WO2011145445A1 - セラミクスハニカム焼成体の製造方法 - Google Patents

セラミクスハニカム焼成体の製造方法 Download PDF

Info

Publication number
WO2011145445A1
WO2011145445A1 PCT/JP2011/060294 JP2011060294W WO2011145445A1 WO 2011145445 A1 WO2011145445 A1 WO 2011145445A1 JP 2011060294 W JP2011060294 W JP 2011060294W WO 2011145445 A1 WO2011145445 A1 WO 2011145445A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
green molded
firing table
firing
green
Prior art date
Application number
PCT/JP2011/060294
Other languages
English (en)
French (fr)
Inventor
康輔 魚江
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to PL11783382T priority Critical patent/PL2573061T3/pl
Priority to US13/640,662 priority patent/US8926891B2/en
Priority to EP11783382.2A priority patent/EP2573061B1/en
Priority to CN2011800243703A priority patent/CN102884020A/zh
Priority to KR1020127026213A priority patent/KR20130079330A/ko
Priority to BR112012028074A priority patent/BR112012028074A2/pt
Publication of WO2011145445A1 publication Critical patent/WO2011145445A1/ja
Priority to US13/752,461 priority patent/US9561985B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9623Ceramic setters properties

Definitions

  • the present invention relates to a method for manufacturing a ceramic honeycomb fired body.
  • the firing table contracts or expands during firing in the same manner as the green molded body contracts or expands according to its structure and the like. For this reason, a ceramic honeycomb fired body with high dimensional accuracy can be manufactured.
  • the ceramic honeycomb fired body and the fired firing stand are firmly bonded after firing, and it may be difficult to separate them. For this reason, the ceramic honeycomb fired body may be damaged when it is peeled off.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a ceramic honeycomb fired body that can easily peel the ceramic honeycomb fired body and the fired firing stand after firing. To do.
  • the method for manufacturing a ceramic honeycomb fired body includes a step of placing a green molded body on a firing table, and a step of firing the firing table and the green molded body.
  • Each of the firing table and the green molded body is a column that includes a ceramic raw material and has partition walls that form a plurality of flow paths, and the pattern of the end faces of these two partition walls is the same as viewed from the direction in which the flow paths extend. is there.
  • the placing step all of one end face of the partition wall of the green molded body is brought into contact with the upper end face of the partition wall of the firing table that is horizontally placed only on one end face of the partition wall of the green molded body.
  • the green molded body is placed on the firing table so that only a part of the end surface of the partition wall of the green molded body is in contact with the upper end surface of the partition wall of the firing table, and then these are fired.
  • the contact area between the green molded body and the firing table can be reduced. Therefore, it is easy to separate the firing table from the honeycomb fired body after firing.
  • the firing table and the green molded body are preferably cylinders or regular polygonal columns, and the vertical axis is preferably the central axis of the cylinders or regular polygonal columns. Thereby, control of rotation amount and rotation operation become easy.
  • the plurality of flow paths in the firing table and the green molded body are arranged in a square shape when viewed from the end surface side, and in the placing step, the green molded body is moved around the vertical axis of the green molded body with respect to the reference position. In addition, it is preferably placed on the baking table in a state rotated by 15 ° to 75 ° + n ⁇ 90 °.
  • the plurality of flow paths in the firing table and the green molded body are respectively arranged in a regular triangle or a regular hexagon as viewed from the end face side, and in the placing step, the green molded body is placed on the green relative to the reference position.
  • This method can reduce the contact area more efficiently.
  • one (upper end) opening of a part of the plurality of channels of the green molded body is sealed, and the other (lower end) opening of the remaining part of the plurality of channels of the green molded body is sealed. It is preferable.
  • the sealing material introduced slightly into the sealing portion from the end face of the green molded body often protrudes, and the protruding length is often non-uniform. There is an effect that it becomes difficult to adhere closely.
  • the firing table and the green molded body may be elliptical cylinders, and the green molded body of elliptical cylinders is preferably placed on the firing table in a state shifted by a predetermined distance in the horizontal direction.
  • the ceramic raw materials for the firing table and the green molded body include an aluminum source powder and a titanium source powder.
  • the present invention it is possible to provide a method for manufacturing a ceramic honeycomb fired body in which it is easy to peel off the ceramic honeycomb fired body and the fired firing stand after firing.
  • FIG. 1 is a schematic perspective view of the firing table 5 and the green molded body 1.
  • FIG. 2 is a side view showing a state in which the green molded body 1 is placed on the firing table 5.
  • FIG. 3 is a schematic perspective view showing how the green molded body 1 is rotated with respect to the firing table 5.
  • FIGS. 4A to 4F are external schematic views showing the structure of a part of the flow paths 4 and the partition walls 3 of the green molded body 1 as viewed from the end face side.
  • the present embodiment includes a step of placing the green molded body 1 on the firing table 5 and a step of firing the firing table 5 and the green molded body 1.
  • the green molded body 1 and the firing table 5 are cylindrical bodies each having a partition wall 3 that forms a large number of flow paths 4 extending in the vertical direction.
  • the pattern formed by the end face of the partition wall 3 is the same between the green molded body 1 and the firing table 5.
  • the cross-sectional shape of the flow path 4 is substantially square.
  • the plurality of flow paths 4 are squarely arranged in the firing table 5 and the green molded body 1 as viewed from the end face side (Z direction), that is, the center of the flow path 4 is positioned at the apex of the square. Has been placed.
  • the size of the square of the cross section of the flow path 4 can be, for example, 0.8 to 2.5 mm on a side.
  • the partition wall thickness can be set to, for example, 0.15 to 0.76 mm.
  • the length in the direction in which the flow path 4 of the green molded body 1 and the firing table 5 extends is not particularly limited, but may be, for example, 40 to 350 mm and 5 to 50 mm, respectively.
  • the outer diameter of the green molded body 1 is not particularly limited, but may be, for example, 100 to 320 mm.
  • the green molded body 1 and the firing table 5 are green (unfired bodies) that become porous ceramics when fired, and contain ceramic raw materials.
  • the ceramic is not particularly limited, and examples thereof include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and metal.
  • the aluminum titanate can further contain magnesium and / or silicon.
  • the green molded body and the firing table 5 preferably include an inorganic compound source powder that is a ceramic raw material, an organic binder such as methylcellulose, and an additive that is added as necessary.
  • the inorganic compound source powder is aluminum source powder such as ⁇ alumina powder, titanium source powder such as anatase type or rutile type titania powder, and / or aluminum titanate powder.
  • a magnesium source powder such as magnesia powder and magnesia spinel powder and / or a silicon source powder such as silicon oxide powder and glass frit can be further contained.
  • the organic binder examples include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
  • the amount of the organic binder is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and still more preferably 6 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
  • the minimum amount of an organic binder is 0.1 weight part, More preferably, it is 3 weight part.
  • additives include a pore-forming agent, a lubricant and a plasticizer, a dispersant, and a solvent.
  • Examples of the pore former include carbon materials such as graphite; resins such as polyethylene, polypropylene, and polymethyl methacrylate; plant materials such as starch, nut shells, walnut shells, and corn; ice; and dry ice.
  • the amount of pore-forming agent added is preferably 0 to 40 parts by weight, more preferably 0 to 25 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
  • Lubricants and plasticizers include alcohols such as glycerol; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid; stearic acid metal salts such as Al stearate; polyoxyalkylene alkyl Examples include ether.
  • the addition amount of the lubricant and the plasticizer is preferably 0 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
  • the dispersant examples include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid; alcohols such as methanol, ethanol and propanol; ammonium polycarboxylate Surfactant etc. are mentioned.
  • the addition amount of the dispersant is preferably 0 to 20 parts by weight, more preferably 2 to 8 parts by weight, based on 100 parts by weight of the inorganic compound source powder.
  • the solvent for example, alcohols such as methanol, ethanol, butanol and propanol; glycols such as propylene glycol, polypropylene glycol and ethylene glycol; and water can be used.
  • the amount of the solvent used is preferably 10 to 100 parts by weight, more preferably 20 to 80 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
  • the weight of the solvent relative to the total weight of the green honeycomb molded body is not particularly limited, but is preferably 10 to 30 wt%, and more preferably 15 to 20 wt%.
  • One (upper end) opening of a part of the plurality of flow paths 4 of the green molded body 1 is sealed with a sealing material, and the other (lower end) opening of the remaining part of the plurality of flow paths of the green molded body 1 is sealed.
  • the part may be sealed with a sealing material.
  • a sealing material the material which becomes ceramics by baking like the green molded object 1 can be used.
  • the “part of the plurality of flow paths 4” described above is preferably 1 in each of the matrix of the flow path cross-sections sharing the sides in the pattern of the end faces of the partition walls of the flow paths when viewed from the end face side. It is a combination of channels selected every other.
  • a green molded object can be manufactured as follows, for example. First, an inorganic compound source powder, an organic binder, a solvent, and additives to be added as necessary are prepared. Then, these are mixed by a kneader or the like to obtain a raw material mixture, and the obtained raw material mixture is extruded from an extruder having an outlet opening corresponding to the sectional shape of the partition wall, dried, and cut into a desired length
  • the green molded body 1 and the firing table 5 can be obtained.
  • the green molded object 1 and the baking stand 5 can have the partition 3 of the same cross-sectional structure, and can be set as the same composition. Then, the edge part of the flow path 4 can be sealed as needed.
  • marks a and b extending in the axial direction (Z direction) are provided in the same portion of the outer peripheral surface of the firing table 5 and the green molded body 1 by ink, grooves, and the like, respectively.
  • the cross-sectional shapes of the partition walls 3 are the same as each other. Therefore, when the marks a and b are arranged on the same straight line, the end faces of the partition walls 3 can completely overlap each other.
  • the firing table 5 is arranged on the support surface 6 in the furnace so that the axial direction of the flow path 4 is the vertical direction, and the green molded body 1 is placed on the firing table 5. It mounts so that the axial direction of the flow path 4 may become an up-down direction.
  • the axial direction of the flow path 4 may become an up-down direction.
  • the lower end surface 3 b of the partition wall 3 of the green molded body 1 is in contact with the upper end surface 3 t of the partition wall 3 of the firing table 5, that is, the mark a and the mark b are in contact with each other.
  • the green molded body 1 is rotated by a predetermined angle ⁇ around the central axis (vertical axis) V of the green molded body 1 as shown in FIG. Is placed on the baking table 5 as shown in FIG.
  • the angle ⁇ is not particularly limited as long as only a part of the lower end surface of the partition wall 3 of the green molded body 1 is in contact with the upper end surface of the partition wall of the firing table 5.
  • the plurality of flow paths 4 having a square cross section are arranged in a square shape, that is, the center of the flow path 4 having a square cross section when viewed from the end face is positioned at the apex of another square SQ.
  • the rotation angle ⁇ should not be an integral multiple of 90 °.
  • the rotation angle ⁇ is preferably 15 to 75 °, more preferably 30 to 60 °, even more preferably 40 to 50 °, and most preferably 45 ° as shown in FIG.
  • the green molded body 1 and the partition walls 3 of the firing table 5 are not easily parallel to each other, which is preferable.
  • an angle obtained by adding an integer multiple of 90 ° to these preferable ⁇ ranges may be used (for example, 15 ° to 75 ° + n ⁇ 90 °: n is an integer).
  • the direction of ⁇ may be either clockwise or counterclockwise. If the cross-sectional shape of the flow path 4 is another shape, for example, a circular shape as shown by a dotted line in FIG. The above range is preferred.
  • a porous ceramic honeycomb fired body having a flow path can be obtained by calcining (degreasing) and firing the green molded body 1.
  • the calcination (degreasing) is a process for removing the organic binder in the green molded body 1 and the baking table 5 and the organic additive blended as necessary by burning, decomposition, etc.
  • the temperature is raised to the firing temperature (for example, a temperature range of 150 to 900 ° C.).
  • the firing temperature for example, a temperature range of 150 to 900 ° C.
  • the firing temperature in firing the green molded body 1 and the firing table 5 is usually 1300 ° C. or higher, preferably 1400 ° C. or higher.
  • the firing temperature is usually 1650 ° C. or lower, preferably 1550 ° C. or lower.
  • the rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 ° C./hour to 500 ° C./hour.
  • Firing is usually carried out in the atmosphere, but depending on the type of raw material powder used and the amount used, it may be fired in an inert gas such as nitrogen gas or argon gas, carbon monoxide gas, hydrogen gas, etc. You may bake in reducing gas like this. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
  • an inert gas such as nitrogen gas or argon gas, carbon monoxide gas, hydrogen gas, etc. You may bake in reducing gas like this. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
  • Calcination is usually performed using a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, or a roller hearth furnace. Firing may be performed batchwise or continuously.
  • a normal firing furnace such as a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace, a shaft furnace, a reflection furnace, or a roller hearth furnace. Firing may be performed batchwise or continuously.
  • the time required for firing is sufficient as long as ceramics are generated, and varies depending on the amount of the green molded body, the type of firing furnace, firing temperature, firing atmosphere, etc., but is usually 10 minutes to 24 hours. .
  • the fired firing table 5 is removed from the ceramic honeycomb fired body.
  • the removal method is not particularly limited, for example, it can be easily removed by tapping a fired baking table with a plastic hammer.
  • the green molded body 1 contracts and expands at the time of firing.
  • the firing table 5 also performs similar contraction and expansion, unnecessary stress is not applied to the lower surface of the green molded body 1 and is high.
  • a ceramic honeycomb fired body with dimensional accuracy can be manufactured.
  • the contact area between the green molded body 1 and the firing table 5 can be reduced, it is easy to separate the firing table from the ceramic honeycomb fired body after firing. Further, it is possible to suppress a defect that the ceramic honeycomb fired body is damaged at the time of peeling or a part of the fired stand remains attached to the ceramic honeycomb structure.
  • the green molded body 1 and the firing table 5 are not particularly limited, and can take any shape depending on the application.
  • the green molded body 1 and the firing table 5 are not limited to cylinders, and may be elliptical cylinders.
  • regular polygonal pillars such as regular triangular prisms, square pillars, regular hexagonal pillars, regular octagonal pillars, etc.
  • Columnar bodies such as a triangular prism, a quadrangular prism, a hexagonal prism, and an octagonal prism can be used.
  • the vertical axis may be, for example, eccentric rotation, but for ease of rotation, if it is a regular polygonal column or a cylinder, it is preferable that these central axes be the vertical axes.
  • the cross-sectional shape of each flow path is not limited to a square, and various polygons such as a rectangle, a circle, an ellipse, a triangle, a hexagon, and an octagon (including polygons that are not regular polygons). In these flow paths, those having a diameter different from others and those having a different cross-sectional shape from others may be mixed.
  • the arrangement of the channels is not limited to the square arrangement in which the center of gravity of the channel in the cross section (the center if the channel cross section is a circle or a regular polygon) is arranged at the apex of the square. If the channel cross section is a circle or regular polygon, the center of the regular triangle is placed at the apex of the regular triangle, and the center of gravity of the channel in the cross section (center if the channel cross section is a circle or regular polygon) A regular hexagonal arrangement, a staggered arrangement, or the like arranged at the apex of the regular hexagon can be used.
  • a plurality of channels 4 having a regular hexagonal cross section are arranged in an equilateral triangle, that is, the center of the channel 4 having a regular hexagonal cross section when viewed from the end surface is at the apex of the regular triangle TR.
  • the rotation angle ⁇ should not be an integral multiple of 60 °.
  • the rotation angle ⁇ is preferably 10 to 50 °, more preferably 20 to 40 °, even more preferably 25 to 35 °, and most preferably 30 ° as shown in FIG.
  • an angle obtained by adding an integer multiple of 60 ° to the preferable range of ⁇ may be used (for example, 10 ° to 50 ° + n ⁇ 60 °: n is an integer).
  • the direction of ⁇ may be either clockwise or counterclockwise.
  • the cross-sectional shape of the flow path 4 may be another shape, for example, a circular shape as shown by the dotted line in FIGS. The above range is preferable.
  • the cross-sectional shape of part or all of the flow path 4 is a non-regular polygon such as a hexagon that is not a regular hexagon, the above range is preferable if the center of gravity of the flow path is an equilateral triangle arrangement.
  • the flow channels 4 having a regular triangular cross section are arranged in a regular hexagon, that is, the centers of the flow channels 4 having a regular triangular cross section as viewed from the end face are respectively located at the apexes of the regular hexagon HE.
  • the rotation angle ⁇ should not be an integral multiple of 60 °.
  • the rotation angle ⁇ is preferably 10 to 50 °, more preferably 20 to 40 °, even more preferably 25 to 35 °, and most preferably 30 ° as shown in FIG.
  • an angle obtained by adding an integer multiple of 60 ° to the preferable range of ⁇ may be used (for example, 10 ° to 50 ° + n ⁇ 60 °: n is an integer).
  • the direction of ⁇ may be either clockwise or counterclockwise.
  • the above range is preferable even if the cross-sectional shape of the flow path 4 is another shape, for example, a circular shape, or has a different diameter. In this way, according to the pattern of the end face of the partition wall 3, ⁇ can be easily set such that only a part of the end face of the partition wall of the green molded body is in contact with the upper end face of the partition wall of the firing table.
  • the marks a and b are provided on the green molded body 1 and the firing table 5 so as to be shifted by a suitable angle.
  • the form of the mark is not particularly limited, and even if the mark is not provided. It can be carried out even if the position is determined while visually checking the partition wall 3.
  • the green molded body 1 is rotated by the angle ⁇ around the vertical axis V of the green molded body 1, but the green molded body is shifted by a predetermined distance in the horizontal direction, that is, in any direction in the XY plane of FIG.
  • the present invention can be implemented even if only a part of the end face of the partition wall is in contact with the end face of the partition wall of the baking table.
  • both rotation and horizontal movement may be combined.
  • the green molded body 1 is an elliptical cylinder, it is preferable that the green molded body 1 is shifted by a predetermined distance in the horizontal direction, that is, in any direction within the plane.
  • the distance is smaller than the repeating unit of the partition structure in the moving direction.
  • the repeating unit of the partition wall structure in the moving direction is the length a of one side of the partition wall 3 if the moving direction is along the one side of the square partition wall, and the moving direction is square. If the direction is along the diagonal line of the partition wall, it is the length b of the diagonal line of the partition wall 3.
  • the cross-sectional shape of the partition walls may be the same even if molded from different extruders.
  • the green molded body 1 and the firing table 5 preferably have the same composition, but different compositions can be used as long as the green molded body and the firing table 5 exhibit the same expansion / contraction behavior during firing. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Catalysts (AREA)

Abstract

 焼成台5上にグリーン成形体1を載置する工程と、焼成台5及びグリーン成形体1を焼成する工程と、を備える。焼成台5及びグリーン成形体1は、それぞれ、セラミクス原料を含みかつ複数の流路を形成する隔壁を有する柱体であり、二つの隔壁の端面のパターンは流路の延びる方向から見て互いに同一であり、載置する工程では、グリーン成形体1の隔壁3の下側端面の一部のみが焼成台5の隔壁3の上側端面と接触するように、グリーン成形体1の隔壁3の下側端面の全部が焼成台5の隔壁3の上側端面と接触する状態を基準位置として、グリーン成形体1を、水平方向に所定距離ずらした状態で、または、グリーン成形体1の鉛直軸V周りに所定角度θ回転した状態で焼成台5に載置するセラミクスハニカム焼成体の製造方法である。

Description

セラミクスハニカム焼成体の製造方法
 本発明は、セラミクスハニカム焼成体の製造方法に関する。
 従来より、多数の流路を有するハニカム構造のグリーン(未焼成)成形体を焼成することによりセラミクスハニカム焼成体を製造する方法が知られている。そして、グリーン成形体を、グリーン成形体と同様のハニカム構造の未焼成の焼成台(トチと呼ばれる)上に載置してから焼成を行うことが知られている(例えば、引用文献1参照)。
 このような焼成台を用いると、焼成時に、グリーン成形体がその構造等に応じて収縮又は膨張するのと同様に、焼成台が収縮又は膨張する。このため、高い寸法精度のセラミクスハニカム焼成体を製造できる。
特公平1-54636号公報
 しかしながら、従来の方法では、焼成後にセラミクスハニカム焼成体と、焼成した焼成台とが強固に接着し、引き離すのが困難な場合があった。このため、引き剥がす際に、セラミクスハニカム焼成体が破損する場合があった。
 本発明は、上記課題に鑑みてなされたものであり、焼成後に、セラミクスハニカム焼成体と、焼成した焼成台とを引き剥がすことが容易なセラミクスハニカム焼成体の製造方法を提供することを目的とする。
 本発明に係るセラミクスハニカム焼成体の製造方法は、焼成台にグリーン成形体を載置する工程と、焼成台及びグリーン成形体を焼成する工程と、を備える。焼成台及びグリーン成形体は、それぞれ、セラミクス原料を含みかつ複数の流路を形成する隔壁を有する柱体であり、これら二つの隔壁の端面のパターンは流路の延びる方向から見て互いに同一である。載置する工程では、グリーン成形体の隔壁の一方の端面の一部のみが水平に載置された焼成台の隔壁の上側端面と接触するように、グリーン成形体の隔壁の一方の端面の全部が焼成台の隔壁の上側端面と接触する状態を基準位置として、グリーン成形体を、水平方向に所定距離ずらした状態で、または、グリーン成形体の鉛直軸周りに所定角度回転した状態で焼成台に載置する。
 本発明によれば、グリーン成形体の隔壁の端面の一部のみが焼成台の隔壁の上側端面と接触するようにグリーン成形体が焼成台上に載置され、その後、これらが焼成されるので、グリーン成形体と焼成台との接触面積を少なくすることが出来る。したがって、焼成後に、ハニカム焼成体から焼成台を引き離すことが容易である。
 焼成台及びグリーン成形体は円柱又は正多角柱であり、鉛直軸は円柱又は正多角柱の中心軸であることが好ましい。これにより、回転量の制御や回転操作が容易となる。
 また、焼成台及びグリーン成形体における複数の流路は端面側から見てそれぞれ正方形配置されており、載置する工程では、基準位置に対して、グリーン成形体を、グリーン成形体の鉛直軸周りに15°~75°+n・90°回転した状態で焼成台に載置することが好ましい。ここで、nは整数であり、例えば、n=0,1,2,3である。
 また、焼成台及びグリーン成形体における複数の流路は、端面側から見て各々正三角形配置又は正六角形配置されており、載置する工程では、基準位置に対して、グリーン成形体を、グリーン成形体の鉛直軸の周りに、10°~50°+n・60°回転した状態で前記焼成台に載置することも好ましい。ここで、nは整数であり、例えば、n=0,1,2,3,4,5である。
 かかる方法により、接触面積をより効率的に低下させることが出来る。
 また、グリーン成形体の複数の流路のうちの一部の一方の(上端)開口部が封口され、グリーン成形体の複数の流路のうちの残部の他方の(下端)開口部が封口されていることが好ましい。
 この実施態様によれば、グリーン成形体の端面からわずかに封口部に導入した封孔材が出っ張ることが多く、またその出っ張る長さが不均一であることが多いため、グリーン成形体と焼成台とが密着しにくくなるという効果がある。
 また、前記焼成台及びグリーン成形体は楕円柱でもよく、楕円柱のグリーン成形体は水平方向に所定距離ずらした状態で前記焼成台に載置することが好ましい。
 また、焼成台及びグリーン成形体のセラミクス原料は、アルミニウム源粉末およびチタニウム源粉末を含むことが好ましい。
 本発明によれば、焼成後に、セラミクスハニカム焼成体と、焼成した焼成台とを引き剥がすことが容易なセラミクスハニカム焼成体の製造方法を提供できる。
図1は、焼成台5及びグリーン成形体1の概略斜視図である。 図2は、焼成台5上にグリーン成形体1を載置した状態を示す側面図である。 図3は、グリーン成形体1の焼成台5に対する回転のさせ方を示す概略斜視図である。 図4の(a)~(f)は、グリーン成形体1の一部の流路4及び隔壁3の構造を示す端面側から見た外略図である。
 図面を参照して、本発明の実施形態に係るセラミクスハニカム焼成体の製造方法について説明する。
 本実施形態では、焼成台5にグリーン成形体1を載置する工程と、焼成台5及びグリーン成形体1を焼成する工程と、を備える。
(載置工程)
 本実施形態に係るグリーン成形体1及び焼成台5は、図1に示すように、それぞれ、上下方向に延びる多数の流路4を形成する隔壁3を有した円柱体である。隔壁3の端面が形成するパターンは、グリーン成形体1と焼成台5とで互いに同一である。流路4の断面形状は略正方形である。これらの複数の流路4は、焼成台5及びグリーン成形体1において、端面側(Z方向)から見て、正方形配置、すなわち、流路4の中心が、正方形の頂点にそれぞれ位置するように配置されている。流路4の断面の正方形のサイズは、例えば、一辺0.8~2.5mmとすることができる。隔壁の厚みは、例えば、0.15~0.76mmとすることができる。
 また、グリーン成形体1及び焼成台5の流路4が延びる方向の長さ(Z方向の全長)は特に限定されないが、例えば、それぞれ、40~350mm、5~50mmとすることができる。また、グリーン成形体1の外径も特に限定されないが、例えば、100~320mmとすることできる。
 グリーン成形体1及び焼成台5は、焼成することにより多孔性セラミクスとなるグリーン(未焼成体)であり、セラミクス原料を含む。セラミクスは特に限定されないが、例えば、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム等の酸化物、シリコンカーバイド、窒化珪素、金属等が挙げられる。なお、チタン酸アルミニウムは、さらに、マグネシウム及び/又はケイ素を含むことができる。
 グリーン成形体及び焼成台5は、好ましくは、セラミクス原料である無機化合物源粉末、及び、メチルセルロース等の有機バインダ、及び、必要に応じて添加される添加剤を含む。
 例えば、セラミクスがチタン酸アルミニウムの場合、無機化合物源粉末は、αアルミナ粉等のアルミニウム源粉末、及び、アナターゼ型やルチル型のチタニア粉末等のチタニウム源粉末、及び/又は、チタン酸アルミニウム粉末を含み、必要に応じて、さらに、マグネシア粉末やマグネシアスピネル粉末等のマグネシウム源粉末及び/又は、酸化ケイ素粉末やガラスフリット等のケイ素源粉末を含むことができる。
 有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩を例示できる。有機バインダの量は、無機化合物源粉末の100重量部に対して、20重量部以下であることが好ましく、より好ましくは15重量部以下、さらに好ましくは6重量部である。また、有機バインダの下限量は、0.1重量部であることが好ましく、より好ましくは3重量部である。
 添加物としては、例えば、造孔剤、潤滑剤および可塑剤、分散剤、溶媒が挙げられる。
 造孔剤としては、グラファイト等の炭素材;ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類;でんぷん、ナッツ殻、クルミ殻、コーンなどの植物材料;氷;およびドライアイス等などが挙げられる。造孔剤の添加量は、無機化合物源粉末の100重量部に対して、0~40重量部であることが好ましく、より好ましくは0~25重量部である。
 潤滑剤および可塑剤としては、グリセリンなどのアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラキジン酸、オレイン酸、ステアリン酸などの高級脂肪酸;ステアリン酸Alなどのステアリン酸金属塩;ポリオキシアルキレンアルキルエーテルなどが挙げられる。潤滑剤及び可塑剤の添加量は、無機化合物源粉末の100重量部に対して、0~10重量部であることが好ましく、より好ましくは0.1~5重量部である。
 分散剤としては、たとえば、硝酸、塩酸、硫酸などの無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸などの有機酸;メタノール、エタノール、プロパノールなどのアルコール類;ポリカルボン酸アンモニウムなどの界面活性剤などが挙げられる。分散剤の添加量は、無機化合物源粉末の100重量部に対して、0~20重量部であることが好ましく、より好ましくは2~8重量部である。
 溶媒としては、たとえば、メタノール、エタノール、ブタノール、プロパノールなどのアルコール類;プロピレングリコール、ポリプロピレングリコール、エチレングリコールなどのグリコール類;および水などを用いることができる。溶媒の使用量は、無機化合物源粉末の100重量部に対して、10重量部~100重量部であることが好ましく、より好ましくは20重量部~80重量部である。また、グリーンハニカム成形体全体の重量に対する溶媒の重量は特に限定されないが、10~30wt%が好ましく、15~20wt%がより好ましい。
 グリーン成形体1の複数の流路4のうちの一部の一方の(上端)開口部が封口材により封口され、グリーン成形体1の複数の流路のうちの残部の他方の(下端)開口部が封口材により封口されていてもよい。封口材としては、グリーン成形体1と同様の、焼成することによりセラミクスとなる材料を用いることができる。上述の「複数の流路4のうちの一部」とは、好ましくは、端面側から見て、前記流路の隔壁の端面のパターンにおいて辺を共有し連続する流路断面の行列においてそれぞれ1つおきに選択された流路の組合せである。
 グリーン成形体は例えば以下のようにして製造することができる。
 まず、無機化合物源粉末と、有機バインダと、溶媒と、必要に応じて添加される添加物を用意する。そして、これらを混練機等により混合して原料混合物を得、得られた原料混合物を隔壁の断面形状に対応する出口開口を有する押出機から押し出し、乾燥をし、所望の長さに切ることにより、グリーン成形体1、及び、焼成台5を得ることができる。同じ押出機から製造することにより、グリーン成形体1及び焼成台5は、同じ断面構造の隔壁3を有することができ、同一の組成とすることができる。その後、必要に応じて、流路4の端部を封口することができる。
 ここで、焼成台5及びグリーン成形体1の外周面の同一部分に軸方向(Z方向)にのびる目印a,bを、インク、溝等によりそれぞれ設ける。隔壁3の断面形状は互いに同一であり、したがって、目印a、bが同一直線上に並ぶ場合には、隔壁3の端面同士は互いに完全に重なることが出来る。
 続いて、図2に示すように、炉内の支持面6上に、焼成台5を流路4の軸方向が上下方向となるように配置し、焼成台5の上にグリーン成形体1を流路4の軸方向が上下方向となるように載置する。ここでは、グリーン成形体1の隔壁3の下側端面3bの一部のみが、焼成台5の隔壁3の上側端面3tと接触するようにする。具体的には、図1のように、グリーン成形体1の隔壁3の下側端面3bの全部が焼成台5の隔壁3の上側端面3tと接触する状態、すなわち、目印aと目印bとが同一直線上にある状態を基準位置として、図3に示すように、グリーン成形体1をグリーン成形体1の中心軸(鉛直軸)V周りに所定角度θ回転させた状態で、グリーン成形体1を図2のように焼成台5に載置する。
 ここで、角度θは、グリーン成形体1の隔壁3の下側端面の一部のみが、焼成台5の隔壁の上側端面と接触する角度であれば特に限定されない。例えば、図4の(a)に示すように、断面正方形の複数の流路4が、正方形配置、すなわち、端面から見て断面正方形の流路4の中心が別の正方形SQの頂点にそれぞれ位置するように配置された隔壁3をグリーン成形体1が有する場合、回転角度θが90°の整数倍にならなければよい。回転角度θは15~75°が好ましく、30~60°がより好ましく°、40~50°がより一層好ましく、最も好ましいのは図4の(b)に示すように45°である。この場合、グリーン成形体1と焼成台5の隔壁3同士が平行になりにくくなるので好ましい。また、これらの好ましいθの範囲に90°の整数倍を足した角度でもよい(例えば、15°~75°+n・90°:nは整数)。また、θの方向は、時計回り、反時計回りどちらでもよい。なお、流路4の断面形状が他の形状、例えば図4の(a)に点線で示すように円形等になったり、異径のものがあっても流路4が正方形配置されていれば上述の範囲は好ましい。
 (焼成工程)
 続いて、グリーン成形体1及び焼成台5を焼成する。グリーン成形体1を仮焼(脱脂)および焼成することにより、流路を有する多孔質のセラミクスハニカム焼成体を得ることができる。
 仮焼(脱脂)は、グリーン成形体1及び焼成台5中の有機バインダや、必要に応じて配合される有機添加物を、焼失、分解等により除去するための工程であり、典型的には、焼成温度に至るまでの昇温段階(たとえば、150~900℃の温度範囲)になされる。仮焼(脱脂)工程おいては、昇温速度を極力おさえることが好ましい。
 グリーン成形体1及び焼成台5の焼成における焼成温度は、通常、1300℃以上、好ましくは1400℃以上である。また、焼成温度は、通常、1650℃以下、好ましくは1550℃以下である。焼成温度までの昇温速度は特に限定されるものではないが、通常、1℃/時間~500℃/時間である。
 焼成は通常、大気中で行なわれるが、用いる原料粉末の種類や使用量比によっては、窒素ガス、アルゴンガスなどの不活性ガス中で焼成してもよいし、一酸化炭素ガス、水素ガスなどのような還元性ガス中で焼成してもよい。また、水蒸気分圧を低くした雰囲気中で焼成を行なってもよい。
 焼成は、通常、管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ローラーハース炉などの通常の焼成炉を用いて行なわれる。焼成は回分式で行なってもよいし、連続式で行なってもよい。
 焼成に要する時間は、セラミクスが生成するのに十分な時間であればよく、グリーン成形体の量、焼成炉の形式、焼成温度、焼成雰囲気などにより異なるが、通常は10分~24時間である。
 焼成後、セラミクスハニカム焼成体から、焼成済みの焼成台5を除去する。除去方法は特に限定されないが、例えば、焼成済みの焼成台をプラスチック製のハンマーで軽く叩くことにより容易に除去できる。
 本実施形態によれば、焼成時にグリーン成形体1が収縮や膨張等を行なうが、焼成台5も同様の収縮や膨張を行なうため、グリーン成形体1の下面に不要な応力が掛からず、高い寸法精度のセラミクスハニカム焼成体を製造できる。
 さらに、グリーン成形体1と焼成台5との接触面積を少なくすることが出来るので、焼成後に、セラミクスハニカム焼成体から焼成台を引き離すことが容易である。
 また引き剥がす際にセラミクスハニカム焼成体に損傷を与えたり、セラミクスハニカム構造体に、焼成台の一部が付着したままになるという不良を抑制できる。
 なお、本発明は上記実施形態に限定されず、様々な変形態様が可能である。例えば、グリーン成形体1及び焼成台5は特に限定されず、用途に応じて任意の形状を取ることができる。例えば、グリーン成形体1及び焼成台5は、円柱に限られず、楕円柱でもよく、さらには、例えば、正三角柱、正方形柱、正六角柱、正八角柱等の正多角柱や、正多角柱以外の、3角柱、4角柱、6角柱、8角柱等の柱体とすることができる。この場合、鉛直軸としては、例えば偏芯回転でもよいが、回転のしやすさから、正多角柱や円柱であれば、これらの中心軸を鉛直軸とすることが好ましい。
 また、各流路の断面形状も、正方形には限定されず、矩形、円形、楕円形、又は、3角形、6角形、8角形等の種々の多角形(正多角形でない多角形を含む)等にすることができ、これらの流路には、他と径の異なるもの、他と断面形状の異なるものが混在してもよい。
 さらに、流路の配置も、断面において流路の重心(流路断面が円や正多角形であれば中心)が正方形の頂点に配置される正方形配置に限定されず、断面において流路の重心(流路断面が円や正多角形であれば中心)が正三角形の頂点に配置される正三角形配置、断面において流路の重心(流路断面が円や正多角形であれば中心)が正六角形の頂点に配置される正六角形配置、千鳥配置等にすることができる。
 例えば、図4の(c)に示すように、断面正六角形の複数の流路4が正三角形配置、すなわち、端面から見て断面正六角形の流路4の中心が正三角形TRの頂点にそれぞれ位置するように配置された隔壁3をグリーン成形体1が有する場合、回転角度θは、60°の整数倍にならなければよい。回転角度θは、10~50°が好ましく、20~40°がより好ましく、25~35°がより一層好ましく、最も好ましいのは図4の(d)に示すように30°である。また、これらの好ましいθの範囲に60°の整数倍を足した角度でもよい(例えば、10°~50°+n・60°:nは整数)。また、θの方向は、時計回り、反時計回りどちらでもよい。なお、流路4の断面形状が他の形状、例えば、図4の(c)、(d)に点線で示すような円形等になったり、異径のものがあっても正三角形配置であれば上述の範囲は好ましい。また、流路4の一部又は全部の断面形状が正六角形でない六角形等の非正多角形であっても流路の重心が正三角形配置であれば上述の範囲は好ましい。
 また、図4の(e)に示すように、断面正三角形の流路4が正六角形配置、すなわち、端面から見て断面正三角形の流路4の中心が正六角形HEの頂点にそれぞれ位置するように配置された隔壁3をグリーン成形体1が有する場合、回転角度θは、60°の整数倍にならなければよい。回転角度θは、10~50°が好ましく、20~40°がより好ましく、25~35°がより一層好ましく、最も好ましいのは図4の(f)に示すように30°である。また、これらの好ましいθの範囲に60°の整数倍を足した角度でもよい(例えば、10°~50°+n・60°:nは整数)。また、θの方向は、時計回り、反時計回りどちらでもよい。なお、流路4の断面形状が他の形状、例えば円形等になったり、異径のものがあっても上述の範囲は好ましい。
 このようにして、隔壁3の端面のパターンに応じて、グリーン成形体の隔壁の端面の一部のみが焼成台の隔壁の上側端面と接触するようなθは容易に設定できる。
 また、上記実施形態では、好適な角度でずらすべく、グリーン成形体1及び焼成台5に目印a,bを設けていたが、目印の形態は特に限定されず、また、目印を設けなくても隔壁3を目視しながら位置を決めても実施は可能である。
 さらに、上記実施形態では、グリーン成形体1の鉛直軸V周りに角度θ回転させているが、水平方向すなわち、図2のXY平面内のいずれかの方向に所定距離ずらすことにより、グリーン成形体の隔壁の端面の一部のみが焼成台の隔壁の端面と接触するようにしても実施は可能である。勿論、回転と、水平方向の移動とを両方組み合わせてもよい。グリーン成形体1が楕円柱の場合は、水平方向すなわち、平面内のいずれかの方向に所定距離ずらすことにより実施することが好ましい。
 水平方向に移動させる場合には、例えば、移動方向における隔壁構造の繰り返し単位よりも小さい距離であることが好ましい。例えば、移動方向における隔壁構造の繰り返し単位とは、図4の(a)の場合、移動方向が正方形の隔壁の一辺に沿う方向であれば隔壁3の一辺の長さa、移動方向が正方形の隔壁の対角線に沿う方向であれば、隔壁3の対角線の長さbである。
 さらに、グリーン成形体1及び焼成台5は同一の押出機から成形されているが、異なる押出機から成形されていても、隔壁の断面形状が同一であればよい。また、グリーン成形体1と焼成台5の組成は同じあることが好ましいが、焼成時に、グリーン成形体及び焼成台5が同様の膨張収縮挙動を示すものであれば異なる組成でも実施は可能である。
 1…グリーン成形体、3…流路、4…隔壁、5…焼成台。

Claims (7)

  1.  焼成台にグリーン成形体を載置する工程と、
     前記焼成台及びグリーン成形体を焼成する工程と、を備え、
     前記焼成台及びグリーン成形体は、それぞれ、セラミクス原料を含みかつ複数の流路を形成する隔壁を有する柱体であり、前記二つの隔壁の端面のパターンは前記流路の延びる方向から見て互いに同一であり、
     前記載置する工程では、前記グリーン成形体の隔壁の一方の端面の一部のみが、水平に載置された前記焼成台の隔壁の上側端面と接触するように、前記グリーン成形体の隔壁の一方の端面の全部が前記焼成台の隔壁の上側端面と接触する状態を基準位置として、前記グリーン成形体を、水平方向に所定距離ずらした状態で、または、前記グリーン成形体の鉛直軸の周りに所定角度回転した状態で前記焼成台に載置するセラミクスハニカム焼成体の製造方法。
  2.  前記焼成台及びグリーン成形体は、円柱又は正多角柱であり前記鉛直軸は前記円柱又は前記正多角柱の中心軸である請求項1記載の方法。
  3.  前記焼成台及びグリーン成形体における前記複数の流路は、前記端面側から見て各々正方形配置されており、
     前記載置する工程では、前記基準位置に対して、前記グリーン成形体を、前記グリーン成形体の鉛直軸の周りに、15°~75°+n・90°回転した状態で前記焼成台に載置する請求項1又は2に記載の方法。
     ここで、nは整数である。
  4.  前記焼成台及びグリーン成形体における前記複数の流路は、前記端面側から見て各々正三角形配置又は正六角形配置されており、
     前記載置する工程では、前記基準位置に対して、前記グリーン成形体を、前記グリーン成形体の鉛直軸の周りに、10°~50°+n・60°回転した状態で前記焼成台に載置する請求項1又は2に記載の方法。
     ここで、nは整数である。
  5.  前記グリーン成形体の複数の流路のうちの一部の一方の開口部が封口され、前記グリーン成形体の複数の流路のうちの残部の他方の開口部が封口された請求項1~4のいずれか一項記載の方法。
  6.  前記焼成台及びグリーン成形体は楕円柱であり、水平方向に所定距離ずらした状態で前記グリーン成形体を前記焼成台に載置する請求項1記載の方法。
  7.  前記焼成台及びグリーン成形体のセラミクス原料は、アルミニウム源粉末およびチタニウム源粉末を含む請求項1~6のいずれか一項記載の方法。
PCT/JP2011/060294 2010-05-17 2011-04-27 セラミクスハニカム焼成体の製造方法 WO2011145445A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL11783382T PL2573061T3 (pl) 2010-05-17 2011-04-27 Sposób wytwarzania wypalonego ceramicznego korpusu o strukturze plastra miodu
US13/640,662 US8926891B2 (en) 2010-05-17 2011-04-27 Method for manufacturing ceramic honeycomb fired body
EP11783382.2A EP2573061B1 (en) 2010-05-17 2011-04-27 Method for manufacturing ceramic honeycomb fired body
CN2011800243703A CN102884020A (zh) 2010-05-17 2011-04-27 陶瓷蜂窝烧成体的制造方法
KR1020127026213A KR20130079330A (ko) 2010-05-17 2011-04-27 세라믹스 허니컴 소성체의 제조 방법
BR112012028074A BR112012028074A2 (pt) 2010-05-17 2011-04-27 método de fabricação de corpo cozido em forma de favo cerâmico
US13/752,461 US9561985B2 (en) 2010-05-17 2013-01-29 Method for manufacturing ceramic honeycomb fired body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010113290 2010-05-17
JP2010-113290 2010-05-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/640,662 A-371-Of-International US8926891B2 (en) 2010-05-17 2011-04-27 Method for manufacturing ceramic honeycomb fired body
US13/752,461 Continuation US9561985B2 (en) 2010-05-17 2013-01-29 Method for manufacturing ceramic honeycomb fired body

Publications (1)

Publication Number Publication Date
WO2011145445A1 true WO2011145445A1 (ja) 2011-11-24

Family

ID=44991556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060294 WO2011145445A1 (ja) 2010-05-17 2011-04-27 セラミクスハニカム焼成体の製造方法

Country Status (8)

Country Link
US (2) US8926891B2 (ja)
EP (2) EP2573061B1 (ja)
JP (2) JP4850314B2 (ja)
KR (1) KR20130079330A (ja)
CN (1) CN102884020A (ja)
BR (1) BR112012028074A2 (ja)
PL (2) PL2573061T3 (ja)
WO (1) WO2011145445A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047175A1 (ja) * 2011-09-29 2013-04-04 住友化学株式会社 ハニカム焼成体の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2462079A4 (en) * 2009-08-09 2015-07-29 Rolls Royce Corp CARRIER FOR A BURNED ARTICLE
JP5775477B2 (ja) * 2012-03-16 2015-09-09 日本碍子株式会社 セラミックス金属接合体の製造方法
EP2894140A4 (en) * 2012-09-05 2016-05-18 Sumitomo Chemical Co METHOD FOR MANUFACTURING WEAPHER STRUCTURE
JP6200404B2 (ja) * 2014-11-18 2017-09-20 日本碍子株式会社 ハニカム成形体焼成用生トチ、及びハニカム成形体の焼成方法
CN113382975B (zh) * 2018-11-30 2023-05-02 康宁股份有限公司 蜂窝体制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202870A (ja) * 1986-02-20 1987-09-07 日本碍子株式会社 セラミツクスハニカム構造体の焼成方法
JPH0154636B2 (ja) 1986-02-20 1989-11-20 Ngk Insulators Ltd
WO2006035674A1 (ja) * 2004-09-27 2006-04-06 Ngk Insulators, Ltd. 焼成用敷板及びこれを用いたハニカム成形体の焼成方法
JP2006231162A (ja) * 2005-02-23 2006-09-07 Ngk Insulators Ltd 目封止ハニカム構造体の製造方法、及び目封止ハニカム構造体
JP2007091536A (ja) * 2005-09-29 2007-04-12 Tdk Corp セラミック粉末成形体の焼成方法
JP2009084102A (ja) * 2007-09-28 2009-04-23 Hitachi Metals Ltd セラミックスハニカム構造体の焼成方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739921A (en) * 1971-10-01 1973-06-19 Abar Corp Fixture for heat treating furnaces
US4786542A (en) 1986-02-20 1988-11-22 Ngk Insulators, Ltd. Setters and firing of ceramic honeycomb structural bodies by using the same
US5256347A (en) * 1988-02-25 1993-10-26 Ngk Insulators, Ltd. Method of firing ceramic honeycomb structure
JP2577147B2 (ja) * 1991-09-30 1997-01-29 日本碍子株式会社 セラミックスハニカム構造体の製造方法
JP3364223B2 (ja) * 1993-02-02 2003-01-08 日本碍子株式会社 焼成用敷板及びそれを用いるセラミック成形体の焼成方法
EP1184637A1 (en) * 2000-08-28 2002-03-06 Mino Yogyo Co., Ltd. Firing setters and process for producing these setters
US6644966B1 (en) * 2002-07-03 2003-11-11 Bell New Ceramics Co., Ltd. Carriage for supporting objects to be heated by kiln
JP2004292197A (ja) * 2003-03-26 2004-10-21 Ngk Insulators Ltd ハニカム構造体の製造方法
US7473873B2 (en) * 2004-05-18 2009-01-06 The Board Of Trustees Of The University Of Arkansas Apparatus and methods for synthesis of large size batches of carbon nanostructures
EP1762710B1 (en) * 2004-06-30 2012-03-07 Ibiden Co., Ltd. Exhaust emission control device
WO2006003736A1 (ja) * 2004-07-01 2006-01-12 Ibiden Co., Ltd. セラミック焼成用治具及び多孔質セラミック体の製造方法
WO2006057344A1 (ja) 2004-11-26 2006-06-01 Ibiden Co., Ltd. ハニカム構造体
US20060261136A1 (en) * 2005-05-17 2006-11-23 Calsonic Kansei Corporation Diffusion bonding method for forming metal substrate
WO2007074528A1 (ja) * 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
EP1980309B1 (en) * 2006-01-27 2011-10-12 Hitachi Metals, Ltd. Method for manufacturing ceramic honeycomb filter
WO2007096986A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
WO2007097000A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007102217A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2008047404A1 (fr) 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
DE202007008520U1 (de) * 2007-02-21 2008-07-03 Dekema Dental-Keramiköfen GmbH Brenngutträger
DE102007062832A1 (de) * 2007-12-21 2009-06-25 Mann + Hummel Gmbh Verfahren zur Herstellung eines keramischen Filterelementes
EP2251628B1 (en) * 2008-03-05 2016-01-27 NGK Insulators, Ltd. Kiln tool plate for firing ceramic
JP5722869B2 (ja) * 2009-03-24 2015-05-27 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン ハニカム構造を硬化させるための方法及び基材
US20110127699A1 (en) * 2009-11-30 2011-06-02 Michael James Vayansky Method And Apparatus For Thermally Debindering A Cellular Ceramic Green Body
ES2528005T3 (es) * 2011-03-02 2015-02-03 Ivoclar Vivadent Ag Horno dental de cocción o de prensado
JP5856877B2 (ja) * 2011-03-07 2016-02-10 住友化学株式会社 グリーンハニカム成形体の乾燥方法及び乾燥装置
JP2012214364A (ja) 2011-03-28 2012-11-08 Ngk Insulators Ltd ハニカム構造体、Si−SiC系複合材料、ハニカム構造体の製造方法及びSi−SiC系複合材料の製造方法
JP2013043138A (ja) 2011-08-25 2013-03-04 Denso Corp 触媒担持体及びその製造方法
US9878958B2 (en) * 2012-02-29 2018-01-30 Corning Incorporated Dimensional control of ceramic structures via composition
US8808613B1 (en) * 2013-03-15 2014-08-19 Ibiden Co., Ltd. Method for manufacturing aluminum-titanate-based ceramic honeycomb structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202870A (ja) * 1986-02-20 1987-09-07 日本碍子株式会社 セラミツクスハニカム構造体の焼成方法
JPH0154636B2 (ja) 1986-02-20 1989-11-20 Ngk Insulators Ltd
WO2006035674A1 (ja) * 2004-09-27 2006-04-06 Ngk Insulators, Ltd. 焼成用敷板及びこれを用いたハニカム成形体の焼成方法
JP2006231162A (ja) * 2005-02-23 2006-09-07 Ngk Insulators Ltd 目封止ハニカム構造体の製造方法、及び目封止ハニカム構造体
JP2007091536A (ja) * 2005-09-29 2007-04-12 Tdk Corp セラミック粉末成形体の焼成方法
JP2009084102A (ja) * 2007-09-28 2009-04-23 Hitachi Metals Ltd セラミックスハニカム構造体の焼成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2573061A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047175A1 (ja) * 2011-09-29 2013-04-04 住友化学株式会社 ハニカム焼成体の製造方法

Also Published As

Publication number Publication date
US20130140747A1 (en) 2013-06-06
US8926891B2 (en) 2015-01-06
KR20130079330A (ko) 2013-07-10
PL2639209T3 (pl) 2018-09-28
EP2639209B1 (en) 2018-05-30
US20130049269A1 (en) 2013-02-28
EP2573061A1 (en) 2013-03-27
JP2012001426A (ja) 2012-01-05
JP2012051791A (ja) 2012-03-15
JP6082518B2 (ja) 2017-02-15
EP2573061A4 (en) 2013-12-11
PL2573061T3 (pl) 2016-08-31
JP4850314B2 (ja) 2012-01-11
CN102884020A (zh) 2013-01-16
BR112012028074A2 (pt) 2017-03-21
US9561985B2 (en) 2017-02-07
EP2573061B1 (en) 2016-02-24
EP2639209A1 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP6082518B2 (ja) セラミクスハニカム焼成体の製造方法
JP4633734B2 (ja) 焼成用敷板及びこれを用いたハニカム成形体の焼成方法
JP5856877B2 (ja) グリーンハニカム成形体の乾燥方法及び乾燥装置
EP1541538B1 (en) Method for producing porous ceramic article
WO2012081580A1 (ja) グリーン成形体及びハニカム構造体の製造方法
WO2012017989A1 (ja) 切断装置、ワークの切断方法、及び、ハニカムフィルタの製造方法
EP2803928B1 (en) Tunnel kiln and method for producing fired body using same
US20150210024A1 (en) Green-honeycomb-molded-body holder and method for producing diesel particulate filter
JP2011068517A (ja) セラミックス焼成体の製造方法
KR20130006644A (ko) 그린 성형체 및 티탄산알루미늄 소성체의 제조 방법
JP2011051846A (ja) セラミックス焼成体の製造方法
WO2017033774A1 (ja) ハニカムフィルタの製造方法
JP5937800B2 (ja) ハニカム焼成体の製造方法
US11085698B2 (en) Heating furnace
WO2012008447A1 (ja) グリーン成形体、および、チタン酸アルミニウム焼成体の製造方法
JP2017024928A (ja) セラミクス焼成体の台座分離装置、セラミクス焼成体の台座分離方法及びセラミクス焼成体の製造方法
WO2016199777A1 (ja) セラミック焼成体の製造方法
JP4938904B2 (ja) ハニカム構造体の封口方法
JPH0920566A (ja) 焼成用治具
JP2013169733A (ja) ハニカム構造体の製造方法
WO2012018021A1 (ja) 封口用マスク及びこれを用いたハニカム構造体の封口方法
JP2012091350A (ja) グリーンハニカム成形体、グリーンハニカム成形体の製造方法、及び、ハニカム構造体の製造方法
JP2013154549A (ja) ハニカム構造体の封口方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024370.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011783382

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127026213

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13640662

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 10365/CHENP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012028074

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012028074

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121031