WO2011148715A1 - 正常眼圧緑内障疾患感受性遺伝子及びその利用 - Google Patents

正常眼圧緑内障疾患感受性遺伝子及びその利用 Download PDF

Info

Publication number
WO2011148715A1
WO2011148715A1 PCT/JP2011/058164 JP2011058164W WO2011148715A1 WO 2011148715 A1 WO2011148715 A1 WO 2011148715A1 JP 2011058164 W JP2011058164 W JP 2011058164W WO 2011148715 A1 WO2011148715 A1 WO 2011148715A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
polymorphic site
single nucleotide
present
normal
Prior art date
Application number
PCT/JP2011/058164
Other languages
English (en)
French (fr)
Inventor
水木信久
Original Assignee
株式会社メニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メニコン filed Critical 株式会社メニコン
Priority to KR1020127023847A priority Critical patent/KR20130041767A/ko
Priority to CN2011800110307A priority patent/CN102770562A/zh
Priority to JP2012517189A priority patent/JPWO2011148715A1/ja
Publication of WO2011148715A1 publication Critical patent/WO2011148715A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/16Ophthalmology
    • G01N2800/168Glaucoma

Definitions

  • the present invention relates to a normal pressure glaucoma disease susceptibility gene and use thereof.
  • Glaucoma is a progressive refractory disease that causes damage to the optic nerve due to an increase in intraocular pressure above normal intraocular pressure that can maintain normal visual function. If left unattended, this is a disease that can cause visual field stenosis, which can cause blindness. Although it is currently the leading cause of blindness in Japan, the cause is unknown, accurate diagnosis, and effective treatment. And there is no prevention.
  • NMG normal-tension glaucoma
  • NVG normal-tension glaucoma
  • the frequency is about 4% over 40 years of age.
  • NTG has a normal range of intraocular pressure, it is difficult to detect by intraocular pressure test, and it is often overlooked by medical examination and normal ophthalmic examination. Because optic nerve damage does not recover, early detection and early treatment are the most important and important in NTG. However, the progression is slow, and the central visual field is damaged late, so that subjective symptoms are poor, and the optic nerve damage progresses without the person's knowledge.
  • Non-patent Documents 1-15 Myocilin
  • optineurin Non-patent Documents 16-30
  • optic atrophy 1 Non-patent Documents 31-41
  • An object of the present invention is to find a normal-tension glaucoma disease susceptibility gene effective for diagnosis of normal-tension glaucoma and to provide a method for using the gene.
  • the gist of the present invention is as follows. (1) The nucleotide of the polymorphic site of the single nucleotide polymorphism international number rs3213787 (the 501st base in the nucleotide sequence of SEQ ID NO: 1 present in the region containing SRBD1 of human chromosome 2), the single nucleotide polymorphism international number rs735860 (The 501st base in the nucleotide sequence of SEQ ID NO: 2 present in the region containing ELOVL5 of human chromosome 6), the base of the polymorphic site of the single nucleotide polymorphism international number rs4412249 (human 6th The base of the polymorphic site of the single nucleotide polymorphism international number rs2763979 (present in HSPA1B of human chromosome 6) in the nucleotide sequence of SEQ ID NO: 3 present in the region containing GMDS of the chromosome P-value
  • the p-value (indicator of significant difference between normal-tension glaucoma patients and healthy subjects) within the gene region where the polymorphic sites of the single nucleotide polymorphism international numbers rs3213787, rs735860, rs4412249 and rs2763979 are present is less than 0.05
  • the method according to (1), wherein the other polymorphism is a polymorphism in linkage disequilibrium with the polymorphism of the single nucleotide polymorphism international number rs3213787, rs735860, rs4412249 or rs2763979.
  • a reagent for examining normal-tension glaucoma comprising at least one component selected from the group consisting of the following components (a) and (b): (a) the nucleotide of the polymorphic site of the single nucleotide polymorphism international number rs3213787 (the 501st base in the nucleotide sequence of SEQ ID NO: 1 present in the region containing SRBD1 of human chromosome 2), the single nucleotide polymorphism international number rs735860 (The 501st base in the nucleotide sequence of SEQ ID NO: 2 present in the region containing ELOVL5 of human chromosome 6), the base of the polymorphic site of the single nucleotide polymorphism international number rs4412249 (human 6th The base of the polymorphic site of single nucleotide polymorphism international number rs2763979 (present in HSPA1B of human chromosome 6) P-value
  • normal-tension glaucoma can be more accurately diagnosed. Patients who have already developed a definitive diagnosis, and can be actively treated. In addition, it is possible to predict the onset of unaffected individuals, and it is recommended to conduct tests frequently, which can lead to early detection.
  • This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2010-120758, which is the basis of the priority of the present application.
  • the present invention relates to the base of the polymorphic site of the single nucleotide polymorphism international number rs3213787 (the 501st base in the nucleotide sequence of SEQ ID NO: 1 present in the region containing SRBD1 of human chromosome 2), the single nucleotide polymorphism international number The base of the polymorphic site of rs735860 (the 501st base in the nucleotide sequence of SEQ ID NO: 2 present in the region containing ELOVL5 of human chromosome 6), the base of the polymorphic site of the single nucleotide polymorphism international number rs4412249 (human first The base of the polymorphic site of single nucleotide polymorphism international number rs2763979 (present in the region containing HSPA1B of human chromosome 6), nucleotide number 501 in the nucleotide sequence of SEQ ID NO: 3 present in the region containing GMDS of
  • polymorphism may be a polymorphism in linkage disequilibrium with the polymorphism of the single nucleotide polymorphism international number rs3213787, rs735860, rs4412249 or rs2763979.
  • the polymorphism in linkage disequilibrium with the polymorphism of the single nucleotide polymorphism international number rs3213787, rs735860, rs4412249 or rs2763979 is a polymorphism in the LD block of the single nucleotide polymorphism international number rs3213787, rs735860, rs4412249 or rs2763979 Good.
  • a single nucleotide polymorphism is indicated by an rs number that is a reference SNP ID number in dbSNP, which is an NCBI SNP database.
  • the base positions are based on NCBI's genome database, build36.
  • normal tension glaucoma examination is an examination for determining whether or not a subject has a high or low possibility of having normal tension glaucoma. Tests to make a definitive diagnosis are included.
  • rs3213787 is a polymorphism of adenine (A) / guanine (G) at the 45500328th base on human chromosome 2. If the base at this site is A, it may have normal tension glaucoma Determined to have high or normal pressure glaucoma.
  • rs735860 is a polymorphism of thymine (T) / cytosine (C) in the base at position 5331077 on human chromosome 6. If the base at this site is C, there is a possibility of suffering from normal-tension glaucoma. Determined to have high or normal pressure glaucoma.
  • rs4412249 is a polymorphism of guanine (G) / adenine (A) at the 1947050th base on human chromosome 6. If the base at this site is A, there is a possibility of suffering from normal tension glaucoma. Determined to have high or normal pressure glaucoma.
  • rs2763979 is a polymorphism of cytosine (C) / thymine (T) at position 31902571 on human chromosome 6. If the base at this site is C, there is a possibility of suffering from normal-tension glaucoma. Determined to have high or normal pressure glaucoma.
  • the SNP to be identified may be one kind or a combination of two or more, but preferably includes either rs3213787 or rs735860, or both rs3213787 and rs735860.
  • rs4412249 and / or rs2763979 are included. May be included.
  • the sense strand of the gene may be analyzed, or the antisense strand may be analyzed.
  • the base to be identified is not limited to the above SNP, and may be a base at a polymorphic site in linkage disequilibrium with the above SNP.
  • p-values (significant differences between normal-tension glaucoma patients and healthy individuals) within the gene region where the polymorphic sites of single nucleotide polymorphism international numbers rs3213787, rs735860, rs4412249 and rs2763979 exist are less than 0.05
  • Examples of the polymorphism include polymorphisms whose p-value (an index of a significant difference between normal-tension glaucoma patients and healthy subjects) is less than 0.05 in Tables A, B, C, and D described later.
  • Table A shows the polymorphic site and p-value within the gene region (SRBD1) where the single nucleotide polymorphism international number rs3213787 exists. (Table A)
  • Table B shows the site and p-value of the polymorphism in the gene region (ELOVL5) where the single nucleotide polymorphism international number rs735860 exists. (Table B)
  • Table C shows the polymorphic site and p-value in the gene region (GMDS) where the single nucleotide polymorphism international number rs4412249 exists.
  • Table D shows the site and p-value of the polymorphism in the gene region (HSPA1B) where the single nucleotide polymorphism international number rs2763979 is present. (Table D)
  • polymorphisms that are in linkage disequilibrium with the polymorphisms of the single nucleotide polymorphism international numbers rs3213787, rs735860, rs4412249 or rs2763979 are, for example, polymorphisms having a larger D ′ between these SNPs.
  • LD block is the method of Gabriel et al. Using Haploview software (Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21 (2): 263-265.) (Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science. 2002; 296 (5576): 2225-2229.).
  • the polymorphisms in the LD blocks of the single nucleotide polymorphism international numbers rs3213787, rs735860, rs4412249, and rs2763979 are the gray bands around the lead SNP shown in bold bold in Tables A, B, C, and D above. Although the following can be illustrated, it is not necessarily limited to these.
  • polymorphic site in the test method of the present invention refers to a gene ORF, a region that controls gene expression (for example, a promoter region, an enhancer region, etc.), a gene intron, or a linkage disequilibrium with these genes. It can exist in the area before and after that.
  • polymorphisms include single nucleotide polymorphisms, polymorphisms in which one to several tens of bases (sometimes several thousand bases) are substituted, deleted, inserted, transferred, or inverted. There is no particular limitation.
  • the identification of the base at the polymorphic site can be performed by a known single nucleotide polymorphism analysis method.
  • single nucleotide polymorphism analysis methods include, but are not limited to, sequence analysis, PCR, PCR-SSCP, hybridization, HRM method, RFLP method and the like.
  • genomic DNA may be extracted from the subject's biological sample.
  • biological samples include, for example, the subject's blood, skin, oral mucosa, tissues or cells collected or excised by surgery, body fluids collected for the purpose of examination (saliva, lymph, airway mucosa, semen, sweat, urine, etc.) ) Etc.
  • As the biological sample leukocytes or mononuclear cells separated from peripheral blood are preferable.
  • Genomic DNA can be extracted from a biological sample using a commercially available DNA extraction kit. Then, if necessary, DNA containing the polymorphic site is isolated. The DNA can be isolated by PCR or the like using genomic DNA or RNA as a template, using a primer capable of hybridizing to DNA containing a polymorphic site.
