WO2011148826A1 - 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法 - Google Patents

軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法 Download PDF

Info

Publication number
WO2011148826A1
WO2011148826A1 PCT/JP2011/061304 JP2011061304W WO2011148826A1 WO 2011148826 A1 WO2011148826 A1 WO 2011148826A1 JP 2011061304 W JP2011061304 W JP 2011061304W WO 2011148826 A1 WO2011148826 A1 WO 2011148826A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
powder
mass
content
dust core
Prior art date
Application number
PCT/JP2011/061304
Other languages
English (en)
French (fr)
Inventor
麻子 渡▲辺▼
前田 徹
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201180004383.4A priority Critical patent/CN102596453B/zh
Priority to US13/505,003 priority patent/US8797137B2/en
Priority to EP11786525.3A priority patent/EP2578338B1/en
Priority to KR1020127009707A priority patent/KR101353827B1/ko
Publication of WO2011148826A1 publication Critical patent/WO2011148826A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder

Definitions

  • the present invention relates to a soft magnetic powder, a granulated powder obtained by granulating the soft magnetic powder, a powder magnetic core using the granulated powder, an electromagnetic component using the powder magnetic core, and a method for manufacturing the powder magnetic core. .
  • Inductors such as choke coils, are used in circuits that convert energy, such as switching power supplies and DC / DC converters.
  • an inductor one having a powder magnetic core obtained by firing a powder compact of soft magnetic powder and a coil formed by winding a winding around the outer periphery of the powder magnetic core is known. .
  • the dust core is produced, for example, as follows (see, for example, Patent Document 1). First, a soft magnetic powder that is an aggregate of composite magnetic particles in which an insulating coating is formed on the surface of soft magnetic particles is prepared. Then, the soft magnetic powder is pressure-molded into a predetermined shape, and the compact is heat-treated to produce a dust core. In the dust core obtained by such a method, insulation between soft magnetic particles is ensured by an insulating coating of silicone oxide, and even if a large direct current is superimposed, the inductance is not extremely reduced.
  • a characteristic required for the dust core is to reduce energy loss called iron loss.
  • the iron loss is generally represented by the sum of eddy current loss and hysteresis loss, and is particularly noticeable when used at high frequencies. Eddy current loss among iron losses can be reduced by ensuring insulation between the soft magnetic particles contained in the dust core.
  • the hysteresis loss can be reduced by adjusting the composition of the soft magnetic particles.
  • an Fe—Si—Al alloy so-called Sendust alloy, can reduce hysteresis loss of a dust core and can also improve the relative permeability of the dust core, so that it can be suitably used as soft magnetic particles. Has been.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide a soft magnetic powder and a granulated powder for obtaining a dust core having a low hysteresis loss particularly in a high temperature range. It is in.
  • Another object of the present invention is to provide a dust core having a low hysteresis loss particularly in a high temperature range, a method for producing the same, and an electromagnetic component using the dust core.
  • the soft magnetic powder of the present invention is a soft magnetic powder that is an aggregate of composite magnetic particles in which an insulating coating is formed on the surface of soft magnetic particles containing Fe, Si, and Al, and the Si content in the soft magnetic particles is When the a mass% and the Al content are b mass%, the following formulas (1) and (2) are satisfied.
  • the energy loss of the powder magnetic core obtained using this soft magnetic powder, especially the hysteresis loss in a high temperature environment can be reduced.
  • the hysteresis loss of the dust core can be further reduced by further limiting a and b indicating the contents of Si and Al so as to satisfy the following expressions (3) and (4).
  • the content of O in the soft magnetic particles is less than 0.2% by mass (including 0% by mass), and the content of Mn is 0.3% by mass or less (0% by mass). %) And the Ni content is preferably 0.3% by mass or less (including 0% by mass).
  • the insulating coating formed on the surface of the soft magnetic particles is preferably an insulating coating including an inorganic insulating layer made of an inorganic material including Si and O.
  • the granulated powder of the present invention is a granulated powder that is formed into a molded body by pressurization, and is formed into a sintered body for a magnetic core by firing the molded body. And a molding resin for retaining the molded body.
  • the granulated powder of the present invention is characterized in that these soft magnetic powder and molding resin are integrated into a granular form.
  • a dust core with little energy loss in particular, a dust core with little hysteresis loss in a high temperature environment.
  • a molding resin for example, an acrylic resin is preferable. If it is an acrylic resin, the deformability at the time of shaping
  • a firing resin for reinforcing the fired body after firing may be provided.
  • the granulated powder is formed by integrating the soft magnetic powder, the resin for baking, and the resin for molding in a granular form.
  • a baking resin for example, a silicone resin is preferable. If it is a silicone resin, the deformability at the time of shaping
  • the dust core of the present invention includes a plurality of soft magnetic particles and an insulating layer interposed between the soft magnetic particles.
  • the soft magnetic particles used for the dust core include Fe, Si, and Al.
  • the Si content is a mass% and the Al content is b mass%, the following formulas (1) and ( 2) is satisfied.
  • a dust core having the above configuration is a dust core having a small hysteresis loss in a high temperature range.
  • a and b indicating the contents of Si and Al are further limited to satisfy the following formulas (3) and (4).
  • the content of O in the soft magnetic particles is less than 0.2% by mass (including 0% by mass), and the content of Mn is 0.3% by mass or less (0 It is preferable that the Ni content is 0.3% by mass or less (including 0% by mass).
  • the insulating layer preferably has an inorganic insulating layer containing Si and O formed on the surface of the soft magnetic particles.
  • the inorganic insulating layer is formed on the surface of the particles, insulation between the soft magnetic particles can be ensured. As a result, the eddy current loss of the dust core can be reduced.
  • the present invention powder magnetic core is obtained by molding the granulated powder of the present invention by pressurization and heat-treating the compact.
  • the method for producing a dust core of the present invention is a method for producing a dust core by forming a compact using soft magnetic powder and firing the compact to form a dust core, which includes the following steps: It is characterized by.
  • a step of preparing the soft magnetic powder of the present invention. A step of mixing and granulating the soft magnetic powder with a molding resin for retaining the molded body.
  • the dust core of the present invention can be easily obtained.
  • the electromagnetic component of the present invention includes the dust core of the present invention and a coil disposed on the outer side of the dust core, and a coil formed by winding a winding.
  • an electromagnetic component having a dust core having a relatively low hysteresis loss and a relatively high magnetic permeability can be obtained.
  • the soft magnetic powder and granulated powder of the present invention it is possible to obtain a dust core having a low hysteresis loss under a high frequency and high temperature use environment and having a relatively high permeability.
  • the dust core of the present invention exhibits excellent characteristics in a high frequency and high temperature use environment.
  • a dust core of the present invention According to the method of manufacturing a dust core of the present invention, it is possible to easily manufacture a dust core exhibiting excellent characteristics in a high-frequency and high-temperature use environment.
  • the electromagnetic component of the present invention it is possible to configure an inductor that exhibits excellent characteristics in a high frequency and high temperature use environment.
  • the soft magnetic powder of the present invention is an aggregate of composite magnetic particles comprising soft magnetic particles and an insulating coating formed on the outer peripheral surface thereof.
  • the soft magnetic particles are Fe—Si—Al based alloys, so-called sendust alloys.
  • Si content By limiting the Si content and the Al content in the soft magnetic particles, soft magnetic particles having a small hysteresis loss at high temperatures can be obtained.
  • the following formulas (1) and (2) are satisfied when the Si content is a mass% and the Al content is b mass%.
  • the content in the soft magnetic particles is preferably less than 0.2% by mass.
  • the more preferable O content in the soft magnetic particles is 0.1% by mass or less, and most preferably 0% by mass.
  • both the Mn content and the Ni content in the soft magnetic particles are 0.3% by mass or less. These Mn and Ni are factors that increase the hysteresis loss of the soft magnetic particles. Therefore, the contents of Mn and Ni are each preferably 0.2% by mass or less, and most preferably 0% by mass.
  • the soft magnetic particles are preferably those produced by an atomizing method such as a water atomizing method or a gas atomizing method. Since the soft magnetic particles produced by the water atomization method have many irregularities on the particle surface, it is easy to obtain a high-strength fired body by meshing the irregularities. On the other hand, the soft magnetic particles produced by the gas atomization method are preferable because the particle shape is almost spherical, and there are few irregularities that break through the insulating coating. A natural oxide film may be formed on the surface of the soft magnetic particles.
  • the insulating coating includes an inorganic insulating layer made of an inorganic material including Si and O, for example.
  • the inorganic insulating film covers the outer peripheral surface of the soft magnetic particles to ensure insulation between the soft magnetic powders.
  • This inorganic insulating layer containing Si and O has a high hardness and is not destroyed by the applied pressure when a granulated powder using a soft magnetic powder is compressed later to form a molded body. It is not decomposed by heat generated when the body is fired.
  • a typical example of such an inorganic substance containing Si and O is SiO 2 , but the SiO 2 may contain at least one of SiO and Si 2 O 3 .
  • a silicate such as sodium silicate (water glass) may be used.
  • the inorganic insulating layer made of an inorganic material containing Si and O include a film formed by heat-treating a silicone resin in an oxygen-containing atmosphere and a film formed by coating water glass.
  • the thickness of the inorganic insulating layer is preferably 20 nm or more and 1 ⁇ m or less. By making the said thickness more than a lower limit, while ensuring the insulation between soft-magnetic particles, it can be set as the inorganic insulating layer which has the mechanical strength which is not destroyed by the applied pressure at the time of granulated powder compression. In addition, by setting the thickness to the upper limit or less, when a dust core is produced from the soft magnetic powder, a sufficient amount of soft magnetic particles in the dust core can be secured.
  • the soft magnetic powder of the present invention can be obtained by a production method including classification and insulation coating as main processes.
  • the particle diameter of the soft magnetic particles in the dust core is preferably in the range of about 40 to 150 ⁇ m. If powder having such a particle diameter is used, eddy current loss increases when used in a high frequency range of 1 kHz or more. It is effective for suppression. Therefore, it is preferable to perform an operation of classifying so that the prepared soft magnetic powder becomes an aggregate of soft magnetic particles having a predetermined particle size. This classification may be typically performed using a sieve having a predetermined mesh size.
  • Soft magnetic powder which is an aggregate of classified soft magnetic particles, is mixed with an insulating agent.
  • the insulating agent is preferably a low molecular silicone resin or a silicate aqueous solution such as water glass. This mixing is preferably performed with a mixer or the like.
