WO2011145171A1 - 撮像システム及びその制御方法 - Google Patents

撮像システム及びその制御方法 Download PDF

Info

Publication number
WO2011145171A1
WO2011145171A1 PCT/JP2010/058357 JP2010058357W WO2011145171A1 WO 2011145171 A1 WO2011145171 A1 WO 2011145171A1 JP 2010058357 W JP2010058357 W JP 2010058357W WO 2011145171 A1 WO2011145171 A1 WO 2011145171A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging devices
imaging
scanning
devices
detector
Prior art date
Application number
PCT/JP2010/058357
Other languages
English (en)
French (fr)
Inventor
貴司 岩下
忠夫 遠藤
登志男 亀島
朋之 八木
克郎 竹中
啓吾 横山
翔 佐藤
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to PCT/JP2010/058357 priority Critical patent/WO2011145171A1/ja
Priority to JP2012515660A priority patent/JP5642166B2/ja
Priority to US13/107,360 priority patent/US8625742B2/en
Publication of WO2011145171A1 publication Critical patent/WO2011145171A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4464Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • A61B6/487Diagnostic techniques involving generating temporal series of image data involving fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/547Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device

Definitions

  • the present invention relates to an imaging system and a control method thereof. More specifically, the present invention relates to an imaging system used in a radiation imaging system and a control method thereof, which are preferably used for still image shooting such as general shooting in medical diagnosis and moving image shooting such as fluoroscopic shooting.
  • radiation is a beam having energy of the same degree or more, for example, X-rays, in addition to ⁇ -rays, ⁇ -rays, ⁇ -rays, etc., which are beams formed by particles (including photons) emitted by radiation decay. , Particle beams, cosmic rays, etc. are also included.
  • a radiation imaging apparatus using a flat panel detector (hereinafter abbreviated as FPD) made of a semiconductor material has been put into practical use as an imaging apparatus used for medical image diagnosis and nondestructive inspection using X-rays.
  • FPD flat panel detector
  • Such a radiation imaging apparatus is used as a digital imaging apparatus for still image shooting such as general shooting or moving image shooting such as fluoroscopic shooting in medical image diagnosis, for example.
  • Patent Document 1 discloses a photoelectric conversion apparatus in which a plurality of substrates (corresponding to the FPD) having a plurality of photoelectric conversion elements arranged two-dimensionally are arranged adjacent to each other.
  • this photoelectric conversion device at least one of the scanning circuit and the detection circuit is arranged on two opposite sides of the photoelectric conversion device, and the scanning directions of the circuits arranged on the two sides can be set in the same direction. It is disclosed.
  • a plurality of FPDs are fixedly arranged adjacent to each other in a predetermined positional relationship.
  • first image data is captured using a first X-ray tube and a first X-ray detection circuit unit.
  • the second image data is picked up using the second X-ray tube and the second X-ray detection circuit unit. Then, it is considered that the obtained first image data and second image data are processed to generate a tomographic image or a three-dimensional image of the subject.
  • the first X-ray detection circuit unit and the second X-ray detection circuit unit are fixedly disposed at orthogonal positions in a predetermined positional relationship.
  • each FPD has the same or symmetric structure and is fixedly arranged in a predetermined positional relationship.
  • each FPD that can be freely arranged is arranged in any positional relationship. Is not determined in advance. For this reason, depending on the positional relationship between the FPDs, there is a possibility that the scanning methods may be inconsistent between the FPDs, such as inconsistencies in the scanning direction, and the continuity of a plurality of images obtained from the FPDs may be impaired. In addition, even when the driving times are different among a plurality of FPDs, inconsistencies in scanning methods between the FPDs may occur, and the continuity of a plurality of images obtained from the FPDs may be impaired. Therefore, when a plurality of images obtained from a plurality of FPDs are combined, an artifact is generated between the images, and there is a possibility that the image quality is deteriorated.
  • the inventor of the present application diligently studied to provide an imaging system capable of preventing image quality degradation at the time of image synthesis in an imaging system in which each FPD can be freely arranged using a plurality of FPDs capable of independently acquiring images. As a result, the following aspects of the invention have been conceived.
  • An imaging system includes a detection unit in which a plurality of pixels each including a conversion element that converts radiation or light into electric charge and a switch element that outputs an electric signal corresponding to the electric charge are arranged in a matrix,
  • the detection unit is connected to a plurality of drive wirings connected to a plurality of switch elements and arranged in a column direction, and a scanning direction which is a direction in which a driving signal is supplied to the plurality of driving wirings can be set in both directions.
  • a detector for performing an imaging operation for outputting image data corresponding to irradiated radiation or light, and a control unit for controlling the operation of the detector, each independently.
  • a detection unit that acquires information on the relative positional relationship of the plurality of imaging devices, and the information acquired from the detection unit
  • a control computer for determining operations of the plurality of imaging devices and transmitting a control signal for executing the determined operations of the imaging devices to the control unit, wherein the control computer has the relative positional relationship of each
  • the control computer has the relative positional relationship of each
  • the scanning directions of the plurality of imaging devices are opposite to each other and the plurality of imaging devices As the start or end of the scan is the same timing, and determines the operation of the plurality of imaging devices.
  • An imaging system control method includes a detection unit in which a plurality of pixels each having a conversion element that converts radiation or light into electric charge and a switch element that outputs an electric signal corresponding to the electric charge are arranged in a matrix, A scanning direction that is connected to a plurality of switching elements in the row direction and connected to a plurality of driving wirings arranged in the column direction, and that is a direction in which a driving signal is given to the plurality of driving wirings, can be set in both directions.
  • An electrical signal from the detection unit driven in the scanning direction is connected to a driving circuit for driving the detection unit and a plurality of signal wirings connected to a plurality of switch elements in the column direction and arranged in the row direction.
  • a readout circuit for outputting as a detector, each having a detector for performing an imaging operation for outputting image data corresponding to irradiated radiation or light, and a control unit for controlling the operation of the detector
  • a method of controlling an imaging system including a plurality of imaging devices that can each independently capture images and whose relative positional relationship is displaceable, the method acquiring information on the relative positional relationships of the plurality of imaging devices; And determining the operation of the plurality of imaging devices using the information, wherein the determining step is performed by the plurality of imaging devices with respect to a scanning direction of each imaging device.
  • the plurality of imaging devices When the plurality of imaging devices are arranged in parallel, the plurality of imaging devices have a relative positional relationship with respect to the scanning direction of each imaging device so that the scanning directions of the plurality of imaging devices are the same as each other.
  • the plurality of imaging devices When the plurality of imaging devices are arranged in series, the scanning directions of the plurality of imaging devices are opposite to each other, and the start or end of scanning of the plurality of imaging devices is at the same timing. And determining the operation of the location.
  • an imaging system capable of preventing image quality degradation at the time of image synthesis in an imaging system in which each FPD can be freely arranged using a plurality of FPDs capable of independently acquiring images.
  • 1 is a block diagram of an imaging system according to a first embodiment of the present invention.
  • 1 is an equivalent circuit diagram of an imaging apparatus according to the present invention. It is a block diagram for demonstrating the matter which should be examined in operation
  • the radiation imaging system of this embodiment includes a radiation generator 110, a radiation control device 109, a control computer 108, a plurality of imaging devices 100a and 100b, and detection units 107a and 107b that are detection means for detecting the positional relationship between the plurality of imaging devices. Is included.
  • the radiation imaging system of the present embodiment further includes a display device 113 and a control console 114.
  • two imaging devices, the first imaging device 100a and the second imaging device 100b are used.
  • the symbol a is assigned to the component related to the first imaging device
  • the symbol b is assigned to the component related to the second imaging device, but the common description will be omitted.
  • Each imaging apparatus 100 includes a flat panel detector (FPD) 104, a signal processing unit 105, and a control unit 106.
  • the FPD 104 includes a detection unit 101 that includes a plurality of pixels that convert radiation or light into an electrical signal, a drive circuit 102 that drives the detection unit, and a readout circuit 103 that outputs an electrical signal from the driven detection unit as image data. And having.
  • the signal processing unit 105 processes and outputs the image data from the FPD 104.
  • the control unit 106 supplies a control signal to each component to control the operation of the FPD.
  • the FPD operation includes various operation modes such as a synchronous mode and an asynchronous mode.
  • the control unit 106 includes a power supply circuit such as a regulator or an inverter that receives a voltage from an external power source (not shown) or a built-in battery and supplies a voltage necessary for the detection unit 101, the drive circuit 102, and the readout circuit 103. ing.
  • a power supply circuit such as a regulator or an inverter that receives a voltage from an external power source (not shown) or a built-in battery and supplies a voltage necessary for the detection unit 101, the drive circuit 102, and the readout circuit 103.
  • Each imaging device 100 can capture an image independently (acquires an image), and can be freely arranged with respect to the subject 112, that is, can be displaced.
  • the detection means of the present invention detects the relative positional relationship between the imaging devices 100.
  • the detection unit 107 provided in each imaging apparatus 100 corresponds to a detection unit.
  • the detection unit 107 includes a sensor, a calculator, a communication unit, and the like, and detects a relative positional relationship between the imaging devices.
  • each imaging device 100 has a sensor, a calculator, and a communication unit, the sensor detects the distance and direction between the imaging devices, and the calculator calculates the position and orientation of the imaging device.
  • a relative positional relationship between a plurality of imaging devices is acquired.
  • an electronic compass, an acceleration sensor, a distance sensor, or the like is preferably used as the sensor.
  • each imaging apparatus includes the detection unit 107 .
  • the present invention is not limited to this, and it is only necessary to include a detection unit as the imaging system.
  • each imaging apparatus 100 is attached to a mechanical holding mechanism such as an arm, and a detection unit such as an encoder is provided in the mechanical holding mechanism, and the length and angle are detected by the detection means. Etc. may be detected.
  • the mechanical holding mechanism may have an engine that moves passively by an external force, or may have an engine that moves actively with an actuator.
  • each imaging apparatus may include a sensor and a communication unit, and a control computer 108 (described later) may include a computing unit, which may constitute a detection unit.
  • the computing unit of the detection means obtains the relative positional relationship of the imaging devices in a common coordinate system by arithmetic processing based on the arrangement information of the imaging devices.
  • the arrangement information includes information for converting the coordinate system of the FPD to a common coordinate system or information for converting the common coordinate system to the coordinate system of the FPD.
  • information indicating specific pixels of the FPD, information indicating the first side of the detection unit where the driving circuit is arranged and the second side of the detection unit where the readout circuit is arranged, radiation of the FPD, or light is incident as the arrangement information It includes information indicating the incident surface and information indicating the scales of the first side and the second side.
