WO2011148736A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2011148736A1
WO2011148736A1 PCT/JP2011/059630 JP2011059630W WO2011148736A1 WO 2011148736 A1 WO2011148736 A1 WO 2011148736A1 JP 2011059630 W JP2011059630 W JP 2011059630W WO 2011148736 A1 WO2011148736 A1 WO 2011148736A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
electric compressor
rotation speed
speed
upper limit
Prior art date
Application number
PCT/JP2011/059630
Other languages
English (en)
French (fr)
Inventor
英樹 橋ヶ谷
勇 伊東
裕樹 ▲蓬▼原
和定 近藤
Original Assignee
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ株式会社 filed Critical スズキ株式会社
Priority to CN201180025138.1A priority Critical patent/CN102917894B/zh
Priority to US13/699,606 priority patent/US20130139532A1/en
Priority to DE112011101770.7T priority patent/DE112011101770B4/de
Publication of WO2011148736A1 publication Critical patent/WO2011148736A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • B60H1/00428Driving arrangements for parts of a vehicle air-conditioning electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00828Ventilators, e.g. speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H2001/006Noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor

Definitions

  • the present invention relates to a vehicle air conditioner, and more particularly to a vehicle air conditioner that controls an electric compressor of an air conditioner mounted on a vehicle such as an electric vehicle or a hybrid vehicle.
  • environmentally friendly vehicles such as electric vehicles (EV) and hybrid vehicles (HEV) have attracted attention.
  • EV electric vehicles
  • HEV hybrid vehicles
  • These environmentally friendly vehicles are equipped with a motor for driving the vehicle and an air conditioner including an electric compressor.
  • Vehicles such as electric vehicles and hybrid vehicles can be driven in the absence of generated noise by driving a motor or the like. There was sometimes discomfort.
  • the air conditioner for an electric vehicle according to Patent Document 1 controls the number of rotations of an electric compressor to perform an air conditioning operation according to a set output of air conditioning control, thereby suppressing noise generation.
  • the method for controlling an air conditioner for an electric vehicle according to Patent Document 2 controls the maximum value of the operating frequency of the electric compressor so as to gradually increase as the vehicle speed increases.
  • rotational speed upper limit value the rotational speed limit of the electric compressor
  • an object of the present invention is to provide a vehicle air conditioner that can reduce the noise of the electric compressor and reduce the power consumption of the electric compressor.
  • the present invention relates to a vehicle air conditioner equipped with a motor for driving a vehicle, the vehicle speed detecting means for detecting the speed of the vehicle, the electric compressor used for cooling the vehicle interior of the vehicle, and the electric compressor.
  • Compressor rotation speed control means for controlling the rotation speed, a blower fan for supplying air cooled by the electric compressor into the vehicle compartment, a fan blow volume setting means for setting the blow volume by the blow fan, and the vehicle speed detection Control means for setting an upper limit value of the rotational speed of the electric compressor controlled by the compressor rotational speed control means when the vehicle speed detected by the means is equal to or lower than a predetermined speed, and the control means includes the vehicle speed detection means.
  • the electric compressor is based on the detected vehicle speed and the air flow rate set by the fan air flow rate setting means. And sets the speed limit.
  • the vehicle air conditioner according to the present invention reduces the noise of the electric compressor and reduces the noise of the electric compressor when the noise due to the running state of the vehicle is small and the amount of air blown into the vehicle compartment is small, thereby reducing the noise of the electric compressor. Power consumption can be reduced.
  • FIG. 1 is a system configuration diagram of a vehicle air conditioner.
  • Example 1 FIG. 2 is a two-dimensional matrix map for setting the rotation speed upper limit value of the electric compressor.
  • Example 1 FIG. 3 is a two-dimensional matrix map for setting the rotation speed upper limit value of the electric compressor.
  • FIG. 4 is a map for calculating the upper limit (provisional) of the rotational speed of the electric compressor according to the vehicle speed.
  • FIG. 5 is a map for calculating the constant of the rotational speed of the electric compressor according to the amount of air blown into the passenger compartment. (Example 2) FIG.
  • FIG. 6 is a flowchart for calculating the rotation speed upper limit value of the electric compressor by adding a constant of the rotation speed of the electric compressor according to the amount of air blown into the vehicle interior to the rotation speed upper limit value (provisional) of the electric compressor according to the vehicle speed.
  • FIG. 7 is a two-dimensional matrix map for setting the rotation speed upper limit value of the electric compressor.
  • FIG. 8 is a map of the rotational speed upper limit value (provisional) of the electric compressor according to the vehicle speed.
  • FIG. 9 is a map of the coefficient of the rotational speed of the electric compressor according to the amount of air blown into the passenger compartment. (Example 3) FIG.
  • FIG. 10 is a flowchart for calculating the rotation speed upper limit value of the electric compressor by multiplying the rotation speed upper limit value (provisional) of the electric compressor by the vehicle speed by the coefficient of the rotation speed of the electric compressor by the amount of air blown into the vehicle interior. (Example 3)
  • the object of the present invention is to reduce the noise of the electric compressor and reduce the power consumption of the electric compressor.
  • the noise due to the running state of the vehicle is small and the amount of air blown into the passenger compartment is small, the rotational speed of the electric compressor is This is achieved by lowering the upper limit.
  • reference numeral 1 denotes an air conditioner (air conditioner: HVAC unit) mounted on a vehicle equipped with a motor such as an electric vehicle (EV) or a hybrid vehicle (HEV).
  • the air conditioner 1 includes a passage forming body 3 that forms an air circulation passage 2.
  • the passage forming body 3 is provided with a base portion 6A of the inside / outside air switching damper 6, a base portion 9A of the outlet switching damper 9, and a base portion 11A of the open / close damper 11.
  • the inside / outside air switching damper 6 swings inward at one end on the upstream side, and switches between the outside air introduction port 4A to which the outside air introduction duct 4 is connected and the inside air introduction port 5A to which the inside air introduction duct 5 is connected.
  • the outlet switching damper 9 swings inward at the other end on the downstream side, and switches between the defroster outlet 7 ⁇ / b> A connected to the defroster duct 7 and the vent outlet 8 ⁇ / b> A connected to the vent duct 8.
  • the opening / closing damper 11 swings inward at the other end, and opens and closes the foot outlet 10 ⁇ / b> A connected to the foot duct 10.
  • a blower fan 12 is provided immediately downstream of the inside / outside air switching damper 6, an evaporator 13 is provided downstream of the blower fan 12, and a heater core 14 is provided downstream of the evaporator 13, A rotation shaft 16 of an air mix damper 15 that swings in the air circulation passage 2 so as to adjust the air flow rate to the heater core 14 is provided.
  • the blower fan 12 includes a fan motor 17 that drives the blower fan 12, and supplies air cooled by an electric compressor 22 described later into the vehicle interior.
  • One end of a first refrigerant high-pressure pipe 19 provided with an expansion valve 18 is connected to the evaporator 13.
  • the other end of the first refrigerant high-pressure pipe 19 is connected to the capacitor 20.
  • One end of a second refrigerant high-pressure pipe 21 is connected to the capacitor 20.
  • the other end of the second refrigerant high-pressure pipe 21 is connected to an electric compressor 22 that is driven by electricity and used for cooling the passenger compartment.
  • One end of a refrigerant low-pressure pipe 23 is connected to the electric compressor 22.
  • the other end of the refrigerant low-pressure pipe 23 is connected to the evaporator 13.