  • the blending amount of the insulating agent is preferably selected according to the specific surface area of the soft magnetic particles to be mixed. By determining the blending amount of the insulating agent according to the specific surface area of the soft magnetic particles, it is possible to produce composite magnetic particles in which an insulating film having a predetermined thickness is formed on the outer peripheral surface of the soft magnetic particles.
  • the blending amount of the soft magnetic particles and the insulating agent may be, for example, such that the insulating agent is about 0.02 to 1.8% by mass with respect to the mixture of both, and more preferably 0.05 to The amount is 1.5% by mass, more preferably 0.1 to 1.0% by mass.
  • the insulating agent is a silicone resin
  • a preferred heat treatment temperature is 400 ° C. to 1000 ° C.
  • a more preferred heat treatment temperature is 600 ° C. to 900 ° C.
  • a preferable heat treatment time is about 30 minutes to 2 hours.
  • the insulating agent is a silicate aqueous solution
  • it is only necessary to dry at 50 to 100 ° C. after coating.
  • you may implement continuously with granulation of the following process, and handling is simple compared with a silicone resin.
  • the soft magnetic powder is further mixed with a molding resin and a firing resin to obtain a granulated powder.
  • a molding resin and a firing resin are integrated, and if necessary, the firing resin may be further integrated.
  • Molding resin is a resin that retains the shape of the molded body when soft magnetic powder is compressed into a molded body. From the viewpoint of compatibility between the deformability during molding and the mechanical strength during molding, A plastic resin is preferred. Specific examples of the thermoplastic resin include acrylic alcohol, polyvinyl alcohol, polyvinyl butyral, polyethylene resin, and the like. This molding resin disappears when the molded body is fired.
  • the firing resin becomes a ceramic compound and becomes a shape-retaining material for holding the soft magnetic powder.
  • a silicone resin is used as the firing resin. As will be described later, this silicone resin is presumed to be an amorphous shape-retaining material containing Si, C, and O in the firing process, and does not disappear even after firing.
  • the granulated powder is produced by mixing a soft magnetic powder, a molding resin, and, if necessary, a firing resin with a mixer or the like. This mixing usually forms unit particles of granulated powder in which several soft magnetic powders are integrated with a molding resin (which may contain a firing resin if necessary). The molding resin and the firing resin may be adjusted to a solution having an appropriate viscosity with an appropriate solvent and mixed with the soft magnetic powder.
  • the mixture of the soft magnetic powder and the molding resin (the total mixture of the soft magnetic powder, the firing resin, and the molded body resin when adding the firing resin) is 0.5 to 3 mass of the total amount of the resin added. It is preferable to mix so that it may become%.
  • the resin content above this lower limit, the molded body or fired body (that is, the dust core) can be sufficiently retained, and conversely by setting the resin content below the upper limit, the amount of resin in the mixture is an appropriate amount.
  • the compact and the powder magnetic core can be densified.
  • the compact is obtained by pressure-molding the granulated powder into a predetermined shape. That is, the molded body is in a state in which the soft magnetic powder is integrated with the molding resin and, if necessary, the firing resin. Since the soft magnetic particles constituting the soft magnetic powder used here are not substantially deformed by the pressure at the time of molding, damage to the high-hardness inorganic insulating layer formed on the outer periphery of the soft magnetic particles is suppressed. The What is necessary is just to select the shape of a molded object according to the shape of the magnetic core of electromagnetic components.
  • the said molded object is obtained by the method including the process of supplying granulated powder to a metal mold
  • the pressure for pressing the granulated powder is preferably about 10 to 12 ton / cm 2 .
  • the pressure for pressing the granulated powder is preferably about 10 to 12 ton / cm 2 .
  • the pressure for pressing the granulated powder is preferably about 10 to 12 ton / cm 2 .
  • This pressurization may be performed at room temperature, but when a thermoplastic resin is used as the molding resin, it is preferably molded at a temperature equal to or higher than the glass transition temperature of the resin. This can improve the density and strength of the molded body.
  • the dust core of the present invention includes the soft magnetic particles described above and an insulating layer interposed between the soft magnetic particles.
  • the insulating layer interposed between the soft magnetic particles has an inorganic insulating layer made of an inorganic material containing Si and O formed on the outer peripheral surface of the soft magnetic particles.
  • the inorganic insulating layer on the surface of the particles remains almost intact even after firing, and ensures insulation between the soft magnetic powders.
  • An insulating layer (second layer) is formed.
  • the firing resin is a silicone resin
  • the second layer obtained by heat-treating the firing resin is also made of an inorganic material containing Si and O.
  • Such a dust core can be obtained by subjecting the above-described molded body to a heat treatment.
  • the heating temperature of this heat treatment is preferably 600 ° C. to 900 ° C.
  • the heating time is preferably about 30 minutes to 2 hours.
  • Many strains are introduced into the soft magnetic powder constituting the green body before firing, but if the green body is heat-treated under the above conditions, the strain can be sufficiently removed.
  • the heat treatment atmosphere is preferably an inert gas atmosphere such as a nitrogen atmosphere or a reduced pressure atmosphere.
  • the electromagnetic component of the present invention includes a magnetic core and a coil.
  • a magnetic core consists of a powder magnetic core mentioned above. Examples of the shape of the magnetic core include an E-type and an I-type core such as an annular shape and a rod shape.
  • the coil is configured by winding a winding having an insulating coating on the surface of the conducting wire. As the cross-sectional shape of the winding, various shapes such as a circle and a rectangle can be used. For example, a round wire may be spirally wound to form a cylindrical coil, or a flat wire may be spirally edgewise wound to form a square tube coil.
  • This electromagnetic component may be configured by winding a winding around the outer periphery of the magnetic core, or may be configured by inserting an air-core coil formed in advance in a spiral shape into the outer periphery of the magnetic core.
  • this electromagnetic component includes a high-frequency choke coil, a high-frequency tuning coil, a bar antenna coil, a power choke coil, a power transformer, a switching power transformer, and a reactor.
  • a soft magnetic powder was produced, granulated powder was produced, a compact was molded, and the compact was fired under the following conditions to produce a test piece of a dust core, and the magnetic properties of the test piece were evaluated.
  • Soft magnetic powder is an aggregate of soft magnetic particles.
  • the average particle diameter of the soft magnetic particles constituting each prepared soft magnetic powder was almost the same, and was about 60 ⁇ m.
  • each soft magnetic powder was mixed with a silicone resin with a mixer to form a silicone resin film on the particle surface.
  • the blending amount of the soft magnetic powder and the silicone resin is such that the silicone resin is 0.3% by mass with respect to the mixture of both.
  • the soft magnetic powder on which the silicone resin film was formed was heat-treated at 180 ° C. for 1 hour in the air atmosphere to cure the resin. At this point, the silicone resin is not vitrified. Thereafter, the obtained soft magnetic powder with a silicone resin coating was sieved to loosen the particles.
  • the obtained soft magnetic powder with a silicone resin coating was subjected to a heat treatment at 600 ° C. for 1 hour in the atmosphere to vitrify the silicone resin coating to obtain an inorganic insulating layer made of an inorganic material containing Si and O.
  • the inorganic insulating layer has a thickness of about 120 nm.
  • a soft magnetic powder that is an aggregate of composite magnetic particles in which an inorganic insulating coating containing Si and O is formed on the surface of the soft magnetic particles was produced.
  • a granulated powder was prepared by mixing a molding resin and a firing resin into the obtained soft magnetic powder.
  • the mixing ratio of the soft magnetic powder, the molding resin, and the firing resin in the granulated powder is 100: 1: 0.5 in terms of mass ratio.
  • An acrylic resin was used for the molding resin, and a silicone resin was used for the firing resin.
  • This silicone resin is different from the silicone resin used for forming the inorganic insulating layer, and is a high molecular silicone varnish mainly composed of polysiloxane.
  • the granulated powder of each sample is supplied to a mold and compressed to form a molded body.
  • the surface pressure at the time of the pressure molding is 10 ton / cm 2 . With this surface pressure, the soft magnetic particles are not substantially deformed during molding.
  • the obtained molded body is heat-treated at 800 ° C. for 1 hour in a nitrogen atmosphere to obtain a dust core.
  • the inorganic insulating coating is present on the particle surface as it is without being decomposed, the molding resin is substantially lost, and the firing resin is an amorphous body containing Si, C, and O. It is done.
  • the completed test piece consisting of the dust core was ring-shaped and had an outer diameter of 34 mm, an inner diameter of 20 mm, and a thickness of 5 mm.
  • the iron loss is composed of hysteresis loss and eddy current loss.
  • the hysteresis loss and the eddy current loss can be calculated by fitting the frequency curve of the iron loss by the following three equations by the least square method.
  • An aqueous solution containing as a main component is prepared.
  • the average particle size of the soft magnetic powder was approximately 60 ⁇ m.
  • the concentration of potassium silicate in the aqueous solution was 30% by mass.
  • This soft magnetic powder and an aqueous solution were mixed with a mixer to form an inorganic insulating layer mainly composed of potassium silicate on the surface of the soft magnetic particles.
  • the blending amount of the soft magnetic powder and the aqueous solution was such that the solid content of the aqueous solution was 0.3% by mass with respect to the mixture of both.
  • the obtained soft magnetic powder was mixed with a molding resin to produce granulated powder.
  • the mixing ratio of the soft magnetic powder and the molding resin in the granulated powder is 100: 1 by mass ratio.
  • An acrylic resin was used as the molding resin.
  • the granulated powder was supplied to a mold and compressed to obtain a molded body.
  • the surface pressure during the pressure molding was 10 ton / cm 2 .
  • the obtained molded object was heat-processed for 775 degreeC x 1 hour in nitrogen atmosphere, and it was set as the powder magnetic core.
  • the completed test piece consisting of the dust core was ring-shaped and had an outer diameter of 34 mm, an inner diameter of 20 mm, and a thickness of 5 mm.
  • Example 69 A winding was applied to the prepared test piece to prepare a measurement member (sample 69) for measuring the magnetic properties of the test piece.
  • the iron loss W1 / 100k @ 120 degreeC was measured by the method similar to Example 1.
  • FIG. As a result, as shown in Table 3, the iron loss W1 / 100k @ 120 ° C. of the sample 69 was 350 or less, and it was found that the energy loss of the sample 69 was low.
  • a Sendust alloy having a Si content and an Al content specified in the present invention can produce a dust core with a small energy loss under a high temperature environment of 120 ° C.
  • the method for producing soft magnetic powder, granulated powder, and dust core of the present invention can be suitably used to obtain dust cores used for various inductors.
  • the electromagnetic component of the present invention can be suitably used for a high-frequency choke coil, a high-frequency tuning coil, a bar antenna coil, a power choke coil, a power transformer, a switching power transformer, a reactor, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