  • the present invention also provides a reagent for examining normal-tension glaucoma, comprising at least one component selected from the group consisting of the following components (a) and (b).
  • the primer and probe that are components of the reagent of the present invention may be an oligonucleotide having a chain length of at least 15 nucleotides.
  • the oligonucleotide When used as a primer, its length is usually 15 to 100 bp, preferably 17 to 30 bp.
  • the primer is not particularly limited as long as it can amplify at least a part of the DNA containing the polymorphic site.
  • the length of DNA that can be amplified by the primer is usually 15 to 1000 bp, preferably 20 to 500 bp, more preferably 20 to 200 bp.
  • the length is usually 7 bp to 500 bp, preferably 8 bp to 500 bp.
  • the probe is not particularly limited as long as it can hybridize with the DNA containing the polymorphic site.
  • the length of DNA to which the probe can hybridize is usually 16 to 500 bp, preferably 20 to 200 bp, more preferably 20 to 50 bp.
  • a primer capable of amplifying a region containing a polymorphic site is preferably one that can initiate complementary strand synthesis toward the polymorphic site using a DNA containing the polymorphic site as a template.
  • an arbitrary base sequence can be added to the primer.
  • a primer for a polymorphism analysis method using a type IIs restriction enzyme a primer to which a recognition sequence for a type IIs restriction enzyme is added is used.
  • the primer may be modified.
  • a primer labeled with a fluorescent substance or a binding affinity substance such as biotin or digoxin may be used.
  • the probe that can hybridize to the region containing the polymorphic site may be any probe that can hybridize to the polynucleotide having the base sequence of the region containing the polymorphic site.
  • Those that specifically hybridize to DNA having the base sequence of the region to be included are preferred.
  • “specifically hybridizes” means normal hybridization conditions, preferably stringent hybridization conditions (for example, Sambrook et al., Molecular® Cloning, Cold® Spring® Harbor® Laboratory® Press, New® York, USA, In the condition described in the second edition 1989), it means that cross-hybridization does not occur significantly with DNA other than DNA having the base sequence of the region containing the polymorphic site.
  • a probe containing a polymorphic site in the base sequence of the probe is preferable.
  • the probe may be designed so that the end of the probe corresponds to a base adjacent to the polymorphic site. Therefore, although the polymorphic site is not included in the base sequence of the probe itself, a probe including a base sequence complementary to the region adjacent to the polymorphic site can also be shown as a desirable probe in the present invention.
  • the probe is allowed to modify the base sequence, add the base sequence, or modify the base sequence in the same manner as the primer.
  • a probe used for the Invader method is added with a base sequence unrelated to the genome constituting the flap.
  • Such a probe is also included in the probe of the present invention as long as it hybridizes to a region containing a polymorphic site.
  • the base sequence constituting the probe of the present invention can be designed according to the analysis method based on the base sequence of the DNA region surrounding the polymorphic site of the present invention in the genome.
  • primers and probes can be designed according to the analysis method based on the base sequence information about the surrounding DNA region including the polymorphic site.
  • the base sequences constituting the primers and probes can be modified as appropriate as well as the base sequences that are completely complementary to the genomic base sequences.
  • Primers and probes can be synthesized by any method based on the base sequences constituting them.
  • a technique for synthesizing an oligonucleotide having the base sequence based on the given base sequence is known.
  • any modification can be introduced into the oligonucleotide using a nucleotide derivative modified with a fluorescent dye or biotin.
  • a method of binding a fluorescent dye or the like to a synthesized oligonucleotide is also known.
  • the probe may be fixed on a solid phase (DNA array).
  • sample DNA or RNA
  • RNA is hybridized to a large number of probes arranged on the same plane, and the hybridization to each probe is detected by scanning the plane. Since responses to many probes can be observed simultaneously, for example, a DNA array is useful for analyzing a large number of polymorphic sites simultaneously.
  • nucleotide immobilization (array) methods include arrays based on oligonucleotides developed by Affymetrix. In an array of oligonucleotides, the oligonucleotides are usually synthesized in situ. For example, in-situ synthesis methods of oligonucleotides by lithography method (Affymetrix), inkjet method (Agilent), bead array method (Illumina), etc. are known.
  • Oligonucleotide is composed of a base sequence complementary to a region containing a polymorphic site to be detected.
  • the length of the nucleotide probe to be bound to the substrate is usually 10 to 100 bp, preferably 10 to 50 bp, more preferably 15 to 25 bp when the oligonucleotide is immobilized.
  • a sample for SNP detection by the DNA array method can be prepared by a method well known to those skilled in the art based on a biological sample collected from a subject.
  • the biological sample is not particularly limited.
  • a DNA sample can be prepared from genomic DNA extracted from tissues or cells of peripheral blood leukocytes, skin, oral mucosa, etc., tears, saliva, urine, feces or hair of the subject.
  • a specific region of genomic DNA is amplified using a primer for amplifying a region containing a polymorphic site to be determined.
  • a plurality of regions can be simultaneously amplified by the multiplex PCR method.
  • the multiplex PCR method is a PCR method using a plurality of primer sets in the same reaction solution. When analyzing multiple polymorphic sites, the multiplex PCR method is useful.
  • a DNA sample is amplified by the PCR method and the amplified product is labeled.
  • a labeled primer is used for labeling the amplification product.
  • genomic DNA is first amplified by PCR using a primer set specific to the region containing the polymorphic site.
  • biotin-labeled DNA is synthesized by a labeling PCR method using a biotin-labeled primer.
  • the biotin-labeled DNA synthesized in this way is hybridized to the oligonucleotide probe on the chip.
  • the hybridization reaction solution and reaction conditions can be appropriately adjusted according to conditions such as the length of the nucleotide probe immobilized on the solid phase and the reaction temperature.
  • One skilled in the art can design appropriate hybridization conditions.
  • avidin labeled with a fluorescent dye is added.
  • the array is analyzed with a scanner, and the presence or absence of hybridization is confirmed using fluorescence as an index.
  • An example of a procedure for carrying out the test method of the present invention using the DNA array method is as follows. After preparing a solid phase on which a DNA and nucleotide probe containing a polymorphic site prepared from a subject are immobilized, The solid phase is contacted. Subsequently, the base species of the polymorphic site is determined by detecting DNA hybridized to the nucleotide probe immobilized on the solid phase.
  • solid phase means a material capable of immobilizing nucleotides.
  • the solid phase is not particularly limited as long as nucleotides can be immobilized, and specific examples include a solid phase containing microplate wells, plastic beads, magnetic particles, a substrate, and the like.
  • a substrate generally used in DNA array technology can be preferably used.
  • the “substrate” means a plate-like material capable of fixing nucleotides.
  • the nucleotide includes oligonucleotides and polynucleotides.
  • an allele-specific oligonucleotide (Aligonucleotide / ASO) hybridization method can be used to detect a base at a specific site.
  • An allele-specific oligonucleotide (ASO) is composed of a base sequence that hybridizes to a region where a polymorphic site to be detected exists.
  • ASO is hybridized to sample DNA, the hybridization efficiency decreases if a mismatch occurs at the polymorphic site due to the polymorphism.
  • Mismatches can be detected by Southern blotting or a method that uses the property of quenching by intercalating a special fluorescent reagent into the hybrid gap. Mismatches can also be detected by the ribonuclease A mismatch cleavage method.
  • the reagents and kits of the present invention can contain various enzymes, enzyme substrates, buffers, and the like depending on the base identification method.
  • the enzyme include enzymes necessary for the various analysis methods exemplified as the base identification method, such as DNA polymerase, DNA ligase, or IIs restriction enzyme.
  • the buffer solution a buffer solution suitable for maintaining the activity of the enzyme used for these analyzes is appropriately selected.
  • the enzyme substrate for example, a substrate for complementary strand synthesis is used.
  • a control in which the base at the polymorphic site is clear can be attached to the reagent and kit of the present invention.
  • genomic DNA or a fragment of genomic DNA in which the base type of the polymorphic site is known in advance can be used.
  • Genomic DNA extracted from cells may be attached as a control, or a cell or a fraction of cells may be attached as a control, and a user may extract genomic DNA therefrom. If a cell is used as a control, the result of the control can prove that the genomic DNA extraction operation was performed correctly.
  • DNA comprising a base sequence containing a polymorphic site can be used as a control.
  • a YAC vector or a BAC vector containing a genome-derived DNA whose base type at the polymorphic site has been clarified may be used as a control.
  • a vector in which only tens to hundreds of bp corresponding to the polymorphic site are excised and inserted can be used as a control.
  • Example 1 NTG patients and healthy subjects collected blood leukocytes from NTG patients who met strict criteria such as age, intraocular pressure, refractive error, etc. with the permission of the Yokohama City University School of Medicine and Ethics Committee.
  • Genotyping was performed using GeneChip Human Mapping 500K Array Set (Affymetrix) according to a standard protocol recommended by Affymetrix.
  • GWAS GeneChip Human Mapping 500K Array Set
  • Helixtree SVS 7 Golden Herix. Inc. Bozeman, Montana, USA
  • Haploview v4.1 was also used to estimate the LD structure at the target position. The results are shown in the table below. rs3213787, rs735860, rs4412249, and rs2763979 showed significant correlation with NTG in both GWAS and Replication, and were proved to be effective SNPs for the diagnosis of NTG.
  • the present invention can be used for life science, medicine, ophthalmology and diagnosis.
  • ⁇ SEQ ID NO: 1> SEQ ID NO: 1 shows a 1000-base long base sequence containing the polymorphic site of rs3213787 at the 501st (r A / G).
  • SEQ ID NO: 2> SEQ ID NO: 2 shows a 1000-base long base sequence containing the polymorphic site of rs735860 at the 501st (y C / T).
  • SEQ ID NO: 4> SEQ ID NO: 4 shows a 1000-base long base sequence containing the polymorphic site of rs2763979 at the 501st (y C / T).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)

Abstract

 正常眼圧緑内障疾患感受性遺伝子及びその利用方法を提供する。 多数の正常眼圧緑内障患者と正常人を対象に全ゲノム上の一塩基多型を網羅的に解析・比較して相違を見出した多型部位の中から、一塩基多型国際番号rs3213787、rs735860、rs4412249及びrs2763979の多型部位が診断に有効であることを見出した。

Description

正常眼圧緑内障疾患感受性遺伝子及びその利用
 本発明は、正常眼圧緑内障疾患感受性遺伝子及びその利用に関する。
 緑内障は正常視機能を維持できる健常眼圧以上の眼圧上昇のために、視神経に障害を来す進行性の難治性疾患である。放置すると視野狭窄が進行し、失明することのある疾患で、現在本邦の失明原因の第一位を占めているのにも関わらず、その原因は不明であり正確な診断法、有効な治療法および予防法は存在しない。日本人ではそのなかでも眼圧が正常範囲にあるにも関わらず緑内障を発症する正常眼圧緑内障(NTG)が最も多く、その頻度は40歳以上の約4%である。NTGは眼圧が正常範囲にあるため、眼圧検査では発見することが困難であり、健康診断や通常の眼科検査では見落とされがちである。視神経の障害は回復しないため、NTGにおいては早期発見・早期治療が最も重要であり大切である。しかしながら、その進行は遅く、かつ中心視野は後期に障害を受けるため自覚症状に乏しく、本人も気づかないうちに視神経障害が進行する。
 正常眼圧緑内障疾患感受性遺伝子の探索はおこなわれているが、未だに疾患と連鎖する遺伝子は発見されていない。いくつかの候補遺伝子解析が進められてきた。緑内障との関連が強く疑われているmyocilin(非特許文献1-15)そしてoptineurin(非特許文献16-30)、optic atrophy 1(非特許文献31-41) 遺伝子の解析がそれぞれ精力的におこなわれてきたがNTGとの関連は明らかではない。また、候補と考えられる遺伝子の解析も進められているが、関連の示唆までにしかいたっていない。
 中村らは、正常眼圧緑内障の疾患感受性遺伝子の同定を目的とし、SNP(一塩基多型)解析を行い、p<0.000001の関連を有する遺伝子が17個見つかったことを報告している(非特許文献42)。しかし、生物学上の有意差はp<0.05でありp値は関連の有無を判定する指標である。特にSNPを用いて診断を行う際に値の高低が感度、精度だけを示すものではない。例えばGWASで有意差が見られたSNPを単独あるいは組み合わせて同定することで、リスクの高低を示唆できる場合に加えてより多くの患者の確定診断が可能になる場合、また、その疾患に含まれる多様な型を分類できる場合がある。診断により有効なSNPとは患者群と健常者群からなる一集団単位ではなく異なる集団でさらに同様な解析を行った際にも有意な差を認めるSNPである。
 本発明は、正常眼圧緑内障の診断に有効な正常眼圧緑内障疾患感受性遺伝子を見出し、その利用方法を提供することを目的とする。
 本発明者は、正常眼圧緑内障患者集団と正常人集団を対象に全ゲノム上のSNPを網羅的に解析・比較した結果、複数のSNPに相違があり、そのうちの53個のSNPがクラスター解析の結果が良好であることを見出した。さらに、その53個のSNPの中から、正常眼圧緑内障の診断に特に有効な4個のSNPを見出した。
本発明はこれらの知見に基づいて完成された。
 本発明の要旨は以下の通りである。
(1)一塩基多型国際番号rs3213787の多型部位の塩基(ヒト第2染色体のSRBD1を含む領域中に存在する配列番号1のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs735860の多型部位の塩基(ヒト第6染色体のELOVL5を含む領域中に存在する配列番号2のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs4412249の多型部位の塩基(ヒト第6染色体のGMDSを含む領域中に存在する配列番号3のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs2763979の多型部位の塩基(ヒト第6染色体のHSPA1Bを含む領域中に存在する配列番号4のヌクレオチド配列における501番目の塩基)、及びそれらの多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型部位の塩基からなる群より選択される少なくとも1個の多型部位の塩基を同定することを含む、正常眼圧緑内障の検査方法。
(2)一塩基多型国際番号rs3213787、rs735860、rs4412249及びrs2763979の多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型が、一塩基多型国際番号rs3213787、rs735860、rs4412249又はrs2763979の多型と連鎖不平衡にある多型である(1)記載の方法。
(3)一塩基多型国際番号rs3213787、rs735860、rs4412249又はrs2763979の多型と連鎖不平衡にある多型が、一塩基多型国際番号rs3213787、rs735860、rs4412249又はrs2763979と同一のLDブロック内にある多型である(2)記載の方法。
(4)
下記の(a)及び(b)の成分からなる群より選択される少なくとも1つの成分を含む、正常眼圧緑内障の検査をするための試薬。
(a) 一塩基多型国際番号rs3213787の多型部位の塩基(ヒト第2染色体のSRBD1を含む領域中に存在する配列番号1のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs735860の多型部位の塩基(ヒト第6染色体のELOVL5を含む領域中に存在する配列番号2のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs4412249の多型部位の塩基(ヒト第6染色体のGMDSを含む領域中に存在する配列番号3のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs2763979の多型部位の塩基(ヒト第6染色体のHSPA1Bを含む領域中に存在する配列番号4のヌクレオチド配列における501番目の塩基)、及びそれらの多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型部位の塩基からなる群より選択される少なくとも1個の多型部位の塩基を含む領域を増幅することができるプライマー
(b) 一塩基多型国際番号rs3213787の多型部位の塩基(ヒト第2染色体のSRBD1を含む領域中に存在する配列番号1のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs735860の多型部位の塩基(ヒト第6染色体のELOVL5を含む領域中に存在する配列番号2のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs4412249の多型部位の塩基(ヒト第6染色体のGMDSを含む領域中に存在する配列番号3のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs2763979の多型部位の塩基(ヒト第6染色体のHSPA1Bを含む領域中に存在する配列番号4のヌクレオチド配列における501番目の塩基)、及びそれらの多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型部位の塩基からなる群より選択される少なくとも1個の多型部位の塩基を含む領域にハイブリダイズすることができるプローブ
(5)プローブが固相に固定されている(4)記載の試薬。
(6)(4)又は(5)記載の試薬を含む、正常眼圧緑内障の検査キット。
 本発明により、正常眼圧緑内障をより正確に診断することが可能となった。既に発症した患者では確定診断が可能となり、積極的な治療をおこなうことが可能となった。また、未発症者では発症の予測が可能となり、検査を頻回に行うことを勧め、早期発見につなげることができる。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2010‐120758の明細書および/または図面に記載される内容を包含する。
 以下、本発明の実施の形態についてより詳細に説明する。
 本発明は、一塩基多型国際番号rs3213787の多型部位の塩基(ヒト第2染色体のSRBD1を含む領域中に存在する配列番号1のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs735860の多型部位の塩基(ヒト第6染色体のELOVL5を含む領域中に存在する配列番号2のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs4412249の多型部位の塩基(ヒト第6染色体のGMDSを含む領域中に存在する配列番号3のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs2763979の多型部位の塩基(ヒト第6染色体のHSPA1Bを含む領域中に存在する配列番号4のヌクレオチド配列における501番目の塩基)、及びそれらの多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型部位の塩基からなる群より選択される少なくとも1個の多型部位の塩基を同定することを含む、正常眼圧緑内障の検査方法を提供する。
 一塩基多型国際番号rs3213787、rs735860、rs4412249及びrs2763979の多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型は、一塩基多型国際番号rs3213787、rs735860、rs4412249又はrs2763979の多型と連鎖不平衡にある多型であるとよい。
 一塩基多型国際番号rs3213787、rs735860、rs4412249又はrs2763979の多型と連鎖不平衡にある多型は、一塩基多型国際番号rs3213787、rs735860、rs4412249又はrs2763979のLDブロック内にある多型であるとよい。
 本明細書において、一塩基多型(SNP)は、NCBIのSNPデータベースであるdbSNPにおけるreference SNP ID番号であるrs番号で示す。また、塩基の位置はNCBIのゲノムデータベース、build36に基づく。
 本明細書において、「正常眼圧緑内障の検査」とは、被検者が正常眼圧緑内障に罹患する可能性が高いか低いかを判定するための検査、すでに被検者が正常眼圧緑内障に罹患している場合にはその確定診断を行うための検査が含まれる。
 rs3213787は、ヒト第2染色体上の45500328番目の塩基におけるアデニン(A)/グアニン(G)の多型であり、この部位の塩基がAである場合は、正常眼圧緑内障に罹患する可能性が高い、あるいは正常眼圧緑内障に罹患していると判定される。
 rs735860は、ヒト第6染色体上の53231077番目の塩基におけるチミン(T)/シトシン(C)の多型であり、この部位の塩基がCである場合は、正常眼圧緑内障に罹患する可能性が高い、あるいは正常眼圧緑内障に罹患していると判定される。
 rs4412249は、ヒト第6染色体上の1947050番目の塩基におけるグアニン(G)/アデニン(A)の多型であり、この部位の塩基がAである場合は、正常眼圧緑内障に罹患する可能性が高い、あるいは正常眼圧緑内障に罹患していると判定される。
 rs2763979は、ヒト第6染色体上の31902571番目の塩基におけるシトシン(C)/チミン(T)の多型であり、この部位の塩基がCである場合は、正常眼圧緑内障に罹患する可能性が高い、あるいは正常眼圧緑内障に罹患していると判定される。
 同定するSNPは、一種類でもよいし、複数を組み合わせてもよいが、rs3213787又はrs735860のいずれか、あるいはrs3213787とrs735860の両方が含まれることが好ましく、これに加えて、rs4412249及び/又はrs2763979を含んでもよい。また、遺伝子のセンス鎖を解析してもよいし、アンチセンス鎖を解析してもよい。
 また、本発明において、同定する塩基は上記のSNPに限定されず、上記のSNPと連鎖不平衡にある多型の部位の塩基であってもよい。
 一塩基多型国際番号rs3213787、rs735860、rs4412249及びrs2763979の多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型としては、後述の表A、B、C及びDでp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満である多型を例示することが出来る。
 表Aは、一塩基多型国際番号rs3213787の存在する遺伝子領域(SRBD1)内にある多型の部位とp値を示す。

(表A)
Figure JPOXMLDOC01-appb-T000001

(表A)(続き)
Figure JPOXMLDOC01-appb-T000002

 表Bは、一塩基多型国際番号rs735860の存在する遺伝子領域(ELOVL5)内にある多型の部位とp値を示す。
(表B)
Figure JPOXMLDOC01-appb-T000003

(表B)(続き)
Figure JPOXMLDOC01-appb-T000004
 表Cは、一塩基多型国際番号rs4412249の存在する遺伝子領域(GMDS)内にある多型の部位とp値を示す。

(表C)
Figure JPOXMLDOC01-appb-T000005

(表C)(続き)
Figure JPOXMLDOC01-appb-T000006

(表C)(続き)
Figure JPOXMLDOC01-appb-T000007

(表C)(続き)
Figure JPOXMLDOC01-appb-T000008

(表C)(続き)
Figure JPOXMLDOC01-appb-T000009
 表Dは、一塩基多型国際番号rs2763979の存在する遺伝子領域(HSPA1B)内にある多型の部位とp値を示す。

(表D)
Figure JPOXMLDOC01-appb-T000010
(表D)(続き)
Figure JPOXMLDOC01-appb-T000011
 SNP間のD'が大きければ連鎖不平衡にあると考えられている(Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-265.; Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science. 2002;296(5576):2225-2229.)。従って、一塩基多型国際番号rs3213787、rs735860、rs4412249又はrs2763979の多型と連鎖不平衡にある多型は、例えば、これらのSNPとの間のD'がより大きい多型である。
 LDブロックはHaploviewソフト(Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-265.)を用いてGabrielらの方法(Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science. 2002;296(5576):2225-2229.)で決定することができる。
 一塩基多型国際番号rs3213787、rs735860、rs4412249及びrs2763979のLDブロック内にある多型としては、前述の表A、B、C及びDで、ボールド太字で表示してあるリードSNP周辺のグレーの帯で示した以下のものを例示することができるが、これらに限定されるわけではない。
 一塩基多型国際番号rs3213787のLDブロック内にある多型:rs11888802、rs11678872、rs2343468、rs13003019、rs6760244、rs12471726、rs2081297、rs10460504、rs7562458、rs4953230、rs4952763、rs6719211、rs1014454、rs3755070、rs3213787、rs10210691、rs3770251、rs4455206、rs3755076、rs3770254、rs11125017、rs3770264、rs10205197、rs10427308、rs17033745、rs3770278、rs17322370、rs6736954、rs10427402、rs4476395、rs13023749、rs17033801、rs755652、rs748573、rs6708810、rs6710581、rs12712945、rs17033871、rs3755082、rs6544840、rs7599740、rs11884064、rs7596942及びrs7565326
 一塩基多型国際番号rs735860のLDブロック内にある多型:rs2562898、rs735860、rs715441、rs2057024、rs1429146、rs9463895、rs2235723、rs1346603、rs9474476、rs2294867、rs9349660、rs974323、rs6909592、rs9367520、rs9395854、rs209485、rs9395856、rs7747926、rs7738788、rs209500、rs9357760、rs9370196、rs209512、rs209517及びrs9370201
 一塩基多型国際番号rs4412249のLDブロック内にある多型:rs7772545、rs6596866、rs4959621、rs4412249、rs4367413、rs11242729、rs6925298、rs12212324、rs9392353、rs11242730、rs4580917、rs6910252、rs11242733、rs9503080、rs11242735、rs476594、rs9378676、rs676015、rs2026446及びrs4959631
 一塩基多型国際番号rs2763979のLDブロック内にある多型:rs707918、rs805292、rs2299851、rs707939、rs707937、rs480092、rs2075800、rs2763979及びrs11965547
 本発明の検査方法における「多型部位」は、遺伝子のORF中、遺伝子の発現を制御する領域(例えば、プロモーター領域、エンハンサー領域等)中、遺伝子のイントロン中、あるいはこれら遺伝子と連鎖不平衡にあるその前後の領域に存在しうる。多型の種類としては、例えば、一塩基多型、一から数十塩基(時には数千塩基)が置換、欠失、挿入、転移あるいは逆位している多型などが挙げられるが、これらに特に限定されない。
 本発明の検査方法において、多型部位の塩基の同定(すなわち、塩基種の決定)は、公知の一塩基多型解析方法によって行うことができる。一塩基多型解析方法としては、シークエンス解析、PCR、PCR-SSCP、ハイブリダイゼーション、HRM法、RFLP法などを例示することができるが、これらに限定されるわけではない。
 多型部位の塩基を同定するために、被検者の生体試料からゲノムDNAを抽出するとよい。生体試料は、例えば、被検者の血液、皮膚、口腔粘膜、手術により採取あるいは切除した組織または細胞、検査等の目的で採取された体液(唾液、リンパ液、気道粘膜、精液、汗、尿など)等である。生体試料としては、末梢血から分離した白血球又は単核球が好ましい。市販のDNA抽出キットを用いて、生体試料からゲノムDNAを抽出することができる。次いで、必要に応じて、多型部位を含むDNAを単離する。該DNAの単離は、多型部位を含むDNAにハイブリダイズすることができるプライマーを用いて、ゲノムDNA、あるいはRNAを鋳型としたPCR等によって行うことができる。
 また、本発明は、下記の(a)及び(b)の成分からなる群より選択される少なくとも1つの成分を含む、正常眼圧緑内障の検査をするための試薬を提供する。
(a) 一塩基多型国際番号rs3213787の多型部位の塩基(ヒト第2染色体のSRBD1を含む領域中に存在する配列番号1のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs735860の多型部位の塩基(ヒト第6染色体のELOVL5を含む領域中に存在する配列番号2のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs4412249の多型部位の塩基(ヒト第6染色体のGMDSを含む領域中に存在する配列番号3のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs2763979の多型部位の塩基(ヒト第6染色体のHSPA1Bを含む領域中に存在する配列番号4のヌクレオチド配列における501番目の塩基)、及びそれらの多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型部位の塩基からなる群より選択される少なくとも1個の多型部位の塩基を含む領域を増幅することができるプライマー
(b) 一塩基多型国際番号rs3213787の多型部位の塩基(ヒト第2染色体のSRBD1を含む領域中に存在する配列番号1のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs735860の多型部位の塩基(ヒト第6染色体のELOVL5を含む領域中に存在する配列番号2のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs4412249の多型部位の塩基(ヒト第6染色体のGMDSを含む領域中に存在する配列番号3のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs2763979の多型部位の塩基(ヒト第6染色体のHSPA1Bを含む領域中に存在する配列番号4のヌクレオチド配列における501番目の塩基)、及びそれらの多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型部位の塩基からなる群より選択される少なくとも1個の多型部位の塩基を含む領域にハイブリダイズすることができるプローブ
 一塩基多型国際番号rs3213787の多型部位、一塩基多型国際番号rs735860の多型部位、一塩基多型国際番号rs4412249の多型部位、一塩基多型国際番号rs2763979の多型部位、及びそれらの多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型部位は、上記の通りである。
 さらにまた、本発明は、上記の試薬を含む、正常眼圧緑内障の検査キットを提供する。
 本発明の試薬の成分であるプライマー及びプローブは、少なくとも15ヌクレオチドの鎖長を有するオリゴヌクレオチドであるとよい。該オリゴヌクレオチドをプライマーとして用いる場合、その長さは、通常15bp~100bpであり、好ましくは17bp~30bpである。プライマーは、上記多型部位を含むDNAの少なくとも一部を増幅しうるものであれば、特に制限されない。プライマーが増幅することができるDNAの長さは、通常、15~1000bp、好ましくは、20~500bp、より好ましくは20~200bpである。また、該オリゴヌクレオチドをプローブとして用いる場合、その長さは、通常7bp~500bpであり、好ましくは8bp~500bpである。プローブは、上記多型部位を含むDNAとハイブリダイズしうるものであれば、特に制限されない。プローブがハイブリダイズできるDNAの長さは、通常、16~500bp、好ましくは、20~200bp、より好ましくは20~50bpである。
 本発明において、多型部位を含む領域を増幅することができるプライマーは、多型部位を含むDNAを鋳型として、多型部位に向かって相補鎖合成を開始することができるものであるとよい。
 プライマーには、多型部位を含む領域の塩基配列に相補的な塩基配列に加え、任意の塩基配列を付加することができる。例えば、IIs型の制限酵素を利用した多型の解析方法のためのプライマーにおいては、IIs型制限酵素の認識配列を付加したプライマーが利用される。更に、プライマーは修飾してもよい。例えば、蛍光物質や、ビオチンまたはジゴキシンのような結合親和性物質で標識したプライマーを利用してもよい。
 本発明において、多型部位を含む領域にハイブリダイズすることができるプローブは、多型部位を含む領域の塩基配列を有するポリヌクレオチドとハイブリダイズすることができるものであればよく、多型部位を含む領域の塩基配列を有するDNAに特異的にハイブリダイズするものが好ましい。ここで「特異的にハイブリダイズする」とは、通常のハイブリダイゼーション条件下、好ましくはストリンジェントなハイブリダイゼーション条件下(例えば、サムブルックら,Molecular Cloning,Cold Spring Harbour Laboratory Press,New York,USA,第2版1989に記載の条件)において、多型部位を含む領域の塩基配列を有するDNA以外のDNAとクロスハイブリダイゼーションを有意に生じないことを意味する。より具体的には、プローブの塩基配列中に多型部位を含むプローブが好ましい。あるいは、多型部位における塩基の解析方法によっては、プローブの末端が多型部位に隣接する塩基に対応するように、デザインされる場合もある。従って、プローブ自身の塩基配列には多型部位が含まれないが、多型部位に隣接する領域に相補的な塩基配列を含むプローブも、本発明における望ましいプローブとして示すことができる。
 プローブには、プライマーと同様に、塩基配列の改変、塩基配列の付加、あるいは修飾が許される。例えば、Invader法に用いるプローブは、フラップを構成するゲノムとは無関係な塩基配列が付加される。このようなプローブも、多型部位を含む領域にハイブリダイズする限り、本発明のプローブに含まれる。本発明のプローブを構成する塩基配列は、ゲノムにおける本発明の多型部位の周辺DNA領域の塩基配列をもとに、解析方法に応じてデザインすることができる。
 当業者であれば、多型部位を含む周辺DNA領域についての塩基配列情報を基に、解析手法に応じたプライマー及びプローブをデザインすることができる。プライマー及びプローブを構成する塩基配列は、ゲノムの塩基配列に対して完全に相補的な塩基配列のみならず、適宜改変することができる。
 プライマー及びプローブは、それを構成する塩基配列をもとに、任意の方法によって合成することができる。与えられた塩基配列に基づいて、当該塩基配列を有するオリゴヌクレオチドを合成する手法は公知である。更に、オリゴヌクレオチドの合成において、蛍光色素やビオチンなどで修飾されたヌクレオチド誘導体を利用して、オリゴヌクレオチドに任意の修飾を導入することもできる。あるいは、合成されたオリゴヌクレオチドに、蛍光色素などを結合する方法も公知である。
 プローブは、固相に固定されていてもよい(DNAアレイ)。DNAアレイは、同一平面上に配置した多数のプローブに対してサンプルDNA(あるいはRNA)をハイブリダイズさせ、当該平面をスキャンすることによって、各プローブに対するハイブリダイズが検出される。多くのプローブに対する反応を同時に観察することができることから、例えば、多数の多型部位について同時に解析するには、DNAアレイは有用である。ヌクレオチドの固定(アレイ)方法として、Affymetrix社開発によるオリゴヌクレオチドを基本としたアレイが例示できる。オリゴヌクレオチドのアレイにおいて、オリゴヌクレオチドは通常in situで合成される。例えば、リソグラフィー方式(Affymetrix社)、インクジェット方式(Agilent社)、ビーズアレイ方式(Illumina社)等によるオリゴヌクレオチドのin situ合成法が知られている。
 オリゴヌクレオチドは、検出すべき多型部位を含む領域に相補的な塩基配列で構成される。基板に結合させるヌクレオチドプローブの長さは、オリゴヌクレオチドを固定する場合は、通常10~100bpであり、好ましくは10~50bpであり、さらに好ましくは15~25bpである。
 DNAアレイ法によるSNP検出のための試料は、被検者から採取された生体試料をもとに当業者に周知の方法で調製することができる。生体試料は特に限定されない。例えば被検者の末梢血白血球、皮膚、口腔粘膜等の組織または細胞、涙、唾液、尿、糞便または毛髪から抽出したゲノムDNAから、DNA試料を調製することができる。判定すべき多型部位を含む領域を増幅するためのプライマーを用いて、ゲノムDNAの特定の領域が増幅される。このとき、マルチプレックスPCR法によって複数の領域を同時に増幅することができる。マルチプレックスPCR法とは、複数組のプライマーセットを、同じ反応液中で用いるPCR法である。複数の多型部位を解析するときには、マルチプレックスPCR法が有用である。
 一般にDNAアレイ法においては、PCR法によってDNA試料を増幅するとともに、増幅産物が標識される。増幅産物の標識には、標識を付したプライマーが利用される。例えば、まず多型部位を含む領域に特異的なプライマーセットによるPCR法でゲノムDNAを増幅する。次に、ビオチンラベルしたプライマーを使ったラベリングPCR法によって、ビオチンラベルされたDNAを合成する。こうして合成されたビオチンラベルDNAを、チップ上のオリゴヌクレオチドプローブにハイブリダイズさせる。ハイブリダイゼーションの反応液および反応条件は、固相に固定するヌクレオチドプローブの長さや反応温度等の条件に応じて、適宜調整することができる。当業者は、適切なハイブリダイゼーションの条件をデザインすることができる。ハイブリダイズしたDNAを検出するために、蛍光色素で標識したアビジンが添加される。アレイをスキャナで解析し、蛍光を指標としてハイブリダイズの有無を確認する。
 DNAアレイ法を用いて本発明の検査方法を実施する手順の一例を示せば、被検者から調製した多型部位を含むDNA及びヌクレオチドプローブが固定された固相を用意した後、該DNAと該固相を接触させる。次いで、固相に固定されたヌクレオチドプローブにハイブリダイズしたDNAを検出することにより、多型部位の塩基種を決定する。
 本明細書において「固相」とは、ヌクレオチドを固定することが可能な材料を意味する。固相は、ヌクレオチドを固定することが可能であれば特に制限はないが、具体的には、マイクロプレートウェル、プラスチックビーズ、磁性粒子、基板などを含む固相等を例示することができる。固相としては、一般にDNAアレイ技術で使用される基板を好適に用いることができる。本明細書において「基板」とは、ヌクレオチドを固定することが可能な板状の材料を意味する。また、本発明においてヌクレオチドには、オリゴヌクレオチドおよびポリヌクレオチドが含まれる。
 上記の方法以外にも、特定部位の塩基を検出するために、アレル特異的オリゴヌクレオチド(Allele Specific Oligonucleotide/ASO)ハイブリダイゼーション法が利用できる。アレル特異的オリゴヌクレオチド(ASO)は、検出すべき多型部位が存在する領域にハイブリダイズする塩基配列で構成される。ASOを試料DNAにハイブリダイズさせるとき、多型によって多型部位にミスマッチが生じるとハイブリッド形成の効率が低下する。ミスマッチは、サザンブロット法や、特殊な蛍光試薬がハイブリッドのギャップにインターカレーションすることにより消光する性質を利用した方法等によって検出することができる。また、リボヌクレアーゼAミスマッチ切断法によって、ミスマッチを検出することもできる。
 本発明の試薬およびキットには、塩基の同定方法に応じて、各種の酵素、酵素基質、および緩衝液などを含めることができる。酵素としては、DNAポリメラーゼ、DNAリガーゼ、あるいはIIs制限酵素などの、上記の塩基同定方法として例示した各種の解析方法に必要な酵素を示すことができる。緩衝液は、これらの解析に用いる酵素の活性の維持に好適な緩衝液が、適宜選択される。更に、酵素基質としては、例えば、相補鎖合成用の基質等が用いられる。
 さらに、本発明の試薬およびキットには、多型部位における塩基が明らかな対照を添付することができる。対照としては、予め多型部位の塩基種が明らかなゲノムDNA、あるいはゲノムDNAの断片を用いることができる。ゲノムDNAは、細胞から抽出されたものを対照として添付してもよいし、あるいは、細胞又は細胞の分画を対照として添付しておき、そこから使用者がゲノムDNAを抽出してもよい。細胞を対照として用いれば、対照の結果によってゲノムDNAの抽出操作が正しく行われたことを証明することができる。あるいは、多型部位を含む塩基配列からなるDNAを対照として用いることもできる。具体的には、多型部位における塩基種が明らかにされたゲノム由来のDNAを含むYACベクターやBACベクターを対照として用いてもよい。あるいは多型部位に相当する数十から数百bpのみを切り出して挿入したベクターを対照として用いることもできる。
 以下、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕
 NTG患者および健常者の検体は横浜市立大学医学部、倫理委員会の許可のもと当該施設を中心として、年齢、眼圧、屈折異常など厳密なクライテリアを満たしたNTG患者血液白血球を収集した。
 NTGの診断基準は日本緑内障学会の基準にしたがった。
 primaryとして患者305名、健常者355名を対象とし53遺伝子領域に絞り込んだ。続くreplicationとして異なる患者214名、健常者257名を対象とし高い有効性が期待される4SNPを同定した。表にはこれら4遺伝子を示し、primaryとreplicationそれぞれの結果に加え全検体を(overall)対象に計算した値を示した。
 ジェノタイピングは、GeneChip Human Mapping 500K Array Set (Affymetrix)を使用し、Affymetrix社が推奨する標準的プロトコールに従って実施した。
 統計解析を含むGWASの解析はHelixtree SVS 7 (Golden Herix. Inc. 米国モンタナ州ボーズマン)、およびHaploview v4.1を用いた。
 標的位置のLD構造の推測にもHaploview v4.1を用いた。
 結果を下記の表に示す。rs3213787、rs735860、rs4412249及びrs2763979は、GWAS及びReplication共に、NTGと顕著な相関を示しており、NTGの診断に有効なSNPであることが実証された。
Figure JPOXMLDOC01-appb-T000012
 患者および健常者の数を増やした新たな結果(上記のデータに患者46名および健常者46名のデータを追加)を下記の表に示す。追加の患者および健常者でも同様のアリル頻度の傾向を示した。
Figure JPOXMLDOC01-appb-T000013
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
 本発明は、生命科学、医学、眼科学及び診断に利用可能である。
<配列番号1>
配列番号1は、rs3213787の多型部位を501番目(r=A/G)に含む1000塩基長の塩基配列を示す。
<配列番号2>
配列番号2は、rs735860の多型部位を501番目(y=C/T)に含む1000塩基長の塩基配列を示す。
<配列番号3>
配列番号3は、rs4412249の多型部位を501番目(r=A/G)に含む1000塩基長の塩基配列を示す。
<配列番号4>
配列番号4は、rs2763979の多型部位を501番目(y=C/T)に含む1000塩基長の塩基配列を示す。
Yasuda N, Nakamoto K,Funayama T, Mashima Y. [Low penetrance of His26Asp mutation in the optineuringene in a Japanese family with normal-tension glaucoma]. Nippon Ganka GakkaiZasshi 2006;110:594-600. Yao HY, Cheng CY, FanBJ, et al. [Polymorphisms of myocilin and optineurin in primary open angleglaucoma patients]. Zhonghua Yi Xue Za Zhi 2006;86:554-9. Craig JE, Hewitt AW,Dimasi DP, et al. The role of the Met98Lys optineurin variant in inheritedoptic nerve diseases. Br J Ophthalmol 2006;90:1420-4. Weisschuh N, Neumann D,Wolf C, Wissinger B, Gramer E. Prevalence of myocilin and optineurin sequencevariants in German normal tension glaucoma patients. Mol Vis 2005;11:284-7. FanBJ, Wang DY, Fan DS, et al. SNPs and interaction analyses of myocilin, optineurin, andapolipoprotein E in primary open angle glaucoma patients. Mol Vis2005;11:625-31. Gong G, Kosoko-LasakiO, Haynatzki GR, Wilson MR. Genetic dissection of myocilin glaucoma. Hum MolGenet 2004;13 Spec No 1:R91-102. Izumi K, Mashima Y,Obazawa M, et al. Variants of the myocilin gene in Japanese patients withnormal-tension glaucoma. Ophthalmic Res 2003;35:345-50. Takahashi H, Ohtake Y,Kubota R, et al. [Two families with primary open-angle glaucoma associated withmyocilin gene mutations]. Nippon Ganka Gakkai Zasshi 2002;106:201-7. Michels-RautenstraussK, Mardin C, Wakili N, et al. Novel mutations in the MYOC/GLC1A gene in a largegroup of glaucoma patients. Hum Mutat 2002;20:479-80. Fingert JH, Stone EM,Sheffield VC, Alward WL. Myocilin glaucoma. Surv Ophthalmol 2002;47:547-61. Mabuchi F, Yamagata Z,Kashiwagi K, Tang S, Iijima H, Tsukahara S. Analysis of myocilin gene mutationsin Japanese patients with normal tension glaucoma and primary open-angleglaucoma. Clin Genet 2001;59:263-8. Kitazawa Y. [Open-angleglaucoma clinical presentation and management]. Nippon Ganka Gakkai Zasshi2001;105:828-42. Kubota R, Mashima Y,Ohtake Y, et al. Novel mutations in the myocilin gene in Japanese glaucomapatients. Hum Mutat 2000;16:270. Mardin CY, Velten I,Ozbey S, Rautenstrauss B, Michels-Rautenstrauss K. A GLC1A gene Gln368Stopmutation in a patient with normal-tension open-angle glaucoma. J Glaucoma1999;8:154-6. Bennett SR, Alward WL,Folberg R. An autosomal dominant form of low-tension glaucoma. Am J Ophthalmol1989;108:238-44. Ayala-Lugo RM, Pawar H, Reed DM, et al. Variation in optineurin (OPTN) allelefrequencies between and within populations. Mol Vis 2007;13:151-63. Yao HY, Cheng CY, Fan BJ, et al. [Polymorphisms of myocilin and optineurin inprimary open angle glaucoma patients]. Zhonghua Yi Xue Za Zhi 2006;86:554-9. Sripriya S, Nirmaladevi J, George R, et al. OPTN gene: profile of patients withglaucoma from India.Mol Vis 2006;12:816-20. Craig JE, Hewitt AW, Dimasi DP, et al. The role of the Met98Lys optineurinvariant in inherited optic nerve diseases. Br J Ophthalmol 2006;90:1420-4. Weisschuh N, Neumann D, Wolf C, Wissinger B, Gramer E. Prevalence of myocilinand optineurin sequence variants in German normal tension glaucoma patients. Mol Vis 2005;11:284-7. Fan BJ, Wang DY, Fan DS, et al. SNPs and interactionanalyses of myocilin, optineurin, and apolipoprotein E in primary open angleglaucoma patients. Mol Vis 2005;11:625-31. Aung T, Rezaie T, Okada K, et al. Clinical features and course of patients withglaucoma with the E50K mutation in the optineurin gene. Invest Ophthalmol VisSci 2005;46:2816-22. Umeda T, Matsuo T, Nagayama M, Tamura N, Tanabe Y, Ohtsuki H. Clinicalrelevance of optineurin sequence alterations in Japanese glaucoma patients.Ophthalmic Genet 2004;25:91-9. Toda Y, Tang S, Kashiwagi K, et al. Mutations in the optineurin gene inJapanese patients with primary open-angle glaucoma and normal tension glaucoma.Am J Med Genet A 2004;125A:1-4. Gong G, Kosoko-Lasaki O, Haynatzki GR, Wilson MR. Genetic dissection ofmyocilin glaucoma. Hum Mol Genet 2004;13 Spec No 1:R91-102. Fuse N, Takahashi K, Akiyama H, et al. Molecular genetic analysis of optineuringene for primary open-angle and normal tension glaucoma in the Japanesepopulation. J Glaucoma 2004;13:299-303. Funayama T, Ishikawa K, Ohtake Y, et al. Variants in optineurin gene and theirassociation with tumor necrosis factor-alpha polymorphisms in Japanese patientswith glaucoma. Invest Ophthalmol Vis Sci 2004;45:4359-67. Baird PN, Richardson AJ, Craig JE, Mackey DA, Rochtchina E, Mitchell P.Analysis of optineurin (OPTN) gene mutations in subjects with and withoutglaucoma: the Blue Mountains Eye Study. Clin Experiment Ophthalmol2004;32:518-22. Tang S, Toda Y, Kashiwagi K, et al. The association between Japanese primaryopen-angle glaucoma and normal tension glaucoma patients and the optineuringene. Hum Genet 2003;113:276-9. Alward WL, Kwon YH, Kawase K, et al. Evaluation of optineurin sequencevariations in 1,048 patients with open-angle glaucoma. Am J Ophthalmol2003;136:904-10. Mabuchi F, Tang S, KashiwagiK, Yamagata Z, Iijima H, Tsukahara S. The OPA1 gene polymorphism is associatedwith normal tension and high tension glaucoma. Am J Ophthalmol2007;143:125-130. Liu Y, Schmidt S, QinX, et al. No association between OPA1 polymorphisms and primary open-angleglaucoma in three different populations. Mol Vis 2007;13:2137-41. Yao W, Jiao X,Hejtmancik JF, Leske MC, Hennis A, Nemesure B. Evaluation of the associationbetween OPA1 polymorphisms and primary open-angle glaucoma in Barbados families.Mol Vis 2006;12:649-54. Woo SJ, Kim DM, Kim JY,Park SS, Ko HS, Yoo T. Investigation of the association between OPA1polymorphisms and normal-tension glaucoma in Korea. J Glaucoma 2004;13:492-5. Carelli V,Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of opticneuropathies. Prog Retin Eye Res 2004;23:53-89. Votruba M, Thiselton D,Bhattacharya SS. Optic disc morphology of patients with OPA1 autosomal dominantoptic atrophy. Br J Ophthalmol 2003;87:48-53. Powell BL, Toomes C,Scott S, et al. Polymorphisms in OPA1 are associated with normal tensionglaucoma. Mol Vis 2003;9:460-4. Aung T, Okada K,Poinoosawmy D, et al. The phenotype of normal tension glaucoma patients withand without OPA1 polymorphisms. Br J Ophthalmol 2003;87:149-52. Buono LM, Foroozan R,Sergott RC, Savino PJ. Is normal tension glaucoma actually an unrecognizedhereditary optic neuropathy? New evidence from genetic analysis. Curr OpinOphthalmol 2002;13:362-70. Aung T, Ocaka L,Ebenezer ND, et al. A major marker for normal tension glaucoma: associationwith polymorphisms in the OPA1 gene. Hum Genet 2002;110:52-6. AungT, Ocaka L, Ebenezer ND, et al. Investigating the association between OPA1 polymorphisms and glaucoma:comparison between normal tension and high tension primary open angle glaucoma.Hum Genet 2002;110:513-4. 中村誠, ゲノム解析報告2008, 第19回日本緑内障学会, 2008 Sep, p.33

Claims (6)

  1. 一塩基多型国際番号rs3213787の多型部位の塩基(ヒト第2染色体のSRBD1を含む領域中に存在する配列番号1のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs735860の多型部位の塩基(ヒト第6染色体のELOVL5を含む領域中に存在する配列番号2のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs4412249の多型部位の塩基(ヒト第6染色体のGMDSを含む領域中に存在する配列番号3のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs2763979の多型部位の塩基(ヒト第6染色体のHSPA1Bを含む領域中に存在する配列番号4のヌクレオチド配列における501番目の塩基)、及びそれらの多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型部位の塩基からなる群より選択される少なくとも1個の多型部位の塩基を同定することを含む、正常眼圧緑内障の検査方法。
  2. 一塩基多型国際番号rs3213787、rs735860、rs4412249及びrs2763979の多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型が、一塩基多型国際番号rs3213787、rs735860、rs4412249又はrs2763979の多型と連鎖不平衡にある多型である請求項1記載の方法。
  3. 一塩基多型国際番号rs3213787、rs735860、rs4412249又はrs2763979の多型と連鎖不平衡にある多型が、一塩基多型国際番号rs3213787、rs735860、rs4412249又はrs2763979のLDブロック内にある多型である請求項2記載の方法。
  4. 下記の(a)及び(b)の成分からなる群より選択される少なくとも1つの成分を含む、正常眼圧緑内障の検査をするための試薬。
    (a) 一塩基多型国際番号rs3213787の多型部位の塩基(ヒト第2染色体のSRBD1を含む領域中に存在する配列番号1のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs735860の多型部位の塩基(ヒト第6染色体のELOVL5を含む領域中に存在する配列番号2のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs4412249の多型部位の塩基(ヒト第6染色体のGMDSを含む領域中に存在する配列番号3のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs2763979の多型部位の塩基(ヒト第6染色体のHSPA1Bを含む領域中に存在する配列番号4のヌクレオチド配列における501番目の塩基)、及びそれらの多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型部位の塩基からなる群より選択される少なくとも1個の多型部位の塩基を含む領域を増幅することができるプライマー
    (b) 一塩基多型国際番号rs3213787の多型部位の塩基(ヒト第2染色体のSRBD1を含む領域中に存在する配列番号1のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs735860の多型部位の塩基(ヒト第6染色体のELOVL5を含む領域中に存在する配列番号2のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs4412249の多型部位の塩基(ヒト第6染色体のGMDSを含む領域中に存在する配列番号3のヌクレオチド配列における501番目の塩基)、一塩基多型国際番号rs2763979の多型部位の塩基(ヒト第6染色体のHSPA1Bを含む領域中に存在する配列番号4のヌクレオチド配列における501番目の塩基)、及びそれらの多型部位が存在する遺伝子領域内にあるp値(正常眼圧緑内障患者と健常者間での有意差の指標)が0.05未満の他の多型部位の塩基からなる群より選択される少なくとも1個の多型部位の塩基を含む領域にハイブリダイズすることができるプローブ
  5. プローブが固相に固定されている請求項4記載の試薬。
  6. 請求項4又は5記載の試薬を含む、正常眼圧緑内障の検査キット。
PCT/JP2011/058164 2010-05-26 2011-03-31 正常眼圧緑内障疾患感受性遺伝子及びその利用 WO2011148715A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127023847A KR20130041767A (ko) 2010-05-26 2011-03-31 정상 안압 녹내장 질환 감수성 유전자 및 그 이용
CN2011800110307A CN102770562A (zh) 2010-05-26 2011-03-31 正常眼压性青光眼疾病易感基因及其应用
JP2012517189A JPWO2011148715A1 (ja) 2010-05-26 2011-03-31 正常眼圧緑内障疾患感受性遺伝子及びその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-120758 2010-05-26
JP2010120758 2010-05-26

Publications (1)

Publication Number Publication Date
WO2011148715A1 true WO2011148715A1 (ja) 2011-12-01

Family

ID=45003708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058164 WO2011148715A1 (ja) 2010-05-26 2011-03-31 正常眼圧緑内障疾患感受性遺伝子及びその利用

Country Status (4)

Country Link
JP (1) JPWO2011148715A1 (ja)
KR (1) KR20130041767A (ja)
CN (1) CN102770562A (ja)
WO (1) WO2011148715A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158503A1 (ja) * 2019-01-31 2020-08-06 株式会社シード 近視の発症リスクを判定する方法
JP2020178555A (ja) * 2019-04-23 2020-11-05 ジェネシスヘルスケア株式会社 緑内障のリスクを判定する方法
CN113403379A (zh) * 2021-06-11 2021-09-17 中国科学院北京基因组研究所(国家生物信息中心) 一种眼科疾病相关snp位点引物组合物及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107142316B (zh) * 2017-06-07 2018-10-26 中南大学湘雅二医院 青光眼诊断分子标记物lncRNAsT267384、试剂盒及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061697A1 (ja) * 2008-11-27 2010-06-03 株式会社メニコン 正常眼圧緑内障疾患感受性遺伝子及びその利用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5043985B2 (ja) * 2008-11-27 2012-10-10 株式会社メニコン 正常眼圧緑内障疾患感受性遺伝子及びその利用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061697A1 (ja) * 2008-11-27 2010-06-03 株式会社メニコン 正常眼圧緑内障疾患感受性遺伝子及びその利用

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
KAMIO M ET AL.: "Investigation of the association between the GLC3A locus and normal tension glaucoma in Japanese patients by microsatellite analysis.", CLIN. OPHTHALMOL., vol. 3, 2009, pages 183 - 188 *
MAKOTO NAKAMURA: "Genome Kaiseki Hokoku 2008", 19TH ANNUAL MEETING OF JAPAN GLAUCOMA SOCIETY, 2008, pages 33 *
MURAKAMI K. ET AL.: "Analysis of microsatellite polymorphisms within the GLC1F locus in Japanese patients with normal tension glaucoma.", MOL. VIS., vol. 16, March 2010 (2010-03-01), pages 462 - 466 *
NAKAMURA J. ET AL.: "Association of toll-like receptor 2 gene polymorphisms with normal tension glaucoma.", MOL. VIS., vol. 15, 2009, pages 2905 - 2910 *
NAKAMURA K. ET AL.: "Association of microsatellite polymorphisms of the GPDS1 locus with normal tension glaucoma in the Japanese population.", CLIN. OPHTHALMOL., vol. 3, 2009, pages 307 - 312 *
NOBUHISA MIZUKI: "Seijo Gan'atsu Ryokunaisho Kanjusei Idenshi no Zen Genome Morateki Kaiseki", FRONTIERS IN GLAUCOMA, vol. 7, 2006, pages 218 *
NOBUHISA MIZUKI: "Seijo Gan'atsu Ryokunaisho no Shikkan Kanjusei Idenshi no Dotei Oyobi Jinsoku Idenshi Shindan Kit no Kaihatsu ni Kansuru Kenkyu", KOSEI RODO KAGAKU KENKYUHI HOJOKIN KANKAKUKI SHOGAI KENKYU JIGYO HEISEI 20 NENDO SOKATSU-BUNTAN KENKYU HOKOKUSHO, 2009, pages 1 - 3 *
TANITO M. ET AL.: "LOXL1 variants in elderly Japanese patients with exfoliation syndrome/ glaucoma, primary open-angle glaucoma, normal tension glaucoma, and cataract.", MOL. VIS., vol. 14, 2008, pages 1898 - 1905 *
WOLF C. ET AL.: "Evaluation of nine candidate genes in patients with normal tension glaucoma: a case control study.", BMC MED. GENET., vol. 10, no. 91, 2009, pages 8 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158503A1 (ja) * 2019-01-31 2020-08-06 株式会社シード 近視の発症リスクを判定する方法
JP2020178555A (ja) * 2019-04-23 2020-11-05 ジェネシスヘルスケア株式会社 緑内障のリスクを判定する方法
JP7140707B2 (ja) 2019-04-23 2022-09-21 ジェネシスヘルスケア株式会社 緑内障のリスクを判定する方法
CN113403379A (zh) * 2021-06-11 2021-09-17 中国科学院北京基因组研究所(国家生物信息中心) 一种眼科疾病相关snp位点引物组合物及应用

Also Published As

Publication number Publication date
KR20130041767A (ko) 2013-04-25
CN102770562A (zh) 2012-11-07
JPWO2011148715A1 (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP4515524B2 (ja) 正常眼圧緑内障疾患感受性遺伝子及びその利用
US20100092959A1 (en) Single nucleotide polymorphisms as genetic markers for childhood leukemia
CN108026583A (zh) Hla-b*15:02的单核苷酸多态性及其应用
US9879314B2 (en) Method for detecting HLA-A*31:01 allele
WO2011148715A1 (ja) 正常眼圧緑内障疾患感受性遺伝子及びその利用
JP5807894B2 (ja) 一塩基多型に基づく前立腺癌の検査方法
JP5721150B2 (ja) 加齢黄斑変性症の発症リスクの予測方法
Li et al. SNPscan as a high-performance screening tool for mutation hotspots of hearing loss-associated genes
JP5043985B2 (ja) 正常眼圧緑内障疾患感受性遺伝子及びその利用
JP6053681B2 (ja) イヌの緑内障を診断する方法及びキット
JP5427352B2 (ja) ヒト体脂肪量と関連する遺伝子多型に基づく肥満発症リスクの判定方法
KR20110034297A (ko) 내인성 아토피 피부염 진단용 마커 및 그의 용도
JP5226256B2 (ja) 加齢黄斑変性症の発症リスクの予測方法
US20160053333A1 (en) Novel Haplotype Tagging Single Nucleotide Polymorphisms and Use of Same to Predict Childhood Lymphoblastic Leukemia
WO2012173809A2 (en) Method of identifying de novo copy number variants (cnv) using mz twins discordant for attention problems/disorders
Du et al. A simple oligonucleotide biochip capable of rapidly detecting known mitochondrial DNA mutations in Chinese patients with Leber's hereditary optic neuropathy (LHON)
WO2012056694A1 (ja) 乳がん発症感受性の判定方法
KR101167945B1 (ko) Atg16l1 유전자로부터 유래된 단일염기다형을 포함하는 폴리뉴클레오티드, 이를 포함하는 마이크로어레이 및 진단키트, 및 이를 이용한 자폐 스펙트럼 장애 분석방법
WO2015129018A1 (ja) イヌの緑内障を診断する方法及びキット
WO2015037681A1 (ja) 抗甲状腺薬誘発性無顆粒球症リスクを判定するための検査方法及び判定用キット
WO2010047240A1 (ja) 滲出型加齢黄斑変性のリスクの予測方法
KR20230036504A (ko) 근감소증 진단용 마커 및 이의 용도
JP2021073993A (ja) イヌ白内障の検査方法、イヌ白内障の検査をするための試薬、及びイヌ白内障の検査キット
JP6082693B2 (ja) 喫煙感受性加齢黄斑変性易罹患性の判定方法及び判定キット
KR101167942B1 (ko) Alg12 유전자로부터 유래된 단일염기다형을 포함하는 폴리뉴클레오티드, 이를 포함하는 마이크로어레이 및 진단키트, 및 이를 이용한 자폐 스펙트럼 장애 분석방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011030.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517189

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127023847

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786415

Country of ref document: EP

Kind code of ref document: A1