  • the air conditioner 1 includes a fan motor driving unit 24 that drives the fan motor 17 and a compressor driving unit 25 that drives the electric compressor 22.
  • the fan motor driving means 24 and the compressor driving means 25 are in communication with the control means 26.
  • the control means 26 includes an air conditioner control means (ECU) 27 communicated with the fan motor drive means 24 and the compressor drive means 25, and a vehicle control means (ECU) 28 communicated with the air conditioner control means 27.
  • the air conditioner control means 27 includes an evaporator temperature detection means 29 that detects the temperature of the evaporator 13, a refrigerant pressure detection means 30 that is provided in the first refrigerant high-pressure pipe 19 and detects the pressure of the refrigerant, and an air conditioning operation panel 31.
  • the air conditioning operation panel 31 is used when the air conditioner 1 is manually operated by a user, and switches such as a blower fan stage number setting switch 34 and a blower temperature setting switch 35 that determine the rotation level of the fan motor 17 are provided.
  • the air conditioning request of the user is determined by the fan stage number setting value of the blower fan stage number setting switch 34.
  • the determination of the air conditioning request by the user is not based on the fan stage number setting value of the blower fan stage number setting switch 34 but based on the rotation speed of the fan motor 17 detected by the fan motor rotation number detection means 33 or the fan stage number setting value.
  • the air conditioner 1 can automatically adjust the air conditioning as an automatic air conditioner.
  • the vehicle control means 28 includes an outside air temperature detecting means 36 for detecting the outside air temperature, a vehicle speed detecting means 37 for detecting the vehicle speed (vehicle speed), and an engine speed when the vehicle is a hybrid vehicle (HEV). Is in communication with an engine speed detecting means 38 for detecting.
  • the air conditioner control means 27 includes compressor speed control means 27A for controlling the speed of the electric compressor 22, and is controlled by the compressor speed control means 27A when the vehicle speed detected by the vehicle speed detection means 37 is below a predetermined speed.
  • the rotation speed upper limit value (limit rotation speed) of the electric compressor 22 is set.
  • the air conditioner control means 27 includes a fan air flow rate setting means 27B for setting the air flow rate by the blower fan 12, and the vehicle speed detected by the vehicle speed detection means 37 and the air flow rate set by the fan air flow rate setting means 27B. Based on the above, the rotation speed upper limit value of the electric compressor 22 is set. For example, as shown in FIG.
  • a two-dimensional matrix is used with two parameters, a vehicle speed (for example, a five-stage vehicle speed) and a user's air-conditioning request (for example, a six-stage air-conditioning operation panel 31 fan stage setting value).
  • the rotation speed upper limit value (for example, 30 types) of the electric compressor 22 is determined. That is, as the vehicle speed increases (noise increases), and the fan stage number setting value increases, the rotation speed upper limit value of the electric compressor 22 is increased.
  • HEV hybrid vehicle
  • the upper limit value of the rotational speed of the electric compressor 22 can be set low, and the noise of the electric compressor 22 and the power consumption of the electric compressor 22 can be reduced.
  • the noise caused by the running state of the vehicle is small (during stopping or driving at low speed) and the air volume into the passenger compartment is large (when the fan stage setting value is high in the air conditioning operation panel 31 and the air conditioning requirement is high) Since the upper limit of the rotational speed of the electric compressor 22 is increased, it is possible to enhance the cooling effect.
  • the noise of the electric compressor 22 is offset by the noise of the blower fan 12, so It is possible to prevent the passenger from feeling uncomfortable. Further, when the noise due to the running state of the vehicle is large (during high-speed running of the vehicle), the upper limit value of the rotational speed of the electric compressor 22 is raised or lowered according to the fan stage number setting value on the air conditioning operation panel 31. And since the noise of the electric compressor 22 is offset by the noise due to traveling, it is possible to prevent the passenger from feeling uncomfortable due to the noise of the electric compressor 22. Further, it is possible to control the electric compressor 22 that achieves both cooling effect and reduced power consumption. Furthermore, since each component of the air conditioner 1 is provided in a normal vehicle, the configuration can be simplified and the cost can be reduced without adding a new component.
  • the air conditioner control means 27 is not based on the vehicle speed detected by the vehicle speed detection means 37, but on the basis of the noise level detected by the noise detection means 32 and the air flow rate set by the fan air flow rate setting means 27B.
  • the rotation speed upper limit value of the compressor 22 can be set. As a result, noise irrelevant to the running state of the vehicle can be detected, so that control in accordance with the current situation becomes possible. For example, even when the vehicle is stopped, when the noise around the vehicle is large and the amount of air blown into the passenger compartment is large, the upper limit value of the rotational speed of the electric compressor 22 is increased in the same manner as during traveling. It becomes possible to raise.
  • the air conditioner control means 27 includes a fan motor rotation speed control means 27C for controlling the rotation speed of the fan motor 17 that drives the blower fan 12, and is not the air flow rate set by the fan air flow rate setting means 27B.
  • the upper limit of the rotational speed of the electric compressor 22 based on the vehicle speed detected by the vehicle speed detecting means 37 or the magnitude of noise detected by the noise detecting means 32 and the rotational speed of the fan motor 17 controlled by the fan motor rotational speed control means 27C. A value can be set.
  • the noise caused by the running state of the vehicle is small (while the vehicle is stopped or running at a low speed), and the amount of air blown into the passenger compartment is small (when the fan stage setting value is low in the air conditioning operation panel 31 and the air conditioning requirement is low) ),
  • the upper limit of the rotational speed of the electric compressor 22 can be set low. For this reason, noise reduction of the electric compressor 22 and power consumption reduction of the electric compressor 22 are possible.
  • the noise caused by the running state of the vehicle is small (during stopping or driving at low speed) and the air volume into the passenger compartment is large (when the fan stage setting value is high in the air conditioning operation panel 31 and the air conditioning requirement is high)
  • the noise of the electric compressor 22 is offset by the noise of the blower fan 12, it is possible to prevent the passenger from feeling uncomfortable due to the noise of the electric compressor 22.
  • the upper limit value of the rotational speed of the electric compressor 22 is raised or lowered according to the fan stage number setting value on the air conditioning operation panel 31.
  • the noise of the electric compressor 22 is offset by the noise due to traveling, it is possible to prevent the passenger from feeling uncomfortable due to the noise of the electric compressor 22. Further, it is possible to control the electric compressor 22 that achieves both cooling effect and reduced power consumption. Furthermore, since each component of the air conditioner 1 other than the noise detection means is provided in a normal vehicle, the configuration can be simplified and the cost can be reduced without adding a new component. In addition, noise that is irrelevant to the running state of the vehicle can be detected, so that control in accordance with the current situation is possible. For example, even when the vehicle is stopped, when the noise around the vehicle is large and the amount of air blown into the passenger compartment is large, the upper limit value of the rotational speed of the electric compressor 22 is increased in the same manner as during traveling. It becomes possible to raise.