特に高温域でのヒステリシス損が低い圧粉磁心を得るための軟磁性粉末を提供する。Fe、Si、およびAlを含む軟磁性粒子の表面に絶縁被膜を形成した複合磁性粒子の集合体である軟磁性粉末において、Siの含有量をa質量%、Alの含有量をb質量%としたとき、次の式(1)、(2)を満たす。式(1)…27≦2.5a+b≦29、式(2)…6≦b≦9。このような軟磁性粉末であれば、この軟磁性粉末を用いて得られた圧粉磁心の高温環境におけるヒステリシス損を低減できる。

Description

軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法
  本発明は、軟磁性粉末、その軟磁性粉末を造粒した造粒粉、造粒粉を用いた圧粉磁心、圧粉磁心を用いた電磁部品、および圧粉磁心の製造方法に関するものである。
  スイッチング電源やDC/DCコンバーターなど、エネルギーを変換する回路で、チョークコイルなどを代表例とするインダクタが使用される。インダクタの構成例として、軟磁性粉末の圧粉成形体を焼成して得られた圧粉磁心と、圧粉磁心の外周に巻線を巻回して構成したコイルとを備えるものが知られている。
  上記圧粉磁心は、例えば以下のようにして作製される(例えば、特許文献1などを参照)。まず、軟磁性粒子の表面に絶縁被膜を形成した複合磁性粒子の集合体である軟磁性粉末を用意する。そして、この軟磁性粉末を所定の形状に加圧成形し、その成形体を熱処理することで、圧粉磁心を作製する。このような方法により得られた圧粉磁心は、酸化シリコーンの絶縁被膜により軟磁性粒子同士の絶縁が確保され、大きな直流電流が重畳されてもインダクタンスが極端に低下しないとされる。
  ここで、圧粉磁心に求められる特性として、鉄損と呼ばれるエネルギー損失を低減することが挙げられる。鉄損は、概ね渦電流損とヒステリシス損との和で表され、特に高周波での使用において顕著となる。鉄損のうち渦電流損は、圧粉磁心に含まれる各軟磁性粒子同士の絶縁を確保することで低減できる。一方、ヒステリシス損は、軟磁性粒子の組成を調節することによって低減できる。例えば、Fe-Si-Al合金、いわゆるセンダスト合金は、圧粉磁心のヒステリシス損を低減させることができる上、圧粉磁心の比透磁率を向上させることもできるため、軟磁性粒子として好適に利用されている。
特開2004-319652号公報
  しかし、近年のエネルギー問題への関心が高まる中、圧粉磁心に要求される特性も厳しくなってきており、よりエネルギー損失が少ない圧粉磁心の開発が望まれている。特に、近年発達の目覚しいハイブリッド自動車などに搭載されるコンバーターなどは、100℃以上の高温域で使用されるため、コンバーターに用いられる圧粉磁心にも、この温度域でのエネルギー損失が低いことが求められる。
  本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、特に高温域でのヒステリシス損が低い圧粉磁心を得るための軟磁性粉末、および造粒粉を提供することにある。
  また、本発明の他の目的は、特に高温域でのヒステリシス損が低い圧粉磁心とその製造方法、並びにその圧粉磁心を用いた電磁部品を提供することにある。
  〔軟磁性粉末〕
  本発明軟磁性粉末は、Fe、Si、およびAlを含む軟磁性粒子の表面に絶縁被膜を形成した複合磁性粒子の集合体である軟磁性粉末であって、上記軟磁性粒子におけるSi含有量をa質量%、Alの含有量をb質量%としたとき、以下の式(1)、(2)を満たすことを特徴とする。
    式(1)…27≦2.5a+b≦29
    式(2)…6≦b≦9
  上記構成を備える軟磁性粉末であれば、この軟磁性粉末を用いて得られた圧粉磁心のエネルギー損失、特に高温環境におけるヒステリシス損を低減できる。特に、SiとAlの含有量を示すa,bは、以下の式(3)、(4)を満たすようにさらに限定することで、より圧粉磁心のヒステリシス損を低減できる。
    式(3)…978/35≦18/7a+b≦1023/35
    式(4)…6.6≦b≦8.4
  本発明軟磁性粉末の一形態として、軟磁性粒子におけるOの含有量が0.2質量%未満(0質量%を含む)であり、かつMnの含有量が0.3質量%以下(0質量%を含む)であり、かつNiの含有量が0.3質量%以下(0質量%を含む)であることが好ましい。
  軟磁性粉末における軟磁性粒子中のO、MnおよびNi含有量を少なくすることで、この軟磁性粉末を用いて得られた圧粉磁心の高温環境におけるヒステリシス損を効果的に低減できる。
  本発明軟磁性粉末の一形態として、軟磁性粒子の表面に形成される絶縁被膜を、SiおよびOを含む無機質からなる無機絶縁層を含む絶縁被膜とすることが好ましい。
  この構成によれば、軟磁性粉末から圧粉磁心を作製する際、粉末を加圧する工程において絶縁被膜が損傷し難い。その結果、出来上がる圧粉磁心において軟磁性粒子同士の絶縁が十分に確保され、高透磁率、低鉄損(低ヒステリシス損)の圧粉磁心を得ることができる。
  〔造粒粉〕
  本発明の造粒粉は、加圧により成形体とされ、その成形体の焼成により磁心用焼成体とされる造粒粉であって、上記本発明の軟磁性粉末と、成形時に保形材となって成形体を保形する成形用樹脂とを備える。そして、本発明造粒粉は、これら軟磁性粉末、及び成形用樹脂が粒状に一体化されてなることを特徴とする。
  この構成の造粒粉によれば、エネルギー損失の少ない圧粉磁心、特に高温環境でのヒステリシス損が少ない圧粉磁心を得ることができる。このような成形用樹脂としては、例えばアクリル樹脂が好ましい。アクリル樹脂であれば、成形時の変形性と、成形時の機械的強度を両立することができる。
  また、本発明造粒粉の一形態として、焼成後に焼成体を補強する焼成用樹脂を備えていても良い。この場合、造粒粉は、軟磁性粉末と上記焼成用樹脂と成形用樹脂とが粒状に一体化されて構成される。このような焼成用樹脂としては、例えばシリコーン樹脂が好ましい。シリコーン樹脂であれば、成形時の変形性と、焼成後の機械的強度を両立することができる。
  〔圧粉磁心〕
  本発明圧粉磁心は、複数の軟磁性粒子と、これら軟磁性粒子間に介在される絶縁層とを備える。この圧粉磁心に用いられる軟磁性粒子は、Fe、Si、およびAlを含み、Siの含有量をa質量%、Alの含有量をb質量%としたとき、以下の式(1)、(2)を満たすことを特徴とする。
    式(1)…27≦2.5a+b≦29
    式(2)…6≦b≦9
  上記構成を備える圧粉磁心は、高温域でのヒステリシス損が小さな圧粉磁心となる。特に、SiとAlの含有量を示すa,bは、以下の式(3)、(4)を満たすようにさらに限定することが好ましい。
    式(3)…978/35≦18/7a+b≦1023/35
    式(4)…6.6≦b≦8.4
