4-点共享读取电路,也有两个选择:其一是四个点来自同一个面,其二四个点来自是来自不同的面。在这个图里,我们使用了另一种方法来提高红外光的吸收效率,即在锗或硅锗层的背后,镀以镜面反射材料(如铝,银或其它跟锗或硅者配合不错的反射材料)。
图20显示的是一个双面双层多光谱(彩色加红外)感光器件8-点共享或4-点共享读取电路的横截面图(省去了3T或4T读取电路)。这里显示的是一种简单一点的FD上下不通的情况。当FD上下不通的时候, 那么顶面或底面都跟单面单层的情况一样。
图21显示的是一种简单的制作双面双层的感光器件的情况。 当基层不透明时,那么,上下两层可以用简单的重复两次的单面单层感光器件加工的方法得到。两个面上的器件也可以完全独立。这是得到双向感光器件的一种最简单的方式。
图22(a)和图22(b)显示的是一个单面双层感光器件分别用于正面感光和背面感光时的情况。注意到图中两层的感光二极管对中,离光源近的感光二极管得到更短波长的色彩。
图23(a)和图23(b)显示的是一个双面双层感光器件分别用于正面感光和背面感光时的情况。注意到图中两层的感光二极管对,当光源改变方向时,色彩的变化。对于双向对称(可参见《多光谱感光器件及其制作方法》(中国申请号:200810217270.2)的双面双层感光器件来说,一般情况下, 当光源改变方向时,青色和黄色对换, 蓝色和红色对换,绿色不变。
图24 (a)和图24(b)宏象素采用3个复合感光二极管(复合感光象素)的双面双层感光器件的正面和背面的情况。当宏象素包含3个点时,通常采用蜂窝排列。
图25 、图26、图27是另外几种双面双层感光器件的可能实现。这些图示充分显示双面双层感光器件的灵活性和多样化特点。我们在图3至图16中对于复合二极管的讨论,经过合理的变化, 也都适用于图22 至图27的情况。我们谨用少量的图来说明原理,而不是限制本发明的精髓和范畴。
图28是一个感光门(Photo Gate)的原理示意图。在以上的图例中,如果我们将用作基本感光象素的感光二极管(Photo Diode)用感光门(Photo Gate)来取代,那么,可以得到很多完全类似的实现和结论。
本发明的实施方式
为便于描述本发明并解释其与现有技术的差别,我们现给出如下名词的定义:双层感光器件,多层感光器件,双面感光器件,双向感光器件。其中,双层感光器件是指感光象素被物理上分成两层,每一层都含有感应特定光谱的感光象素。多层感光器件是指两层以上的感光器件,确如Foveon公司的X3感光器件。双面感光器件是指感光器件具有两个感光表面,每一个面都能至少从一个方向上感光。双向感光器件是指感光器件能从两个(通常互成180度)的方向上感光,亦即从感光器件的正面和背面都能感光。
一个感光器件可以同时具有双层或多层,双面,和双向这三个特点中的一个,两个,和所有三个特点。本发明主要涉及单面双层感光器件(如图22(a)和图22(b)所示),双面双层感光器件(如图23(a)和图23(b)所示),和双面多层感光器件(如图10-14)。 无论是单面双层还是双面双层或多层感光器件,都可以用于正面感光(如图22(a)所示),背面感光(如图22(b)所示),或是双向感光(如图21或图23所示) 。但是, 用于不同的照射情况下时,感光器件的设计是不同的。
本发明具体实施方式的多光谱感光器件,包括一个基层,在所述基层上设有复数个按照预设图案重复排列的复合感光象素宏单元, 所述复合感光象素宏单元包含至少一个复合感光象素,所述复合感光象素由至少两个基本感光象素组成,所述基本感光象素沿光照方向每层一个分层布置,并以一面至多两层的方式,分布在基层的顶面,或底面,或顶面和底面。需要注意的是,这里只是以顶面和底面的概念来表达基层两面的相对位置,而并非对基层表面绝对物理位置的限制,在下面的描述中,另外使用了相对光源位置来描述的基层的正面和背面的概念来表达类似的含义。