  • the air conditioner control means 27 is not the air flow rate set by the fan air flow rate setting means 27B, but the vehicle speed detected by the vehicle speed detection means 37 or the noise level detected by the noise detection means 32 and the fan motor rotation. Based on the rotational speed of the fan motor 17 detected by the number detection means 33, the rotational speed upper limit value of the electric compressor 22 can be set.
  • the noise caused by the running state of the vehicle is small (while the vehicle is stopped or running at a low speed), and the amount of air blown into the passenger compartment is small (when the fan stage setting value is low in the air conditioning operation panel 31 and the air conditioning requirement is low) ),
  • the upper limit value of the rotational speed of the electric compressor 22 can be set low, and the noise of the electric compressor 22 and the power consumption of the electric compressor 22 can be reduced.
  • the noise caused by the running state of the vehicle is small (during stopping or driving at low speed) and the air volume into the passenger compartment is large (when the fan stage setting value is high in the air conditioning operation panel 31 and the air conditioning requirement is high)
  • the noise of the electric compressor 22 is offset by the noise of the blower fan 12, it is possible to prevent the passenger from feeling uncomfortable due to the noise of the electric compressor 22.
  • the upper limit value of the rotational speed of the electric compressor 22 is raised or lowered according to the fan stage number setting value on the air conditioning operation panel 31.
  • the noise of the electric compressor 22 is offset by the noise due to traveling, it is possible to prevent the passenger from feeling uncomfortable due to the noise of the electric compressor 22. Further, it is possible to control the electric compressor 22 that achieves both cooling effect and reduced power consumption. Furthermore, since each component of the air conditioner 1 other than the noise detection means is provided in a normal vehicle, the configuration can be simplified and the cost can be reduced without adding a new component. Further, since the noise detection means 32 can detect noise irrelevant to the traveling state of the vehicle, control according to the current situation is possible. For example, even when the vehicle is stopped, when the noise around the vehicle is large and the amount of air blown into the passenger compartment is large, the upper limit value of the rotational speed of the electric compressor 22 is increased in the same manner as during traveling. It becomes possible to raise.
  • the upper limit value of the rotational speed of the electric compressor 22 is not the two-dimensional matrix of the vehicle speed (for example, five levels of vehicle speed) and the user's air conditioning request, but the upper limit of the number of rotations of the electric compressor 22 determined by the vehicle speed (for example, five levels of vehicle speed). It is determined by the value (provisional) and a constant of the rotational speed of the electric compressor 22 obtained by uniform adaptation or the like according to the user's air conditioning request. Specifically, as shown in FIG.
  • the air conditioner control means 27 sets the rotation speed constant of the electric compressor 22 (A1 to A5) to the rotation speed upper limit value (provisional) (N1 to N5) of the electric compressor 22. And the addition result is set as the rotation speed upper limit value (N1, N1 + A1 to N1 + A5, N2, N2 + A1 to N2 + A5, N3, N3 + A1 to N3 + A5, N4, N4 + A1 to N4 + A5, N5, N5 + A1 to N5 + A5).
  • the rotation speed upper limit value (temporary) (N1 to N5) of the electric compressor 22 is calculated from the map shown in FIG.
  • the constants (A1 to A5) of the rotational speed of the electric compressor 22 obtained by uniform adaptation or the like according to the user's air conditioning request are calculated from the map shown in FIG.
  • the rotational speed upper limit value of the electric compressor 22 is calculated by adding the rotational speed upper limit value (temporary) of the electric compressor 22 based on the vehicle speed to the rotational speed constant of the electric compressor 22 based on the amount of air blown into the vehicle interior.
  • the vehicle speed detection means 37 detects the vehicle speed (step A02).
  • the air conditioner control means 27 calculates the rotation speed upper limit value (temporary) of the electric compressor 22 from the map of FIG. 4 (step A03), and determines whether or not the fan stage number setting value is the lowest (step A04).
  • step A04 the air conditioner control means 27 calculates a constant from the map of FIG. 5 (step A05), and adds the constant to the rotation speed upper limit value (provisional), and the electric compressor A rotation speed upper limit value of 22 is determined (step A06).
  • step A05 the air conditioner control means 27 determines the rotational speed upper limit value (provisional) as the rotational speed upper limit value of the electric compressor 22 (step A07).
  • the air conditioner control means 27 includes the rotation speed upper limit values (provisional) (N1 to N5) of the five electric compressors 22 and the rotation speed constants (A1) of the five electric compressors 22. It is sufficient to have a memory area capable of storing a total of 10 data items A to A5).
  • a memory area for storing all (for example, 30 data) of the electric compressor rotation speed upper limit value is necessary.
  • the rotation speed upper limit value of the electric compressor 22 is not a two-dimensional matrix of the vehicle speed (for example, five levels of vehicle speed) and the user's air conditioning request, but is a vehicle speed (for example, five levels of vehicle speed). It is determined by the determined rotational speed upper limit value (temporary) of the electric compressor 22 and a coefficient of the rotational speed of the electric compressor 22 obtained by uniform adaptation or the like according to the user's air conditioning request. Specifically, as shown in FIG.
  • the air conditioner control means 27 adds the rotation speed coefficient (B1 to B5) of the electric compressor 22 to the rotation speed upper limit value (provisional) (N1 to N5) of the electric compressor 22. Is multiplied by the rotation speed upper limit value of the electric compressor 22 (N1, N1 ⁇ B1 to N1 ⁇ B5, N2, N2 ⁇ B1 to N2 ⁇ B5, N3, N3 ⁇ B1 to N3 ⁇ B5, N4, N4 ⁇ B1 to N4 ⁇ B5, N5, N5 ⁇ B1 to N5 ⁇ B5).
  • the rotation speed upper limit (provisional) (N1 to N5) of the electric compressor 22 is calculated from the map shown in FIG.
  • coefficients (B1 to B5) obtained by uniform adaptation or the like according to the user's air conditioning request are calculated from the map shown in FIG.
  • the rotation speed upper limit value of the electric compressor 22 is calculated by multiplying the rotation speed upper limit value (temporary) of the electric compressor 22 by the vehicle speed by the coefficient of the rotation speed of the electric compressor 22 by the amount of air blown into the vehicle interior.
  • the vehicle speed detecting means 37 detects the vehicle speed (step B02).
  • the air conditioner control means 27 calculates the rotation speed upper limit value (temporary) of the electric compressor 22 from the map of FIG. 8 (step B03), and determines whether or not the fan stage number setting value is the lowest (step B04).
  • this step B04 is NO, the coefficient is calculated from the map of FIG.
  • step B05 the air conditioner control means 27 multiplies the rotation speed upper limit value (provisional) by the coefficient, and the electric compressor 22 Is determined (step B06).
  • step B04 the air conditioner control means 27 determines the rotation speed upper limit value (provisional) as the rotation speed upper limit value of the electric compressor 22 (step B07).
  • the same effect as that of the first embodiment is obtained.
  • the memory area required for the air conditioner control means 27 can be reduced.
  • the vehicle air conditioner according to the present invention can be applied to various vehicles.
  • Air conditioner Air conditioner 12 Blower fan 22 Electric compressor 26 Control means 27 Air-conditioner control means 27A Electric compressor rotation speed control means 27B Fan ventilation volume setting means 27C Fan motor rotation speed control means 28 Vehicle control means 31 Air-conditioning operation panel 32 Noise detection means 33 Fan motor rotation speed detection means 34 Blower fan stage number setting switch 35 Blower temperature setting switch 37 Vehicle speed detection means