  本発明圧粉磁心の一形態として、軟磁性粒子中のOの含有量が0.2質量%未満(0質量%を含む)であり、かつMnの含有量が0.3質量%以下(0質量%を含む)であり、かつNiの含有量が0.3質量%以下(0質量%を含む)であることが好ましい。
  軟磁性粒子中のO、MnおよびNiの含有量を限定することで、圧粉磁心のヒステリシス損を効果的に低減できる。
  本発明圧粉磁心の一形態として、絶縁層は、軟磁性粒子の表面に形成されるSiおよびOを含む無機絶縁層を有することが好ましい。
  当該粒子の表面に無機絶縁層が形成されていることで、軟磁性粒子同士の絶縁を確保することができる。その結果、圧粉磁心の渦電流損を低減できる。
  本発明圧粉磁心は、上記本発明造粒粉を加圧により成形し、その成形体を熱処理して得られたことを特徴とする。
  軟磁性粒子の組成が限定された造粒粉を使用することで、高温域でのヒステリシス損が小さな圧粉磁心とできる。
  〔圧粉磁心の製造方法〕
  本発明圧粉磁心の製造方法は、軟磁性粉末を用いて成形体を形成し、その成形体を焼成して圧粉磁心とする圧粉磁心の製造方法であって、以下の工程を含むことを特徴とする。
  本発明軟磁性粉末を用意する工程。
  この軟磁性粉末に、上記成形体を保形するための成形用樹脂を混合して造粒する工程。
  この造粒粉を所定の形状に圧縮成形して成形体とする工程。
  この成形体を焼成して圧粉磁心とする工程。
  この方法によれば、本発明の圧粉磁心を容易に得ることができる。
  〔電磁部品〕
  本発明電磁部品は、本発明圧粉磁心と、この圧粉磁心の外側に配されるコイルであり、巻線を巻回して構成されたコイルとを備えることを特徴とする。
  この構成によれば、特に高温でのヒステリシス損が低く、比較的透磁率の高い圧粉磁心を持った電磁部品とすることができる。
  本発明の軟磁性粉末や造粒粉によれば、高周波で高温の使用環境下でのヒステリシス損が低く、比較的透磁率の高い圧粉磁心を得ることができる。
  本発明圧粉磁心によれば、高周波で高温の使用環境下で優れた特性を発揮する。
  本発明圧粉磁心の製造方法によれば、高周波で高温の使用環境下で優れた特性を発揮する圧粉磁心を容易に製造できる。
  本発明電磁部品によれば、高周波で高温の使用環境下で優れた特性を発揮するインダクタを構成できる。
実施例で作製した圧粉磁心におけるSi含有量とAl含有量と鉄損の関係を示すグラフであって、横軸はAlの含有量、縦軸は鉄損である。 実施例で作製した圧粉磁心におけるSi含有量とAl含有量と鉄損の関係を示すグラフであって、横軸はSiの含有量、縦軸はAlの含有量である。
  以下、本発明の軟磁性粉末、造粒粉、圧粉磁心、電磁部品を順次説明する。
〔軟磁性粉末〕
  <構造>
  本発明の軟磁性粉末は、軟磁性粒子と、その外周面に形成される絶縁被膜とを備える複合磁性粒子の集合体である。
    (軟磁性粒子)
  軟磁性粒子は、Fe-Si-Al系合金、いわゆるセンダスト合金である。この軟磁性粒子におけるSiの含有量とAlの含有量とを限定することで、高温でのヒステリシス損が小さな軟磁性粒子とすることができる。具体的には、Siの含有量をa質量%、Alの含有量をb質量%としたとき、以下の式(1)、(2)を満たす。
    式(1)…27≦2.5a+b≦29
    式(2)…6≦b≦9
  軟磁性粒子におけるa,bのより好ましい含有量は、以下の式(3)、(4)を満たすものである。
    式(3)…978/35≦18/7a+b≦1023/35
    式(4)…6.6≦b≦8.4
  また、軟磁性粒子におけるOは、軟磁性粒子のヒステリシス損を増加させる要因となる。そのため、軟磁性粒子における含有量は0.2質量%未満とすることが好ましい。軟磁性粒子におけるより好ましいO含有量は、0.1質量%以下、最も好ましくは0質量%である。
  さらに、軟磁性粒子におけるMn含有量とNi含有量は両方とも0.3質量%以下とすることが好ましい。これらMn,Niは、軟磁性粒子のヒステリシス損を増加させる要因となる。そのため、Mn,Niの含有量はそれぞれ0.2質量%以下とすることが好ましく、最も好ましくは0質量%である。
  軟磁性粒子は、水アトマイズ法やガスアトマイズ法などのアトマイズ法で製造されたものが好ましい。水アトマイズ法で製造された軟磁性粒子は、粒子表面に凹凸が多いため、その凹凸の噛合により高強度の焼成体を得やすい。一方、ガスアトマイズ法で製造された軟磁性粒子は、その粒子形状がほぼ球形のため、絶縁被膜を突き破るような凹凸が少なくて好ましい。また、軟磁性粒子の表面には、自然酸化膜が形成されていても良い。
    (絶縁被膜)
  絶縁被膜は、例えばSiおよびOを含む無機質からなる無機絶縁層を備える。無機絶縁膜は、軟磁性粒子の外周面を覆うことで、軟磁性粉末間の絶縁を確保する。このSiおよびOを含む無機絶縁層は、高硬度で、後に軟磁性粉末を用いた造粒粉を圧縮して成形体を形成する際に、その加圧力で破壊されることがなく、かつ成形体を焼成した際の熱にも分解されることがない。このようなSiおよびOを含む無機質としては、代表的にはSiOを挙げることができるが、そのSiO中にSiO、Siの少なくとも一方が含まれていても良い。また、珪酸ソーダ(水ガラス)等の珪酸塩でも良い。SiおよびOを含む無機質からなる無機絶縁層としては、例えば、酸素を含む雰囲気中でシリコーン樹脂を熱処理することにより形成した被膜や、水ガラスを被覆することにより形成した被膜が挙げられる。
  上記無機絶縁層の厚さは、20nm以上、1μm以下とすることが好ましい。当該厚みを下限値以上とすることで、軟磁性粒子間の絶縁を確保すると共に、造粒粉圧縮時の加圧力で破壊されない機械的強度を有する無機絶縁層とすることができる。また、当該厚みを上限値以下とすることで、軟磁性粉末から圧粉磁心を作製したときに、その圧粉磁心における軟磁性粒子の量を十分に確保することができる。
  <製造方法>
  本発明軟磁性粉末は、分級、及び絶縁被覆を主たる工程とする製造方法により得られる。
    (分級)
  圧粉磁心における軟磁性粒子の粒径は、およそ40~150μmの範囲とすることが好ましく、このような粒径の粉末を用いれば、1kHz以上の高周波域で使用したときに渦電流損の増大抑制に効果的である。そこで、用意した軟磁性粉末が所定の粒径を有する軟磁性粒子の集合体となるように分級する操作を行うことが好ましい。この分級は、代表的には、所定メッシュサイズのふるいを用いて行えばよい。
    (絶縁被覆)
  分級された軟磁性粒子の集合体である軟磁性粉末は、絶縁剤と混合される。絶縁剤は、低分子のシリコーン樹脂、または水ガラス等の珪酸塩の水溶液が好ましい。この混合は、ミキサーなどで行うことが好適である。絶縁剤の配合量は、混合する軟磁性粒子の比表面積に応じて選択することが好ましい。軟磁性粒子の比表面積に応じて絶縁剤の配合量を決定することで、所定の厚みの絶縁被膜を軟磁性粒子の外周面に形成した複合磁性粒子を作製することができる。軟磁性粒子と絶縁剤との配合量は、例えば両者の混合物に対して絶縁剤が0.02~1.8質量%程度となるようにすることが挙げられるが、より好ましくは0.05~1.5質量%、さらに好ましくは0.1~1.0質量%である。