在此,提出了三个概念,复合感光象素宏单元,复合感光象素,和基本感光象素,其中,基本感光象素是每一层上不能再分的感光象素,复合感光象素则是至少两个基本感光象素的组合,复合感光象素中的基本感光象素以沿光照方向分层的形式布置,在每一层布置一个基本感光象素,如前述附图说明中所述,基本感光象素可以感光二极管或感光门实现,当以感光二极管形式实现,则复合感光象素形成复合感光二极管对。当然,需要注意的是,复合感光象素中的各个感光象素层,沿光源照射方向(通常是基层感光表面的法线方向)布置,但并不限制只布置在基层的一个面上,如果以光源照射经过的基层的相对两面中,靠近光源的一面为基层正面,远离光源的一面为基层背面,那么,复合感光象素中的各个感光象素层,可以都在基层正面,也可以都在基层背面,或者分别在基层的正面和背面,但一个面上最多布置两个感光象素层。总结感光象素层的分布位置和数量关系,对于一个光源照射方向,感光象素层的分布方式可以有[2,0],[0,2](单面双层),[1,1](双面双层),[1,2],[2,1],[2,2](双面多层)。其中,前一数字为复合感光象素中布置在基层正面的感光象素层数目,后一数字为复合感光象素中布置在基层背面的感光象素层数目。复合感光象素宏单元则是能够重建彩色的最小数量的复合感光象素的集合,也称宏象素,将此复合感光象素宏单元通过预设图案(例如是方阵或蜂窝图案排列方式,或重复排列)重复排列,从而能够在整个图像平面实现彩色重建。对于双层多光谱感光器件,复合感光象素宏单元通常包含至少两个复合象素。但是对于双面多层多光谱感光器件,宏单元可以为单一复合象素。
由于一个复合感光象素具有多种类型,而布置在基层上的多个复合感光象素可能具有不同的类型,使得本发明的感光器件具有多种灵活的形式。从一个复合感光象素的角度,依据其基本感光象素的数目及分布,可以包括单面双层复合感光象素,双面双层复合感光象素,双面多层复合感光象素。如前所述,所谓单面双层复合感光象素和双面双层复合感光象素,其基本感光象素都是两个,只是分布不同,单面双层复合感光象素中的基本感光象素是在基层的一面分层布置;而双面双层复合感光象素中的基本感光象素是在基层的两面布置。对于双面多层复合感光象素,其基本感光象素可以是3个或4个,由于在基层一面至多布置两层感光象素,因而这时的基本感光象素必然是分布在基层的两面,其中至少有一面是两个基本感光象素的分层布置。需要注意的是,复合感光象素的一种特殊情况是其中含有空象素,或者说该感光象素感应空色,这时,例如单面双层复合感光象素中的一个基本感光象素为空象素时,从感光有效性上说,其相当于一个单面单层的复合感光象素。
由于复合感光象素的多类型的特点,使得在象素布置时相当灵活,例如,在基层的一个象素位置上布置单面双层复合感光象素,而在其邻近位置可以布置双面双层复合感光象素,而在另一临近位置可以布置双面多层复合感光象素,总之,可以在基层的不同象素位置布置不同类型的复合感光象素,基于这一特点,特别的,将基层中所有的复合感光象素为同一类型时的感光器件依照复合感光象素类型来定义,例如,当基层中所有的复合感光象素为单面双层复合感光象素时,相应形成的感光器件称为单面双层感光器件,上述另外两种复合感光象素形成的感光器件则相应称为双面双层感光器件,或双面多层感光器件。需要注意的是,正如前述,由于复合感光象素中可能含有空象素,从而使得基层的部分象素位置的复合感光象素发生了退化,例如在一个单面双层感光器件中,如果一个复合感光象素含有一个空象素,则实际上这个单面双层复合感光象素退化为一个单面单层的感光象素,从而使得从细节上看,一个单面双层感光器件中的复合感光象素并不完全是单面双层复合感光象素,但从整体上看,我们仍然将这种情况的感光器件归类为单面双层感光器件,特别的,也可以称其是一种混合的单面双层感光器件,相应的,也存在混合的双面双层感光器件和混合的双面多层感光器件。
复合感光象素中的基本感光象素一般被安排感应可见光或可见光及红外光感光中的不同谱段,例如,可以由复合感光象素中的基本感光象素各自感应可见光或可见光及红外光的两两正交的一个谱段, 通过复合感光象素宏单元中的各个复合感光象素及复合感光象素中的基本感光象素感应光谱的不同谱段,可以使复合感光象素宏单元的所有复合感光象素所感应的光谱信息结合起来包含RGB或CMYK彩色重建所必需的光谱信息。
其中,复合感光象素中离光源最近的基本感光象素所感应的光谱包括空色,蓝色,绿色,青色,白色,和白色加红外色。复合感光象素中离光源最远的基本感光象素所感应的光谱包括空色,绿色,红色,黄色,白色,红色加红外色,黄色加红外色,和白色加红外色。
以上是对本发明中的感光象素如何布置的说明,下面描述本发明具体实施方式的多光谱感光器件的加工实现。根据基层的材料不同,对于单面双层多光谱感光器件的实现,一种做法是:
取一个硅晶体的N 基层(如图5(a)),在该N基层一面上的一个象素位置,根据色彩的深度需求,由该象素位置表面向基层内部做一定深度的P杂质置入,形成一个P掺杂层,该P掺杂层即为复合感光象素的一个感光层,也即形成了复合感光象素中的一个基本感光象素。而后在该P掺杂层做另一定深度的N杂质置入,形成在P掺杂层中的N掺杂层,该N掺杂层即为复合感光象素的另一感光层,也即形成了复合感光象素中的另一基本感光象素,这时,这种单面双层复合感光象素是由P-N-P的复合结形成。
另一种做法是,取一个硅晶体的P基层(如图5(b)), 在该P基层一面上的一个象素位置,根据色彩的深度需求,由该象素位置表面向基层内部做一定深度的N杂质置入,形成一个N掺杂层,该N掺杂层即为复合感光象素的一个感光层,也即形成了复合感光象素中的一个基本感光象素。而后在该N掺杂层做另一定深度的P杂质置入,形成在N掺杂层中的P掺杂层,该P掺杂层即为复合感光象素的另一感光层,也即形成了复合感光象素中的另一个基本感光象素,这时,这种单面双层复合感光象素是由N-P-N的复合结形成。
上述描述为一个复合感光象素的制作,对于基层感光面上的其他复合感光象素的制作,其加工方式相同,只是在不同象素位置,杂质置入的深度根据对应象素所希望感应的色彩的光谱的波长决定而有所不同。
双面双层多光谱感光器件的实现:
取一个硅晶体的N 基层(如图4(a)),将正表面的象素按所需色彩进行分类,并对每一类象素按色彩深度需求做一定深度的P参杂。同样, 也将背面的象素按所需色彩进行分类,并对每一类象素根据色彩的深度需求做一定深度的P参杂。P杂质置入的深度,由所希望感应的光谱的波长决定。
另一种更为优越的做法是,取一个硅晶体的P基层(如图4(b)),将正表面的象素按所需色彩分类,并对每一类象素按色彩深度需求做一定深度的N参杂。同样, 也将背面的象素按所需色彩分类,并对每一类象素根据色彩的深度需求做一定深度的N参杂。N杂质置入的深度,由所希望感应的光谱的波长决定。这种N-P-N复合结形成的双面双层复合感光象素比上面P-N-P复合结形成的双面双层复合感光象素优越是因为N比P的流动性强。
双面多层多光谱感光器件的实现:
取一个硅晶体的N 或P基层(如图9-14),将正表面以单面双层或单层的方式,做成一个或两个感光象素层,将背面以单面双层或单层的方式,做成一个或两个感光象素层。根据这些布置上的不同,构成一个双面多层复合感光象素的复合结包括N-P-N,P-N-P, N-P-N-P,P-N-P-N, N-P-N-P-N,和P-N-P-N-P等多种情况。
在得到复合感光象素之后,如果需要将光电信号读出,还需要布置读取电路和其他控制电路。读取电路和其它控制电路的布置根据被动象素(Passive Pixel)还是主动象素(Active Pixel)进行设计,如果是选用主动象素的设计,那么,除了如图3(a)的感光二极管外,还会有如图7所示的读取电路,和许多图中没标明的标准时序和控制电路。
对于用来感应红外光的感光象素层, 可以在其对应位置的背面, 即该用于感应红外光的感光象素层底部表面,再生长锗或硅锗晶体层, 以提高红外光谱的吸收效率。此外,还可在生长了锗或硅锗晶体之后,再设置上利用铝质、银质或其他材料制成的镜面反射镀膜, 以便将没有被吸收的红外光子反射回去,从而被红外感光象素层再次吸收。反射的强度根据红外感光象素层的厚度和吸收率来决定,以免对其它象素产生不必要的干扰。