  • the specific pixel of the FPD is a pixel located at a corner where the first side and the second side intersect, and corresponds to, for example, a pixel in 3 rows and 1 column in FIG.
  • the information indicating the specific pixel is information indicating the relative position of the specific pixel in the detection unit with respect to the driving circuit and the readout circuit.
  • the first side is set as the Y axis as the FPD coordinate system.
  • the second side is information indicating that the X axis corresponds to the origin.
  • the information indicating the first side is information indicating that the first side is the Y axis of the first quadrant whose origin is the specific pixel
  • the information indicating the second side is that the second side is This is information indicating the X axis in the first quadrant with the specific pixel as the origin.
  • the information indicating the scales of the first side and the second side is information defined by the pitch of the pixels in the detection unit.
  • the detection unit 107 as a detection unit is integrated with the FPD and provided in the imaging apparatus, information indicating a specific pixel of the FPD and information indicating the first side and the second side viewed from the detection unit 107.
  • the arrangement information may further include information indicating the orientation of the other imaging device viewed from one imaging device.
  • the control computer 108 synchronizes the radiation generator 110 and each imaging device 100, transmits a control signal that determines the operation of each imaging device 100, and corrects, stores, and displays image data from each imaging device 100. Image processing is performed. In addition, the control computer 108 acquires information regarding the relative positional relationship between the imaging devices from the detection unit. Based on this information, the control computer 108 determines the operation of each imaging device so as to reduce the discontinuity between the image data acquired from each imaging device as compared with the case where each imaging device shoots independently. . The operation of each imaging apparatus determined by the control computer 108 will be described in detail later. Based on this information, the control computer 108 determines an appropriate scan for each imaging device. Note that the photographer may specify the operation of each imaging device via the control console 114. The control computer 108 transmits a control signal based on the determined operation of each imaging apparatus to the control unit of each imaging apparatus, and transmits a control signal based on an exposure request from the control console 114 to the radiation control apparatus.
  • the radiation control device 109 receives a control signal from the control computer 108 and controls the operation of irradiating radiation from the radiation source 111 included in the radiation generation device 110.
  • the control console 114 inputs subject information and imaging conditions as parameters for various controls of the control computer 108 and transmits them to the control computer 108.
  • the display device 113 displays the image data processed by the control computer 108.
  • FIG. 2 shows an FPD having pixels of 3 rows ⁇ 3 columns for ease of explanation.
  • an actual imaging device has a larger number of pixels.
  • a 17-inch imaging device has about 2800 rows ⁇ about 2800 columns of pixels.
  • the detection unit 101 has a plurality of pixels arranged in a matrix.
  • the pixel includes a conversion element 201 that converts radiation or light into electric charge, and a switch element 202 that outputs an electrical signal corresponding to the electric charge.
  • a photoelectric conversion element that converts light irradiated to the conversion element into an electric charge
  • a PIN type photodiode that is arranged on an insulating substrate such as a glass substrate and mainly contains amorphous silicon is used. It may be a sensor.
  • an indirect type conversion element having a wavelength conversion body that converts radiation into light in a wavelength band that can be sensed by the photoelectric conversion element on the radiation incident side of the photoelectric conversion element described above, or radiation directly charged
  • a direct-type conversion element that converts to the above is preferably used.
  • the switch element 202 a transistor having a control terminal and two main terminals is preferably used, and in this embodiment, a thin film transistor (TFT) is used.
  • One electrode of the conversion element 201 is electrically connected to one of the two main terminals of the switch element 202, and the other electrode is electrically connected to the bias power source 203 via the common bias wiring BL.
  • a plurality of switch elements in the row direction for example, T11 to T13, have their control terminals connected in common to the drive wiring Vg1 in the first row, and drive that controls the conduction state of the switch elements from the drive circuit 102.
  • a signal is given in units of rows through the drive wiring.
  • a plurality of switch elements in the column direction for example, T11 to T31, have the other main terminal electrically connected to the signal wiring Sig1 in the first column, and while the switch element is in a conductive state, A corresponding electrical signal is output to the readout circuit 103 via the signal wiring.
  • a plurality of signal wirings Sig1 to Sig3 arranged in the column direction transmit electric signals output from a plurality of pixels to the readout circuit 103 in parallel.
  • the readout circuit 103 is provided with an amplification circuit 204 for amplifying the electrical signal output in parallel from the detection unit 101 corresponding to each signal wiring.
  • Each amplifier circuit 204 includes an integrating amplifier 205 that amplifies the output electric signal, a variable amplifier 206 that amplifies the electric signal from the integrating amplifier 205, and a sample hold circuit 207 that samples and holds the amplified electric signal. And including.
  • the integrating amplifier 205 has an operational amplifier that amplifies and outputs the read electrical signal, an integrating capacitor, and a reset switch. The integration amplifier 205 can change the amplification factor by changing the value of the integration capacitance.
  • the outputted electric signal is inputted to the inverting input terminal of the operational amplifier 205, the reference voltage Vref is inputted from the reference power supply 211 to the non-inverting input terminal, and the amplified electric signal is outputted from the output terminal.
  • the integration capacitor is disposed between the inverting input terminal and the output terminal of the operational amplifier.
  • the sample hold circuit 207 is provided corresponding to each amplifier circuit, and includes a sampling switch and a sampling capacitor.
  • the readout circuit 103 sequentially outputs the electrical signals read out in parallel from the respective amplification circuits 206 and outputs them as serial image signals, a buffer amplifier 209 that converts the impedance of the image signals and outputs them, Have
  • the image signal Vout which is an analog electrical signal output from the buffer amplifier 209, is converted into digital image data by the A / D converter 210 and output to the control computer 108 via the signal processing unit 105 shown in FIG. .
  • the bias power supply 203 supplies a bias voltage Vs in common to the other electrode of each conversion element via the bias wiring BL.
  • the reference power supply 211 supplies a reference voltage Vref to the non-inverting input terminal of each operational amplifier.
  • the drive circuit 102 In response to the control signals (D-CLK, OE, DIO, and SHL) input from the control unit 106 shown in FIG. 1, the drive circuit 102 is in a non-conductive state with the conduction voltage Vcom that makes the switch element conductive. A drive signal having a conduction voltage Vss is output to each drive wiring. Thereby, the drive circuit 102 controls the conduction state and non-conduction state of the switch element, and drives the detection unit 101.
  • the control signal D-CLK is a shift clock of a shift register used as a drive circuit
  • the control signal DIO is a pulse transferred by the shift register
  • OE is a signal for controlling the output terminal of the shift register.
  • the control signal SHL is a signal for selecting the shift direction (scanning direction) of the drive circuit.
  • the scan direction is the direction from the drive wiring Vg1 to Vg3, and when it is Lo level, the scan direction is the drive wiring.
  • the direction is from Vg3 to Vg1.
  • the control unit 106 controls the operation of each component of the reading circuit 103 by giving the reading circuit 103 a control signal RC, a control signal SH, and a control signal CLK.
  • the control signal RC controls the operation of the reset switch of the integrating amplifier
  • the control signal SH controls the operation of the sample hold circuit 207
  • the control signal CLK controls the operation of the multiplexer 208.
  • FIGS. 3 and 4 show an example in which two imaging devices are used for simplification of explanation, the present invention is not limited to this and is also suitable when three or more imaging devices are used. Is applicable.
  • the positional relationship when two imaging devices 100 are arranged on the same plane is as follows: a parallel arrangement parallel to the scanning direction shown in FIG. 3A, a serial series arrangement shown in FIG. There is a parallel arrangement shown in 3 (c) and an arrangement shifted in the scanning direction.
  • the scanning of the two imaging devices may be opposite to each other.
  • the dark output 301 included in the output of the imaging device has characteristics that vary with scanning of the imaging device, and shading occurs in the image data output due to the characteristic variation of the dark output 301.
  • the fluctuation characteristics of the dark output also depend on the time from the start of applying the bias voltage to the conversion element of the imaging device until the output of the image data. For this reason, even when correction is performed using dark output image data acquired separately from actual image data acquisition, shading may still be a problem because the data acquisition timing is different.
  • the scanning directions of two imaging devices arranged in parallel are opposite to each other, the fluctuation characteristics of the dark output between the two imaging devices are opposite to each other, and therefore, between adjacent pixels between the two imaging devices. A portion having a large difference in output characteristics during darkness occurs. As a result, image discontinuity may occur in the image data output from the two imaging devices. In the serial arrangement, the scanning of the two imaging devices may be in the same direction.
  • the detection unit of each imaging device may partially overlap in the direction parallel to the drive wiring. In such a case, if the start of scanning of each imaging device is at the same timing, a portion having a large dark output characteristic difference between adjacent pixels between the two imaging devices occurs in a partially overlapping region. As a result, image discontinuity may occur in the image data output from the two imaging devices.
  • control computer 108 operation control of each imaging apparatus by the control computer 108, which can reduce the above-described possibility.
  • operation control by the control computer 108 will be described with reference to FIGS. 4 and 5.
  • each imaging apparatus is controlled so that the scanning directions of the two imaging apparatuses arranged in parallel are in the same direction. Is desirable.
  • the fluctuation characteristics of the dark output between the two imaging devices are in the same direction, it is possible to prevent a portion having a large dark output characteristic difference between adjacent pixels between the two imaging devices. It becomes possible. Therefore, the possibility of image discontinuity occurring in the image data output from the two imaging devices is reduced.
  • the scanning directions of the two imaging devices arranged in series are opposite to each other, and the start or end of scanning of each imaging device is substantially the same. It is desirable to control the operation of each imaging apparatus so that the timing is reached. As a result, the start or end timing of scanning of adjacent pixels between the two image pickup devices becomes substantially equal, so that the dark output characteristics become close. Therefore, it is possible to prevent a portion having a large dark output characteristic difference between adjacent pixels between the two imaging devices. This reduces the possibility of image discontinuity occurring in the image data output from the two imaging devices.
  • the scanning directions of the two imaging devices are the same as each other, and the scanning ends of the imaging device in which scanning is started first and the scanning is started after that.
  • the operation of each imaging device may be controlled so that the start of scanning is substantially the same timing.
  • the accumulation time of the adjacent pixels between the two imaging devices becomes approximately equal, and the dark output characteristics become close.
  • the shooting time and the time until image display are shown in FIGS. 4C and 4D. It will be longer.