  絶縁剤がシリコーン樹脂の場合は、被覆後に熱処理を行い、シリコーン樹脂を分解してガラス化することが好ましい。好ましい熱処理温度は、400℃~1000℃であり、さらに好ましい熱処理温度は、600℃~900℃である。また、好ましい熱処理時間は30分~2時間程度である。
  絶縁剤が珪酸塩の水溶液の場合は、被覆後に50~100℃で乾燥を行うのみで良い。
また、次工程の造粒と連続で実施しても良く、シリコーン樹脂と比べて取扱が簡便である。
〔造粒粉〕
  <構造>
  上記の軟磁性粉末は、さらに成形用樹脂および焼成用樹脂と混合されて造粒粉とされる。この造粒粉は、少なくとも成形用樹脂と軟磁性粉末が一体化されており、必要に応じて、さらに焼成用樹脂も一体化されていても良い。
    (成形用樹脂)
  成形用樹脂は、軟磁性粉末を圧縮して成形体とする場合、成形体を保形するための樹脂であり、成形時の変形性と、成形時の機械的強度の両立の観点から、熱可塑性樹脂であることが好ましい。熱可塑性樹脂の具体例としては、アクリル樹脂の他、ポリビニルアルコール、ポリビニルブチラール、ポリエチレン樹脂等が利用できる。この成型用樹脂は、成形体の焼成時に消失する。
    (焼成用樹脂)
  焼成用樹脂は、軟磁性粉末を圧縮した成形体を焼成することで焼成体とした場合、セラミックス系の化合物となって軟磁性粉末を保持する保形材となる。代表的には、焼成用樹脂にはシリコーン樹脂が用いられる。そして、このシリコーン樹脂は、後述するように、焼成過程でSi、C、及びOを含む非晶質体の保形材になっていると推定され、焼成後も消失しない。
  <製造方法>
  造粒粉は、軟磁性粉末および成形用樹脂、必要に応じてさらに焼成用樹脂をミキサーなどで混合することにより製造する。この混合により、通常、数個の軟磁性粉末が成形用樹脂(必要に応じて焼成用樹脂を含んでいても良い)で一体化された造粒粉の単位粒子が構成される。成形用樹脂及び焼成用樹脂は、適宜な溶剤により適切な粘度の溶液に調整して軟磁性粉末と混合しても良い。
  軟磁性粉末と成形用樹脂の混合物(焼成用樹脂も添加する場合、軟磁性粉末、焼成用樹脂及び成形体樹脂の合計混合物)は、添加する樹脂の合計量が混合物の0.5~3質量%となるように混合することが好ましい。この下限以上の樹脂含有量とすることで、成形体または焼成体(即ち、圧粉磁心)を十分に保形することができ、逆に上限以下とすることで、混合物中の樹脂量が適量となり、成形体や圧粉磁心を高密度化することができる。
〔成形体〕
  <構造>
  成形体は、上記造粒粉を所定の形状に加圧成形したものである。つまり、この成形体は、軟磁性粉末が、成形用樹脂、必要に応じて焼成用樹脂により一体化された状態となっている。ここで用いられている軟磁性粉末を構成する軟磁性粒子は、この成形時の圧力により実質的に変形しないため、軟磁性粒子の外周に形成された高硬度の無機絶縁層も損傷が抑制される。成形体の形状は、電磁部品の磁性コアの形状に応じて選択すれば良い。
  <製造方法>
  上記成形体は、造粒粉を金型に供給する工程と、金型内の造粒粉を加圧して成形体とする工程とを含む方法により得られる。
  ここで、造粒粉を加圧する圧力は、10~12ton/cm程度が好ましい。圧力を下限値以上とすることで、高密度の成形体を得ることができる。また、圧力を上限値以下とすることで、軟磁性粒子の変形に伴う無機絶縁層の損傷を抑制することができる。この加圧は、常温下でよいが、成形用樹脂として熱可塑性樹脂を使用した場合には樹脂のガラス転移温度以上で成形することが好ましい。これによって成形体の密度と強度の向上を図ることができる。
〔圧粉磁心〕
  <構造>
  本発明圧粉磁心は、上述した軟磁性粒子と、この軟磁性粒子間に介在される絶縁層とを備える。
  軟磁性粒子間に介在する絶縁層は、上述したように、軟磁性粒子の外周面に形成されたSiおよびOを含む無機質からなる無機絶縁層を有する。この粒子表面の無機絶縁層は、焼成後もほぼそのまま残存して、確実に軟磁性粉末同士の絶縁を確保する。また、成形体を作製する際に焼成用樹脂を用いた場合、軟磁性粒子の表面に形成される無機絶縁層(第1層)の外周に、さらに焼成用樹脂を熱処理することで得られる無機絶縁層(第2層)が形成される。ここで、焼成用樹脂がシリコーン樹脂であれば、焼成用樹脂を熱処理することで得られる第2層も、SiおよびOを含む無機質でできたものとなる。
  <製造方法>
  このような圧粉磁心は、上述した成形体に熱処理を施すことで得られる。この熱処理の加熱温度は、600℃~900℃とすることが好ましい。また、加熱時間は、30分~2時間程度が好適である。焼成前の成形体を構成する軟磁性粉末には多くの歪が導入されているが、前記条件で成形体を熱処理すれば、その歪を十分に除去することができる。その他、この熱処理の雰囲気は、窒素雰囲気などの不活性ガス雰囲気、または減圧雰囲気とすることが好ましい。
〔電磁部品〕
  本発明の電磁部品は、磁性コアとコイルとを備える。磁性コアは、上述した圧粉磁心からなる。磁性コアの形状は、環状、棒状など、E型、I型コアなどが挙げられる。一方、コイルは、導線表面に絶縁被覆を設けた巻線を巻回して構成される。巻線の断面形状は、丸や矩形など種々の形状が利用できる。例えば、丸線を螺旋状に巻回して円筒状のコイルとしたり、平角線を螺旋状にエッジワイズ巻きして角筒状のコイルとしたりすることが挙げられる。
  この電磁部品は、磁性コアの外周に巻線を巻回して構成しても良いし、予め螺旋状に形成した空芯コイルを磁性コアの外周にはめ込んで構成しても良い。
  この電磁部品の具体例としては、高周波チョークコイル、高周波同調用コイル、バーアンテナコイル、電源用チョークコイル、電源トランス、スイッチング電源用トランス、リアクトルなどが挙げられる。
  以下の条件で軟磁性粉末の作製、造粒粉の生成、成形体の成形、成形体の焼成を行って圧粉磁心の試験片を作製し、その試験片について磁気特性を評価した。
  <試料の作製>
  まず、組成が異なる複数種の軟磁性粉末を用意した。軟磁性粉末は軟磁性粒子の集合体である。各軟磁性粉末の組成は、後段の表1,2に示すように、Fe-a質量%Si-b質量%Al(a=7.0~9.5;b=4.0~10.0)である。また、用意した各軟磁性粉末を構成する軟磁性粒子の平均粒径は、ほぼ共通しており、およそ60μmであった。
  次に、各軟磁性粉末をシリコーン樹脂とミキサーで混合して、粒子表面にシリコーン樹脂被膜を形成した。軟磁性粉末とシリコーン樹脂との配合量は、両者の混合物に対してシリコーン樹脂が0.3質量%となるようにする。