如果用于双向感光,并采用《多光谱感光器件及其制作方法》(中国申请号:200810217270.2)所描述的象素选向或分区选向方式, 那么,在正面的某些象素类或象素区涂上遮光镀膜, 并在背面的其它象素类或象素区涂上遮光镀膜。
在以上的实现中,我们完全可以用感光门(Photo Gate)来取代感光二极管(Photo Diode), 从而得到以感光门为基础的单面双层, 双面双层,和双面多层感光器件。
由于本发明得到的单面双层, 双面双层,或双面多层感光器件提供了冗余的色彩信息,因此,对于很多成本和尺寸都很关键的应用(例如手机),部分复合象素可以包含空象素,从而得到退化的混合单面双层, 混合双面双层,和混合双面多层感光器件。
本发明既可以用CCD的技术和工艺来制作,也可以用CMOS的技术和工艺来制作。由于本发明带来的超高灵敏度,基本象素即可以用被动感光象素(Passive Pixel)的方式,也可以采用主动感光象素(Active Pixel)的方式来读取。这些特点,使得本发明与现有成熟半导体感光芯片制作技术完全融合,因而可以得到广泛的应用。本发明在大幅提高感光芯片的性能和功能的同时,由于良品率的提高, 也能够降低或者至少不增加成本。
本发明通过将复合感光象素中的基本感光象素优化地安排在两个深度上,并形成单面双层,双面双层,和双面多层感光器件的多种类型,极大地扩充了感光芯片的种类,并首次在物理上实现了红外感光和彩色感光在单一芯片上的重叠和集成。
依照本发明提供的制作方式并在其基础上做自然和轻微的变通(如加滤光膜),就能通过单面双层,双面双层,单或双面多层的形式,形成(空色,白色),(蓝色,黄色),(蓝色,绿色),(绿色,红色),(蓝色,红色),(蓝色,红+红外),(蓝色,黄+红外),(空色,白+红外),(白色+红外), (兰/绿/红/青/黄/白,红外)等等对应所有的可见光或可见光加红外光中正交的双层或多层复合感光象素。
本发明通过前述双面、双向、双层,和多层等感光方式的应用,从而能够以单一感光器件用于双向感光系统,极大地降低系统成本,减少尺寸,减少系统复杂度;且使得一些需要在同一个系统上接受到多光谱或多方向(或来自两个方向的多光谱信号)的应用,成为可能。例如,目前用于检查病人的肠胃系统的药丸相机,只在一头装有照相头。为获得肠胃系统某一位置的图像,可能需要多次的拍摄,从而给病人带来极大的痛苦及巨大的经济花销。为此,则需要提高单次拍摄的拍摄范围,而如果需要在药丸相机的另一端也装有照相头,采用现有技术手段,就必须在一个非常小的空间内,装两套系统,实现上有较大的难度。而采用本发明,只需在另一头增加一个镜头而已,其感光芯片仍旧只是采用一片,不仅对空间的要求不高,而且经济成本也低于两套系统的花销。此外,本发明可以在一个监控相机上,监控前后两个方向,对于很多装有前后两个摄像头的3G手机,采用本发明,可用一个双向摄像头来取代,通过电子或机械切换来实现前后景象的切换。对于一些高级宾馆的监控系统来说,其如果要监控楼道的两端的景象,采用本发明,就可以不再需要两套监控系统分别监视两个方向,而只需一套监控系统就能完成必要的监控。
本发明提供的用集成的方式,在同一(CMOS或CCD半导体)器件上,实现彩色和红外的同时感光,而且彩色图像和红外图像在空间位置上是重叠的。这样新型的感光器件, 极大地扩展了感光器件的动态范围,从而满足汽车,安防等领域里的高性能要求.不仅如此, 将它用于小尺寸的彩色感光器件, 如手机用的摄像头,也能大幅地提高图像品质。
虽然本发明以优选的实现为例来加以描述,但这种揭示不应被理解为具有限制性。对于那些精于图像感光器件(如半导体芯片)又熟读本文的人来说,许多变化和发挥都是可能的,这些变化和发挥仍然落在本发明的范畴,只要它们属于本发明的真正精髓和简单变化。

Claims (22)

  1. 一种多光谱感光器件,其特征在于,包括一个基层,在所述基层上设有复数个按照预设图案重复排列的复合感光象素宏单元, 所述复合感光象素宏单元包含至少一个复合感光象素,所述复合感光象素由至少两个基本感光象素组成,所述基本感光象素沿光照方向每层一个分层布置,并以一面至多两层的方式,分布在基层的顶面,或底面,或顶面和底面。
  2. 如权利要求1所述的多光谱感光器件,其特征在于,所述复合感光象素中的基本感光象素包括2个,在基层的顶面或底面分两层布置,形成为单面双层复合感光象素,或分别布置在基层的顶面和底面,形成为双面双层复合感光象素。
  3. 如权利要求2所述的多光谱感光器件,其特征在于,所述基层中的复合感光象素为单面双层复合感光象素,从而使所述多光谱感光器件构成单面双层感光器件。
  4. 如权利要求2或3所述的多光谱感光器件,其特征在于,所述单面双层复合感光象素由通过在一个N硅的基层上先做P参杂, 然后再在P参杂的层上面, 做N参杂后构成的N-P-N复合结来形成。
  5. 如权利要求2或3所述的多光谱感光器件,其特征在于,所述单面双层复合感光象素由通过在一个P硅的基层上先做N参杂然后再在N参杂的层上面, 做P参杂后构成的P-N-P复合结来形成。
  6. 如权利要求2所述的多光谱感光器件,其特征在于,所述基层中的复合感光象素为双面双层复合感光象素,从而使所述多光谱感光器件构成双面双层感光器件。
  7. 如权利要求2或6所述的多光谱感光器件,其特征在于,所述双面双层复合感光象素由通过在一个N硅的基层的顶面和底面都做P参杂而得到的P-N-P复合结来形成。
  8. 如权利要求2或6所述的多光谱感光器件,其特征在于,所述双面双层复合感光象素由通过在一个P硅的基层的顶面和底面都做N参杂而得到的N-P-N复合结来形成。
  9. 如权利要求1所述的多光谱感光器件,其特征在于,所述复合感光象素中的基本感光象素包括3个或4个,其中两个在基层的顶面或底面分两层布置,剩余的基本感光象素在基层的底面或顶面分一层或两层布置,形成为双面多层复合感光象素。
  10. 如权利要求9所述的多光谱感光器件,其特征在于,所述基层中的复合感光象素为双面多层复合感光象素,从而使所述多光谱感光器件构成双面多层感光器件。
  11. 如权利要求9或10所述的多光谱感光器件,其特征在于,所述双面多层复合感光象素由通过在一个硅的N基层的顶面和底面都做P参杂,以及再在P参杂层做N参杂而得到的P-N-P,N-P-N-P,P-N-P-N,N-P-N-P-N的复合结来形成。
  12. 如权利要求9或10所述的多光谱感光器件,其特征在于,所述双面多层复合感光象素由通过在一个硅的P基层的顶面和底面都做N参杂,以及再在N参杂层做P参杂得到的N-P-N,N-P-N-P, P-N-P-N,或P-N-P-N-P的复合结来形成。
  13. 如权利要求1所述的多光谱感光器件,其特征在于, 所述复合感光象素中的基本感光象素各自感应可见光或可见光及红外光的两两正交的一个谱段, 所述复合感光象素宏单元的所有复合感光象素所感应的光谱信息结合起来包含RGB或CMYK彩色重建所必需的光谱信息。
  14. 如权利要求1-13任意一项所述的多光谱感光器件,其特征在于,所述复合感光象素中离光源最近的基本感光象素所感应的光谱包括空色,蓝色,绿色,青色,白色,和白色加红外色。
  15. 如权利要求1-14任意一项所述的多光谱感光器件,其特征在于,所述复合感光象素中离光源最远的基本感光象素所感应的光谱包括空色,绿色,红色,黄色,白色,红色加红外色,黄色加红外色,和白色加红外色。
  16. 如权利要求1至15任意一项所述的多光谱感光器件,其特征在于,所述复合感光象素单元的底层用于感应红外光的基本感光象素的底部表面还生长有对红外光吸收更好的硅锗晶体层或锗晶体层。
  17. 如权利要求1-16所述的多光谱感光器件,其特征在于,所述用于感应红外光的基本感光象素的底部,还镀设有镜面反射镀膜。
  18. 如权利要求1-17任意一项所述的多光谱感光器件,其特征在于,所述复合感光象素用主动方式来采样而形成主动感光象素。
  19. 如权利要求1-17任意一项所述的多光谱感光器件,其特征在于,所述复合感光象素用被动方式来采样而形成被动感光象素。
  20. 如权利要求1-19任意一项所述的多光谱感光器件,其特征在于,所述复合感光象素中的基本感光象素为感光二极管或感光门。
  21. 如权利要求1-20任意一项所述的多光谱感光器件,其特征在于,所述多光谱感光器件的感光方式包括正面感光,背面感光,或双向感光方式,所述双向感光方式包括分时选向,分区选向,或象素选向方式。
  22. 如权利要求1-21任意一项所述的多光谱感光器件,其特征在于,所述预设图案包括复合象素的重复排列,方阵排列,或蜂窝图案排列。
PCT/CN2010/073440 2010-06-01 2010-06-01 多光谱感光器件 WO2011150551A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2010/073440 WO2011150551A1 (zh) 2010-06-01 2010-06-01 多光谱感光器件
US13/699,534 US9184204B2 (en) 2010-06-01 2010-06-01 Multi-spectrum photosensitive device
CA2786760A CA2786760C (en) 2010-06-01 2010-06-01 Multi-spectrum photosensitive device
JP2012546317A JP5889798B2 (ja) 2010-06-01 2010-06-01 マルチスペクトル感光部材
RU2012157799/28A RU2525654C1 (ru) 2010-06-01 2010-06-01 Мультиспектральное фоточувствительное устройство
EP10852350.7A EP2509107A4 (en) 2010-06-01 2010-06-01 MULTISPEKTRAL LIGHT-SENSITIVE DEVICE
KR1020127026178A KR101432016B1 (ko) 2010-06-01 2010-06-01 다중 스펙트럼 감광소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/073440 WO2011150551A1 (zh) 2010-06-01 2010-06-01 多光谱感光器件

Publications (1)

Publication Number Publication Date
WO2011150551A1 true WO2011150551A1 (zh) 2011-12-08

Family

ID=45066111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073440 WO2011150551A1 (zh) 2010-06-01 2010-06-01 多光谱感光器件

Country Status (7)

Country Link
US (1) US9184204B2 (zh)
EP (1) EP2509107A4 (zh)
JP (1) JP5889798B2 (zh)
KR (1) KR101432016B1 (zh)
CA (1) CA2786760C (zh)
RU (1) RU2525654C1 (zh)
WO (1) WO2011150551A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041875A (ja) * 2011-08-11 2013-02-28 Sony Corp 固体撮像素子、固体撮像素子の製造方法、及び、電子機器

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057256B2 (en) 2001-05-25 2006-06-06 President & Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US7442629B2 (en) 2004-09-24 2008-10-28 President & Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US8692198B2 (en) 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
US10008522B2 (en) * 2010-06-01 2018-06-26 Boly Media Communications (Shenzen) Co., Ltd. Multi-spectrum photosensitive device and manufacturing method thereof
CN103081128B (zh) 2010-06-18 2016-11-02 西奥尼克斯公司 高速光敏设备及相关方法
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
WO2013010127A2 (en) 2011-07-13 2013-01-17 Sionyx, Inc. Biometric imaging devices and associated methods
US9064764B2 (en) 2012-03-22 2015-06-23 Sionyx, Inc. Pixel isolation elements, devices, and associated methods
JP2014135571A (ja) * 2013-01-08 2014-07-24 V Technology Co Ltd 撮像装置
KR20150130303A (ko) 2013-02-15 2015-11-23 사이오닉스, 아이엔씨. 안티 블루밍 특성 및 관련 방법을 가지는 높은 동적 범위의 cmos 이미지 센서
EP2974302B1 (en) * 2013-03-15 2019-05-01 SiOnyx, LLC Three dimensional imaging utilizing stacked imager devices and associated methods
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US9209345B2 (en) 2013-06-29 2015-12-08 Sionyx, Inc. Shallow trench textured regions and associated methods
JP2015037121A (ja) * 2013-08-13 2015-02-23 株式会社東芝 固体撮像素子
WO2017015580A1 (en) 2015-07-23 2017-01-26 Artilux Corporation High efficiency wide spectrum sensor
US10761599B2 (en) 2015-08-04 2020-09-01 Artilux, Inc. Eye gesture tracking
US10707260B2 (en) 2015-08-04 2020-07-07 Artilux, Inc. Circuit for operating a multi-gate VIS/IR photodiode
US10861888B2 (en) 2015-08-04 2020-12-08 Artilux, Inc. Silicon germanium imager with photodiode in trench
TW202335281A (zh) * 2015-08-04 2023-09-01 光程研創股份有限公司 光感測系統
EP3783656B1 (en) 2015-08-27 2023-08-23 Artilux Inc. Wide spectrum optical sensor
US10418407B2 (en) 2015-11-06 2019-09-17 Artilux, Inc. High-speed light sensing apparatus III
US10886309B2 (en) 2015-11-06 2021-01-05 Artilux, Inc. High-speed light sensing apparatus II
US10254389B2 (en) 2015-11-06 2019-04-09 Artilux Corporation High-speed light sensing apparatus
US10739443B2 (en) 2015-11-06 2020-08-11 Artilux, Inc. High-speed light sensing apparatus II
US10741598B2 (en) 2015-11-06 2020-08-11 Atrilux, Inc. High-speed light sensing apparatus II
US11595595B2 (en) 2016-09-27 2023-02-28 Rxsafe Llc Verification system for a pharmacy packaging system
US10187593B2 (en) 2016-09-27 2019-01-22 Rxsafe Llc Verification system for a pharmacy packaging system
US11105928B2 (en) 2018-02-23 2021-08-31 Artilux, Inc. Light-sensing apparatus and light-sensing method thereof
JP6975341B2 (ja) 2018-02-23 2021-12-01 アーティラックス・インコーポレイテッド 光検出装置およびその光検出方法
WO2019199691A1 (en) 2018-04-08 2019-10-17 Artilux, Inc. Photo-detecting apparatus
US10854770B2 (en) 2018-05-07 2020-12-01 Artilux, Inc. Avalanche photo-transistor
US10969877B2 (en) 2018-05-08 2021-04-06 Artilux, Inc. Display apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070218578A1 (en) * 2006-03-17 2007-09-20 Sharp Laboratories Of America, Inc. Real-time CMOS imager having stacked photodiodes fabricated on SOI wafer
CN101345248A (zh) * 2007-07-09 2009-01-14 博立码杰通讯(深圳)有限公司 多光谱感光器件及其制作方法
CN101577287A (zh) * 2008-05-09 2009-11-11 三星电子株式会社 多层图像传感器
CN101640213A (zh) * 2008-07-29 2010-02-03 东部高科股份有限公司 图像传感器及其制造方法
US20100109060A1 (en) * 2008-11-06 2010-05-06 Omnivision Technologies Inc. Image sensor with backside photodiode implant
CN101807590A (zh) * 2009-02-16 2010-08-18 博立码杰通讯(深圳)有限公司 多光谱感光器件