  • the scanning directions of the respective imaging devices are controlled so that the scanning directions of the two imaging devices are the same.
  • the scanning start timing of each imaging device is controlled so that pixels adjacent to each imaging device are scanned at approximately the same timing in a region where the detection units of each imaging device partially overlap in the scanning direction.
  • the dark output characteristics between adjacent pixels between the two imaging devices are close to each other in a partially overlapping region. Therefore, it is possible to prevent a portion having a large dark output characteristic difference between adjacent pixels between the two imaging devices. This reduces the possibility of image discontinuity occurring in the image data output from the two imaging devices.
  • the dark output characteristic difference between adjacent pixels between two imaging devices is equal to or smaller than a predetermined allowable amount, image discontinuity is not recognized in the image data, and the two imaging Image data obtained from the device can be used. If this dark output characteristic difference is buried in the random noise of the flat detector of at least one imaging device, the dark output characteristic difference is not recognized as image discontinuity in the image data. For this reason, it is desirable that the predetermined allowable amount is equal to or less than a level at which the dark output characteristic difference is buried in the random noise of the flat detector of at least one of the imaging devices.
  • the predetermined allowable amount is two times or less of the random noise of the flat detector of at least one imaging device in fluoroscopic imaging, and is equal to or less than the random noise of the flat detector of at least one imaging device in general imaging. It is desirable that Therefore, in fluoroscopic imaging, the control computer 108 controls each imaging device described above so that the dark output difference between adjacent pixels between the imaging devices is less than twice the random noise. Determine and control the operation of the device. In general photographing, the control computer 108 controls each imaging device described above to operate each imaging device so that a dark output difference between adjacent pixels between the imaging devices is equal to or less than random noise. Determine and control.
  • control computer 108 uses the information regarding the relative positional relationship between the imaging devices obtained from the detection means, and the dark output difference between adjacent pixels between the imaging devices is minimized. As described above, the operation of each imaging apparatus is determined and controlled. As a result, it is possible to prevent occurrence of a portion having a large dark output characteristic difference between adjacent pixels between the imaging devices. Therefore, the possibility of image discontinuity occurring in the image data output from the two imaging devices is reduced.
  • the scanning direction of each imaging device and / or the start timing of scanning is determined according to the above concept.
  • the control computer 108 in FIG. 1 has an asynchronous mode in which a plurality of imaging devices are operated independently and a synchronous mode in which the plurality of imaging devices are operated in synchronization.
  • Shooting may be either still image shooting (general shooting) or moving image shooting (perspective shooting).
  • the asynchronous mode and the synchronous mode may be switched during shooting, and still image shooting and moving image shooting may be switched.
  • a command to change the drive mode is transmitted to the drive unit of each imaging apparatus.
  • the standby operation is initialization in which the drive circuit 102 scans each drive wiring by at least one scanning method sequentially, batchwise, and sequentially every plurality of rows to initialize each conversion element 201. This is an operation in which the operation is repeated once or a plurality of times.
  • YES exposure request
  • the imaging operation is an operation for outputting image data from the imaging apparatus 100.
  • This imaging operation includes a storage circuit for turning off the switch element of each pixel during a predetermined period including a period during which radiation or light can be irradiated, and a drive circuit for outputting charges generated in each conversion element during the storage operation. Includes an output operation of sequentially scanning each drive wiring in units of one or more rows. Further, when there is an end request (YES), the operation is ended, and when there is no end request (NO), the process is returned and the mode is determined.
  • the control computer scans each imaging device with the control method described above based on the information on the relative positional relationship between the imaging devices received from the detection unit shown in FIG. To decide.
  • the determined scan may be displayed on the display device 113, and the user may determine the scan based on it.
  • the control computer transmits a command to change the scanning to the drive unit of each imaging apparatus. In the case of moving image shooting, scanning may be changed for each frame.
  • NO no radiation exposure request
  • the control computer transmits a command to perform a standby operation in synchronization with the control unit of each imaging apparatus.
  • control computer When there is an exposure request (YES), the control computer transmits a command to perform a photographing operation in synchronization with the control unit of each imaging apparatus. Further, when there is an end request (YES), the operation is ended, and when there is no end request (NO), the process is returned and the mode is determined.
  • This flowchart is another example of the block for obtaining the arrangement information of each imaging device and the block for determining the scan change, which are indicated by the portions surrounded by a broken line in the flowchart of FIG.
  • the control computer determines a suitable scan for each image pickup device by the control method described above based on the information on the relative positional relationship of each image pickup device received from the detection means shown in FIG. Further, the control computer displays on the display device 113 the arrangement relationship of each imaging device and a suitable scan to the user. If the image discontinuity is improperly arranged, information for warning this may be displayed. Based on these displays, the user may respecify the scanning method. When the radiation imaging system has a mechanism (not shown) that holds the imaging device and an engine (not shown) that drives the mechanism, the user may be able to correct the position or posture of the imaging device.
  • control computer determines a suitable operation of the imaging device and a suitable moving position of each imaging device using the arrangement information of each imaging device, and displays them to the user.
  • the control computer moves each imaging device to a position or posture designated by the user by a mechanism that holds the imaging device and an engine that drives the mechanism.
  • the imaging apparatus 700a illustrated in FIG. 7 uses the same FPD (A) as the FPD 104 of the imaging apparatus 100a illustrated in FIGS. 1 and 2, and the imaging apparatus 700b has the same pixel pitch as the FPD 104 and the number of pixels.
  • FPD (B) Specifically, compared with FPD (A), FPD (B) has a larger number of rows of pixels constituting the detection unit.
  • a case is considered in which, when each imaging device is imaged independently, the scanning time for acquiring one image of each imaging device is the same, and the imaging devices are arranged in parallel.
  • the imaging device 700a uses the same FPD (A) as the FPD 104 of the imaging device 100a shown in FIGS. 1 and 2, and the imaging device 700b has the same number of pixels as the FPD 104 but has a different pixel pitch. ) Is used.
  • a case is considered in which the scanning times for acquiring one image of each imaging device are the same and the imaging devices are arranged in parallel.
  • the imaging devices 700a and 700b both use the same FPD, but the scanning time for acquiring one image of the imaging device 700b is different from the scanning time for acquiring one image of the imaging device 700a.
  • the imaging devices are arranged in parallel.
  • the FPDs of the respective imaging devices are different in pixel pitch, number of pixels, and scanning time for acquiring an image, and the imaging devices are arranged in parallel. In these cases, a portion having a large dark output characteristic difference occurs between adjacent pixels between the two imaging devices. As a result, image discontinuity may occur in the image data output from the two imaging devices.
  • the control computer 108 controls the operation of each imaging device so that the scanning directions of the two imaging devices arranged in parallel are in the same direction.
  • the control computer 108 controls the operation of each imaging device so that the closest pixels between the two imaging devices are scanned at the same timing. For example, when two imaging devices having the same pixel pitch and different number of pixels in FPD (B) and FPD (A) are arranged in parallel, the control clock D-CLK of the shift register included in the drive circuit of each imaging device Of the same frequency. As a result, it is possible to prevent occurrence of a portion having a large dark output characteristic difference between adjacent pixels between the two imaging devices. Therefore, the possibility of image discontinuity occurring in the image data output from the two imaging devices is reduced.
  • FIG. 8A is a timing chart showing the operations of the imaging devices 701a and 701b in the asynchronous mode of the present embodiment.
  • FIG. 8B is a timing chart showing the operations of the imaging devices 701a and 701b in the synchronous mode of this embodiment.
  • the control unit controls the FPD so as to perform a standby operation including an initialization operation k in which the FPD is repeated at a predetermined cycle until a control signal based on a radiation exposure request is received from the control computer.
  • the control unit receives a control signal based on the radiation exposure request from the control computer, the control unit performs an imaging operation including the accumulation operation W and the output operation H.
  • Radiation image data is acquired by the imaging device by the first accumulation operation and output operation, and offset correction image data is acquired by the second accumulation operation and output operation.
  • At least one initialization operation k is performed in the same cycle as the first accumulation operation W and the initialization operation K before the output operation H. This makes it possible to perform good offset correction that matches the driving history of each image data and reduces shading.
  • the initializing operation is not limited to one time, and may be performed a plurality of times at the same cycle as the initializing operation k before the first accumulation operation W and the output operation H.
  • the imaging devices 701a and 701b operate independently of each other. Therefore, the start time, length, number of repetitions, and the like of each operation are different between FPD (A) and FPD (B).
  • the time required for scanning, the start time, and the like differ between the respective imaging devices, and image discontinuity may occur, leading to deterioration in image quality during image composition. is there.
  • the control units of the imaging devices 701a and 701b operate the FPD (A) and the FPD (B) according to the synchronization signal from the control computer.
  • the start time and the number of repetitions of each operation in the standby operation and the shooting operation of the FPD (A) and FPD (B) are synchronized.
  • the period of each operation is set. Match.
  • This embodiment includes control for matching the required time for scanning when different types of FPDs are mixed. Therefore, in addition to the effects of the first embodiment, the discontinuity of the image data output from the plurality of imaging devices shown in FIG. 1 is reduced, and it is possible to further reduce the deterioration in image quality during image composition. .
  • Each embodiment of the present invention can also be realized by, for example, a computer included in the control unit 105 of FIG. 1 or the control computer 108 executing a program. Further, a means for supplying the program to the computer, for example, a computer-readable recording medium such as a CD-ROM in which such a program is recorded, or a transmission medium such as the Internet for transmitting the program is also applied as an embodiment of the present invention. Can do.
  • the above program can also be applied as an embodiment of the present invention.
  • the above program, recording medium, transmission medium, and program product are included in the scope of the present invention. Further, an invention based on a combination that can be easily imagined from the first or second embodiment is also included in the scope of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 画像合成時の画質低下を防ぐことが可能な撮像システムを提供する。 撮像システムは、変換素子201とスイッチ素子202を有する画素が行列状に複数配置された検出部101と、走査方向が双方向に設定可能で検出部101を駆動する駆動回路102と、読出回路104と、を備えて、照射された放射線又は光に応じた画像データを出力する撮像動作を行うための検出器104と、検出器104の動作を制御する制御部106と、を夫々有し、夫々独立に撮像可能で相対的な位置関係が変位可能な複数の撮像装置100a,bと、複数の撮像装置100a,bの相対的な位置関係に関する情報を取得する検知手段107a,bと、制御部106に撮像装置の動作を決定する制御信号を送信する制御コンピュータ108と、を備え、制御コンピュータ108は、検知手段107a,bから取得した情報を用いて複数の撮像装置100a,bの動作を決定する。