  続いて、シリコーン樹脂被膜を形成した軟磁性粉末に大気雰囲気で180℃×1時間の熱処理を施して、樹脂を硬化させた。この時点では、シリコーン樹脂はガラス化していない。その後、得られたシリコーン樹脂被膜付きの軟磁性粉末をふるいにかけて粒子同士の接合をほぐした。
  次に、得られたシリコーン樹脂被膜付きの軟磁性粉末に大気雰囲気で600℃×1時間の熱処理を施し、シリコーン樹脂被膜をガラス化し、SiおよびOを含む無機質からなる無機絶縁層とした。無機絶縁層の厚みは約120nmである。無機絶縁層付きの軟磁性粉末が得られたら、解砕を行って粒子同士の接合を分離する。
  以上の工程により、軟磁性粒子の表面にSiおよびOを含む無機絶縁被膜を形成した複合磁性粒子の集合体である軟磁性粉末を作製した。
  得られた軟磁性粉末に成形用樹脂と焼成用樹脂を混合して、造粒粉を作製した。造粒粉中の軟磁性粉末と成形用樹脂と焼成用樹脂との混合比は、質量比で100:1:0.5である。成形用樹脂にはアクリル樹脂を、焼成用樹脂にはシリコーン樹脂を用いた。このシリコーン樹脂は、無機絶縁層の形成に使用したシリコーン樹脂とは別のものであり、ポリシロキサンを主成分とする高分子のシリコーンワニスである。
  次に、各試料の造粒粉を金型に供給し、圧縮することで成形体とする。この加圧成形時の面圧は10ton/cmである。この面圧であれば、成形時に軟磁性粒子は実質的に変形しない。
  そして、得られた成形体に、窒素雰囲気下で800℃×1時間の熱処理を施し、圧粉磁心とする。このとき、無機絶縁被膜は分解されずにそのまま粒子表面に存在し、成形用樹脂は実質的に消失し、焼成用樹脂はSi、C、およびOを含む非晶質体となっていると考えられる。完成させた圧粉磁心からなる試験片は、リング状で外径34mm、内径20mm、厚み5mmであった。
  <評価>
  上述のようにして作製した各試料について、次に示す手順で磁気特性を測定した。
  まず、リング状の試験片に巻線を施し、試験片の磁気特性を測定するための測定部材を作製した。この測定部材について、岩通計測株式会社製B-H/μ  アナライザ  SY
8258を用いて、励起磁束密度Bm:1kG(=0.1T)、測定周波数:100kHz、環境温度:120℃における鉄損W1/100k@120℃を測定した。その結果を表1、2に示す。各試料の評価として、鉄損W1/100k@120℃が350以下のものを▲、350超400以下のものを■、400超のものを◇として、表中の右端欄に示す。
  なお、鉄損は、ヒステリシス損と渦電流損からなるが、本実施例では各試料間に軟磁性粒子の組成以外の差異はないので、鉄損の大小をヒステリシス損の大小と見做すことができる。因みに、鉄損の周波数曲線を下記の3つの式で最小二乗法によりフィッティングし、ヒステリシス損および渦電流損を算出することもできる。
  (鉄損)=(ヒステリシス損)+(渦電流損)
  (ヒステリシス損)=(ヒステリシス損係数)×(周波数)
  (渦電流損)=(渦電流損係数)×(周波数)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
  まず、表1,2の試料1~58の結果を、横軸をAl含有量、縦軸を鉄損W1/100k@120℃とした図1のグラフにプロットした。このグラフから、Al含有量がおよそ6.0~9.0付近で鉄損W1/100k@120℃が減少する傾向にあることがわかった。しかし、Si含有量によっては鉄損W1/100k@120℃が700を超える場合もあった。そこで、横軸をAl含有量、縦軸をSi含有量とした図2のグラフに測定結果をプロット(プロットのマークは、表1,2と共通)した。この図2の結果から、試料1~58(O,Mn,Niの含有量は全て0.01質量%)のSi含有量をa質量%、Alの含有量をb質量%としたとき、27≦2.5a+b≦29で、かつ6≦b≦9を満たす実線の平行四辺形の範囲内にある試料の鉄損W1/100k@120℃は、400以下であることがわかった。また、試料1~58のうち、上記a,bが、978/35≦18/7a+b≦1023/35で、かつ6.6≦b≦8.4を満たす破線の平行四辺形の範囲内にある試料の鉄損W1/100k@120℃は、350以下であることがわかった。
  次に、表1の試料17と表2の試料59~68を比較することで、O,Mn,Niの含有量が小さくなるほど、鉄損W1/100k@120℃が低くなることが分かった。なお、試料62、65、68の鉄損W1/100k@120℃は400を超えるものの、他の評価◇の試料の鉄損W1/100k@120℃に比べて有意に小さかった。
  まず、組成がFe-8.0質量%Si-8.0質量%Alの軟磁性粉末(軟磁性粉末中のO,Mn,Niの含有量はすべて、0.01質量%)と、珪酸カリウムを主成分とする水溶液を用意する。軟磁性粉末の平均粒径は、およそ60μmであった。また、水溶液の珪酸カリウムの濃度は30質量%とした。この軟磁性粉末と水溶液をミキサーで混合し、軟磁性粒子の表面に珪酸カリウムを主成分とする無機絶縁層を形成した。軟磁性粉末と水溶液との配合量は、両者の混合物に対して水溶液の固形分が0.3質量%となるようにした。
  次に、得られた軟磁性粉末に成形用樹脂を混合し、造粒粉を作製した。造粒粉中の軟磁性粉末と成形用樹脂の混合比は、質量比で100:1である。成形用樹脂にはアクリル樹脂を用いた。続いて、造粒粉を金型に供給し、圧縮することで成形体とした。この加圧成形時の面圧は10ton/cmとした。そして、得られた成形体に、窒素雰囲気下で775℃×1時間の熱処理を施し、圧粉磁心とした。完成させた圧粉磁心からなる試験片は、リング状で外径34mm、内径20mm、厚み5mmであった。
  作製した試験片に巻線を施し、試験片の磁気特性を測定するための測定部材(試料69)を作製した。この試料69について、実施例1と同様の方法で、鉄損W1/100k@120℃を測定した。その結果、表3に示すように、試料69の鉄損W1/100k@120℃は350以下となっており、試料69のエネルギー損失が低いことがわかった。
Figure JPOXMLDOC01-appb-T000003
  以上の結果から、本発明に規定するSi含有量とAl含有量であるセンダスト合金であれば、120℃という高温環境下でのエネルギー損失が少ない圧粉磁心を作製できることが明らかになった。
  なお、本発明の実施例は、上述した実施例に限定されるわけではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
  本発明の軟磁性粉末、造粒粉、及び圧粉磁心の製造方法は、各種インダクタに用いられる圧粉磁心を得るのに好適に利用可能である。また、本発明の電磁部品は、高周波チョークコイル、高周波同調用コイル、バーアンテナコイル、電源用チョークコイル、電源トランス、スイッチング電源用トランス、リアクトルなどに好適に利用できる。