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 制御手段(27)は、電動コンプレッサ(22)により冷却された空気を車室内に送給する送風ファン(12)に連絡し、この送風ファン(12)による送風量を設定するファン送風量設定手段(27B)を備えて、車速検出手段(37)により検出された車速とファン送風量設定手段(27B)により設定された送風量とに基づいて電動コンプレッサ(22)の回転数上限値を設定する。

Description

車両用空調装置
 この発明は、車両用空調装置に係り、特に電気自動車やハイブリッド車等の車両に搭載された空調装置の電動コンプレッサを制御する車両用空調装置に関する。
 近年、電気自動車(EV)やハイブリッド自動車(HEV)等といった、環境に配慮した車両が注目されている。これらの環境に配慮した車両には、該車両を駆動するモータが搭載されるとともに、電動コンプレッサを備える空調装置が搭載されている。
 電気自動車やハイブリッド自動車等の車両は、モータ等の駆動によって、発生する騒音が無い状態での走行が可能なことから、車速が低い領域や停車中に、電動コンプレッサの作動騒音が乗員に対して不快感を与えることがあった。
特開平7-223428号公報 特開平4-169322号公報
 特許文献1に係る電気自動車用空調装置は、電動コンプレッサの回転数を制御して空調制御の設定出力に応じた空調運転を行い、騒音の発生を抑制するものである。
 特許文献2に係る電気自動車用空気調和機の制御方法は、電動コンプレッサの運転周波数の最大値を車両速度が上昇するに従って徐々に増大するように制御するものである。
 ところで、従来、電動コンプレッサを制御する車両用空調装置においては、騒音の発生を低減するために、車速によって電動コンプレッサの回転数を一定回転数以下に制限する方法が考えられている。この場合、空調の効き具合に関係なく、電動コンプレッサの制限回転数(以下、「回転数上限値」という)が決まってしまう。このため、空調が十分に効いている状態等では回転数上限値を下げられるにもかかわらず、無駄に電動コンプレッサが作動し、消費電力が大きくなってしまうという不都合が生じることがある。逆に、空調が十分に効いていないにもかかわらず、車速により電動コンプレッサの回転数上限値が決まってしまうため、ユーザーの要求に対して冷房を強くすることができないという不都合が生じることがある。
 そこで、この発明の目的は、電動コンプレッサの騒音低減と電動コンプレッサの消費電力低減とを可能とする車両用空調装置を提供することにある。
 この発明は、車両を駆動するモータを搭載した車両の空調装置であって、前記車両の速度を検出する車速検出手段と、前記車両の車室内の冷房に用いられる電動コンプレッサと、前記電動コンプレッサの回転数を制御するコンプレッサ回転数制御手段と、前記電動コンプレッサにより冷却された空気を車室内に送給する送風ファンと、前記送風ファンによる送風量を設定するファン送風量設定手段と、前記車速検出手段により検出された車速が所定速度以下であるときには前記コンプレッサ回転数制御手段により制御される前記電動コンプレッサの回転数上限値を設定する制御手段とを備え、前記制御手段は、前記車速検出手段により検出された車速と、前記ファン送風量設定手段により設定された送風量とに基づいて前記電動コンプレッサの回転数上限値を設定することを特徴とする。
 一般に、車両は走行によって騒音を発生する。この騒音の音量は、車両の走行状態によって変化する。つまり、車両の走行状態による騒音は、車両速度が大きくなるにつれて大きくなる。または、車両の走行状態による騒音は、エンジン回転数が大きくなるにつれて大きくなる。この発明の車両用空調装置は、車両の走行状態による騒音が小さく、かつ、車室内への送風量が少ないときには、電動コンプレッサの回転数上限値を低くして、電動コンプレッサの騒音低減と電動コンプレッサの消費電力低減とを可能とする。
図1は車両用空調装置のシステム構成図である。(実施例1) 図2は電動コンプレッサの回転数上限値を設定する二次元マトリクスのマップである。(実施例1) 図3は電動コンプレッサの回転数上限値を設定する二次元マトリクスのマップである。(実施例2) 図4は車速による電動コンプレッサの回転数上限値(暫定)を算出するマップである。(実施例2) 図5は車室内への送風量による電動コンプレッサの回転数の定数を算出するマップである。(実施例2) 図6は車速による電動コンプレッサの回転数上限値(暫定)に、車室内への送風量による電動コンプレッサの回転数の定数を加算して、電動コンプレッサの回転数上限値を算出するフローチャートである。(実施例2) 図7は電動コンプレッサの回転数上限値を設定する二次元マトリクスのマップである。(実施例3) 図8は車速による電動コンプレッサの回転数上限値(暫定)のマップである。(実施例3) 図9は車室内への送風量による電動コンプレッサの回転数の係数のマップである。(実施例3) 図10は車速による電動コンプレッサの回転数上限値(暫定)に、車室内への送風量による電動コンプレッサの回転数の係数を乗算して、電動コンプレッサの回転数上限値を算出するフローチャートである。(実施例3)
 この発明は、電動コンプレッサの騒音低減と電動コンプレッサの消費電力低減とを可能にする目的を、車両の走行状態による騒音が小さく、且つ、車室内への送風量が少ないときには、電動コンプレッサの回転数上限値を低くすることによって達成している。
 図1、図2は、この発明の実施例1を示すものである。
 図1において、1は電気自動車(EV)やハイブリッド車(HEV)等のモータを備えた車両に搭載される空調装置(エアコン:HVACユニット)である。この空調装置1は、空気流通通路2を形成する通路形成体3を備えている。
 この通路形成体3には、内外気切替ダンパ6の基部6Aと、吹出口切替ダンパ9の基部9Aと、開閉ダンパ11の基部11Aとが設けられている。内外気切替ダンパ6は、上流側となる一端で内部側に揺動し、外気導入ダクト4が接続する外気導入口4Aと内気導入ダクト5が接続する内気導入口5Aとを切り替える。吹出口切替ダンパ9は、下流側となる他端で内部側に揺動し、デフロスタダクト7に接続するデフロスタ吹出口7Aとベントダクト8に接続するベント吹出口8Aとを切り替える。開閉ダンパ11は、他端で内部側に揺動し、フットダクト10に接続するフット吹出口10Aを開閉する。
 また、通路形成体3内には、内外気切替ダンパ6の直下流側で送風ファン12と、この送風ファン12よりも下流側でエバポレータ13と、このエバポレータ13よりも下流側でヒータコア14と、このヒータコア14への空気流量を調整するように空気流通通路2内で揺動するエアミックスダンパ15の回動軸16とが備えられている。
 送風ファン12は、この送風ファン12を駆動するファンモータ17を備えて、後述する電動コンプレッサ22により冷却された空気を車室内に送給するものである。
 エバポレータ13には、膨張弁18を備えた第1の冷媒高圧配管19の一端が接続している。この第1の冷媒高圧配管19の他端は、コンデンサ20に接続している。
 このコンデンサ20には、第2の冷媒高圧配管21の一端が接続している。この第2の冷媒高圧配管21の他端は、電気により駆動して車室内の冷房に用いられる電動コンプレッサ22に接続している。
 この電動コンプレッサ22には、冷媒低圧配管23の一端が接続している。この冷媒低圧配管23の他端は、エバポレータ13に接続している。
 また、空調装置1においては、ファンモータ17を駆動するファンモータ駆動手段24と、電動コンプレッサ22を駆動するコンプレッサ駆動手段25とが備えられている。
 このファンモータ駆動手段24及びコンプレッサ駆動手段25は、制御手段26に連絡している。
 この制御手段26は、ファンモータ駆動手段24及びコンプレッサ駆動手段25に連絡したエアコン用制御手段(ECU)27と、このエアコン用制御手段27に連絡した車両用制御手段(ECU)28とからなる。
 エアコン用制御手段27には、エバポレータ13の温度を検出するエバポレータ温度検出手段29と、第1の冷媒高圧配管19に設けられて冷媒の圧力を検出する冷媒圧検出手段30と、空調操作パネル31と、騒音の大きさを直接検知する騒音検知手段32と、ファンモータ17の回転数を検出するファンモータ回転数検出手段33とが連絡している。
 空調操作パネル31は、空調装置1がユーザーによるマニュアル操作される場合に用いられるものであり、ファンモータ17の回転レベルを決定する送風ファン段数設定スイッ
チ34、送風温度設定スイッチ35等のスイッチ類が備えられ、送風ファン段数設定スイッチ34のファン段数設定値によりユーザーの空調要求を決定させる。
 なお、このユーザーの空調要求の決定は、送風ファン段数設定スイッチ34のファン段数設定値ではなく、ファンモータ回転数検出手段33により検出されたファンモータ17の回転数、あるいは、ファン段数設定値によって決定される実際のファンモータ17の回転レベルによって行うことも可能である。この場合、空調装置1は、オート空調装置として、空調を自動的に調節することが可能となる。
 また、車両用制御手段28には、外気温度を検出する外気温度検出手段36と、車両速度(車速)を検出する車速検出手段37と、車両がハイブリッド車両(HEV)の場合ではエンジンの回転数を検出するエンジン回転数検出手段38とが連絡している。
 エアコン用制御手段27は、電動コンプレッサ22の回転数を制御するコンプレッサ回転数制御手段27Aを備えて、車速検出手段37により検出された車速が所定速度以下であるときにはコンプレッサ回転数制御手段27Aにより制御される電動コンプレッサ22の回転数上限値(制限回転数)を設定する。
 また、エアコン用制御手段27は、送風ファン12による送風量を設定するファン送風量設定手段27Bを備えて、車速検出手段37により検出された車速とファン送風量設定手段27Bにより設定された送風量とに基づいて電動コンプレッサ22の回転数上限値を設定する。
 例えば、図2に示すように、車速(例えば、5段階の車速)とユーザーの空調要求(例えば、6段階の空調操作パネル31のファン段数設定値)の2つをパラメータとして、二次元マトリクスにより電動コンプレッサ22の回転数上限値(例えば、30通り)を決定する。つまり、車速が速くなるにつれ(騒音が大)、また、ファン段数設定値が高くなるにつれて、電動コンプレッサ22の回転数上限値を大きくする。
 なお、ハイブリッド車両(HEV)の場合は、エンジン回転数検出手段38で検知されたエンジン回転数の値によっても決定可能である。
 このようにすることで、車両の走行状態による騒音が小さく(停車中・低速走行中)、かつ、車室内への送風量が少ないとき(空調操作パネル31でファン段数設定値が低く、空調の要求が低いとき)には、電動コンプレッサ22の回転数上限値を低く設定することができ、電動コンプレッサ22の騒音低減と電動コンプレッサ22の消費電力低減とが可能となる。
 また、車両の走行状態による騒音が小さく(停車中・低速走行中)、かつ、車室内への送風量が多いとき(空調操作パネル31でファン段数設定値が高く、空調の要求が高いとき)には、電動コンプレッサ22の回転数上限値を高くするため、冷房の効きを高めることが可能となり、また、電動コンプレッサ22の騒音を送風ファン12の騒音により相殺するため、電動コンプレッサ22の騒音による不快感を乗員に与えないようにすることができる。
 更に、車両の走行状態による騒音が大きいとき(車両の高速走行中)には、空調操作パネル31でのファン段数設定値に従って電動コンプレッサ22の回転数上限値が高低する。そして、電動コンプレッサ22の騒音が走行による騒音により相殺されるから、電動コンプレッサ22の騒音による不快感を乗員に与えないようにすることができる。また、冷房の効きと消費電力の低減とを両立した電動コンプレッサ22の制御が可能となる。
 更にまた、空調装置1の各構成部品は通常の車両に備えられていることから、部品を新たに追加することなく、構成の簡素化を図るとともに、廉価にできる。
 また、エアコン用制御手段27は、車速検出手段37により検出された車速ではなく、騒音検知手段32により検知された騒音の大きさとファン送風量設定手段27Bにより設定された送風量とに基づいて電動コンプレッサ22の回転数上限値を設定することができる。
 これにより、車両の走行状態に無関係な騒音も検知することができるので、現状に即した制御が可能となる。例えば、停車中であっても車両周囲の騒音が大きく、かつ、車室内への送風量が多いときには、走行中と同じように電動コンプレッサ22の回転数上限値を高くするため、冷房の効きを高めることが可能となる。
 更に、エアコン用制御手段27は、送風ファン12を駆動するファンモータ17の回転数を制御するファンモータ回転数制御手段27Cを備えて、ファン送風量設定手段27Bにより設定された送風量ではなく、車速検出手段37により検出された車速あるいは騒音検知手段32により検知された騒音の大きさとファンモータ回転数制御手段27Cにより制御されるファンモータ17の回転数とに基づいて電動コンプレッサ22の回転数上限値を設定することができる。
 これにより、車両の走行状態による騒音が小さく(停車中・低速走行中)、かつ、車室内への送風量が少ないとき(空調操作パネル31でファン段数設定値が低く、空調の要求が低いとき)には、電動コンプレッサ22の回転数上限値を低く設定することができる。このため、電動コンプレッサ22の騒音低減と電動コンプレッサ22の消費電力低減とが可能となる。
 また、車両の走行状態による騒音が小さく(停車中・低速走行中)、かつ、車室内への送風量が多いとき(空調操作パネル31でファン段数設定値が高く、空調の要求が高いとき)には、電動コンプレッサ22の回転数上限値を高くするため、冷房の効きを高めることが可能となる。また、電動コンプレッサ22の騒音が送風ファン12の騒音により相殺されるため、電動コンプレッサ22の騒音による不快感を乗員に与えないようにすることができる。
 更に、車両の走行状態による騒音が大きいとき(車両の高速走行中)には、空調操作パネル31でのファン段数設定値に従って電動コンプレッサ22の回転数上限値が高低する。そして、電動コンプレッサ22の騒音が走行による騒音により相殺されるから、電動コンプレッサ22の騒音による不快感を乗員に与えないようにすることができる。また、冷房の効きと消費電力の低減とを両立した電動コンプレッサ22の制御が可能となる。
 更にまた、騒音検知手段以外の空調装置1の各構成部品は通常の車両に備えられていることから、部品を新たに追加することなく、構成の簡素化を図るとともに、廉価にできる。
 また、車両の走行状態に無関係な騒音も検知することができるので、現状に即した制御が可能となる。例えば、停車中であっても車両周囲の騒音が大きく、かつ、車室内への送風量が多いときには、走行中と同じように電動コンプレッサ22の回転数上限値を高くするため、冷房の効きを高めることが可能となる。
 更にまた、エアコン用制御手段27は、ファン送風量設定手段27Bにより設定された送風量ではなく、車速検出手段37により検出された車速あるいは騒音検知手段32により検知された騒音の大きさとファンモータ回転数検出手段33により検出されたファンモータ17の回転数とに基づいて電動コンプレッサ22の回転数上限値を設定することができる。
 これにより、車両の走行状態による騒音が小さく(停車中・低速走行中)、かつ、車室内への送風量が少ないとき(空調操作パネル31でファン段数設定値が低く、空調の要求が低いとき)には、電動コンプレッサ22の回転数上限値を低く設定することができ、電動コンプレッサ22の騒音低減と電動コンプレッサ22の消費電力低減とが可能となる。
 また、車両の走行状態による騒音が小さく(停車中・低速走行中)、かつ、車室内への送風量が多いとき(空調操作パネル31でファン段数設定値が高く、空調の要求が高いとき)には、電動コンプレッサ22の回転数上限値を高くするため、冷房の効きを高めることが可能となる。また、電動コンプレッサ22の騒音が送風ファン12の騒音により相殺されるため、電動コンプレッサ22の騒音による不快感を乗員に与えないようにすることができる。
 更に、車両の走行状態による騒音が大きいとき(車両の高速走行中)には、空調操作パネル31でのファン段数設定値に従って電動コンプレッサ22の回転数上限値が高低する。そして、電動コンプレッサ22の騒音が走行による騒音により相殺されることから、電動コンプレッサ22の騒音による不快感を乗員に与えないようにすることができる。また、冷房の効きと消費電力の低減とを両立した電動コンプレッサ22の制御が可能となる。
 更にまた、騒音検知手段以外の空調装置1の各構成部品は通常の車両に備えられていることから、部品を新たに追加することなく、構成の簡素化を図るとともに、廉価にできる。
 また、騒音検知手段32は、車両の走行状態に無関係な騒音も検知することができるので、現状に即した制御が可能となる。例えば、停車中であっても車両周囲の騒音が大きく、かつ、車室内への送風量が多いときには、走行中と同じように電動コンプレッサ22の回転数上限値を高くするため、冷房の効きを高めることが可能となる。
 図3~図6は、この発明の実施例2を示すものである。
 以下の実施例においては、上記の実施例1と同一機能を果たす箇所には、同一符号を付して説明する。
 この実施例2の特徴とするところは、以下の点にある。電動コンプレッサ22の回転数上限値は、車速(例えば、5段階の車速)とユーザーの空調要求の二次元マトリクスではなく、車速(例えば、5段階の車速)で決定した電動コンプレッサ22の回転数上限値(暫定)と、ユーザーの空調要求に応じて一律適合等により求められる電動コンプレッサ22の回転数の定数とにより決定される。具体的には、図3に示すように、エアコン用制御手段27は、電動コンプレッサ22の回転数上限値(暫定)(N1~N5)に、電動コンプレッサ22の回転数の定数(A1~A5)を加算し、その加算結果を電動コンプレッサ22の回転数上限値(N1、N1+A1~N1+A5、N2、N2+A1~N2+A5、N3、N3+A1~N3+A5、N4、N4+A1~N4+A5、N5、N5+A1~N5+A5)とする。
 この場合、電動コンプレッサ22の回転数上限値(暫定)(N1~N5)は、図4に示すマップから算出される。また、ユーザーの空調要求に応じて一律適合等により求められる電動コンプレッサ22の回転数の定数(A1~A5)は、図5に示すマップから算出される。
 ここで、N1≦N2≦N3≦N4≦N5、A1≦A2≦A3≦A4≦A5の関係がある。
 次に、車速による電動コンプレッサ22の回転数上限値(暫定)に、車室内への送風量による電動コンプレッサ22の回転数の定数を加算して、電動コンプレッサ22の回転数上限値を算出する場合を、図6のフローチャートに基づいて説明する。
 図6に示すように、プログラムがスタートすると(ステップA01)、車速検出手段37は、車速を検知する(ステップA02)。そして、エアコン用制御手段27は、図4のマップから電動コンプレッサ22の回転数上限値(暫定)を算出し(ステップA03)、ファン段数設定値が最低か否かを判断する(ステップA04)。
 このステップA04がNOの場合には、エアコン用制御手段27は、図5のマップから定数を算出し(ステップA05)、そして、回転数上限値(暫定)にその定数を加算して、電動コンプレッサ22の回転数上限値を決定する(ステップA06)。
 一方、前記ステップA04がYESの場合には、エアコン用制御手段27は、回転数上限値(暫定)を電動コンプレッサ22の回転数上限値と決定する(ステップA07)。
 前記ステップA06の処理後、又は、前記ステップA07の処理後は、プログラムをエンドとする(ステップA08)。
 これにより、この実施例2では、上記の実施例1と同様な作用効果を得ることができる。また、エアコン用制御手段27に必要となるメモリ領域を削減できる。すなわち、図3に示す例では、エアコン用制御手段27は、5個の電動コンプレッサ22の回転数上限値(暫定)(N1~N5)と、5個の電動コンプレッサ22の回転数の定数(A1~A5)の、合計10個のデータを記憶できるメモリ領域を有していればよい。これに対して、実施例1では、電動コンプレッサ回転数上限値のすべて(たとえば30個のデータ)を記憶するメモリ領域が必要である。
 図7~図10は、この発明の実施例3を示すものである。
 この実施例3の特徴とするところは、以下の点にある。即ち、図7に示すように、電動コンプレッサ22の回転数上限値は、車速(例えば、5段階の車速)とユーザーの空調要求の二次元マトリクスではなく、車速(例えば、5段階の車速)で決定した電動コンプレッサ22の回転数上限値(暫定)と、ユーザーの空調要求に応じて一律適合等により求められる電動コンプレッサ22の回転数の係数とにより決定される。具体的には、図7に示すように、エアコン用制御手段27は、電動コンプレッサ22の回転数上限値(暫定)(N1~N5)に、電動コンプレッサ22の回転数の係数(B1~B5)を乗算して、電動コンプレッサ22の回転数上限値(N1、N1×B1~N1×B5、N2、N2×B1~N2×B5、N3、N3×B1~N3×B5、N4、N4×B1~N4×B5、N5、N5×B1~N5×B5)を決定する。
 この場合、電動コンプレッサ22の回転数上限値(暫定)(N1~N5)は、図8に示すマップから算出される。また、ユーザーの空調要求に応じて一律適合等により求められる係数(B1~B5)は、図9に示すマップから算出される。
 ここで、N1≦N2≦N3≦N4≦N5、B1≦B2≦B3≦B4≦B5の関係がある。
 次に、車速による電動コンプレッサ22の回転数上限値(暫定)に、車室内への送風量による電動コンプレッサ22の回転数の係数を乗算して、電動コンプレッサ22の回転数上限値を算出する場合を、図10のフローチャートに基づいて説明する。
 図10に示すように、プログラムがスタートすると(ステップB01)、車速検出手段37は車速を検知する(ステップB02)。そして、エアコン用制御手段27は、図8のマップから電動コンプレッサ22の回転数上限値(暫定)を算出し(ステップB03)、ファン段数設定値が最低か否かを判断する(ステップB04)。
 このステップB04がNOの場合には、図9のマップから係数を算出し(ステップB05)、そして、エアコン用制御手段27は、回転数上限値(暫定)に係数を乗算して、電動コンプレッサ22の回転数上限値を決定する(ステップB06)。
 一方、前記ステップB04がYESの場合には、エアコン用制御手段27は、回転数上限値(暫定)を電動コンプレッサ22の回転数上限値と決定する(ステップB07)。
 前記ステップB06の処理後、又は、前記ステップB07の処理後は、プログラムをエンドとする(ステップB08)。
 これにより、この実施例3では、上記の実施例1と同様な作用効果を得る。そして、実施例2と同様に、エアコン用制御手段27に必要となるメモリ領域を削減できる。
 以上、本発明の実施形態および実施例について、図面を参照して詳細に説明したが、本発明は前記実施形態および実施例に何ら限定されるものではない。本発明は、その趣旨を逸脱しない範囲において種々の変更が可能である。
 この発明に係る車両用空調装置を、各種車両に適用可能である。
 1 空調装置
 12 送風ファン
 22 電動コンプレッサ
 26 制御手段
 27 エアコン用制御手段
 27A 電動コンプレッサ回転数制御手段
 27B ファン送風量設定手段
 27C ファンモータ回転数制御手段
 28 車両用制御手段
 31 空調操作パネル
 32 騒音検知手段
 33 ファンモータ回転数検出手段
 34 送風ファン段数設定スイッチ
 35 送風温度設定スイッチ
 37 車速検出手段

Claims (3)

  1.  車両を駆動するモータを搭載した車両用空調装置であって、
     前記車両の速度を検出する車速検出手段と、
     前記車両の車室内の冷房に用いられる電動コンプレッサと、
     前記電動コンプレッサの回転数を制御するコンプレッサ回転数制御手段と、
     前記電動コンプレッサにより冷却された空気を車室内に送給する送風ファンと、
     前記送風ファンによる送風量を設定するファン送風量設定手段と、
     前記車速検出手段により検出された車速が所定速度以下であるときには前記コンプレッサ回転数制御手段により制御される前記電動コンプレッサの回転数上限値を設定する制御手段と、
     を備え、
     前記制御手段は、前記車速検出手段により検出された車速と、前記ファン送風量設定手段により設定された送風量とに基づいて前記電動コンプレッサの回転数上限値を設定することを特徴とする車両用空調装置。
  2.  前記送風ファンを駆動するファンモータの回転数を制御するファンモータ回転数制御手段をさらに備え、
     前記制御手段は、前記車速検出手段により検出された車速と、前記ファンモータ回転数制御手段により制御される前記ファンモータの回転数とに基づいて前記電動コンプレッサの回転数上限値を設定することを特徴とする請求項1に記載の車両用空調装置。
  3.  前記送風ファンを駆動するファンモータの回転数を検出するファンモータ回転数検出手段をさらに備え、
     前記制御手段は、前記車速検出手段により検出された車速と、前記ファンモータ回転数検出手段により検出された前記ファンモータの回転数とに基づいて前記電動コンプレッサの回転数上限値を設定することを特徴とする請求項1に記載の車両用空調装置。
PCT/JP2011/059630 2010-05-24 2011-04-19 車両用空調装置 WO2011148736A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180025138.1A CN102917894B (zh) 2010-05-24 2011-04-19 车辆用空气调节器
US13/699,606 US20130139532A1 (en) 2010-05-24 2011-04-19 Air conditioner for vehicle
DE112011101770.7T DE112011101770B4 (de) 2010-05-24 2011-04-19 Klimaanlage für ein Fahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010118153A JP2011245894A (ja) 2010-05-24 2010-05-24 車両用空調装置
JP2010-118153 2010-05-24

Publications (1)

Publication Number Publication Date
WO2011148736A1 true WO2011148736A1 (ja) 2011-12-01

Family

ID=45003729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059630 WO2011148736A1 (ja) 2010-05-24 2011-04-19 車両用空調装置

Country Status (5)

Country Link
US (1) US20130139532A1 (ja)
JP (1) JP2011245894A (ja)
CN (1) CN102917894B (ja)
DE (1) DE112011101770B4 (ja)
WO (1) WO2011148736A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008541A (ja) * 2016-07-11 2018-01-18 株式会社デンソー 車両用空調装置
WO2018230266A1 (ja) * 2017-06-14 2018-12-20 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2019138735A1 (ja) * 2018-01-12 2019-07-18 株式会社デンソー 車両用空調装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246083A (ja) * 2010-05-31 2011-12-08 Suzuki Motor Corp 車両用空調装置
JP5482728B2 (ja) * 2011-05-20 2014-05-07 株式会社デンソー 冷凍サイクル装置
JP5668700B2 (ja) * 2012-01-25 2015-02-12 株式会社デンソー 車両空調システム
JP5668704B2 (ja) * 2012-01-31 2015-02-12 株式会社デンソー 車両空調システム
CN104121664B (zh) * 2014-08-04 2018-01-16 奇瑞新能源汽车技术有限公司 一种电动汽车手动空调控制系统
US10493823B2 (en) * 2016-06-01 2019-12-03 Ford Global Technologies, Llc Variable displacement vehicle compressor with noise prevention control
JP6711258B2 (ja) * 2016-12-16 2020-06-17 株式会社デンソー 冷凍サイクル装置
US11413932B2 (en) * 2017-10-12 2022-08-16 Ford Global Technologies, Llc Blower motor operation
CN110254157B (zh) * 2018-03-12 2023-02-28 上海汽车集团股份有限公司 一种汽车用热泵空调系统的控制方法
US11820302B2 (en) * 2018-12-11 2023-11-21 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle noise reduction for vehicle occupants
CN112959871A (zh) * 2021-03-28 2021-06-15 大运汽车股份有限公司 电动汽车电动压缩机降低噪音的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717241A (ja) * 1993-06-30 1995-01-20 Nissan Motor Co Ltd エンジン補機の回転数制御装置
JPH07223428A (ja) * 1993-12-15 1995-08-22 Nippondenso Co Ltd 電気自動車用空調装置
JP2010100264A (ja) * 2008-10-27 2010-05-06 Denso Corp 車両用空調装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384462A (en) * 1980-11-20 1983-05-24 Friedrich Air Conditioning & Refrigeration Co. Multiple compressor refrigeration system and controller thereof
US4483152A (en) * 1983-07-18 1984-11-20 Butler Manufacturing Company Multiple chiller control method
DE3706152A1 (de) * 1987-02-26 1988-09-08 Sueddeutsche Kuehler Behr Verfahren zur steuerung einer kraftfahrzeugklimaanlage und kraftfahrzeugklimaanlage zur durchfuehrung des verfahrens
JPH0462605A (ja) * 1990-06-30 1992-02-27 Aisin Seiki Co Ltd 電気機器の付勢条件設定装置
JP2988713B2 (ja) 1990-11-02 1999-12-13 株式会社東芝 電気自動車用空気調和機の制御方法
DE4408442A1 (de) * 1994-03-12 1995-09-14 Telefunken Microelectron Schaltungsanordnung zum Regeln der Drehzahl eines elektrischen Motors
JP3360406B2 (ja) * 1994-04-11 2002-12-24 日産自動車株式会社 車両用ヒートポンプ式冷暖房装置
JP2000318435A (ja) * 1999-05-12 2000-11-21 Denso Corp 車両用空調装置
US20020108388A1 (en) * 2001-02-15 2002-08-15 Carrier Corporation Non-synchronous generator design for electrically powered trailer refrigeration unit
JP3783859B2 (ja) * 2002-07-19 2006-06-07 日立プラント建設株式会社 空調設備及びその制御方法
JP4048968B2 (ja) * 2003-02-12 2008-02-20 株式会社デンソー 車両用空調装置
JP4165330B2 (ja) * 2003-04-16 2008-10-15 株式会社デンソー 空調装置
KR100649600B1 (ko) * 2004-05-28 2006-11-24 엘지전자 주식회사 공기조화기의 멀티 압축기 제어 방법
KR100640818B1 (ko) * 2004-12-02 2006-11-02 엘지전자 주식회사 멀티 공기조화 시스템의 제어방법
JP4466595B2 (ja) * 2006-03-28 2010-05-26 トヨタ自動車株式会社 冷却システムおよびこれを搭載する自動車並びに冷却システムの制御方法
US7832221B2 (en) * 2006-10-20 2010-11-16 Ford Global Technologies, Llc Vehicle compressor control system and method
US8813511B2 (en) * 2009-03-31 2014-08-26 Johnson Controls Technology Company Control system for operating condenser fans

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717241A (ja) * 1993-06-30 1995-01-20 Nissan Motor Co Ltd エンジン補機の回転数制御装置
JPH07223428A (ja) * 1993-12-15 1995-08-22 Nippondenso Co Ltd 電気自動車用空調装置
JP2010100264A (ja) * 2008-10-27 2010-05-06 Denso Corp 車両用空調装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008541A (ja) * 2016-07-11 2018-01-18 株式会社デンソー 車両用空調装置
WO2018012232A1 (ja) * 2016-07-11 2018-01-18 株式会社デンソー 車両用空調装置
CN109476209A (zh) * 2016-07-11 2019-03-15 株式会社电装 车辆用空调装置
US10843530B2 (en) 2016-07-11 2020-11-24 Denso Corporation Vehicle air conditioning device
CN109476209B (zh) * 2016-07-11 2022-01-11 株式会社电装 车辆用空调装置
WO2018230266A1 (ja) * 2017-06-14 2018-12-20 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019001269A (ja) * 2017-06-14 2019-01-10 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN110740889A (zh) * 2017-06-14 2020-01-31 三电汽车空调系统株式会社 车用空调装置
WO2019138735A1 (ja) * 2018-01-12 2019-07-18 株式会社デンソー 車両用空調装置
JP2019123284A (ja) * 2018-01-12 2019-07-25 株式会社デンソー 車両用空調装置

Also Published As

Publication number Publication date
US20130139532A1 (en) 2013-06-06
CN102917894B (zh) 2015-10-07
DE112011101770B4 (de) 2018-01-11
JP2011245894A (ja) 2011-12-08
CN102917894A (zh) 2013-02-06
DE112011101770T5 (de) 2013-03-28

Similar Documents

Publication Publication Date Title
WO2011148736A1 (ja) 車両用空調装置
JP5590336B2 (ja) 空調制御装置
WO2011152139A1 (ja) 車両用空調装置
KR101430336B1 (ko) 차량 공기 조화 시스템
JP5368136B2 (ja) 車両用電池冷却システム
JP5702748B2 (ja) 電動車両高電圧機器冷却システムおよび電動車両高電圧機器の冷却方法
JP5743109B2 (ja) 冷媒循環装置
JP2014159204A (ja) 車両用空調装置
JP4669640B2 (ja) 車両用空調装置
JP5516544B2 (ja) 車両用空調装置
JP5640810B2 (ja) 車両用空調制御装置
JP5957232B2 (ja) 車両用空調装置
JP5640936B2 (ja) 車両用空調装置
JP5472024B2 (ja) 車両用空調装置
JP5359040B2 (ja) 車両用空調制御装置
JP2006151270A (ja) バッテリ冷却装置
JP2009299960A5 (ja)
JP4561303B2 (ja) 車両用バッテリ冷却装置
JP2016013729A (ja) 車両の空調制御装置
KR101600300B1 (ko) 전기자동차용 공조장치
JP6221678B2 (ja) 空調装置
JP5482754B2 (ja) 車両用空調装置
JP2007245989A (ja) 車両用空調装置
KR20150141818A (ko) 차량의 공조 제어방법 및 그 장치
JP2010076667A (ja) 車両用電気機器および車両用空調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025138.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9646/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 112011101770

Country of ref document: DE

Ref document number: 1120111017707

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13699606

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11786436

Country of ref document: EP

Kind code of ref document: A1