Description

撮像システム及びその制御方法
 本発明は、撮像システム及びその制御方法に関するものである。より具体的には、医療診断における一般撮影などの静止画撮影や透視撮影などの動画撮影に好適に用いられる、放射線撮像システムに用いられる撮像システム及びその制御方法に関する。なお、本発明において放射線は、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども、含まれるものとする。
 近年、X線による医療画像診断や非破壊検査に用いる撮影装置として、半導体材料によって形成された平面検出器(Flat Panel Detector、以下FPDと略す)を用いた放射線撮像装置が実用化されている。このような放射線撮像装置は、例えば医療画像診断においては、一般撮影のような静止画撮影や、透視撮影のような動画撮影のデジタル撮像装置として用いられている。
 このような放射線撮像装置において、特許文献1では、2次元状に配された複数の光電変換素子を有する基板(上記FPDに相当)を複数隣接して配置した光電変換装置が開示されている。この光電変換装置において、走査回路又は検出用回路の少なくともいずれか一方が該光電変換装置の対向する2辺に配され、該2辺に配された回路の走査方向が同じ方向に設定可能であることが開示されている。ここで、特許文献1において、複数のFPDは予め定められた位置関係で隣接して固定配置されている。
 また、特許文献2では、第1のX線管球と第1のX線検出回路部とを用いて第1の画像データを撮像する。また、第2のX線管球と第2のX線検出回路部とを用いて第2の画像データを撮像する。そして得られた第1の画像データと第2の画像データとを演算処理し、被写体の断層画像又は3次元画像を生成することが検討されている。ここで、特許文献2において、第1のX線検出回路部と第2のX線検出回路部は直交した位置に、予め定められた位置関係で固定配置されている。
 以上の文献に示されたFPDを複数用いた撮像システムにおいては、各FPDは同一もしくは対称な構造であり、予め定められた位置関係で固定配置されたものであることを前提としている。
特開平9-135013号公報 特開2006-346011号公報
 しかしながら、独立に撮像可能(画像取得可能)なFPDを複数用いて、各FPDを自由に配置可能な撮像システムを構築する場合、自由に配置され得る各FPDがどのような位置関係で配置されるかは予め決まっていない。そのため、各FPDの位置関係によっては、走査方向の不一致等、各FPD間での走査方法の不整合が生じ、各FPDから得られた複数の画像の連続性が損なわれる恐れがある。また、複数のFPDで駆動時間が異なる場合にも、各FPD間での走査方法の不整合が生じ、各FPDから得られた複数の画像の連続性が損なわれる恐れがある。従って、複数のFPDから得られた複数の画像を画像合成する時に、各画像間でアーティファクトが生じ、画質低下を招く恐れがある。
 本願発明者は、独立に画像取得可能なFPDを複数用いて、各FPDを自由に配置可能な撮像システムにおいて、画像合成時の画質低下を防ぐことが可能な撮像システムを提供すべく、鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。
 本発明に係る撮像システムは、放射線又は光を電荷に変換する変換素子と前記電荷に応じた電気信号を出力するスイッチ素子とを有する画素が行列状に複数配置された検出部と、行方向の複数のスイッチ素子に接続されて列方向に複数配置された駆動配線に接続され、複数の前記駆動配線に駆動信号を与える順序の方向である走査方向が双方向に設定可能であり、前記検出部を駆動する駆動回路と、列方向の複数のスイッチ素子に接続されて行方向に複数配置された信号配線に接続され、前記走査方向で駆動された検出部からの電気信号を画像データとして出力する読出回路と、を備え、照射された放射線又は光に応じた画像データを出力する撮像動作を行うための検出器と、前記検出器の動作を制御する制御部と、を夫々有し、夫々独立に撮像可能で相対的な位置関係が変位可能な複数の撮像装置と、前記複数の撮像装置の前記相対的な位置関係に関する情報を取得する検知手段と、前記検知手段から取得した前記情報を用いて前記複数の撮像装置の動作を決定し、決定した前記撮像装置の動作を実行させる制御信号を前記制御部に送信する制御コンピュータと、を備え、前記制御コンピュータは、前記相対的な位置関係が各撮像装置の走査方向に対して前記複数の撮像装置が並列に配置された並列配置である場合には前記複数の撮像装置の走査方向が互いに同方向となるように、前記相対的な位置関係が各撮像装置の走査方向に対して前記複数の撮像装置が直列に配置された直列配置である場合には前記複数の撮像装置の走査方向が互いに逆方向となり且つ前記複数の撮像装置の走査の開始又は終了が同じタイミングとなるように、前記複数の撮像装置の動作を決定することを特徴とする。
 本発明に係る撮像システムの制御方法は、放射線又は光を電荷に変換する変換素子と前記電荷に応じた電気信号を出力するスイッチ素子とを有する画素が行列状に複数配置された検出部と、行方向の複数のスイッチ素子に接続されて列方向に複数配置された駆動配線に接続され、複数の前記駆動配線に駆動信号を与える順序の方向である走査方向が双方向に設定可能であり、前記検出部を駆動する駆動回路と、列方向の複数のスイッチ素子に接続されて行方向に複数配置された信号配線に接続され、前記走査方向で駆動された検出部からの電気信号を画像データとして出力する読出回路と、を備え、照射された放射線又は光に応じた画像データを出力する撮像動作を行うための検出器と、前記検出器の動作を制御する制御部と、を夫々有し、夫々独立に撮像可能で相対的な位置関係が変位可能な複数の撮像装置を備えた撮像システムの制御方法であって、前記複数の撮像装置の前記相対的な位置関係に関する情報を取得する工程と、前記情報を用いて前記複数の撮像装置の動作を決定する工程と、を含み、前記決定する工程は、前記相対的な位置関係が各撮像装置の走査方向に対して前記複数の撮像装置が並列に配置された並列配置である場合には前記複数の撮像装置の走査方向が互いに同方向となるように、前記相対的な位置関係が各撮像装置の走査方向に対して前記複数の撮像装置が直列に配置された直列配置である場合には前記複数の撮像装置の走査方向が互いに逆方向となり且つ前記複数の撮像装置の走査の開始又は終了が同じタイミングとなるように、前記複数の撮像装置の動作を決定することを特徴とする。
 本願発明により、独立に画像取得可能なFPDを複数用いて各FPDを自由に配置可能な撮像システムにおいて、画像合成時の画質低下を防ぐことが可能な撮像システムを提供することが可能となる。
本発明の第1の実施形態に係る撮像システムのブロック図である。 本発明に係る撮像装置の等価回路図である。 本発明における本発明の撮像装置の動作において検討すべき事項を説明するためのブロック図である。 本発明に係る撮像システムの動作制御を説明するためのブロック図である。 本発明に係る撮像システムの動作制御を説明するためのブロック図である。 本発明に係る撮像システムの動作制御を説明するためのフローチャートである。 本発明の第2の実施形態に係る撮像システムのブロック図である。 本発明の第2の実施形態に係る撮像システムの動作を説明するためのタイミングチャートである。
 以下、本発明を好適に適用可能な実施形態について図面を参照しながら詳細に説明する。
 (第1の実施形態)
 まず、図1(a),(b)を用いてに本実施形態に係る撮像システムを説明する。本実施形態の放射線撮像システムは、放射線発生装置110、放射線制御装置109、制御コンピュータ108、複数の撮像装置100a,100b、複数の撮像装置の位置関係を検知する検知手段である検知部107a,107bを含むものである。また、本実施形態の放射線撮像システムは、更に表示装置113、制御卓114を含むものである。なお、本実施形態では、第1撮像装置100aと第2撮像装置100bの2つの撮像装置を用いている。以下、第1撮像装置に係る構成要素にはaの符号を、第2撮像装置に係る構成要素にはbの符号を付与するが、共通する記載に関しては符号を省略して説明する。
 各撮像装置100は、平面検出器(FPD)104と、信号処理部105と、制御部106と、を含む。FPD104は、放射線又は光を電気信号に変換する画素を複数備えた検出部101と、検出部を駆動する駆動回路102と、駆動された検出部からの電気信号を画像データとして出力する読出回路103と、を有する。信号処理部105は、FPD104からの画像データを処理して出力する。制御部106は、制御コンピュータ108からの制御信号に基づき、各構成要素に夫々制御信号を供給してFPDの動作を制御する。FPDの動作としては、同期モード、非同期モード、等の各種動作モードを含む。また、制御部106は、不図示の外部電源や内蔵バッテリーから電圧を受けて、検出部101、駆動回路102、及び読出回路103で必要な電圧を供給するレギュレータやインバータ等の電源回路を内包している。そして、各撮像装置100は、夫々独立に撮像可能(画像取得可能)であり、また被検体112に対して夫々自由に配置可能、つまり変位可能である。
 本発明の検知手段は、各撮像装置100の相対的な位置関係を検知する。本実施形態では、各撮像装置100に備えられた検知部107が検知手段に相当する。検知部107は、センサ、演算器、通信手段等を含み、各撮像装置間の相対位置関係を検知する。本実施形態では、各撮像装置100が夫々センサ、演算器、通信手段を有し、センサが各撮像装置間の距離や方位等を検知し、演算器が撮像装置の位置や姿勢を演算して複数の撮像装置の相対的な位置関係を取得する。ここで、センサとしては、電子コンパス、加速度センサ、距離センサ等が好適に用いられる。なお、本実施形態では、各撮像装置が検出部107を有する例を示したが、本発明はこれに限定されるものではなく、撮像システムとして検知手段を有していればよい。撮像装置100とは別に検知手段を備える例としては、各撮像装置100をアーム等の機械的保持機構に取り付け、その機械的保持機構にエンコーダ等の検知部を設け、その検知手段により長さや角度等を検知してもよい。機械的保持機構は、外力により受動的に動く機関を有してもよく、またアクチュエータを備えて能動的に動く機関を有してもよい。また、各撮像装置にセンサと通信手段を有し、後述する制御コンピュータ108に演算器を有し、それらにより検出手段を構成してもよい。検知手段の演算器は、各撮像装置の配置情報を基にして、演算処理により共通の座標系における各撮像装置の相対的な位置関係を求める。ここで、配置情報は、FPDの座標系を共通の座標系に変換するための情報、又は、共通の座標系をFPDの座標系に変換するための情報を含む。配置情報として例えば、FPDの特定画素を示す情報、駆動回路が配置された検出部の第1辺と読出回路が配置された検出部の第2辺を示す情報、FPDの放射線又は光が入射する入射面を示す情報、第1辺及び第2辺の縮尺を示す情報、を含む。本実施形態においてFPDの特定画素とは、第1辺と第2辺が交差する角に位置する画素であり、例えば図2では3行1列の画素に相当する。そして特定画素を示す情報は、検出部内における特定画素が、駆動回路及び読出回路とどのような相対位置にあるかを示す情報であり、上記例では、FPDの座標系として第1辺をY軸、第2辺をX軸とすると原点に相当することを示す情報である。また、上記例において第1辺を示す情報は、第1辺が特定画素を原点とする第1象限のY軸であることを示す情報であり、第2辺を示す情報は、第2辺が特定画素を原点とする第1象限のX軸であることを示す情報である。更に、上記例において第1辺及び第2辺の縮尺を示す情報は、検出部内の画素のピッチによって規定される情報である。本実施形態では、検知手段としての検知部107がFPDと一体化して撮像装置に設けられているため、検知部107からみたFPDの特定画素を示す情報、第1辺と第2辺を示す情報、入射面を示す情報、縮尺を示す情報を用いて、共通の座標系への変換を行う。また、配置情報は、一方の撮像装置から見た他方の撮像装置の方位を示す情報を更に含んでも良い。
 制御コンピュータ108は、放射線発生装置110と各撮像装置100との同期や、各撮像装置100の動作を決定する制御信号の送信、各撮像装置100からの画像データに対して補正や保存・表示のための画像処理を行う。また、制御コンピュータ108は、検知手段から各撮像装置の相対的な位置関係に関する情報を取得する。制御コンピュータ108はこの情報に基づき、各撮像装置が夫々独立に撮影する場合に比べて各撮像装置から取得された画像データ間の不連続性を低減するように、各撮像装置の動作を決定する。なお、制御コンピュータ108によって決定される各撮像装置の動作は、後ほど詳細に説明する。この情報を基にして、制御コンピュータ108は各撮像装置の適切な走査を決定する。なお、撮影者が制御卓114を介して各撮像装置の動作を指定してもよい。制御コンピュータ108は、各撮像装置の制御部に決定された各撮像装置の動作に基づく制御信号を送信し、また放射線制御装置に制御卓114からの曝射要求に基づく制御信号を送信する。
 放射線制御装置109は制御コンピュータ108からの制御信号を受けて、放射線発生装置110に内包される放射線源111から放射線を照射する動作の制御を行う。制御卓114は、制御コンピュータ108の各種制御のためのパラメータとして被検体の情報や撮影条件の入力を行い制御コンピュータ108に伝送する。表示装置113は、制御コンピュータ108で画像処理された画像データを表示する。
 次に、図2を用いて本発明に係る撮像装置に適用されるFPDを説明する。なお、図1を用いて説明した構成と同じものは同じ番号を付与してあり、詳細な説明は割愛する。また、図2では説明の簡便化のために3行×3列の画素を有するFPDを示す。しかしながら、実際の撮像装置はより多画素であり、例えば17インチの撮像装置では約2800行×約2800列の画素を有している。
 検出部101は、行列状に複数配置された画素を有する。画素は、放射線又は光を電荷に変換する変換素子201と、その電荷に応じた電気信号を出力するスイッチ素子202と、を有する。本実施形態では、変換素子に照射された光を電荷に変換する光電変換素子として、ガラス基板等の絶縁性基板上に配置されアモルファスシリコンを主材料とするPIN型フォトダイオードを用いるが、MIS型センサでもよい。また、変換素子としては、上述の光電変換素子の放射線入射側に放射線を光電変換素子が感知可能な波長帯域の光に変換する波長変換体を備えた間接型の変換素子や、放射線を直接電荷に変換する直接型の変換素子が好適に用いられる。スイッチ素子202としては、制御端子と2つの主端子を有するトランジスタが好適に用いられ、本実施形態では薄膜トランジスタ(TFT)が用いられる。変換素子201の一方の電極はスイッチ素子202の2つの主端子の一方に電気的に接続され、他方の電極は共通のバイアス配線BLを介してバイアス電源203と電気的に接続される。行方向の複数のスイッチ素子、例えばT11~T13は、それらの制御端子が1行目の駆動配線Vg1に共通に電気的に接続されており、駆動回路102からスイッチ素子の導通状態を制御する駆動信号が駆動配線を介して行単位で与えられる。列方向の複数のスイッチ素子、例えばT11~T31は、他方の主端子が1列目の信号配線Sig1に電気的に接続されており、スイッチ素子が導通状態である間に、変換素子の電荷に応じた電気信号を、信号配線を介して読出回路103に出力する。列方向に複数配列された信号配線Sig1~Sig3は、複数の画素から出力された電気信号を並列に読出回路103に伝送する。
 読出回路103は、検出部101から並列に出力された電気信号を増幅する増幅回路204を信号配線毎に対応して設けている。また、各増幅回路204は、出力された電気信号を増幅する積分増幅器205と、積分増幅器205からの電気信号を増幅する可変増幅器206と、増幅された電気信号をサンプルしホールドするサンプルホールド回路207と、を含む。積分増幅器205は、読み出された電気信号を増幅して出力する演算増幅器と、積分容量と、リセットスイッチと、を有する。積分増幅器205は、積分容量の値を変えることで増幅率を変更することが可能である。演算増幅器205の反転入力端子には出力された電気信号が入力され、非反転入力端子には基準電源211から基準電圧Vrefが入力され、出力端子から増幅された電気信号が出力される。また、積分容量が演算増幅器の反転入力端子と出力端子の間に配置される。サンプルホールド回路207は、各増幅回路に対応して設けられ、サンプリングスイッチとサンプリング容量とによって構成される。また読出回路103は、各増幅回路206から並列に読み出された電気信号を順次出力して直列信号の画像信号として出力するマルチプレクサ208と、画像信号をインピーダンス変換して出力するバッファ増幅器209と、を有する。バッファ増幅器209から出力されたアナログ電気信号である画像信号Voutは、A/D変換器210によってデジタルの画像データに変換され、図1に示す信号処理部105を介して制御コンピュータ108へ出力される。
 図1の制御部106は、図2に示すバイアス電源203、増幅回路の基準電源211を含む。バイアス電源203は、バイアス配線BLを介して各変換素子の他方の電極に共通にバイアス電圧Vsを供給する。基準電源211は、各演算増幅器の非反転入力端子に基準電圧Vrefを供給する。
 駆動回路102は、図1に示す制御部106から入力された制御信号(D-CLK、OE、DIO、SHL)に応じて、スイッチ素子を導通状態にする導通電圧Vcomと非導通状態とする非導通電圧Vssを有する駆動信号を、各駆動配線に出力する。これにより、駆動回路102はスイッチ素子の導通状態及び非導通状態を制御し、検出部101を駆動する。ここで、制御信号D-CLKは駆動回路として用いられるシフトレジスタのシフトクロックであり、制御信号DIOはシフトレジスタが転送するパルス、OEはシフトレジスタの出力端を制御する信号である。また、制御信号SHLは駆動回路のシフト方向(走査方向)を選択する信号であり、Hiレベルであれば走査方向は駆動配線Vg1からVg3に向かう方向となり、Loレベルであれば走査方向は駆動配線Vg3からVg1に向かう方向となる。以上により、検出部の駆動の所要時間と、走査方向が双方向に設定可能な駆動回路102が駆動配線に駆動信号を与える順序の方向である走査方向を設定する。また、制御部106は、読出回路103に制御信号RC、制御信号SH、及び制御信号CLKを与えることによって、読出回路103の各構成要素の動作を制御する。ここで、制御信号RCは積分増幅器のリセットスイッチの動作を、制御信号SHはサンプルホールド回路207の動作を、制御信号CLKはマルチプレクサ208の動作を制御するものである。
 次に、図3~図5を用いて、本発明の各撮像装置の動作を決定する概念を説明する。なお、図3及び図4では、説明の簡略化のため2つの撮像装置を用いた例を示しているが、本願発明はそれに限定されることなく3以上の撮像装置を用いた場合にも好適に適用できるものである。
 まず図3を用いて、本発明の撮像装置の動作において検討すべき事項である、各撮像装置から取得された画像データ間の不連続性について説明する。撮影装置100を同一平面上に2個配置したときの位置関係は、図3(a)に示す走査方向に対して並列な並列配置と、図3(b)に示す直列な直列配置と、図3(c)に示す並列配置であって走査方向にずれた配置と、がある。並列配置では、2個の撮像装置の走査が互いに逆方向となる場合がある。撮像装置の出力に含まれる暗時出力301は、撮像装置の走査に伴い変動する特性を有しており、この暗時出力301の特性変動によって出力された画像データにシェーディングが生じる。また、この暗時出力の変動特性は、撮像装置の変換素子へのバイアス電圧の印加が開始されてから画像データを出力するまでの時間にも応じるものである。そのため、実際の画像データの取得とは別に取得された暗時出力画像データを用いた補正を行っても、データ取得のタイミングが異なるため、シェーディングがなお問題となる場合がある。並列配置された2つの撮像装置の走査方向が互いに逆方向である場合、2つの撮像装置間で暗時出力の変動特性が逆向きとなるため、2つの撮像装置間で近接する画素の間で大きな暗時出力特性差を有する箇所が生じる。それによって2つの撮像装置から出力される画像データに画像の不連続性が生じる可能性がある。また、直列配置では、2個の撮像装置の走査が同方向となる場合がある。直列配置された2つの撮像装置の走査方向が同方向である場合、2つの撮像装置間で暗時出力の変動特性が同じ向きとなるため、2つの撮像装置間で近接する画素の間で大きな暗時出力特性差を有する箇所が生じる。それによって2つの撮像装置から出力される画像データに画像の不連続性が生じる可能性がある。また、並列配置であって走査方向にずれた配置では、各撮像装置の検出部が駆動配線に平行な方向において一部重なる場合がある。このような場合に、各撮像装置の走査の開始が同じタイミングであれば、一部重なる領域において2つの撮像装置間で近接する画素の間で大きな暗時出力特性差を有する箇所が生じる。それによって2つの撮像装置から出力される画像データに画像の不連続性が生じる可能性がある。
 そこで本願発明者は、上記の可能性を低減し得る、制御コンピュータ108による各撮像装置の動作制御を見出した。以下、図4及び図5に基づいて、制御コンピュータ108による動作制御を説明する。
 並列配置の場合には、図4(a)及び(b)に示すように、並列配置された2つの撮像装置の走査方向が互いに同方向となるように、各撮像装置の動作を制御することが望ましい。これにより、2つの撮像装置間で暗時出力の変動特性が同じ向きとなるため、2つの撮像装置間で近接する画素の間で大きな暗時出力特性差を有する箇所が生じることを防ぐことが可能となる。そのため2つの撮像装置から出力される画像データに画像の不連続性が生じるおそれが低減される。
 直列配置の場合には、図4(c)及び(d)に示すように、直列配置された2つの撮像装置の走査方向が互いに逆方向となり且つ各撮像装置の走査の開始又は終了が概略同じタイミングとなるように、各撮像装置の動作を制御することが望ましい。これにより、2つの撮像装置間で近接する画素の走査の開始若しくは終了のタイミングが概略等しくなるため暗時出力特性が近くなる。そのため、2つの撮像装置間で近接する画素の間で大きな暗時出力特性差を有する箇所が生じることを防ぐことが可能となる。それにより2つの撮像装置から出力される画像データに画像の不連続性が生じるおそれが低減される。
 またこの場合には、図4(e)に示すように、2つの撮像装置の走査方向が互いに同方向となり且つ先に走査が開始される撮像装置の走査終了と後に走査が開始される撮像装置の走査開始とが概略同じタイミングとなるように、各撮像装置の動作を制御してもよい。これにより、2つの撮像装置間で近接する画素の蓄積時間が概略等しくなるため暗時出力特性が近くなる。ただし、この制御では、撮像装置の走査にかかる全体の時間が図4(c)及び(d)に比べて長くなるため、撮影時間及び画像表示までの時間が図4(c)及び(d)より長くなる。
 並列配置であって走査方向にずれた配置の場合には、図5に示すように、2つの撮像装置の走査方向が互いに同方向となるように、各撮像装置の走査方向を制御する。加えて、各撮像装置の検出部が走査方向において一部重なる領域において、各撮像装置間で近接する画素が概略同じタイミングで走査されるように、各撮像装置の走査開始のタイミングを制御する。これにより、一部重なる領域において2つの撮像装置間で近接する画素の間の暗時出力特性が近くなる。そのため、2つの撮像装置間で近接する画素の間で大きな暗時出力特性差を有する箇所が生じることを防ぐことが可能となる。それにより2つの撮像装置から出力される画像データに画像の不連続性が生じるおそれが低減される。
 ここで、2つの撮像装置間で近接する画素の間の暗時出力特性差が、所定の許容量以下であれば、画像データに画像の不連続性が認識されることはなく、2つの撮像装置から得られた画像データを使用することができる。この暗時出力特性差が少なくとも一方の撮像装置の平面検出器のランダムノイズに埋没してしまえば、暗時出力特性差が画像データに画像の不連続性として認識されない。そのため、所定の許容量は、暗時出力特性差が少なくとも一方の撮像装置の平面検出器のランダムノイズに埋没するレベル以下であることが望ましい。具体的には、所定の許容量は、透視撮影においては少なくとも一方の撮像装置の平面検出器のランダムノイズの2倍以下、一般撮影においては、少なくとも一方の撮像装置の平面検出器のランダムノイズ以下であることが望ましい。そこで透視撮影においては、制御コンピュータ108は、上述した各撮像装置の制御を、各撮像装置間で近接する画素の間の暗時出力差が、ランダムノイズの2倍以下になるように、各撮像装置の動作を決定して制御する。また一般撮影においては、制御コンピュータ108は、上述した各撮像装置の制御を、各撮像装置間で近接する画素の間の暗時出力差が、ランダムノイズ以下になるように、各撮像装置の動作を決定して制御する。そしてより好ましくは、制御コンピュータ108は、検知手段から得られた各撮像装置の相対的な位置関係に関する情報を用いて、各撮像装置間で近接する画素の間の暗時出力差が最も小さくなるように、各撮像装置の動作を決定して制御する。これにより、各撮像装置間で近接する画素の間で大きな暗時出力特性差を有する箇所が生じることを防ぐことが可能となる。それため、2つの撮像装置から出力される画像データに画像の不連続性が生じるおそれが低減される。
 ここで、2以上の撮像装置を配置する場合も、上記の概念に従って各撮像装置の走査方向及び/又は走査の開始のタイミングを決定する。また、取得した画像データに対して相対的な位置関係に関する情報を利用した画像処理を行ってもよい。例えば、共通の座標系における位置や方向などを合わせるために、画像データの移動又は反転又は回転を行う処理が好適である。
 次に、図6(a)に示したフローチャートを用いて本発明に係る撮像装置及び撮像システムの動作を説明する。図1の制御コンピュータ108は、複数の撮像装置を独立に動作させる非同期モードと、複数の撮像装置を同期して動作させる同期モードを有する。撮影は静止画撮影(一般撮影)と動画撮影(透視撮影)のどちらでもよい。また、撮影中に非同期と同期のモードを、又静止画撮影と動画撮影とを切り替えてもよい。モード又は撮影を切り替えるときは、各撮像装置の駆動ユニットに駆動モードを変更する指令を送信する。
 非同期モードにおいて、放射線の曝射要求がない場合(NO)は、個々の撮像装置の駆動制御ユニットに対して非同期の待機動作をおこなう指令を送信する。ここで、待機動作とは、駆動回路102が順次に、一括に、及び複数行毎で順次に、の少なくとも1つの走査方法で各駆動配線を走査して各変換素子201を初期化する初期化動作を、1回又は複数回繰り返し行う動作である。曝射要求がある場合(YES)は非同期の撮影動作をおこなう指令を送信する。ここで、撮像動作とは、撮像装置100から画像データを出力するための動作である。この撮像動作は、放射線又は光が照射され得る期間を含む所定期間に各画素のスイッチ素子を非導通状態とする蓄積動作と、蓄積動作に各変換素子で発生した電荷を出力するために駆動回路が1行又は複数行単位で順次に各駆動配線を走査する出力動作と、を含む。また、終了要求がある場合(YES)は動作を終了し、終了要求がない場合(NO)は戻ってモードの判定を行う。
 次に、同期モードにおいて、制御コンピュータは、図1に示した検知手段から受け取った各撮像装置の相対的な位置関係に関する情報に基づいて、先に説明した制御方法により各撮像装置の好適な走査を決定する。決定された走査を表示装置113に表示し、それに基づいて利用者が走査を決定してもよい。走査の変更が必要な場合は、制御コンピュータは各撮像装置の駆動部に走査を変更する指令を送信する。動画撮影の場合は毎フレームごとに、走査を変更してもよい。放射線の曝射要求がない場合(NO)は、制御コンピュータは各撮像装置の制御部に対して同期して待機動作を行うよう指令を送信する。曝射要求がある場合(YES)は、制御コンピュータは各撮像装置の制御部に対して同期して撮影動作を行うよう指令を送信する。また、終了要求がある場合(YES)は動作を終了し、終了要求がない場合(NO)は戻ってモードの判定を行う。
 次に、図6(b)に示したフローチャートを用いて本発明に係る放射線撮像システムの別の制御を説明する。このフローチャートは、図6(a)のフローチャートにおいて破線で囲った箇所で示した、各撮像装置の配置情報の取得を行うブロックと、走査変更の判断を行うブロックの、別の例である。
 制御コンピュータは、図1に示した検知手段から受け取った各撮像装置の相対的な位置関係に関する情報に基づいて、先に説明した制御方法により各撮像装置の好適な走査を決定する。また、制御用コンピュータは利用者に各撮像装置の配置関係と好適な走査を表示装置113に表示する。もし画像不連続性が増加する不適切な配置である場合には、これを警告する情報を表示してもよい。これらの表示に基づき、利用者は走査方法を指定しなおしてもよい。また、放射線撮像システムが撮像装置を保持する機構(不図示)と機構を駆動する機関(不図示)をもつ場合、利用者が撮像装置の位置又は姿勢を修正できるようにしてもよい。この場合、制御コンピュータは、各撮像装置の配置情報を用いて好適な撮像装置の動作と好適な各撮像装置の移動位置を決定し、利用者に表示する。利用者が決定した場合に、制御コンピュータは撮像装置を保持する機構と機構を駆動する機関により、各撮像装置を利用者の指定した位置又は姿勢に移動する。
 (第2の実施形態)
 次に、図7を用いて本発明の第2の実施形態に係る撮像装置を説明する。なお、第1の実施形態と構成が同じものは同じ番号を付与してあり、詳細な説明は割愛する。
 第1の実施形態において、複数の撮像装置及びFPDは同一であることを想定していたが、本実施形態では異種のFPDが混在した実施形態を示す。ここでは、図7に示す撮像装置700aは、図1及び図2に示す撮像装置100aのFPD104と同じFPD(A)を用いており、撮像装置700bは、FPD104とは画素ピッチが同じで画素数が異なるFPD(B)を用いている。具体的には、FPD(A)と比較して、FPD(B)は検出部を構成する画素の行数が多くなっている。このような場合で、各撮像装置を夫々独立に撮像させた場合に各撮像装置の1画像を取得するための走査の時間が同じで、各撮像装置が並列配置された場合を考える。また、撮像装置700aが、図1及び図2に示す撮像装置100aのFPD104と同じFPD(A)を用いており、撮像装置700bが、FPD104とは画素数が同じで画素ピッチが異なるFPD(B)を用いている。このような場合で、各撮像装置の1画像を取得するための走査の時間が同じで、各撮像装置が並列配置された場合を考える。また、撮像装置700a,bのいずれも同じFPDを用いているが、撮像装置700bの1画像を取得するための走査の時間が撮像装置700aの1画像を取得するための走査の時間と異なっており、各撮像装置が並列配置された場合を考える。更に、各撮像装置のFPDが画素ピッチ、画素数、1画像を取得するための走査の時間のいずれも異なり、各撮像装置が並列配置された場合を考える。これらの場合には、2つの撮像装置間で近接する画素の間で大きな暗時出力特性差を有する箇所が生じる。それによって2つの撮像装置から出力される画像データに画像の不連続性が生じる可能性がある。
 そこで本願発明者は、上記の可能性を低減し得る、制御コンピュータ108による各撮像装置の動作制御を見出した。制御コンピュータ108は、第1の実施形態と同様に、並列配置された2つの撮像装置の走査方向が互いに同方向となるように、各撮像装置の動作を制御する。加えて制御コンピュータ108は、2つの撮像装置間で最も近接する画素が、互いに同じタイミングで走査されるように、各撮像装置の動作を制御する。例えば、FPD(B)とFPD(A)とが同じ画素ピッチで異なる画素数である2つの撮像装置が並列配置された場合、各撮像装置の駆動回路に含まれるシフトレジスタの制御クロックD-CLKの周波数を同じする。これにより、2つの撮像装置間で近接する画素の間で大きな暗時出力特性差を有する箇所が生じることを防ぐことが可能となる。そのため2つの撮像装置から出力される画像データに画像の不連続性が生じるおそれが低減される。
 次に、図8を用いて本実施形態における撮像装置701a及び701bの動作を説明する。図8は、撮像装置700a,bのいずれも同じFPDを用いているが、撮像装置700bの1画像を取得するための走査の時間が撮像装置700aの1画像を取得するための走査の時間と異なっており、各撮像装置が並列配置された場合のものである。ここで図8(a)は、本実施形態の非同期モードにおける撮像装置701aと701bの動作を示すタイミングチャートである。また、図8(b)は、本実施形態の同期モードにおける撮像装置701aと701bの動作を示すタイミングチャートである。制御部は、制御コンピュータから放射線の曝射要求に基づく制御信号を受けるまでの間は、FPDが所定の周期で繰り返される初期化動作kを含む待機動作を行うよう、FPDを制御する。そして、制御部が制御コンピュータから放射線の曝射要求に基づく制御信号を受けると、制御部は蓄積動作Wと出力動作Hとを含む撮影動作を行う。ここで、静止画撮影においては、1回目の蓄積動作Wと出力動作Hの後に1回の初期化動作kと、2回目の蓄積動作Wと出力動作Hを行うことがより好ましい。1回目の蓄積動作及び出力動作により、撮像装置により放射線画像データが取得され、2回目の蓄積動作及び出力動作により、オフセット補正用画像データが取得される。これらの間に1回目の蓄積動作Wと出力動作H前の初期化動作Kと同じ周期で少なくとも1回の初期化動作kを行っている。これにより各画像データの駆動履歴を整合させ、シェーディングを低減する良好なオフセット補正を行うことが可能となる。なお、間の初期化動作は1回に限定されるものではなく、1回目の蓄積動作Wと出力動作H前の初期化動作kと同じ周期で複数回行ってもよい。
 図8(a)に示される非同期モードでは、撮像装置701aと701bでは、それぞれ独立に動作がなされる。そのため、FPD(A)とFPD(B)で各動作の開始時間、長さ、繰り返し回数などが異なる。このような動作を同期モードに用いた場合には、各撮像装置間で走査の所要時間や開始時間等が異なることとなり、画像の不連続性が生じて画像合成時の画質低下を招くおそれがある。
 そこで本発明に係る同期モードでは、図8(b)に示すように、制御コンピュータからの同期信号に従い、各撮像装置701a、701bの各制御部が、FPD(A)とFPD(B)の動作が同期するように、FPD(A)、FPD(B)を制御する。第1の実施形態では、FPD(A)とFPD(B)の待機動作と撮影動作における各動作の開始時間、繰り返し回数を同期させるが、本実施形態ではこれらに加えて、各動作の期間を一致させる。ここで、非同期モードにおける出力動作Hの時間がより長いFPD(B)を基準として、FPD(A)の各動作の開始時間、長さ、繰り返し回数などを制御することが好ましい。
 本実施形態では、異種のFPDを混在させた場合に走査の所要時間を整合させる制御を含んでいる。そのため、第1の実施形態の効果に加えて、図1に示す複数の撮像装置から出力される画像データの不連続性が低減され、画像合成時の画質低下を更に低減させることが可能となる。
 なお、本発明の各実施形態は、例えば図1の制御部105に含まれるコンピュータ又は制御コンピュータ108がプログラムを実行することによって実現することもできる。また、プログラムをコンピュータに供給するための手段、例えばかかるプログラムを記録したCD-ROM等のコンピュータ読み取り可能な記録媒体又はかかるプログラムを伝送するインターネット等の伝送媒体も本発明の実施形態として適用することができる。また、上記のプログラムも本発明の実施形態として適用することができる。上記のプログラム、記録媒体、伝送媒体及びプログラムプロダクトは、本発明の範疇に含まれる。また、第1又は第2の実施形態から容易に想像可能な組み合わせによる発明も本発明の範疇に含まれる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 100 撮像装置
 101 検出部
 102 駆動回路
 103 読出回路
 104 平面検出器(FPD)
 105 信号処理部
 106 制御部
 107 検知部
 108 制御コンピュータ
 109 放射線制御装置
 110 放射線発生装置
 111 放射線源
 112 被検体
 113 表示装置
 114 制御卓

Claims (15)

  1.  放射線又は光を電荷に変換する変換素子と前記電荷に応じた電気信号を出力するスイッチ素子とを有する画素が行列状に複数配置された検出部と、行方向の複数のスイッチ素子に接続されて列方向に複数配置された駆動配線に接続され、複数の前記駆動配線に駆動信号を与える順序の方向である走査方向が双方向に設定可能であり、前記検出部を駆動する駆動回路と、列方向の複数のスイッチ素子に接続されて行方向に複数配置された信号配線に接続され、前記走査方向で駆動された検出部からの電気信号を画像データとして出力する読出回路と、を備え、照射された放射線又は光に応じた画像データを出力する撮像動作を行うための検出器と、前記検出器の動作を制御する制御部と、を夫々有し、夫々独立に撮像可能で相対的な位置関係が変位可能な複数の撮像装置と、
     前記複数の撮像装置の前記相対的な位置関係に関する情報を取得する検知手段と、
     前記検知手段から取得した前記情報を用いて前記複数の撮像装置の動作を決定し、決定した前記撮像装置の動作を実行させる制御信号を前記制御部に送信する制御コンピュータと、
    を備え、
     前記制御コンピュータは、前記相対的な位置関係が各撮像装置の走査方向に対して前記複数の撮像装置が並列に配置された並列配置である場合には前記複数の撮像装置の走査方向が互いに同方向となるように、前記相対的な位置関係が各撮像装置の走査方向に対して前記複数の撮像装置が直列に配置された直列配置である場合には前記複数の撮像装置の走査方向が互いに逆方向となり且つ前記複数の撮像装置の走査の開始又は終了が同じタイミングとなるように、前記複数の撮像装置の動作を決定する撮像システム。
  2.  前記相対的な位置関係が並列配置であって走査方向にずれた配置である場合、前記制御コンピュータは、前記複数の撮像装置の走査方向が互いに同方向となるように前記複数の撮像装置の走査方向を決定し、且つ、前記複数の撮像装置の検出部が走査方向において一部重なる領域で前記複数の撮像装置間で近接する画素が同じタイミングで走査されるように、前記複数の撮像装置の走査開始のタイミングを決定することを特徴とする請求項1に記載の撮像システム。
  3.  前記制御コンピュータは、前記複数の撮像装置間で近接する画素の間の暗時出力特性差が、前記複数の撮像装置のうちの一方の撮像装置の検出器のランダムノイズに埋没するレベル以下となるように、前記複数の撮像装置の動作を決定することを特徴とする請求項1に記載の撮像システム。
  4.  前記制御コンピュータは、前記複数の撮像装置間で近接する画素の間の暗時出力差が、透視撮影においては前記複数の撮像装置のうちの一方の撮像装置の検出器のランダムノイズの2倍以下になるように、一般撮影においては前記複数の撮像装置のうちの一方の撮像装置の検出器のランダムノイズ以下になるように、前記複数の撮像装置の動作を決定することを特徴とする請求項1に記載の撮像システム。
  5.  前記並列配置された前記複数の撮像装置のうち一方の撮像装置と他方の撮像装置とが少なくとも画素数及び画素ピッチのうちの一方が異なり且つ前記複数の撮像装置を夫々独立に撮像させた時の前記複数の撮像装置の1画像を取得するための走査の時間が同じである場合、又は、前記一方の撮像装置と前記他方の撮像装置とが前記複数の撮像装置を夫々独立に撮像させた時の前記複数の撮像装置の1画像を取得するための走査の時間が異なり且つ画素数及び画素ピッチが同じである場合、前記制御コンピュータは、前記複数の撮像装置の走査方向が互いに同方向となるように、且つ、前記複数の撮像装置の間で最も近接する画素が互いに同じタイミングで走査されるように、前記複数の撮像装置の動作を決定することを特徴とする請求項1に記載の撮像システム。
  6.  前記検知手段は、前記撮像装置に備えられた検知部、又は、前記撮像装置と別に備えられた検知部を含むことを特徴とする請求項1に記載の撮像システム。
  7.  前記検出器を保持する機構と、前記機構を駆動する機関と、を更に有し、
     前記制御コンピュータは、前記配置情報を用いて前記複数の撮像装置の移動位置を決定し、前記機構と前記機関を用いて前記複数の撮像装置を移動することを特徴とする請求項1に記載の撮像システム。
  8.  前記制御コンピュータで決定された前記複数の撮像装置の動作に関する情報を表示する表示装置を更に有することを特徴とする請求項1に記載の撮像システム。
  9.  放射線又は光を電荷に変換する変換素子と前記電荷に応じた電気信号を出力するスイッチ素子とを有する画素が行列状に複数配置された検出部と、行方向の複数のスイッチ素子に接続されて列方向に複数配置された駆動配線に接続され、複数の前記駆動配線に駆動信号を与える順序の方向である走査方向が双方向に設定可能であり、前記検出部を駆動する駆動回路と、列方向の複数のスイッチ素子に接続されて行方向に複数配置された信号配線に接続され、前記走査方向で駆動された検出部からの電気信号を画像データとして出力する読出回路と、を備え、照射された放射線又は光に応じた画像データを出力する撮像動作を行うための検出器と、前記検出器の動作を制御する制御部と、を夫々有し、夫々独立に撮像可能で相対的な位置関係が変位可能な複数の撮像装置を備えた撮像システムの制御方法であって、
     前記複数の撮像装置の前記相対的な位置関係に関する情報を取得する工程と、
     前記情報を用いて前記複数の撮像装置の動作を決定する工程と、
    を含み、
     前記決定する工程は、前記相対的な位置関係が各撮像装置の走査方向に対して前記複数の撮像装置が並列に配置された並列配置である場合には前記複数の撮像装置の走査方向が互いに同方向となるように、前記相対的な位置関係が各撮像装置の走査方向に対して前記複数の撮像装置が直列に配置された直列配置である場合には前記複数の撮像装置の走査方向が互いに逆方向となり且つ前記複数の撮像装置の走査の開始又は終了が同じタイミングとなるように、前記複数の撮像装置の動作を決定する制御方法。
  10.  前記決定する工程は、前記相対的な位置関係が並列配置であって走査方向にずれた配置である場合には、前記複数の撮像装置の走査方向が互いに同方向となるように前記複数の撮像装置の走査方向を決定し、且つ、前記複数の撮像装置の検出部が走査方向において一部重なる領域で前記複数の撮像装置間で近接する画素が同じタイミングで走査されるように、前記複数の撮像装置の走査開始のタイミングを決定することを特徴とする請求項9に記載の制御方法。
  11.  前記決定する工程は、前記複数の撮像装置間で近接する画素の間の暗時出力特性差が、前記複数の撮像装置のうちの一方の撮像装置の検出器のランダムノイズに埋没するレベル以下となるように、前記複数の撮像装置の動作を決定することを特徴とする請求項9に記載の制御方法。
  12.  前記決定する工程は、前記複数の撮像装置間で近接する画素の間の暗時出力差が、透視撮影においては前記複数の撮像装置のうちの一方の撮像装置の検出器のランダムノイズの2倍以下になるように、一般撮影においては前記複数の撮像装置のうちの一方の撮像装置の検出器のランダムノイズ以下になるように、前記複数の撮像装置の動作を決定することを特徴とする請求項9に記載の制御方法。
  13.  前記決定する工程は、前記並列配置された前記複数の撮像装置のうち一方の撮像装置と他方の撮像装置とが少なくとも画素数及び画素ピッチのうちの一方が異なり且つ前記複数の撮像装置を夫々独立に撮像させた時の前記複数の撮像装置の1画像を取得するための走査の時間が同じである場合、又は、前記一方の撮像装置と前記他方の撮像装置とが前記複数の撮像装置を夫々独立に撮像させた時の前記複数の撮像装置の1画像を取得するための走査の時間が異なり且つ画素数及び画素ピッチが同じである場合、前記複数の撮像装置の走査方向が互いに同方向となるように、且つ、前記複数の撮像装置の間で最も近接する画素が互いに同じタイミングで走査されるように、前記複数の撮像装置の動作を決定することを特徴とする請求項9に記載の制御方法。
  14.  前記放射線撮像システムは、前記検出器を保持する機構と、前記機構を駆動する機関と、を更に有し、
     前記配置情報を用いて前記複数の撮像装置の移動位置を決定する工程と、
     決定された移動位置に基づいて前記機構と前記機関を用いて前記複数の撮像装置を移動する工程と、
    を更に含むことを特徴とする請求項9に記載の制御方法。
  15.  決定された前記複数の撮像装置の動作に関する情報を表示装置に表示する工程を更に含むことを特徴とする請求項9に記載の制御方法。
PCT/JP2010/058357 2010-05-18 2010-05-18 撮像システム及びその制御方法 WO2011145171A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/058357 WO2011145171A1 (ja) 2010-05-18 2010-05-18 撮像システム及びその制御方法
JP2012515660A JP5642166B2 (ja) 2010-05-18 2010-05-18 撮像システム及びその制御方法
US13/107,360 US8625742B2 (en) 2010-05-18 2011-05-13 Imaging system and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058357 WO2011145171A1 (ja) 2010-05-18 2010-05-18 撮像システム及びその制御方法

Publications (1)

Publication Number Publication Date
WO2011145171A1 true WO2011145171A1 (ja) 2011-11-24

Family

ID=44972497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058357 WO2011145171A1 (ja) 2010-05-18 2010-05-18 撮像システム及びその制御方法

Country Status (3)

Country Link
US (1) US8625742B2 (ja)
JP (1) JP5642166B2 (ja)
WO (1) WO2011145171A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098002A1 (ja) * 2013-12-27 2015-07-02 キヤノン株式会社 放射線撮影システム及びその制御方法
JP2016140514A (ja) * 2015-01-30 2016-08-08 キヤノン株式会社 放射線撮影システム、放射線撮影装置、制御装置、制御方法、及びプログラム
JP2016185248A (ja) * 2015-03-27 2016-10-27 キヤノン株式会社 放射線撮影システム、制御方法およびプログラム
JP2016202252A (ja) * 2015-04-15 2016-12-08 キヤノン株式会社 放射線撮影システム、放射線撮影システムの制御方法およびプログラム
KR101808577B1 (ko) * 2017-05-18 2017-12-13 한밭대학교 산학협력단 중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템
JP2018015454A (ja) * 2016-07-29 2018-02-01 富士フイルム株式会社 放射線画像撮影システム、放射線画像撮影方法、及び放射線画像撮影プログラム
JP2018158137A (ja) * 2018-06-15 2018-10-11 コニカミノルタ株式会社 放射線画像撮影システム
JP2018192024A (ja) * 2017-05-18 2018-12-06 コニカミノルタ株式会社 放射線画像撮影システム
US10342508B2 (en) 2014-09-17 2019-07-09 Konica Minolta, Inc. Radiation image capturing system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6238577B2 (ja) * 2013-06-05 2017-11-29 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
KR102265279B1 (ko) * 2014-05-29 2021-06-16 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
CN105832353B (zh) * 2015-01-30 2020-11-06 佳能株式会社 放射线摄像系统
US10368823B2 (en) 2015-01-30 2019-08-06 Canon Kabushiki Kaisha Radiographing apparatus, control apparatus, control method, and storage medium
JP6072096B2 (ja) 2015-01-30 2017-02-01 キヤノン株式会社 放射線撮影システム、制御方法、制御方法、及びプログラム
JP6072097B2 (ja) 2015-01-30 2017-02-01 キヤノン株式会社 放射線撮影装置、制御装置、長尺撮影システム、制御方法、及びプログラム
JP6072100B2 (ja) 2015-01-30 2017-02-01 キヤノン株式会社 放射線撮影システム、制御方法、制御方法、及びプログラム
JP7087435B2 (ja) * 2018-02-19 2022-06-21 コニカミノルタ株式会社 放射線画像撮影装置及び放射線画像撮影システム
JP7118750B2 (ja) * 2018-06-04 2022-08-16 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122841A (ja) * 1984-06-21 1986-01-31 ピカー インターナシヨナル インコーポレイテツド 写像方法ならびに装置
JPH03137589A (ja) * 1989-10-04 1991-06-12 Commiss Energ Atom 画像形成又は再生のための大型マトリクス装置
JPH10332832A (ja) * 1997-05-30 1998-12-18 Picker Internatl Inc ガンマ線カメラ
JPH11502357A (ja) * 1995-02-10 1999-02-23 カーディアク・マリナーズ・インコーポレイテッド 走査ビーム型x線画像システム
JPH11507197A (ja) * 1996-04-03 1999-06-22 シーメンス アクチエンゲゼルシヤフト 画像記録システムおよび画像記録方法
JPH11318877A (ja) * 1998-01-29 1999-11-24 Toshiba Corp X線平面検出器を用いたx線診断装置及びx線診断装置の制御方法
JP3183390B2 (ja) * 1995-09-05 2001-07-09 キヤノン株式会社 光電変換装置及びそれを用いた撮像装置
JP2006280576A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 放射線撮影装置
JP4112175B2 (ja) * 1997-12-18 2008-07-02 アイピーエル・インテレクチュアル・プロパティ・ライセンシング・リミテッド ハイブリッド半導体イメージング・デバイス
JP4177892B2 (ja) * 1995-05-11 2008-11-05 ユニバーシテイ・オブ・マサチユセツツ・メデイカル・センター 定量的放射線透過写真映像化のための装置
JP4384766B2 (ja) * 1998-12-31 2009-12-16 ゼネラル・エレクトリック・カンパニイ 物体の画像を形成する方法及びイメージング・システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346011A (ja) 2005-06-14 2006-12-28 Canon Inc 放射線撮像装置及びその制御方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122841A (ja) * 1984-06-21 1986-01-31 ピカー インターナシヨナル インコーポレイテツド 写像方法ならびに装置
JPH03137589A (ja) * 1989-10-04 1991-06-12 Commiss Energ Atom 画像形成又は再生のための大型マトリクス装置
JPH11502357A (ja) * 1995-02-10 1999-02-23 カーディアク・マリナーズ・インコーポレイテッド 走査ビーム型x線画像システム
JP4177892B2 (ja) * 1995-05-11 2008-11-05 ユニバーシテイ・オブ・マサチユセツツ・メデイカル・センター 定量的放射線透過写真映像化のための装置
JP3183390B2 (ja) * 1995-09-05 2001-07-09 キヤノン株式会社 光電変換装置及びそれを用いた撮像装置
JPH11507197A (ja) * 1996-04-03 1999-06-22 シーメンス アクチエンゲゼルシヤフト 画像記録システムおよび画像記録方法
JPH10332832A (ja) * 1997-05-30 1998-12-18 Picker Internatl Inc ガンマ線カメラ
JP4112175B2 (ja) * 1997-12-18 2008-07-02 アイピーエル・インテレクチュアル・プロパティ・ライセンシング・リミテッド ハイブリッド半導体イメージング・デバイス
JPH11318877A (ja) * 1998-01-29 1999-11-24 Toshiba Corp X線平面検出器を用いたx線診断装置及びx線診断装置の制御方法
JP4384766B2 (ja) * 1998-12-31 2009-12-16 ゼネラル・エレクトリック・カンパニイ 物体の画像を形成する方法及びイメージング・システム
JP2006280576A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 放射線撮影装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015126806A (ja) * 2013-12-27 2015-07-09 キヤノン株式会社 放射線撮影システム及びその制御方法
WO2015098002A1 (ja) * 2013-12-27 2015-07-02 キヤノン株式会社 放射線撮影システム及びその制御方法
US10342508B2 (en) 2014-09-17 2019-07-09 Konica Minolta, Inc. Radiation image capturing system
US11963816B2 (en) 2014-09-17 2024-04-23 Konica Minolta, Inc. Radiation image capturing system
US11419570B2 (en) 2014-09-17 2022-08-23 Konica Minolta, Inc. Radiation image capturing system
US10368829B2 (en) 2014-09-17 2019-08-06 Konica Minolta Inc. Radiation image capturing system
JP2016140514A (ja) * 2015-01-30 2016-08-08 キヤノン株式会社 放射線撮影システム、放射線撮影装置、制御装置、制御方法、及びプログラム
JP2016185248A (ja) * 2015-03-27 2016-10-27 キヤノン株式会社 放射線撮影システム、制御方法およびプログラム
JP2016202252A (ja) * 2015-04-15 2016-12-08 キヤノン株式会社 放射線撮影システム、放射線撮影システムの制御方法およびプログラム
JP2018015454A (ja) * 2016-07-29 2018-02-01 富士フイルム株式会社 放射線画像撮影システム、放射線画像撮影方法、及び放射線画像撮影プログラム
JP2018192024A (ja) * 2017-05-18 2018-12-06 コニカミノルタ株式会社 放射線画像撮影システム
KR101808577B1 (ko) * 2017-05-18 2017-12-13 한밭대학교 산학협력단 중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템
JP2018158137A (ja) * 2018-06-15 2018-10-11 コニカミノルタ株式会社 放射線画像撮影システム

Also Published As

Publication number Publication date
US8625742B2 (en) 2014-01-07
JP5642166B2 (ja) 2014-12-17
US20110286582A1 (en) 2011-11-24
JPWO2011145171A1 (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
JP5642166B2 (ja) 撮像システム及びその制御方法
JP5792923B2 (ja) 放射線撮像装置及び放射線撮像システム、それらの制御方法及びそのプログラム
JP6491434B2 (ja) 放射線撮像装置及び放射線検出システム
JP5721405B2 (ja) 撮像システム、その制御方法及びプログラム
JP5361628B2 (ja) 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
US8809795B2 (en) Imaging apparatus, radiation imaging system, controlling method of imaging apparatus, and recording medium recording control program of imaging apparatus
JP5038031B2 (ja) 放射線撮影装置、その駆動方法及び放射線撮影システム
JP5448643B2 (ja) 撮像システム、その画像処理方法及びそのプログラム
JP5566209B2 (ja) 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
JP2010263369A (ja) 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
JP5460276B2 (ja) 撮像装置及び撮像システム
JP5539139B2 (ja) 撮像装置、撮像システム、撮像装置の制御方法
JP5274661B2 (ja) 放射線撮像装置及び放射線撮像システム、それらの制御方法及びそのプログラム
JP6104004B2 (ja) 放射線撮像システム、コンピュータ及びプログラム
JP5398846B2 (ja) 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
JP5155759B2 (ja) 固体撮像装置
WO2018135293A1 (ja) 放射線撮像装置及び放射線撮像システム
JP2018014682A (ja) 放射線撮像装置及び放射線撮像システム、それらの制御方法及びそのプログラム
CN110971843A (zh) 放射线摄像装置及其控制方法、放射线摄像系统
JP5784086B2 (ja) 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
JP2010141715A (ja) 撮像装置及び撮像システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515660

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851735

Country of ref document: EP

Kind code of ref document: A1