Claims (12)

  1.   Fe、Si、およびAlを含む軟磁性粒子の表面に絶縁被膜を形成した複合磁性粒子の集合体である軟磁性粉末であって、
      前記軟磁性粒子におけるSi含有量をa質量%、Alの含有量をb質量%としたとき、    27≦2.5a+b≦29
        6≦b≦9
      を満たすことを特徴とする軟磁性粉末。
  2.   前記aおよびbは、
        978/35≦18/7a+b≦1023/35
        6.6≦b≦8.4
      を満たすことを特徴とする請求項1に記載の軟磁性粉末。
  3.   前記軟磁性粒子におけるOの含有量が0.2質量%未満であり、かつMnの含有量が0.3質量%以下であり、かつNiの含有量が0.3質量%以下であることを特徴とする請求項1または2に記載の軟磁性粉末。
  4.   前記絶縁被膜は、SiおよびOを含む無機質からなる無機絶縁層を含むことを特徴とする請求項1~3のいずれか一項に記載の軟磁性粉末。
  5.   加圧により成形体とされ、その成形体の焼成により圧粉磁心とされる造粒粉であって、  請求項1~4のいずれか一項に記載の軟磁性粉末と、
      成形時に保形材となって成形体を保形する成形用樹脂と、を備え、
      これら軟磁性粉末及び成形用樹脂が粒状に一体化されてなることを特徴とする造粒粉。
  6.   前記成形用樹脂はアクリル樹脂を含むことを特徴とする請求項5に記載の造粒粉。
  7.   複数の軟磁性粒子と、前記軟磁性粒子間に介在される絶縁層とを備える圧粉磁心であって、
      前記軟磁性粒子は、Fe、Si、およびAlを含み、
        Siの含有量をa質量%、Alの含有量をb質量%としたとき、
          27≦2.5a+b≦29
          6≦b≦9
        を満たすことを特徴とする圧粉磁心。
  8.   前記軟磁性粒子におけるOの含有量が0.2質量%未満であり、かつMnの含有量が0.3質量%以下であり、かつNiの含有量が0.3質量%以下であることを特徴とする請求項7に記載の圧粉磁心。
  9.   前記絶縁層は、前記軟磁性粒子の表面に形成されるSiおよびOを含む無機絶縁層を有することを特徴とする請求項7または8に記載の圧粉磁心。
  10.   請求項5または6に記載の造粒粉を加圧により成形し、その成形体を熱処理することで得られたことを特徴とする圧粉磁心。
  11.   軟磁性粉末を用いて成形体を形成し、その成形体を焼成して圧粉磁心とする圧粉磁心の製造方法であって、
      請求項1~4のいずれか一項に記載の軟磁性粉末を用意する工程と、
      この軟磁性粉末に、前記成形体を保形するための成形用樹脂を混合して造粒する工程と、
      この造粒粉を所定の形状に圧縮成形して成形体とする工程と、
      この成形体を焼成して圧粉磁心とする工程と、
      を含むことを特徴とする圧粉磁心の製造方法。
  12.   請求項7~10のいずれか一項に記載の圧粉磁心と、
      巻線を巻回して構成され、前記圧粉磁心の外側に配されるコイルと、
      を備えることを特徴とする電磁部品。
PCT/JP2011/061304 2010-05-28 2011-05-17 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法 WO2011148826A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180004383.4A CN102596453B (zh) 2010-05-28 2011-05-17 软磁性粉末、造粒粉、压粉铁心、电磁元件和制备压粉铁心的方法
US13/505,003 US8797137B2 (en) 2010-05-28 2011-05-17 Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for producing dust core
EP11786525.3A EP2578338B1 (en) 2010-05-28 2011-05-17 Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for producing dust core
KR1020127009707A KR101353827B1 (ko) 2010-05-28 2011-05-17 연자성 분말, 조립분, 압분자심, 전자 부품 및 압분자심의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-123327 2010-05-28
JP2010123327 2010-05-28
JP2011094804A JP5374537B2 (ja) 2010-05-28 2011-04-21 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法
JP2011-094804 2011-04-21

Publications (1)

Publication Number Publication Date
WO2011148826A1 true WO2011148826A1 (ja) 2011-12-01

Family

ID=45003817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061304 WO2011148826A1 (ja) 2010-05-28 2011-05-17 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法

Country Status (6)