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812518A (en) * 1973-01-02 1974-05-21 Gen Electric Photodiode with patterned structure
JPH02177474A (ja) 1988-12-28 1990-07-10 Victor Co Of Japan Ltd 固体撮像素子
US5751049A (en) * 1993-08-16 1998-05-12 Texas Instruments Incorporated Two-color infrared detector
JP3292583B2 (ja) 1994-03-04 2002-06-17 三菱電機株式会社 固体撮像装置
JPH09219505A (ja) * 1996-02-08 1997-08-19 Olympus Optical Co Ltd カラー固体撮像装置
US6870885B2 (en) 2001-05-16 2005-03-22 Qualcomm Incorporated Apparatus and method for decoding and computing a discrete cosine transform using a butterfly processor
JP2002354491A (ja) * 2001-05-22 2002-12-06 Fuji Film Microdevices Co Ltd カラー撮像装置
US6960757B2 (en) * 2001-06-18 2005-11-01 Foveon, Inc. Simplified wiring schemes for vertical color filter pixel sensors
JP4271917B2 (ja) * 2002-09-12 2009-06-03 国立大学法人 奈良先端科学技術大学院大学 固体撮像素子、及び該素子を用いた撮像装置
US7166878B2 (en) * 2003-11-04 2007-01-23 Sarnoff Corporation Image sensor with deep well region and method of fabricating the image sensor
KR100760142B1 (ko) * 2005-07-27 2007-09-18 매그나칩 반도체 유한회사 고해상도 cmos 이미지 센서를 위한 스택형 픽셀
WO2007077286A1 (en) * 2006-01-05 2007-07-12 Artto Aurola Semiconductor radiation detector detecting visible light
WO2008010292A1 (fr) * 2006-07-21 2008-01-24 Renesas Technology Corp. Dispositif de conversion photoélectrique et dispositif d'imagerie
JP2008060476A (ja) * 2006-09-01 2008-03-13 Sharp Corp 固体撮像装置および電子情報機器
KR100818987B1 (ko) * 2006-09-19 2008-04-04 삼성전자주식회사 이미지 촬상 장치 및 상기 이미지 촬상 장치의 동작 방법
KR20080061483A (ko) * 2006-12-28 2008-07-03 동부일렉트로닉스 주식회사 이미지 센서 및 이의 제조 방법
JP2008203666A (ja) * 2007-02-21 2008-09-04 Dainippon Printing Co Ltd 半透過型液晶表示装置用カラーフィルタ
JP4742057B2 (ja) * 2007-02-21 2011-08-10 富士フイルム株式会社 裏面照射型固体撮像素子
TWI479887B (zh) * 2007-05-24 2015-04-01 Sony Corp 背向照明固態成像裝置及照相機
CN101459184B (zh) * 2007-12-13 2011-03-23 中芯国际集成电路制造(上海)有限公司 在cmos上感测图像的系统和方法
US7888763B2 (en) * 2008-02-08 2011-02-15 Omnivision Technologies, Inc. Backside illuminated imaging sensor with improved infrared sensitivity
JP2010093081A (ja) * 2008-10-08 2010-04-22 Panasonic Corp 固体撮像装置およびその製造方法
US8487396B2 (en) * 2009-06-01 2013-07-16 Stmicroelectronics S.R.L. Trench sidewall contact Schottky photodiode and related method of fabrication
JP6045136B2 (ja) * 2011-01-31 2016-12-14 キヤノン株式会社 光電変換装置
EP2725616B1 (en) * 2011-06-24 2017-07-26 Boly Media Communications (Shenzhen) Co., Ltd Multi scene depth photo sensitive device, system thereof, scene depth expanding method, and optical imaging system
US8946612B2 (en) * 2011-07-29 2015-02-03 Semiconductor Components Industries, Llc Image sensor with controllable vertically integrated photodetectors
FR2983348B1 (fr) * 2011-11-29 2014-07-25 Thales Sa Bloc detecteur optique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070218578A1 (en) * 2006-03-17 2007-09-20 Sharp Laboratories Of America, Inc. Real-time CMOS imager having stacked photodiodes fabricated on SOI wafer
CN101345248A (zh) * 2007-07-09 2009-01-14 博立码杰通讯(深圳)有限公司 多光谱感光器件及其制作方法
CN101577287A (zh) * 2008-05-09 2009-11-11 三星电子株式会社 多层图像传感器
CN101640213A (zh) * 2008-07-29 2010-02-03 东部高科股份有限公司 图像传感器及其制造方法
US20100109060A1 (en) * 2008-11-06 2010-05-06 Omnivision Technologies Inc. Image sensor with backside photodiode implant
CN101807590A (zh) * 2009-02-16 2010-08-18 博立码杰通讯(深圳)有限公司 多光谱感光器件

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Handbook of Infrared Detection Technologies", 2002, ELSEVIER SCIENCE LTD., article "Silicon infrared focal plane arrays", pages: 352 - 392
DIETMAR KNIPP ET AL.: "Vertically Integrated Amorphous Silicon Color Sensor Arrays", IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 53, no. 7, July 2006 (2006-07-01), pages 1551 - 1557 *
GERALD C. HOLST; TERRANCE S. LOMHEIM: "CMOS/CCD Sensors and Camera Systems", 2007, JCD PUBLISHING, pages: 125 - 125
See also references of EP2509107A4
T. TOKUDAETAL.: "A CMOS image sensor with eye-safe detection function using backside carrier injection", J. INST. IMAGE INFORMATION & TELEVISION ENG., vol. 60, no. 3, March 2006 (2006-03-01), pages 366 - 372
T. TOKUDAETAL.: "Backside-hybrid Photo detector for trans-chip detection of NIR light", IEEE WORKSHOP ON CHARGE-COUPLED DEVICES & ADVANCED IMAGE SENSORS, May 2003 (2003-05-01)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041875A (ja) * 2011-08-11 2013-02-28 Sony Corp 固体撮像素子、固体撮像素子の製造方法、及び、電子機器

Also Published As

Publication number Publication date
EP2509107A4 (en) 2013-07-31
US9184204B2 (en) 2015-11-10
CA2786760C (en) 2018-01-02
KR101432016B1 (ko) 2014-08-20
JP2013516078A (ja) 2013-05-09
EP2509107A1 (en) 2012-10-10
JP5889798B2 (ja) 2016-03-22
RU2525654C1 (ru) 2014-08-20
KR20120125665A (ko) 2012-11-16
RU2012157799A (ru) 2014-07-27
US20130062506A1 (en) 2013-03-14
CA2786760A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
WO2011150551A1 (zh) 多光谱感光器件
CN209183547U (zh) 图像像素件及图像像素阵列
US7535073B2 (en) Solid-state imaging device, camera module and electronic equipment module
JP2014526136A (ja) 混合マルチスペクトル感光画素グループ
CN108369953B (zh) 成像装置和电子设备
WO2011150552A1 (zh) 多光谱感光器件及其制作方法
JP4388752B2 (ja) Ccd型カラー固体撮像装置
US5237185A (en) Image pickup apparatus with different gate thicknesses
US7687761B2 (en) Photoelectric conversion device providing efficient read-out of signal charges
JP2006049437A (ja) カラー受光素子、及び撮像素子
JP4264249B2 (ja) Mos型イメージセンサ及びデジタルカメラ
JPH0416948B2 (zh)
JPH0463473A (ja) 固体撮像装置
JPH0794694A (ja) 固体撮像素子
WO2007061565A2 (en) Vertical color filter sensor group array with full-resolution top layer and lower-resolution lower layer
EP3979322A1 (en) Pixel structure and method for manufacturing a pixel structure
JP2002252341A (ja) 固体撮像装置
JPH01220862A (ja) 固体撮像素子
JPS61248553A (ja) 固体撮像装置
JPH033269A (ja) Ccd撮像素子
JPS633457A (ja) 固体撮像装置
JP2016026421A (ja) マルチスペクトル感光部材およびその製作方法
JPH02143561A (ja) カラー撮像装置
JPH0897395A (ja) 固体撮像装置およびその駆動方法
JPH05347393A (ja) カラー用固体撮像素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1530/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012546317

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010852350

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2786760

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127026178

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13699534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012157799

Country of ref document: RU

Kind code of ref document: A