Country Link
US (1) US8797137B2 (ja)
EP (1) EP2578338B1 (ja)
JP (1) JP5374537B2 (ja)
KR (1) KR101353827B1 (ja)
CN (1) CN102596453B (ja)
WO (1) WO2011148826A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129263A1 (ja) * 2015-02-09 2016-08-18 Jfeスチール株式会社 軟磁性粉末用原料粉末および圧粉磁芯用軟磁性粉末
JP2021091924A (ja) * 2019-12-06 2021-06-17 株式会社タムラ製作所 圧粉成形体及び圧粉磁心の製造方法、圧粉成形体

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892421B2 (ja) * 2012-02-16 2016-03-23 日立金属株式会社 金属粉末、その製造方法、及び圧粉磁心
JP6087708B2 (ja) * 2013-04-17 2017-03-01 株式会社神戸製鋼所 巻線素子の製造方法
US10109406B2 (en) * 2013-04-19 2018-10-23 Jfe Steel Corporation Iron powder for dust core and insulation-coated iron powder for dust core
JP2015103719A (ja) * 2013-11-26 2015-06-04 住友電気工業株式会社 圧粉磁心、コイル部品、及び圧粉磁心の製造方法
JP6625334B2 (ja) * 2015-03-24 2019-12-25 Ntn株式会社 磁心用粉末の製造方法
JP6560091B2 (ja) * 2015-10-06 2019-08-14 Ntn株式会社 圧粉磁心材料、圧粉磁心、およびその製造方法
JP6864498B2 (ja) * 2017-02-28 2021-04-28 山陽特殊製鋼株式会社 高透磁率および高耐候性を有する軟磁性扁平粉末およびこれを含有する軟磁性樹脂組成物
JP7428013B2 (ja) 2019-03-28 2024-02-06 新東工業株式会社 軟磁性合金粉末、電子部品及びその製造方法
JP7314678B2 (ja) 2019-07-23 2023-07-26 新東工業株式会社 軟磁性合金粉末及びそれを用いた電子部品
JP7268520B2 (ja) * 2019-07-25 2023-05-08 セイコーエプソン株式会社 磁性粉末、磁性粉末の製造方法、圧粉磁心およびコイル部品
KR102237022B1 (ko) * 2020-08-07 2021-04-08 주식회사 포스코 연자성 철계 분말 및 그 제조방법, 연자성 부품
US20240127998A1 (en) * 2021-03-05 2024-04-18 Panasonic Intellectual Property Management Co., Ltd. Magnetic material, powder magnetic core, inductor, and method of manufacturing powder magnetic core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142308A (ja) * 2003-11-05 2005-06-02 Daido Steel Co Ltd 圧粉磁心

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738949B1 (fr) * 1995-09-19 1997-10-24 Thomson Csf Materiau magnetique composite a permeabilite et pertes reduites
SG78328A1 (en) * 1997-12-25 2001-02-20 Matsushita Electric Ind Co Ltd Magnetic composite article and manufacturing method of the same and soft magnetic powder of fe-al-si system alloy used in the composite article
JP4684461B2 (ja) * 2000-04-28 2011-05-18 パナソニック株式会社 磁性素子の製造方法
JP2004319652A (ja) 2003-04-15 2004-11-11 Tamura Seisakusho Co Ltd 磁心の製造方法およびその磁心
JP2005032918A (ja) * 2003-07-10 2005-02-03 Matsushita Electric Ind Co Ltd 磁性素子
JP2006270055A (ja) * 2005-02-28 2006-10-05 Matsushita Electric Ind Co Ltd 共振型トランスおよびそれを用いた電源ユニット
JP2007012745A (ja) 2005-06-29 2007-01-18 Sumitomo Electric Ind Ltd 圧粉磁心およびその製造方法
JP4707054B2 (ja) * 2005-08-03 2011-06-22 住友電気工業株式会社 軟磁性材料、軟磁性材料の製造方法、圧粉磁心および圧粉磁心の製造方法
JP4706411B2 (ja) * 2005-09-21 2011-06-22 住友電気工業株式会社 軟磁性材料、圧粉磁心、軟磁性材料の製造方法、および圧粉磁心の製造方法
JP5263653B2 (ja) * 2007-04-04 2013-08-14 日立金属株式会社 圧粉磁心およびその製造方法
JP4925990B2 (ja) * 2007-09-28 2012-05-09 株式会社神戸製鋼所 高周波焼入れ性と冷間鍛造性に優れた軟磁性鋼材および高強度軟磁性鋼部品
CN102473501A (zh) * 2009-08-04 2012-05-23 松下电器产业株式会社 复合磁性体及其制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142308A (ja) * 2003-11-05 2005-06-02 Daido Steel Co Ltd 圧粉磁心

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129263A1 (ja) * 2015-02-09 2016-08-18 Jfeスチール株式会社 軟磁性粉末用原料粉末および圧粉磁芯用軟磁性粉末
JPWO2016129263A1 (ja) * 2015-02-09 2017-04-27 Jfeスチール株式会社 軟磁性粉末用原料粉末および圧粉磁芯用軟磁性粉末
JP2021091924A (ja) * 2019-12-06 2021-06-17 株式会社タムラ製作所 圧粉成形体及び圧粉磁心の製造方法、圧粉成形体
JP7049752B2 (ja) 2019-12-06 2022-04-07 株式会社タムラ製作所 圧粉成形体及び圧粉磁心の製造方法

Also Published As

Publication number Publication date
KR20120068914A (ko) 2012-06-27
EP2578338A1 (en) 2013-04-10
CN102596453B (zh) 2014-11-26
US20120229245A1 (en) 2012-09-13
EP2578338B1 (en) 2019-06-26
CN102596453A (zh) 2012-07-18
EP2578338A4 (en) 2017-04-19
KR101353827B1 (ko) 2014-02-07
US8797137B2 (en) 2014-08-05
JP2012009825A (ja) 2012-01-12
JP5374537B2 (ja) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5374537B2 (ja) 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法
JP5022999B2 (ja) 圧粉磁心及びその製造方法
JP5966236B2 (ja) 圧粉磁心及びその製造方法
JP6358491B2 (ja) 圧粉磁心、それを用いたコイル部品および圧粉磁心の製造方法
JP3580253B2 (ja) 複合磁性体
JP2007019134A (ja) 複合磁性材料の製造方法
JP2010245216A (ja) 磁性粉末材、造粒粉、成形体、磁心用焼成体、電磁部品及び磁心用焼成体の製造方法
JPWO2009128425A1 (ja) 複合磁性材料およびその製造方法
WO2018179812A1 (ja) 圧粉磁心
JP2014216495A (ja) 軟磁性体組成物、磁芯、コイル型電子部品および成形体の製造方法
JP2012077363A (ja) 冶金用粉末の製造方法および圧粉磁心の製造方法
JP2013098384A (ja) 圧粉磁心
JP2001196216A (ja) 圧粉磁芯
JP7128439B2 (ja) 圧粉磁芯およびインダクタ素子
JPWO2010038441A1 (ja) 複合磁性材料及びその製造方法
JP2012186255A (ja) 圧粉磁心とその製造方法
KR102068972B1 (ko) 연자성 금속 분말, 및, 연자성 금속 압분 코어
JP6460505B2 (ja) 圧粉磁心の製造方法
JP2005116820A (ja) 圧粉磁心
JP2015028985A (ja) 軟磁性体組成物およびその製造方法、磁芯、並びに、コイル型電子部品
JP4487025B2 (ja) 圧粉磁心
JP2019153614A (ja) 圧粉磁心とその製造方法および磁心用粉末
JP4723609B2 (ja) 圧粉磁心、圧粉磁心の製造方法、チョークコイル及びその製造方法
JPH06236808A (ja) 複合磁性材料およびその製造方法
JP2007269503A (ja) Ni−Cu−Zn系フェライト材料及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004383.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127009707

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13505003

Country of ref document: US

Ref document number: 2011786525

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE